
The VLDB Journal (2023) 32:475–500
https://doi.org/10.1007/s00778-022-00757-x

REGULAR PAPER

Enhancing domain-aware multi-truth data fusion using copy-based
source authority and value similarity

Fabio Azzalini1,2 · Davide Piantella1 · Emanuele Rabosio2 · Letizia Tanca1

Received: 29 November 2021 / Revised: 18 June 2022 / Accepted: 21 June 2022 / Published online: 19 July 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Data fusion, within the data integration pipeline, addresses the problem of discovering the true values of a data item when
multiple sources provide different values for it. An important contribution to the solution of the problem can be given by
assessing the quality of the involved sources and relying more on the values coming from trusted sources. State-of-the-art data
fusion systems define source trustworthiness on the basis of the accuracy of the provided values and on the dependence on
other sources, and recently it has been also recognized that the trustworthiness of the same source may vary with the domain
of interest. In this paper we propose STORM, a novel domain-aware algorithm for data fusion designed for the multi-truth
case, that is, when a data item can also have multiple true values. Like many other data-fusion techniques, STORM relies on
Bayesian inference. However, differently from the other Bayesian approaches to the problem, it determines the trustworthiness
of sources by taking into account their authority: Here, we define authoritative sources as those that have been copied by
many other ones, assuming that, when source administrators decide to copy data from other sources, they choose the ones
they perceive as the most reliable. To group together the values that have been recognized as variants representing the same
real-world entity, STORM provides also a value-reconciliation step, thus reducing the possibility of making mistakes in the
remaining part of the algorithm. The experimental results on multi-truth synthetic and real-world datasets show that STORM
represents a solid step forward in data-fusion research.

Keywords Data integration · Multi-truth data fusion · Source authority · Copy detection · Value similarity

1 Introduction

In the recent years, an amazing amount of data that are gen-
erated by users and machines, and especially the tendency
to transform every real-world interaction into digital data,
have led to the problem of how to make sense of them. In
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this scenario, the number of data sources that can provide
information relevant for a query increases dramatically even
in very specific contexts, and each of these sources can store
a previously unimaginable amount of data.

When many sources describe the same data items, it is
virtually inevitable that conflicts arise.Data integration tack-
les this issue and operates according to the following three
steps: (i)when the data sources have a schema, schema align-
ment has the purpose of aligning different sources’ schemas
and maps the attributes that have the same semantics to
one another; (ii) entity resolution has the purpose of find-
ing, across the data sources, the records that represent the
same entities; and (iii) data fusion has the purpose of decid-
ing the true value(s) of a data item (from now on called
“object“) when multiple ones are provided by the different
sources. This work addresses the last phase, i.e., data fusion
[3,4,10,23].

Past research on data fusion has widely shown that major-
ity voting among the available sources is not enough to obtain
good quality results. In particular, in [22], the authors demon-
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Table 1 Authors provided by
the data sources in our
bookstore running example

Source Book Category Authors

S1 Book1 Literature Jean Cooney, John Golder,Margaret Williams

Book2 Literature Clive Cussler, Graham Brown

Book3 Literature James Patterson

Book4 History Curtis Cate

S2 Book1 Literature Jean Cooney, Johmx Golder,Margaret Williams

Book2 Literature Clive Cussler, Paul Kemprecos

S3 Book1 Literature J. Cooney, John Golder

Book2 Literature Clive Cussler

Book5 History Sarah Bradford

strated that, even in stock exchange and flight scenarios,
which are contexts usually deemed highly reliable, 70% of
the objects have more than one value provided, and only
70% of the correct values are provided by the majority of
the sources. Therefore, algorithms more sophisticated than
majority voting are needed and are proposed.

Data-fusion algorithms can be divided into two subclass-
es: single-truth and multi-truth ones, the latter denoting the
case when an object may have multiple true values. If we
look at this from the viewpoint of databases theory, we have
to say that these tables do not satisfy the first normal form.
However, in practice, modern databases often contain non-
atomic values in one attribute, considering them as atomic.
Such scenarios are common in everyday life, where many
actors play in a movie, or a book may have several authors.
As a consequence, we decided to design our model to work
also with multi-valued attributes1, which generates a very
challenging problem.
Running ExampleWe consider a running example in the con-
text of online bookstores. Each bookstore is a data source, and
may record several books; for each book, a bookstore speci-
fies one or more authors. The category of the book is known
as well. Our example (shown in Table 1) includes three book-
stores (S1, S2, S3) providing information about four books in
two categories (literature books and history books). Note that
the bookstores provide conflicting information, for instance,
S1 and S3 specify the author “John Golder” for Book1, while
S2 indicates “JohmxGolder,”which probably contains typos.
Moreover, all bookstores supply Book2, but only S1 specifies
“Graham Brown” among its authors. The aim is to discover
the correct set of authors for each book. Therefore, we are
facing a multi-truth problem.
The data-fusion literature has recognized the importance of
determining the trustworthiness of the individual sources
in order to correctly decide the true values. In particular,
DART [26], a relatively recent state-of-the-art algorithm, has
confronted the multi-truth scenario by learning the trustwor-

1 The value of these attributes usually contains a special character (e.g.,
“;”, “&”) used as separator.

thiness of sources in a Bayesian framework, considering that
the trustworthiness of a source may vary with the domain
of interest, e.g., a data source that is reliable about horror
booksmight provide wrong information about history books.
However, DART is built on the assumption that sources are
independent of one another, which is a clear oversimplifica-
tion of the real world; indeed, when thousands of websites
describe the same book, it is unrealistic to think that none of
them has copied from some of the others.

Moreover, note that the values of the objects are often con-
stituted by textual strings, and that the same entity of the real
world may be represented by several different such strings.
For instance, the strings “StephenKing” and “StephenEdwin
King” are very likely to refer to the samewriter, and therefore
they should be considered as equivalent variants. The iden-
tification of variant values has been scarcely considered in
the past data-fusion literature, and, to the best of our knowl-
edge, it has never been taken into account by multi-truth
approaches.

In this paper we propose STORM, an improved algo-
rithm for domain-aware multi-truth data fusion. Similarly to
DART,which is the state-of-the-art domain-aware algorithm,
STORM learns the trustworthiness of sources in a Bayesian
framework but, differently from it, it relaxes the assump-
tion of source independence. In particular, in STORM the
trustworthiness is determined on the basis of the authority
of sources, where authoritative sources are defined as the
ones that have been copied by many others. In fact, the key
idea is that, in general, when source administrators decide to
copy data, they will choose the sources that they perceive as
most trustworthy. In addition, STORM also includes a novel
technique to cluster together variant values when they are
represented by textual strings, relying on a novel token-based
similarity measure.

To summarize, in this paper we make the following con-
tributions:

– We present STORM, a new unsupervised, domain-aware
algorithm to discover the true values of objects, exploit-
ing Bayesian inference and handling the more complex
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scenario of multi-truth. Moreover, with STORM we can
compute the directional copying probabilities between
sources, and positively reward the sources on the basis of
their authority, which in turn is determined using those
probabilities.

– We propose a novel similarity measure (exploited in
the value-reconciliation step of STORM) to identify and
cluster together the textual strings representing variant
values. It is the first time that this approach is used in a
multi-truth data-fusion algorithm.

– We demonstrate the effectiveness of the technique by
means of an extensive experimental campaign using one
synthetic and three real-world datasets in the books,
movies and flights scenarios.

Paper Structure The paper is organized as follows. Section 2
contains the related work. Section 3 formally defines the
problem and the employed data model and overviews the
phases composing the methodology. Section 4 describes the
STORM’s value reconciliation phase, while Sect. 5 explains
the authority-based Bayesian inference based on copy detec-
tion. Section 6 presents the experiments and, finally, Sect. 7
concludes the paper.

2 Related work

The basic and most intuitive technique currently used to per-
form data fusion is majority voting, according to which the
value(s) claimed by most sources are selected as true. How-
ever, given theknownshortcomings [22] of this basicmethod,
different research approaches have been proposed in the last
decade, resulting in more complex data-fusion algorithms.

We now analyze some of these algorithms from the lit-
erature. All of them are more or less related to a voting
strategy on the values provided by each source, where each
source is assigned a different vote weight depending on its
trustworthiness, being the latter typically not known a priori.
These algorithms are therefore iterative, which means that at
each iteration they refine the measures assessing the truth of
the values and the trustworthiness of the sources, until con-
vergence. Many strategies perform the iterative computation
within a Bayesian framework. As mentioned in the Intro-
duction, most algorithms focus on the single-truth scenario,
but some recent techniques also support the multi-truth case.
Since we aim at proposing an unsupervised technique, super-
vised and semi-supervised approaches (e.g., [9,28,33,45]) are
omitted from the discussion.

In the following, we begin with describing the single-truth
methods (Sect. 2.1) and then move to the multi-truth ones
(Sect. 2.2).

2.1 Single-truthmethods

A set of single-truth data-fusion algorithms has been inspired
by the analysis of links in thewebdomain.HubAuthority [17]
computes the trustworthiness of each source as the sum of the
votes obtained by the values that it provides, when the vote
of a value is the sum of the trustworthiness of its providers; in
this case the trustworthiness of a source is influenced by the
number of values that it specifies. AvgLog [31] is similar to
HubAuthority and tries to mitigate the impact of the number
of values provided by each source by scaling the trustwor-
thiness through a logarithmic factor. Invest [31] uniformly
distributes the trustworthiness of a source among its pro-
vided values and computes it as a weighted sum of the votes
in the claimed values. PooledInvest [31] modifies Invest by
scaling linearly the vote count of the values.

Paper [13] considers that, when a source specifies a value
for an object, it implicitly votes against the other ones and
proposes three algorithms that iteratively estimate the truth-
fulness of facts and the trustworthiness of sources. The cosine
algorithm computes the trustworthiness of a source on the
basis of the cosine similarity between a vector representing
the votes of the source and a vector describing the currently
predicted truth. 2-Estimates, on the contrary, evaluates the
trustworthiness by relying on the average error of the claimed
facts with respect to the currently predicted truth. Finally, 3-
Estimates refines 2-Estimates by also introducing a measure
of how hard it is to obtain each data record.

Many algorithms employBayesian inference to predict the
veracity of each value and the trustworthiness of the sources.
TruthFinder [44] applies Bayesian analysis to compute the
probability of a value being true, conditioned on the observa-
tion of the values provided by all the sources; the similarity
between values is also considered, by increasing the vote
count of a value on the basis of the vote counts of the similar
ones. Accu [7] assumes a uniform distribution of false values
and computes the accuracy of a source as the average prob-
ability of its values being true; then, Bayesian inference is
used to determine the truth of the values. The paper [7] also
proposes two enhancements of Accu: AccuSim considers the
value similarities as in TruthFinder, while AccuCopy intro-
duces themodeling of correlation between sources. PopAccu
[9] extendsAccu by removing the assumption of uniformdis-
tribution of false values. GTM [50] uses a Bayesian model
designed specifically for numerical data. LCA [32] is an
approach focused on having a clear semantics, easily to be
analyzed and adapted; in more detail, it is based on a proba-
bilistic model where the truth of a claim is a latent variable,
and the credibility of a source is represented bymodel param-
eters.MultiLayer [8] jointly estimates the correctness of facts
and the accuracy of sources using inference in a Bayesian
probabilistic graphical model. IATD [47] determines the
trustworthiness of a claim by a source considering also the
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trustworthiness of the sources that influence the one making
the claim. SlimFast [36] introduces a framework, based on
Bayesian inference and statistical learning, capable to exploit
the domain features reflecting the reliability of sources; also,
SlimFast can automatically choose the best algorithm for
the learning task. LTD [49] defines a probabilistic graphical
model separating the trustworthy and untrustworthy compo-
nents in each source.

Further relevant approaches include CRH [21], dealing
with heterogeneous data types, CATD [20], which consid-
ers the issues related to sources providing just few items,
and ETCIBoot [41], which can compute confidence inter-
vals for the values provided by sources. More recently, CTD
[43] formulates truth discovery as an optimization problem,
while CASE [29] builds a network including source–claim
and source–source relationships and embeds it in a low-di-
mensional space where truth discovery can be conveniently
performed. The paper [27] studies data fusion within Linked
Data, [25,30,48] analyze the crowdsourcing domain, and
[42,46] deal with social networks. Paper [5] describes opti-
mization methods to select significant sources.

The techniques discussed so far, though containing inter-
esting elements, focus on single-truth data fusion, and
therefore cannot solve effectively the multi-truth problem
we are considering.

2.2 Multi-truthmethods

The first approach addressing the multi-truth scenario is
LTM, proposed by Zhao et al. [51]. LTM builds a proba-
bilistic graphical model where source quality and value truth
are treated as latent variables and performs inference through
Gibbs sampling; the model estimates a probability for every
value associated with an object, and the values with proba-
bilities greater than, or equal to 0.5, are considered true. LTM
postulates that the sources are independent of one another,
neglecting the effect of copying.

