
The VLDB Journal (2023) 32:103–121
https://doi.org/10.1007/s00778-022-00735-3

REGULAR PAPER

Ontological databases with faceted queries

Tadeusz Pankowski1

Received: 6 December 2020 / Revised: 25 November 2021 / Accepted: 10 February 2022 / Published online: 15 March 2022
© The Author(s) 2022

Abstract
The success of the use of ontology-based systems depends on efficient and user-friendly methods of formulating queries
against the ontology. We propose a method to query a class of ontologies, called facet ontologies (fac-ontologies), using a
faceted human-oriented approach. A fac-ontology has two important features: (a) a hierarchical view of it can be defined as a
nested facet over this ontology and the view can be used as a faceted interface to create queries and to explore the ontology; (b)
the ontology can be converted into an ontological database, the ABox of which is stored in a database, and the faceted queries
are evaluated against this database. We show that the proposed faceted interface makes it possible to formulate queries that
are semantically equivalent to SROIQFac, a limited version of the SROIQ description logic. The TBox of a fac-ontology
is divided into a set of rules defining intensional predicates and a set of constraint rules to be satisfied by the database. We
identify a class of so-called reflexive weak cycles in a set of constraint rules and propose a method to deal with them in the
chase procedure. The considerations are illustrated with solutions implemented in the DAFO system (data access based on
faceted queries over ontologies).

Keywords Ontological database · Faceted queries · Query building · Ontology query languages · Ontology-based data access

1 Introduction

In the last two decades, we have observed a steady increase
in the number of applications based on ontology-oriented
technologies. The reason is that ontologies provide a well-
formulated and precise knowledge specification of the con-
ceptualization of the application domain, and enrich query
answering with intensional knowledge not explicitly cap-
tured by the extensional part of the ontology

It is known that classic reasoning problems in ontologies
can be reduced to query answering problems [9]. Moreover,
in many data-intensive applications, these inference capa-
bilities are dominated by the need to respond to queries. To
meet these needs, the extensional part of the ontology is often
stored using robust and mature database technologies. Thus,
we are witnessing the synergistic combination of ontologies
and databases, which results in developing modern database
solutions such as ontology-based data access (OBDA)
[18,59,75], ontology-enhanced databases [7], ontological
databases [37], and virtual knowledge graphs (VKG) [76].

B Tadeusz Pankowski
tadeusz.pankowski@put.poznan.pl

1 Institute of Computing Science, Poznań University of
Technology, Poznan, Poland

Query and exploration tools for human-centered interac-
tion remain an important issue in ontology-based access to
data. To make a query interface easier to use, we propose
a new concept of a faceted view of the ontology in a form
of a hierarchical nested facet (as an extension of the “flat”
facet investigated in [7]). The faceted view of an ontology
depends on the intended query, whose template is provided
by the user. A relevant part of the ontology, in the form of a
spanning tree covering the query template, is produced in the
response as a faceted view. A faceted interface is a faceted
view equipped with a set of operations allowing for creating
queries, and for extending the faceted view through ontology
exploration. We propose such a set of operations that allows
to create queries with the expressive power equivalent to (a
slightly limited) SROIQ [44,48,61].

We assume that there are two sets of rules in a faceted
ontology (fac-ontology: (1) V is a set of rules defining inten-
sional predicates (views). Intensional predicates enrich the
vocabulary and are used to facilitate query formulation. (2)
C is a set of constraint rules which are expected to be satisfied
by the ABox A, i.e., they are materialized in the ABox by
means of the chase procedure.We investigate the termination
of the chase for a new class of weak cycles in C, which we
call reflexive weak cycles, and show that a chase terminates

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-022-00735-3&domain=pdf
http://orcid.org/0000-0002-8168-4365

104 T. Pankowski

in the presence of reflexive weak cycles giving a solution
(but not the universal solution). We do not consider rewriting
rules because we assume that after the chase with respect
to constraint rules, the ABox obeys all constraint rules. The
ABox is stored in a relational database.

The presented approach has been implemented and veri-
fied in the DAFO system [24,55,57].

1.1 Contribution

The novelties in this paper are as follows:

1. Defining so-called faceted ontologies (fac-ontologies)
and a concept of the faceted view over them. We use
the faceted view to propose a faceted interface to cre-
ate faceted queries over fac-ontologies. We show, that
the faceted interface allows to formulate faceted queries
equivalent (with some limitations) to queries (class
expressions) in SROIQ. Then, the query answering is
LogSpace in the size of the ABox.

2. Identifying a new class of weak cycles, called reflexive
weak cycles in the dependency graph of a class C of con-
straint rules in a fac-ontology. The proposedmodification
of the chase algorithm produces a solution, although the
universal solution does not exist.

1.2 Outline

The paper is organized as follows. In Sect. 2, we define
an ontology used as a running example, and formulate
the motivations underlying the research. The notions of
fac-ontologies and ontological databases are introduced in
Sect. 3. In Sect. 4, we define the concept of a nested facet,
which is next used to define faceted views, and faceted
interfaces over ontological databases. Faceted queries are
defined and investigated in Sect. 5. We show the relationship
between faceted queries and queries (concept expressions) in
the SROIQ description logic. Some subclasses of faceted
queries and their graphical forms created by the faceted inter-
face are presented in Sect. 6. In Sect 7, we discuss creation of
an ontological database for a given fac-ontology, in particu-
lar we investigate the problem of the termination of the chase
procedure in the presence of reflexive weak cycles. Related
work and novelties of the paper are deeply analyzed in Sect 8.
Section 9 summarizes and concludes the paper.

2 Running example andmotivations

2.1 A sample ontology BibOn

As a running example, we consider an bibliographic ontol-
ogy BibOn with the schema graph in Fig. 1. A schema

graph is a directed graph with nodes labeled by classes, and
edges labeled by properties. Unlabeled edges (with triangu-
lar arrows) denote subsumption relations between classes and
between properties. Classes are unary predicates, and prop-
erties are binary predicates. Both classes and properties are
divided into extensional and intensional ones. Extensional
predicates are materialized in the ABox, while intensional
are views defined by rules. There are two rationale behind
using intensional predicates.

1. Simplification of the syntax of rules. In most imple-
mented systems, classes and properties are restricted to being
atomic names [9]. This can be achieved by using intensional
predicates (views). For example, the intensional predicate
(class) ACMConf can be defined by the following definition
rule:

Con f erence � ∃organizer .{′ACM ′} ≡ ACMConf .

Then ACMConf is an atomic class name and its defini-
tion consists of extensional predicates Con f erence and
organizer and a constant ′ACM ′. Similarly, the definition
rule

Paper � ∃presented At .ACMConf ≡ ACMPaper

defines a subclass ACMPaper. Then ACMPaper is an inten-
sional predicate that canbeunfolded to an extensional expres-
sion. Then, for example, the subsumption ACMPaper �
Paper , abbreviates the following subsumption between
class expressions:

Paper � ∃presented At .(Con f erence �
∃organizer .{′ACM ′}) � Paper .

