
The VLDB Journal (2023) 32:343–368
https://doi.org/10.1007/s00778-022-00749-x

REGULAR PAPER

Fast subgraph query processing and subgraphmatching via static and
dynamic equivalences

Hyunjoon Kim1,2 · Yunyoung Choi3 · Kunsoo Park4 · Xuemin Lin5 · Seok-Hee Hong6 ·Wook-Shin Han7

Received: 20 August 2021 / Revised: 13 February 2022 / Accepted: 4 May 2022 / Published online: 7 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Subgraph query processing (also known as subgraph search) and subgraph matching are fundamental graph problems in
many application domains. A lot of efforts have been made to develop practical solutions for these problems. Despite the
efforts, existing algorithms showed limited running time and scalability in dealing with large and/or many graphs. In this
paper, we propose a new subgraph search algorithm using equivalences of vertices in order to reduce search space: (1) static
equivalence of vertices in a query graph that leads to an efficient matching order of the vertices and (2) dynamic equivalence of
candidate vertices in a data graph, which enables us to capture and remove redundancies in search space. These techniques for
subgraph search also lead to an improved algorithm for subgraph matching. Experiments show that our approach outperforms
state-of-the-art subgraph search and subgraph matching algorithms by up to several orders of magnitude with respect to query
processing time.

Keywords Subgraph query processing · Subgraph search · Subgraph matching · Vertex equivalence · Neighbor-safety

1 Introduction

Over the last several decades, a great deal of efforts have been
made to develop practical solutions for NP-hard graph prob-

A preliminary version [19] of this paper was presented at Proceedings
of the 2021 International Conference on Management of Data
(SIGMOD 2021).

B Kunsoo Park
kpark@theory.snu.ac.kr

B Wook-Shin Han
wshan@dblab.postech.ac.kr

Hyunjoon Kim
hyunjoonkim@hanyang.ac.kr

Yunyoung Choi
yychoi@theory.snu.ac.kr

Xuemin Lin
lxue@cse.unsw.edu.au

Seok-Hee Hong
seokhee.hong@sydney.edu.au

1 Department of Data Science, Hanyang University, Seoul,
South Korea

2 Department of Artificial Intelligence, Hanyang University,
Seoul, South Korea

3 Kyungwontech, Seoul, South Korea

lems due to diverse graph data publicly available [36]. On the
one hand, researchers have been motivated to develop scal-
able and efficient algorithms to analyze large graphs such as
social networks andResourceDescriptionFramework (RDF)
data. One of the most famous problems for a large graph is
subgraph matching. Given a data graph G and a query graph
q, the subgraph matching problem is to find all matches
of q in G. On the other hand, smaller graph data includ-
ing protein–protein interaction (PPI) networks and chemical
compounds have encouraged researchers to derive fast and
scalable algorithms to deal with a large number of graphs.
Subgraph query processing (also known as subgraph search)
is a well-known problem for a collection of these graphs.
Given a set D of data graphs and a query graph, subgraph
search is to retrieve all the data graphs in D that contain q as
subgraphs.

4 Seoul National University, Seoul, South Korea

5 University of New South Wales, Kensington, Australia

6 University of Sydney, Sydney, Australia

7 Pohang University of Science and Technology (POSTECH),
Pohang, South Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-022-00749-x&domain=pdf

344 H. Kim et al.

Both subgraph matching and subgraph search have a
variety of real-world applications: social network analysis
[10,38], RDFquery processing [20,21], PPI network analysis
[6,31], and chemical compound search [46]. However, these
problems are NP-hard because they include finding subgraph
isomorphism which is an NP-hard problem. That is, solving
these problems is the bottleneck of the applications.

Even though the two problems are closely related to each
other, the research on each problem had been separately
conducted until recently. Existing work on subgraph search
[4,9,12,22,46,50,51] mainly adopted the indexing–filtering–
verification strategy: (1) given a set D of data graphs, data
structures are constructed from substructures (i.e., features)
of data graphs in an indexing phase, (2) given a query graph
q, the data graphs with a feature that does not contain q as
a subgraph are filtered out for every feature in a filtering
phase, and (3) a subgraph isomorphism test is performed
against every remaining candidate graph in a verification
phase. Meanwhile, the recent study on subgraph matching
[3,13,14,40] proposed algorithms based on a preprocessing–
enumeration framework: an auxiliary data structure on a
query graph and a data graph is constructed, and all matches
of the query graph are found by using the data structure.
These algorithms substantially improved query processing
performance.Researchers recently utilized existing subgraph
matching algorithms to efficiently solve the subgraph search
problem [39]. However, it showed limited response time and
scalability in dealing with large query graphs or many data
graphs.

In this paper, we introduce a new subgraph search algo-
rithmVEQS employing static equivalence and dynamic equiv-
alence in order to address the limitations. First, we apply
neighbor equivalence of query vertices to the matching order
of backtracking, which leads to a smaller search space in the
verification phase. Second, we capture run-time equivalence
of subtrees of the search space based on neighbor equivalence
of candidate data vertices, and prune out redundancies (i.e.,
the equivalent subtrees) of the search space. Additionally, we
propose an efficient filtering method called neighbor-safety
that enables us to build a compact auxiliary data structure on
a query graph and a data graph to obtain as few candidates
as possible. We conduct extensive experiments on several
well-known real datasets aswell as synthetic datasets to com-
pare our approach with existing algorithms. Moreover, our
techniques for subgraph search in turn lead to an improved
algorithm VEQM for subgraph matching. Experiments show
that our approach outperforms existing subgraph search and
subgraphmatching algorithmsbyup to several orders ofmag-
nitude in terms of query processing time. The executable files
of our algorithms, datasets, and query sets are publicly avail-
able1.

1 https://github.com/SNUCSE-CTA/VEQ

Fig. 1 A set D of data graphs

The rest of the paper is organized as follows. Section 2
provides definitions, problem statements, and related work.
Section 3 gives an overview of our approach. Section 4 intro-
duces our filtering technique. Section 5 describes our query
vertexmatching order based on static equivalence, andSect. 6
presents a new technique to detect and remove a part of search
space by using dynamic equivalence. Section 7 presents an
extensive experimental comparison with previous work, and
Sect. 8 concludes the paper.

2 Preliminaries

In this paper, we focus on undirected and connected graphs
with labeled vertices. Our techniques can be easily extended
to directed or disconnected graphs with labeled edges. A
graph g = (V (g), E(g), Lg) consists of a set V (g) of ver-
tices, a set E(g) of edges, and a labeling function Lg :
V (g) → � that assigns a label to each vertex where � is a
set of labels. For a subset S of V (g), the induced subgraph
g[S] denotes the subgraph of g whose vertex set is S and
whose edge set consists of all the edges in E(g) that have
both endpoints in S.

Given a graph q = (V (q), E(q), Lq) and a graph G =
(V (G), E(G), LG), an embedding of q in G is a mapping
M : V (q) → V (G) such that (1) M is injective (i.e., M(u) �=
M(u′) for u �= u′ in V (q)), (2) Lq(u) = LG(M(u)) for
every u ∈ V (q), and (3) (M(u), M(u′)) ∈ E(G) for every
(u, u′) ∈ E(q).

We call that q is subgraph isomorphic to G, denoted by
q ⊆ G, if there exists an embeddingofq inG.Amapping that
satisfies (2) and (3) is called a homomorphism, i.e., it may not
be injective. An embedding of an induced subgraph of q in
G is called a partial embedding. For the sake of traceability,
we enumerate the mapping pairs in a partial embedding M in
the order in which they are added to M during backtracking.

We will use the directed acyclic graph (DAG) as a tool to
build an auxiliary data structure for q and G. Given a DAG g,
a vertex is a root if it has no incoming edges, and a vertex is
a leaf if it has no outgoing edges. A DAG g is a rooted DAG
if there is only one root. Let Child(u) denote a set of vertices
in V (g) that have incoming edges from u. A sub-DAG of
g rooted at u, denoted by gu , is the induced subgraph of g
whose vertices are u and all the descendants of u.

123

https://github.com/SNUCSE-CTA/VEQ

Fast subgraph query processing and subgraph matching 345

Table 1 Notations frequently used in this paper

Symbol Definition

G Data graph

q Query graph

qD Query DAG

Aq Set of answer graphs for q

M Partial embedding of q in G

C(u) Set of candidate vertices of u ∈V (q)

CM (u) Set of extendable candidates of u regarding M

π(u, v) Cell of v ∈ C(u) (defined in Sect. 6)

πM (u, v) Equivalence set of v ∈ C(u) regarding M

TM (u, v) Set of embeddings extended from M ∪ {(u, v)}

Table 1 lists the notations frequently used in the paper.

2.1 Problem statement

Subgraph Search. Given a query graph q and a set D of data
graphs, the subgraph search problem is to find all data graphs
in D that contains q as subgraphs. That is, subgraph search
is to compute the answer set Aq = {G ∈ D | q ⊆ G}.
Subgraph Matching. Given a query graph q and a data graph
G, the subgraph matching problem is to find all embeddings
of q in G.

The above problems are closely related to each other [39].
Given a query graph q and a set D of data graphs, we can
address the subgraph search problem through a little mod-
ification of a subgraph matching algorithm, i.e., for every
data graph G ∈ D it reports G and terminates as soon as it
finds the first embedding of q in G. Since subgraph isomor-
phism (i.e., “Does G contain a subgraph isomorphic to q?”)
is NP-complete [11], the two problems are NP-hard.

2.2 Related work

Subgraph Search. Plenty of early algorithms for subgraph
search adopted an indexing–filtering–verification strategy.
These algorithms can be classified into two groups as below,
depending on their methods to extract features [18,39].

First, in feature mining approaches, common features fre-
quently appeared in data graphs are extracted. gIndex [46]
extracts frequent subgraphs from data graphs, and builds a
prefix tree from these features. Tree+� [50] mines frequent
trees up to predetermined size, and store them as a hash table.
These approaches are known to be costly in index construc-
tion [15,18].

Second, all features up to a user-defined size are enumer-
ated and indexed in feature enumeration approaches. GCode
[51] enumerates all paths, and produces vertex signatures in
data graphs by using the paths. CT-index [22] enumerates

tree and cycle features, whereas SING [9], GraphGrepSX [4],
and Grapes [12] list all paths of bounded length. Since all
features of data graphs are enumerated, the index construc-
tion in these approaches requires a large amount of memory,
resulting in a large size of indices.

The above two approaches aim to filter out as many false
answers as possible by using their indices in order to avoid
exploring the whole search space for false graphs with no
embeddings found in verification; however, index construc-
tion of these approaches generally takes a great deal of time
and space.

Researchers recently used a filtering-verification strategy
without index construction. CFQL [39] leverages existing
subgraph matching algorithms to speed up subgraph search.
Specifically, the preprocessing technique of CFL-Match and
the search method of GraphQL are used in filtering and
verification, respectively. Without index construction, CFQL
outperforms indexing–filtering–verification algorithms, ben-
efiting from the filtering power and efficient verification
technique of the existing subgraph matching algorithms.
Subgraph Matching. A lot of subgraph matching algorithms
[3,8,13,14,16,23,37,40,48,49] have been suggested based on
Ullmann’s backtracking [43]. This approach generally works
as follows: (1) for each query vertex u, a candidate set
C(u) is obtained through a filtering process, where C(u)

is a set of candidate data vertices that u can be mapped to,
and (2) a matching order of query vertices is determined,
and each query vertex is iteratively mapped to a candidate
vertex by following thematching order. Although these algo-
rithms were designed based on this general framework, they
vary significantly in performances, which rely on a filtering
method, a matching order, and a technique to prune out the
search space during backtracking.

Early subgraph matching algorithms such as Ullmann
[43],VF2 [8],QuickSI [37], and SPath [49] obtain a candidate
set by using local filters that consider the neighborhood of
vertices; however, recent algorithms such as GraphQL [16],
Turboiso [14], CFL-Match [3], CECI [2] and DAF [13] build
auxiliary data structures on thequerygraph and thedata graph
in order to get small candidate sets. Furthermore, Turboiso,
CFL-Match and DAF produce effective matching orders by
taking advantage of the auxiliary data structures to estimate
search cost as precisely as possible. Some algorithms elim-
inate redundant computations originated from the nature of
backtracking (e.g., failing sets in [13]).

In-depth studies [26,27,40] comprehensively covered and
investigated various subgraph matching algorithms recently
developed from several different communities. In artificial
intelligence, Glasgow subgraph solver (Glasgow) [28] is
optimized specifically for subgraph isomorphism, but it also
offers subgraph matching as well. Unlike other existing
approaches, Glasgow formulates subgraph isomorphism as
a constraint programming problem. In bioinformatics com-

123

346 H. Kim et al.

munity, RI [5] proposes a backtracking method based on a
global matching order.

In particular, Sun and Luo’s in-depth study [40] is a semi-
nal work that not only suggests design guidelines for efficient
subgraph matching algorithms but also develops the fastest
subgraph matching algorithms (that combine different tech-
niques of existing algorithms).Consequently,we regard these
algorithms (GQLfs and RIfs) as the state-of-the-art methods
to be compared with our approach in Sect. 7.