Subsequently, Wang et al. have proposed MBM [38],
which tackles multi-truth data fusion by introducing a copy-
detection phase to discover dependencies between sources.
It computes, for each group of sources and set of values,
an independence score, which is then used to discredit in
the voting phase the sources that do not provide their val-
ues independently. The two main drawbacks of this method
are the assumption that there is no mutual copying between
sources in the whole dataset and the fact that the algorithm
cannot distinguish the direction of copying. A variant of this
technique [39] neglects copy detection but considers balance
between positive and negative claims of a source (i.e., the
values provided by the source and the values provided only
by other sources, respectively), and value co-occurrence.

The state-of-the-art algorithms for multi-truth data fusion
are SmartVote [11], proposed by the same research group of
MBM, and DART [26], by Lin et al.

SmartVote determines source trustworthiness on the basis
of a concept of authority defining a source as trustworthy
if its claims are endorsed by many other sources. Trustwor-
thiness scores are derived using random walks on graphs in
which nodes represent sources and edge weights represent
endorsement probabilities between sources. The probabili-
ties are computed taking into account also object popularity
and long-tail factors. In SmartVote, the trustworthiness of a
source is entirely based on its authority.

DART, on the contrary, is based on an iterative domain-
aware Bayesian approach: The key intuition is that a source
mayhavedifferent quality levels in different domains of inter-
est. For each source, the authors define the domain expertise
score, measuring the source’s experience in a given domain
of interest, and use it to improve the importance of votes
coming from sources that are expert in the given domain of
interest. The main shortcoming of DART, like LTM, is the
assumption of independence of the sources.

Our algorithm, STORM, is based on a domain-aware
Bayesian framework which relaxes the source-independence
assumption. Specifically, ourmethod expands the framework
presented in DART by adding the following contributions:
(i) we designed source authority, a novel score that is used
to recognize trustworthy sources by analyzing their copying
behaviors; (ii) we enhanced the copy-detection methodology
presented in MBM, introducing the possibility to identify,
given two related sources, which one is the copier. Differ-
ently from SmartVote, however, STORM does not weigh
sources only on the basis of their (domain-unaware) author-
ity; rather, authority concurs to shape the trustworthiness
of sources, along with their expertise, in a domain-aware
Bayesian scenario. Moreover, STORM is also enriched with
a value-reconciliation phase leveraging a new measure of
value similarity. The use of a value-reconciliation step, to
the best of our knowledge, has never been considered in the
multi-truth data fusion scenario. In the experimental section
we will compare STORM with LTM, SmartVote and DART,
showing its superior performance.

3 Data-fusion framework

This section introduces our data model and formally defines
the multi-truth data-fusion problem tackled by our approach.
We also give an overview of the two phases composing our
strategy.

We consider a set S of data sources and a set O of
objects. A source s ∈ S may specify one or more values
for an attribute of an object. Similarly to other data-fusion
algorithms, the method we propose is concentrated on one
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Fig. 1 Phases of our data-fusion strategy

attribute at a time (e.g., deciding the true values of all the
authors of a book).2 The set of values provided by a source
s for the object o is denoted as Vs(o), while V (o) is the
set of all the values provided by any source of o; therefore,
V (o) = ⋃

s Vs(o).Without loss of generality, wewill refer to
the values of the attribute of interest of the object o simply as
the values of the object o. Let O(s) ⊆ O be the set of objects
for which a source s provides values. The sources may make
mistakes, so a value provided by a source for an object may
be true or false. Finally, an object belongs to one or more
domains of interest of a set D , e.g., a book may belong to
multiple categories.

In our running example on bookstores, the sources are
online bookstores, the objects are books sold by the book-
stores and the attribute of interest is the author. The values
are the authors of the books; each book may have multi-
ple authors, and the sources may specify correct or wrong
authors for the books, possibly in conflictwith eachother. The
domain of interest is represented in Table 1 by the attribute
Category (e.g., literature or history).

It is now possible to formally define the problem consid-
ered in this paper:
Problem statement Let S be a set of data sources, each
providing one or more values of the attribute of interest for
objects in the set O , where each object belongs to one or
more domains of interest in the set D . Then, the domain-
aware multi-truth data-fusion problem is defined as deciding
the set of true values for each object in O .

Our approach to the domain-awaremulti-truth data-fusion
problem is composed of two phases, summarized in Fig. 1:
value reconciliation and authority-based truth determina-
tion.

The value reconciliation phase (detailed in Sect. 4) takes
as input the sources and the values they specify for the
objects, and, for each object, clusters together the values –
provided by different sources – that are recognized as vari-

2 The Conclusion and Future Work section contains some comments
on the problem of dealing with more than one attribute.

ants representing the same real-world entity. For instance,
this phase is expected to place “J. R. R. Tolkien” and “John
R. R. Tolkien” in the same cluster. At the end of this phase,
each source is associated no more with a set of values, but
with a set of pseudovalues, where each pseudovalue repre-
sents a cluster of values that will be considered as a single
value in the next phase. Value reconciliation simplifies the
task of the subsequent phase, because the number of pseu-
dovalues for an object is in general much smaller than the
number of its values.

The authority-based truth-determination phase, detailed
in Sect. 5, receives as input the association between sources
and pseudovalues, and the domains of interest to which the
objects belong. A Bayesian inference algorithm leveraging
the concept of source authority is employed to determine
the set of true pseudovalues for each object. Then, for each
true pseudovalue, a representative value is also selected and
output.

Table 2 summarizes the notation used in the following
sections.

4 Value reconciliation

Our data-fusion method, like many others, exploits a voting
strategy to assign each object its own set of true values. It
is thus very important that all the votes intended for a cer-
tain value are actually attributed to it, despite its different
representations. Unfortunately this is rarely the case, given
the multitude of ways the true values can be addressed and
the presence of dirty values in nowadays data sources [1]. In
this context, being able to recognize when different values
refer to the same concept is crucial in order to have good
performances.

To better introduce the problem and the challenges it
encompasses, let us analyze the situation emerging in the
real-world Books dataset that we will use for the experi-
mental evaluation in Sect. 6. In particular, let us consider
the book “The Hidden Staircase” whose different values for
the “author” attribute are shown in Table 3. In this example,
all the different values refer to the same person (i.e., Car-
olyn Keene), and the application of the value reconciliation
step will greatly improve the job of the subsequent Bayesian
inference procedure. Note that reconciling the values before-
hand also allows to better detect copying behaviors between
sources, because a source may copy values from another one
and then adjust them to its own format, somehow masking
the copy.

Analyzing the example reported in Table 3, we can notice
two different types of heterogeneity present in the values:

– Elementary differences: the use of uppercase and lower-
case letters, punctuation marks often used to divide name
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Table 2 Notation used throughout the paper

Notation bf Description

S Set of all sources

O Set of all objects

D Set of all domains of interest

Vs(o), Cs(o) Set of the values (resp. pseudovalues) provided by source s for object o

V (o), C(o) Union of the sets of values (resp. pseudovalues) provided by any source for object o

Cs(o) Set of all pseudovalues not provided by source s for object o, but provided by other sources

So(v), So(c) Set of sources that provide value v (resp. pseudovalue c) for object o

So(c̄) Set of sources that provide an object o but not its pseudovalue c

Od (s) Set of objects provided by source s in the domain of interest d

si
c−→ s j Event whereby source si is copying pseudovalue c from source s j

si⊥cs j Event whereby sources si and s j provide pseudovalue c independently

si
o−→ s j Event whereby source si is copying from source s j a common pseudovalue for object o

si
d−→ s j Event whereby source si is copying from source s j in domain of interest d

Θd
i j Set of objects in domain of interest d common between the sources si and s j

ψ(o) Observation of the pseudovalues provided for object o

ψc Observation that two sources agree on the same claim (positive or negative) about a specific pseudovalue c

ψo Observation that two sources provide the same object o

Ad (s) Authority of source s in domain of interest d

ed (s) Expertise of source s in domain of interest d

cs(c) Confidence score of pseudovalue c provided by source s

σ(c) Veracity score of pseudovalue c

τ
pre
d (s) Precision of source s in domain of interest d

τ
npv
d (s) Negative predictive value of source s in domain of interest d

Table 3 Authors provided by
the data sources for the book
“The Hidden Staircase” (ISBN:
0448095025), in one of the
real-world datasets employed in
our experimental evaluation
(described in Sect. 6)

Keene, Carolyn

CAROLYN G. KEENE

Carolyn Keene

CAROLYN KEENE

None

Carolyn G. Keene

C. Keene

Keene, C.

Keene

Keene, Carolyn (Author)

Carolyn Keen

and surname or in abbreviations, the order of words com-
posing a name, and unwanted symbols resulting from
inaccurate crawling operations.

– More complex differences: the common use of abbrevia-
tions in the first and the second name, partial information
deriving from sources reporting only last names or omit-
ting second names when present, and typos often present
in dirty values.

The first type of discrepancy is easy to handle:We employ
a simple data cleaning pipeline that yields as output a dataset

where the majority of the elementary heterogeneities are
removed.

The second type of discrepancy is harder to identify and
solve. To this scope, we have designed a reconciliation algo-
rithm that, exploiting an iterative clustering procedure and
a novel string similarity measure, is able to place inside the
same cluster all the values referring to the same concept, i.e.,
in our example, referring to the same author. Each value is
then replaced by the pseudovalue representing the cluster it
belongs to, and the sources instead of voting for values will
vote for pseudovalues.

The two procedures we now describe have been specifi-
cally designed to work well with datasets containing person
names or location addresses. This choice could seem very
restrictive for the actual applicability of the method, but
it is not: Looking at the most widely used and diversified
repository of data-fusion datasets (Luna Dong data-fusion
datasets3), most of the data sources either belong to one of
the two above-stated contexts or contain numeric values that
do not require any cleaning or reconciliation. Specifically,
our methods exploit the observation that in most cases the
differences concern: abbreviations (“C. Keene,” “Carolyn

3 http://lunadong.com/fusionDataSets.htm.
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Keene”), provision of a partial value (“Keene,” “Carolyn G.
Keene”), typos (“Carolyn Keen,” “Carolyn Keene”) or the
presence of a particular context-specific token (“Keene, Car-
olyn (Author)”).

We are aware that also other types of data are available;
anyway, ours, like most of the other data-fusion algorithms
present in literature, is designed to work with structured data
sources featuring values composed of few tokens. We leave
the study of data-fusion methods for dealing with long tex-
tual descriptions written in natural language, such as movie
descriptions or product reviews, to a future extension of this
work.

Before presenting our method for tackling the second
type of heterogeneity, we describe the simple data cleaning
pipeline that we employ to solve the first type. Please note
that this first stage will be used as preprocessing step for all
the data-fusion methods with which we compare STORM in
the experiments of Sect. 6.

4.1 Cleaning the values

The steps of the simple cleaningpipeline responsible for solv-
ing the elementary discrepancies are the following:

– Removal of punctuation marks.
– Replacement of all uppercase characters with their low-
ercase counterparts.

– Sorting the tokens composing the string according to the
alphabetical order.

– Removal of context-specific tokens: “illustrator,”
“author,” “translator,” “director,” etc. Note that the identi-
fication of the context-specific tokens to be removed can
be performed employing a tf-idf algorithm to find these
special words in a semi-automatic fashion.

– Removal of numbers and special symbols.
– Deletion of values composed of more than a pre-deter-
mined number of tokens.

4.2 Similarity measure

At this point a natural way of proceeding would be to com-
pare the cleaned values through some string similarity metric
and group together the values regarded as similar. We tested
seven classic similarity measures (Hamming [14], Leven-
shtein [19], Jaro-Winkler [40], Jaccard [16], Sørensen [37],
Ratcliff-Obershelp [35], and Longest Common Subsequence
(LCS) [2]) and discovered that unfortunately these traditional
metrics do not work properly in our context. For example:

– When comparing two values referring to the same author,
“carolyn keene” and “keen”, none of the metrics is able
to assign a score higher than 0.5.

– When comparing two values referring to two different
authors, “carolyn keene” and “carolyn brown”, all the
metrics assign a score higher than 0.5.

Therefore, in some cases these metrics show the opposite
behavior with respect to the expected one. These examples
also emphasize how difficult it is to choose a threshold to
discern whether two values refer to the same concept or not.

To solve these problems we decided to introduce STORM
similarity, a string similarity metric to exploit the specific
properties of the values belonging to contexts where abbre-
viations, provision of a partial value and typos are common.
The STORM similarity metric is defined in Algorithm 1:
The input is composed of two values, each in its turn pos-
sibly composed of multiple tokens; the output is a number
between 0 and 1 representing how similar the two values are.

At its core, the algorithm works by counting how many
tokens of the two input values are similar, and to accomplish
this goal we propose an implementation based on matrices.
The algorithm starts by constructing the similarity matrix S
(Lines 5-15), where the value of each cell, si j , contains the
matching score between the i th token of the first value and
the j th token of the second value (e.g., see matrix S in Eq. 1).

To determine to what extent two tokens are similar, our
similarity algorithm employs two different types of token-
matching:

– Perfect token-matching: when the two tokens are identi-
cal;

– Partial token-matching: when only the prefix of the
tokens is equal; this second matching notion, denoted
in Algorithm 1 by the symbol ≈ , is very important to
identify abbreviations and typos.