2. Enriching the vocabulary of the ontology. Intensional
predicates enrich the vocabulary of the ontology, thus facil-
itating the formulation of queries. They are, in fact, views
defined over extensional predicates. During query rewriting,
they are unfolded using their definitions.

In Fig. 1, extensional classes and properties are drawn
with solid lines, while intensional with dashed lines.

Below, we list some rules in the BibOn using the standard
description logic notation.

1. There are four inheritance hierarchies with uniquely
defined extensional top classes: Person, Paper, Proceed-
ings, and Conferences, respectively. They are pairwise
disjoint, e.g.,

– Person � ¬Paper .

The distinguished class Data is a class of standard data
values (strings, numbers, etc.).

123

Ontological databases with ... 105

Fig. 1 A graph of the BibOn
ontological schema

2. Subsumption and equivalences between extensional
classes and properties.

– Class subsumption: Author � Person, PUTAuthor
� Author .

– Class-driven specialization (definition of extensional
predicate): Person �∃authorO f .Paper ≡ Author .

– Value-driven specialization (definition of extensional
predicate): Author � ∃affiliation.{′PUT ′} ≡
PUTAuthor.

– Property subsumption:
correspAuthor � wri t tenBy.

3. Definitions of intensional predicates:

– Author � ∃authorOf .ACMPaper ≡ ACMAuthor.
– Con f erence � ∃countr y.{′USA′} ≡ USAConf .
– inProceed− ≡ includesPaper .
– chains of properties: inProceed ◦ ofConf ≡

presentedAt, authorO f ◦ presentedAt ≡
authorConf , authorConf ◦ confPCMember ≡
authConfPCMember.

4. Domains and ranges of properties. If P is a property, then
∃P � A specifies that the domain of P is subsumed by
A. We denote by dom(P) the least upper bound of the
set of classes subsumming ∃P . Similarly, by rng(P) we
denote the least upper bound of classes subsuming ∃P−,
e.g.,

– dom(name) = Person, rng(name) = Data,
– dom(correspAuthor) = Paper ,
– rng(correspAuthor) = Author .

5. Mandatory membership of classes (or totality of prop-
erties). A � ∃P specifies that A has the mandatory
membership in the domain of P , or that P is total on
A. Similarly, A � ∃P− says that A has the mandatory
membership in the range of P , or that P− is total on A,
e.g.,

– Person � ∃name,
– Author � ∃wri t tenBy−.

6. Functionality of properties:

– name is a functional data property: (funct name),
– inProceed is a functional object property:

(funct inProceed).

2.2 Motivation of the paper

In Fig. 2, we show a faceted query tree that formulates the
request:

“Get persons who: (a) are authors of at least ten papers
presented at ACM or IEEE conferences, and (b) are not affil-
iated at the ’PUT’ (’Poznan University of Technology’), and
(c) served PC members at conferences where they presented
their papers.”

In the faceted query tree in Fig. 2:

1. The root is labeled by the distinguished property root ,
we assume that root is reflexive universal property, i.e.,
∀x, y(root(x, y) ↔ x = y).

123

106 T. Pankowski

Fig. 2 A sample faceted query tree over the BibOn ontology

2. Every node (rectangle) is a class-node (labeled by a
class), a property-node (labeled by a property) or a
constant-node (labeled by a constant).

3. A node is labeled either by “
′′ or “�′′—the label is drawn
below the node, and the set of children is then either
disjunctive or conjunctive.

4. Nodes are labeled by: a number restriction (≥ 10), nega-
tion (¬), or local reflexivity (Self)—these labels are
drawn above the node.

5. The semantics of the query is defined by its transla-
tion to a DL SROIQ expression: ∃root .(Person �
((≥ 10)authorConf .(ACMConf
 IEEEConf) � ¬∃
affiliation. {′PUT ′}�∃authConfPCMember.Self)).Note
that ∃root . Q ≡ Q, so ∃root can be omitted.

The tree-shaped structure of a faceted query also pro-
vides a faceted view of an ontology. In order to be viewed
and queried in this way, an ontology must satisfy properties
implied by the following assumptions:

1. All the nodes connected by
 or � have a common par-
ent node, and all of them are in the same inheritance
hierarchy. The set of inheritance hierarchies is pairwise
disjoint, and each hierarchy has a unique top class (the
least upper bound). The top class is also used to compute
the negation of a query (the complement with respect to
the top class).

2. Every path of nodes in a faceted query tree is of
the form: (root, A1, . . . , Pn, An), (root, A1, . . . , Pn), or
(root, A1, . . . , Pn, an), n ≥ 1, where A, P , and a (with
subscripts) are a class, a property, or a constant, respec-
tively. This can be achieved if every class is defined as a
specialization of its superclass.

3. The set of all predicates is divided into extensional (can
occur in the ABoxA) and intensional predicates (defined
by rules). The extensional predicates are materialized by
means of a chase procedure in theABoxand in a database.

The running example and the above comments serve as a
motivation for the following research problems presented in
this paper.

1. Faceted ontologies (fac-ontologies). We identify fac-
ontologies as a class for which the proposed faceted
approach can be applied.

2. Faceted-orientedquery formulation.Wedevelop amethod
based on the faceted approach. We examine the expres-
sive power of this approach and compare it with other
faceted-oriented query systems.

3. Creating a (faceted) ontological database for answer-
ing faceted queries. We define and consider the so-called
reflexive weak cycles, and propose a method of chasing
the ABox in the presence of these cycles.

3 Ontological database

Ontologies are commonly considered as the best method to
specify conceptualizations of application domains (concep-
tual models) [8]. In a database design, a conceptual model
is presented as the entity–relationship (ER) diagram [22],
expanded entity–relationship (EER) diagram [28] or anUML
class diagram. A family of ontologies which can be used to a
formal specification of such conceptualmodels is theDL-Lite
family [8,17]. The importance and usefulness of the DL-Lite
family is testified by the fact that it is the basis of the W3C
OWL 2 QL standard [54]. In this paper, we define a class of
ontologies called faceted ontologies (fac-ontologies). In gen-
eral, from a methodological point of view, each fac-ontology
has the following properties:

1. The terminological part of the fac-ontology is a formal
specification of the conceptual schema of an application
domain created bymeans of theEERmodel. In particular,
we follow the idea of subclasses specification by means
of the specialization abstraction [28].

2. Every finite part of the terminological part of the fac-
ontology must be representable through a faceted inter-
face (Sect. 4.3). In particular, in any class hierarchy, each
subclass is a specialization of the top class of this hierar-
chy.

