
The VLDB Journal (2023) 32:415–445
https://doi.org/10.1007/s00778-022-00753-1

REGULAR PAPER

Highly distributed and privacy-preserving queries on personal data
management systems

Luc Bouganim1,2 · Julien Loudet1,2,3 · Iulian Sandu Popa1,2

Received: 14 April 2021 / Revised: 15 March 2022 / Accepted: 23 May 2022 / Published online: 7 July 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Personal data management system (PDMS) solutions are flourishing, boosted by smart disclosure initiatives and new regula-
tions. PDMSs allow users to easily store and manage data directly generated by their devices or resulting from their (digital)
interactions. Users can then leverage the power of their PDMS to benefit from their personal data, for their own good and
in the interest of the community. The PDMS paradigm thus brings exciting perspectives by unlocking novel usages, but also
raises security issues. An effective approach, considered in several recent works, is to let the user data distributed on personal
platforms, secured locally using hardware and/or software security mechanisms. This paper goes beyond the local security
issues and addresses the important question of securely querying this massively distributed personal data. To this end, we
propose DISPERS, a fully distributed PDMS peer-to-peer architecture. DISPERS allows users to securely and efficiently share and
query their personal data, even in the presence of malicious nodes. We consider three increasingly powerful threat models
and derive, for each, a security requirement that must be fulfilled to reach a lower-bound in terms of sensitive data leakage:
(1) hidden communications, (2) random dispersion of data and (3) collaborative proofs. These requirements are incremental
and, respectively, resist spied, leaking or corrupted nodes. We show that the expected security level can be guaranteed with
near certainty and validate experimentally the efficiency of the proposed protocols, allowing for adjustable trade-off between
the security level and its cost.

Keywords Distributed systems · Privacy · Personal data management system · Peer-to-peer query processing

1 Introduction

Personal Data Management Systems (PDMSs): The time for
individualized management and control over one’s personal
data has arrived. Thanks to smart disclosure initiatives (see
MyData Global [46]) and new regulations (e.g., the Gen-

B Luc Bouganim
Luc.Bouganim@inria.fr; Luc.Bouganim@uvsq.fr

Julien Loudet
julien.loudet@cozycloud.cc

Iulian Sandu Popa
iulian.sandu-popa@uvsq.fr

1 Inria Saclay l̂le-de-France, 1 Rue Honoré d’Estienne d’Orves,
Palaiseau 91120, France

2 University of Versailles Saint-Quentin (Université
Paris-Saclay), 45 Avenue des États-Unis, Versailles 78035,
France

3 Cozy Cloud, “Le Surena”, 5 Quai Marcel Dassault, Suresnes
92150, France

eral Data Protection Regulation [24]), users can access their
personal data from the companies or government agencies
that collected them.Concurrently, personal datamanagement
system (PDMS) solutions are flourishing [4] both in the aca-
demic area (e.g., personal information management systems,
personal data servers [1], personal data stores [20,47], per-
sonal clouds [35]) and industry [19,48,65]. Their goal is to
offer users a platform—that acts as a single point of entry—
where they can easily store andmanage the data generated by
their devices (quantified-self data, smart home data, photos,
etc.) and resulting from their interactions (social interaction
data, health, banking, telecom, etc.). Users can then lever-
age the power of their PDMS to benefit from their personal
data for their own good and in the interest of the community.
Thus, the PDMS paradigm promises to unlock innovative
uses: PDMS users can contribute their personal data and ben-
efit from this globally contributed data through distributed
queries. These queries can compute recommendations [69],
enable participatory studies [53] [47], deliver relevant infor-
mation to users based on their profile [70] or consider ad

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-022-00753-1&domain=pdf
http://orcid.org/0000-0002-2273-9987
http://orcid.org/0000-0001-9759-0745
http://orcid.org/0000-0002-9937-4242

416 L. Bouganim et al.

hoc cohorts for scientific purposes, in the spirit of the recent
concept of data altruism [23].
Trustworthy PDMSs under owner’s control: These exciting
perspectives should not eclipse the security issues raised by
this paradigm. Indeed, each PDMS potentially stores the
entire digital life of its owner, thereby increasing the impact
of a leakage. It is therefore risky to centralize all user data
in powerful servers as these servers become highly desirable
targets for attackers: Huge amounts of personal data belong-
ing to millions of individuals could be leaked or lost ([78]
records more than 1010 email addresses in data breaches).
Besides, centralized solutions make little sense in the PDMS
context in which data are naturally distributed at the users’
side [32]. Alternatively, recent works [4,6,20,34,35,47,65]
propose to let the user data distributed on personal trustwor-
thy platforms under the users’ control. Such platforms can
be built thanks to (i) a secure hardware component provid-
ing a Trusted Execution Environment, such as smart cards
[1], secure microcontrollers [4,5,35], ARM TrustZone [52],
or Intel SGX [55] and/or (ii) specific software (e.g., mini-
mal Trusted Computing Base and information flow control
[13,37,55]). In this paper, we follow this approach and con-
sider that a PDMS is a dedicated device possessed by the user
and secured with some security mechanisms.
A fully decentralized approach: As in many academic and
commercial solutions [65], we assume that PDMSs offer
a rather good connectivity and availability like home-cloud
solutions [4,19,33,48,65] built on plug computers connected
to the Internet. Thus, PDMSs can establish peer-to-peer
(P2P) connections with other PDMSs and participate in a
distributed computation by providing part of the data, thus
acting as data sources and/or performing part of the pro-
cessing, thus acting as data processors. Hence, we focus on
architectures based on a full distribution of PDMSs (indif-
ferently called nodes) acting as data sources and/or data
processors throughP2P interactions. Solutions requiring a re-
centralization of distributed personal data during processing
must be discarded as this dynamically creates a concentra-
tion of personal data and leads to a risk similar to that of
centralized servers.
Motivating example and naive execution: Let us consider
the following query: “average number of sick leave days
in 2022 for French teachers” necessary to a study on ill-
ness at work. This query requires effective targeting of the
most appropriate data sources (i.e., French teachers) to ensure
both the result relevance and the system scalability. We thus
propose a targeting based on user profiles (e.g., user’s profes-
sion or country) provided by each PDMS. These profiles are
stored in a distributed index leveraging classical Distributed
Hash Tables (DHT) which offer efficient, scalable, and fault-
tolerant decentralized storage and node location facilities. A
naive execution strategy can then be easily conceived (see
Fig. 1): The querier (1) retrieves the list of PDMS users who

Fig. 1 Motivating example and naive strategy

are French and teacher thanks to the distributed profile index;
(2) sends them a local query (number of sick leave days in
2022); and (3) aggregates their local results.
Goal and challenges: Our goal is to propose a large-scale,
fully decentralized PDMS system that (i) efficiently targets
the nodes pertinent for a query based on user profiles and
(ii) aggregates local results to compute non-sensitive global
results (e.g., statistics), useful for the envisioned applica-
tions, while (iii) protecting user privacy, i.e., protecting the
participants profiles, the local results and, most importantly,
their associations. The naive strategy presented above cannot
achieve this goal given the central role of the querier who has
access to the sensitive data of the query and, moreover, is a
potential bottleneck. Indeed, although we consider trustwor-
thy PDMSs, we must admit that no security measure can be
considered unbreakable: Some nodes (including the querier)
can be spied on, leaking data or fully corrupted. Even worse,
these nodes can collude and may very well be indistinguish-
able from honest nodes, acting as covert adversaries [7]. The
challenge is then to define execution protocols that solely
rely on PDMS nodes and offer strong guarantees in terms of
data leakage.Moreover, our aim in this paper is to understand
what guarantees can be achieved when PDMS nodes work
on clear-text data, allowing generic computations, accurate
(noise-free) results and greatly simplifying node failureman-
agement (see Sect. 8 and [45]).
Related works: Both P2P systems and secure distributed
computations have been hot research topics for many years.
However, we are not aware of any decentralized solution
allowing to securely target nodes based on user profiles—a
critical feature for the considered applications. Regarding the
data aggregation itself, existing works related to multi-party
computation protocols (MPC) or differential privacy (DP)
cannot be applied in our context. On the one hand, MPC
typically leverages centralized or federated architectures in
which a handful of powerful servers hold large collections
of user data (e.g., SMCQL [9], Conclave [73] and Obscure
[27]) or collect user data at query time (e.g., Prio [18]). These
solutions may offer strong security guarantees (both data

123

Highly distributed and privacy-preserving queries on personal data management systems 417

Fig. 2 Paper roadmap

confidentiality and result correctness) but are not adapted
to decentralized execution with thousands of participants or
lack generality w.r.t. the computed function. On the other
hand, DP requires a central trusted third party to obfuscate
sensitive information. Local DP (LDP) does not need such
a third party since obfuscation is performed at the level of
individual sources but it does require a huge number of par-
ticipants to reduce the impact of added noise [3]. The queries
considered here involve a few thousand participants to be sta-
tistically significant, i.e., too many for MPC to be effective
and too few to reduce the impact of noise with LDP. Related
work is discussed in more detail in Sect. 8.
Problem formulation:Given the potential presence of covert,
corrupted and colluding nodes, and the inability to use MPC
or LDP, it becomes impossible to provide efficient, leak-free
targeted query execution involving only PDMSs that work on
clear text data. Indeed, communications can be spied, nodes
storing the distributed index and data processors may be cor-
rupted, thus potentially leaking indexes or local results from
data sources. The problem is then to define the lower-bound
on leakage in this context and to propose an architecture and
associated protocols that are secure, i.e., that reach this lower-
bound, yet efficient, i.e., that keep the security overheads low.
High level idea: In this paper, we propose DISPERS (DIS-
tributed Privacy-presERving querieS) which can: (i) be
applied to very large P2P systems; (ii) select specific data
source nodes to achieve query pertinence; (iii) reach a lower-
bound on leakage in the presence of colluding nodes with
near-certainty, i.e., with a very high and adjustable probabil-
ity; and (iv) adjust the trade-off between security level and
security cost. Thus, DISPERS enables generic, efficient and
scalable P2P data computations while still providing users
with strong confidentiality guarantees. We design DISPERS

in an incremental way by considering increasingly stronger
threat models. For each of them, we derive a security require-
ment that must be satisfied to reach the lower-bound on
leakage (see Fig. 2). More precisely, we consider:
(i) spied nodes when the attacker can spy on PDMS commu-
nications, leading to theHidden communication requirement
and the DISPERSH protocol in which communications are pro-
tected through encryption and anonymization;
(ii) leaking nodeswhen the attacker can, additionally, observe
the internal states of the PDMS, leading to the Random dis-

persion of data requirement and the DISPERSHR protocol in
which data-at-rest, i.e., the indexes, are protected using secret
sharing [63] and data-in-use are protected through task com-
partmentalization; and finally,
(iii) corrupted nodes when the attacker fully controls some
PDMSs (thus can additionally alter its behavior), leading to
the Collaborative proofs requirement and to the DISPERSHRC

protocol, in which a contributing or indexing node answers
a request for sensitive data only if it obtains a collaborative
proof that the request is justified.
Contributions: We make the following contributions:
(1) We propose a P2P architecture of PDMSs relying on
classical DHTs, a data model allowing to efficiently target
relevant nodes, and a query model to express the queries of
interest.We show, using a functional but insecure naive proto-
col, that the architecture enables the considered applications
in a fully distributed fashion.
(2) We analyze three possible threat models, define and jus-
tify the lower-bound on leakage.
(3) We derive from each threat model a security requirement
and propose suitable execution protocols that satisfy each and
reach the lower-bound on leakage: DISPERSH, DISPERSHR and
DISPERSHRC to, respectively, resist spied, leaking or corrupted
nodes while considering efficiency as a second major goal.
(4) We provide a security analysis for each threat model that
shows that the lower-bound on leakage can be reached with
near-certainty, even in the worst-case scenario of large col-
lusion attacks from fully corrupted nodes.
(5)We show the feasibility of our approachby experimentally
evaluating the effectiveness of our protocols. We show that
they have a reasonable, tunable security overhead and are
fully scalable with the number of colluding nodes.
Achievable guarantees: In the worst-case scenario where an
attacker masters a large number of covert corrupted nodes,
our proposal (i) fully protects the sensitive distributed profile
index required to target nodes; (ii) ensures that the query pro-
cessing cannot leak more than a fraction of the IP addresses
or local results of the targeted nodes, proportional to the per-
centage of colluding nodes that the attacker controls in the
system (which is the best security that can be provided in our
context); (iii) precludes the association of local results with
the nodes that issued them.
Outline: The paper1 is organized as follows: Sects. 2 and
3, respectively, present the architecture and threat models,
allowing to state the problem at hand. The next three sections

1 This paper is based on previous studies [38–40]: In [40], we showed
that the execution of a P2Pquery can indeed rely exclusively on data pro-
cessor nodes if and only if they are selected in a verifiable random way,
which cannot be influenced by corrupted nodes. [39] is a demonstration
of DISPERS architecture and applications. [38] is a PhD manuscript. It
includes implementation details of the protocols proposed in this paper
and describes a proof-of-concept implementation of the most advanced
protocol into the Cozy Cloud product [19].

123

418 L. Bouganim et al.

progressively propose protocols for each threat model, along
with the associated security analysis. Their performance is
evaluated experimentally in Sect. 7. Sections 8 and 9 dis-
cusses related work and DISPERS limitations. We conclude in
Sect. 10. “Appendices A and B” provide useful background
on cryptography and distributed systems.

2 Architectural design and naive protocol

We detail the architecture of DISPERS and show that our
approach is doable with a naive protocol despite its limi-
tations.

2.1 Fully distributed system

DISPERS is a fully distributed P2P system relying solely on
PDMSs to enable the envisioned applications. Therefore,
each node is potentially a Data Source that provides its data,
and/or a Data Processor providing part of the required pro-
cessing by fulfilling a role. The first obvious role is that of
the Querier (Q) initiating the distributed processing. Table 1
summarizes the roles defined throughout the paper while
Table 2 lists the associated notations and abbreviations. (The
last column specifies the section where the role/abbreviation
first appears.)

Relying on a P2P system poses several challenges, such as
integrating new nodes, maintaining a consistent global state,
making nodes interact, handling churn or maintaining some

metadata. It thus requires a communication overlay allowing
for efficient node discovery, data indexing and search. These
requirements naturally lead to DHTs (see “Appendix B”)
which DISPERS leverages as a basis for efficient and scalable
communications.Currently,we implemented theChordDHT
and used it for the experiments in Sect. 7.

2.2 Datamodel

Given the fully distributed nature of our system, each query
can potentially involve a large number of nodes. To ensure
scalability and resilience, it is crucial to limit the number of
nodes involved in a computation. However, poorly choosing
the participants can lead to uninteresting or no results at all.
Thus, each PDMS publishes a profile that is used to limit the
participants to those that are relevant.

A profile p is a set of concepts: p = {c1, . . . , cn}.
Each concept ci is the concatenation of metadata terms
mi describing its semantics, and a single value v: ci =
m1|m2| · · · |m p|v. Examples are: location|Lyon,
sex|male. Multiple metadata terms can be used to indicate
a concept at different granularities, allowing for a structured
organization. For instance, location|city|Lyon.