We assign score 1 to each perfect match. If a partial
match is detected, we assign a score equal to the ratio (indi-
cated as pre f i x_% in the algorithm) between the length
of the matched prefix and the length of the shortest of the
two tokens. Now that we have identified the similar tokens
between the two values, we need to find a way to aggregate
the information contained in the similarity matrix in order to
design a global score, the value-matching score, indicating
whether the two input values are similar or not.

Observe that there might be cases in which a token of the
first value is similar to more than one token of the second
value, or vice-versa. For instance, see the similarity matrix S
for the values “Clive Cussler” and “Clive Cusler” in Eq. 1.

S =
Clive Cusler[ ]
1 0.2 Clive
0.2 0.5 Cussler

(1)
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To avoid this undesired behavior we have to make sure
that, whenwe aggregate the scores contained in the similarity
matrix, we select at most one token-match value for each
row and for each column. In this formulation, our solution
can be traced back to the assignment problem, a fundamental
combinatorial optimization problem.

The assignment problem can be generally defined as the
task of assigning a number of resources to an equal num-
ber of activities so as to minimize the total allocation cost.
In our case, we want to create correspondences between the
tokens of the two values; specifically, we are not interested in
minimizing a cost, therefore we opted for the maximization
formulation of the assignment problem instead of its stan-
dard form. Moreover, since the two values may not share the
same cardinality we rely on the unbalanced version of the
assignment problem [34].

Given the similarity matrix created at the previous step,
the assignment problem can be mathematically stated as the
problem of maximizing the match score:

M =
ni∑

i=1

n j∑

j=1

si j · xi j

where:

– ni and n j are the numbers of tokens composing the two
input values

– xi j is a variable whose value is 1 if we established a
correspondence between the i th token of the first value
and the j th token of the second value, 0 otherwise

subject to the following constraints:

–
∑ni

i=1 xi j = 1, j = 1, 2, ..., n j ; ensuring that each token
of the second value matches at most one token of the first
value

–
∑n j

j=1 xi j = 1, i = 1, 2, ..., ni ; ensuring that each token
of the first value matches at most one token of the second
value

The Hungarian algorithm [18] finds an optimal solution
to the assignment problem in polynomial time. The method
takes as input the similarity matrix and returns as output
the correspondences between the tokens that maximize the
similarity between the two values (Line 16 of Algorithm 1).

The result of the Hungarian algorithm (M) is the sum of
the selected token-matching scores between the two values.
We define the value-matching score as M divided by number
of tokens in the two values (Line 17 of Algorithm 1).

The two values v1 and v2 can be regarded as matching,
and hence defined as representing the same concept, if their

Algorithm 1 Compute STORM similarity
1: function Sim(v1, v2)
2: c1 ← |v1|
3: c2 ← |v2|
4: S ← [c1][c2]
5: for all tokeni ∈ v1 do
6: for all token j ∈ v2 do
7: if tokeni = token j then
8: si j ← 1
9: else if tokeni ≈ token j then
10: si j ← {pre f i x_%}
11: else
12: si j ← 0
13: end if
14: end for
15: end for

16: M = Hungarian(S)

17: match ← M
Mean(c1,c2)

18: return match
19: end function

similarity score Sim(v1, v2) is greater than 0.5. The value 0.5
should not to be intended as a threshold to be varied according
to the specific application or dataset: It simply defines that
two values are similar if the number of tokens they share is
greater than half the average number of tokens contained in
the two values v1 and v2.

Example 1 (STORM similarity) Let us compute the simi-
larity between two values from the Book1 of our running
example, “John Golder” and “Johmx Golder.” We have a
perfect token matching between the second token of the two
values and a partial token matching between the first token
of the two values; as a result there is one full point for the
perfect token match and 3

4 for the partial token match (since
the first three characters of the two tokens are identical, and
the shortest token is composed of four characters). We sum
these values and divide the sum by the average number of
tokens in the two values, in this case 2, getting a STORM
similarity of 0.875 which is higher than 0.5 and thus the two
values represent the same author.

Regarding the comparison of “carolyn keene” and “keen,”
which was failed by all the traditional string similarity
metrics, STORM rightfully define them as matching. The
algorithm finds a partial token match between “keen” and
“keene” with a score of 1, then after dividing this score by
the average number of tokens in the two values (1.5) the score
is 0.667 and hence higher than the threshold (0.5) to consider
two values as matching. For a deeper analysis of the STORM
similarity measure against the traditional ones we refer the
reader to the experiments presented in Sect. 6.6.
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4.3 Value reconciliation algorithm

Now that we have a string similarity measure that per-
forms well with the majority of data-fusion datasets, we can
describe the iterative clustering algorithm we use to group
together the values referring to the same concept in order to
produce the pseudovalues. The reconciliation procedure is
presented in Algorithm 2.

The process starts by selecting the most frequent value
freq among the values provided for a specific object (Line 3)
and removing it from the values to be reconciled (Line 4).
freq is then compared with all the other values (Line 7). In
case a value matches (Line 8), i.e., the similarity is greater
than 0.5, it is placed inside the same cluster as freq (Line 9).
All the values that matched with freq are removed from the
set of values to be reconciled (Line 10). The newly created
cluster is then added to the pseudovalues of the object under
consideration (Line 13), and the algorithm continues select-
ing the next most frequent value among the ones that have
not been reconciled yet (Line 14), comparing it with all the
other values still not clustered, and the algorithm stops when
the set of values to be reconciled becomes empty (Line 6).
The reconciliation is performed for each object, and at the
end of the execution of the algorithm each object o ∈ O is
associated with its set of pseudovalues C(o).

Supposing there are N objects and P values per object, and
considering the number of tokens per object as negligible, the
complexity of the reconciliation algorithm is O(N P2). Note
also that the computations for the different objects are inde-
pendent of each other, therefore in a multi-core environment
Algorithm 2 can be easily parallelized.

Example 2 (Reconciliation algorithm) Let us apply the value
reconciliation algorithm to our running example, starting
with Book1. The algorithm proceeds as follows:

– Select themost frequent value. In this case “JohnGolder,”
“Jean Cooney” and “Margaret Williams” are all pro-
vided by three sources; suppose that we start with “John
Golder.”

– Compare “John Golder” with all the other values in
order to find value matches. The following value match
is detected: “Johmx Golder” with score 0.875. Non-
matching scores are computed for “JeanCooney” (0.125),
“Margaret Williams” (0), “J. Cooney” (0.5).

– Create a pseudovalue containing “John Golder” and
“Johmx Golder.”

– Remove the values added to the pseudovalue created in
the previous step from the values that still need to be
reconciled.

– Select the most frequent value, suppose it is “Jean
Cooney.”

Table 4 Pseudovalues provided by the data sources in our bookstore
running example

Source Book Category Pseudovalues

S1 Book1 Literature c11, c12, c13
Book2 Literature c21, c22
Book3 Literature c31

Book4 History c41

S2 Book1 Literature c11, c12, c13
Book2 Literature c21, c23

S3 Book1 Literature c11, c12
Book2 Literature c21

Book5 History c51

c11 = {Jean Cooney, J. Cooney}, c12 = {John Golder, Johmx Golder},
c13 = {Margaret Williams}, c21 = {Clive Cussler}, c22 = {Graham
Brown}, c23 = {Paul Kemprecos}, c31 = {James Patterson}, c41 = {Cur-
tis Cate}, c51 = {Sarah Bradford}

Algorithm 2 STORM’s reconciliation
Input: objects O , values provided by all the sources for objects V (o)
Output: ∀o ∈ O , set C(o) of its pseudovalues
1: for all o ∈ O do
2: C(o) ← ∅
3: f req ← MostFrequent(V (o))
4: others ← V (o) \ { f req}
5: cluster_ f req ← { f req}
6: while others 
= ∅ do
7: for all v ∈ others do
8: if Sim( f req, v) > 0.5 then
9: cluster_ f req ← cluster_ f req ∪ {v}
10: others ← others \ {v}
11: end if
12: end for
13: C(o) ← C(o) ∪ {cluster_ f req}
14: f req ← MostFrequent(others)
15: others ← others \ { f req}
16: cluster_ f req ← { f req}
17: end while
18: end for

– Compare “Jean Cooney” with all the values not recon-
ciled yet in order to find value matches. The following
value match is detected: “J. Cooney” with score 1.
The remaining value (“Margaret Williams”) has match
score 0.

– Create a pseudovalue containing “Jean Cooney” and “J.
Cooney.”

– Remove the values added to the pseudovalue created in
the previous step from the values that still need to be
reconciled.

– The other values and objects are similarly examined,
leading to the clustering in Table 4. In the Bayesian step
of STORM, the sources instead of voting for the individ-
ual values will vote for the pseudovalues identified by the
reconciliation algorithm.
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The reconciliation methodology might be enhanced, in a
future work, with the addition of a step to exploit the seman-
tic information included in open-source knowledge bases. In
this regard, Wikidata, a famous knowledge base, provides
for each entity a list of aliases that might be useful to rec-
oncile values with abbreviations, or that feature just a subset
of the tokens contained in the complete name of the object.
For instance, for “J. R. R. Tolkien,” that in Wikidata is iden-
tified by unique identifier Q8924, the following aliases are
present: “John Ronald Reuel Tolkien,” “John R. R. Tolkien”
and “Tolkien.”On the other hand, since less famous terms and
values containing typos cannot be reconciled in the sameway,
STORM’s reconciliation methodology still provides a gen-
eral and valid solution able to deal also with values affected
by these issues.

Techniques that have a similar goal to the one of our rec-
onciliation strategy are author disambiguation methods in
the bibliographic domain. When disambiguating names in
the bibliographic context two main approaches are avail-
able: (i) grouping together citation records referring to the
same author (i.e., author grouping methods), (ii) directly
assigning each citation record to the right author (i.e., author
assignment methods) [12]. Both approaches exploit super-
vised techniques, either by learning similarity metrics or
classification algorithms from a labeled training dataset or
by interacting with a user during the parametrization of the
framework. Author disambiguation methods need citation
information such as author/coauthor names, work title, pub-
lication venue title, year, and so on. These attributes are
usually not sufficient to perfectly disambiguate all the ref-
erences: Some methods require also additional information
(e.g., emails, affiliations, paper headers, etc.). New evidences
usually improves the performance of the disambiguation
task, but often requires additional effort for extracting all the
needed information. By comparing our system with these
methods, we can identify two clear differences: (i) Our sys-
tem works in a completely unsupervised way, no labeled
training data are required; (ii) our system just considers the
values of the attribute under consideration to perform the
reconciliation task, no other information are required. To
conclude, the goal of our reconciliation strategy is to improve
the performances of the data fusion step by presenting a sim-
ple string similarity function that works better than the ones
present in literature and commonly used in data cleaning
tasks. We agree that, in the cases in which the currently
available author disambiguation methods designed for the
bibliographic domain can be used, the user should exploit
their functionalities. We also believe that in many domains
this is not possible and that our solution can provide a sub-
stantial improvement in the performances of the data fusion
procedure.

4 https://www.wikidata.org/wiki/Q892.

Once the pseudovalues are created, different strategies can
be employed to select the representative of each pseudovalue.
The selection of the representative value of the pseudovalues
will be discussed in Sect. 5.5.

5 Authority-based truth determination

The authority-based truth-determination phase of STORM
receives as input the pseudovalues provided by the sources
and the domains to which the objects belong and produces
as output the set of true values for each object.

Our truth determination technique relies on Bayesian
inference, which is a statistical method often employed to
perform data fusion [7–9,26,32,36,38,44,47,49], but sub-
stantially enriches the traditional approaches by leveraging
source authority. In particular, we exploit copy-based source
authority, according towhich a data source is deemed author-
itative if it is often copied by other sources.

Bayesian approaches are very popular in the data fusion
literature because they are very effective in modeling the
inter-dependence between different quantities, thus favoring
their joint iterative estimation. In more detail, in STORM
we need to model the inter-dependence between sources’
trustworthiness, value veracity and copying probability (then
used to compute source authority).

We remark again the importance of the copy-based source
authority in determining the true values. Just think to the
online bookstores scenario: It is natural that in the different
domains of interest there are sources that are more expert and
reliable and that they will be the most copied ones. Addition-
ally, in the movies scenario, important and reliable sources
like IMDB are clearly considered as a reference by the other
players, and thus they are expected to be often copied. Copy-
based source authority allows us to gather this behavior and
exploit it to improve the veracity estimation. In Sect. 6.5,
within the experimental part of the paper, we will also pro-
pose a case study based on one of our real datasets permitting
to further intuitively understand and appreciate the relevance
of the copy-based source authority.

The rest of this section goes as follows. We start pro-
viding basic notions and an outline of the authority-based
truth determination procedure (Sect. 5.1). Then, the individ-
ual steps of the procedure are described in detail (Sects. 5.2
through 5.5). Finally, the complete algorithm is illustrated
(Sect. 5.6).

5.1 Procedure outline and basic measures

In order to determine the true values of each object, STORM
estimates, for each pseudovalue, a veracity score, defined as
in [26]:
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Definition 1 (Veracity) The veracity score of a pseudovalue
c, denoted by σ(c), is the probability of c being true.