3.1 Faceted ontologies and ontological database

In this section, we define an ontological database. We denote
by UP = UPE ∪ UPI an infinite set of unary predicates
(classes), where UPE is a set of extensional, and UPI a set
of intensional classes. Analogously, we denote by BP =
BPE ∪ BPI an infinite set of binary predicates (properties)
consisting of a set of extensional (BPE) and intensional (BPI)
properties. Const denotes an infinite set of constants (indi-

123

Ontological databases with ... 107

vidual names). We also assume that a set of labeled nulls,
LabNull ⊆ Const, is a subset of constants, forwhich theUNA
(Unique Name Assumption) does not hold [1]. In particular,
two different labeled nulls can denote the same individual,
i.e., NI

1 = NI
2 for an interpretation I. Regular constants,

i.e., constants from Const \ LabNull, obey UNA. It means
that two different regular constants always denote different
individuals.

Data is a distinguished class of data values (strings, num-
bers, etc.). The other classes are object classes and their
instances are objects. Both data values and objects are rep-
resented by constants. Every property with the range in the
class Data is a data property; otherwise, it is an object prop-
erty.

We define now the syntax for rules.

Definition 1 Let A, P , and a be, respectively, a class, a prop-
erty, and a constant (individual name). Let:

C ::=A | ∃R | ∃R.{a} | ∃R.C | C � C,

R::=P | P−,

S:: = R | S ◦ R.

Then

1. Definition rules are rules with the syntax:

LV :: = C ≡ A | S ≡ P | dom(P) = A | rng(P) = A.

2. Constraint rules are rules built from extensional predi-
cates and conforming to the syntax:

LC :: = C � C | S � S | A � ¬A | R � ¬R | (funct S).

Definition 2 AsetClassof classes is an inheritance hierarchy
if it is a finite bounded complete partial order,

H = (�H,Class,�),

where �H ∈ Class is the least upper bound (the top class)
inH.

We will also denote by �A the top class �H of an inheri-
tance hierarchy to which belongs a class A.

Definition 3 A class A is a specialization of a class A0 in a
set of rules if the rule A0 � C ≡ A is derivable in this set,
and the syntax of C is given in Definition 1.

Definition 4 An fac-ontology with the signature Sig(O) ⊆
UP ∪ BP ∪ Const is a triple O = (V, C,A) such that:

1. V , and C are sets of rules with the syntax defined by
LV , and LC , respectively, and A is a set of facts of the
form A(a), and P(a1, a2), where A and P are extensional
predicates, and a, a1, a2 are constants.

2. The setUP of classes form a set of pairwise disjoint inher-
itance hierarchies with extensional top classes.

3. Every class A is either the top class in its inheritance
hierarchy or is a specialization of �A, denoted as �A �
C ≡ A.

Definition 5 An ontological database is a fac-ontologyO =
(V, C,A) such thatA satisfies all rules in C, i.e.,A |� C. We
denote this as Odb = (V, C,Adb).

Example 1 In the BibOn fac-ontology:

1. V can contain: Paper � ∃presentedAt.ACMCon f ≡
ACMPaper, Con f erence � ∃country.{‘USA′} ≡
USAConf , inProceed− ≡ includesPaper , inProceed◦
ofConf ≡ presentedAt.

2. C can contain: Person�∃authorO f .Paper ≡ Author ,
Author � ∃affiliation.{′PUT ′} ≡ PUTAuthor, Author
� ∃authorO f .Paper , Paper � ∃wri t tenBy.Author ,
PUTAuthor
� Author , authorO f � wri t tenBy−, Person �
¬Paper , (funct of Con f).

3.2 SROIQFac—a subset ofSROIQ

We will consider SROIQFac as a query language, which
is a subset of SROIQ [44,46,48,61]. The syntax of
SROIQFac is defined by the grammar

q :: = A | {a} | q � q | q
 q | ¬q
| ∃R | ∃R.q | (≥ k)R | (≥ k)R.q | ∃R.Self

R :: = P | P−,

(1)

where A is a class, P is a property, a is a constant, and k is
an integer, k ≥ 1.

We will use SROIQFac as a reference language for
faceted queries and assume that it satisfies the following
restrictions:

1. A nominal {a} can occur only in extensional restrictions,
i.e., in ∃R.{a}.

2. Every query q inSROIQFac has a uniquely determined
type, t ype(q), where:

t ype(A) = �A, t ype({a}) = Data,
t ype(q1 � q2) = t ype(q1) = t ype(q2),
t ype(q1
 q2) = t ype(q1) = t ype(q2),
t ype(¬q) = t ype(q),

t ype(∃R) = t ype(∃R.q) = t ype((≥ k)R) =
= t ype((≥ k)R.q) = t ype(∃R.Self) = t ype(dom(R)).

Formally, the semantics ofSROIQFac is defined in terms
of an interpretation I consisting of a non-empty set �I (the
domain of the interpretation) and an interpretation function

123

108 T. Pankowski

Table 1 Syntax and semantics of SROIQFac

Syntax Semantics

Property inversion P− {(x, y) | (y, x) ∈ PI}
Nominal {a} {aI}
Conjunction q1 � q2 qI

1 ∩ qI
2

Disjunction q1
 q2 qI
1 ∪ qI

2

Existential ∃R {x ∈ �I |∃y(x, y) ∈ RI}
Restriction ∃R.q {x ∈ �I | ∃y(y ∈ qI

∧(x, y) ∈ RI)}
(≥ k) restriction (≥ k)R {x ∈ �I | #{y ∈ �I

∧(x, y) ∈ RI} ≥ k}
(≥ k)R.q {x ∈ �I | #{y ∈ qI

∧(x, y) ∈ RI} ≥ k}
Local reflexivity ∃R.Self {x | (x, x) ∈ RI}
Negation ¬q (t ype(q))I \ qI

·I , which assigns: to every atomic class A a set AI ⊆ �I ,
to every atomic property P a binary relation PI ⊆ �I ×
�I , and to every data name a an element aI ∈ DataI .
Table 1 shows how to obtain the semantics of each compound
expression from the semantics of its parts [9,48].

Note that the semantics of the negation of q is defined
relatively to the t ype(q), i.e., to the top class (the “local
universal class”) of the inheritance hierarchy containing the
class of answers to q.

An interpretation I satisfies the subsumptions C1 � C2

and S1 � S2 if CI
1 ⊆ CI

2 and SI1 ⊆ SI2 , respectively. I
satisfies A1 � ¬A2 and R1 � ¬R2 if AI

1 ∩ AI
2 = ∅, and

RI
1 ∩ RI

2 = ∅, respectively, and satisfies (funct S) if SI is
a partial function. We say that I is a model of a TBox or an
ABox if it satisfies all subsumptions and facts in it. An ABox
A is consistent with C if A and C have a common model.
If I is a model of O, then we denote this as I |� O, or
I |� A ∪ V ∪ C.