The profile is an accurate description of the PDMS owner.
It can be generated automatically by the PDMS according
to the data it contains, and/or manually by the owner by
selecting attributes she finds fitting. Besides the profile, the
user may contribute with part of her stored personal data
(e.g., rated movies, physical activities statistics, etc.) for

Table 1 Roles definitions

Role Description of the role (first defined in §) §

Q The Querier initiates the distributed processing 2.1

T Targets are nodes whose profile matches tp 2.3

CI A Concept Indexer responsible for a concept ci stores the list of TIPs of the nodes possessing ci in their profile 2.5

NP A Node Proxy inserts a concept in lieu of a node 4.2

P A Proxy forwards a communication to the next P/NP 4.2

BP A Before Proxy forwards the communications going to a Target in order to hide its TIP from an attacker 4.3

AP An After Proxy forwards the communications coming from a Target in order to hide its TIP from an attacker 4.3

W Workers supplant Q to transfer lq to Ts, to aggregate their results, and to send back the aggregate to Q 4.3

AS The Actor Selector is a node chosen randomly, in charge of selecting the query actors 4.3

PS Profile Samplers reconstruct TIP, apply tp, sample the resulting Targets, and sends associated data to TFs 5.3

TF Target Finders reconstruct TIP only for the sampled Targets and send them anonymously the encrypted lq 5.3

DA Data Aggregator aggregate the local results using aq 5.3

FDA The Final DA performs the final aggregation, sent to Q. 5.3

CIL CI’s Legitimate nodes verify and attest that some neighbor node is actually the CI indexing a concept 6.4

QL Q’s Legitimate nodes verify and attest the query validity (query bud-
get), and bootstrap the random selection of actors by generating a
verifiable random number

6.4

ASL AS’s Legitimate nodes generate the list of actors, sign it and, through their signatures, link it with the query 6.4

123

Highly distributed and privacy-preserving queries on personal data management systems 419

Table 2 Abbreviations and notations

Abb. Description of the abbreviation (first defined in §) §

ci A concept ci is a set of metadata terms mi describing its semantics, and a value v: ci = m1|m2| · · · |m p|v 2.2

p A profile is a set of concepts: p = {c1, . . . , cn} 2.2

tp The Target Profile is a logical expression of concepts indicating which nodes qualify to answer a query 2.3

lq The Local Query is computed locally by each Target 2.3

aq The Aggregate Query is applied over the lq results 2.3

TIP Target IP, i.e., IP address of a Target node 2.5

x Denotes the pseudonym associated with a data x 5.1

sel The selector is used with multiple PSs and TFs 5.4

CTID Concept-Target Identifier CTID = hash(kpub|ci|RND) 5.4

aggregated queries from other users. Note that the proposed
protocols are not dependent on the precise semantics of con-
cepts and profiles. We only assume that the user’s profile and
data are structured and thus can be queried. Obviously, both
are sensitive and as such require protection.

2.3 Querymodel

We consider three iconic applications based on large user
communities that benefit greatly from the PDMS paradigm:
(i) distributed query processing on personal data of large sets
of individuals [47,69], in which users contribute with their
personal data and query the globally contributed data (e.g.,
computing recommendations, participatory studies); (ii) pro-
file or subscription-based data diffusion apps [70], where
users provide profiles to selectively receive relevant informa-
tion; (iii) mobile participatory sensing apps [53], in which
mobile users produce sensed geo-localized data using their
smartphones or vehicular systems (e.g., traffic, noise) to com-
pute spatially aggregated statistics for the whole community.
We only detail queries falling into the first class since it is
almost the combination of the other two: finding the relevant
subset of nodes as with class (ii) and computing the query
result based on the data supplied as with class (iii).

We use three examples to illustrate a query definition:
(i) a closed list of items query considers a list of items
defined in the query and delivers statistics computed on that
list: e.g., “find the average rating of these movies: {Dune,
Star Wars, Drive, Inception, Skyfull} as given by researchers
or professors living in Paris”;
(ii) an open item list querywith the goal to determine a list of
items with specific characteristics (best, worst, etc.) verified
by the participants: e.g., “get the top-10 ranked movies as
chosen by researchers or professors living in Paris”;
(iii) a statistical query: e.g., “average number of sick leave
days in 2020 of researchers or professors living in Paris.”

All these queries expose a Target Profile (tp), which is a
logical expression of concepts indicatingwhich nodes, called

Targets should be involved in the computation (matching tp).
For the examples above, tp = (location|city|Paris)∧
((profession|researcher)∨(profession|professor)).

The Local Query (lq) specifies the data that each Target
must provide for the computation: e.g., “ratings of a set of
movies” or “number of sick leave days in 2020.”

Finally, the Aggregate Query (aq), is a classical aggregate
expression (average, top-10 in our examples, or count, min,
max, group-by, etc.) applied over the lq results.

We thus define a query q as a triplet: q = (tp, lq, aq).
More complex queries can be considered if their execu-

tion can be decomposed in a Local and an Aggregate Query.
Query expressiveness issues are left for future work, as we
focus on privacy preservation and efficient query evaluation.

2.4 Number of targets, sampling and query budget

The number of Targets for a given Target Profile ranges from
low (very specific tp) to very high (popular or vague tp).
Query results computed with too few Targets may become
sensitive and thus should not be computed: A threshold value
should be defined,whichmay depend on the application [62].

For queries involving too many Targets, DISPERS oper-
ates a sampling phase to randomly select a subset of them
with the immediate benefit of alleviating the system load
during query processing. Note that this does not necessar-
ily degrade the quality of the final result: Mathematical
statistics—Hoeffding’s inequality [30] for instance—show
that an adequate sample is as representative as the entire pop-
ulation. In addition, sampling increases the system security
by reducing the risk of exposure. Note that the query result
includes the number of Targets involved in the computation.

However, to negate the security benefits of this sampling
phase, an attacker could execute the same query over and
over again. To reduce the attractiveness of this attack, and,
more generally, to reduce the risks of data disclosure, we
introduce a query budget, a system parameter that applies to
all nodes and sets a limit to the number of queries and/or

123

420 L. Bouganim et al.

Targets allowed per time period. Once exhausted, the node
cannot issue any more queries.

2.5 Distributed concept index

To efficiently determine the list of matching Targets, each
node profile must be indexed. We can leverage the DHT (see
“Appendix B”) for efficient storage and retrieval of these
indexes: the concept index is the association between a con-
cept ci, and the list of node addresses, called TIP (for Target
IP), whose owner’s profile includes ci.

Thus, for each concept ci in its profile, a node performs a
store(ci, TIP)DHT operation that adds TIP to the concept
index of ci. Since the DHT uniformly distributes the indexed
data among the nodes, each node may be responsible for
indexing one or several concepts. Updating a node profile is
done in a similar way by leveraging the DHT.

To find the Targets, the querier performs a lookup(ci)

DHT operation for each concept ci in tp. The nodes responsi-
ble for storing each concept are called Concept Indexer (CI).
The CIs store the list of TIPs of the nodes possessing ci in
their profile and send that list whenever asked by Q.

2.6 Naive protocol

We describe below a first naive protocol (see Fig. 3) demon-
strating that the proposed query model can be supported:

Protocol 1. Naive protocol

1. Q looks up in the DHT the CIs indexing the different
concepts composing the Target Profile (tp).

2. The CIs send to Q the TIPs lists for each queried concept.
3. Q applies tp on the lists to find the Targets (Ts), samples

the Ts and sends to each sampled T the Local Query (lq).
4. The Ts apply lq and send back their local results.
5. Q finally applies the Aggregate Query (aq) on the local

results to obtain the final result.

Obviously, this naive protocol has major shortcomings:
(i) the Querier centralizes the entire execution flow and
becomes a bottleneck; and (ii) no formof protection is offered
(either for data, metadata, or budget controls). The first short-
coming relates to efficiencywhich can be a detrimental factor
to system adoption and is thus addressed in the forthcoming
protocols. The second is related to security and closely tied to
the attacks faced by the system. We thus study next in detail
the threat models considered in this work.

Fig. 3 Naive protocol

3 Threat models, leakages and problem
formulation

This section presents our security assumptions, the threat
models considered, defines the lower-bound on leakage and
formulates the problem more precisely.

3.1 Threat models

Because of the distributed nature of our system, the attacks
can either target the communications (see Assumption 1) or
the nodes themselves (see Assumptions 2 and 3):

Assumption 1 An attacker can observe the content and the
metadata of communications between a predefined subset of
nodes in the network, i.e., the subset cannot change during a
distributed computation.

This assumption indicates that an attacker can spy on com-
munications between some nodes but cannot spy on the entire
network (“state-size attacks”). As a consequence, although
the subset of observed nodes can change over time, this can-
not be done in real-time (i.e., during a query processing).
Note that the solutions we provide can be tuned to resist to a
very large percentage of spied nodes (see Sect. 4.5).

Assumption 2 Each PDMS is supplied with a trustworthy
certificate attesting that it is genuine.

Without this assumption, an attacker can emulate fake
nodes and conduct a Sybil attack [22]: controlling a large por-
tion of nodes (thus those processing the query) and thwarting
any countermeasure. We can rely on a classical public key
infrastructure (PKI) to deliver these certificates. We do not
require the PKI to be online since the certificate is attached
to the PDMS device, not to the device owner.

123

Highly distributed and privacy-preserving queries on personal data management systems 421

Assumption 3 Each PDMS is locally secured using some
security mechanisms (hardware, software or others means).

This third assumption is reasonable since a PDMS is sup-
posed to store the entire digital life of its owner and thus,
must be properly secured. There are several ways to provide
local guarantees: (i) relying on Secure Hardware technology
[4,6]—Intel SGX is now present in most recent processors
and ARM TrustZone in most mobile devices; (ii) using soft-
ware and/or hardware protections enforced by the operating
system (e.g., IOS [26], Android [25], seL4 [29]); or even
(iii) other means (e.g., context of use, trust, laws).

Common security measures include: safe-keeping of
secrets, tamper-resistance, isolation and attestation of the
executed code [60]. In particular, the isolation property
means that the executed code and thedatamanipulated cannot
be observed by an unauthorized process. This is particularly
interesting in our context since it represents the building
block to achieve data confidentiality.

However, no security mechanism is unbreakable: [49]
surveys several attacks to leak part—if not all—of the com-
putations performed within an SGX enclave. Resourceful
attackers can conduct highly advanced lab attacks [52], to
compromise a PDMS using an expensive equipment.

In order to account for the diversity of security mech-
anisms and their possible shortcomings, we focus on three
threatmodels of increasing difficulty—i.e., considering that a
PDMS offers less and less protection. Proceeding incremen-
tally allows us to gradually expose the different techniques
we employ to protect users and their data. This also means
that the Sects. 4, 5 and 6 , devoted to each threat model, can-
not be taken independently as we reuse these techniques. The
threat models are as follows:

Threat Model 1 - Tamper-proof. Under this model, also
called fully honest, we assume that the PDMS device cannot
be tampered with: Attackers cannot access any data stored or
manipulated by their PDMS. They can, however, observe the
communications as they occur outside of this secure envi-
ronment (see Assumption 1). Nodes that are eavesdropped
on are referred to as spied nodes. This threat model is some-
what optimistic (unless e.g., some strong legal constraints
apply), but it allows both as a baseline and for the gradual
introduction of security requirements and associated coun-
termeasures.

Threat Model 2 - Passive attack. Under this model, also
known as honest-but-curious, in addition to observing the
communications, attackers can access, without altering, the
data stored or manipulated by their PDMS—hence the “pas-
sive” attack (read only). Nodes that suffer a passive attack
are referred to as leaking nodes.

Threat Model 3 - Active attack. Under this model, also
known as malicious, an attacker has complete control of her

own PDMS, having bypassed the local security mechanisms
and thus can access and alter both the data stored or manipu-
lated and the code executed on her PDMS (but cannot falsify
a certificate to contradict Assumption 2). Nodes suffering an
active attack are called corrupted nodes.

Attacker model. We consider every owner of a PDMS as a
potential attacker, especially the querier. Attackers behave as
covert adversaries [7], i.e., they only derive from the proto-
col to obtain private information if they cannot be detected
as otherwise they would be excluded. An attacker can be
one or several colluding malicious users and thus, de facto,
control more than one PDMS. For simplicity, we call collud-
ing nodes the leaking PDMSs (passive attack) or corrupted
PDMSs (active attack) controlled by the same attacker. It is
important to note that the worst-case attack is represented by
the maximum number of colluding nodes controlled by a sin-
gle “attacker”. The remaining question is thus: how many
colluding nodes could an attacker control?
Collusion extent. Creating a large group of colluding nodes
presents two main difficulties: (i) the need to remain indis-
tinguishable from honest nodes as detected malicious nodes
can easily be excluded [7] and (ii) possessing the necessary
equipment and/or sufficient knowledge to perform advanced
attacks on the PDMS. Since each PDMS is associated with
a real individual (e.g., by only delivering the device to real
users proving their identity), collusion between individuals
remains possible but can hardly scale without being min-
imally advertised, hence making them distinguishable and
breaking their cover. Besides, enough individual attackers
must be willing to collaborate (despite mutual distrust) to
create a large network of compromised nodes. Thus, wide
collusion is extremely difficult to build since it calls for sig-
nificant organization between a large number of users, which,
in practice, requires an extremely powerful attacker as well
as extreme discretion. Nonetheless, we consider in this paper
that a powerful attacker controls a rather large number of
colluding nodes. Although worrisome, such a situation does
not prevent our system from functioning and from complet-
ing our objective. A calibration is, however, necessary using
a, potentially overestimated, maximum number of colluding
nodes controlled by an attacker.

3.2 Lower-bound on leakage and problem
formulation

In this subsection, we do not further consider the idealistic
tamper-proof threat model which has an obvious lower-
bound on leakage of zero. Indeed, in this threat model used
as a baseline, PDMSs nodes are fully honest; we can there-
fore expect no leakage as soon as we properly protect the
communications between the actors and the targets.

123

422 L. Bouganim et al.

Potentially exposed data. Data leakages can happen for
data-at-rest, by leaking (i) one or several concept indexes;
and data-in-use, i.e., data or metadata exchanged or manip-
ulated during the query execution by leaking (ii) some TIPs,
(iii) some local results, or even worse, (iv) some TIPs linked
with the corresponding local results, called full association in
the rest of the paper. Note that we do not consider the direct
leakage of user’s data since each PDMS is locally secure
(see Assumption 3), and for nodes controlled by the attacker,
there is no benefit in performing a “self-attack.”
Abstract query execution: targeters and aggregators.We
can distinguish two phases in the query execution, whatever
the threat model, the protocol or the techniques used. Each
phase should be conducted by a distinct set of nodes. (Other-
wise, as with Naive execution, the leakage risk is increased.)
In an abstract way, we distinguish between (1) targeters that
find targets thanks to concept indexes and transmit the local
query to the sampled ones and (2) aggregators that aggregate
the local results, working on clear-text data (see Sect. 1).
Unavoidable leakage. We consider the worst-case attack,
i.e., an attacker who masters up to C leaking or corrupted
nodes (with C < N , N being the total number of system
nodes), and acting as covert adversaries (i.e., indistinguish-
able from honest nodes). As already mentioned, there is no
other computing element in the architecture (trusted server
for instance), and thus, only PDMSs can be selected as query
actors. Thus, leaking or corrupted nodes may be chosen as
targeters, as aggregators or in both groups. In this config-
uration, data leakages are unavoidable, and thus, our only
leeway is to minimize the leakage risk, and if a leakage does
occur, to minimize its impact.
Random actor selection. How can we minimize the risk of
selecting leaking or corrupted nodes, if we do not have any
clue on nodes honesty (covert adversaries)?Actually, the best
strategy is to select query actors randomly, thus leading to a
fraction of, on average, C/N leaking or corrupted nodes in
targeters and aggregators. A consequence of randomization
[7,50] is that it leads to guarantees in average. This means
that the lower-bound on leakage discussed below represents
an expected average value over a number of queries and
that some small random variations can be expected between
queries.
Lower-bound on leakage. Since the targeters must contact
the selected targets accessing their TIPs and the aggrega-
tors must manipulate the local results in the clear, it is then
obvious that the lower-bound on leakage is on average a frac-
tion C/N (i.e., strictly proportional with the percentage of
colluding nodes) of the IP addresses and local results of the
selected targets.Wecan, however, expect to protectwith near-
certainty, i.e., with a very high and adjustable probability
(similar to the protocols for communication anonymization
such asTor [50]) the rest of the sensitive data (concept indexes
and the full association between TIPs and local results) since

this depends on the way the concept indexes are stored and
on how the distribution of tasks to actors is done (i.e., mini-
mization of the leakage impact).
Problem formulation. The problem is then to provide pro-
tocols, for managing both data-at-rest (i.e., concept index
insertion protocols) and data-in-use (i.e., query protocols),
which reach the expected lower-bound on leakage with near-
certainty. The computation of this probability is based on
a, potentially overestimated, maximum number of colluding
nodes controlled by an attacker (see Sect. 7.2). Obviously,
security has a non-negligible cost, and thus, we consider as
a second objective the protocols efficiency.2

Approach.Westudy in the next three sections the three incre-
mentally difficult threat models. To further ease the reading,
we introduce the different protocols in the same manner:
(i) we present the additional security requirements and cor-
responding security techniques imposed by the threat model;
(ii) we describe the insertion of a Node’s profile and continue
with the query processing by detailing (iii) the new required
actors that enforce the security requirements and the related
efficiency considerations and by giving (iv) a step-by-step
description of the protocol followed by a discussion of the
different choices made; and finally, (v) we conduct a security
analysis highlighting the parameters leveraged to reach the
lower-bound on leakage and discuss their limits.