Some approaches focus on comprehensive techniques for
subgraph matching by employing batch query processing.
MQOsubiso [34] computes a query execution order so that
cached intermediate results can be exploited. Given a query
workload,WaSQ [25] caches the embeddings of every query
of the workload in advance. Next, given a new query q, it
reuses the query workload and the cached embeddings to
efficiently find the embeddings of q (workload-aware sub-
graph matching).
Induced Subgraph Matching. Subgraph isomorphism has
two different definitions in other communities such as artifi-
cial intelligence and bioinformatics: non-induced subgraph
isomorphism and induced subgraph isomorphism. Non-
induced subgraph isomorphismmeans an embedding defined
in Sect. 2, and this is the notion of subgraph isomorphism
that is commonly used in the data management commu-
nity. Induced subgraph isomorphism additionally requires
the non-adjacency condition (which means that there should
exist an edge of q that corresponds to each edge between
matched vertices of G). Between the two definitions, VF3
[7], Glasgow and RImainly deal with induced subgraph iso-
morphism (or induced subgraph matching). In contrast, our
study focuses on non-induced subgraph matching.
Multi-Way Joins. Since a multi-way join can be represented
by a graph, many join-based algorithms enumerate all homo-
morphisms (defined in Sect. 2) of a query graph in a data
graph. While an embedding must be injective, a homomor-
phism does not need to be injective, i.e., a homomorphism
allows that duplicate data vertices are contained in a result,
whereas an embedding does not.

Several recent graph homomorphism algorithms are
designed based on worst-case optimal join (WCOJ), i.e., a
collection of join algorithms whose running time is bounded
by the number of outputs of a query graph. EmptyHeaded [1]
and GraphFlow [17] employ worst-case optimal join to gen-
erate join plans specifically for small queries. RapidMatch
[42] recently proposed a join-based graph homomorphism
engine that can evaluate both small and large queries.
Researchers also developed ways to optimize worst-case
optimal plans by picking a good order of query vertices.
Specifically, [29] proposed a dynamic programming opti-
mizer that produces plans (by either performing a binary join
of two smaller sub-queries or extending a sub-query by one
query vertex with an intersection) and an adaptive technique

that picks the query vertex order of a worst-case optimal sub-
plan.
Summarization and Compression. Graph summarization
is transforming graphs into more compact representations
while preserving their structural property or the output of
queries. For subgraph matching, SGMatch [35] decomposes
a query graph and a data graph into the sets of graphlets, and
matches graphlets of the query graph to the corresponding
graphlets of the data graph along its graphlet matching order.

Several compression paradigms such as input compres-
sion and output compression aim to alleviate the heavy
computation in subgraph matching. As an input compres-
sion technique, BoostIso [33,45] compresses the data graph
by merging symmetric vertices in preprocessing (before a
query graph is given as input). For output compression,
vertex-cover-based compression (VCBC) [32] encodes an out-
put embedding into a compressed codewith size smaller than
that of the embedding, and crystal-based computation frame-
work (CBF) [32] materializes not embeddings but their codes
in order to reduce the overall cost of subgraph matching.

Different from the methods above, our approach employs
neighbor equivalence of query vertices to decide a match-
ing order, and finds equivalent subtrees based on neighbor
equivalence within an auxiliary data structure.

3 Overview of our approach

We first outline our subgraph matching algorithm and then
its modification for subgraph search.
Subgraph Matching. Given a query graph q and a data graph
G, our subgraphmatching algorithmconsists of the following
three steps.

(i) Building a query DAG.Webuild aquery DAG qD ,which
is a DAG that is built from q by assigning directions to
the edges in q (e.g., qD and its reverse q−1

D in Fig. 2 are
query DAGs). The vertex with an infrequent label and a
large degree is selected as the root r of qD , and the BFS
traversal is performed from r in order to build qD [13].
We also find neighbor equivalence class (NEC) among
all degree-one vertices in q, and merge the vertices in
the same NEC into a single vertex in qD , where NEC
is a set of query vertices that have the same label and

Fig. 2 A query graph q, query DAGs qD and q−1
D built from q, and a

path tree T (qD) of qD

123

Fast subgraph query processing and subgraph matching 347

(a) Initial CS (b) After refinement of C(u1)
and C(u2)

(c) After refinement of C(u3)
and C(u5)

(d) After refinement of C(u4)

Fig. 3 Extended DAG-graph DP over CS on q in Fig. 2 and G1 in Fig. 1 using neighbor-safety

the same neighbors [14]. In query DAG qD of Fig. 2,
the neighbor equivalence class of vertex u5 in qD (i.e.,
NEC(u5)) corresponds to a singleton set {u5} in q.

(ii) Building Candidate Space. We build an auxiliary data
structure candidate space (CS) on q and G. A CS on
q and G consists of the candidate set C(u) for each
vertex u ∈ V (q), and edges between the candidates as
follows:

(a) For each u ∈ V (q), there is a candidate set C(u),
which is a set of vertices in G that u can be mapped
to. (The exact condition of mapping is described in
Sect. 4.)

(b) There is an edge between v ∈ C(u) and v′ ∈ C(u′)
if and only if (u, u′) ∈ E(q) and (v, v′) ∈ E(G).

Figure 3a shows a CS on q in Fig. 2 and G1 in Fig. 1.
Three candidates v1, v2, v9 are inC(u1), and there is an
edge between v2 ∈ C(u1) and v5 ∈ C(u2).CS is an aux-
iliary data structure used in [13], but our CS construction
is different from that of [13]. We build a more com-
pact CS by using extended DAG-graph DP (dynamic
programming) with an additional filtering function that
utilizes a concept called neighbor-safety (Sect. 4). If
there is any u ∈ V (q) such that C(u) = ∅, we return
no results (because there cannot be an embedding of q
in G if there is any empty candidate set); proceed to the
next step otherwise.

(iii) Matching. We match query vertices u ∈ V (q) to candi-
date vertices in C(u) of CS by our new matching order
which is based on the number of unmapped extend-
able candidates of u and the size of NEC(u) (Sect.
5). Furthermore, we propose a new technique to prune
out repetitive subtrees of the search space by utilizing
dynamic equivalence of the subtrees (Sect. 6). We also
apply failing sets of [13] in our algorithm.

Subgraph Search. In a general framework for subgraph
search, an index I is built from a given set D of data graphs.
Given a query graph q, a set D of data graphs, and the index
I , we can execute the following steps, and output a set Aq of
answer graphs.

(i) Filtering using an index. For every feature in I that
does not contain q, the data graphs with the feature are
filtered out. The set of remaining data graphs in D is
denoted by Bq . Next, we proceed to the following steps
for q and each data graph G ∈ Bq .

(ii) Building a query DAG. A query DAG qD is built from
q in the same way as in subgraph matching.

(iii) Building Candidate Space. For the query DAG qD and
data graph G, we build CS in the same way as in sub-
graph matching.

(iv) Searching. Unlike Matching above, we find up to one
embedding of q in G. This step returns G as an answer
if it finds an embedding of q in G; nothing otherwise.

We describe above our subgraph search algorithm as a
more general subgraph search framework, because our tech-
niques can be used as the filtering and search stages of
the indexing–filtering–verification framework, in which any
index can be applied to the indexing and filtering stages.

Based on our empirical study, building an existing index
and filtering using the index incur considerable overhead
without gaining higher filtering power for most queries,
which is already confirmed by [39]; indeed, the state-of-
the-art subgraph search algorithm CFQL [39] has shown that
existing indexing methods followed by recent preprocessing
and enumeration techniques are inefficient in query process-
ing on widely used datasets such as PDBS, PCM, and PPI
(CFQL thus runs subgraph search on multiple data graphs
one by one). Therefore, we do not use an index, and regard
Bq as a set D of data graphs. Nevertheless, one might take
advantage of an index as occasion arises (e.g., I/O intensive
applications).

4 Filtering by neighbor-safety

In this sectionwe describe a dynamic programming approach
combined with a filtering technique in order to obtain a com-
pact CS.

123

348 H. Kim et al.

Let a path tree T (q) of a DAG q be the tree such that each
root-to-leaf path corresponds to a distinct root-to-leaf path in
q, and T (q) shares common prefixes of root-to-leaf paths of
q (see Fig. 2). A weak embedding M of a rooted DAG q with
root u at v ∈ V (G) is defined as a homomorphism of T (q)

such that M(u) = v. These concepts were first proposed by
[13].

Given a CS, we define a dynamic programming (DP) table
D[u, v] for u ∈ V (q) and v ∈ V (G): D[u, v] = 1 if
v ∈ C(u) and the following necessary conditions for an
embedding that maps u to v hold; D[u, v] = 0 otherwise.

(1) There is a weak embedding M of a sub-DAG qu at v (i.e.,
a homomorphism of T (qu) such that M(u) = v) in the
CS.

(2) Any necessary condition h(u, v) (other than Condition
(1)) for an embedding that maps u to v is true in the CS.
(Below we suggest a new necessary condition h(u, v).)

D[u, v] can be computed using the following recurrence in
a bottom up order from leaf vertices to the root vertex, i.e.,
u is processed after all its children in q are processed:

D[u, v] =
{
1 if

∧
uc∈Child(u) f (D[uc, •], v) ∧ h(u, v)

0 otherwise

(1)

where a main function f (D[uc, •], v) is 1 if there is vc adja-
cent to v in the CS such that D[uc, vc] = 1; 0 otherwise.
Applying h along with f is more effective in filtering than
using only f in dynamic programming and applying h sep-
arately.

After dynamic programming, the new candidate set is
computed as follows: v is in the new C(u) if and only if
D[u, v] = 1. (Note that candidate sets C(u) serve as a com-
pact representation of D.) This optimization technique will
be called extended DAG-graph DP. Let the optimization such
that h(u, v) is omitted from Recurrence (2) be simple DAG-
graph DP. Note that DAF [13] uses simple DAG-graph DP
which takes advantage of only Condition (1) above.

We propose a necessary condition that checks if the neigh-
bors of v ∈ C(u)with a label l in CS are enough to bemapped
to u’s neighbors with label l when a query vertex u is mapped
to its candidate v ∈ C(u). Given query graph q of Fig. 2 and
CS of Fig. 3a, mapping u2 to v3 cannot lead to an embedding
because the neighbors (i.e., v1) of v3 with label A are not
enough to afford u2’s neighbors (i.e., u1 and u4) with label
A.

Nowwe define a necessary condition h for an embedding.

Definition 1 For each vertex u ∈ V (q) and a label l ∈ �, a
neighbor set Nbrq(u, l) is the set of neighbors of u labeled

with l. For each vertex v ∈ C(u) and a label l ∈ �, aneighbor
set NbrCS(u, v, l) is defined as ∪un∈Nbrq(u,l){vn ∈ C(un) |
vn is adjacent to v ∈ C(u) in CS}.
Definition 2 Given a query graph q and a CS on q and G, we
say that v ∈ C(u) is neighbor-safe regarding u if for every
label l ∈ �, |Nbrq(u, l)| ≤ |NbrCS(u, v, l)|.
Example 1 In query graph q of Fig. 2, Nbrq(u2, A) =
{u1, u4}, and Nbrq(u2, B) = {u3, u5}. In CS of Fig. 3a,
NbrCS(u2, v3, A) = {v1}, and NbrCS(u2, v5, B) = {v3, v4,
v6}. According toDefinition 2, v3 is not neighbor-safe regard-
ing u2 since |Nbrq(u2, A)| > |NbrCS(u2, v3, A)|, whereas
v5 is neighbor-safe regarding u2.

Lemma 1 Suppose that we are given a CS on q and G. For
each vertex u ∈ V (q), mapping u to a candidate vertex v ∈
C(u) cannot lead to an embedding of q if v is not neighbor-
safe regarding u.

Proof We prove the lemma by contradiction. Assume that
there exist v ∈ C(u) which is not neighbor-safe regarding u
when there is an embedding M of q that maps u to v. Since v

is not neighbor-safe regarding u (i.e., there exists l ∈ � such
that |Nbrq(u, l)| > |NbrCS(u, v, l)|), at least two different
vertices ui and u j in Nbrq(u, l) are mapped to the same
vn ∈ NbrCS(u, v, l) in M (i.e., M(ui) = M(u j) = vn). This
contradicts the condition that M is injective (i.e., M(ui) �=
M(u j) for ui �= u j) in the definition of an embedding. ��

By Lemma 1, we define h(u, v) such that h(u, v) = 1 if
v is neighbor-safe regarding u; h(u, v) = 0 otherwise.

Lemma 2 Given a CS on q and G, the time complexity of
extended DAG-graph DP on the CS is O(|E(q)| × |E(G)|).
Proof Before extended DAG-graph DP, a neighbor set
Nbrq(u, l) is computed for every u ∈ V (q) and l ∈ �.
Now, for each u ∈ V (q), neighbor sets NbrCS(u, v, l) have
to be computed for every v ∈ C(u) and l ∈ �. To do that,
for a fixed u ∈ V (q) we need to check the edges between
v and vn for all v ∈ C(u) and all vn ∈ C(un) where
un ∈ Nbrq(u, l) by Definition 4.1. For fixed u ∈ V (q),
all neighbor sets Nbrq(u, l) are disjoint and cover all neigh-
bors of u, and thus we look at each neighbor un of u only
once in this computation. The number of edges between all
v ∈ C(u) and all vn ∈ C(un) is at most O(|E(G)|) by
Condition (b) of the Candidate Space definition in Sect. 3.
Hence the neighbor-safety computation for all u ∈ V (q)

takes �u∈V (q){deg(u) × O(|E(G)|)} = O(|E(q)||E(G)|)
time. ��

The time complexity above includes the computation of
neighbor-safety, but it remains the same as the complexity of
DP in [13].
Construction of a Compact CS. By using the above opti-
mization technique multiple times with different query

123

Fast subgraph query processing and subgraph matching 349

DAGs, we can filter as many candidate vertices as possible,
and thus compute a compact CS.