3.3 Query answering in ontological databases

Let q by a query in SROIQFac. We denote by q(x) a
first-order form of the query q, which can be obtained using
rules proposed in [61]. A certain answer to q(x) over a fac-
ontology O = (V, C,A) is a constant a for each q(a) is
satisfied for all models of O, denoted A ∪ V ∪ C |� q(a),
or shortly O |� q(a). The set of all certain answers to q(x)
over O is denoted as q(O), or q(A∪V∪C).

IfOdb = (V, C,Adb) is an ontological database, then C is
satisfied in Adb, and is immaterial in query answering, i.e.,
the equality holds:

q(Odb) = q(Adb∪V).

To eliminate intensional predicates in q, we unfold rules
in V . Then every intensional predicate is replaced by its
extensional definition. We obtain a query q[V], in which only
extensional predicates appear, and the equality holds:

q(Odb) = q(Adb)

[V] .

In DAFO, a mapping M is used to map Odb into a rela-
tional database D = (Sch, D), where the instance D is
created from Adb, i.e., M(Adb) = D, and M is a set of
dependencies of the form:

∀x(α(x) → ∃yR(x, y)),

where α ranges over unary and binary atoms, and R is an
n-ary relation name in Sch, n ≥ 1. Additionally, we assume
that D only has data “exported” fromAdb, and each labeled
null is mapped to NULL.

The mapping M is used in the translation of q[V] into a
SQL query q[V,M] over the database D. As a result, the set
of answers to q over Odb coincides to the set of answers to
q[V,M] over the database, i.e.,

q(Odb) = q(D)

[V,M].

4 Faceted views and faceted interfaces over
ontological databases

We now propose a method of query formulation against an
ontological database Odb = (V, C,Adb). The method is
based on the idea of faceted search [70] and faceted queries
[7].

We start with a concept of the nested facet as a general-
ization of the (“flat”) facet proposed in [7].

4.1 Nested facet

In [7], a facet is defined as a pair (X ,♦�), with ♦ ∈ {�,
),
� a non-empty set, where either: (a) X = type and � is a set
of classes, or (b) X is a binary predicate (a property) and �

contains a distinguished symbol any and a set of individual
names (constants) or a set of classes. A facet of the form
(X ,��) is conjunctive, and a facet of the form (X ,
�) is
disjunctive.

We will extend the above notion of facets to nested facets,
which have the form of a tree. In this tree-oriented notation,
a facet (X ,♦�) will be written as a tree ♦X(�), where ♦X
is the labeled root, and � is a set of its children, interpreted
as a conjunctive or disjunctive set depending on ♦. Note that
a facet defined in [7] forms always a two level tree.

In commercial applications, faceted queries are usually
limited to flat facets where the flat facet corresponds to pos-

123

Ontological databases with ... 109

sible values of one data property. A query consists then of
several facets, each of which relates to a different data prop-
erty (aspect) of the searched object (e.g., price, manufacture,
size, in the case of mobile phones). We extend this approach
by introducing object properties and subsumptions between
classes and properties. This requires nested faceted queries.
The nested form of faceted queries is also due to the fact that
a faceted query is a (complex) Description Logic query, and
its syntax tree is nested.

We define a nested facet as a finite multi-level tree with at
least two levels.

Definition 6 Let A, P , and a, possibly with subscripts, be a
class, a property and a constant, respectively. Let root be a
distinguished property not in BP, and ♦ ∈ {�,
}. A nested
facet f is an expression with the syntax defined by the gram-
mar:

f :: = ♦root{u1, . . . , uk},
u :: = A | ♦A{t1, . . . , tl},
t :: = P | P{a1, . . . , am} | ♦P{u1, . . . , un}.

where k, l,m, n ≥ 1.

Every expression ♦X{Y1, . . . ,Yn}, n ≥ 0, of the category
f , u, and t is a tree with the root X and a set (possibly empty)
of subtrees, which are children of X . The tree is labeled by♦.
By default, if X ∈ BP∪{root}, then♦ =
, otherwise♦ = �,
i.e., the set of property-node children is disjunctive, while
the set of class-node children is conjunctive. P{a1, . . . , an}
abbreviates the tree
P{{a1}, . . . , {an}}. The trees A{} and
P{} are abbreviated by A and P , respectively.

Example 2 A nested facet corresponding to the sentence
“Persons who are authors of papers presented at ACM or
IEEE conferences, and affiliated in PUT”, is:

root{
�Person{

authorConf {ACMConf , IEEEConf },
affiliation.{′PUT ′}

}
},

Its graphical form is shown in Fig. 3. Note that in the graphi-
cal representation, the logical connective is drawn below the
labeled node.

Its semantics is given by the following query in
SROIQFac (a formal translation is given later on in Defi-
nition 10):

Person � (∃authorConf .(ACMConf
 IEEEConf)
�∃affiliation.{′PUT ′}).

Fig. 3 A graphical form of the nested facet in Example 2

4.2 Faceted view

If a nested facet relates to a fac-ontology, then we call it a
faceted view of this ontology. If u is a class-node of a nested
facet (Definition 6), then we denote by ρ(u) the root class
of u, i.e., ρ(♦A{t1, . . . , tn}) = A, and similarly, by ρ(t) we
denote the root property of t.

Definition 7 A nested facet f is a faceted view over an fac-
ontology O = (V, C,A) if the signature of f is in the
signature of O, and

1. If ♦root{u1, . . . , un} is in f and {ρ(u1), . . . , ρ(un)} =
{A1, . . . , An}, then all classes in {A1, . . . , An} are in the
same inheritance hierarchy, i.e., there is the unique least
upper bound (top class) of them.

2. If ♦A{t1, . . . , tn} is in f and {ρ(t1), . . . , ρ(tn)} =
{P1, . . . , Pn}, then the domain of every property Pi is
subsumed by A, i.e., dom(Pi) � A, for 1 ≤ i ≤ n.

3. If ♦P{u1, . . . , un} is in f and {ρ(u1), . . . , ρ(un)} =
{A1, . . . , An}, then every class Ai is subsumed by the
range of P , i.e., Ai � rng(P), for 1 ≤ i ≤ n.

4. If P{a1, . . . , an} is in f , then ∃x P(x, ai) is satisfied in
O, i.e., O |� ∃x P(x, ai), for 1 ≤ i ≤ n.

In contrast to a structural graph (Fig. 1) that provides
a graph-oriented view of the entire ontology, the aim of a
faceted view is to provide a tree-oriented view (a hierarchi-
cal view) of a part of this ontology relevant for the intended
query.

A faceted view over the ontology is the basis of faceted
search, where the formulation of queries proceeds over a
hierarchical view of this ontology [25,77].

4.3 Faceted interface

We show now how a faceted view over a fac-ontology can be
used to built a faceted interface supporting query formula-

123

110 T. Pankowski

tion. Intuitively, a faceted interface is a faceted view equipped
with some operational features allowing to label, extend and
narrow the view.