4 Tamper-proof threat model and DISPERSH

This model assumes that the PDMS security cannot be com-
promised, leaving only the communications open to attacks.

4.1 Security requirements

By listening to the communications, an attacker can infer
information based on the data itself (i.e., the content) or on
the metadata (i.e., who is communicating with whom, when,
after whom, etc.) leading to the following requirement:

Requirement 1: Hidden communications.All sensitive
exchanged data and metadata should be protected such
that an attacker cannot gain knowledge by spying on a
subset of nodes (see Assumption 1).

To enforce this requirement, we rely on: (i) encryption and
(ii) anonymization.

The choice of the correct encryption scheme
(see “Appendix A”) is context dependent and is discussed
in each protocol, but, in any case, every encrypted com-
munication includes a hash of the message to protect its

2 Issues related to statistical databases (e.g., inferences from results
[71], authorized queries, query replay) or to network security (e.g.,
message drop/delay, routing table poisoning [72]) are complementary
to this work and fall outside its scope (see Sects. 8 and 9).

123

Highly distributed and privacy-preserving queries on personal data management systems 423

integrity. Note that for hybrid encryption, we follow the cur-
rent communication security standard and rely on the TLS
protocol to establish secure channels providing both themes-
sage integrity and its encryption, based on the public key
certified by an authority according to Assumption 2.

Considering Assumption 1, we provide anonymity by
dynamically introducing one or more proxies between nodes
whose communications should not be linked. By “dynam-
ically,” we mean that these proxies are chosen during the
distributed computation and changed at every computation.
Indeed, by doing so an attacker does not know which nodes
to listen to. Also, evidently, the more proxies there are, the
more difficult it is for an attacker to successfully uncover a
node (see the detailed analysis provided in Sect. 4.5).We pro-
pose to use a custom solution based on onion routing, largely
inspired by Tor [21]. This is preferred to using directly Tor
for several reasons: (i) The anonymous routing is achieved
using the system nodes (proxies), so without relying on an
external anonymizer, which would introduce an additional
(strong) trust assumption and would further complexify the
system. Existing work [11] shows that de-anonymizing users
on Tor is possible, especially when interconnecting DHT-
based applications like BitTorrent with Tor. (ii) Our solution
allows tuning the security level (i.e., the number of proxies)
based on the expected attack level (i.e., themaximumnumber
of systems nodes that can be spied by the attacker), which is
not possible with an external system like Tor. (iii) Using an
external anonymizer would make it difficult the evaluation of
the anonymization cost. (iv) The tamper-proof threat model
allows proposing a more efficient protocol than Tor onion-
routing (see “AppendixA”) given that proxies are trustworthy
and cannot access the data being forwarded. In such a case,
we propose that the sender selects only the first proxy which
then selects the following proxy and so forth until the mes-
sage is eventually delivered to the receiver. We call those
proxies basic proxies. The advantage of basic proxies is that
the asymmetric encryption overhead is better distributed,
putting less stress on the sender node. Basic proxies cannot
be used for the other threat models.

4.2 Insertion in the DHT

Inserting a profile in the DHT requires contacting the CIs
indexing the different concepts composing the profile. As we
cannot hide the CIs (how could we contact them?), we can
posit that an attacker will acquire their IP address and inter-
cept their communications. To protect the nodes and their
profiles, we thus encrypt and anonymize the communica-
tions with the CIs, as illustrated in Fig. 4, leading to two new
roles: The Node Proxy (NP) proceeds to the insertion of a
concept in lieu of the node: It locates the corresponding CI
in the DHT and then asks it to store the concept (and TIP);

Fig. 4 Insertion of a concept in the DHT

the Proxy (P) acts as a relay forwarding a communication to
the next P or to NP. The insertion protocol is as following:

Protocol 2. Insertion protocol

1. For each concept composing the profile, the node (N) ran-
domly selects a Proxy (P) and asks it to forward, as many
times as required, the insertion query.

2. The last proxy, which acts as a Node Proxy (NP) makes
a DHT lookup operation to contact the CI. NP provides
the concept, its own IP address and certificate without
encrypting them (they are not sensitive).

3. The CI establishes a secure communication channel with
NP. NP finally inserts the sensitive couple (concept, TIP).

4.3 New roles for query processing (w.r.t.
requirement 1)

As for the profile insertion in the DHT, we must protect the
Targets during a query execution (hiding their TIPs) because
they match a given profile, potentially known by a malicious
querier. We thus place basic proxies “before” and “after” the
Targets: The Before Proxies (BPs), resp. After Proxies (APs),
forward the communications going to (resp. from) a Target to
hide its TIP from an attacker eavesdropping the actor sending
the Local Query (resp. receiving local results).

To avoid disclosing Targets, complying with Require-
ment 1, we must encrypt their incoming communications.
This is not obvious since Targets are discovered dynam-
ically and, thus, BPs cannot know their public keys. The
only solution is to store in the CIs, in addition to TIP, either
a symmetric key ksym, different for each (target, concept)
couple, or the Target public key kpub. Considering that sym-
metric encryption is significantly more efficient, we select
the former. The actors then choose, for each Target, one of
the available ksym (if there are several concepts), encrypt the
Local Query with ksym, accompany it with hash(ksym) and
TIP, and send them to a proxy. The Target knows, through
hash(ksym), which ksym must be used to decrypt the Local
Query, and later, to encrypt its local result. The actors reuse
ksym to decrypt the local results.

123

424 L. Bouganim et al.

Fig. 5 DISPERSH: Tamper-proof compliant protocol

If Q contacts all the sampled Ts (through BPs), we face
two issues: (i) from a security viewpoint, Q knows all the
first level BPs, thus increasing the probability of discovering
Targets (the same is true for APs); (ii) from an efficiency
viewpoint, Q becomes a bottleneck. To solve both, we pro-
pose to add a set of supporting nodes called Workers (Ws).
Ws supplant Q to (i) transfer the Local Query to a subset
of the Targets and (ii) aggregate their local results3 before
sending partial results back to the Querier.

Unfortunately, if the Ws are selected in Q’s neighborhood
or Q’s cache (each node maintains a local cache of recently
contacted nodes), an attacker could deduce which nodes to
spy by analyzing past communications, or influencing the
local cache by issuing specific queries. Thus, we propose to
delegate this selection to an Actor Selector chosen randomly
by Q by making a lookup in the DHT at a random place
(see Sect. 4.4). Randomly relocating the selection of actors

3 This is possible with distributive aggregation expression, i.e., the
aggregate computation can be distributed on several data processors.

allows: (i) distributing the potential leaks in a different region
for each computation and (ii) balancing the load, improving
the overall performance.

As shown in Fig. 5, these limited additions to the Naive
protocol allow securing query computations in the tamper-
proof model. Encrypting the communications plus adding
proxies and workers chosen randomly by the AS allows to
hide the sensitive nodes and ensure the security guarantees
we aim for. Additionally, the workers optimize the execution
flow and distribute the load put initially on the Querier.

4.4 Detailed protocol

The optimized tamper-proof compliant protocol DISPERSH is
given below (see also Fig. 5). Note that steps 1 and 3 as well
as 2 and 4 are done in parallel.

Protocol 3. DISPERSH: Tamper-proof compliant protocol

1. The Querier (Q) generates a random number RNDQ and
hashes it to obtain a location in the DHT virtual space.
Q contacts through the DHT, in clear, the node managing
this location: the Actor Selector (AS).

2. The AS checks Q’s certificate to ensure that Q is a gen-
uine PDMS, randomly selects theWorkers (W) in its local
cache, and sends the list to Q (hybrid encryption).

3. Q checks AS’s certificate and looks up in the DHT, in
clear, the Concept Indexers (CIs) indexing the different
concepts composing the Target Profile (tp).

4. Each CI and Q mutually check their certificates. The CIs
send to Q the encrypted list of (TIP, ksym) associated to
the requested concept (hybrid encryption).

5. Q applies the tp on the lists to find the Targets (T). It
then selects a random sample and evenly splits the sam-
ple in |W| sets. It finally sends to each W the Local
Query (lq), the Aggregate Query (aq) and a set of sampled
(TIP, ksym).

6. Each W encrypts for each T, using one of the available
ksym, the lq and W’s IP address. These messages are sent
(encrypted) to randomly selected Before Proxies (BP).

7. The BPs forward to the Ts the encrypted data. The com-
munication between each last BP and T is encrypted using
ksym — this encryption being performed at step 6.

8. The Ts apply the lq on their data and encrypt their local
result using ksym. They finally randomly select After Prox-
ies (AP) and ask them to forward their encrypted results
to their respectiveW. Note that, unlike step 2 or 4, there is
no need to check that the Ws are genuine PDMSs since,
if not, they could not have provided a correct ksym (i.e.,
known by T).

9. The APs forward the local results to the Ws.

123

Highly distributed and privacy-preserving queries on personal data management systems 425

Table 3 DISPERSH protocol analysis

10. The Ws decrypt the local results, apply aq and send its
results to Q.

11. Qappliesaq on the partial results to obtain thefinal answer
and thus ends the query.

Table 3 provides a summary of the analysis of the pro-
tocol, mainly with respect to Requirement 1. For each step,
we indicate if communications are encrypted, using symmet-
ric (green) or hybrid encryption (yellow) and if the step can
be parallelized (green) for improved performance. We indi-
cate the (most, if multiple) sensitive information we protect
through encryption.

As we can see, all communications are encrypted except
in Step 1 and 3 (DHT lookups). The rationale for Step 3 is
that the concepts (potentially sensitive) cannot be protected
when the owner of the querier node ismalicious. All steps are
also parallelized, except for the selection of Ws (step 1) and
the application of tp (step 3). Both are not expensive tasks
and would not benefit from a parallelization.

4.5 Security analysis

Since, in the tamper-proof model, the data manipulated by
PDMSs are not at risk and since every sensitive commu-
nication is encrypted, an attacker may only deduce some
Target IPs (TIPs) from the metadata—which she can then
associate with a profile as she potentially formulates the
query. Before and After Proxies help anonymize the com-
munications between Ws and Ts, but how do we calibrate
this number of proxies?

Let us quantify the probability of leaking one or more
TIPs, PT + , when an attacker spies the communications of C
nodes in a network of N nodes, using p BPs and p APs and
|T| Targets. We denote c, the ratio of spied nodes (c = C

N).

PT + = 1 −
(
1 − 2c ×

(�p/2�∑
i=0

(p−i
i

) · c p−i · (1 − c)i

)

−c ×
(�p/2�∑

i=0

(p−i
i

) · c p−i · (1 − c)i

)2
⎞
⎠

|T |
(1)

Indeed, an attacker can deduce the TIP of a Target T iff:
(i) he is able to deduce (given the quantity of sent mes-
sages) that some spied nodes are Worker nodes; (ii) he is, by
chance, (a) spying the Worker W targeting T (thus obtaining
the address of the first BP); (b) spying the last BP betweenW
and T (thus obtaining T’s TIP); and (c) spying BPs between
W and T such that no two consecutive BPs are not spied (thus
being able to link the whole chain of BPs). The same obser-
vations can be done with APs (the first AP must be spied).
For instance, with 7 proxies, 103 Targets and 1% spied nodes,
PT + < 10−6. Such a protection level is more than acceptable
since a prerequisite is that a Worker is identified, which is
not trivial with queries running in parallel.

4.6 Conclusion

The proposed protocols address the first requirement using
encryption and anonymization and parallelize the computa-
tions when possible. The security analysis shows that we can
reach the lower-bound on leakage (no leakage) with a prob-
ability PT + which can be tuned to be as small as required,
i.e., with near certainty. Considering tamper-resistant PDMS
nodes can be, however, too restrictive. If an attacker were to
break a single PDMS then all the sensitive data would leak:
This node only has to initiate a query to observe the full list
of Targets and partially aggregated results. We thus address
next, our second, more invasive, passive attack threat model.

5 Passive attack threatmodel andDISPERSHR

In the passive attack threat model, in addition to spying on
the communications, an attacker can uncover, without being
able to modify, the data normally protected by the PDMS.

5.1 Security requirements

As mentioned in Sect. 3.2, when an attacker controls a set of
leaking nodes, there is an unavoidable data leakage, and thus,
our objective is to minimize its impact and reach the lower-
bound on leakage, while keeping the security costs low. We
thus propose the following requirement:

Requirement 2: Random dispersion of data. Data-at-
rest (i.e., the distributed concept index) and data-in-use
(i.e., the data exchanged during query execution) must be
dispersed on nodes chosen randomly.

Indeed, the best achievable protection is obtained with
random actor selection (CIs and query actors are randomly
selected and that selection cannot be influenced by the
attacker). Then, through dispersion, we minimize the infor-
mation each actor receives and, de facto, limit the impact of
a leak. We remind that the users’ own data do not need dis-

123

426 L. Bouganim et al.

persion since there is no gain in performing a self-attack. We
make use of the following security techniques:
Imposed, uniformlydistributednode location in theDHT.
Imposing the location of nodes in the DHT ensures a uniform
density of the leaking nodes since an attacker cannot influ-
ence its location. This can be easily achieved by using the
hash of the node’s public key as its identifier in the DHT.
Indeed, hash functions produce uniform distributions, and
public keys are unique and cannot be influenced by thePDMS
owner. Coupled with a random assignation of the actors and
the CIs (e.g., the hash of the concept for the CIs), we obtain
a random selection of the query actors.
Shamir’s Secret Sharing Scheme (SSSS) for random dis-
persion of data-at-rest. By using SSSS (see “Appendix A”)
in combination with the random assignment of the CIs, we
can safely store the concept indexes in the DHT.
Task compartmentalization for data-in-use random dis-
persion. By compartmentalizing a task in several indepen-
dent sub-tasks, coupled with the random assignment of the
actors, we can reduce the data transferred to the actors to the
minimum required for each sub-task, effectively dispersing
them on several actors. A task should be compartmental-
ized iff each sub-task requires less data to be performed, so
that it minimizes the leakage impact if any of the actors is
leaking.
Pseudonymization of data-in-use. To further reduce the
impact of a leakage of data-in-use, we rely on pseudonymiza-
tion in case an actor has access to more information than
it needs. Pseudonym(x) is denoted x and allows “hid-
ing,” when applicable, the concepts of the Target Profile,
the Aggregate Query, or the IP addresses of the Targets.
By replacing a concept ci in the Target Profile with ci, we
can apply it on the lists sent by the CIs without revealing
any of the concepts. For instance, the pseudonymized pro-
file tp = (a ∧ b) replaces tp = (location|city|Lyon) ∧
(profession|none). Similarly, we replace the “subject”
of the Aggregate Query with a pseudonym. Instead of com-
puting aq: “average of the ratings,” we can compute the aq:
“average of x” hence hiding the nature of the local results
(to some extent). Finally, swapping the Targets’ IP addresses
(TIP) with pseudonyms TIP can greatly reduce data-in-use
leakage as detailed in Sect. 5.3. Note that, depending on the
computation performed, one may employ dedicated obfus-
cation methods to further protect the local results (e.g., local
differential privacy [77]). Our purpose here is to be generic
and we thus leave these optimizations to future work.
Sub-task parallelization. Lastly, parallelizing the sub-
tasks, i.e., using several nodes to compute a sub-task,
further reduces the amount of data accessed by each actor
and thus the potential leakage, and speed up the overall
execution.

5.2 Insertion in the DHT

As explained earlier, proxies can now leak the data they
manipulate, thus requiring onion routing to operate blindly
(see “Appendix A”). Furthermore, even if the Node Proxy is
leaking, it has, thanks to SSSS, only access to a share of the
IP address of the node inserting the concept in the DHT.

Overall, the protocol remains the same as Protocol 2:
There are now as many insertions as there are shares due
to SSSS (see Fig. 6) and the communications between the
proxies follow the onion routing protocol. The CI responsi-
ble for storing the share j of concept ci is the node responsible
for the key computed for instance as hash(‘[’ | ci | ‘]’ | j)
to randomly disperse the shares on different CIs (thanks to
the uniform distribution of cryptographic hash functions).
Hence, by splitting their TIP into shares assigned to different
CIs, the probability to leak the TIPs for a concept decreases
exponentially with the number of shares (see Sect. 5.5).