At the beginning an initial CS is constructed. For each u ∈
V (q),C(u) is initialized as the set of vertices v ∈ V (G) such
that LG(v) = Lq(u). In addition, the neighborhood label fre-
quency (NLF) filter [14] can remove v ∈ C(u) such that there
is a label l ∈ � that satisfies |Nbrq(u, l)| > |NbrG(v, l)|.
We implement NLF as a bit array with 4|�||V (g)| bits to
represent |N L Fg(v, l)| up to 4 for each v ∈ V (g) and l ∈ �.
Therefore it can filter v ∈ C(u) with |NbrG(v, l)| < 4 such
that |Nbrq(u, l)| > |NbrG(v, l)|. Figure 3a illustrates an
initial CS on a query graph q in Fig. 2 and a data graph G1

in Fig. 1.
Since DP is executed based on a query DAG, we use the

DAG qD and its reverse q−1
D (in Fig. 2) to refine candidate

sets. In the first step of refinement, we run simple DAG-
graph DP using q−1

D to the initial CS. In the second step,
we further refine the CS using qD via DAG-graph DP for
subgraph search or extended DAG-graph DP for subgraph
matching. In the third step, we perform extended DAG-graph
DP using q−1

D .

Example 2 Given q−1
D in Fig. 2 and CS in Fig. 3a, we refine

C(u1) first, and then refineC(u2), and so on. After the refine-
ment of C(u1) and C(u2) in Fig. 3b, v3 and v4 are removed
from C(u2) since they are not neighbor-safe regarding u2.
After the refinement of C(u5) in Fig. 3c, therefore, v5 is
removed from C(u5) since there is no vc ∈ C(u2) adjacent
to v5. In the same figure, v3, v4 ∈ C(u3) are not neighbor-
safe regarding u3, and v5 ∈ C(u3) has no neighbors inC(u2),
so they are removed from C(u3).

Finally, we terminate if there exists an empty candidate
set, i.e., C(u) = ∅. Otherwise, after multiple execution of
optimization, we get the final CS. We can repeat extended
DAG-graph DP by alternating qD and q−1

D until no changes
occur in candidate sets, but three steps of DP are enough from
our empirical study. Indeed, the fact that no more than three
refinements are needed is also experimentally confirmed by
[13].

To sum up, both extended DAG-graph DP in VEQ and
simple DAG-graph DP in DAF [13] construct CS with three
refinements, each of which processes DP along with the
reverse topological order of query DAG. However, unlike
simple DAG-graph DP, extended DAG-graph DP is a more
general framework to which any necessary condition for an
embedding can be added. We adopt neighbor-safety (i.e.,
Definition 2) as this necessary condition.

Filtering by neighbor-safety in VEQ and exploring only
feasible partial mapping in VF3 [7] have two main differ-
ences. First, while VF3 computes feasibility sets on a query
graph and a data graph, we apply neighbor-safety to CS that
keeps only the edges between survived vertices in candidate
sets. Neighbor-safety depends only on these edges, thereby

resulting in high filtering power to remove unpromising can-
didates. Second, VF3 takes each partial mapping into account
in feasibility rules whenever it tries to extend that partial
mapping during the search (or enumeration) stage (because
feasibility sets are computed from the current partial map-
ping), but neighbor-safety is a filtering technique used before
the search stage.

A neighbor set is the same as a neighborhood label equiva-
lent class (NLEC) [41]. Pseudo Star Isomorphism Constraint
(PSIC) [41] is a necessary condition for an embedding,which
generalizes Definition 2. Given a sequence of Nbrq(u, l),
for 1 ≤ i ≤ |Nbrq(u, l)|, PSIC incrementally compares the
number (i.e., i) of the u’s first i neighbors in that sequence
with the size of the union of the neighbors’ candidates which
are adjacent to v. Meanwhile, Definition 2 compares only
|Nbrq(u, l)| and the size of the union of all the neighbors’
candidates adjacent to v in CS. Based on our empirical study,
the improvement of the filtering power of PSIC over Defini-
tion 2 is negligible. In our work, we first combine the filtering
method of Lemma 1 and DAG-graph DP in a single frame-
work.

Neighbor-safety utilizes the label frequency of neighbors
in compact auxiliary data structure CS. This does not incur
an additional computational overhead to the heavy search
stage. (Note that the preprocessing step takes polynomial
time, whereas the search step takes exponential time in the
worst case.)

5 Matching order based on static
equivalence

In this section, we propose an improved adaptive matching
order of query vertices by using static equivalence of the
vertices.

Suppose that we are trying to extend a partial embedding
M in the search process.

An unmapped vertex u of a query graph q in M is called
extendable regarding M if at least one neighbor of u is
matched in M , and the set CM (u) of extendable candidates
of u regarding M is defined as the set of vertices v ∈ C(u)

adjacent to M(un) in CS for every mapped neighbor un of
u. We select an extendable vertex u as the next vertex and
match u to each extendable candidate of u.

However, our adaptive matching order is different from
thoseof existing algorithms. State-of-the-art subgraphmatch-
ing algorithms [3,13] adopt leaf decomposition strategy in
which the vertices in the query graph are decomposed into
the set of degree-one vertices and the rest, and the degree-
one vertices are matched after the non-degree-one vertices
are matched. This method generally helps postponing redun-
dant Cartesian product [3]; nevertheless, it sometimes spends
unnecessary search space especially when there are small

123

350 H. Kim et al.

(a) Search tree of the existing
algorithms with leaf decompo-
sition

(b) Search tree of the
matching order based on
static equivalence

Fig. 4 Search trees of two different adaptive matching orders where
(u, v)! means a mapping conflict (i.e., v is already matched therefore u
cannot be mapped to v)

number of candidates of degree-one vertices. We take all
query vertices into consideration in our adaptive matching
order to reduce the search space.

Example 3 Consider a query DAG qD of q in Fig. 2 and a
data graph G2 in Fig. 1. Note that there is no embedding of q
in G2. The search trees in Fig. 4 illustrate the search process.
A node (u, v) represents the last mapping pair of a partial
embedding M , and let M denote a node as well as a partial
embedding. A node (u, v)! means a mapping conflict, i.e., v
is already matched therefore u cannot be mapped to v. Let
(u, {v1, ..., vn}) represent that the n vertices inG arematched
to a vertex u in qD where n = |NEC(u)|. Based on the leaf
decomposition as shown in Fig. 4a, leaf vertex u5 is matched
after the non-degree-one vertices are matched. Specifically,
given a partial embedding M = {(u1, v1), (u2, v2)}, we
select u3 as the next extendable vertex to match, and then
match u4 and u5; however, none of partial embeddings lead
to embeddings. Therefore, matching u4 and u5 to all their
extendable candidates causes huge redundant search space
by postponing a mapping conflict of u3 and u5 at v3.

New Matching Order. In our adaptive matching order to
select the next extendable vertex, we can save much search
space by allowing the flexibility in the matching order of
degree-one vertices. Suppose that we are trying to extend a
partial embedding M .

– If there is a degree-one extendable vertex u such that
|NEC(u)| ≥ |UM (u)| where UM (u) denotes the set of
unmapped extendable candidates of u in CM (u),

– If |NEC(u)| > |UM (u)|, backtrack.
– Otherwise (i.e., if |NEC(u)| = |UM (u)|), select u as

the next vertex.

– Otherwise,

– If there are only degree-one extendable vertices,
select one of them as the next vertex.

– Otherwise, select an extendable vertex u such that
|CM (u)| is the minimum among non-degree-one ver-
tices.

Example 4 Consider the search tree of the new matching
order in Fig. 4b. Recall that neighbor equivalence class
NEC(u5) of vertex u5 in qD corresponds to a singleton
set {u5} in q. Given a partial embedding M = {(u1, v1),

(u2, v2)} and UM (u5) = {v3}, we choose u5 as the next ver-
tex to match since |NEC(u5)| = |UM (u5)|. After we extend
M to M ∪ {(u5, {v3})}, there are no degree-one extendable
vertices, so we choose u3 as the next vertex to match. Hence,
we can detect a mapping conflict of u3 and u5 at v3 as early
as possible without matching u4.

6 Run-time pruning by dynamic equivalence

In this section, we develop a new technique to dynamically
remove equivalent subtrees of the search tree based on neigh-
bor equivalence of candidate vertices in CS. Once we visit a
new node (i.e., a new partial embedding) M , we explore the
subtree rooted at M and come back to node M . By utiliz-
ing neighbor equivalence of candidates and the knowledge
gained from the exploration of the subtree rooted at M , we
can prune out some partial embeddings among the siblings
of node M .

Definition 3 Suppose that we are given a CS on q and G.
For a vertex u ∈ V (q) and two candidate vertices vi and v j

in C(u), we say that vi and v j share neighbors if for every
neighbor un of u in q, vi and v j have common neighbors
in C(un). Then a cell π(u, v) is defined as a set of vertices
v′ ∈ C(u) that share neighbors with v in CS.

As a new running example, we use a query graph q and
a data graph G3 in Fig. 5. Note that v3, v4 and v5 have dif-
ferent sets of neighbors in G3. Between the two graphs, CS
in Fig. 6 is constructed, where v3, v4 and v5 in C(u5) share
neighbors in the CS (i.e., π(u5, v3) = π(u5, v4) = π(u5, v5)

= {v3, v4, v5}), while only v3 and v4 in C(u2) share neigh-
bors in the CS (i.e., π(u2, v3) = π(u2, v4) = {v3, v4}).

Assume in the rest of this section that we are given a
partial embedding M , an extendable vertex u ∈ V (q), and
vi ∈ CM (u) after the exploration of the subtree rooted
at M ∪ {(u, vi)}. Let TM (u, vi) denote the set of embed-
dings found in the subtree rooted at M ∪ {(u, vi)}. For some
unmapped extendable candidates v j ∈ CM (u), we aim to
avoid exploring the subtree rooted at M ∪ (u, v j) if possible
(i.e., if the subtree rooted at M∪(u, vi) and the subtree rooted
at M ∪ (u, v j) are equivalent, which is defined below).

Definition 4 Given an (partial) embedding M∗ in the subtree
rooted at M ∪{(u, vi)}, (partial) embedding M∗

s ∈ TM (u, v j)

123

Fast subgraph query processing and subgraph matching 351

Fig. 5 A new query graph q and a data graph G3

Fig. 6 CS on query graph q and data graph G3 of Fig. 5. Every cell
π(u, v) is represented as a unique ID according to a table above. Note
that v3, v4 and v5 in C(u5) share neighbors in the CS of Fig. 5, though
they have different sets of neighbors in the data graph.

symmetric to M∗ is M∗ − {(u, vi)} ∪ {(u, v j)} if v j is not
mapped in M∗; M∗ − {(u, vi), (u′, v j)} ∪ {(u, v j), (u′, vi)}
if v j is mapped to u′ in M∗.

Definition 5 The subtree rooted at M ∪{(u, vi)} and the sub-
tree rooted at M ∪ {(u, v j)} are equivalent in the following
cases:

– when the subtree rooted at M ∪ {(u, vi)} has no embed-
dings (i.e., TM (u, vi) = ∅), the subtree rooted at M ∪
{(u, v j)} also has no embeddings, and

– when TM (u, vi) �= ∅, for every embedding M∗ ∈
TM (u, vi) there exists an embedding M∗

s ∈ TM (u, v j)

symmetric to M∗, and vice versa.

Suppose that we are given a subtree Ti rooted at M ∪
{(u, vi)} and its counterpart subtree Tj rooted M ∪{(u, v j)},
as shown in Figs. 7, 8, and 9.

Figure 7 shows the case inwhich no embeddingwas found
in Ti . In Ti , u′ could not be matched to vi as vi was already
matched to u, and then u′ was matched to v j , but eventually
no embeddingwas found in Ti . In Tj , the situation is the same
as that of Ti except that the roles of vi and v j are exchanged.
Then vi and v j are included in negative cell π−

M (u, vi), which
is defined in Definition 6.

Fig. 7 Subtrees rooted at M∪{(u, vi)} and M∪{(u, v j)} are equivalent.
Here, no embeddings are found. Negative cellπ−

M (u, vi) contains vi and
v j

Fig. 8 Subtrees rooted at M ∪ {(u, vi)} and M ∪ {(u, v j)} are equiva-
lent. Symmetric embeddings are found in these subtrees. Positive cell
π+

M (u, vi) contains vi , v j

Fig. 9 Subtrees rooted at M ∪ {(u, vi)} and M ∪ {(u, v j)} are not
equivalent. Cell π(u′, v j) visited in Ti does not contain vi , so v j is
included in delta set δM (u, vi)

123

352 H. Kim et al.

Figure 8 shows the case that is similar to Fig. 7 but an
embeddingwas found in Ti . That is, u′ wasmatched to v j and
then an embedding M∗ was found in Ti . Again the situation
in Tj is the same as that of Ti except that the roles of vi

and v j are exchanged. Hence the symmetric embedding M∗
s

contains (u, v j) and (u′, vi) instead of (u, vi) and (u′, v j)

in M∗. In this case, vi and v j are included in positive cell
π+

M (u, vi).
Figure 9 shows the case that an embedding M∗ was found

in Ti but the symmetric embedding M∗
s will not be found

in Tj . In this case, vi is not included in the cell π(u′, v j),
whereas vi is included in π(u′, v j) of Figs. 7 and 8. In Ti ,
vi has never been visited as the candidate of u′ as vi is not
included in π(u′, v j). And, u′ was matched to v j , which
leads to an embedding M∗. In Tj , vi will not be visited as
the candidate of u′ since vi is not included in π(u′, v j). And
u′ will not be matched to v j as v j is already matched to u,
so the symmetric embedding M∗

s will not be found. If cell
π(u′, v j) visited in Ti does not contain vi , then v j is included
in delta set δM (u, vi).

Nowwewill formally define the condition that guarantees
the equivalence.