Definition 8 A faceted interface over a fac-ontologyO, with
a signature Sig(O) = UP ∪ BP ∪ Const, is a labeled tree
F I = (r , N , E, λ, State) rooted in r ∈ N , such that:

1. N is a set on nodes, E ⊆ N ×N is a set of edges defining
a tree rooted in r , and λ is a node labeling function (NL ⊆
N is a set of leaves):

– λ : N \ NL → {�,
} × ({root} ∪ UP ∪ BP),
– λ : NL → UP ∪ BP ∪ Const,

that assigns a pair (♦, name), ♦ ∈ {�,
}, name ∈
{root} ∪ UP ∪ BP to every non-leaf node, and a name ∈
UP ∪ BP ∪ Const to any leaf node.

2. λ defines a faceted view over O, meaning that the result
of the depth-first-search (DFS) serialization of F I is a
faceted view over O.

3. A state of each node v ∈ N is defined by the quintuple
function:

State(v) = (Sel(v), AndOr(v), PosNeg(v),

NumRestr(v), Sel f (v)),

where

– Sel(v) ∈ {ε,YES}—indicates whether v is selected
(checked) or not.

– AndOr(v) ∈ {�,
}—indicates that the set of chil-
dren of a non-leaf node v is conjunctive (�) or
disjunctive (
).

– PosNeg(v) ∈ {ε,¬}—indicates whether the subtree
rooted in v is negated (excluded) or not.

– NumRestr(v) ∈ {ε, (≥, k)}—indicates if a number
restriction is bound to a property node v.

– Sel f (v) ∈ {ε, Self }—indicates if a local reflexivity
restriction is bound to an object property node v.

In Fig. 4, there is a faceted interface in the form imple-
mented in the DAFO system. On the left-hand side, we see a
sample initial faceted interface on which a user can operate
using operations presented in the context menu shown on the
right-hand side.

A faceted interface in DAFO is implemented as a labeled
AND/OR tree such that:

1. Nodes are labeled by classes (class nodes), properties
(property nodes), and constants (constant nodes). Con-
stant nodes are visible only on demand.

2. There is a distinguished root, which is a property node
labeled by the universal reflexive property root.

Fig. 4 A sample faceted interface in the DAFO system and the context
menu containing operations on it

3. At the beginning, any class node has the black color and
the AND (“∧”) label meaning that the set of its children
is interpreted as a conjunctive set, while each property
node has the red color and the OR (“∨”) label, denoting
that the set of its children is a disjunctive set.

A user operates interactively and iteratively on a faceted
interface while building a faceted query. The user can refine
the query by operating on this interface and by browsing and
exploring the application domain modeled by the underlying
fac-ontology. The operations on a faceted interface are listed
in the context menu shown in Fig. 4.

Using the context menu, a user can set or change labels
assigned tonodes, aswell as to enlargeor reduce the interface.
The set of labels defines the state of a node. A state is a
quintuple determined by functions defined in Definition 8,
i.e., Sel(), AndOr(), PosNeg(), NumRestr(), and Sel f ().

In addition, the following operations are used to modify
the content of a faceted interface:

1. AttributeValues(v)—is applicable to data property
nodes to upload (from a database), insert, edit or remove
values of this data property.

2. Clone(v) (duplicate)—allows to clone the subtree rooted
in the indicated node. A new subtree is created and
inserted as a child of the indicated node, and the inserted
subtree is isomorphic, up to node identifiers, with the
cloned subtree. Applicable to class- and property nodes
except of the root node.

3. Explore(v)—allows to display invisible parts of the fac-
ontology and include them into the faceted interface.

123

Ontological databases with ... 111

4. RemoveALLUnchecked(v)—removes from the faceted
interface all unselected (unchecked) nodes.

A graphical form of a state of a sample faceted interface is
shown in Fig. 2. It arises from Fig. 3 by: adding one subtree
as a result of using the Explore(Person) operation, adding a
number restriction to authorO f node, negating affiliation
node, and labeling by Self the authorConfPCMember node.

Proposition 1 A faceted interface F I determines an expres-
sion F with the syntax defined by the grammar:

F :: = ♦root{U1, . . . ,Un} | ¬F,

U:: = A | ♦A({T1, . . . ,Tn}) | ¬U,

T :: = P | Self P | ♦P{U1, . . . ,Un} | P{a1, . . . , an}
| (≥ k)♦P{U1, . . . ,Un} | (≥ k)P{a1, . . . , an} | ¬T .

Proof According to Definition 8 p. (2), the DFS serializa-
tion of FI converts it to a faceted view, i.e., a nested facet
conforming to the syntax given in Definition 6. Additionally,
the subexpressions of this nested facet can be labeled by the
negation symbol (¬), number restriction (≥ k) or by the local
reflexivity symbol (Self). �

5 Faceted queries over ontological
databases

5.1 Syntax and semantics of faceted
queries—faceted normal form (FacNF) of queries

Any faceted interface in which all nodes are selected (i.e., all
unselected are removed) defines a faceted query. A faceted
interface imposes a tree-shaped structure on a faceted query
and: (a) the negation symbol precedes a single node (not a
set of nodes), (b) the set of all children of a node is: (i) either
conjunctive or disjunctive and (ii) all children are of the same
category, i.e., all are class nodes, property nodes or constant
nodes.

Definition 9 A faceted query is a faceted interface in which
every node is selected.

The semantics of a faceted query F is defined by trans-
lating it into a description logic expression. We assume that
root is the universal reflexive property with the semantics:
rootI = {(x, x) | x ∈ �I}.

Definition 10 The semantics of a faceted query F is a query
q = τ(F), where the translation function τ() is defined as:

τ(♦root{U1, . . . ,Un}) = ∃root .♦{U1, . . . ,Un} =
♦{U1, . . . ,Un},

τ (A) = A,

τ (♦A{T1, . . . , Tn}) = A � (♦{T1, . . . , Tn}),
τ (P) = ∃P,

τ (P{a1, . . . , an}) = ∃P.{a1, . . . , an},
τ (♦P{U1, . . . ,Un}) = ∃P.♦{U1, . . . ,Un}.
τ (Self P) = ∃P.Self ,
τ ((≥ k)♦P{U1, . . . ,Un}) = (≥ k)P.♦{τ(U1), . . . , τ (Un)},
τ ((≥ k)P{a1, . . . , an}) = (≥ k)P.{a1, . . . , an},
τ (¬X) = ¬τ(X),

where X denotes any (not negated) expression of categories
F , U , T (see Proposition 1).

A SROIQFac query with the syntax conforming to the
syntax of faceted queries will be called a query in a faceted
normal form (FacNF). The following proposition follows
from Definition 10.