The veracity is estimated through an iterative Bayesian
inference algorithm. In this subsection we first derive the
veracity updating formula to be used in the iterations and then
sketch the procedure that will be explained in detail through-
out the whole Sect. 5. Finally, we present the measures that
we employ to assess the trustworthiness of the sources.

Letψ(o) be the observation of the pseudovalues provided
for object o. Applying Bayes’ theorem, we can express the
probability that a certain pseudovalue c ∈ C(o) is true, given
the observation of the pseudovalues provided for object o, as
follows:

P(c|ψ(o)) = P(ψ(o)|c)P(c)

P(ψ(o))
(2)

Note that, according to its definition, the veracity is the
probability of c being true, thus it corresponds to the prior
probability P(c) in Eq. 2. Considering c̄ as the event accord-
ing to which the pseudovalue c is false, substituting P(c)
with σ(c) and performing some calculations we obtain:

P(c|ψ(o)) = P(ψ(o)|c)σ (c)

P(ψ(o)|c)σ (c) + P(ψ(o)|c̄)(1 − σ(c))

= 1

1 + 1−σ(c)
σ (c) · P(ψ(o)|c̄)

P(ψ(o)|c)

(3)

The veracity value σ(c) is refined at every iteration of the
algorithm using Eq. 3. σ(c) is initialized with a default value
that is employed to compute P(c|ψ(o)) at the first iteration;
in order not to introduce bias in the computation, it is rea-
sonable to initialize the veracity to 0.5. Then, this computed
value of P(c|ψ(o)) is used as the new σ(c) at the subsequent
iteration, and an updated estimation of P(c|ψ(o)) is derived.
The iterative process proceeds until convergence. According
to Eq. 3 to provide an updated estimation of the posterior
P(c|ψ(o)) at each iteration we need to devise a way to com-
pute the likelihoods P(ψ(o)|c) and P(ψ(o)|c̄), which are
the probabilities of observing ψ(o) when c is true or false,
respectively.

The iterative algorithm that we use to update the veracities
estimation is sketched in Fig. 2. In more detail, each iteration
consists of three steps:

(a) STORM performs copy detection, determining the
copying probabilities between sources in every domain
of interest, considering also the direction of copying.
Copy detection is described in Sect. 5.2.

(b) Copying probabilities are used to compute the authority
of sources in each domain of interest. Source authority
computation is described in Sect. 5.3.

(a) (b) (c)

(d) 

Fig. 2 Steps composingSTORM’s authority-based truth-determination
procedure

(c) The veracitiesof thepseudovalues are computed through
Eq. 3; in particular, source authorities are employed to
improve the estimation of P(ψ(o)|c) and P(ψ(o)|c̄).
Veracity computation is described in Sect. 5.4

Then, a final step is performed when the iterative process
reaches convergence:

(d) STORM produces the set of true pseudovalues for each
object by selecting those whose veracity exceeds a verac-
ity threshold, and chooses a representative value for each
true pseudovalue. True values’ selection is described in
Sect. 5.5.

In order to properly perform both copy detection and
veracity computation, STORM needs an assessment of the
trustworthiness of the sources in the different domains, to
know howmuch their claims about the objects can be trusted.
We employ two source trustworthiness indicators, whose val-
ues are refined at each iteration.

The first indicator is precision, whichmeasures howmany
pseudovalues provided by a source are actually true. During
the iterative process it is not known which are the true pseu-
dovalues, so we use the current estimation of their veracity.
LetOd(s)be the set of objects providedby source s in domain
of interest d, and Cs(o) the set of pseudovalues provided by
s for object o. Precision is defined as follows:

Definition 2 (Precision) The precision τ
pre
d (s) of a source s

in domainof interestd is the probability that the pseudovalues
provided by s in d are true.

τ
pre
d (s) =

∑
o∈Od (s)

∑
c∈Cs (o) σ (c)

∑
c∈Od (s) |Cs(o)| (4)

As discussed in several works [26,38,51], in the multi-
truth scenario the precision measure is not enough to assess
the trustworthiness of a data source, because it considers
only positive claims. This means that a source providing only
correct pseudovalues for the objects it supplies would have
precision 1 even if it provides just a subset of the actual
true pseudovalues for those objects. In order to evaluate the
reliability of a source when it does not provide a certain pseu-
dovalue specified by another source for the same object, we
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use – as in [38] – the negative predictive value, which mea-
sures how many pseudovalues not provided by a source (and
provided by other sources for the same objects) are actu-
ally false. Let Cs(o) be the set of pseudovalues not provided
by source s for object o but provided by other sources. The
negative predictive value is defined as:

Definition 3 (Negative Predictive Value) The negative pre-
dictive value τ

npv
d (s) of a source s in domain of interest d is

the probability that the pseudovalues not provided by s in d
are false.

τ
npv
d (s) =

∑
o∈Od (s)

∑
c∈Cs (o)

(1 − σ(c))
∑

o∈Od (s)

∣
∣
∣Cs(o)

∣
∣
∣

(5)

Example 3 (Source trustworthiness) Consider source S3 in
domain of interest d = “literature.” Suppose that, after a cer-
tain iteration of the Bayesian inference algorithm, we have
computed these veracities for the pseudovalues: for Book1:
σ(c11) = 0.95, σ(c12) = 0.85, σ(c13) = 0.9; for Book2:
σ(c21) = 0.97, σ(c22) = 0.82, σ(c23) = 0.2. Applying
Eqs. 4 and 5 we obtain the following precision and nega-
tive predictive value:

τ
pre
d (S3) = 0.95+0.85+0.97

3 = 0.9233

τ
npv
d (S3) = (1−0.9)+(1−0.82)+(1−0.2)

3 = 0.36
This means that source S3 provides correct pseudovalues, but
seems to miss other relevant ones.

5.2 Copy detection

We describe now our copy-detection strategy. Our approach
is inspired by [38]: specifically, we borrowed their initial
considerations on “copying a value” (Eqs. 6, 7, 8 and 9) and
improved their methodology in two respects: (i) we assign
different probabilities to the two directions of copying, which
is fundamental to determine source authority; and (ii) our
copy detection strategy is domain-aware.

Most of the data fusion systems that include the study of
copying behaviors are based on the assumption that there is
no mutual copying between any pair of sources, that is, s1
copying from s2 and s2 copying from s1 do not happen at
the same time [10]. We partially relax this assumption, in
fact, our methodology only requires that there is no mutual
copying at domain level, i.e., if source s1 copies from source
s2 regarding domain d1, then s2 can copy pseudovalues from
s1 only for objects in domains d j 
= d1.

For each pair of sources (si , s j ) in every domain of interest
d, the aim is to compute the probability that si copies from

s j (i.e., P(si
d−→ s j |Θd

i j )) and that s j copies from si (i.e.,

P(s j
d−→ si |Θd

i j )) the common pseudovalues they provide

for their common objects Θd
i j in the domain of interest d.

To compute these probabilities we begin with examining the

various copying relations between si and s j for a specific
common pseudovalue.

5.2.1 Copying a pseudovalue

Let c be a pseudovalue for object o in the domain of interest
d, provided by both sources si and s j . Let si

c−→ s j denote
the event according to which si copies c from s j . Let si⊥cs j
be the event according to which si and s j provide c indepen-
dently of each other, and ψc be the observation that si and s j
have the same claim (positive or negative) about pseudovalue
c. We compute the probability of observing ψc in different
cases of source dependence and truthfulness of c.

First, similarly to [38], we state that, if si copies from s j
or the other way round, then they have the same claim about
c, no matter the veracity of c:
{
P(ψc|si c−→ s j , c) = P(ψc|si c−→ s j , c̄) = 1

P(ψc|s j c−→ si , c) = P(ψc|s j c−→ si , c̄) = 1
(6)

For instance, considering Table 4, if S1 copies the pseu-
dovalue c21 of Book2 (corresponding to the author Clive
Cussler) from S2, or vice-versa, then either they both pro-
vide the pseudovalue c21 or neither of the two provides it.

On the other hand, the probabilities that the two sources
have the same claim about the pseudovalue c independently
of each other, in the two cases that c is true or false, are
defined as follows:

P(ψc|si⊥cs j , c) = τ
pre
d (si ) τ

pre
d (s j )

+ [1 − τ
npv
d (si )] [1 − τ

npv
d (s j )] (7)

P(ψc|si⊥cs j , c̄) = τ
npv
d (si ) τ

npv
d (s j )

+ [1 − τ
pre
d (si )] [1 − τ

pre
d (s j )] (8)

Suppose that Clive Cussler is actually an author of Book2.
Then, the probability that S1 and S2 have the same claim
about c21 (Eq. 7) is the probability that they both correctly
provide a pseudovalue (equal to τ

pre
d (S1)τ

pre
d (S2)) plus the

probability that they are both wrong when not providing a
pseudovalue (equal to [1 − τ

npv
d (S1)][1 − τ

npv
d (S2)]). The

same reasoning can be applied to Eq. 8.
Bayes’ theorem can now be applied to compute the prob-

ability of two sources being dependent or independent with
respect to the pseudovalue c, given that they have the same
claim about c. In the first case we can also understand which
of the two sources is the copier.

Let Y = {si c−→ s j , s j
c−→ si , si⊥cs j }. For each y ∈ Y , we

can compute the following probability:

P (y|ψc) = P(ψc|y)P(y)
P(ψc)

= P(ψc|y)P(y)∑
y′∈Y P(ψc|y′)P(y′)

= P(y)[P(ψc|y,c)σ (c)+P(ψc|y,c̄)(1−σ(c))]∑
y′∈Y P(y′)[P(ψc|y′,c) σ (c)+P(ψc|y′,c̄)(1−σ(c))]

(9)
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For ease of notation, ηdi j is used to denote the prior prob-

ability P(si
c−→ s j ) while ηdji denotes the prior probability

P(s j
c−→ si ), in the domain of interest d of the object we are

considering. Given the assumption of no mutual copying at
domain level, it also holds that:

P(si⊥cs j ) = 1 − ηdi j − ηdji (10)

Let us compute P(si
c−→ s j |ψc) (the computation of

P(s j
c−→ si |ψc) is analogous) by substituting Eqs 6, 7, 8,

10 into Eq. 9:

P(si
c−→ s j |ψc) = ηdi j

ηdi j + ηdji +
(
1 − ηdi j − ηdji

)
Pu

(11)

where

Pu =σ(c)
[
τ
pre
d (si ) · τ

pre
d (s j ) + (

1 − τ
npv
d (si )

) · (
1 − τ

npv
d (s j )

)]

+ (1 − σ(c))
[
τ
npv
d (si ) · τ

npv
d (s j )

+ (
1 − τ

pre
d (si )

) · (
1 − τ

pre
d (s j )

)]
(12)

Nowwe need to find a way to estimate the prior probabili-
ties ηdi j and ηdji of the Bayesian model. We define them as the

copying probabilities, P(si
d−→ s j |Θd

i j ) and P(s j
d−→ si |Θd

i j ),
of the two sources in the domain d of the object we are con-
sidering; we will define these probabilities in Sect. 5.2.2.

Example 4 (Copying a pseudovalue) Let us compute, at a
certain iteration i, the probability that source S2 has copied
from S1 the common pseudovalue c13 (corresponding to the

author Margaret Williams) of Book1 (P(S1
c13−→ S2|ψc13))

in domain d =“literature.” Considering that after iteration
i-1 the veracities hypothesized in Example 3 have been
computed, and adding that for Book3 σ(c31) = 0.96, the pre-
cisions and negative predictive values after iteration i-1 are
as follows: τ pre

d (S1) = 0.9083, τ npvd (S1) = 0.8, τ pre
d (S2) =

0.774, τ
npv
d (S2) = 0.18. Moreover, suppose that after iter-

ation i-1 we have computed: P(S1
d−→ S2|Θd

12) = 0.25,

P(S2
d−→ S1|Θd

12) = 0.7. We use Eqs. 11 and 12, recall-
ing that the prior probabilities η12 and η21 have been defined

as P(S1
d−→ S2|Θd

12) and P(S2
d−→ S1|Θd

12):
Pu = 0.9[(0.9083 · 0.774) + (1 − 0.8)(1 − 0.18)]+
(1− 0.9)[(0.8 · 0.18) + (1− 0.9083)(1− 0.774)] = 0.7968
P(S2

c13−→ S1|ψc13) = 0.7
0.25+0.7+(1−0.7−0.25)·0.7968 = 0.7072

5.2.2 Copying at the level of the domain of interest

So far we have computed the probability that a source si
has copied a specific common pseudovalue c from source s j
given the observation that si and s j have the same claim on

c. Let si
o−→ s j be the event according to which si copies

from s j a common pseudovalue related to object o, and ψo

the observation that the two sources provide the same object
o. The probability that si copies a common pseudovalue for
object o from s j is defined as the average of the probabilities
related to all the common pseudovalues associated with o:

P(si
o−→ s j |ψo) =

∑
c∈Csi (o)∩Cs j (o)

P(si
c−→ s j |ψc)

|Csi (o) ∩ Cs j (o)|
(13)

Equation 13 expresses the probability that a source si
copies from another source s j a common pseudovalue for
object o. However, also the other possible non-common
pseudovalues must be taken into consideration in order to
appropriately compute the probability that the common ones
were really copied. Indeed, the meaning of a high P(si

o−→
s j |ψo) is different according to the fact that si and s j share
all the pseudovalues they provide for o, or that the common
pseudovalues are just a small fraction.