Definition 6 Let IM (u, vi) be the set of all mappings (u′, vi)

that conflict with (u, vi) at vi ∈ CM (u) in the subtree
rooted at M ∪ (u, vi), and OM (u, vi) be the set of all map-
pings (u′, v′) visited in the subtree such that π(u′, v′) ��
vi . A negative cell π−

M (u, vi) regarding M is π(u, vi) ∩
{∩(u′,vi)∈IM (u,vi)π(u′, vi)} if there was at least one mapping
conflict at vi in the subtree; π(u, vi) otherwise. A positive
cell π+

M (u, vi) regarding M is π−
M (u, vi) − δM (u, vi) where

delta set δM (u, vi) = ∪(u′,v′)∈OM (u,vi)π(u′, v′). The equiva-
lence set πM (u, vi) regarding M is defined as follows:

πM (u, vi) =
{

π−
M (u, vi) if TM (u, vi) = ∅

π+
M (u, vi) otherwise

(2)

Example 5 (Negative Cell) As a concrete example, Fig. 10
is a search tree for a query graph q and a CS in Fig. 6.
Suppose that we just came back to node M ∪ {(u3, v9)}
where M = {(u1, v1), (u2, v3), (u4, v8)} after the explo-
ration of the subtree rooted at M ∪ (u3, v9). The equivalence
set πM (u3, v9) regarding M is π−

M (u3, v9) = π(u3, v9)

= {v8, v9, v10} since there was no mapping conflict at v9.
For M ∪ {(u2, v3)} where M = {(u1, v1)}, there was a map-
ping conflict at v3 after the exploration of the subtree rooted
at M∪{(u2, v3)}with no embeddings found, thusπM (u2, v3)

is π−
M (u2, v3) = π(u2, v3) ∩ π(u5, v3) = {v3, v4}.

Example 6 (Positive Cell) As a concrete example in the
search tree of Fig. 10, suppose that we just came back to
node M ∪ {(u4, v10)} where M = {(u1, v2), (u2, v6)} after
the exploration of the subtree rooted at M ∪ (u4, v10). Since

there were no mapping conflicts during the exploration,
π−

M (u4, v10) is π(u4, v10) = {v10, v11, v12}. In this explo-
ration, we have also visited a mapping (u3, v11) such that
π(u3, v11) �� v10, and thus π+

M (u4, v10) = π−
M (u4, v10) −

δM (u4, v10) = {v10, v12} where δM (u4, v10) = π(u3, v11)

= {v11}. Since we found embeddings during the exploration,
πM (u4, v10) is π+

M (u4, v10).

Now we claim that equivalence set πM (u, vi) leads to the
equivalence among the subtrees rooted at M ∪ {(u, v j)} for
every v j ∈ πM (u, vi).

Lemma 3 For every v j ∈ πM (u, vi), the subtree rooted at
M ∪ {(u, vi)} and the subtree rooted at M ∪ {(u, v j)} are
equivalent (i.e., πM is the condition that guarantees the
equivalence).

Proof For vi ∈ C(u) and v j ∈ C(u), we need following
ingredients.

(i) Two candidates vi and v j in C(u) share neighbors.
(ii) For every vertex u′ that makes a conflict with u at vi in

the subtree rooted at M ∪ (u, vi), there exists v j ∈ C(u′)
that share neighbors with vi ∈ C(u′).

(iii) For every vertex u′′ mapped to v j in the subtree rooted at
M ∪(u, vi), there exists vi ∈ C(u′′) that shares neighbors
with v j ∈ C(u′′).

The fact that vi and v j are in πM (u, vi) can be rewritten
as follows.

– If TM (u, vi) = ∅, (i) and (ii) hold.
– Otherwise, (i), (ii), and (iii) hold.

Let TM (u, vi) � TM (u, v j) mean that for every embed-
ding M∗ ∈ TM (u, vi) there exists an embedding M∗

s ∈
TM (u, v j) symmetric to M∗. Then the definition of equiv-
alence of subtrees can be described as follows.

– If TM (u, vi) = ∅, then TM (u, v j) = ∅, i.e., TM (u, vi)

� TM (u, v j).
– Otherwise, TM (u, vi) � TM (u, v j) and TM (u, vi) �
TM (u, v j).

We prove the lemma by contradiction, i.e., if TM (u, vi)��
TM (u, v j) then v j /∈ πM (u, vi). Let u′ be the first query
vertex that has the same label as u and appears after u in the
matching order if there exists such a vertex; u otherwise.

Suppose that TM (u, vi)�� TM (u, v j), i.e., there exists an
embedding M∗ ∈ TM (u, v j) not symmetric to any embed-
dings in TM (u, vi). That is, there exists a partial embedding
M2 that leads to M∗ in the subtree rooted at M ∪{(u, v j)}, but
partial embedding M1 symmetric to M2 must not exist in the
subtree rooted at M∪{(u, vi)} or never leads to an embedding

123

Fast subgraph query processing and subgraph matching 353

Fig. 10 Pruned search tree. Nodes enclosed by dashed boxes are pruned by dynamic equivalence

in TM (u, vi). Assume that M1 = M ∪ {(u, vi), . . . , (u′, v j)}
and M2 = M ∪ {(u, v j), . . . , (u′, vi)} if u′ �= u; M1 =
M ∪ {(u′, vi)} and M2 = M ∪ {(u′, v j)} otherwise. There
exists a neighbor un of u′ and its candidate vn ∈ C(un)

such that M2 extends to a mapping (un, vn) which cannot be
extended by M1. This implies that v j ∈ C(u′) is adjacent
to vn ∈ C(un) but vi ∈ C(u′) is not, which contradicts that
vi , v j ∈ C(u′) share neighbors, i.e., the statement contradicts
condition (ii) if u′ �= u; condition (i) if u′ = u.

Suppose that TM (u, vi)�� TM (u, v j). In the same way as
above this assumption results in a contradiction to condition
(iii) if u′ �= u; condition (i) if u′ = u. ��
Example 7 (Pruning by Negative Cells) Consider search tree
in Fig. 10 again. When we come back to the node M ∪
{(u3, v9)} where M = {(u1, v1), (u2, v3), (u4, v8)} after the
exploration of the subtree rooted at M ∪{(u3, v9)}, we could
not find any embeddings of q and there were no mapping
conflicts at v9 during the exploration. Therefore, no matter
which vertex in πM (u3, v9) is matched to u3, it will not lead
to an embedding of q because all possible extensions will
end up with failures in the same way. Hence, we need not
extend the siblings M ∪{(u3, v j)} of node M ∪{(u3, v9)} for
each v j ∈ πM (u3, v9). Similarly, suppose that we came back
to the node M ∪ {(u2, v3)} where M = {(u1, v1)} after the
exploration of the subtree rooted at M ∪{(u2, v3)}. We could
not find any embeddings of q, and there was a mapping con-
flict at v3 during the exploration, so πM (u2, v3) = {v3, v4}.
This implies that the subtree rooted at M ∪{(u2, v4)} will be
the same as that rooted at M ∪ {(u2, v3)} except that a map-
ping conflict occurs at (u5, v4) instead of (u5, v3). Hence,
M ∪{(u2, v4)}will not lead to an embedding, so we need not
extend the sibling M ∪ {(u2, v4)} of node M ∪ {(u2, v3)}.
Example 8 (Pruning by Positive Cells) Consider search tree
in Fig. 10 again. Suppose that we explored the subtree rooted
at M ∪{(u4, v10)}where M = {(u1, v2), (u2, v6)}, and came
back to the node M ∪{(u4, v10)}. We found two embeddings
in TM (u4, v10), and obtain πM (u4, v10) = {v10, v12}, which
implies that M ∪{(u4, v12)}will lead to the embedding sym-
metric to each M∗ ∈ TM (u4, v10), i.e., the same embedding

as M∗ ∈ TM (u4, v10) except that u4 is mapped to v12. Note
that v11 ∈ CM (u4) is not in πM (u4, v10) since we may not
find any embeddings extended from M ∪ {(u4, v11)} due to
a mapping conflict of u4 and u3 at v11.

Algorithm 1: Matching(qD,CS, M)

1 if |M | = |V (qD)| then Report M else
2 Select a next extendable vertex u;
3 Set v ← inequivalent for each v ∈ CM (u);
4 foreach v ∈ CM (u) do
5 if v is unvisited then
6 if v is equivalent then
7 Report embedding M∗

s symmetric to each
M∗ ∈ TM (u, eqM (u, v)) at v;

8 continue;

9 M ′ ← M ∪ {(u, v)};
10 Mark v as visited;
11 π−

M (u, v) ← π(u, v); δM (u, v) ← ∅;
12 foreach ancestor (ua, va) of (u, v) where

va /∈ π(u, v) and π(ua,va)∩π(u, v) �= ∅ do
13 δM (ua, va) ← δM (ua, va) ∪ π(u, v);

14 Matching(qD,CS, M ′);
15 Mark v as unvisited;
16 if TM (u, v)= ∅ then
17 πM (u, v)←π−

M (u, v)

18 else
19 πM (u, v) ← π−

M (u, v) − δM (u, v)

20 foreach v′ ∈ πM (u, v) do
21 eqM (u, v′) ← v;
22 Set v′ ← equivalent for v′ ∈ CM (u);

23 else
24 Let Mp be parent node of (M−1(v), v);
25 π−

Mp
(M−1(v), v)←π−

Mp
(M−1(v), v) ∩ π(u, v);

Search Process. Matching in Algorithm 1 is our search
process to find all embeddings of q in the CS. We report M
as an embedding of q if |M | = |V (qD)| (line 1); otherwise,
we choose an extendable vertex in line 3 (the root vertex of
qD is first selected when |M | = 0), and for each unvisited
v ∈ CM (u), extend the current partial embedding M to M ′ =

123

354 H. Kim et al.

M ∪ {(u, v)}, and recursively execute Matching with M ′
(lines 5-24). However, our backtracking process differs from
existing algorithms as follows.

On the one hand, we select the next extendable vertex u
among multiple extendable vertices based on our new adap-
tive matching order in Sect. 5 (line 3).

On the other hand, the pruning technique of Lemma 3 is
added. For every v ∈ CM (u), v is initialized as “inequiv-
alent” (line 4). Let eqM (u, v) be the vertex in πM (u, v)

that has been already matched with u in the extension of
M . For each unvisited candidate v ∈ CM (u), we report
an embedding M∗

s ∈ TM (u, v) symmetric to M∗ for every
embedding M∗ extended from M ∪ {(u, eqM (u, v))}, and
go to line 5 if v ∈ CM (u) is equivalent (lines 7-9); other-
wise, initializeπ−

M (u, v) and δM (u, v), and update δM (u′, v′)
for every ancestor (u′, v′) of (u, v) in the search tree such
that va /∈ π(u, v) and π(ua, va) ∩ π(u, v) �= ∅ before the
recursive call of Matching (lines 12-14). After the recur-
sive invocation ofMatching,πM (u, v) representsπ−

M (u, v)

if there has been no embedding in the subtree rooted at
M ∪ {(u, v)}; π+

M (u, v) = π−
M (u, v) − δM (u, v) otherwise

(lines 17-18). Next, we let eqM (u, v′) be v, and set “equiv-
alent” to every v′ in πM (u, v) (lines 19-21). If v is already
visited (line 22), a mapping conflict of M−1(v) and u at v

occurs, so we update a negative cell π−
Mp

(M−1(v), v) (lines
23-24).

For subgraph search, we modify Algorithm 1 such that it
finds up to one embedding of q in each G ∈ D. First, we
terminate and return true as soon as we find the first embed-
ding M . Next, for an extendable vertex u and an unvisited
extendable candidate v ∈ CM (u) such that v is equivalent,
we go to line 5 (line 8 is removed). Finally, the computation
of δM (u, v) is no longer needed (lines 13-14 are removed).

Lemma 4 Given a vertex u ∈ V (q) and the set CM (u) of
extendable candidates, the time complexity to compute cells
π(u, v) for all v ∈ CM (u) is O(deg(u)|V (G)||CM (u)|).
Proof We can obtain the cells π(u, v) through a divide-and-
conquer paradigm on the array of CM (u): (1) select a new
pivot candidate vn ∈ C(un) for a neighbor un of u, (2)
partition elements of the array into two sub-arrays accord-
ing to whether each element v ∈ CM (u) has the pivot as
a neighbor in CS or not, and (3) repeat the previous steps
on each sub-array for the next pivot until the sub-array is a
singleton or all possible pivots vn ∈ C(un) for all neigh-
bors un of u are checked. There are deg(u) neighbors of u
in q. For each neighbor un of u, there are O(|V (G)|) neigh-
bors in C(un) of all v ∈ CM (u). Thus, the number of all
possible pivots is O(deg(u)|V (G)|). As a result, the time
complexity to compute cells π(u, v) for all v ∈ CM (u) is
O(deg(u)|V (G)||CM (u)|). ��

In the implementation, to compute π(u, v) for every u ∈
V (q) and v ∈ C(u) is not needed because one may visit only

some v ∈ C(u) and terminate as soon as an embedding in
subgraph search (or some embeddings in subgraphmatching)
is found. Hence, cells are computed not for all candidates in
CS right after the CS construction, but for v ∈ CM (u) at the
first time to computeCM (u); indeed, computing cellsπ(u, v)

for all v ∈ CM (u) takes reasonable time since |CM (u)| �
|C(u)|.

We use Cell IDs for implementation efficiency and better
presentation. In the implementation, we associate each dis-
tinct cellwith a unique ID.Onceπ(u, v) is obtained, the IDof
this cell is cached for every v′ ∈ C(u) such that v′ ∈ π(u, v),
so π(u, v) can be reused and accessed through the ID when
v ∈ C(u) is visited later. For some candidates v′ ∈ π(u, v),
we mark v′ ∈ πM (u, v) as “equivalent” once we compute
πM (u, v) so that we can reuse πM (u, v) as long as current
partial embedding M stays the same.

7 Performance evaluation

In this section, we evaluate the performance of the competing
algorithms for subgraph search and subgraph matching. All
the source codes were obtained from the authors of previous
papers, and they are implemented in C++. Experiments are
conducted on amachine runningCentOSwith two IntelXeon
E5-2680 v3 2.5GHz CPUs and 256GB memory.