5.3 New roles for query processing (w.r.t.
requirement 2)

Analyzing the querier and workers roles in Protocol 3, we
identify four different tasks: (i) Q contacts the CIs, (ii) Q
applies tp and transmits the sampled Targets to Ws, (iii) Ws
transfer the Local Query to the resulting (sampled) Targets,
and (iv) W receive and aggregate the local/partial results.

To fulfill the Random dispersion of data requirement,
we restrict the role of Q to contacting the CIs and intro-
duce four new roles resulting in the compartmentalization
of the tasks (ii), (iii) and (iv) respectively leading to PS, TF
and (F)DA. For each sub-task, the data-in-use transmitted to
the new actor nodes is minimized (minimal knowledge) and
pseudonymized whenever possible.

The Profile Samplers (PSs) (i) reconstruct TIP and apply
tp to determine the Targets, (ii) select a sample of Targets
and (iii) transfer the sample data to a Target Finder. Thus,
the PSs determine and sample the Targets without knowing
any IP address or the Target Profile.

The Target Finders (TFs) (i) reconstruct TIP only for the
sampled Targets, (ii) transfer, anonymously via proxies, the
encrypted Local Query to the sampled Targets. Thus, the

Fig. 6 Insertion of a concept in the DHT

123

Highly distributed and privacy-preserving queries on personal data management systems 427

Fig. 7 PS/TF interactions

TFs communicate with the sampled Targets without knowing
their pseudonyms nor the Target Profile.

The Data Aggregators (DAs) aggregate the local results
using the pseudonymized Aggregate Query.

For each role, several nodes can be selected to parallelize
the execution of the sub-task. Having several DAs requires
a final aggregation performed by the Final Data Aggregator
(FDA) which then transfers the final result to the Querier.

Figure 7 illustrates how the task and information distribu-
tion is performed to minimize their knowledge, assuming a
single PS and TF (see Sect. 5.4 for multiple ones).

1. Each CI sends to the TF each share of (TIP, ksym)
encrypted with a “temporary” symmetric key, ktmp, gen-
erated on-the-fly for each share. ksym is used to encrypt
the communications with the Target (see Sect. 4.3), while
ktmp is used to hide from TF the (TIP, ksym) of the Targets
that are not selected by the sampling.

2. Each CI sends to the PS the concept pseudonym (ci), and
for each node having ci, the share of TIP and ktmp.

3. The PS reconstructs the nodes’TIP (see Sect. 5.4), applies
tp on TIPs, samples the resulting Targets and finally sends
to the TF the set of ktmp of the sampled Targets (one per
share of sampled Target).

4. The TF decrypts the shares of (TIP, ksym) of the sampled
Targets using the adequate ktmps, reconstructs the (TIP,
ksym) and finally encrypts (with ksym) and transfers them
(anonymously) the Local Query and other metadata.

The PS thus only knows the pseudonyms (TIP) of the
nodes possessing any of the concepts in tp—without know-
ing which—and the TF knows the TIPs of only the sampled
Targets without knowing tp. Providing them less information
would make them unable to perform their respective tasks,
hence showing that this task distribution is optimal.

Fig. 8 Overview of the DISPERSHR protocol

5.4 Detailed protocol

Figure 8 gives an overview of DISPERSHR, the passive attack
compliant protocol. We voluntarily omit the proxies to
improve readability and to focus on the new flow. Details
are addressed just after.

Protocol 4. DISPERSHR: Passive attack compliant protocol

1. Q generates RNDQ and looks up in the DHT the AS,
the node managing the location hash(RNDQ). The AS
checks Q’s certificate to ensure that Q is a genuine PDMS,
selects randomly a list of actors in its local cache, and
sends this list to Q (hybrid encryption).

123

428 L. Bouganim et al.

2. Q transmits (hybrid encryption) the required metadata to
each actor: (i) the tp and list of TFs to the PSs, (ii) the lq
and list of DAs to the TFs, (iii) the aq to the DAs/FDA.

3. Q looks up in the DHT each CI managing a share of each
concept ci of the tp. Then, Q provides (hybrid encryption)
to each CI the pseudonym ci and the list of PSs and TFs.

4. Each CI checks Q’s certificate, and forwards to the PS,
the ci and, for each node having ci, ktmp, and a share of
TIP; and to the TF, for each node having ci, a share of
(TIP, ksym) encrypted with ktmp.

5. Each PS reconstructs the TIPs, applies tp, samples the
resulting Targets and finally sends to its corresponding
TF the set of ktmp of the sampled Targets.

6. Each TF decrypts the shares of (TIP, ksym) of the sampled
Targets using the adequate ktmps, reconstructs the (TIP,
ksym) and finally encrypts with ksym and transfers to the
Targets (onion routing) the lq and the list of DAs.

7. Each Target deciphers the lq and list of DAs using ksym,
applies lq, chooses randomly a DA and forwards it anony-
mously (onion routing) its local result.

8. The DAs apply aq on the local results, and send (hybrid
encryption) the partial results to the FDA.

9. The FDA applies aq to compute the final result and sends
it to Q (hybrid encryption).

Selecting the actors.A correct selection of the actors is cru-
cial as the leakage is linked to howmany of them are leaking.
As we have established in Sect. 3.2, that selection must be
random to minimize, on average, that number. We used the
Actor Selector as in the tamper-proof model to select actors
in randomized regions of the DHT, thus distributing the load
and the leakages while ensuring a uniform and random selec-
tion of actors.
Multiple (PS, TF). Having multiple instances of (PS, TF)
couples (each PS communicate with its corresponding TF)
raises two issues: (i) how can the CIs send the shares belong-
ing to the same node to the same actor and (ii) how can an
actor know which shares go together?

To address (i), the nodes store a selector called sel with
their share entries in the DHT. sel is identical for all entries.
TheCIs leveraged sel to determine towhich actor they should
transfer it by using a modulo. sel should be chosen so as
to favor collisions and avoid creating a second, insecure,
pseudonym. DISPERS uses a hash of the node’s public key
concatenated with a random value (to reduce the attacker
knowledge): sel = hash(kpub|RND) mod |PS|.

To address (ii), considering that SSSS does not indicate
if a set of shares are related to the same secret, we associate
a “marker” to each set, called a Concept-Target Identifier
(CTID), to signal this relationship. As there are possibly
many shares for as many different secrets, this marker is
unique per secret and should depend on the Target and the

Table 4 Summary of the data accessed by each role

concept to avoid mixing shares that do not belong together.
Once more, we use a hash of the node’s public key concate-
nated with the concept and a random value (to avoid rainbow
table attack): CTID = hash(kpub|ci|RND).
Summary of the data stored at a CI. To summarize, a CI
responsible for the share j of concept ci stores the tuple
(CTID, sel, (TIP, ksym) j , TIP j) for each node having ci in
its profile where: (i) CTID is a Concept-Target Identifier,
unique for the couple (concept, node) but equal for all its
shares; (ii) sel is a selector ensuring that all the shares of the
same node (whatever the concept) are sent to the same PS
and TF; (iii) (TIP, ksym) j is a share of the node IP address
and of the symmetric key, unique for the couple (concept,
node); and (iv) TIP j is a share of the node pseudonym.

Table 4 shows that the metadata (in green) accessed by
each role are minimized: No role except Q has access to
more metadata than strictly necessary. This is important to
avoid opportunistic attacks, i.e., when the attacker does not
control the querier node and thus, has no access to the query.
More importantly, each role receives only the necessary data
(in red) to perform its task. For instance, TFs receive lq and
some Targets TIPs because they need to send the former to
the latter. The next section quantifies the impact an attacker
mastering different actors would have. In particular, we study
how combined leakages would help deduce concept indexes,
TIPs, local results or full associations.

5.5 Security analysis

As mentioned in Sect. 3.2, we must consider the leakage of
(i) one or several concept indexes; (ii) some TIPs, (iii) some
local results, and (iv) their full association.
Concept index leakage. A concept index for a concept ci,
protected by SSSS with n shares and a threshold of t , is dis-
closed if an attacker controls at least t nodes storing shares
of ci’s index. Thus, the probability of leaking one or more
concept index is equal to 1 minus the probability of not leak-

123

Highly distributed and privacy-preserving queries on personal data management systems 429

ing any concept, i.e., having for each concept at most t − 1
leaking concept indexers (see equation 2 with |ci| concepts
indexes in the system, c is the ratio of leaking nodes). Using
this formula, we can easily calibrate the system to obtain
a very low probability. For instance, with 11 shares and a
threshold of 8 (increasing redundancy and making the sys-
tem robust to failures, see Sect. 7), the probability of leaking
one or more concepts when the attacker controls 1% of the
nodes is around 10−7 with a total of 105 concepts.

PI = 1 −
(

t−1∑
i=0

(
n

i

)
× ci × (1 − c)n−i

)|ci|
(2)

Sampled Target address leakage. There are three TIP leak-
age scenarios: (a) a TF node is leaking; (b) a “chain” of BPs
is spied or leaking (same reasoning as in Sect. 4.5), see equa-
tion 3 with p > 1 BPs; (c) a “chain” of APs is spied or
leaking, see equation 4 with p > 1 APs. The probability of
leaking one or more TIP is then given by equation 5.

PB P =
�p/2�∑
i=0

(
p − 1 − i

i

)
× c p−i × (1 − c)i (3)

PAP =
�(p+1)/2�∑

i=0

(
p + 1 − i

i

)
× c p+1−i × (1 − c)i (4)

PT + = 1 − ((1 − c) × (1 − PB P) × (1 − PAP))|T | (5)

Scenario (a) leads to an unavoidable leakage (on average)
of T × c Target IPs—given our fully distributed setup and
to the indistinguishability of leaking nodes. The objective is
thus to minimize the extra leakage of scenario (b) and (c),
which depends on the length of the “chains.”

Figure 9 shows the impact of the addition of BPs and APs
(same number) on the expected TIPs leakage. With only one
proxy of each type both leakages are equal to the one of
scenario (a): each proxy is either leaking or not thus leading
to three chances for a TIP to be leaking: a leaking TF, BP
or AP. Having two or more proxies severely reduces it (a
leaking chain is required). However, extending the length of
the chains rapidly yields little to no benefits, especially when
compared to the, unavoidable, leakage of scenario (a).

Fig. 9 Effect of proxies on TIPs leakage

Fig. 10 Effect of APs on full association leakage

Local result leakage. Local results leak iff one or more DAs
are leaking. This leakage, on average, T ×c local results, can-
not be reduced since DAswork on clear text and leaking DAs
are indistinguishable from honest ones. Fortunately, local
results alone do not bring many insights to the attacker, espe-
cially if lq can be restricted in some ways (e.g., lq should not
return identifying results). Considering working on cipher-
text is part of our future work (see preliminary results in
[45]).
Full association leakage. The full association leakage
requires that (i) the first AP is spied or leaking; (ii) no two
consecutive APs are honest (and not spied) between the first
AP and the DA; (iii) the DA is leaking. (i) and (ii) allows
obtaining the TIP while (iii) allows obtaining the local result
and linking it with the TIP. Equation 6 gives the probability
of leaking one or more full association.

PF = 1 − ((1 − PAP) + (1 − c) − (1 − PAP) × (1 − c))|T |

(6)

As we can see in Fig. 10, we can reduce this probability,
as much as desired, by increasing the number of APs. For
instance, with 7 APs and 104 colluding nodes (1%), the prob-
ability is inferior to 10−6. Note that adding APs is a costly
mechanism: each Target must perform as many asymmetric
encryption operations as there areAPs and eachAP a decryp-
tion. However, all these operations are done in parallel and
should have a marginal impact on the execution latency.

5.6 Conclusion

By compartmentalizing the query execution on multiple
actors, hiding the data with pseudonyms or SSSS, we man-
aged to isolate the sensitive information such that each actor
has a very limited view on the global data processing. More-
over, by controlling the number of SSSS shares (n and t),
and the number of BPs and APs, we can influence PT + and
PF such that we reach the lower-bound on leakage with near
certainty. However, considering corrupted nodes changes the
game: A corrupted querier can choose colluding nodes as
actors thus leaking all the sensitive data. This is studied in
the next section.

123

430 L. Bouganim et al.

6 Active attack threat model and DISPERSHRC

In the active attack threat model, we assume that collud-
ing attackers have complete control over their own PDMSs:
They can alter the code integrity and forge fake informa-
tion. Hence, although the overall data insertion and query
protocols remain the same as in the passive attack model,
additional attestations have to be carefully generated and then
verified by the concerned nodes tomaintain the same level
of security. This section is based on our previous work [40]
that we extend in a more comprehensive and generic way.

6.1 Security requirements

The main consequence of this threat model is that nodes,
especially those providing sensitive data, cannot trust any
information they receive even if it is signed by a, poten-
tially corrupted, PDMS. A notable exception is the node’s
certificate which is the security root (see Assumption 2). We
identify three types of attacks: (i) impersonation: when a cor-
rupted node impersonates another node (e.g., impersonating
a CI to reveal some concept profile); (ii) list of corrupted
actors: when a corrupted querier produces a list of actors con-
taining mostly (if not only) corrupted nodes; and (iii) query
manipulation: when corrupted nodes bypass their query bud-
get or alter the query parameters during the execution (e.g.,
a corrupted TF changing lq to make a Target reveal itself).
The following requirement addresses these issues:

Requirement 3: Collaborative proof. Any “informa-
tion” that leads (directly or indirectly) to the transmission
of sensitive data must be (i) attested and (if applicable)
generated through a collaborative process involving hon-
est nodes, and (ii) the participation of honest nodes in
this process must guarantee its correctness, i.e., a single
honest node has the power to invalidate it.

A collaborative process prevents an attack from a sin-
gle corrupted node. By additionally forcing the presence of
honest nodes and giving them the power to invalidate the
produced information, we make it trustworthy as long as all
nodes, including at least one honest node, attest it. Hence, a
corrupted node has no choice but to collaborate with honest
nodes and to conform to the different processes, as other-
wise the execution would eventually be aborted. To enforce
our requirement, we make use of the following techniques:

1. Collaborative validation: a set of nodes, containing at
least one honest node, validates via cryptographic signa-
tures an information or a fact called f . The nodes must be
providedwith, or already possess, sufficient knowledge to
be able to check f . If all the signatures are consistent—
i.e., sign the same f —, then f is deemed trustworthy. If

at least one signature is not consistent, then f must be
discarded and the execution aborted.

2. Collective knowledge: every node stores some informa-
tion on all the other nodes such that CI impersonation can
be prevented. Similarly, by storing the query budget of
all nodes, we prevent an attacker from abusing her query
budget. This requires a collaborative validation.

3. Collaborative, verifiable process: a set of nodes, con-
taining at least one honest node, can execute a given
algorithm, built in such a way that its output can be vali-
dated by all the participants (with sufficient knowledge).
For instance, the verifiable random number generation
protocol (see “Appendix A”) allows generating collabora-
tively a verifiable random value if at least one honest node
participates. In the following, we leverage this verifiable
random number protocol as a basis for the collaborative
verifiable selection of the query actors. This process is
sketched in Sect. 6.5 and detailed in [40].

6.2 The need for efficient, localized decisions

These techniquesmeet Requirement 3, preventing the attacks
considered but raise major efficiency/scalability issues.

Assuming an attacker controls up to C corrupted nodes,
then both the Collaborative validation and the Collaborative
verifiable processwould require at leastC+1 nodes to ensure
that one of them is honest. For instance, with an attacker
controlling up to 1% of 106 nodes, each node verifying a fact
has to perform 2 × (104 + 1) asymmetric crypto-operations
to check the signature and the certificate of each signatory!

Similarly, for Collective knowledge, nodes must perform
a full broadcast of any modification of a query budget and
maintain a full mesh overlay [40], which is extremely costly
in practice and would render irrelevant the DHT overlay.

Finally, asking C + 1 nodes to attest, for instance, the
query to prevent an attacker from altering it is, from a privacy
standpoint, counter-productive: An honest querier is almost
guaranteed to broadcast it to attackers thus hindering the pro-
tections we set up in the previous section.

To maintain an efficient and scalable system, it is thus
essential to drastically reduce the number of nodes involved
in all these security processes. This can be done through
localized decision processes by leveraging again the imposed
location in the DHT, slightly modifying our requirement.