Proposition 2 A faceted query conforms to the syntax speci-
fied by the following grammar called a faceted normal form
(FacNF):

q :: = G | ¬G
G :: = E1
 · · ·
 En | E1 � · · · � En

E :: = A | A � (D1
 · · ·
 Dn) |
A � (D1 � · · · � Dn) | ¬E

D :: = ∃P | ∃P.Self | ∃P.G | (≥ k)P.G |
∃P.{a1, . . . , an} | (≥ k)P.{a1, . . . , an} | ¬D

Example 3 The following SROIQFac queries are not in
FacNF: q1 = A1 � (A2
 A3), q2 = ∃P1.¬(A1 � A2),
q3 = ∃P2.{a}�¬A1. In Example 4, they will be transformed
into FacNFs.

5.2 Transformation ofSROIQFac into FacNF

We will show that the expressive power of the faceted query
system is equal to that of SROIQFac. To this end, we
will show that every SROIQFac query can be transformed
into a query in FacNF. This means that for any query in
SROIQFac there is a semantically equivalent query that
can be formulated using the faceted interface.

Theorem 1 Every query in SROIQFac over a fac-ontology
O = (V, C,A) can be transformed into an equivalent query
in FacNF over O.

Proof Let q be a query inSROIQFac overO.We transform
q into FacNF as follows:

123

112 T. Pankowski

1. Every class A occurring in q is replaced by the left-hand
side of its specialization (unfolding the specialization).
If O |� �A � C ≡ A, then

qspec = q.replace(A,�A � C),

and qspec arises from q by replacing A with �A �C , and
syntax of C is given in Definition 1.

2. qspec is converted into disjunctive normal form (DNF):

qdnf = dnf (qspec) = q1
 · · ·
 qm,

where qi , 1 ≤ i ≤ m is a conjunction of queries in
SROIQFac.

3. Every disjunct qi , 1 ≤ i ≤ m, containing negation of a
top class is removed from qdnf , since it evaluates to the
empty set. The reduced disjunction is:

qred = reduce(qdnf) = q1
 · · ·
 qn .

4. Every disjunct qi , 1 ≤ i ≤ n, in qred can be rewritten
into the form:

qFacNFi = t ype(qred) � (Di
1 � · · · � Di

ki),

where Di
j , 1 ≤ i ≤ ki conforms to the syntax of D

in Proposition 2. Then, qFacNFi is in FacNF, and qred ≡
qFacNFred , where qFacNFred is in FacNF, and

qFacNFred = qFacNF1
 · · ·
 qFacNFn .

5. The procedure is applied recursively to every subquery q
appearing in formulas of the form ∃P.q.

�

Example 4 Let q1, q2 and q3 be queries specified in Exam-
ple 3. Let classes A1, A2, and A3 be defined by the following
specializations:

A0 � ∃P ′
1.A

′
1 ≡ A1, A0 � ∃P ′

2.A
′
2 ≡ A2, A0 � ∃P ′

3.A
′
3 ≡

A3, where
A0 = t ype(A1) = t ype(A2) = t ype(A3) = t ype(∃P2),

A∗ = t ype(∃P1). Then:

1. Transforming q1 = A1 � (A2
 A3) into FacNF:

FacNF(q1) = A0 � (∃P ′
1.A

′
1 � ∃P ′

2.A
′
2)

A0 � (∃P ′
1.A

′
1 � ∃P ′

3.A
′
3).

2. Transforming q2 = ∃P1.¬(A1 � A2) into FacNF:

FacNF(q2) = A∗ � ∃P1.(¬A1
 ¬A2).

Fig. 5 A sample of: a a query template and b a faceted interface gen-
erated for it

3. Transforming q3 = ∃P2.{a} � ¬A1 into FacNF:

q3spec = ∃P2.{a} � ¬(A0 � ∃P ′
1.A

′
1),

q3dnf = ∃P2.{a} � ¬A0
 ∃P2.{a} � ¬∃P ′
1.A

′
1,

q3red = ∃P2.{a} � ¬∃P ′
1.A

′
1,

FacNF(q3) = A0 � (∃P2.{a} � ¬∃P ′
1.A

′
1).

6 Faceted query formulation in DAFO

6.1 Examples of query formulation

Now, we show how some representative queries can be for-
mulated in the DAFO system [24].

Below, we consider queries, some of which concern the
involvement of people in conferences—ACM conferences
and/or conferences in the USA. Thus, a user can start with
indicating the relevant classes to the intended query (as a
query template, Fig. 5a): Person as the type of the expected
answers, aswell asACMConf andUSAConf related somehow
with the Person. In response, a faceted interface is created,
(Fig. 5b). Note that a person can be connected to confer-
ences as a participant and/or as a PC member. Formulation
of a query over a faceted interface requires a sequence of
operations on this interface. Each state of a faceted interface
represents a faceted query, so operations over the interface
are transformations in a space of faceted queries.

123

Ontological databases with ... 113

Fig. 6 Query q1 (a) and its first-order syntax tree b

We will consider the following kinds of (faceted) queries:

1. Positive existential queries:

– with default conjunctive and disjunctive facets—
query q1,

– a disjunctive set is switched to a conjunctive one—
query q2,

– a subtree is cloned (duplicated) and values of some
data properties are added—query q3.

2. Queries with negation:

– query with one negation (exclusion)—query q4,
– query with double negation (equivalent to a universal
quantification)—query q5.

3. Query with a number restriction—query q6,
4. Query with a local reflexivity (a cycle)—query q7.

For every query we provide:

– a natural language version,
– a DL version in SROIQFac,
– graphical forms of faceted queries (q1)–(q7), their first-

order forms, for (q1)–(q5), and a notation involving
variables for (q6) and (q7)—all as screenshots on DAFO,

– operations on the faceted interface used to create the final
faceted query.

1. Positive existential queries

q1: “Authors of papers presented at an ACM conference or
at a conference in the USA”

q1 = Person � ∃authorConf .(ACMConf
 USAConf).

In Fig. 6a, the query is expressed as a faceted query, and in
Fig. 6b there is a first-order form of q1. The query is created
by performing the following sequence of operations on the
faceted interface in Fig. 5b:

pcMemberOf.Uncheck(); RemoveAllUnchecked().

q2: “Authors of papers presented at an ACM conference in
the USA”

q2 = Person � ∃authorConf .(ACMConf � USAConf).