Since these problems are NP-hard, an algorithm cannot
process some queries within a reasonable time; thus, we set
a time limit of 10 minutes for each query. If an algorithm
does not process a query within the time limit, we regard the
processing time of the query as 10 minutes. We say that the
query finished within the time limit is solved. Each query set
consists of 100 query graphs. For each query set, wemeasure
the average of metrics below which are commonly used in
previous work [13,18,39]:

– False positive ratio F Pq = |Cq |−|Aq |
|Cq | for query graph q:

we evaluate the filtering power of the subgraph search
algorithms where Cq is the set of remaining data graphs
for q after filtering, and Aq is the set of answer graphs
for q.

– Size of auxiliary data structure: we measure the sum of
sizes of candidate sets, i.e., �u∈V (q)|C(u)|, to evaluate
the effectiveness of the subgraph matching algorithms.

– Query processing time: we measure the sum of filtering
time and verification time for subgraph search, or the sum
of preprocessing time (i.e., time to construct an auxiliary
data structure) and search time (i.e., time to enumerate
the first 105 embeddings) for subgraph matching. For the
sake of reasonable comparison, we compute the average
of the time to process query graphs solved by at least one
of the competing algorithms.

123

Fast subgraph query processing and subgraph matching 355

(a) Yeast (search space) (b) Yeast (query time)

(c) HPRD (search space) (d) HPRD (query time)

(e) Human (search space) (f) Human (query time)

(g) Email (search space) (h) Email (query time)

Fig. 11 Search space size and query processing time of the induced
and non-induced subgraph matching algorithms. (I) and (N) after the
algorithm names denote “induced” and “non-induced,” respectively. In
this experiment, we run only the queries for which every algorithm finds
all matches within 10 minutes so that we can measure the search space
size

– Ratio of filtering time to verification time: this shows
that how much filtering or verification time accounts for
in query processing time.

Although the indexing–filtering–verification approach for
subgraph search such as Grapes apparently spends a large
amount of time and space in indexing datasets, indexing time
and index size will not be considered as metrics for the eval-
uation since all the other subgraph search algorithms process
queries without indexing.

7.1 Induced versus non-induced

“Induced” subgraph matching and “non-induced” subgraph
matching are different problems.Which one of the two prob-
lems is more difficult to solve? Since different algorithms use
different techniques, it is not easy to answer the above ques-
tion by comparing different algorithms. Fortunately, RI [5]
and Glasgow [28] solve both the induced and non-induced
subgraph matching problems, and thus we try to answer the
above question by measuring the search space and query
processing time of these algorithms in the induced and non-
induced problems. We include VF3 [7] and VEQM in the
experiment for reference.

Figure 11 shows the size (i.e., the number of nodes in the
search tree) of search space and the query time for these
algorithms, where (I) and (N) after the algorithm names
denote “induced” and “non-induced,” respectively. In this
experiment, we run only the queries for which every algo-
rithm finds all matches within the time limit of 10 minutes
so that we can measure the search space size. RI (N) and
Glasgow (N) have much larger search space than RI (I) and
Glasgow (I), respectively, which indicates that non-induced
subgraph matching is the problem with larger search space
than induced subgraphmatching. The gap of the search space
between induced and non-induced algorithms therefore leads
to the gap of the query processing time between them. VEQM

consistently outperforms other non-induced algorithms.
Consequently, the two problems show a significant gap

of difficulty even for the same algorithm. Hence, we mainly
compare ours with other non-induced subgraph search or
subgraphmatching algorithms in the following experiments.

7.2 Subgraph search

Since CFQL [39] significantly outperformed existing sub-
graph search algorithms, and Grapes [12] was generally
the fastest in query processing among existing indexing–
filtering–verification algorithms [18,39], we select these two
algorithms to be compared with our subgraph search algo-
rithm VEQS. Furthermore, we modify the state-of-the-art
subgraph matching algorithm DAF [13] to solve subgraph
search, and include it (which will be called DAFS in this sec-
tion) in our comparisons.
Real Datasets. Experiments are conducted on real-world
datasets, which are PDBS, PCM, PPI used in [12,18,39], and
IMDB, REDDIT, COLLAB provided by [47]. PDBS is a set
of graphs that represent DNA, RNA, and proteins. PCM is a
set of protein contact maps of amino acids. PPI is a database
of protein–protein interaction networks. IMDB is a movie
collaboration dataset. REDDIT is a dataset of online discus-
sion communities, and COLLAB is a scientific collaboration
dataset. As no label information is available for IMDB,RED-
DIT, and COLLAB, we randomly assigned a label out of

123

356 H. Kim et al.

Table 2 Characteristics of real-world datasets for subgraph search
where � is a set of distinct vertex labels

Dataset Average per graph

|D| |�| |V (G)| |E(G)| degree |�|
PDBS 600 10 2939 3064 2.06 6.4

PCM 200 21 377 4340 23.01 18.9

PPI 20 46 4942 26,667 10.87 28.5

IMDB 1500 10 13 66 10.14 6.9

REDDIT 4999 10 509 595 2.34 10.0

COLLAB 5000 10 74 2,457 65.97 9.9

10 distinct labels to each vertex. The characteristics of the
datasets are summarized in Table 2.
Query Sets. In order to examine the algorithms, we adopt
two query generation methods similar to those in previous
studies, which are random walk [18,39] and breadth first
search (BFS) [39,44]. For each dataset D, we generate eight
query sets Qi R (i.e., randomwalk) and Qi B (i.e., BFS)where
i ∈ {8, 16, 32, 64} is the number of edges of a query graph.
A query graph is generated by the random-walk method as
follows: (1) select a vertex uniformly at random from a ran-
domly selected graph G ∈ D; (2) perform a random walk
from the selected vertex until we visit i distinct edges, from
which we extract a subgraph with these edges. In the BFS
method, we perform a BFS from the selected vertex until we
visit i distinct edges.
False Positive Ratio. Figure 12 shows the false positive ratio
of the subgraph search algorithms on the real datasets (false
positive ratio in Q64R of COLLAB is missing, because no
algorithms except VEQS finish any query in Q64R of COL-
LAB within the time limit). While DAFS is the worst in
filtering false answers, VEQS is the best with average false
positive ratio less than 0.1 in the most query sets. The

big improvement of the false positive ratio originates from
extended DAG-graph DP that utilizes neighbor-safety.
Query Processing Time. Figure 13 shows the arithmeticmean
of the query processing time of the algorithms. VEQS is gen-
erally the fastest (except for some query sets of small sizes)
due to not only fewer false positive answers obtained by
extended DAG-graph DP but also the smaller search tree
of the static-equivalence-based matching order shrunk by
dynamic equivalence. VEQS is up to two orders of magni-
tude faster than DAFS, and up to three orders of magnitude
faster than CFQL. VEQS outperforms Grapes up to five orders
ofmagnitude in Q32B of IMDB.However, the query process-
ing time of VEQS is slightly larger than that of CFQL in Q8R

and Q8B of PDBS, PCM, and PPI because an embedding of
a small query graph can be easily found by all the algorithms,
therefore exploiting extended DAG-graph DP or the pruning
technique of VEQS may incur an overhead.

The query processing time of each algorithm varies a lot
depending on the size of a query graph and the character-
istic of a dataset. In general, the performance gap between
VEQS and the others increases as the size of a query graph
grows.WhileGrapes shows the stable performance on PDBS
which is extremely sparse, its query processing time grows
exponentially as the size of a query graph increases on the
rest in Fig. 13. Spikes in the query processing time of large
queries are also observed in the results of CFQL for all
the datasets other than PDBS. However, DAFS takes nearly
constant query processing time in the sparse data graphs
REDDIT and PDBS, and shows more stable performance
than CFQL and Grapes in the rest. The query processing time
of VEQS remains steady as the size of a query graph increases
in all the datasets except PPI (the largest data graphs) and
COLLAB (a large number of the densest data graphs).

These results originate from a ratio of filtering time to
verification time as shown in Table 3. For all the competing
algorithms, verification takes exponential time in the worst

(a) PDBS (b) IMDB (c) PCM

(d) REDDIT (e) PPI (f) COLLAB

Fig. 12 False positive ratio of subgraph search algorithms on real datasets

123

Fast subgraph query processing and subgraph matching 357

(a) PDBS (b) IMDB (c) PCM

(d) REDDIT (e) PPI (f) COLLAB

Fig. 13 Arithmetic mean of query processing time for subgraph search algorithms on real datasets

Table 3 Average ratio of filtering time to verification time (%)

Grapes CFQL DAFS VEQS

PDBS 1.9 : 98.1 90.4 : 9.6 96.7 : 3.3 90.7 : 9.3
PCM 1.3 : 98.7 45.0 : 55.0 72.9 : 27.1 65.8 : 34.2
PPI 0.01 : 99.99 18.8 : 81.2 27.0 : 73.0 35.4 : 64.6
IMDB 2.6 : 97.4 21.1 : 78.9 36.9 : 63.1 52.9 : 47.1
REDDIT 0.1 : 99.9 13.0 : 87.0 96.1 : 3.9 90.2 : 9.8
COLLAB 0.7 : 99.3 28.9 : 71.1 34.3 : 65.7 52.6 : 47.4

casewhereas filtering takes polynomial time. Indeed, inTable
3, Grapes spends most of query processing time in verifying
candidate graphs, which degrades the overall performance.
The verification time of CFQL takes up most of its query pro-
cessing time in all but PDBS. Although the verification time
of DAFS makes up over 60% of its query processing time
on PPI, IMDB, and COLLAB, the ratio of verification time
is consistently smaller than that of CFQL. Unlike the other

algorithms, VEQS spends the verification time less than or
comparable with the filtering time, which confirms its stead-
ier performance than the others.

For further quantification and analysis on the performance
gap between the queries, we measure the geometric mean of
the query processing time in Fig. 14. We also present the dis-
tribution of the query processing time in Fig. 15. For every
algorithm, queries on each dataset are sorted in the ascending
order of the queryprocessing timeof that algorithm inFig. 15.
The distribution of the query processing time and the behav-
ior of an algorithm vary by the dataset. In PDBS, the query
processing time of every algorithm gradually increases. In
IMDB and PCM, the query processing time of CFQL and
DAFS is smaller than that ofVEQS for about 80%of the queries
due to the overhead of VEQS. (This result is confirmed by the
fact that the geometric mean of CFQL and DAFS is smaller
than that of VEQS in Fig. 14.) In contrast, VEQS shows rela-
tively constant query processing time formost queries, unlike
the query processing time of the others sharply increasing for

(a) PDBS (b) IMDB (c) PCM

(d) REDDIT (e) PPI (f) COLLAB

Fig. 14 Geometric mean of query processing time of subgraph search algorithms on real datasets

123

358 H. Kim et al.

(a) PDBS (b) IMDB (c) PCM

(d) REDDIT (e) PPI (f) COLLAB

Fig. 15 Distribution of the query processing time of subgraph search algorithms on real datasets

(a) Varying |Σ| (b) Varying a scaling factor s (c) Varying |D|

Fig. 16 False positive ratio on synthetic datasets. The results of Q16R and Q16B are shown in the left and right, respectively, of each figure

hard queries. In REDDIT, Grapes and CFQL reach the time
limit early for hard queries whereas VEQS shows stable per-
formances. For both PPI and COLLAB, all the algorithms
have extremely difficult queries with the query processing
time over the time limit (i.e., 10 minutes). Grapes is the first
to reach the time limit, and then DAFS reaches the limit, fol-
lowed by CFQL. Meanwhile, VEQS has only a few queries
whose elapsed times exceed the time limit.
Sensitivity Analysis. We evaluate the algorithms by varying
several characteristics of a set D of data graphs. We generate
each data graph G ∈ D by upscaling the smallest data graph
of PPI (with 2008 edges) using Evograph [30], and assign
labels to vertices based on a power law distribution. We vary
following parameters:

– The number of distinct labels in �: 10, 20, 40, 80
– A scaling factor s of a data graph in D: 2, 4, 8, 16
– The number of data graphs in D: 102, 103, 104, 105

where s indicates that |E(G)| is s times larger than that of the
input data graph while Evograph keeps the same statistical
properties of G by increasing |V (G)| accordingly. Similarly
to the existing work [18,39], we set |�| = 20, s = 2, and
|D| = 103 as default; in fact, we choose s = 2 so that the
default |V (G)| corresponding to s = 2 is larger than that
of the existing work for stress testing. If not specified, the

parameters are set to their default values. We use query sets
Q16R and Q16B on each dataset D.
False Positive Ratio. The false positive ratios of the algo-
rithms on the synthetic datasets are displayed in the left
column of Fig. 16. Grapes is unable to finish indexing data
graphs with s = 16 or those with |D| = 105 due to excessive
memory usage. VEQS consistently outperforms the others
regarding false positive ratio. Overall, the false positive ratio
decreases as the number of distinct labels grows, because
more distinct labels on the vertices enable the algorithms to
extract diverse features or to obtain fewer candidates, which
results in filtering more false answers. The false positive
ratio also generally decreases especially for the random-walk
query sets as the size of data graphs (i.e., a scaling factor s)
gets larger.
Query Processing Time. The query processing time of the
algorithms on the synthetic datasets is shown in the right
column of Fig. 17. The query processing time decreases as
the number of distinct labels increases, because we can filter
more data graphs by taking advantage of more labels, and
verify fewer candidate graphs. The query processing time
rises as a data graph gets larger since the time to verify a false
positive data graph can dramatically increase. The time also
rises as the number of data graphs grows, because more false
positive answers may exponentially increase the verification
time.