Indeed, thanks to the imposed location, leading to a
uniform distribution of nodes in a DHT, we can have prob-
abilistic guarantees on the maximum number of colluding
nodes in a DHT subspace of a given size—calledDHT region
hereafter. We compute then the probability of having at least
k corrupted colluding nodes and tailor both k and the region
size to make the probability lower than a security threshold.
By setting the threshold sufficiently low, we can consider that
having at least k corrupted colluding nodes “never” occurs

123

Highly distributed and privacy-preserving queries on personal data management systems 431

and thus limits the number of nodes involved in each process
to k (� C). We thus reformulate Requirement 3 to incorpo-
rate this probabilistic approach:

Requirement 3’: Collaborative probabilistic proof.
Any “information” that leads (directly or indirectly) to
the transmission of sensitive data must be (i) attested and
(if applicable) generated through a collaborative process
involving,with a very high probability, at least one hon-
est node, and (ii) the participation of at least, one honest
node in this process must guarantee its correctness— i.e.,
it has the power to invalidate it.

Since the localized decisions are taken by the nodes situ-
ated inside a specific DHT region, we generalize this notion
and define a legitimate node as follows: Given a region R
in the virtual space of a DHT, for any node ni we say that
ni is legitimate w.r.t. R if and only if it is located within R,
i.e., hash(kpubni

) ∈ R. Legitimate nodes can store infor-
mation, verify and sign facts, or participate in collaborative
processes. We modify the proposed techniques as follows:

1. Collaborative local validation: instead of needingC + 1
consistent signatures for a fact f , the signatories are
selected in a reduced DHT region and thus minimized
to k legitimate nodes.

2. Local knowledge: instead of broadcasting the query bud-
get to the entire network, the “neighbors” of the querier
are responsible for storing, checking and attesting it. The
same occurs with the node locations: Each node stores the
local topology of the network nodes “around” it.

3. Localized collaborative, verifiable process: instead of
needingC +1 participants to generate a verifiable random
number or a verifiable list of actors, we select them in a
reduced DHT region allowing to reduce their number to
k legitimate participants.

6.3 Insertion in the DHT

The main issue regarding the insertion of concepts comes
from corrupted nodes impersonating CIs. To prevent it,
applying the Collaborative local validation, the Node Proxy
now requires the CI neighborhood to attest CI’s legitimacy.
The CI thus asks k legitimate nodes called CI’s Legitimate
nodes (CILs) and located in a small region centered on the
concept’s location, to verify and attest the fact that the CI is
actually the node responsible for the concept (see Fig. 11).

Our fact f , here is that, by construction of the DHT, the CI
must be the closest node to the concept. The CI can choose
any k CILs to validate f . CILs have the necessary knowledge
since they store the local topology of the network. In addition,
k is tailored to guarantee the presence of an honest node
H among the CILs. Thus, if f is false, i.e., a node N is
closest thanC I , then H knows N and H will not sign f , thus

Fig. 11 Insertion of a concept in the DHT

aborting the process. NP must check (i) that the k signatures
are consistent, (ii) that the k signatories’ certificates are valid
and prove that they are legitimate and obviously (iii) that f
designates CI (i.e., f has not been altered).

6.4 New roles for query processing (w.r.t. Req. 3’)

In the same spirit, the nodes around the Querier are called
Querier’s Legitimate nodes (QLs) and allow to (i) verify and
attest the validity of a query w.r.t the Querier query budget,
and (ii) bootstrap the random selection of actors by partici-
pating in the generation of a verifiable random number.

The first task prevents a corrupted node from abusing the
systemand freezes the querywithout disclosing it, effectively
blocking query manipulation attacks. Additional verifica-
tions of the query could be done but are out of the scope
of this paper. As in the previous threat models, the random
number is used to designate the Actor Selector. In coordi-
nation with the AS, the Actor Selector’s Legitimate nodes
(ASLs) generate the list of actors, sign it and, through their
signatures, link it with the query.

The next section explains inmore details howwe compute
the probabilistic guarantees and how it can be leveraged to
both select the actors and prevent query manipulation.

6.5 Detailed protocol

Probabilistic guarantees. Having an imposed and uniform
distribution of nodes throughout the network—which applies
indistinctly to honest and corrupted nodes—we can estimate
the number of nodes in a region:

Let R be aDHTregionof size rs in a virtual space of aDHT
of total size 1 (i.e., normalized) and let N be the total number
of network nodes—uniformly distributed in the virtual space.
The probability, PL , of having at least m legitimate nodes in
R is [40]:

PL(m≥, N , rs) =
N∑

i=m

(
N

i

)
× rsi × (1 − rs)N−i (7)

123

432 L. Bouganim et al.

Fig. 12 Verifiable selection of actors protocol

Proof (sketch): Let us consider a partition of the N nodes
into two subsets containing i and N − i nodes. Since the
distribution of nodes is uniform in space, the probability of
having the i nodes inside R and the N − i nodes outside R
is rsi · (1 − rs)N−i and there are

(N
i

)
combinations of gener-

ating this node partitioning. The probability of having in R
at least m nodes is equal to the probability of having exactly
m nodes plus the probability of having exactly m + 1 plus...
the probability of having N , which leads to equation 7. �

The same reasoning applies to obtain the probability, PC

of having at least k corrupted colluding nodes in R; C(< N)

being the maximum number of corrupted colluding nodes:

PC (k≥, C, rs) =
C∑

i=k

(
C

i

)
× rsi × (1 − rs)C−i (8)

We can notice that this probability does not depend on the
region center because of the uniform distribution and is thus
valid for any region of size rs.

Furthermore, by correctly choosing the values for k and
rs we can make PC lower than a given security threshold
α. In other words, by ensuring that PC is lower than α, we
“guarantee” that at least one node is honest among the k.
Generating the list of actors.As mentioned earlier, the best
achievable protection is obtained when actors are randomly
selected and the selection cannot be influenced by attack-
ers, i.e., the average number of corrupted selected actors in
the ideal case is AidealC = A × C/N . Thus, the impact of
a collusion attack remains proportional with the number of
colluding nodes, which is the best situation given our context.
The protocol proposed below (see Fig. 12) achieves, on aver-
age, this ideal case and requires 2k signature verifications to
check its validity (versus 2 × (C + 1)) with k � C .

Protocol 5. Verifiable selection of A actors protocol

1. Q selects k QLs in a region R1 of size rs centered on Q
— such that we have probabilistic guarantees to “always”
have at least one honest QL.

2. The k QLs, collaboratively generate RNDQ (verifiable
randomnumber generationprotocol—see “AppendixA”).

3. Q hashes RNDQ to obtain a location p in the DHT virtual
space and contacts, through the DHT, the node managing
this location: the Actor Selector (AS).

4. The AS, in turn, selects k ASLs in a region R2 of size rs
centered on p — such that we have probabilistic guaran-
tees to “always” have at least one honest ASL.

5. The k ASLs collaboratively generate another verifiable
random number, RNDAS and a Candidate List (CL) of
actors: each ASLi provides a local candidate list (CLi)
from its cache of nodes (Cachei). Each candidate must
belong to a region R3 centered on p, whose size rs3 is
such that R3 includes at least A nodes with very high
probability.

6. Coordinated by the AS, each ASLi checks RNDQ , com-
putes the union of allCLi to obtainCL, sortsCL and keeps
the A first actors (sorting is done on kpub j ⊕RNDAS where
kpub j is the public key of node j ∈ CL). They finally sign
the list of actors which concludes this protocol.

Steps 1 to 3 relocate, randomly, the selection of actors.
Steps 4 and 5 prevent Q from manipulating the relocation.
Finally, step 5 and 6 takes care of generating the list of actors.
The details of this protocol can be found in [38,40].

The presence of an honest node among the selected QLs
and ASLs is the root of security: The honest QL ensures that
the relocation is random while the one in ASL ensures that
the relocation process was not tampered with, that enough
genuine candidates are provided in step 5 and lastly that cor-
rupted ASLs cannot ignore some genuine actor candidates.

Finally, as stated, 2×k signature verifications are required
to verify this list of actors: the certificates of the k ASLs that
signed the list, and the k signatures of the list.
Preventing query manipulation. The core idea is to asso-
ciate the query and the list of actors: to each query corre-
sponds a unique list of actors, thus preventing two attacks:
reusing a favorable list of actors and generating a large quan-
tity of list of actors to obtain a favorable one. If a list is tied to
a query then, by definition, it cannot be reused. Plus, as each
node has a limited query budget, an attacker would exhaust
her budget before obtaining a favorable outcome.

However, associating the query with the list of actors must
be done carefully: In accordance with the compartmentaliza-
tion technique (see Sect. 5.1), we should not give actors and
intermediary nodes more knowledge than what they need.
For instance, although a hash allows detecting any alter-
ation, it requires the raw data to be checked and is, as is,
inappropriate. Fortunately, a Merkle Hash Tree (MHT) (see
“AppendixA”) solves this limitation since its does not require
to send additional meaningful information to any node but
simply a correct MHT representation of the query.

Besides altering the query or manipulating the list of
actors, an attacker could also retain some information to iso-

123

Highly distributed and privacy-preserving queries on personal data management systems 433

late a Target. For example, a TF could transmit the Local
Query to all but one Target, wait a certain period of time and
eventually forward it to the isolated Target hoping that her
result would find its way back to the Querier (revealing the
identity of the Target). Adding a timestamp to the query and
defining a validity time frame after which a query should be
discarded is an effective way of preventing this issue.

Summarizing, first, the query budget is checked by the k
QLs. Then, to prevent any manipulation, the query is associ-
ated with the list of actors via k signatures that attest: (i) the
root hash of the MHT representation of the query, (ii) the list
of actors and (iii) a timestamp.

The detailed protocol is illustrated in Fig. 13 and described
next highlighting only the additions with regards to the pas-

Fig. 13 DISPERSHRC protocol overview

sive attack protocol (i.e., mainly checks, signatures and their
verifications).

Protocol 6. DISPERSHRC: Active attack compliant protocol

1. Q asks k legitimate neighbors (QLs) to validate its query
and generate RNDQ to locate an AS.

2. Q request the AS to generate a list of actors, providing
the signatures of the QLs. If everything is valid, the ASLs
and the AS, generate, sign and send the list of actors to Q
(see Protocol 5).

3. Q sends to all the actors their query parameters with the
corresponding signatures by the ASLs. All the actors ver-
ify the signatures that attest the parameters validity.

4. Q looks up, in the DHT, each CI managing a share of each
concept of the tp.

5. The CIs check the signatures of the query and list of actors
before contacting the PSs and TFs.

6. The PSs proceed as in the passive attack protocol: recon-
struct the TIPs, apply tp, sample the Targets, send to the
TFs the set of ktmp of the sampled Targets.

7. The TFs proceed as in the passive attack protocol: recon-
struct the (TIP, ksym) and transfer to the Ts (via the BP)
the lq and the list of DAs with the adequate signatures.

8. The Targets check the validity of the query and of the list
of DAs. If everything is valid they then send their local
results to the DA (via the AP).

9. The DAs check Q certificate, apply aq on the local results,
and send the partial results to the FDA.

10. The FDA checks Q certificate, applies aq to compute the
final result and sends it to Q.

We now discuss a few important considerations regarding
the actor selection protocol.
Sparse DHT regions: Despite the uniform distribution of
nodes on the DHT virtual space, there could be sparse DHT
regions. This can have a negative impact during the selection
of k QLs in R1 (or k ASLs in R2) and of the A actors in R3.
Both cases exhibit interesting trade-offs:
Choosing R1 (or R2) region size: on the one hand, a small
rs leads to a smaller k value, which in turn reduces the cost
of the protocol. On the other hand, setting rs too small can
lead to situations in which nodes have less than k legitimate
neighbors in their R region and as such cannot participate
in the actor selection protocol (as Querier or Actor Selec-
tor). For this reason, we provide a table of couples (ki , rsi),
named k-table which gives several increasing values of k
with increasing region sizes, computed thanks to PL and PC

(equations 7 and 8). It allows any node to find ki legitimate
neighbors in the region of associated rsi size keeping the
probability of having ki or more colluding nodes below α

123

434 L. Bouganim et al.

(security threshold). Thus, the k-table optimizes the protocol
cost and warrants that any node can act as Q or AS.
Choosing R3 region size: Choosing a too small rs3 has a
negative impact on the system performance. If the ASLs
cannot find enough nodes in R3, they can attest it (e.g., in
step 5 of protocol 5) and the AS can use the k signatures to
displace the actor selection to another region (e.g., selected
by rehashing the initial RNDQ). This mechanism allows the
protocol to be executed successfully even if some network
regions are sparser. However, there are two drawbacks. First,
the cost of the actor selection increases since (part of) the
protocol must be executed twice (or more times). Second,
this also introduces an unbalance in the system load since
the sparse regions cannot fully take part in data processing.
Finally, setting rs3 to very large values is not an option since
the maintenance cost of the cache increases proportionally
when nodes join or leave the network (see Sect. 7.5).
Joining the network and Cachei validity: Any node must
maintain a consistent node cache despite the natural evolution
of the network. Thus, a node joining the network must ask its
neighbors to provide their node cache attested by k legitimate
nodes in a region of size rs centered on their location. The
new node can then make the union of these caches and keep
only legitimate nodes w.r.t. R3 centered on its location. The
resulting cache contains only genuine nodes and is thus valid
(a recurrence proof can be established).
Failures and disconnections: In the cases of unexpected
failure of a QL, ASL or AS, either RNDQ or the list of actors
cannot be computed and the protocol must be restarted (i.e.,
Q generates a new RNDQ). However, the probability of fail-
ures during the execution of the secure actor selection being
low in our context, such restarts do not lead to severe execu-
tion limitations as mentioned above. The case of “graceful”
disconnections is easier: We can safely force nodes involved
in the actor selection process to remain online until its com-
pletion, thus avoiding the restarts (see also Sect. 7.5). If a
node, selected as actor fails, the impact is mainly on the
result quality since part of the results is missing. To maintain
a good result quality, the sampling size could be increased in
accordance with an estimate of the failure ratio.

6.6 Security analysis

Protocol 6 can offer the exact same level of protection as in
the passive attack model (see Sect. 5.5) iff all the required
attestations are valid, i.e., there is at least one honest node
among the k selected legitimate nodes. Therefore,we study in
this section the variations on the k valuewith a large spectrum
of possible system configurations.

We have run simulations to understand the variation of k
with regards to the total number of nodes, N (104 or 107),
the maximum number of colluding nodes, C (up to N/10),
and the security parameter, α (10−6 or 10−9). We included

Fig. 14 k versus C (N and α vary)

the value of N/10 colluding nodes to understand its impact,
even if it is not realistic: It would lead to large disclosure
even with an optimal random actor selection protocol.

To obtain these results, we first computed for each C and
N the associated k-table. Then, for each configuration and for
each node, we computed theminimal value for k with respect
to the k-table and α, and we finally averaged the values. We
also plotted the value of k without the k-table (gray curve) to
highlight the benefit it brings.

Figure 14 sums up our findings and offers many insights.
First, the actors’ selection protocol is very scalable w.r.t. N :
The values for k are identical for small (104) and large net-
work (107 nodes), independently of α if we consider the
percentage of colluding nodes and not the absolute val-
ues. Indeed, scaling N and C in the same proportion leads
to reduce rs accordingly. Second, k increases slowly when
C < N/100: k remains smaller than 6 even with α = 10−9.
Third, α has a small influence on k: decreasing it by three
orders of magnitude increases k by only 1 unit. Lastly, the
k-table optimization is important: It allows reducing k by 1
unit up to 6 units (for 10% colluding nodes, not shown on
the graph).

6.7 Conclusion

Our most advanced protocol combines the protections of the
passive attack and tamper-proof protocols with collaborative
probabilistic proofs in order to obtain a scalable and trust-
worthy execution in the presence of corrupted nodes. Indeed,
by checking as little as k signatures, nodes are able to check
the validity of the list of actors and query parameters before
transferring any sensitive data, thus reaching the lower-bound
on leakage with near-certainty as with DISPERSH.

7 Experimental results

We first define the platform and used metrics in Sect. 7.1,
then describe in Sect. 7.2 the experimental parameters and
howsecurity parameters can be automatically configured.We

123

Highly distributed and privacy-preserving queries on personal data management systems 435

analyze the experimental results varying several parameters
in Sects. 7.3, 7.4 and 7.5 . Finally, we summarize these results
and discuss the setup costs in Sect. 7.6.