Fig. 7 Query q2 (a) and its first-order syntax tree (b)

Fig. 8 Query q3 (a) and its first-order syntax tree (b)

In Fig. 7, the query is depicted as a faceted query and its
first-order form as a result of operating on the query/faceted
interface in Fig. 6a:

authorConf.SetToAND().

q3: “Authors who presented her/his papers at ACM confer-
ences in years 2014 and 2015”

q3 = Author �
∃authorConf .(ACMConf � ∃confYear.{′2014′})�
∃authorConf .(ACMConf � ∃confYear.{′2015′})

Query q3 is formulated taking Fig. 6a as a current form of
a faceted interface. The following operations are performed
on it:

USAConf.Uncheck(); ACMConf.Expand();
confYear.Check();
confYear.AttributeValue.AddValue(’2014’);
RemoveALLUnchecked();
AuthorConf.ClonSubtree();
confYear[2].AttributeValue.EditValue
(’2014’/’2015’);

A result of these operations is shown in Fig. 8.

123

114 T. Pankowski

Fig. 9 Queries q4 and q5 and their first-order syntax trees

2. Queries with negations

q4: “Authors of papers presented at ACM conferences but
NOT in the USA”

q4 = Person � ∃authorConf .(ACMConf � ¬USAConf).

q4 arises from q2 by excluding the USAConf:

USAConf.Exclude();

The result is in Fig. 9–q4(a) and q4(b). In q5, negation is used
to express a universal quantification.
q5: “Papers written only by PUTAuthors”

q5 = Paper � ¬∃writtenBy.¬PUTAuthor) =
Paper � ∀writtenBy.PUTAuthor.

Formulation of q5 requires double exclusion (double nega-
tion) (Fig. 9)—q5(a) and q5(b).

3. Queries with number restrictions

q6: “Authors participating in over ten ACM conferences in
the USA”

q6 = Person � (> 10)authorCon f .(ACMCon f
�USAConf).

The query is formulated in DAFO as shown in Fig. 10.
The argument of count(x1) indicates that x1 is tested for
the required number of distinct values. If x is connected to
more than 10 different valuations of x1, then this valuation
of x is returned as an answer. To formulate the query, we use
the query in Fig. 7a as a faceted interface and perform the
following operation on it:
authorConf.SetNumRestr.count()>10;

4. Queries with local reflexivity (looking for cycles).

q7: “Authors of papers presented at conferences where the
author was a PC member”

q7 = Person � ∃authConfPCMember.Self ,

Fig. 10 Query q6 (a), and its syntax tree (b)

Fig. 11 Query q7 (a) and its syntax tree (b)

Table 2 Expressiveness of faceted interfaces in four systems

Query DAFO BrowseRDF Sewelis SemFacet

A + + + +
q1
 q2 + − + +

q1 � q2 + + + +

q1 � ¬q2 + + + −
¬q + + + −
∃R.q, + + + +
∃R + + + +
∃R.{a} + + + +
(≥ k)∃R.q + − − +
(≥ k)∃R + − − +
∃R.Self + + + −

where:
authorConf ◦ confPCMember ≡ authConfPCMember.

The query is formulated in DAFO as shown in Fig. 11a. A
syntax tree in Fig. 11b is an intermediate form with variables
and a global variable @x that indicates objects which are
connected with themselves by the property authorConf ◦
confPCMember. The occurrences of @x determine the
equality [x = x3] saying that we are looking for objects
assigned to x and x3 that are equal.

6.2 Expressiveness of DAFO compared to other
systems

In Table 2, we compare the expressive power of four faceted
query systems: DAFO, BrowseRDF [53], Sewelis [34] and
SemFacet [7,64].

The first column in the table contains queries in
SROIQFac, which are used as reference points to inter-
pret the semantics of operations in the compared systems.

123

Ontological databases with ... 115

Since there are differences in the interpretations of some
concepts and notions (especially, negation, aggregation, and
recursion), we describe these differences in comments.

1. Disjunction and conjunction. In DAFO, each disjunction
q1
 q2, and conjunction q1 � q2, requires that q1 and q2
are of the same type.

2. NegationAnegation is computed as the complementwith
respect to a guard.

– In a negation q1 �¬q2, the guard is q1, and q1 and q2
are of the same type.

– In DAFO, a negation ¬q is guarded by the t ype(q).
– In BrowseRDF, the negation can only concern the
existence of an property. Negation is true for objects
that do not have the negated property.

– In Sewelis, the complement is computed with respect
to the set of all objects (the universal class).

3. Navigation, recursion, reachability. In all analyzed sys-
tems, existential restrictions: ∃R.q, ∃R, ∃R.{a}, are
fundamental for navigation through the underlying ontol-
ogy, where: (a) ∃R.q denotes a set of objects connected
via an object property R with objects in q, (b) ∃R denotes
a set of objects having a property R (irrespective of its
value), ∃R.{a} is a set of objects connected via a data
property R with a constant a. R can denote a property P
or its inversion P− (only for object properties). Proper-
ties can be recursively composed, expressing in this way
a (restricted) form of a recursion. In DAFO, composed
properties can be defined as chains of other properties. In
SemFacet, so called reachability atoms, Next(x, y) and
Next+(x, y) are introduced. They denote (dynamically)
a property, or a sequence of properties, leading from x to
y.

4. Aggregation. In SROIQ, an aggregation is limited to a
number restriction. We also do this in DAFO restricting
ourselves to the count() function.

5. Cycles.A reflexivity restriction ∃R.Self , denotes objects
which are connected via R with themselves. In this way,
cycles can be found. In DAFO and in Sewelis, this is
achieved by means of special variables (in DAFO pre-
fixed by @). Two different occurrences in a query of
the same variable @x indicate that a value of @x is
connected with itself by a property (possibly composed)
specified in the query.

7 Materialization of constraint rules

Given a fac-ontology O = (V, C,A), our goal is to convert
O into such an ontological databaseOdb = (V, C,Adb) that
Adb is a minimal model of A ∪ C, i.e., Adb |� A ∪ C. Such
the Adb can be obtained as the chase of A with respect to

C, Adb = chaseC(A). In other words, A is included in Adb

and C is materialized in Adb.
In general, the chase procedure can: (a) be infinite, (b) ter-

minatewith the fail, (c) produce a finite set of facts containing
A and all consequences of C. Some rules in C, namely dis-
jointness and functionality, are used to verify consistency of
the ontological database. The functionality rules can also be
used to discover somemissing values, represented by labeled
nulls.

We divide C into two subsets: C1 and C2:

1. C1 contains rules of the form: C1 � C2 and R1 � R2.
Their first-order forms are tuple-generating dependen-
cies:

– ∀x, y(ϕ(x, y) → ∃zψ(x, z)),

where x, y, z are tuples of variables and ϕ(x, y), ψ(x, z)
are conjunctions of atoms over all the given variables and
constants. These rules are used to chase new facts.

2. C2 contains disjointness rules, A1 � ¬A2, R1 � ¬R2,
and functionality rules (funct S), with first-order forms,
respectively:

– ∀x(ϕ(x) → ¬ψ(x)),
– ∀x(ϕ(x) → x1 = x2), where x1, x2 ∈ x.

These rules are mainly used to check if the chased set of
facts is consistent.