Therefore, the copying probability at the level of the
domain of interest can be finally defined as:

P(si
d−→ s j |Θd

i j ) =
∑

o∈Θd
i j
P(si

o−→ s j |ψo) · Ji j (o)
|Θd

i j |
(14)

where Ji j (o) is the Jaccard similarity of the two sets of pseu-
dovalues of o provided by the two sources si and s j :

Ji j (o) = J ji (o) =
∣
∣Csi (o) ∩ Cs j (o)

∣
∣

∣
∣Csi (o) ∪ Cs j (o)

∣
∣

(15)

Example 5 (Copying at the level of the domain of interest)We
would like to compute the probability that S2 copies from S1
in the domain d = “literature.” The two sources provide two
common books Book1 and Book2, with three common pseu-
dovalues forBook1andone commonpseudovalue forBook2.

In Example 4 we have computed P(S2
c13−→ S1|ψc13) =

0.7072 for Book1. Similarly, we can perform the compu-
tation for the other common pseudovalues, obtaining for

Book1 P(S2
c11−→ S1|ψc11) = 0.7059, P(S2

c12−→ S1|ψc12) =
0.7084, and for Book2 P(S2

c21−→ S1|ψc21) = 0.7054.
We apply Eq. 13 to derive the copying probabilities at the

object level:

P(S2
Book1−−−→ S1|ψBook1) = 0.7072+0.7059+0.7084

3 = 0.7072

P(S2
Book2−−−→ S1|ψBook2) = 0.7054

1 = 0.7054
Using Eq. 15, Jaccard coefficients are as follows:
J12(Book1) = 1
J12(Book2) = 1/3 = 0.3333
Finally, the copying probability at domain level is:

P(S2
d−→ S1|Θd

12) = 0.7072·1 + 0.7054·0.3333
2 = 0.4712
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5.2.3 Initialization

The copying probability at the level of the domain of interest
is computed from the copying probabilities associated with
the individual pseudovalues, and in the Bayesian model for
the copying probabilities of the pseudovalues we have cho-
sen to employ the probabilities at the level of the domain of

interest P(si
d−→ s j |Θd

i j ) as the priors ηdi j . At iteration k, the
probabilities at the level of the domain of interest computed at
iteration k − 1 are used to derive the probabilities associated
with the pseudovalues, but for the first iteration an effective
initialization is needed.

To this aim, we exploit the concept of domain expertise
of a source, introduced in [26]. The expertise of source s
in domain of interest d, denoted by ed(s), is defined on the
basis of the percentage of objects belonging to d that are pro-
vided by s. Also, the expertise score is adjusted by means of
a term taking into account the fact that objects may belong
to multiple domains, because some domains of interest may
be overlapping (e.g., a book may be both a biography and a
history book). For the sake of conciseness we do not delve
into the details of the formulas to compute domain expertise,
and refer the interested readers to [26]. We just notice that in
[26] the expertise computation relies on two parameters to be
chosen: ρ, which should be set higher when the domains are
very overlapped (i.e., they have a high percentage of com-
mon values), and α, which is an adjust factor accommodating
possibly uneven distributions of objects among the sources.
In our experiments, these parameters will be set according to
the guidelines provided in [26].

Our initialization relies on the assumption that sources
with high expertise in domain d are less likely to be copiers
for domain d and that sources with low expertise in d tend
to copy from sources with higher expertise in d. These ideas
are summarized in this formula:

ηdi j = [1 − ed (si )] ed
(
s j

) ∀si , s j ∈ S ∧ si 
= s j (16)

5.3 Source authority

The key idea to define the authority of a source, in a specific
domain of interest, based on the detection of which sources
copy from which ones, is that if many sources copy some
values from the same source sa , it is because sa is considered
authoritative and more trustworthy.

The unadjusted authority score of source s in domain d
measures how much of source s is copied in d with respect
to how much all sources are copied in d (Eq. 17):

ad(s j ) =
∑

si∈S P(si
d−→ s j |Θd

i j )

∑
sk∈S

∑
sl∈S P(sl

d−→ sk |Θd
kl)

(17)

Note that ad(s) is actually an absolute measure, while we
would like it to be a value between 0 and 1 as for all the other
scores of this study. We can then apply a linear conversion
to ad(s) in order to map it on the interval [0, 1]. We denote
this new score as Ad(s) or authority of source s in domain
of interest d, computed as:

Ad(s) = ad(s) − amin
d

amax
d − amin

d

(18)

where amax
d and amin

d represent, respectively, the maxi-
mum and minimum unadjusted authority scores observed in
domain d.

Example 6 (SourceAuthority) Let us compute the authorities
of sources S1 and S2 in the domain of interest d = “litera-

ture.” In Example 5 we have computed P(S2
d−→ S1|Θd

12) =
0.4712. Exploiting the information provided in Examples 4

and 5, it is easy to derive P(S1
d−→ S2|Θd

12) = 0.1683.

Moreover, let us assume that P(S1
d−→ S3|Θd

12) = 0.1,

P(S3
d−→ S1| Θd

12) = 0.6, P(S2
d−→ S3|Θd

12) = 0.2, and

P(S3
d−→ S2|Θd

12) = 0.3.
Applying Eqs. 17 and 18:
ad(S1) = 0.4712+0.6

0.4712+0.1683+0.1+0.6+0.2+0.3 = 0.5823

ad(S2) = 0.1683+0.3
0.4712+0.1683+0.1+0.6+0.2+0.3 = 0.2546

ad(S3) = 0.1+0.2
0.4712+0.1683+0.1+0.6+0.2+0.3 = 0.1631

Ad(S1) = 0.5823−0.1631
0.5823−0.1631 = 1

Ad(S2) = 0.2546−0.1631
0.5823−0.1631 = 0.2183

Ad(S3) = 0.1627−0.1627
0.5827−0.1627 = 0

Note that the copying probabilities at the level of the
domain of interest indicate that S1 is likely to be copied more
often than S2 and S3 for literature books, and this results in
a higher authority in that domain.

5.4 Veracity computation

In Sect. 5.1 we have explained that the veracity of a pseu-
dovalue c is evaluated through a Bayesian inference iterative
algorithm. At each iteration, the veracity estimations are
updated with Eq. 3 on the basis of the veracities computed
at the previous iteration and of the probabilities of the obser-
vations P(ψ(o)|c) and P(ψ(o)|c̄). In this work we compute
these probabilities extending the formulas proposed in [26],
by leveraging the authority score of each source.

The model of [26] relies on the expertise of the sources
(already explained in Sect. 5.2.3) and on the confidence of
the sources in the pseudovalues (i.e., in the clusters contain-
ing the values they expose). In our multi-truth scenario, the
confidence of source s in pseudovalue c of object o, denoted
by cs(c), reflects how much s is convinced that c is part of
the truth of object o (if s provides c) or not part of the truth of
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object o (if s does not provide c). Also notice that in a multi-
truth scenario each source s might provide a partial truth,
therefore we should not set cs(c) = 0 for all pseudovalues
c not provided by s (and possibly provided by some other
source). The evaluation of cs(c) can be expressed as follows:

cs(c) =
⎧
⎨

⎩

(
1 − |C(o)\Cs (o)|

|C(o)|h
)

1
|Cs (o)| if c ∈ Cs(o)

1
|C(o)|h if c /∈ Cs(o)

(19)

In [26], h is not a parameter, and is set to 2. Here we adopt a
more flexible solution in order to comply with the needs of
different data domains. The higher the value of h, the more
confident the source is in the pseudovalues it provides. High
confidence in positive claims with respect to negative ones
may be appropriate when the set of alternative pseudovalues
provided by the sources is large, and therefore there might be
many negative claims. On the contrary, when negative claims
are less numerous, then a more significant confidence should
be associated with them. For instance, consider C(o) =
{c1, c2, c3, c4} and Cs(o) = {c1, c2}. For source s, if h = 1
all the four pseudovalues have confidence 1

4 , while if h = 1.5
the positive claims c1 and c2 have confidence 3

8 and the neg-
ative claims c3 and c4 have confidence 1

8 .
Our key idea in computing the probability of the obser-

vations is to reward the sources positively according to their
authority. Let So(c) be the set of sources providing pseu-
dovalue c for object o, and So(c̄) the set of sources providing
the object o but not indicating c among its pseudovalues. The
probability of the observations is as follows:

P(ψ(o)|c) =
∏

s∈So(c)
τ
pre
d (s)β

d
s,c

×
∏

s∈So(c̄)

(
1 − τ

npv
d (s)

)βd
s,c (20)

P(ψ(o)|c̄) =
∏

s∈So(c̄)
τ
npv
d (s)β

d
s,c

×
∏

s∈So(c)

(
1 − τ

pre
d (s)

)βd
s,c (21)

where

βd
s,c = min

(
cs(c) · (ed(s) + Ad(s)

k), 1
)

In Eq. 20, the probability of observing ψ(o) knowing that c
is true is the probability that the sources providing c are right
in specifying a certain pseudovalue (the product involving
τ
pre
d (s)) and the sources not providing c make a mistake not
specifying it (the product involving (1 − τ

pre
d (s))). Preci-

sion and negative predictive value are adjusted on the basis
of confidence, expertise and authority. Analogous reasoning
holds for Eq. 21.

Note that an object o can belong to multiple domains of
interest. If this is the case, the quantities τ

pre
d (s), τ

npv
d (s),

ed(s), Ad(s) in Eqs. 20-21 are those referred to the domain
d for which s has the greatest expertise ed(s); indeed, if the
source provides more data in a certain domain of interest the
scores related to that domain of interest are expected to be
more reliable. Parameter k modulates the contribution of the
authority to the exponent βd

s,c. Since 0 ≤ Ad(s) ≤ 1, the
lower is k, the greater is the contribution of Ad(s). When
the authority can represent a clear and reliable distinction
between the sources we can use a low value for k, otherwise
more caution is advised.

Example 7 (Veracity computation) Let us compute the verac-
ity of the pseudovalue c13 of Book1, corresponding to
Margaret Williams, in the domain of interest d=“literature,”
at iteration i. Note that Book1 is provided by all the three
sources, but only S1 and S2 specify c13 among its pseudoval-
ues. Suppose that precisions, negative predictive values and
veracities after iteration i-1 are those indicated in Examples 3
and 4. The expertise of the sources, computed as described in
[26], is as follows: ed(S1) = 0.821, ed(S2) = ed(S3) = 0.7.
Eq. 19 can be used to derive the confidence of the sources
in their claims about Margaret Williams. Setting h = 2:

cS1(c13) = cS2(c13) =
(
1 − 3−3

32

)
· 1
3 = 1

3 and cS3(c13) =
1
32

= 1
9 Eqs. 20-21 allow to determine the probability of the

observations. Setting k = 1:
βd
S1,c13

= min((1/3) · (0.821 + 1), 1) = 0.6070;

βd
S2,c13

= min((1/3) · (0.7 + 0.2183), 1) = 0.3061;

βd
S3,c13

= min((1/9) · (0.7 + 0), 1) = 0.0778;

P(ψ(Book1)|c13) = 0.90830.6070 · 0.7740.3061 · (1 − 0.36)0.0778 =
0.8424;

P(ψ(Book1)|c̄13) = (1−0.9083)0.6070 ·(1−0.774)0.3061 ·0.360.0778 =
0.1374;

Finally, the value of the veracity of c13 at iteration i is com-
puted through Eq. 3, presented at the beginning of Sect. 5:
P(c13|ψ(Book1)) = 1

1+ 1−0.9
0.9 · 0.13740.8424

= 0.9822 Note that the

veracity of c13 at the previous iteration was 0.9: the fact that
Margaret Williams is present in authoritative sources makes
the veracity increase through the iterations.

5.5 Selection of the true values

The last step we have described ends the iterative proce-
dure, providing a veracity score for each pseudovalue for
each object. Now, for each object, we have to choose the
set of true values. This happens in two steps: First, the true
pseudovalues are selected, and then a representative value is
extracted from each of them.

The true pseudovalues of an object o are selected by apply-
ing a threshold to the veracity. Given that the veracities are
probabilities, it is reasonable to set the threshold to 0.5 rather
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than considering it as a parameter to be tuned. Indeed, the
fact that a value has veracity greater than 0.5 indicates that
the value is more likely to be true than false:

true_pseudovalues(o) = {c ∈ C(o) : σ(c) > 0.5} (22)

In order to associate a representative value with each pseu-
dovalue c ∈ C(o), we apply as first criterion the number of
sources providing each value, because this reflects the way in
which the pseudovalues are built. Therefore, we begin with
computing the set most_ f req_vals(c) of values provided
by the highest number of sources:

most_ f req_vals(c) = argmax
v∈c

|So(v)| (23)

However, it may well happen that the cardinality of most_-
freq_vals(c) is greater than 1, especially when the total
number of sources is not very high. In this case, the value
provided by the most authoritative sources is selected:

represent_val(c) = argmax
v∈most_ f req_vals(c)

∑

s∈So(v)

Ad(s) (24)

In case o belongs to multiple domains of interest, the domain
of interest d to be used to compute Ad(s) is that for which
Ad(s) is the greatest. Please notice that when comput-
ing authority we adopt high arithmetic precision, thus it is
unlikely that |represent_val(c)| > 1.