123

Fast subgraph query processing and subgraph matching 359

(a) Varying |Σ| (b) Varying a scaling factor s (c) Varying |D|

Fig. 17 Query processing time on synthetic datasets. The results of Q16R and Q16B are shown in the left and right, respectively, of each figure

Table 4 Characteristics of real datasets for subgraph matching where
� is a set of distinct vertex labels in G

G |V (G)| |E(G)| Avg degree |�|
Yeast 3112 12,519 8.04 71

HPRD 9460 37,081 7.83 307

Human 4674 86,282 36.91 44

Email 36,692 183,831 10.02 20

DBLP 317,080 1,049,866 6.62 20

YAGO 4,295,825 11,413,472 5.31 49,676

To summarize, VEQS is better than other algorithms in fil-
tering out false answers, and takes a smaller portion of query
processing time in verification. We observe in the experi-
ments that verification generally takes more time in a false
positive answer than an answer, because an algorithm has to
explore the whole search space to verify that there are no
embeddings in the false positive graph while terminating as
soon as it finds an embedding in the answer graph. There-
fore, a smaller number of false positive answers results in
fewer attempts to explore the whole search space of false
positive graphs. Nevertheless, finding an embedding in an
answer graph can sometimes cost a lot in the verification
phase. Hence a more advanced verification technique can
quickly find an embedding of a query graph in an answer
graph by avoiding frequent backtracking.Consequently, low-
ering false positive answers (by extended DAG-graph DP
with neighbor-safety) and reducing search space (by match-
ing based on static equivalence and run-time pruning by
dynamic equivalence) lead to shorter verification time, result-
ing in the significant improvement of overall performances.

7.3 Subgraphmatching

To evaluate the performance of our subgraph matching
algorithm VEQM, we compare VEQM with recent subgraph
matching algorithms CFL-Match [3], DAF [13], RIfs [40] and
GQLfs [40] from datamanagement community, andGlasgow
[28] from AI community.
Datasets. We test the algorithms against real-world datasets
in Table 4, which were widely used in previous work

[3,13,14,23]. Yeast, HPRD, and Human are protein–protein
interactionnetworks.TheEmail communicationnetwork and
the DBLP collaboration network are obtained from Stanford
Large Network Dataset Collection [24]. YAGO is an RDF
dataset.
Query Sets. We use the same experimental setting as [3] and
[13].Wegenerate sparse query sets Qi S andnon-sparse query
sets Qi N where i is the number of vertices in a query graph
such that i ∈ {50, 100, 150, 200} for Yeast and HPRD, and
i ∈ {10, 20, 30, 40} for the remaining datasets. Each query
graph in Qi S and Qi N has the average degree ≤ 3 and > 3,
respectively. A query graph is generated as follows: (1) select
a vertex uniformly at random, (2) perform a random walk on
a data graph until we visit i distinct vertices, and (3) extract
a subgraph with the visited vertices and some edges between
these vertices.
Size of Auxiliary Data Structure. To evaluate how close our
CS is to the optimal, we compared the size of our CS and
that of Steady in [40]. Steady repeats refining C(u) to reach
a steady state, in which for each v ∈ C(u) and u ∈ V (q),
v satisfies the following constraint: for a neighbor u′ of u,
C(u′) and a set of v’s neighbors have at least one vertex in
common. Steady was used as an optimal CS in [40].

Figure 18 shows the average size of the auxiliary data
structure for each algorithm and Steady. The smaller the size
is, the smaller is the search space of an algorithm. The size of
the auxiliary data structure grows as a query graph gets larger.
VEQM consistently has a smaller number of candidates than
DAF and CFL-Match due to extended DAG-graph DP with
neighbor-safety.

The number of candidates remaining after our extended
DAG-graph DP is slightly larger than that of Steady in most
query sets, but sometimes less than Steady because the com-
bination of the weak embedding and neighbor-safety (i.e.,
our filtering condition) is slightly stronger than the filtering
condition of Steady. Compared to the size of CS in DAF,
extended DAG-graph DP decreases the size by more than
10% in Yeast and Email, and by up to 20% in DBLP; in fact,
DAF uses only simple DAG-graph DP, so for each u ∈ V (q),
C(u) in CS of VEQM is a subset of that of DAF.

Figure 19 shows the filtering time of extendedDAG-graph
DP,CFL-Match,DAF, and Steady. On the one hand, extended

123

360 H. Kim et al.

(a) Yeast (b) Email (c) HPRD

(d) DBLP (e) Human (f) YAGO

Fig. 18 Sizes of auxiliary data structures of subgraph matching algorithms

(a) Yeast (b) Email (c) HPRD

(d) DBLP (e) Human (f) YAGO

Fig. 19 Filtering (or preprocessing) time of the competing subgraph matching algorithms and Steady

(a) Yeast (b) Email (c) HPRD

(d) DBLP (e) Human (f) YAGO

Fig. 20 Query processing time of subgraph matching algorithms on real datasets

123

Fast subgraph query processing and subgraph matching 361

(a) Yeast (b) Email (c) HPRD

(d) DBLP (e) Human (f) YAGO

Fig. 21 Distribution of query processing time of subgraph matching algorithms on real datasets

DAG-graph DP usually takes slightly more time than CFL-
Match or DAF due to the neighbor-safety computation, but
this in turn results in more compact CS within reasonable
time (< 10 ms in most cases except YAGO, and about 100
ms in YAGO). On the other hand, extended DAG-graph DP
is up to more than three orders of magnitude faster than
Steady (because our filtering uses refinements three times
while Steady uses them indefinitely). As a result, the filter-
ingmethod of VEQ is fast enough to be used in practice, while
obtaining the size close to that of Steady.
Query Processing Time. Figure 20 shows the average query
processing time of the algorithms.Glasgow runs out ofmem-
ory on DBLP and YAGO. Due to the three main techniques
described in the previous sections, VEQM generally outper-
formsGQLfs and RIfs, which is followed byDAF,CFL-Match,
and Glasgow. In particular, VEQM outperforms RIfs by up to
three orders of magnitude in Q40S of Human, and GQLfs by
up to two orders of magnitude in Q50S of Yeast, Q40S of
Human, Q40N of DBLP. VEQM is more than three orders of
magnitude faster thanCFL-Match andDAF inmanyquery sets
of Yeast, Email, DBLP, and Human. Different from VEQS,
VEQM searches a data graph for multiple embeddings, there-
fore it can output numerous symmetric embeddings at once
by using equivalence sets. However, the query processing
time of VEQM is slightly more than that of the others in
some query sets of HPRD and Email due to the overhead
of extended DAG-graph DP and the computation of equiv-
alence sets. For example, HPRD has a small size and many
distinct labels, therefore most queries of HPRD finish within
100ms, which means that they are easy instances for all the
algorithms.

Figure 21 demonstrates the distribution of the query pro-
cessing time of all the algorithms (the distribution is more
reflective of the performance gap between queries than the
geometric mean, thus only the distribution is presented here).

For each algorithm, its query processing times are sorted in
the ascending order so that faster (or easier) queries come
earlier. For Yeast, Email, DBLP, and Human, VEQM takes
slightly more time to process easy queries than CFL-Match
andDAF asVEQM has the overhead of computation infiltering
and pruning; however, VEQM performs better than the oth-
ers for hard queries. Specifically in Yeast and Human, every
algorithm reaches the time limit at a different percentage.
CFL-Match first reaches the time limit, followed by Glas-
gow and DAF, respectively, whereas VEQM barely touches
the top for the rightmost few queries, followed by the runner-
up GQLfs. Furthermore, VEQM does not even reach the time
limit on Email and DBLP, i.e., the query processing time of
VEQM is generally stable. For easy dataset HPRD, DAF and
CFL-Match take less time than VEQM for most queries. In
contrast, VEQM is generally steady in the query processing
time whereas the running time of the other algorithms gradu-
ally increases for hard queries. In YAGO, VEQM is the fastest
for a majority of queries. For hard queries, the elapsed time
of VEQM gradually increases while that of the others sharply
increases.

Since we find a number of embeddings in the data graph
for the subgraph matching problem, the search time takes far
more than the preprocessing time in all the datasets except
forHPRD.Amongpreprocessing-searchmethods,VEQM and
GQLfs spend 68% of query processing time in the search
stage on average, whereas RIfs, DAF, and CFL-Match have
72%, 93%, and 96%, respectively. As a result, our strategy
to obtain compact candidate sets and to reduce search space
gives rise to an efficient subgraph matching algorithm.

7.4 Comparison with a workload-aware algorithm

We compare VEQM and WaSQ [25] in experiments. Note
that our work and WaSQ tackle different problems. WaSQ

123

362 H. Kim et al.

(a) Yeast (b) Email

(c) HPRD (d) DBLP

(e) Human (f) YAGO

Fig. 22 Query processing time of WaSQ ad VEQM. Empty bars repre-
sent that WaSQ does not finish within the time limit

solves workload-aware subgraph matching, i.e., given a
query workload (a set of queries), WaSQ caches the embed-
dings of every query of the workload in advance, and then
given a new query q, it reuses the query workload and the
cached embeddings to efficiently find the embeddings of q.

Figure 22 presents the query processing time of WaSQ
and VEQM. As in other experiments of our work, we set a
time limit of 10 minutes for each query. Since WaSQ takes
a query workload as input, we set a time limit of WaSQ as
1,000 minutes for each query workload with 100 queries.
The empty bars in the figure represent that WaSQ does not
finishwithin the time limit.AlthoughWaSQreuses the results
of previous queries and VEQ does not, the performance of
VEQM is better than or comparablewithWaSQ inmost cases.

Moderngraphqueryprocessing systemsbuild thedatabase
of a given data graph in order to efficiently find matches of

Fig. 24 Query processing time of EmptyHeaded and VEQM. T, L, B
in the x-axis represent a triangle, lollipop, barbell query, respectively,
e.g., THPRD denotes a triangle query in HPRD

fixed patterns. Some systems are designed specifically for
SPARQL queries or batch queries. Thus, our approach can
be applied to the graph processing systems in two ways: (1)
the information (e.g., neighbor label frequency or particular
substructures such as triangles) found in a data graph can be
computed and stored before a query graph is given, and (2)
our approach can be extended to multiple query processing
or RDF query processing.

7.5 Comparison with join-based algorithms

In this subsection, we compare VEQM against the existing
join-based subgraph query engines such as EmptyHeaded
[1],Graphflow [29], and RapidMatch [42]. These algorithms
are derived from the join operations in DBMS, as a multi-
way natural join can be represented by a graph in which an
attribute and a relation correspond to a vertex and an edge,
respectively. The source code of EmptyHeaded,Graphflow,
and RapidMatch is publicly available at GitHub.

Figure 23 shows the query processing time of Graphflow,
RapidMatch(H) (RapidMatch that finds homomorphisms),
RapidMatch(E) (RapidMatch that finds embeddings), and
VEQM. Graphflow is not included in the results of HPRD
and YAGO, for which Graphflow could not generate sub-
graph catalogues.Overall,VEQM outperforms the others and
it scales well for large graphs. In Yeast, VEQM consistently
outperforms the others. In Human, VEQM consistently out-

(a) Yeast (b) Email (c) HPRD

(d) DBLP (e) Human (f) YAGO

Fig. 23 Query processing time of VEQM and join-based subgraph matching algorithms on real datasets

123

Fast subgraph query processing and subgraph matching 363

(a) Yeast (b) Email

(c) HPRD (d) YAGO

Fig. 25 Query processing time of DAF and our variants for subgraph
matching on real datasets

performs Graphflow and RapidMatch(E). In Email, DBLP,
and YAGO, VEQM performs better than the others for
large queries. RapidMatch(H) generally performs better than
VEQM for some small queries on the datasets except Yeast,
as RapidMatch(H) searches for homomorphisms that are not
necessarily injective unlike embeddings (see Sect. 2), thus
RapidMatch(H) is likely to take smaller search space to dis-
cover the first 105 matches of a small (or easy) query graph
than VEQM that searches for embeddings.

Figure 24 shows the query processing time for Empty-
Headed and VEQM. Since EmptyHeaded runs in a docker
container, VEQwas also experimented in the same container.
EmptyHeaded is not optimized for large complex graph
queries [1], and thus we used three representative queries
(i.e., triangle, lollipop, and barbell queries) used in [1], which
can be efficiently processed by the worst-case optimal join
of EmptyHeaded. T, L, and B in the x-axis represent trian-
gle, lollipop, and barbell queries, respectively, e.g., THPRD

denotes that a triangle query for HPRD. Here, we run VEQM

to find all embeddings of a query graph. VEQM takes less
query processing time than EmptyHeaded in most cases.

7.6 Effectiveness of individual techniques

In this subsection, we evaluate the effectiveness of our indi-
vidual techniques in reducing the overall query processing
time. We run DAF and the variants of our algorithms below
tomeasure the performance gain achieved by each technique:

– DAF: a baseline for comparison.
– VEQS-NS: using simple DAG-graph DP in filtering, the
matching order based on static equivalence, and run-time
pruning by dynamic equivalence.

– VEQM-SEQ-DEQ: using extended DAG-graph DP with
neighbor-safety in filtering and the adaptive matching
order of DAF in backtracking.

– VEQM-DEQ: using extended DAG-graph DP and the
matching order based on static equivalence.

Fig. 26 Query processing time of VEQS-NS and VEQS

Table 5 Average ratio (%) of filtering time to verification time of VEQS
and VEQS-NS

VEQS-NS VEQS

PDBS 89.6 : 10.4 90.7 : 9.3
PCM 63.8 : 36.2 65.8 : 34.2
PPI 11.5 : 88.5 35.4 : 64.6
IMDB 27.1 : 72.9 52.9 : 47.1
REDDIT 56.5 : 43.5 90.2 : 9.8
COLLAB 24.8 : 75.2 50.9 : 49.1

– VEQS and VEQM: using extended DAG-graph DP, the
matching order based on static equivalence, and run-time
pruning by dynamic equivalence.