7.1 Evaluated protocols, platform andmetrics

Our goal is to evaluate the—quite complex—DISPERS system,
composed of a very large number of PDMS nodes executing
the proposed protocols over a Chord DHT [66]. Hence, our
experimental evaluation is focused on the efficiency4 and the
scalability of DISPERSH, DISPERSHR and DISPERSHRC consider-
ing, respectively, the tamper-proof, passive attack and active
attack threat models, and varying the parameters impacting
security and/or performance. We cannot quantitatively com-
pare our propositions to other strategies given the lack of
similar systems (see Sect. 8).

To evaluate DISPERS, we follow the same general approach
as in the related works [28,42,57,59,66–68,75], i.e., our
results are based on a simulator which creates a logical DHT
between simulated nodes. Indeed, simulators were used to
evaluate the performance of the state-of-the-art structured
DHTs (such as Chord [66] and CAN [57]) and systems that
leverage P2P DHTs, such as in the distributed information
retrieval area [28,59,67,68,75], to take a few examples closer
to our context. The main difficulty to experiment with a P2P
network is actually related to its potential very large scale.
Simulation thus makes possible the evaluation of systems
with millions of nodes and many varying parameters. While
a small-scale implementation could be interesting (to have,
e.g., some real measurements), it is out of reach since it is
not compatible with P2P techniques, would lead to abnormal
settings (e.g., few nodes storing a large number of concept
indexes, too lowsecurity thresholds, too fewactors) andprob-
abilistic guarantees would fail.

With respect to performance metrics, when evaluating
distributed protocols, two aspects should be considered:
(i) at the network level, the number of hops (i.e., the path
length) or the number of exchanged messages are preferred
to time metrics since both offer a more objective view of
performance for a large-scale distributed system wherein
nodes exhibit heterogeneous connection speed and band-
width used [28,57,66–68,75]. In some cases (e.g., when
significant amounts of data are transmitted between nodes),
the required bandwidth (or bytes per query) is also measured
by the simulators [59,75]; and (ii) at the node level, the node
CPUresourcesmust be considered both in termsof individual
and total resource consumption. For instance, the evaluation
of the well-known Tor protocol [21] accounts the asymmet-

4 The interest reader can refer to the DISPERS demonstration [39] and
the associated video (see https://tinyurl.com/dispers-hrc) formore qual-
itative aspects, and to [38] for a practical implementation in CozyCloud
[19].

ric crypto-operations which are, by far, the most expensive
operations. Our simulator follows the same approach as in
the above-mentioned related works by capturing two main
metrics: (i) at the network level, we consider the number
of exchanged messages as the most important metric (com-
pared to, e.g., the message time latency or the message size);
(ii) at the node level, to measure the impact of security on
the PDMS CPU resources, the simulator counts the asym-
metric crypto-operations. Hence, we do not consider in the
CPU cost the other operations performed by the nodes (e.g.,
extraction of the TIPs lists by CIs, target list computation by
PSs/TFs, local query executionbyTs, or aggregates computa-
tion by DAs/MDA), which are generic computations having
a very small impact on performance—much cheaper and less
frequent operations in our protocols compared to the asym-
metric crypto-operations. For each metric, we compute the
ideal latency, considering that everything that can be done in
parallel is actually done in parallel (e.g.,messages exchanged
in the network). To ease the analysis,we consider that PDMSs
cannot process crypto-operations in parallel (which is the
case in single core devices). We also compute the total work
which gives an idea of the global system load incurred by a
query. Finally, our simulator outputs the load per node dur-
ing a query, allowing to check if the load is well balanced
or not on the network. Overall, these metrics are more per-
tinent than absolute time values that are highly dependent
on the context (underlying network topology, PDMS node
heterogeneity, node bandwidth, network congestion, etc.).

7.2 Parameters and configuration tool

TheDISPERS parameters are detailed inTable 5 and are divided
into four classes discussed below.
System setup (N ,C).Weconsidermedium to very large P2P
networks, up to 10 million nodes. Note that C represents the
maximum number of colluding nodes controlled by a single
attacker—i.e., the total number of corrupted nodes can be
much larger than C . Typically, having 104 colluding nodes

Table 5 DISPERS Parameters

123

https://tinyurl.com/dispers-hrc

436 L. Bouganim et al.

controlled by an attacker is already ahighly corrupted system.
The maximum value, C = N/10, is equivalent to state-size
attack and only included to highlight the behavior of DISPERS
in extreme conditions.
Query definition (Co, |T |).Given our performance metrics,
we can abstract queries using only two parameters which
may impact the system security and performance. First, the
number of conceptsCo of the query Target Profile tp impacts
the number of CIs that need to be contacted, i.e., one for
each secret share of each concept. Our Co parameter covers
thus a wide spectrum of queries, from very basic ones (1
concept, e.g., profession|researcher) to very complex
(with up to 10 concepts with logical connectors). Second, the
number of sampled targets T has a strong impact on query
cost. We consider queries selecting from 500 to 2000 targets
allowing for statistically significant results. Before the query
execution, our simulator selects randomly the querier node,
the CI nodes and the Target nodes since their location does
not impact the protocols. The other query actors are also
selected randomly as mentioned in each protocol.
System security/thresholds (α, β, δ, #AP , #B P , SD, k).
Fixing the system security parameters is a complex task since
it depends on the security analysis. We thus implemented a
configuration tool based on the equations of Sects. 4.5, 5.5
and 6.6 , to derive their values based on three security thresh-
olds. Therefore, the system security configuration becomes
basic and only requires users to indicate the maximum col-
lusion attack level (C) and the desired thresholds (α, β, δ, or
predefined settings) to guarantee the expected security.

1. α was introduced in Sect. 6.2 and is used to derive k and
SD, i.e., an attacker should “never” be able to (i) find k
colluding nodes in a DHT region and (ii) control nodes
storing the same concept such that he obtains t shares
(on a total of SD shares). We fixed t = SD − 3 in our
simulation, such that the system can still be used even if 3
CIs are not available (failure or disconnection). The value
of 3 offers a good trade-off between robustness and cost,
especially for PDMS with good connectivity.

2. β is introduced as a security threshold for full associa-
tion disclosure (see Sect. 5.5). It represents the maximum
probability of disclosing one ormore full associations and
is thus used to derive #AP .

3. δ is related to the computation of #B P . As we have seen
in Sect. 5.5, leaking some TIPs is unavoidable when TF
nodes are leaking or corrupted. In average, TF nodes leak
|T | × C/N . Figure 9 shows that adding two BPs reduces
by a factor of 3 the expected TIP leakage. Further addition
ofBPs reducemarginally this leakage. The number ofBPs
is computed such that the TIP leakage expectation is less
than |T | × C/N × (1 + δ). For instance, if δ = 1%, we
tolerate 1% more leakage.

Fig. 15 Config. output: k and SD

Figures 15 and 16 present the output of the configuration
tool, i.e., the values of k, SD, #AP and #B P for increasing
values of C with a network of 106 nodes and two settings:
reasonable—α = 10−6, β = 10−4 and δ = 10−1—and
paranoid—α = 10−9,β = 10−6 and δ = 10−2.Wenote that
(i) the paranoid setting increases all values by a maximum of
2 units with 104 colluding nodes, showing a good scalability
(w.r.t. the exigence of the setting); (ii) the values for #AP ,
#B P , SD and k are reasonable up to 104 colluding nodes
(1% of the network); (iii) k curves have no steps. This is
because k is averaged using the k-tables (see Sect. 6.5). We
use the paranoid setting in the following measurements.
System tuning (AW , AP S , AT F , AD A, |Cache j |).The num-
ber of actors (AX)must be carefully tuned since it impacts the
parallelism degree during the execution. Studying its varia-
tion is the topic of Sect. 7.4, while the size of the cache also
has a great impact which is studied in Sect. 7.5.

7.3 Varying the number of colluding nodes

Figures 17, 18, 19, and 20 present the latency and total work
for both metrics. We note that: (i) all steps are due to the
corresponding ones in the configuration tool output (#AP ,

Fig. 16 Config. output: #AP , #B P

123

Highly distributed and privacy-preserving queries on personal data management systems 437

#B P , SD, k); (ii) the communication latency (Fig. 17) is
almost the same for DISPERSH and DISPERSHR because DHT
lookups (finding AS and CIs) are done in parallel, while it is
much higher for DISPERSHRC. Indeed, with DISPERSHRC, finding
the CIs can only be done once the actors are selected, thus
in sequence. In addition, DISPERSHRC includes more steps to
compute collaboratively the randoms and the list of actors.
(iii) For the crypto-latency (Fig. 18), there is a gap between

Fig. 17 Communication latency vs C

Fig. 18 Crypto-latency versus C

Fig. 19 Communication total work versus C

DISPERSH and DISPERSHR, mainly due to the CIs which store
shares. There is also a smaller gap between DISPERSHR and
DISPERSHRC, increasing with the number of colluding nodes.
This gap is the consequence of the different checks (2 × k
operations) that depend on k, which in turn depends on C .
(iv) The total work graphs (Figs. 19 and 20) show bigger
steps which are correlated to the increased number of prox-
ies. Indeed, each time we add one BP or AP, the number of
crypto-operations and exchanged message are increased by
1 for each sampled target, thus largely impacting the total
work. Some optimization could be provided here (e.g., using
a single proxy for many targets), but they may allow the
attacker to distinguish proxies from targets, thus reducing
their usefulness. We will address this issue in future works.

Figure 21 presents the impact of each security technique
(and thus each requirement) on the cryptographic total work
for DISPERSH, DISPERSHR and DISPERSHRC, with an increasing
number of colluding nodes (102, 103, 104). As expected, we
observe that the proxies overhead is important, each incurring
|T | asymmetric encryptions/decryptions. Also, the overhead
of BPs is smaller than the one of APs. Indeed, 2 to 3 BPs are
required to hide the Targets’ TIPs (w.r.t. β) while the number
of APs varies from 3 to 7 to hide the full associations (w.r.t.

Fig. 20 Crypto-total work versus C

Fig. 21 Crypto-cost distribution

123

438 L. Bouganim et al.

Fig. 22 Cumulative costs/actor

δ). Requirement 2 induces reasonable overhead related to
the increased number of CIs in the execution plan (due to the
shares) and the number of secured channels between CIs and
PSs/TFs. (Each CI must communicate with all PSs and TFs.)
Finally, the impact of Requirement 3’ is important but largely
reduced thanks to the probabilistic nature of the proofs and
the localized decisions. For instance, with 104 colluding
nodes, using non-probabilistic proofs would have incurred
more than 20M cryptographic operations (2×|T |× (C +1),
just for the targets!), compared to around 13K with proba-
bilistic proofs. Note that the total cost for DISPERSH is almost
exclusively related to proxies: There are few secured chan-
nels (between Q, AS, CIs and Ws) and, without proxies, the
communications between the Ws and Ts are symmetrically
encrypted.

Figure 21must be correlated with Fig. 22which shows the
distribution of the total cost (comm. and crypto.) on the differ-
ent operators forC = 10K . The histogram shows cumulative
costs per operator type (the number of instance of each oper-
ator type is indicated below the X-axis). Clearly, the majority
of the cryptographic costs (in red) is concentrated “around”
the Targets: T performs 2 × k checks and the onion rout-
ing to the DA, while the TF, BP and AP do onion routing
betweenTFs andTs. However, this work is evenly distributed
on the proxies (4000 BPs and 7000 APs with 1000 Ts) and
on several TFs (32), guaranteeing a proper distribution of the
cryptographic load on the PDMSs. We can obtain a similar
conclusion with the communication costs (in blue) with two
notable differences: each T only sends 1 message (its local
result) to the first AP, and TFs only send one message to the
first BP for each target.

7.4 Varying the number of actors

Figures 23, 24 and 25 present, respectively, the cryptographic
latency, the communication total work and the cryptographic
total work for DISPERSH, DISPERSHR and DISPERSHRC. The com-
munication latency is not shown since the number of actors

Fig. 23 Crypto-latency versus A

Fig. 24 Communication total work versus A

Fig. 25 Crypto-total work versus A

does not impact the ideal latency (communications are done
in parallel). Figure 26 shows the detail of the cryptographic
cost per operator for the DISPERSHRC protocol to better under-
stand its behavior.Note that Fig. 26 does not showcumulative
costs as Fig. 22. The figure for DISPERSHR (not shown) is sim-
ilar with less actors (no QL, no ASL) and smaller cost for CI
and T (no verification).

123

Highly distributed and privacy-preserving queries on personal data management systems 439

Fig. 26 Crypto-cost/actor versus A

We can see in Fig. 23 that the cryptographic latency
reaches a minimum around 32 actors (i.e., 32Ws, 32 PSs, 32
TFs and 32 DAs) independently of the protocol.

Let us focus first on DISPERSH: increasing the number of
workers increases the load of Q, as it has to establish the
secure channels with all Ws, but decreases the load of each
W, as they communicate with less Targets. The global impact
on latency is, however, reduced since DISPERSH uses basic
proxies (a single encryption per Target). The impact on the
total work (communication or cryptographic costs) is also
reduced since most of the cost is concentrated on the BP, T
and AP, since they are multiplied by |T |.

For DISPERSHR and DISPERSHRC, Fig. 26 shows that increas-
ing the number of PSs, TFs and DAs increases the cost of
Q (secure channels), of the CIs (each CI communicates with
all PSs and TFs) and of the FDA (which communicates with
all DAs), but decreases the cost of the TFs (which contacts
less Targets, thus making much less encryption for the onion
routing) and DAs (which receive less results and thus create
less secure channels). With very few actors, the TFs become
the bottleneck as they must contact many Targets. With a
large number of actors, the CIs are the bottleneck as they
send their lists of TIPs to all the PSs and TFs.

Interestingly, the total cost of DISPERSHR and DISPERSHRC

(Figs. 24 and 25) shows notable increase when there are
more than 32 actors, due to the communications between
the CIs, PSs and TFs. For instance, with 512 PSs and TFs,
we have around 36K secure channels between CIs, PSs and
TFs explaining the large gap between DISPERSHR and DISPERSH

with many actors. For the total communication cost, the gap
between DISPERSHRC and DISPERSHR increases with the num-
ber of actors. This is due to the collaborative selection of
actors which is expensive with a large number of actors and
is realized by k ASLs in parallel, versus a single AS for DIS-
PERSHR. Figure 26 also shows that with 32 actors, each actor
performs less than 180 asymmetric crypto-operations, which
is a reasonable and well distributed load.

7.5 Varying other parameters

Having a simulator allowed us to vary independently each
parameter of Table 3 and to observe its impact on themetrics.
The most interesting results were presented above, but we
summarize below the impact of the other parameters.
Varying the size of the network (N) has a marginal impact
on performance thanks to the DHT and to the small num-
ber of lookups made during a query (mainly to find the CIs).
Increasing N andC in the same proportion basically changes
nothing, while when we increase N while keeping C con-
stant, the system becomes more efficient because the values
of k, #B P and #AP decrease as these values depend on the
ratio of spied/leaking nodes, i.e., c = C

N .
Varying the node cache size (Cache j): The cache is part
of the local knowledge of a node. Obviously, maintaining
this information up-to-date has a cost which must be mini-
mized while avoiding the risk of triggering a relocation of
the actor selection process (see Sect. 6.5). Previous simu-
lation results presented in [40] have shown that choosing a
cache size smaller or even equal to the required number of
actors (A) triggers many query relocations (e.g., almost one
relocation, in average when Cache j = A, and almost 14
relocations when it is 3/4 of it!). Nevertheless, our measure-
ments showed that having Cache j > 2 × A reduces the
relocation ratio to almost 0, making its impact insignificant.
Varying the failure ratio: The detailed measurements are
presented in [40]. The goal was to evaluate the impact of
the cache size in the presence of node disconnections and,
more generally, the impact of disconnections. To observe it,
we simulated disconnections andmeasured the global impact
onmaintenance costswhen nodes disconnect (and reconnect)
every x hours. Our results showed that (i) considering very
large caches (e.g., 104) is too costly and consumes a large
portion of the computing power of the entire system just to
maintain it up to date; (ii) we can safely set the node cache
size around 2 × A. It almost never triggers relocations and
leads to a reasonable maintenance cost (less than 1 crypto-
operation/node/minute for x = 24 hours, see [40]).

7.6 Conclusion of experimental results

The main conclusions of the experimental results are:

– The increasing complexity of the protocols (DISPERSH,
DISPERSHR, DISPERSHRC) is reflected by their increasing
costs as shown in Fig. 21. However, this increase is quite
reasonable given the different optimizations described in
Sects. 5.4 and 6.5 .