Finally, the true values associated with object o are the
following:

truth(o)= {represent_val(c) : c∈true_pseudovalues(o)}
(25)

Example 8 (Selection of the True Values) Let us consider
Book1. In Example 7 we have computed the veracity of the
pseudovalue c13, representing the author Margaret Williams,
after iteration i , i.e., σ(c13) = 0.9822. We can easily derive
also σ(c11) = 0.9959 and σ(c12) = 0.9863. Suppose that
the procedure has reached convergence, and that we apply a
very common veracity threshold equal to 0.5. We find that
all the pseudovalues exceed the threshold: true_pseudoval-
ues(Book1) = {c11, c12, c13}. Let us now select the true values
by computing the most frequent ones:most_freq_vals(c11) =
{“Jean Cooney”}, most_freq_vals(c12) = {“John Golder”},
most_freq_vals(c13) = {“Margaret Williams”}. All the sets
include just one element, therefore we do not need to use the
source authorities to solve: truth(Book1)= {“Jean Cooney,”
“John Golder,” “Margaret Williams”}.

Let us now consider Book2. The veracities can be easily
computed as follows: σ(c21) = 0.9992, σ(c22) = 0.9727,

σ(c23) = 0.2461. Applying the threshold, we find true_-
pseudovalues(Book2) = {c21, c22}. Both the selected pseu-
dovalues contain a single value, so the result is truth(Book2)=
{“Clive Cussler”, “Graham Brown”}.

5.6 The authority-based Bayesian inference
algorithm

Algorithm 3 formally describes STORM’s Bayesian infer-
ence procedure, schematized in Fig. 2 and detailed in the
previous paragraphs.

The algorithm takes as input the sources, objects and
domains of interest, the correspondence between objects and
domains of interest, and the pseudovalues as computed in
Sect. 4. Also, some parameters need to be specified: the ini-
tial default values for the source quality measures, the value
for h in Eq. 19, the value for k in Eqs. 20-21, and finally the
parameters ρ and α to compute the expertise as defined in
paper [26]. The output is a set of true values for each object.

At Lines 1-19 the algorithmperforms the necessary initial-
izations. In particular, the for loop at Lines 1-9 initializes the
source quality measures with their default values and com-
putes expertise and confidences, while the for at Lines 10-12
sets the default values for the veracities. At Lines 13-19 the
copying probabilities are initialized using Eq. 16; also, the
sets of common objects between pairs of sources are com-
puted, as well as the Jaccard distances between the sets of
common pseudovalues.

Algorithm 3 then starts the iterative loop that proceeds
until convergence (Lines 20-41). In more detail, Lines 21-30
manage the copy detection step described in Sect. 5.2, while
Lines 31-33 compute the authorities as explained in Sect. 5.3.
The formulas for veracity computation reported in Sects. 5.1
and 5.4 are applied at Lines 34-37. Finally, precision and
negative predictive value are updated by the loop at Lines 38-
40. Note that the iterations terminate when the algorithm
converges; for us this means that no pseudovalue veracity
has changed more than a certain threshold with respect to the
previous iteration, or that the set of pseudovalues exceeding
the veracity threshold has remained unchanged for a certain
number of consecutive iterations.

The algorithm terminates with the choice of the true
values for each object, using Eq. 25 and relying on the
veracity threshold to discriminate between the pseudovalues
(Lines 42-44).

Let us now analyze the complexity of Algorithm 3. Sup-
pose there are N objects and M sources, and that on average
an object belongs to d domains of interest, a source pro-
vides c pseudovalues for an object, and a pseudovalues are
globally associated with an object. Regarding the initializa-
tion, the computation of the expertise, as declared in [26],
can be performed in O(d2M + 3dM). Moreover, determin-
ing the confidence for each source and pseudovalue requires
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Algorithm 3 STORM’s authority-based Bayesian inference
Input: sources S , objects O , domains of interest D and the mapping

between objects and domains of interest, pseudovalues provided by
sources for objects Cs(o), default values for τ

pre
d (s) and τ

npv
d (s),

parameter h (Eq. 19), parameter k (Eqs. 20-21), parameters ρ and
α for the expertise

Output: ∀o ∈ O , set truth(o) of true values
// Initializations

1: for all s ∈ S do
2: for all d ∈ D do
3: Compute ed (s) as described in [26]
4: τ

pre
d (s), τ npvd (s) ← default values

5: end for
6: for all o ∈ O , c ∈ C(o) do
7: cs(c) ← Eq. 19
8: end for
9: end for
10: for all o ∈ O , c ∈ C(o) do
11: σ(c) ← default value (0.5)
12: end for
13: for all d ∈ D , si , s j ∈ S , si 
= s j do
14: Initialize ηdi j ← Eq. 16

15: Compute the set of common objects Θd
i j

16: for all o ∈ Θd
i j do

17: Ji j (o) ← Eq. 15
18: end for
19: end for

// Iterate until convergence
20: repeat

// Copy detection
21: for all d ∈ D , si , s j ∈ S do
22: for all o ∈ Θd

i j do
23: for all c ∈ Csi (o) ∩ Cs j (o) do

24: P(si
c−→ s j |ψc) ← Eq. 11

25: end for
26: P(si

o−→ s j |ψo) ← Eq. 13
27: end for
28: P(si

d−→ s j |Θd
i j ) ← Eq. 14

29: ηdi j ← P(si
d−→ s j |Θd

i j )

30: end for
// Source authority computation

31: for all s ∈ S do
32: Ad (s) ← Eqs. 17-18
33: end for

// Veracity computation
34: for all o ∈ O, c ∈ C(o) do
35: P(ψ(o)|c), P(ψ(o)|c̄) ← Eqs. 20 and 21
36: σ(c) ← Eq. 3
37: end for

// Update source trustworthiness measures
38: for all s ∈ S , d ∈ D do
39: τ

pre
d (s), τ npvd (s) ← Eqs. 4 and 5

40: end for
41: until convergence

// True values selection
42: for all o ∈ O do
43: truth(o) ← Eq. 25
44: end for

O(aMN ). Assigning the default values to the veracity is
O(aN ), while doing the same for the quality measures is
O(dM). The loop realizing the copy-related initializations

can be executed in O(dM2N ). Let us now consider the
iteration part, assuming there are I iterations. The copy
detection requires O(dcM2N ), the authority computation
O(M2), and the veracity computation O(cMN ). Updating
the source qualitymeasures needs to consider in each domain
all the pseudovalues provided by the sources, so it requires
O(dcMN ). Finally, after the iterations, choosing the true val-
ues for the objects is O(aN ). To summarize, considering d,
c and a as negligible, the complexity of the three parts of the
algorithm can be expressed as O(M2N + I M2N + N ), i.e.,
O(I M2N ). The algorithm is linear in the number of objects
but, as in [38], leveraging copy detection comes at the cost of
making the methodology quadratic in the number of sources.

6 Experiments

STORM was implemented in Python and evaluated through
an extensive set of experiments. Specifically, Sect. 6.1
describes the datasets we employed, while Sect. 6.2 presents
the results of a comparison in terms of effectiveness with
competitor algorithms from the recent literature. Then,
Sect. 6.3 analyzes parameter sensitivity, Sect. 6.4 stud-
ies STORM’s scalability, Sect. 6.5 examines the computed
authority scores for one of the datasets, Sect. 6.6 proposes
a detailed appraisal of our similarity measure and, finally,
Sect. 6.7 draws the conclusions of the evaluation.

6.1 Datasets

We carried out our experiments using one synthetic dataset
and three real-world datasets belonging to different scenar-
ios: books, movies, and daily flights.
Books The Books dataset, kindly provided by the authors of
[26], contains information about books supplied by online
bookstores (i.e., data sources). Each store specifies the
authors of a subset of the books, and the aim is to discover
the correct set of authors for each book. Every category of
books is a domain of interest. Coherently with the literature
on multi-truth data fusion [11,26,38,39,51], we excluded the
books for which all the sources agree on the same set of
authors; actually, no data fusion is needed for these objects.
We also applied to the author lists the basic cleaning oper-
ations described in Sect. 4.1. The final preprocessed dataset
contains 58,093 books and 6,461 sources. On average, a book
is provided by 24.04 sources, a source specifies 1.28 authors
for a book, and a book is associated with 3.87 distinct authors
provided by at least one source. Moreover, there are 18 book
categories (i.e., domains of interest); on average each cate-
gory is associatedwith 3,544.7books, and8.92%of thebooks
belong to multiple categories. To assess the effectiveness of
the algorithms, wemanually built a golden truth by randomly
choosing 872 books and looking for their real authors on the
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original book cover. We included in the golden truth only
books for which all the authors specified on the cover are
provided by at least one source.
Movies The Movies dataset, also provided by the authors of
[26], contains information about movies supplied by some
websites (i.e., data sources). Eachwebsite indicates the direc-
tors of a subset of the movies, and the aim is to discover
the correct set of directors for each movie. In this case, the
domain of interest is represented by the genre of the movie.
As in the case of the Books dataset, the movies for which all
the websites specify the same set of directors are excluded.
Again, we applied to the director lists the basic cleaning oper-
ations defined in Sect. 4.1. The final, preprocessed dataset
contains 13,437 movies and 15 sources. On average, a movie
is provided by 3.26 sources, a source specifies 1.46 direc-
tors for a movie, and a movie is associated with 2.31 distinct
directors provided by at least one source. Moreover, there
are 21 movie genres (i.e., domains of interest); on average
each genre is associated with 1,497.7 movies, and 70.20%
of movies belong to multiple genres. We manually built a
golden truth, by inspecting the movie posters of 400 ran-
domly chosen movies. Again, only movies for which all the
directors specified in the poster are provided by at least one
source were considered.
DailyFlights The DailyFlights dataset is a multi-truth dataset
we constructed starting from the Flight dataset used in [22]5,
which contains information – like scheduled and actual
departure and arrival times – about flights during Decem-
ber 2011. In our version of the dataset, the objects are the
triples 〈airline, route, date〉, e.g., 〈American Airlines, JFK-
LAX, 2011-12-01〉. The values are all the actual arrival times
of the flights operated by the airline on the specified route
in the given date. The sources are websites providing infor-
mation about flights, and we use the airline as domain of
interest. The dataset includes 21,206 objects and 38 sources.
On average, an object is provided by 22.19 sources, a source
specifies 1.52 values for an object, and an object is associ-
ated with 6.64 distinct values provided by at least one source.
Moreover, there are three airlines (i.e., domains of interest),
and on average an airline is associated with 7,068.7 objects;
an object by construction is associated with exactly one air-
line. We built a golden truth by exploiting the database of the
US Bureau of Transportation Statistics (BTS)6. We included
the triples from the BTS database present also in our dataset,
and only the actual arrival times of the flights whose sched-
uled departure time is specified by at least one source in the
dataset. The resulting golden truth contains 7,778 objects.
In this case we did not remove from the golden truth the
objects having at least one true value not specified by any

5 Available at http://lunadong.com/fusionDataSets.htm.
6 https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236.

source, because this would have excluded a large portion of
the objects associated with multiple true values.
Synthetic dataset We built a synthetic dataset adapting the
Pareto universe paradigm, defined in [7], to the multi-truth
scenario. This dataset contains 1,000 objects of the same
domain and 20 sources. The 20% of the sources are inde-
pendent, with error rates set to 0.1, 0.2, 0.6, and 0.9, while
the other 80% are copiers. Among the copiers, 50% provide
20% of the objects independently, with error rate 0.8; 25%
of the copiers provide random values for 20% of the objects;
finally, the remaining 25% of the copiers copy all the objects.
We assumed that sources copy values from one of the two
more accurate sources. Each source provides values for every
objects, and a source can claim three values for each object,
among six possible values, half of which are correct.

6.2 Effectiveness evaluation

6.2.1 Baselines andmetrics

We compared STORM with several data-fusion techniques
among those presented in Sect. 2. First, we considered multi-
truth algorithms: SmartVote [11], DART [26], and LTM [51].
Note that among the algorithms by the research group of
Wang et al. [11,38,39], we considered SmartVote, which is
the most recent and best-performing one.We added to the set
of competitors Majority Voting, a basic method that selects
a value as true if the proportion of sources providing that
value is the biggest one. We also compared STORM against
a set of traditional single-truth methods: TruthFinder [44],
HubAuthority [17], Investment [31], and PooledInvestment
[31]. We adapted the single-truth algorithms to the multi-
truth scenario by making them return as true all the values
with scores greater than a certain threshold, whose value is
optimized in order to achieve the best performance. When
needed, we also normalized the scores generated by the algo-
rithms, in order to be consistent in the application of the
thresholds. Finally, we performed an ablation study testing
STORMNoRec – a variant of STORMthat excludes the value
reconciliation phase – in order to assess the contribution of
this part of the methodology.