Figure 25 shows the query processing time of these algo-
rithms for subgraph matching.
Effectiveness of Neighbor-Safety. For the subgraph match-
ing problem, VEQM-SEQ-DEQ improves DAFM by up to
two orders of magnitude on Q50S of Yeast, Q40S Q30N

of Email, and Q100N of Yeast. We compute the maximum
mq = maxu∈V (q),l∈� |Nbrq(u, l)| for each query graph q.
The average mq of the top 10 query graphs with the largest
performance gains ismuch larger than that of all queries. That
is, the performance gain is larger as a vertex that has more
neighbors with the same label exists in a query graph, since
the neighbor-safety condition canmake use of this query ver-
tex to filter out unqualified candidates of this vertex.

For subgraph search, VEQS improves VEQS-NS by up to
two orders of magnitude on IMDB and REDDIT, and con-
siderable performance gains are shown in PPI and COLLAB,
though the neighbor-safety filtering slightly increases the
query processing time on PDBS and PCM (see Fig. 26).
Note that VEQS-NS represents the algorithm exactly the same
as VEQS except that the neighbor-safety filtering is turned
off. We observe that whether filtering by neighbor-safety is
turned on causes swings of the ratio of filtering time to ver-
ification time. Table 5 presents the average ratio of filtering
time to verification time of VEQS and VEQS-NS. Obviously,
VEQS consistently spends more portion of the query process-
ing time in filtering than VEQS-NS. In particular, PPI, IMDB,
and COLLAB, where the algorithms spend most time in ver-

123

364 H. Kim et al.

(a) PPI (b) Yeast

Fig. 27 Number of nodes in search trees of VEQ-SEQ-DEQ and VEQ-
DEQ

(a) COLLAB (b) DBLP

Fig. 28 Number of nodes in search trees of VEQ-DEQ and VEQ

ification, benefit from filtering by neighbor-safety, since this
technique contributes to considerably reducing the portion
of the verification time.

Applying theneighbor-safety condition consistently decreases
the false positive ratio as shown in Figs. 12 and 16, while
slightly increasing the filtering time as shown in Fig. 19.
Here, the filteringmethod of DAF is the same as that of VEQS-
NS.
Effectiveness of Matching Order Based on Static Equiva-
lence. VEQM-DEQ takes into account all query vertices in
our matching order, whereas VEQM-SEQ-DEQ considers
only non-degree-one query vertices in the matching order
of DAF. VEQM-DEQ outperforms VEQM-SEQ-DEQ by up to
two orders of magnitude for Q50N , Q150N , Q200N of Yeast
and Q30S of Email. The performance gap between these
two methods is likely to increase especially when there exist
degree-one query vertices that have the same label as non-
degree-one vertices.
Effectiveness of Run-Time Pruning by Dynamic Equivalence.
Pruning equivalent subtrees of a search tree brings about large
performance gains especially in YAGO of Fig. 25. There
are generally more candidates with neighbor equivalence in
CS on these data graphs, resulting in many or large cells
which are the potential source of the pruning power. The
effectiveness of the pruning technique is obtained at the cost
of extra overhead to compute cells and equivalence sets, and
thus the time to process some query graphs increases a little.
Size of Search Space. To justify the effectiveness of our tech-
niques, we measure the number of nodes in the search tree,
which indicates the size of search space (Figs. 27 and 28).

We compare the number of search tree nodes of thematch-
ing order of DAF and those of the new matching order in
Fig. 27 (run-time pruning is turned off on both methods
in order to evaluate only the performance of the matching
orders). In this figure, VEQ-SEQ-DEQ and VEQ-DEQ rep-

resent the matching order of DAF and VEQ, respectively.
Table 6 presents the reduced ratios by the newmatching order
(i.e., (size(VEQ-SEQ-DEQ) - size(VEQ-DEQ))/size(VEQ-SEQ-
DEQ)), which are particularly high for sparse queries of Yeast
and for random-walk queries (sparser than BFS queries) of
PPI. That is, the newmatching order takes more advantage of
sparse query graphs that are likely to have more degree-one
vertices.

We also compare the difference of search space sizes
between our algorithm without run-time pruning and that
with run-time pruning in Fig. 28. With dynamic equivalence
turned on, the size of search space becomes consistently
smaller. Table 7 shows the pruned ratios by dynamic equiv-
alence (i.e., (size(VEQ-DEQ) - size(VEQ))/size(VEQ-DEQ)),
which are very high in most cases. In general, the pruned
ratio increases as the size of a query graph grows.
Statistical Analysis for Matching Order Based on Static
Equivalence. Our matching order reduces search space by
taking advantage of two cases, i.e., (1) |N EC(u)| > |UM (u)|
and (2) |N EC(u)| = |UM (u)|, in the first bullet of “New
Matching Order” in Sect. 5. NEC does not need to be non-
singleton in order to be pruned; we backtrack if a singleton
NEC has no candidate vertex (i.e., when |N EC(u)| = 1 and
|UM (u)| = 0).

We count the number of these cases and measured the
size of search space reduced by our matching order based
on static equivalence (in Table 6, the reduced ratios are quite
high inmany cases). For further analysis, Table 8 summarizes
the likelihood and effect of the new matching order, where
symbols “>” and “=” denote the ratio (unit:%) of the number
of extendable vertices u such that |N EC(u)| > |UM (u)| and
|N EC(u)| = |UM (u)|, respectively, among all extendable
vertices u ∈ V (q) in the search tree. “Else” denotes the ratio
of the remaining extendable vertices. Note that |N EC(u)| =
|UM (u)| occurs more frequently than |N EC(u)| > |UM (u)|
in most cases.

The average number of search tree nodes reduced per
extendable vertex u when |N EC(u)| ≥ |UM (u)| is denoted
by “#reduced/seq.” Even though the ratio of |N EC(u)| ≥
|UM (u)| is small since this occurs only on degree-one ver-
tices, #reduced/seq is large for many cases, which leads
to relatively high reduced ratios in Table 2. Note that
#reduced/seq on sparse queries is higher than that on non-
sparse queries, because sparse query graphs generally have
more degree-one vertices.
Statistical Analysis for Run-Time Pruning by Dynamic
Equivalence. Previously, Table 7 presents the size of pruned
search space with high pruned ratios in most cases. For fur-
ther analysis, we count the number of run-time equivalence
that occurs in backtracking in order tomeasure the likelihood
of the equivalence. Table 9 summarizes the likelihood, where
“Negative” and “Positive” denote the ratio of the number of
unmapped extendable candidates v ∈ CM (u) that satisfy

123

Fast subgraph query processing and subgraph matching 365

Table 6 Ratio (unit: %) of the number of search tree nodes reduced by the new matching order

Yeast PPI

Query 50S 100S 150S 200S 50N 100N 150N 200N 8R 16R 32R 64R 8B 16B 32B 64B

Reduced 99.7 49.5 99.998 88.7 10.1 8.1 1.2 99.5 40.2 52.7 53.6 97.3 2.6 73.0 71.1 8.4

Table 7 Ratio (unit: %) of the number of search tree nodes pruned by dynamic equivalence

DBLP COLLAB

Query 10S 20S 30S 40S 10N 20N 30N 40N 8R 16R 32R 64R 8B 16B 32B 64B

Pruned 89.9 97.4 99.8 99.97 95.4 99.6 99.8 99.9 53.9 98.8 98.4 0.0 34.3 98.2 96.9

Table 8 Likelihood and effect of the new matching order

Query > = Else #reduced/seq

Yeast 50S 0.0 2.0 98.0 35, 459.3

100S 0.4 8.8 90.8 9.7

150S 0.2 2.4 97.4 1, 597, 710.7

200S 0.1 2.8 97.0 204.7

Yeast 50N 18.5 29.0 52.4 0.4

100N 15.0 2.7 82.3 0.8

150N 0.0 1.6 98.4 2.9

200N 0.0 2.8 97.2 2, 736.6

PPI 8R 5.6 31.3 63.1 5.4

16R 10.1 59.2 30.7 8.6

32R 4.7 40.8 54.5 13.0

64R 2.4 9.2 88.4 347.8

PPI 8B 0.6 19.2 80.2 0.1

16B 3.5 26.8 69.7 4.8

32B 9.6 24.4 66.0 10.8

64B 0.1 1.3 98.6 79.9

“>” and “=” denote the ratio (unit: %) of the number of extendable
vertices u such that |N EC(u)| > |UM (u)| and |N EC(u)| = |UM (u)|,
respectively, among all extendable vertices. “Else” denotes the ratio
of the remaining extendable vertices. “#reduced/seq” is the number of
search tree nodes reduced per u when |N EC(u)| ≥ |UM (u)|

the first condition and the second condition, respectively,
of Definition 5 in Sect. 6 among all unmapped extend-
able candidates visited in the search tree. “Else” denotes the
ratio of the remaining unmapped extendable candidates, and
“#pruned/deq”means the number of search tree nodes pruned
per negative or positive v.

In general, run-time equivalence on unmapped v ∈ CM (u)

is more likely to happen for larger or denser query graphs.
Relatively high ratios of Negative+Positive cases combined
with high #pruned/deq in Table 9 lead to very high pruned
ratios in Table 7. Unlike subgraph matching on DBLP, the
positive ratio is zero for subgraph search onCOLLAB,where
we find up to one embedding. Hence, we can make full use
of dynamic equivalence in subgraph matching.

Table 9 Likelihood and effect of dynamic equivalence

Query Negative Positive Else #pruned/deq

DBLP 10S 26.6 0.6 72.8 23.5

20S 22.6 5.4 71.9 93.0

30S 1.6 48.2 50.2 429.6

40S 0.4 53.0 46.7 2, 650.9

DBLP 10N 38.8 0.1 61.1 32.6

20N 21.4 12.9 65.7 533.3

30N 0.1 59.9 40.0 394.1

40N 0.1 64.6 35.3 613.7

COLLAB 8R 3.6 0.0 96.4 7.9

16R 41.1 0.0 58.9 113.9

32R 36.3 0.0 63.7 101.8

64R

COLLAB 8B 0.0 0.0 100.0 1.0

16B 4.2 0.0 95.8 6.3

32B 24.5 0.0 75.5 169.4

64B 52.0 0.0 48.0 28.7

“Negative” and “Positive” denote the ratio (unit: %) of the number of
unmapped extendable candidates v ∈ CM (u) that satisfies the first con-
dition and the second condition, respectively, of Definition 5 in Sect. 6
among all unmapped extendable candidates visited in the search tree.
“Else” denotes the ratio of the remaining unmapped extendable can-
didates. “#pruned/deq” means the number of search tree nodes pruned
per negative or positive v

Table 10 presents the likelihood and effect of dynamic
equivalence for the core structures [3,41] of the query
graphs of Table 9. Here, the core structures are given
as the input of Table 9 experiments. For small queries
(Q10S, Q20S, Q10N , Q20N) of DBLP, “Positive” accounts
for higher percentage than that of Table 9, which indicates
that the vertices in the core structures are more likely to
become positive cells. For large queries (Q30S, Q40S, Q30N ,

Q40N) of DBLP, “Positive” accounts for lower percentage.
For every query set of COLLAB, “Else” cases are more than
80%, unlike Table 9.Meanwhile, for random-walk query sets
ofCOLLAB, the number of search tree nodes pruned per pos-

123

366 H. Kim et al.

Table 10 Likelihood and effect of dynamic equivalence for the core
structures of the query graphs of Table 9

Query Negative Positive Else #pruned/deq

DBLP 10S 0.1 44.4 55.5 4.2

20S 0.5 34.4 65.1 11.5

30S 1.1 33.7 65.2 1, 196.5

40S 22.9 18.9 58.2 2, 571.3

DBLP 10N 0.1 39.9 60.0 6.65

20N 0.2 39.9 59.9 14.7

30N 1.4 45.3 53.2 90.0

40N 2.1 32.8 65.1 745.4

COLLAB 8R 0.01 0.0 99.99 504.4

16R 0.1 0.0 99.88 99, 067.8

32R 2.4 0.0 97.6 696, 123.4

64R

COLLAB 8B 0.3 0.0 99.7 17.0

16B 6.2 0.0 93.8 5.6

32B 19.8 0.0 80.2 2.30

64B 15.2 0.0 84.8 62.77

Here, the core structures are given as the input of the experiments of
Table 9

Table 11 Size distribution of distinct cells and distinct equivalence sets
(unit: %)

COLLAB DBLP

Size Cells Eq Cells Eq

1 77.50 12.00 73.52 7.74

2 − 10 19.25 85.17 26.13 84.75

11 − 20 2.01 1.76 0.35 7.51

21 − 30 1.14 1.09 0.001

31 − 40 0.11 0.0002

41 − 50 0.0003 1.95 × 10−6

51 − 60 1.03 × 10−6 1.45 × 10−8

“Eq” below stands for equivalence sets

itive v is by up to two or three orders of magnitudes larger
than that of Table 9, which indicates that a core vertex in
a random-walk query may prune more search space than a
non-core vertex by using negative cells.
Size of Cells and Equivalence Sets. Candidate vertices in a
cell must have the same neighbors in CS, and an equivalence
set must be a subset of the cell. Then howmany vertices a cell
or an equivalence set generally contains in the real datasets?
To answer this question, we measure the size of distinct cells
and distinct equivalence sets for all the queries on COLLAB
and DBLP. For COLLAB, the average sizes of a cell and an
equivalence set are 2.12 and 3.23, respectively. For DBLP,
their sizes are 1.62 and 3.74, respectively. The average size of
an equivalence set is larger than that of a cell, because a lot of
distinct subsets of a large cell becomes equivalence sets with

(a) Yeast (b) Email

Fig. 29 Varying the degree of query graphs

size ranging 2–10, which are the majority among the sizes
of equivalence sets, whereas 1 is the majority of cell sizes.
This phenomenon is confirmed by Table 11 that shows the
distribution of cells and equivalence sets in percentage.More
than 70% of cells have size of 1 in both COLLAB and DBLP,
while more than 80% of equivalent sets have size ranging
between 2 and 10, which we can take advantage of in the
run-time pruning method. The frequency of a size generally
decreases as the size increases. In particular, 1.03× 10−6%
of cells (i.e., one cell) are in the 51-60 size range, and 1.45×
10−8% of equivalent cells (i.e., three cells) range in size from
51 to 60, which rarely happens.