– A simple configuration tool allows fixing #AP , #B P ,
SD and k based on the equations provided in the security
analysis sections and on meaningful security thresholds
α, β, δ. The outputs of the configuration tool show a

123

440 L. Bouganim et al.

good “scalability” w.r.t. the requirements of the setting,
i.e., the thresholds. The values for #AP , #B P , SD and k
are reasonably small for a highly corrupted network (e.g.,
104 colluding nodes for 106 total nodes).

– DISPERS scales well w.r.t. C (the number of colluding
nodes), and has good performance (good latency andwell
distributed total work). Additionally, as a consequence of
the previous remark, the impact of the increase ofC stays
reasonable even with 104 colluding nodes.

– The tuning of the number of PSs, TFs and DAs is rela-
tively easy to do. We perform several experiments to find
the minimal latency that we observe in Fig. 23 and found
experimentally that the corresponding value is propor-
tional to the square root of the number of Targets.

– Increasing in the same proportion N andC has amarginal
impact,while increasing N keepingC constantmakes the
systemmore efficient (since c is reduced, #AP , #B P and
k also are).

– The node cache size should be around twice the number
of actors (A) to avoid query relocation. In addition, such a
tuned size for the cache leads to reasonable maintenance
costs in case of node failure.

Setup costs for a real deployment of DISPERS.One impor-
tant advantage of DISPERS is that it is built on top of a DHT
without requiring any adaptation. Hence, it can be deployed
as an app on top of any existing structured DHT (e.g., Chord
[66], CAN [57] or Kademlia [42]). Also, DHTs are proven
technology (offering many benefits such as full decentral-
ization, scalability, fault tolerance, load balancing—see also
“Appendix B”) and have been quite successful even in prac-
tice for specific use cases (e.g., file-sharing applications like
BitTorrent, Gnutella or GNUnet). All this plays in favor of
DISPERS requiring low and predictable overhead in terms of
implementation and setup cost.

On the other hand, DISPERS requires interfacing with the
PDMS devices mainly at two levels: for getting the user pro-
file and for getting the local results for systemqueries. In turn,
this calls for the standardization of the PDMS interface, e.g.,
similar to a relational SQL database. It also requires interac-
tionswith thePDMSowner [14] that has to set the appropriate
sharing rules and exposed user profile.We argue that all these
issues, essential for a deployment, are not specific or more
complex for DISPERS than for a centralized system, e.g., like
Prio [18] or SMCQL [9] which need to collect users data
either offline [9] or at query time [18].

Finally, once the data sharing policies are defined, the
users themselves do not need to be online (i.e., live interac-
tion) unless they want to query the system. Since the PDMS
device plays the role of a personal server (e.g., under the form
of a plug computer), it should be mostly connected allowing
its owner to run personal or distributed data-oriented apps
at all times. Hence, its connectivity should not be an issue.

Obviously, in the context of DISPERS, the more PDMSs are
connected and the more stable is their connection, the better
it is for finding pertinent data for the distributed queries.

8 Related works

This section describes the related works at different levels:
the DHT, the distributed indexes, the security tools, the active
attack countermeasures, and finally the overall approach.
DHT security. Several works focus on DHT security [74]
considering the following attacks: (i) Sybil attack: An
attacker generates numerous false (and malicious) DHT
nodes to disturb the protocols. Sybil attacks can be addressed
using node certification thanks to a PKI [15]. (ii) Eclipse
attack: an attacker attempts to control most of the neighbors
of honest nodes to isolate them.The best countermeasure [74]
is to constrain the DHT node identifiers. Again, using a cen-
tral authority to provide verifiable identifiers is the simplest
yet most effective way of achieving this goal [66]. (iii) Rout-
ing and storage attacks: a malicious node in the path of a
lookup request can disrupt the DHT routing, claiming to be
the recipient, answering fake data or erroneously forward-
ing the request, thus denying the existence of a valid key.
The mechanisms employed to negate these attacks are based
on redundancy at the storage and routing levels [74]. DIS-
PERS leverages the idea of imposed node location based on a
trustworthy PKI certificate like in the aforementioned works.
Routing and storage attacks are not directly addressed but the
verifications added to the active attack protocol use collabo-
rative probabilistic proofs to ensure a correct execution.
Distributed indexes. Several works consider indexing doc-
uments, profiles or even databases on top of a DHT using a
distributed version of inverted indexes [67] as for our concept
index. Enhancements were proposed to reduce the number of
lookup operations [31], to minimize the index size [64] or to
index compact database summary [28]. These proposals do
not consider security issues and are closely related with the
type of indexation (e.g., for keyword searches), needing fur-
ther work for security and profile indexing.
Security tools. DISPERS relies on classical security tools (see
“AppendixA”), sometimes slightly adjusted to achieve better
system efficiency or to better distribute the system load (e.g.,
adapted onion routing). Also, message anonymization has
been extensively used in secure distributed data aggregation
protocols (e.g., [53,54]). However, many works consider a
trusted third party, i.e., the anonymizer. To relieve our system
from this (strong) assumption, we employ message forward-
ing through proxy node chains whenever anonymization is
required, which is similar to onion routing in distributed sys-
tems [58]. Finally, SSSS is frequently used in distributed
systems to protect data-at-rest [12,27]. It provides a fully
secure solution to our distributed profile indexing problem

123

Highly distributed and privacy-preserving queries on personal data management systems 441

with a better trade-off between efficiency and redundancy
than alternative secrete sharing schemes [56].
Active attack countermeasures. In the active attack model,
corrupted nodes exhibit the so-called Byzantine behavior
[36]. Several distributed protocols leverage the Byzantine
fault-tolerant consensus protocols such as distributed file sys-
tems [16] or permissioned blockchain systems [41]. Such
protocols ensure a correct execution if at least 2/3 of the
participants are honest.However, they also involve a high net-
work overhead since they require communication between all
nodes (i.e., O(N 2) number of messages), which makes them
unsuitable to large-scale distributed systems. In DISPERS, we
employ a different approach based on a CSAR-like protocol
[8], i.e., collaborative proof, in which a single honest node is
sufficient to guarantee the correctness of a proof. However,
directly applied to our fully distributed setting, the collabora-
tive proof is not scalable with the number of colluding nodes
leading to very large cryptographic and communication over-
head. Hence, we propose a probabilistic approach reducing
drastically the protocol cost which can then be applied even
with a huge number of colluding nodes.
Secure distributed data aggregation. Secure data aggre-
gation in distributed environments has been a hot research
topic for many years, leading to the following approaches.
(i) Secure MPC protocols based on homomorphic encryp-
tion [12,54], secret sharing [27] or randomization [10]. Such
solutions offer strong (formal) security guarantees but gen-
erally do not scale to large number of nodes, lack genericity
w.r.t. the computation function [61] and cannot handle node
targeting. (ii) Local differential privacy (LDP) has gain sig-
nificantmomentum in recent years due to itsmajor advantage
compared with classical DP, i.e., it does not require a trusted
third party. Existingworks address problems such asmachine
learning [77], marginal statistics [76] or basic statistics based
on range queries [17]. However, LDP accentuates the ten-
sion between utility and privacy protection since it generally
requires more noise to achieve the same level of protection
as with classical DP [3]. Hence, this can either affect util-
ity or require a very large number of participants to reduce
the impact of noise (which is the opposite of our node tar-
geting approach). (iii) To overcome some of the limitations
of MPC or DP, several works propose using secure hard-
ware at the user-side to address, e.g., SQL aggregation [69],
spatiotemporal aggregation [53], or privacy-preserving data
publishing [2]. This approach is generic w.r.t. the computa-
tion function but the existing solutions do not address the
node selection problem and generally consider a tamper-
proof attack model or a very small number of corrupted
nodes. Compared with the above-mentioned classes of solu-
tions, DISPERS targets (very) large-scale (e.g., nationwide or
beyond) and fully distributed systems by leveraging the state-
of-the-art DHT communication overlay. The system security
is built on two complementary principles: guaranteed random

actor selection (to reduce the probability of a leakage) and
task compartmentalization (to reduce the impact of a leak-
age). These principles open the way for distributed query
processing with minimized leakage and reasonable and scal-
able security overhead.

9 Limitations and other challenges

This section discusses the limitations of this work in more
details.
Computation integrity. DISPERS does not consider the issues
related to the correctness of the contributed data or, in
the active attack threat model, of the computation process.
Indeed, in the tamper-proof and passive attack threat models,
PDMSs follow the protocols and cannot alter the compu-
tations input/output: They have the means to attest that a
given computation was correctly performed [33,34]. With
fully corrupted PDMSs, this problem requires a complemen-
tary in-depth study. While existing solutions, such as Prio
[18], could be used to verify that nodes’ contributions are
within some predefined interval, it will not warrant correct
results. Indeed, the computation is fully distributed and data
processors may also be corrupted. Note that, in our context,
not all aspects of the execution can be modified. The leeway
an attacker has is limited to the addition of bogus results or
to the inclusion of more nodes in the query execution. This
study, mainly due to its sheer size, falls outside of the scope
of this paper.
Data aggregation and secureMPC.As argued in Section 1,
the PDMS context naturally leads to a fully distributed archi-
tecture since the data is hold at the user side, stored inPDMSs.
This is different from the centralized or federated architec-
tures typically used in MPC in which a handful of powerful
servers hold large collections of user data (e.g., SMCQL
[9], Conclave [73] and Obscure [27]) or collect user data at
query time (e.g., Prio [18]) and then apply costly (although
optimized) aggregation algorithms based on garbled circuits
(e.g., [9]) or secret sharing (e.g., [27]). In DISPERS, data
aggregation is performed by randomly selected nodes which
cannot reasonably apply the evoked MPC approaches given
the limited resources of user devices. Furthermore, the archi-
tectural difference also implies a different threatmodel.MPC
solutions typically consider an honest-but-curious attacker
(e.g., SMCQL or Conclave) or an honest querier (e.g.,
Obscure). In DISPERS both the data aggregators and the querier
can be corrupted and, even worse, colluding. However, for
classical aggregate functions, more secure distributed aggre-
gation protocols, adapted to the DISPERS architecture can be
envisioned. This is the focus of our future work extending
DISPERS (preliminary results in [45]).
Improving the DHT overlay network latency. In practice,
in heterogeneous P2P systems, the latency of a message

123

442 L. Bouganim et al.

exchange between two nodes of a DHT can greatly vary.
Moreover, the number of physical routing hops between
two nodes can also impact the network latency. Some DHT
overlays (such as CAN [57]) propose to optimize DHT com-
munication latency by bringing the DHT logical overlay
“closer” to the physical network. Such optimization is inap-
plicable in our system for security reasons:The node location
in our DHT is imposed and cannot be influenced. However,
even if these improvements are out of reach for security and
node heterogeneity reasons, in practice, reducing the num-
ber of messages remains the main factor for the system’s
scalability.
Inference attacks on the final result. In DISPERS, we follow
the typical approach of the works in secure data aggregation
area (see, e.g., Prio [18] or [12]), which focus on protecting
the aggregation process itself, except for what attackers can
infer from the statistical results computed by the system and
any additional knowledge they may have. Such inference
attacks are indeed possible [71], but defending against them
is outside the scope of this paper. We note though that some
basic defensemechanismsof DISPERS (e.g., requiring having a
minimum number of targets for a query, random sampling of
the targets when their number is higher than the set threshold,
the query budget) can help mitigating attacks on the query
results, but need to be complemented to enforce the system
security in this regard.

10 Conclusion

Personal data management systems arrive at a rapid pace
allowing users to share their personal data within large P2P
communities. While the benefits are unquestionable, the
important risks of personal data leakage andmisuse represent
a major obstacle on the way of the massive adoption of such
systems. This paper is one of the first efforts to deal with this
challenging issue. To this end, we proposed DISPERS, a fully
distributed P2P system laying the foundation for secure, effi-
cient and scalable execution of distributed computations. By
considering a palette of realistic threat models, we analyzed
the fundamental security and efficiency requirements of such
a distributed system leading to three security requirements
that must be fulfilled to minimize the private data disclosure:
(i) hidden communications, (ii) random dispersion of data
and (iii) collaborative proofs.

Although some leakage is unavoidable with passive or
active attacks, we showed that our approach makes it pos-
sible: (i) to have an integrated solution covering both node
targeting and data aggregation, thus going beyond basic data
aggregation by considering the important problem of the per-
tinence of the contributor nodes to a query (having potentially
a major impact on both the quality of the result and the query
cost); (ii) to consider the full range of attacks, i.e., from only

communication spying to fully corrupted nodes; (iii) to have
an efficient and scalable system with an adjustable trade-off
between the security level and its cost.

This work opens the way for several interesting research
problems. In particular, we focus currently on investigating
a richer data and query model that can be applied to dis-
tributed machine learning algorithms, and complementary
strategies to improve the data protection especially during the
aggregation phase.Also, understanding the duality that exists
between the computation integrity and the data confidential-
ity in the presence of malicious nodes is another important
and challenging problem that we plan on studying.

Acknowledgements This research was partially supported by the ANR
PersoCloud grant ANR-16-CE39-0014 and by the PEPR iPoP.

A Background on cryptography

Symmetric encryption is computationally efficient but
requires a symmetric encryption key ksym known beforehand
by both parties. On the contrary, asymmetric encryption
is a demanding operation that relies on a pair of keys:
the private key, kpriv, and its matching public key, kpub.
To avoid man-in-the-middle attacks, kpub must be certified.
Hybrid encryption uses asymmetric encryption to securely
exchange a symmetric encryption key and combines the
advantages of both encryption schemes. To ensure forward
secrecy [43], a new symmetric key is used for each commu-
nication session. The widely used TLS protocol is based on
hybrid encryption and provides also integrity, and authentic-
ity of the communicating parties.

A cryptographic hash function [43], referred ashash(),
is a one-way function that maps a data of arbitrary size to a
fixed size bit string (e.g., 256 bits), is resistant to collision
and provides a uniform distribution of its outputs.

A digital signature [43] can be used to prove that a data
d was produced by an entity E (authentication) and has not
been altered (integrity). A signature contains the encryption
of hash(d) using kpriv E and the certificate of kpub E , certE .
Anyone can check a signature by checking the certificate,
decrypting the encrypted hash, and finally comparing the
result with hash(d) (recomputed by the verifier).

Shamir’s Secret Sharing Scheme (SSSS) [63] consists
in dividing some data d into n shares d1, . . . , dn in such away
that: (i) knowledge of any t (t ≤ n) or more shares makes d
easily computable; but (ii) knowledge of any t − 1 or fewer
shares leavesd protected (not evenproviding any information
about it). t is called the threshold value (see Sect. 8) and is set
to resist to n − t shareholders failures. The low, polynomial
complexity of SSSS (i.e., Lagrange interpolation) for both
secret decomposition and reconstruction, makes it an ideal
solution for a fully distributed system like DISPERS in which

123

Highly distributed and privacy-preserving queries on personal data management systems 443

any PDMS node has to securely store its profile in the DHT
or can be selected as actor node (Profile Sampler or Target
Finder) to recompose a secret. Note that DISPERS employs the
basic SSSS and does not require more advanced (and much
costlier) operations such as string-matching on secret-shares
or order-preserving secret-sharing, e.g., as used in [27].

Anonymous communications can be obtained by using
onion routing technique [58]. The sender selects all the
routers and asymmetrically encrypts themessage “in layers,”
as an onion. Each router decrypts one layer and discovers
dynamically the next router up to the destination.

A Merkle Hash Tree (MHT) [44] is a tree data structure
for which leaf labels are hashes of data blocks d1, . . . , dn ,
and the remaining tree nodes are labeled with the hash of
their children’s labels. The root of the tree is digitally signed
allowing to check the integrity of any of the data blocks, com-
puting the intermediary hashes, starting from the leaf, going
up to the root and verifying that the computed root matches
the signed one. MHTs are particularly useful to check the
integrity of a given block di without disclosing the others
data blocks, but only the intermediate hashes in the MHT.