The competitor algorithmswere implemented inPython as
well, except LTM forwhichwe used a publicly available Java
version7. The parameters for the competitor algorithms were
chosen according to the optimal settings recommended by
their authors, and applying minor modifications when these
led to better performance.

For our methods, we need to set the values of four parame-
ters: the initial precision (τ pre

0 ), the initial negative predictive
value (τ npv0 ), the exponent h in the denominator of the con-
fidence in Eq. 19, and the exponent k for the authority in

7 https://github.com/daqcri/DAFNA-EA.
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Eqs. 20, 21. In addition, there are two further parameters
regarding the source expertise (mentioned in Sect. 5.2.3).
Please notice that STORM is an unsupervised algorithm, so
we cannot fine-tune the parameters through a validation set.
We set the parameters by intuition, based on their meaning
with respect to the input data. Moreover, we initially per-
formed trial runs of the algorithms and inspected the results: if
the computed truth was clearly not appropriate, e.g., because
true (or false) was assigned to almost all values, we experi-
mented alternative parameter configurations.

Table 5 shows the parameter settings we employed for the
different datasets and algorithms, as explained below:

– h: the Movies dataset contains few values per object
and few negative claims, therefore for this dataset we
chose h < 1 in Eq. 19 in order to give high weight to
the few negative claims and preserve their information;
instead, for Books, DailyFlights and Synthetic datasets
we selected h > 1.

– τ
pre
0 , τ

npv
0 : In the Books case, where many sources are

available andmany values are associatedwith lots of neg-
ative claims, we further supported the positive claims by
choosing τ

pre
0 > τ

npv
0 , while for the other datasets we set

τ
npv
0 > τ

pre
0 . Note also that with the Movies dataset we

imposed a larger gap between τ
npv
0 and τ

pre
0 for STORM

than we did for STORMNoRec, because the value recon-
ciliation further reduces the number of negative claims.

– k: it is the exponent for the authority in Eqs. 20 and 21,
so we chose k < 1 in order to assign an important role to
the authority with respect to the expertise in these equa-
tions. In particular, the values employed for Movies are
slightly higher than the others not to disperse the exper-
tise information excessively; indeed, in this casewe deem
the expertise to have an important role since the number
of sources is comparatively very low. We used a lower
value for the Synthetic dataset because, since each object
is present in every source, we expect the authority to
have a particularly higher contribution, compared to the
expertise of the sources.

– ρ, α: they are the parameters used for the expertise
computation, and were set according to the guidelines
provided in [26]. In particular, exactly as in [26], ρ was
set to 0.2 for Books and to 0.3 for Movies, because the
latter contains greater domain overlapping; this param-
eter is not relevant for the DailyFlights and Synthetic
datasets because their domains do not overlap. More-
over, paper [26] sets α = 1.5 for Books because objects
are unevenly distributed between sources, while retains
α = 1 for Movies; we used the same values for these
datasets, and choseα = 1.5 also forDailyFlights because
its objects distribution is less balanced than in Movies.
Since in the Synthetic dataset each object is present in all
sources, we chose α = 0.5.

In Sect. 6.3we perform an analysis of the impact of param-
eter settings on STORM’s performance.

Coherently with recent data-fusion literature [26,33,51],
we evaluated the algorithms in terms of precision, recall and
F1 score. In particular, we consider the F1 score as very
relevant, because it identifies the algorithms showing the best
compromise between precision and recall.
Validation of the Differences in Effectiveness To validate
the significance of the differences in terms of F1 measure
between STORM and the other algorithms, we used a statis-
tical test, checking that the performance differences between
two approaches are significant and not just due to chance. The
aim is to reject the null hypothesis stating that the compared
methods have the same performance.

We compared STORM with its competitors using McNe-
mar’s statistical test, which is particularly appropriate in this
situation since, despite our golden truths having good sizes
with respect to the data-fusion scenario, they are too small
to be split into multiple parts as required by many statistical
techniques [6].

McNemar’s test defines a test statistic on the basis of the
numbers of test items that are classified correctly or not cor-
rectly by the two compared methods. In this case the test
items to be checked are all the values provided by at least
one source for the objects contained in the golden truth: The
algorithms have to judge whether these values are true or
false. The greater the value of the McNemar test statistic,
the lower the p-value of the test and therefore more evidence
is provided to reject the null hypothesis of no difference. In
practice, the null hypothesis is usually rejected with p-values
lower than 0.05 or 0.01 [15].

6.2.2 Results

Table 6 shows the effectiveness results for different data-
fusion techniques. In the F1 column, double asterisks (**)
indicate that the performance difference with respect to
STORM is statistically significant with p-value lower than
0.01, according to the McNemar’s test. Note that the val-
ues in the DailyFlights and Synthetic datasets are not textual
strings, so the value reconciliation step of the methodology
is not applicable; therefore, STORMNoRec in this case coin-
cides with STORM.

Table 7 highlights the importance of the STORM’s value
reconciliation phase, showing the percentage of objects with
conflicts – i.e., for which not all the sources provide the same
set of values/pseudovalues – before and after value recon-
ciliation. Note that our datasets contain only objects with
conflicting values, therefore, before the application of the
value reconciliation, 100% of the objects have conflicts.
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Table 5 Parameter settings for
the experiments

Dataset Algorithm τ
pre
0 τ

npv
0 h k ρ α

Books STORM 0.9 0.8 1.2 0.1 0.2 1.5

STORMNoRec 0.9 0.8 1.2 0.1 0.2 1.5

Movies STORM 0.7 0.9 0.85 0.25 0.3 1

STORMNoRec 0.9 0.95 0.85 0.5 0.3 1

DailyFlights STORM 0.9 0.95 1.2 0.1 / 1.5

Synthetic STORM 0.75 0.95 1.2 0.01 / 0.5

Table 6 Effectiveness results per dataset and method. In the F1 column, double asterisks (**) indicate that the performance difference with respect
to STORM is statistically significant with p-value lower than 0.01, according to the McNemar’s test

Method Books dataset Movies dataset DailyFlights dataset Synthetic dataset
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

STORM 0.8610 0.8872 0.8739 0.8382 0.8750 0.8562 0.8581 0.7401 0.7948 0.7797 0.9767 0.8671

STORMNoRec 0.8400 0.8836 0.8613∗∗ 0.8000 0.9054 0.8494 / / / / / /

SmartVote [11] 0.8890 0.8675 0.8781 0.8012 0.9189 0.8560 0.6856 0.7371 0.7104∗∗ 0.7546 0.9673 0.8478∗∗

DART [26] 0.8377 0.8684 0.8527∗∗ 0.7292 0.9629 0.8299∗∗ 0.7665 0.7836 0.7749∗∗ 0.7404 0.9793 0.8433∗∗

LTM [51] 0.7167 0.9624 0.8216∗∗ 0.7544 0.9392 0.8367∗∗ 0.4993 0.8006 0.6151∗∗ 0.6884 0.9793 0.8085∗∗

TruthFinder [44] 0.7214 0.8517 0.7811∗∗ 0.6693 0.9848 0.7970∗∗ 0.8065 0.7371 0.7702∗∗ 0.5273 0.9863 0.6872∗∗

HubAuthority [17] 0.8002 0.8102 0.8052∗∗ 0.7090 0.9781 0.8221∗∗ 0.8389 0.6581 0.7376∗∗ 0.7893 0.9127 0.8465∗∗

Investment [31] 0.8506 0.7189 0.7792∗∗ 0.7179 0.9512 0.8182∗∗ 0.7858 0.7813 0.7835∗∗ 0.7786 0.9200 0.8434∗∗

PooledInvestment [31] 0.8247 0.7826 0.8031∗∗ 0.6854 0.9646 0.8014∗∗ 0.7976 0.7765 0.7869∗∗ 0.7905 0.9133 0.8475∗∗

MajorityVoting 0.9059 0.7323 0.8099∗∗ 0.7965 0.6216 0.6983∗∗ 0.7277 0.4593 0.5632∗∗ 0.9411 0.4260 0.5865∗∗

Table 7 Percentage of objects with conflicting values/pseudovalues,
before and after STORM’s value reconciliation phase

Dataset Before value After value
reconciliation reconciliation

Books 100% 68.0%

Movies 100% 74.7%

6.2.3 Result analysis

Comparison: STORMvs. STORMNoRecComparingSTORM
with STORMNoRec highlights the importance of the value
reconciliation phase. A first preliminary evidence of this is
given by the reduction of the percentage of objects with
conflicting values/pseudovalues (Table 7): Only 68% of the
books and 74.7% of the movies still have conflicts after the
value reconciliation. This clearly eases the task of the subse-
quent Bayesian inference step.

Concerning the F1 scores (Table 6), STORM outperforms
STORMNoRec on theBooks dataset, achieving a remarkable
+0.0126, again demonstrating the usefulness of the value
reconciliation step.On the contrary, on theMovies dataset the
gap between the two algorithms is not statistically significant.
Indeed in Books, because of the great number of sources,
there are many (possibly wrong) values per object, and the
value reconciliation phase seems to handlewell this situation,
as testified by a much better performance of STORM over

STORMNoRec. In Movies the number of values per object
is lower, leading to a less noticeable gain.
Comparison with Literature Competitors The first obser-
vation that emerges from Table 6 is that STORM is the
algorithm that globally performs better in terms of F1 score
across the four datasets, thus exhibiting the best precision-
recall compromise. Indeed, on theBooks andMovies datasets
STORM outperforms all the competitors except SmartVote,
which obtains comparable results with no statistically sig-
nificant difference. Moreover, on DailyFlights and Synthetic
datasets even SmartVote is significantly outperformed.

SmartVote is the competitor that overall provides the best
results. In particular, it performs very well on Books and
Movies but fails to obtain a satisfying effectiveness on Dai-
lyFlights and Synthetic datasets, where its F1 measure is
lower with respect to STORM. When running the algorithm
we noticed that SmartVote is prone to bring the source qual-
ity measures employed in the computation very close to their
maximum values, making the algorithm behave quite simi-
larly toMajority Voting, though with substantial enrichment.
It seems that, when the performance of Majority Voting is
extremely poor – as on DailyFlights, SmartVote also shows
limited effectiveness. STORM, which considers the source
authorities in a Bayesian framework, does not seem to suffer
from this problem and it adapts easily to all the scenarios.

Let us now consider the comparison with DART. This
comparison is especially interesting because also DART
relies on a Bayesian framework, the basic method to which
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weadded copydetection, source authority andvalue reconcil-
iation. STORM attains a relevant performance gain in terms
of F1 on all the experimented datasets: +0.0212 on Books,
+0.0232 on Movies, +0.0199 on DailyFlights, and +0.0238
on Synthetic.

Notice that it seems that in STORM the two phases of
value reconciliation and authority-based Bayesian inference
somehow compensate each other. Indeed, consider that on
DailyFlights and Synthetic STORM is composed only of the
authority-based Bayesian inference, and that for the other
datasets we can distinguish the contribution of the two phases
of the algorithm by looking at the results of STORMNoRec.
Therefore, apparently the use of authority is more effective
when the number of sources is limited, i.e., with Movies,
DailyFlights, and Synthetic. The reason is that with fewer
sources the algorithm is able to better discriminate between
those that are authoritative and those that are not. On the
contrary, on the Books dataset, containing a large number
of sources, the value-reconciliation component of STORM
appears to play the most important role.

LTM, the oldest multi-truth algorithm, shows good per-
formance on Books, Movies and Synthetic; in particular,
on Movies it also outperforms DART. However, STORM
exhibits a remarkably better F1 in those cases: +0.0523 on
Books, +0.0164 on Movies and +0.0586 on Synthetic. In
addition, LTM does not seem to properly manage the high
number of values available in DailyFlights, achieving one of
the worst F1 scores measured on this dataset.

The single-truth methodologies we tested are outper-
formed by STORM as well. Note that, to adapt these
techniques to themulti-truth scenario, we performed an unre-
alistic fine-tuning of the truth threshold, which would not be
feasible in practice in an unsupervised scenario. In spite of
this, their performance is comparable with that of STORM
only on DailyFlights, where the smallest recorded loss in
terms of F1 is 0.0079 by PooledInvestment.

6.3 Parameter sensitivity

In this section we investigate the impact of different parame-
ter settings on the effectiveness of STORM. This analysis
is conducted on the Movies, DailyFlights and Synthetic
datasets, because they are small enough to perform a large
number of experiments changing the parameter configura-
tion. The study involves τ

pre
0 , τ

npv
0 , h and k; we varied the

value of one parameter at a time, over an appropriate range,
while the other parameters remain fixed to the settings speci-
fied in Table 5. The parameters α and ρ are omitted, because
we borrowed them from paper [26] and we set them accord-
ing to the heuristics that it suggests; for an analysis of their
impact on the performance of algorithms we refer the reader
to [26], where they were originally introduced.