7.7 Varying degree of query graphs

We conduct the performance study of query graphs with the
samenumber of vertices but different average degrees. Figure
29 shows the query processing time of query graphs with
different degrees. We extracted query graphs from each data
graph. Sparse, medium, and dense query graphs have the
average degree ≤ 3, between 3 and 6, and ≥ 6, respectively.
The query processing time decreases as the degree grows in
Yeast, but it is quite insensitive to degrees in other datasets,
which can be observed in Fig. 25 as well.

8 Conclusion

To speed up subgraph search and subgraph matching, we
introduce versatile equivalences: (i) equivalence of query
vertices; and (ii) equivalence of candidate data vertices. In
the former, we apply static equivalence of query vertices
to the matching order of backtracking. In the latter, we use
neighbor equivalence of candidate vertices to obtain dynamic
equivalence between subtrees of a search tree so that we can
prune out such redundant subtrees during backtracking. We
also suggest a filtering technique of neighbor-safety through
extended DAG-graph DP. These three techniques lead to
improved algorithms for subgraph search and subgraph
matching. Extensive experiments show that our algorithms
outperform state-of-the-art algorithms for subgraph search
or subgraph matching by up to orders of magnitude in query
processing time.

123

Fast subgraph query processing and subgraph matching 367

Our approach can be applied to directed graphs. Suppose
that we are given a directed query graph q and a directed
data graph G. Then we regard a directed query graph as an
undirected graph, from which we build a query DAG such
that each edge is labeled with 1 if a direction newly assigned
in the DAG matches the direction in the input query graph;
0 otherwise. From an edge “(u, v) with edge label x” in the
query DAG we get a directed edge (u, v) if x is 1; a directed
edge (v, u) if x is 0.

The algorithm in thepaper alreadydealswith general undi-
rected graphs (including undirected cycles) as input. Hence
it can handle cyclic directed graphs by the above transforma-
tion.

Acknowledgements Hyunjoon Kim was partly supported by Institute
of Information & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (No. 2020-
0-01373, Artificial Intelligence Graduate School Program (Hanyang
University)) and the research fund of Hanyang University (HY-
202100000003161). Kunsoo Park was supported by Institute for Infor-
mation & communications Technology Promotion (IITP) grant funded
by the Korea government (MSIT) (No. 2018-0-00551, Framework of
Practical Algorithms for NP-hard Graph Problems). Wook-Shin Han
was supported by the National Research Foundation of Korea (NRF)
grant (No. NRF-2021R1A2B5B03001551) and Institute of Information
& communications Technology Planning & Evaluation (IITP) grant
(No. 2018-0-01398).

Declarations

Conflict of interest Seok-Hee Hong works in the same university as
Alan Fekete of the editorial board. Wook-Shin Han has a conflict of
interest with Kyu-Young Whang in the editorial board.

References

1. Aberger, C.R., Lamb, A., Tu, S., Nötzli, A., Olukotun, K., Ré,
C.: Emptyheaded: A relational engine for graph processing. ACM
Trans. Datab. Syst. (TODS) 42(4), 1–44 (2017)

2. Bhattarai, B., Liu, H., Huang, H.H.: Ceci: compact embedding
cluster index for scalable subgraph matching. In: Proceedings of
the 2019 International Conference on Management of Data, pp.
1447–1462 (2019)

3. Bi, F., Chang, L., Lin, X., Qin, L., Zhang, W.: Efficient subgraph
matching by postponing cartesian products. In: Proceedings of
ACM SIGMOD, pp. 1199–1214 (2016)

4. Bonnici, V., Ferro, A., Giugno, R., Pulvirenti, A., Shasha, D.:
Enhancing graph database indexing by suffix tree structure. In:
IAPR International Conference on Pattern Recognition in Bioin-
formatics, pp. 195–203. Springer, Berlin (2010)

5. Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D., Ferro, A.: A
subgraph isomorphismalgorithmand its application to biochemical
data. BMC Bioinf. 14(7), 1–13 (2013)

6. Cannataro, M., Guzzi, P.H.: Data Management of Protein Interac-
tion Networks, vol. 17. John Wiley and Sons, New Jersey (2012)

7. Carletti, V., Foggia, P., Saggese, A., Vento, M.: Challenging the
time complexity of exact subgraph isomorphism for huge and dense

graphs with vf3. IEEE Trans. Pattern Anal. Mach. Intell. 40(4),
804–818 (2017)

8. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph
isomorphism algorithm for matching large graphs. IEEE Trans.
Pattern Anal. Mach. Intell. 26(10), 1367–1372 (2004)

9. Di Natale, R., Ferro, A., Giugno, R., Mongiovì, M., Pulvirenti, A.,
Shasha, D.: Sing: Subgraph search in non-homogeneous graphs.
BMC Bioinf. 11(1), 96 (2010)

10. Fan, W.: Graph pattern matching revised for social network analy-
sis. In: Proceedings of ICDT, pp. 8–21 (2012)

11. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide
to the Theory of NP-Completeness. W. H. Freeman and Co. (1979)

12. Giugno, R., Bonnici, V., Bombieri, N., Pulvirenti, A., Ferro, A.,
Shasha, D.: Grapes: a software for parallel searching on biolog-
ical graphs targeting multi-core architectures. PLoS ONE 8(10),
e76911 (2013)

13. Han, M., Kim, H., Gu, G., Park, K., Han, W.S.: Efficient subgraph
matching:Harmonizing dynamic programming, adaptivematching
order, and failing set together. In: Proceedings of ACM SIGMOD,
pp. 1429–1446 (2019)

14. Han, W.S., Lee, J., Lee, J.H.: Turbo iso: Towards Ultrafast and
Robust Subgraph Isomorphism Search in Large Graph Databases.
In: Proceedings of ACM SIGMOD, pp. 337–348 (2013)

15. Han, W.S., Lee, J., Pham, M.D., Yu, J.X.: igraph: a framework
for comparisons of disk-based graph indexing techniques. Proc.
VLDB Endow. 3(1–2), 449–459 (2010)

16. He, H., Singh, A.K.: Graphs-at-a-time: query language and access
methods for graph databases. In: Proceedings of ACM SIGMOD,
pp. 405–418 (2008)

17. Kankanamge, C., Sahu, S., Mhedbhi, A., Chen, J., Salihoglu, S.:
Graphflow: an active graph database. In: Proceedings of the 2017
ACM International Conference onManagement of Data, pp. 1695–
1698 (2017)

18. Katsarou, F., Ntarmos, N., Triantafillou, P.: Performance and scala-
bility of indexed subgraph query processing methods. Proc. VLDB
Endow. 8(12), 1566–1577 (2015)

19. Kim, H., Choi, Y., Park, K., Lin, X., Hong, S.H., Han, W.S.: Ver-
satile equivalences: Speeding up subgraph query processing and
subgraph matching. In: Proceedings of ACM SIGMOD, pp. 925–
937 (2021)

20. Kim, J., Shin, H., Han,W.S., Hong, S., Chafi, H.: Taming subgraph
isomorphism for rdf query processing. Proc. VLDB Endow. 8(11)
(2015)

21. Kim, K., Seo, I., Han,W.S., Lee, J.H., Hong, S., Chafi, H., Shin, H.,
Jeong, G.: Turboflux: A fast continuous subgraph matching system
for streaming graph data. In: Proceedings of ACM SIGMOD, pp.
411–426 (2018)

22. Klein,K.,Kriege,N.,Mutzel, P.: Ct-index: Fingerprint-based graph
indexing combining cycles and trees. In: Proceedings of IEEE
ICDE, pp. 1115–1126 (2011)

23. Lee, J., Han, W.S., Kasperovics, R., Lee, J.H.: An in-depth com-
parison of subgraph isomorphism algorithms in graph databases.
Proc. VLDB Endow. 6(2), 133–144 (2012)

24. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data (2014)

25. Liang, Y., Zhao, P.: Workload-aware subgraph query caching and
processing in large graphs. In: Proceedings of IEEE ICDE, pp.
1754–1757 (2019)

26. McCreesh, C., Prosser, P., Solnon, C., Trimble, J.: When sub-
graph isomorphism is really hard, and why this matters for graph
databases. J. Artif. Intell. Res. 61, 723–759 (2018)

27. McCreesh, C., Prosser, P., Trimble, J.: Heuristics and really hard
instances for subgraph isomorphism problems. In: IJCAI, pp. 631–
638 (2016)

28. McCreesh, C., Prosser, P., Trimble, J.: The glasgow subgraph
solver: using constraint programming to tackle hard subgraph iso-

123

http://snap.stanford.edu/data

368 H. Kim et al.

morphism problem variants. In: International Conference onGraph
Transformation, pp. 316–324. Springer (2020)

29. Mhedhbi, A., Salihoglu, S.: Optimizing subgraph queries by com-
bining binary and worst-case optimal joins. Proc. VLDB Endow.
12(11), 1692–1704 (2019)

30. Park, H., Kim, M.S.: Evograph: an effective and efficient graph
upscaling method for preserving graph properties. In: Proceedings
of ACM SIGKDD, pp. 2051–2059 (2018)

31. Pržulj, N., Corneil, D.G., Jurisica, I.: Efficient estimation of
graphlet frequency distributions in protein-protein interaction net-
works. Bioinformatics 22(8), 974–980 (2006)

32. Qiao, M., Zhang, H., Cheng, H.: Subgraph matching: on compres-
sion and computation. Proc. VLDB Endow. 11(2), 176–188 (2017)

33. Ren, X., Wang, J.: Exploiting vertex relationships in speeding up
subgraph isomorphism over large graphs. Proc. VLDB Endow.
8(5), 617–628 (2015)

34. Ren, X., Wang, J.: Multi-query optimization for subgraph isomor-
phism search. Proc. VLDB Endow. 10(3), 121–132 (2016)

35. Rivero, C.R., Jamil, H.M.: Efficient and scalable labeled subgraph
matching using sgmatch. Knowl. Inf. Syst. 51(1), 61–87 (2017)

36. Sahu, S., Mhedhbi, A., Salihoglu, S., Lin, J., Özsu, M.T.: The ubiq-
uity of large graphs and surprising challenges of graph processing.
Proc. VLDB Endow. 11(4), 420–431 (2017)

37. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hard-
ness: an efficient algorithm for testing subgraph isomorphism.Proc.
VLDB Endow. 1(1), 364–375 (2008)

38. Snijders, T.A., Pattison, P.E., Robins, G.L., Handcock, M.S.:
New specifications for exponential random graph models. Sociol.
Methodol. 36(1), 99–153 (2006)

39. Sun, S., Luo, Q.: Scaling up subgraph query processing with
efficient subgraph matching. In: Proceedings of IEEE ICDE, pp.
220–231 (2019)

40. Sun, S., Luo, Q.: In-memory subgraph matching: An in-depth
study. In: Proceedings of ACM SIGMOD, pp. 1083–1098 (2020)

41. Sun, S., Luo, Q.: Subgraph matching with effective matching order
and indexing. IEEE Transactions on Knowledge and Data Engi-
neering (2020)

42. Sun, S., Sun, X., Che, Y., Luo, Q., He, B.: Rapidmatch: a holistic
approach to subgraphquery processing. Proc.VLDBEndow.14(2),
176–188 (2020)

43. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM
23(1), 31–42 (1976)

44. Wang, J., Ntarmos, N., Triantafillou, P.: Graphcache: a caching
system for graph queries, pp. 13–24 (2017)

45. Wang, J., Ren, X., Anirban, S., Wu, X.W.: Correct filtering for sub-
graph isomorphism search in compressed vertex-labeled graphs.
Inf. Sci. 482, 363–373 (2019)

46. Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-
based approach. In: Proceedings of ACM SIGMOD, pp. 335–346
(2004)

47. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceed-
ings of ACM SIGKDD, pp. 1365–1374 (2015)

48. Zhang, S., Li, S., Yang, J.: GADDI: Distance index based subgraph
matching in biological networks. In: Proceedings of ACM EDBT,
pp. 192–203 (2009)

49. Zhao, P., Han, J.: On graph query optimization in large networks.
Proc. VLDB Endow. 3(1–2), 340–351 (2010)

50. Zhao, P., Yu, J.X., Philip, S.Y.: Graph indexing: Tree+ delta> =
graph. In: Proceedings of VLDB, pp. 938–949 (2007)

51. Zou, L., Chen, L., Yu, J.X., Lu,Y.:A novel spectral coding in a large
graph database. In: Proceedings of EDBT, pp. 181–192 (2008)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Fast subgraph query processing and subgraph matching via static and dynamic equivalences
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem statement
	2.2 Related work

	3 Overview of our approach
	4 Filtering by neighbor-safety
	5 Matching order based on static equivalence
	6 Run-time pruning by dynamic equivalence
	7 Performance evaluation
	7.1 Induced versus non-induced
	7.2 Subgraph search
	7.3 Subgraph matching
	7.4 Comparison with a workload-aware algorithm
	7.5 Comparison with join-based algorithms
	7.6 Effectiveness of individual techniques
	7.7 Varying degree of query graphs

	8 Conclusion
	Acknowledgements
	References