A verifiable random number generation protocol is a
protocol which allows n nodes to produce a random value R,
while guaranteeing that none of the n nodes can choose or
influence the value of R. This is made possible if, at least,
one of the n nodes is honest. A version of this protocol is
described in details in our previous work [40] and is adapted
from [8] which includes a formal proof. It roughly unfolds
as following: (i) each node selects a random value ri and
commits on it by sending hash(ri) to a coordinator; (ii) the
list of hash values, L , is disclosed by the coordinator to the
n nodes; (iii) each node then checks that hash(ri) ∈ L and,
if so, sends ri and a signature of L back to the coordinator.
R is finally obtained by computing a XOR of the n individual
random values. An attacker controlling n − 1 nodes cannot
influence R since these nodes cannot change their ri , com-
mitted with hash(ri). Thus, the random value of a single
honest node is enough to obtain a truly random final value.

B Background on distributed hash tables

A Distributed Hash Table (DHT) in a P2P network [51]
offers an optimized solution to the problem of locating the
node storing a specific data item. The DHT offers a basic
interface allowing nodes to store data, i.e.,
store(key,value), or to search for certain data, i.e.,
lookup(key) → value. DHT proposals share the con-
cepts of keyspace or DHT virtual space (e.g., a 256 bits string
obtained by hashing the key or the node ID with the SHA256
algorithm), space partitioning (mapping space partitions to
nodes, using generally a distance function), and overlay net-
work (routing tables and strategies allowing reaching a node,

given its ID). For instance, the virtual space is represented as
a multi-dimensional space in CAN [57], as a ring in Chord
[66] or as a binary tree in Kademlia [42] and is uniformly
divided among the nodes in the network. Thus, each node
is responsible for the storage of all the (key, value) pairs
where the key falls in the subspace it manages. The store
and lookup operations are fully distributed: DHTs do not
require any central coordination. They are scalable, fault tol-
erant and provide a uniform distribution of the data.

References

1. Allard, T., Anciaux, N., Bouganim, L., Guo, Y., et al.: Secure Per-
sonal Data Servers: a Vision Paper. PVLDB, 3(1-2), (2010)

2. Allard, T., Nguyen, B., Pucheral, P.: METAP: revisiting Privacy-
Preserving Data Publishing using secure devices. Distributed and
Parallel Databases, 32(2), (2014)

3. Alvim,M. S., Chatzikokolakis,K., Palamidessi, C., Pazii, A.: Local
Differential Privacy on Metric Spaces: Optimizing the Trade-Off
with Utility. In IEEE CSF, (2018)

4. Anciaux, N., Bonnet, P., Bouganim, L., Nguyen, B., et al.: Per-
sonal Data Management Systems: The security and functionality
standpoint. Information Systems, 80, (2018)

5. Anciaux, N., Bouganim, L., Pucheral, P., Guo, Y., et al.: MILo-DB:
a personal, secure and portable database machine. Distributed and
Parallel Databases, 32(1), (2014)

6. Anciaux, N., Bouganim, L., Pucheral, P., Popa, I. S., et al.: Personal
Database Security andTrustedExecutionEnvironments:ATutorial
at the Crossroads. PVLDB, 12(12), (2019)

7. Aumann, Y., Lindell, Y.: Security against covert adversaries: Effi-
cient protocols for realistic adversaries. J. Cryptol., 23(2), (2010)

8. Backes, M., Druschel, P., Haeberlen, A., Unruh, D.: CSAR: A
Practical and Provable Technique to Make Randomized Systems
Accountable. In NDSS, (2009)

9. Bater, J., Elliott, G., Eggen, C., Goel, S., et al.: SMCQL: Secure
Query Processing for Private Data Networks. PVLDB, 10(6),
(2017)

10. Bellet, A., Guerraoui, R., Taziki, M., Tommasi, M.: Personalized
and Private Peer-to-Peer Machine Learning. In AISTATS, (2018)

11. Blond, S. L., Manils, P., Abdelberi, C., Kâafar, M. A., et al.: One
bad apple spoils the bunch: Exploiting P2P applications to trace
and profile tor users. In USENIX LEET, (2011)

12. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., et al.: Practi-
cal Secure Aggregation for Privacy-Preserving Machine Learning.
In ACM CCS, (2017)

13. Carpentier, R., Popa, I. S., Anciaux, N.: Reducing data leakage on
personal data management systems. In IEEE EuroS&P, (2021)

14. Carpentier, R., Thiant, F., Sandu Popa, I., Anciaux, N., et al.: An
Extensive and Secure Personal Data Management System using
SGX. In EDBT, (2022)

15. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., et al.: Secure
routing for structured peer-to-peer overlay networks.ACM SIGOPS
Operating Systems Review, 36(SI), (2002)

16. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance. In
OSDI, (1999)

17. Cormode, G., Kulkarni, T., Srivastava, D.: Answering Range
Queries Under Local Differential Privacy. PVLDB, 12(10), (2019)

18. Corrigan-Gibbs, H., Boneh, D.: Prio: Private, robust, and scalable
computation of aggregate statistics. In NSDI, (2017)

19. Cozy Cloud. A smart personal cloud to gather all your data. (see
https://cozy.io/en), (2021)

123

https://cozy.io/en

444 L. Bouganim et al.

20. De Montjoye, Y.-A., Shmueli, E., Wang, S. S., Pentland, A. S.:
OpenPDS: Protecting the privacy ofmetadata through safeanswers.
PloS one, 9(7), (2014)

21. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-
generation onion router. In USENIX SSYM, (2004)

22. Douceur, J.: The Sybil attack. In Int, Workshop on Peer-to-Peer
Systems (2002)

23. European Commission. Proposal for a regulation on european
data governance (data governance act), com/2020/767. [eur-lex],
25 (October 2020). https://eur-lex.europa.eu/legal-content/EN/
TXT/?uri=CELEX:52020PC0767

24. European Parliament. General Data Protection Regulation. (see
https://gdpr-info.eu/), (2018)

25. Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., et al.: Android
security: A survey of issues, malware penetration, and defenses.
IEEE Communications Surveys Tutorials, 17(2), (2015)

26. Gulati, M., Smith, M. J., Yu, S.-Y.: Security enclave processor for
a system on a chip, (2014). US Patent 8,832,465

27. Gupta, P., Li, Y., Mehrotra, S., Panwar, N., et al.: Obscure:
Information-Theoretic Oblivious and Verifiable Aggregation
Queries. volume 12, (2019)

28. Hayek, R., Raschia, G., Valduriez, P., Mouaddib, N.: Summary
management in P2P systems. In EDBT, (2008)

29. Heiser, G., Elphinstone, K.: L4 Microkernels: The Lessons from
20 Years of Research and Deployment. ACM Trans. Comput. Syst.,
34(1), (2016)

30. Hoeffding, W.: Probability Inequalities for Sums of Bounded Ran-
dom Variables. Journal of the American Statistical Association,
58(301), (1963)

31. Joung, Y., Yang, L., Fang, C.: Keyword search in DHT-based
peer-to-peer networks. IEEE Journal on Selected Areas in Com-
munications, 25(1), (2007)

32. Kermarrec, A., Taïani, F.: Want to scale in centralized systems?
Think P2P. J. Internet Services and Applications, 6(1), (2015)

33. Ladjel, R., Anciaux, N., Pucheral, P., Scerri, G.: AManifest-Based
Framework for Organizing the Management of Personal Data at
the Edge of the Network. In ISD, (2019)

34. Ladjel, R., Anciaux, N., Pucheral, P., Scerri, G.: Trustworthy Dis-
tributed Computations on Personal Data Using Trusted Execution
Environments. In TrustCom, (2019)

35. Lallali, S., Anciaux, N., Popa, I. S., Pucheral, P.: Supporting secure
keyword search in the personal cloud. Information Systems, 72,
(2017)

36. Lamport, L., Shostak, R., Pease,M.: The Byzantine Generals Prob-
lem. ACM Trans. Program. Lang. Syst., 4(3), (1982)

37. Lee, S., Wong, E. L., Goel, D., Dahlin, M., et al.: πbox: A platform
for privacy-preserving apps. In NSDI, (2013)

38. Loudet, J.: Distributed and Privacy-Preserving Personal Queries
on Personal Clouds. PhD thesis, Versailles University, (2019)

39. Loudet, J., Popa, I. S., Bouganim, L.: DISPERS: Securing Highly
Distributed Queries on Personal Data Management Systems.
PVLDB, 12(12), (2019)

40. Loudet, J., Popa, I. S., Bouganim, L.: SEP2P: Secure and Efficient
P2P Personal Data Processing. In EDBT, (2019)

41. Maiyya, S., Zakhary, V., Amiri, M. J., Agrawal, D., et al.: Database
and Distributed Computing Foundations of Blockchains. In SIG-
MOD, (2019)

42. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer infor-
mation system based on the xor metric. In Int, Workshop on
Peer-to-Peer Systems (2002)

43. Menezes, A., van Oorschot, P. C., Vanstone, S. A.: Handbook of
Applied Cryptography. (1996)

44. Merkle, R. C.: A Digital Signature Based on a Conventional
Encryption Function. In CRYPTO, volume 293, (1987)

45. Mirval, J., Bouganim, L., Popa, I. S.: Practical fully-decentralized
secure aggregation for personal data management systems. In
SSDBM, (2021)

46. MyData Global. Empowering individuals by improving their right
to self-determination regarding their personal data. (see https://
mydata.org), (2020)

47. Nanni, M., Andrienko, G. L., Barabási, A., Boldrini, C., et al.: Give
more data, awareness and control to individual citizens, and they
will help COVID-19 containment. Trans. Data Priv., 13(1), (2020)

48. Nextcloud. The self-hosted productivity platform that keeps you in
contro. (see https://nextcloud.com), (2021)

49. Nilsson,A.,Bideh, P.N.,Brorsson, J.:A surveyof published attacks
on intel SGX. CoRR. (2020). arXiv:abs/2006.13598

50. Nithyanand, R., Starov, O., Gill, P., Zair, A., et al.: Measuring and
mitigating as-level adversaries against tor. In NDSS, (2016)

51. Özsu, M. T., Valduriez, P.: Principles of Distributed Database Sys-
tems, 4th Edition. Springer, (2020)

52. Pinto, S., Santos, N.: Demystifying Arm TrustZone: A Compre-
hensive Survey. ACM Comput. Surv., 51(6), (2019)

53. Popa, I. S., That, D. H. T., Zeitouni, K., Borcea, C.: Mobile partici-
patory sensing with strong privacy guarantees using secure probes.
GeoInformatica, 25(3), (2021)

54. Popa, R. A., Blumberg, A. J., Balakrishnan, H., Li, F. H.: Privacy
and accountability for location-based aggregate statistics. In CCS,
(2011)

55. Priebe, C., Vaswani, K., Costa,M.: EnclaveDB:A Secure Database
Using SGX. In IEEE S&P, (2018)

56. Rabin, M. O.: Efficient Dispersal of Information for Security, Load
Balancing, and Fault Tolerance. J. ACM, 36(2), (1989)

57. Ratnasamy, S., Francis, P., Handley, M., Karp, R. M., et al.: A
scalable content-addressable network. In ACM SIGCOMM, (2001)

58. Reed, M. G., Syverson, P. F., Goldschlag, D. M.: Anonymous con-
nections and onion routing. IEEE Journal on Selected Areas in
Communications, 16(4), (1998)

59. Reynolds, P., Vahdat, A.: Efficient peer-to-peer keyword searching.
In Middleware, (2003)

60. Sabt, M., Achemlal, M., Bouabdallah, A.: Trusted Execu-
tion Environment: What It is, and What It is Not. In Trust-
Com/BigDataSE/ISPA (1), (2015)

61. Saleh, E., Alsa’deh, A., Kayed, A., Meinel, C.: Processing over
encrypted data: between theory and practice. ACM SIGMOD
Record, 45(3), (2016)

62. Secure Data Hub. Output Confidentiality Rules. (see https://www.
casd.eu/wp/wp-content/uploads/Output_Confidentiality_Rules.
pdf), (2021)

63. Shamir, A.: How to Share a Secret. Commun. ACM, 22(11), (1979)
64. Skobeltsyn, G., Luu, T., Zarko, I. P., Rajman, M., et al.: Web text

retrieval with a P2P query-driven index. In SIGIR, (2007)
65. Solid. All of your data, under your control. (see https://solidproject.

org/), (2021)
66. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., et al.: Chord: A

scalable peer-to-peer lookup service for internet applications.ACM
SIGCOMM, 31(4), (2001)

67. Tang, C., Dwarkadas, S.: Hybrid global-local indexing for efficient
peer-to-peer information retrieval. In NSDI, (2004)

68. Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-peer information retrieval
using self-organizing semantic overlay networks. In ACM SIG-
COMM, (2003)

69. To, Q., Nguyen, B., Pucheral, P.: Private and Scalable Execution
of SQL Aggregates on a Secure Decentralized Architecture. ACM
Trans. Database Syst., 41(3), (2016)

70. Tomàs, J.C.,Amann,B., Travers,N.,Vodislav,D.:RoSeS: a contin-
uous query processor for large-scale RSS filtering and aggregation.
In ACM CIKM, (2011)

71. Unnikrishnan, J., Naini, F. M.: De-anonymizing private data by
matching statistics. In IEEE Allerton, (2013)

123

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020PC0767
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020PC0767
https://gdpr-info.eu/
https://mydata.org
https://mydata.org
https://nextcloud.com
http://arxiv.org/abs/2006.13598
https://www.casd.eu/wp/wp-content/uploads/Output_Confidentiality_Rules.pdf
https://www.casd.eu/wp/wp-content/uploads/Output_Confidentiality_Rules.pdf
https://www.casd.eu/wp/wp-content/uploads/Output_Confidentiality_Rules.pdf
https://solidproject.org/
https://solidproject.org/

Highly distributed and privacy-preserving queries on personal data management systems 445

72. Urdaneta, G., Pierre, G., Steen, M. V.: A survey of DHT security
techniques. ACM Computing Surveys (CSUR), 43(2), (2011)

73. Volgushev, N., Schwarzkopf, M., Getchell, B., Varia, M., et al.:
Conclave: Secure multi-party computation on big data. In EuroSys,
(2019)

74. Wang, Q., Borisov, N.: Octopus: A Secure and Anonymous DHT
Lookup. In ICDCS, (2012)

75. Yang, Y., Dunlap, R., Rexroad, M., Cooper, B. F.: Performance of
full text search in structured and unstructured peer-to-peer systems.
In INFOCOM, (2006)

76. Zhang, Z.,Wang, T., Li, N., He, S., et al.: CALM:Consistent Adap-
tive Local Marginal for Marginal Release under Local Differential
Privacy. In ACM CCS, (2018)

77. Zheng, K., Mou, W., Wang, L.: Collect at Once, Use Effec-
tively: Making Non-interactive Locally Private Learning Possible.
In ICML, volume 70, (2017)

78. Have i been pwned. Check if you have an account that has been
compromised. (web link at https://haveibeenpwned.com/lastly).
Accessed July 2022

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://haveibeenpwned.com/lastly

	Highly distributed and privacy-preserving queries on personal data management systems
	Abstract
	1 Introduction
	2 Architectural design and naive protocol
	2.1 Fully distributed system
	2.2 Data model
	2.3 Query model
	2.4 Number of targets, sampling and query budget
	2.5 Distributed concept index
	2.6 Naive protocol

	3 Threat models, leakages and problem formulation
	3.1 Threat models
	3.2 Lower-bound on leakage and problem formulation

	4 Tamper-proof threat model and DISPERSH
	4.1 Security requirements
	4.2 Insertion in the DHT
	4.3 New roles for query processing (w.r.t. requirement 1)
	4.4 Detailed protocol
	4.5 Security analysis
	4.6 Conclusion

	5 Passive attack threat model and DISPERSHR
	5.1 Security requirements
	5.2 Insertion in the DHT
	5.3 New roles for query processing (w.r.t. requirement 2)
	5.4 Detailed protocol
	5.5 Security analysis
	5.6 Conclusion

	6 Active attack threat model and DISPERSHRC
	6.1 Security requirements
	6.2 The need for efficient, localized decisions
	6.3 Insertion in the DHT
	6.4 New roles for query processing (w.r.t. Req. 3')
	6.5 Detailed protocol
	6.6 Security analysis
	6.7 Conclusion

	7 Experimental results
	7.1 Evaluated protocols, platform and metrics
	7.2 Parameters and configuration tool
	7.3 Varying the number of colluding nodes
	7.4 Varying the number of actors
	7.5 Varying other parameters
	7.6 Conclusion of experimental results

	8 Related works
	9 Limitations and other challenges
	10 Conclusion
	Acknowledgements
	A Background on cryptography
	B Background on distributed hash tables
	References