Figure 3 shows the results obtained varying the parameter
values for theMovies dataset. As is it clear fromFig. 3(b), the
value of τ

npv
0 does not substantially impact the performance,

provided that it is not greater than 0.9. On the contrary, more
care must be taken in choosing τ

pre
0 , which should belong to

[0.7, 0.95] (Fig. 3a). The exponent h in the denominator of
the confidence formula should assume a value greater than
0.8 (Fig. 3c) while, for the exponent k of the authority, values
lower than 1 look advisable (Fig. 3d).

The DailyFlights dataset, analyzed in Fig. 4, exhibits a
different behavior. Regarding parameters τ

pre
0 , τ

npv
0 and h

(Fig. 4a, b and c), there is actually just one specific value that
needs to be identified in order for STORM to obtain good
quality results, while the setting of k (Fig. 4d) does not affect
effectiveness. Nevertheless, note that the non-optimal values
for τ

pre
0 , τ

npv
0 and h lead to extremely poor performances,

which can be easily detected by inspecting the veracity values
computed by the algorithm.

On the Synthetic dataset, analyzed in Fig. 5, the algorithm
achieves the best results if τ pre

0 belongs to [0.65, 0.85], while
increasing τ

npv
0 results in a better performance. The best val-

ues for h appear to be in [1.0, 1.75], and the choice of k does
not have a significant impact in terms of effectiveness.

In summary, the results described in this section highlight
that on the Movies dataset STORM converges to good qual-
ity results independently of the values of the parameters, if
these remain within a (rather wide) range. On the contrary,
the setting requires a deeper analysis on the DailyFlights
and Synthetic datasets, but the non-optimal configurations
seem to be easily recognizable. As explained above, parame-
ters can be assigned by choosing an initial setting relying on
theirmeaning, and then improving this configuration through
trial executions of the algorithms and inspections of excerpts
of the results: If the computed truth is evidently not cor-
rect, for instance because almost all the values are assigned
to true or to false, alternative parameter settings should be
experimented.Moreover, for the sake of improving the tuning
of parameters, practitioners might also easily build a small
golden truth including some tens or hundreds of items; this
would allow to further analyze and understand the suitability
of the tested configurations.

6.4 Scalability

We now address STORM’s scalability. The execution times
were measured using a 16-core 4.2 GHz IBM Power7
machine with 128 GB of RAM, running Fedora Linux.

First, we examine the execution times of STORM on
the Books dataset (which is the biggest one) by changing
the number of objects and sources. To evaluate the execu-
tion time by varying the number of objects, we randomly
selected 1,000 sources, and incrementally added random
objects provided by these sources from 5,000 to 40,000 with
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Fig. 3 F1 score varying parameter settings on the Movies dataset. When studying a parameter, the other ones are set as specified in Table 5

(a)  (b) (c) (d) 

Fig. 4 F1 score varying parameter settings on the Flights dataset. When studying a parameter, the other ones are set as specified in Table 5

(a)  (b) (c) (d) 

Fig. 5 F1 score varying parameter settings on the Synthetic dataset. When studying a parameter, the other ones are set as specified in Table 5

step 5,000. For varying the number of sources, on the con-
trary,we randomly selected 10,000 objects and incrementally
added random sources providing those objects from 500 to
5,000 with a step of 500. We also conducted an experiment
increasing simultaneously and exponentially the numbers of
objects and sources. In more detail, the numbers of objects
and sources started, respectively, from 28 and 25, and were
doubled at each step. In the evaluation, the authority-based
Bayesian inference phase is executed for ten iterations. Note
that, in order to highlight the time required by the differ-
ent components of STORM, the measurements are reported
by splitting the algorithm into phases. First, we consider the
value reconciliation phase described in Algorithm 2. Then,
we also divide the Bayesian step detailed in Algorithm 5 into
three sub-phases: preliminary initializations, copy detection,
and the remaining computations (including authority, verac-
ity, trustworthiness measures, and true values selection).

The charts are in Figs. 6 (objects), 7 (sources), and 8
(exponential growth of both objects and sources, in loga-
rithmic scale on the x-axis). The plots related to sources and
exponential growth report the copy detection separately, oth-
erwise the other curves would not be clearly distinguishable.
The first observation that can be drawn from the objects and
sources plots is that the copy detection phase is largely the

most time-consuming one.Moreover, the trends of the curves
reflect those expected from the time complexities of Algo-
rithms 2 and 3. In more detail, all the phases are linear with
respect to the number of objects, while copy detection and
initialization are quadratic in the number of sources. The
curve related to the other computations is quadratic too in the
number of sources because it includes the authority computa-
tion which is quadratic. The complexity of the reconciliation
phase does not depend directly on the number of sources, but
it is quadratic in the number of values per object, which in
turn is expected to grow with the number of sources; how-
ever, on our dataset the trend looks rather linear. Regarding
the charts showing the execution time when both objects and
sources grow exponentially, with x-axis in logarithmic scale,
as expected they turn linear and quadratic trends into expo-
nential ones.

Then, since the Bayesian step of STORM is iterative, we
also study how many iterations it requires to reach a good
accuracy. Figure 9 shows the measured F1 score after each
iteration from 1 to 150, for the three datasets. We note that,
on the Books, DailyFlights, and Synthetic datasets, STORM
converges extremely fast, reaching 99%of the F1 score in just
one, four and eight iterations, respectively. The convergence
is not immediate but still reasonably fast on Movies, where,
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Fig. 6 Execution times of the different phases of the STORMalgorithm
varying the number of objects for 1,000 sources, on the Books dataset

(a)  (b)

Fig. 7 Execution times of the different phases of the STORM algo-
rithm varying the number of sources for 10,000 objects, on the Books
dataset; Fig. 7(a) depicts the copy detection, while Fig. 7(b) includes
the remaining phases
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Fig. 8 Execution times of the different phases of the STORM algo-
rithm when both the number of sources and the number of objects grow
exponentially, on the Books dataset; Fig 8(a) depicts the copy detec-
tion, while Fig. 8(b) includes the remaining phases. The x-axis is in
logarithmic scale

to obtain 99% of the F1 score, 47 iterations are needed. The
slower convergence on Movies is probably due to the fact
that the dataset is smaller and contains fewer source/value
associations; as a consequence, the quantities that are updated
at each iteration, i.e., value veracities, source trustworthiness
and domain copying probabilities, require more iterations to
consolidate.

6.5 Case study: estimated authority scores

Let us explore whether the source authorities computed by
STORM are reasonable. To this aim we consider the Movies
dataset, which has few sources, and analyze the authority
scores.

Fig. 9 F1 score obtained by STORM after each iteration of the
authority-based Bayesian inference, for the four datasets

Table 8 Authorities in the “comedy” domain and F1 on our golden
truth for the Movies sources providing at least 20 comedy movies of
the golden truth

Source Authority F1

imdb 1.0000 0.8864

metacritic 0.8754 0.8214

top250tv 0.7182 0.8777

1moviesonline 0.6715 0.7826

goodfilms 0.6023 0.7664

flimcrave 0.4141 0.7246

letterboxd 0.0716 0.5920

Table 8 shows, for the popular genre “comedy,” the author-
ities derived by STORM along with the F1 score associated
with the values provided by the sources measured on our
golden truth, for the sources providing at least 20 comedy
movies of the golden truth. Intuitively, the authorities look
sound. For instance, the IMDBwebsite obtains themaximum
authority, and this is indeed an expected result: it is a very
famous source of information about movies, and many other
sources copy from it. Moreover, the three sources having the
greatest authority are also the three exhibiting the highest F1.

We continued the analysis by plotting F1 scores and
authorities for the pairs source/domain of interest associated
with at least 20 movies in the golden truth. The plot is in
Fig. 10, and also shows the linear regression line (dashed).
Observing the plot it is possible to appreciate the growth
trend of the F1 score when the authority increases. The close
relationship between the two quantities is also confirmed by
their high correlation coefficient, which is 0.6999.

6.6 Detailed evaluation of our novel similarity
measure

We now compare the performance of our novel similarity
measure (Algorithm1) – employed in our reconciliation algo-
rithm – against the most commonly used string similarity
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Fig. 10 F1 score measured on the golden truth with respect to the
source authority on theMovies dataset, for the source/domain of interest
pairs associated with at least 20 movies of the golden truth. Each point
corresponds to a source/domain of interest pair, and the dashed red line
represents the linear regression line

metrics. The tests were performed on a subset of the Book
dataset, obtained by randomly selecting 100 objects from
the Books dataset, for each object we extracted all the pos-
sible pairs of values for the attribute “authors” and manually
labeled each pair with 1 in case the two values actually rep-
resented the same author, and with 0 otherwise. In order to
have a balanced dataset, we only selected the objects with up
to five different values provided by the sources; this ensures
that the number of non-matching pairs is limited. The result
is a dataset with 625 tuples, 28% of which labeled as 1 and
72% labeled as 0.

The results in terms of precision, recall and F1 score are
presented in Table 9. For what regards the traditional string
similarity metrics, we selected the best performances over
100 parametrizations of the threshold used to decide whether
two values actually corresponded to the same concept. On
the contrary, the threshold for STORM’s similarity measure
is fixed to 0.5.

To summarize, we can highlight three clear advantages of
our algorithm:

– It exploits the concept of partial token matching to rec-
ognize abbreviations and typos in values; challenges
normally encountered by data fusion algorithms that
operate on attributes whose values represent person
names, addresses, and similar types of data.

– It obtains the best performances, improving the best tra-
ditional string similarity metric by 0.0316.

– It does not need to be optimized. This actually is a great
advantage, since, as can be seen from the thresholds of
the competitors in Table 9, some are very far from 0.5.

6.7 Summary of the evaluation

Asafirst result, our experimental campaign showed the effec-
tiveness of STORM, comparing it with recent techniques
from the literature on three real-world datasets. STORM
exhibited the best F1 score jointly with SmartVote [11] on

Table 9 Effectiveness results of string similarity metrics

Method Threshold Prec. Rec. F1

STORM’s similarity - 0.9222 0.9006 0.9112

Hamming [14] 0.22 0.8771 0.5847 0.7017

Levenshtein [19] 0.36 0.8031 0.9064 0.8516

Jaro-Winkler [40] 0.73 0.8726 0.8011 0.8353

Jaccard [16] 0.49 0.8918 0.7719 0.8275

Sørensen [37] 0.66 0.8918 0.7719 0.8275

Ratcliff-Obershelp [35] 0.46 0.8019 0.9707 0.8783

LCS [2] 0.27 0.7962 0.9825 0.8796

two of the four datasets, and the absolute best F1 score on
the others.

Our experiments also highlighted the importance of the
value-reconciliation phase in determining the effectiveness
of STORM.

In addition, STORM largely outperformed DART [26],
which represents the basic Bayesian infrastructure on which
we added copy detection, source authority and value recon-
ciliation.

After concentrating on effectiveness, we carried out fur-
ther experiments to assess specific issues. In particular,
STORM showed a good scalability, being linear in the num-
ber of objects and quadratic in the number of sources.
Moreover,we studied parameter sensitivity, highlighting how
suitable parameter settings can be easily identified. Finally,
we evaluated the novel similaritymeasure onwhich the value
reconciliation is founded, emphasizing that it is advantageous
with respect to traditional string similarity measures.

7 Conclusion and future work

This paper has presented STORM, a novel multi-truth data-
fusion algorithm. STORM is a domain-aware Bayesian
algorithm that determines the source trustworthiness relying
on the concept of source authority, where a source is regarded
as more authoritative if it is copied by many other sources;
the copy-detection mechanism we employed considers both
directions of copying. Moreover, our technique incorporates
a component to identify and group together variant values,
in the very common case in which values are represented
as textual strings, exploiting a novel token-based similar-
ity measure; to the best of our knowledge, this is the first
time that variant values are taken into account in multi-truth
data fusion. Our approach has been thoroughly evaluated on
one synthetic and three real-world datasets, showing the best
performances in comparison with the existing techniques. In
more detail, it achieves the absolute best F1 score on two of
the four datasets, and the best F1 score jointlywith SmartVote
[11] on the other two.
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We believe that STORM constitutes a valuable alternative
in the hands of the practitioners having to build data-fusion
systems, since, as already noted, it seems to be able to adapt
to different scenarios better than its competitors.

An interesting development of this work might deal with
extending STORM to case the objects are associated with
time series [24]. For instance, in our DailyFlights dataset,
one could think that a pair 〈route,airline〉 is connected to a
time series with a set of values (i.e., arrival times) for each
day. It would be interesting to examine whether the truth of
values in a day is connected to that in the previous days,
and understand the possible evolution of the authority scores
through time. Moreover, a possible research direction to be
explored consists in providing the Bayesian inference step of
STORMwith veracities initializedwith the results of an alter-
native truth discovery technique, instead of using the same
default initialization (0.5) for all values. Other developments
would be studying similarity measures for non-textual data,
and investigating data-fusion techniques dealing with val-
ues represented by long textual descriptions such as movie
plots or product reviews. Finally, a natural extension of this
paper regards the possibility to consider objects with multi-
ple attributes, e.g., to discover the true values for both authors
and title of a book. Such a scenario requires to examine the
interactions between authority and trustworthiness on differ-
ent attributes, possibly resorting to joint estimation.
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