Chasing with respect to: σ = ∀x, y(ϕ(x, y) → ∃zψ(x, z))
Let ω be a valuation, ω : x ∪ y �→ Const, such that

A |� ϕ(ω(x), ω(y)). Then:

1. IfA �|� ∃zψ(ω(x), z), then as a result of applying σ toA
with valuationωwe obtain the setA′ that extendsAwith
facts A(ω′(v1)) and R(ω′(v2), ω′(v3)), where A(v1) and
R(v2, v3) occur in ψ(x, z), vi ∈ x ∪ z, for i = 1, 2, 3,
and: (a) if vi ∈ x, then ω′(vi) = ω(vi); (b) if vi ∈ z,
then ω′(vi) is a fresh labeled null N. We denote this as
A σ,ω−−→ A′.

2. IfA |� ∃zψ(ω(x), z), then σ is not applicable toA with
the valuation ω.

Chasing with respect to: σ = ∀x(ϕ(x) → ¬ψ(x)).
Let ω : x �→ Const be a valuation such that
A |� ϕ(ω(x)). Then:

1. IfA |� ψ(ω(x)), then the result of applying σ toA with

ω is “failure,” which is denoted by A σ,ω−−→ FAIL.
2. If A �|� ψ(ω(x)), then σ is not applicable to A with the

valuation ω.

Chasing with respect to: σ = ∀x(ϕ(x) → x1 = x2).

123

116 T. Pankowski

Let ω : x �→ Const be a valuation such that
A |� ϕ(ω(x)). Then,

1. if ω(x1) �= ω(x2) and neither ω(x1) nor ω(x2) is a
labeled null, then A σ,ω−−→ FAIL.

2. ifω(x1) is a labeled nullN, thenA′ is obtained fromA by
replacing every occurrence of N in A by ω(x2), denoted
by A σ,ω−−→ A′.

7.1 Termination of chase

The chase can be defined as the data exchange problem [21,
33], and can be understood as a pair (T, C), where T =
Sig(C) ∪Const is a target schema, and C is a set of target-to-
target dependencies. A solution of an instance A of T with
respect to C is an instance A′ of T such that A′ |� A ∪ C.
In general, an instanceA can have infinitely many solutions.
In particular, ifA′ is a solution for A with respect to C, then
every A′′ containing A′ is also a solution for A. A set A′ of
facts is the universal solution ofA with respect to C if (a)A′
is a solution of A, and (b) for each solution A′′ of A there
is a homomorphism h from A′ to A′′ (h is the identity on
constants). Intuitively, a universal solution contains no more
and no less information than that specified by the given data
exchange problem.

The chase procedure chaseC(A) is guaranteed to termi-
nate in polynomial time producing the universal solution for
A with respect to C if the dependency graph of C is weakly
acyclic [5,33].

Definition 11 The dependency graph, DG(C), over a set C
of constraint rules is constructed as follows: (a) for every
class A occurring in C there is a node (A, 1) in DG(C);
(b) for every property R occurring in C there are two node
(R, 1) and (R, 2) in DG(C); (c) for every rule of the form
A1 � ∃R.A2 in C there are three edges in DG(C):

– (A1, 1) → (R, 1), (R, 2) → (A2, 1) – regular edges,

– (A1, 1)
∗−→ (R, 2) – a special edge (labeled by ∗).

C is weakly acyclic if its dependency graph DG(C) does not
have any weak cycle, i.e., a cycle going through a special
edge.

Sets of constraint rules in fac-ontologies usually have a
lot of weak cycles because properties and their inverses are
usually taken into account.

Example 5 Let Ca = {σ1, σ2}, where

σ1 = Author � ∃authorO f .Paper ,
σ2 = Paper � ∃wri t tenBy.Author .

Fig. 12 The dependency graphs for Ca in Example 5 has a

weak cycle: (Author , 1)
∗−→ (authorO f , 2) −→ (Paper , 1)

∗−→
(wri t tenBy, 2) −→ (Author , 1)

The dependency graph of Ca is depicted in Fig. 12. The graph
has a weak cycle, and this leads to an infinite chase. On the
other hand, a finite solution exists, but this solution is not the
universal solution. We see that

A′ = {Author(a), authorO f (a,N1), Paper(N1),

wri t tenBy(N1, a)},

is a solution for A. However, a solution is also

A′′ = {Author(a), authorO f (a,N1), Paper(N1),

wri t tenBy(N1,N2), Author(N2), authorO f (N2,N3),

Paper(N3), wri t tenBy(N3, a)}.

However, there is no any homomorphism h : A′ → A′′ since
h is not identity on a, because h(a) = a and h(a) = N2. In
this case, the universal solution forAwith respect to C1 does
not exist.

7.2 Reflexive weak cycles

Now,we identify a class ofweak cycles in dependency graphs
and call them reflexiveweak cycles (RWC). ForRWC,wewill
modify the chase problem. Themodified chasewill terminate
with a universal solution. This universal solution is also a
solution (but not a universal solution) for the chase before
the modification.

Definition 12 Let C be a set of constraint rules and DG(C) a
dependency graph over C. A reflexive weak cycle (RWC) in
DG(C) is a cycle of the form

(A1, 1)
∗−→ (R1, 2) −→ (A2, 1)

∗−→ · · · ∗−→ (Rn, 2) −→ (A1, 1),

such that:

1. Every subpath (Ai , 1)
∗−→ (Ri , 2) −→ (Ai+1, 1) is

implied by the rule Ai � ∃Ri .Ai+1 ∈ C, 1 ≤ i ≤ n,
n ≥ 2, An+1 = A1,

2. C |� R1 ◦ · · · ◦ Rn−1 � R−
n .

123

Ontological databases with ... 117

A RWC is abbreviated as (A1, R1, A2, . . . , An, Rn, A1).

Proposition 3 Let dom(R1) = A and R1 ◦· · ·◦ Rn−1 � R−
n .

Then, A ≡ ∃(R1 ◦ · · · ◦ Rn).Self .

Proof We prove the proposition for n = 2. Let us assume
that R1 � R−

2 and dom(R1) = A.
⇒ If A(a) then for some b, R1(a, b) and R2(b, a). Therefore,
(∃(R1 ◦ R2).Self)(a).
⇐ Now, let (∃(R1 ◦ R2)Self)(c). Then, for some d, R1(c, d)

and R2(d, c). Thus, A(c).
This reasoning can easily be extended to any n > 2. �

Proposition 3 shows that the chain R1 ◦ · · ·◦ Rn of proper-
ties belonging to RWC is “local reflexive,” i.e., any object in
the domain of R1 is connected with itself via this chain. This
property justifies the term “reflexive” for the class of weak
cycles under consideration.

Example 6 Let σ1 and σ2 be defined in Example 5, and σ ′
2 =

Paper � ∃reviewedBy.Author . Let C′ = {σ1, σ2}, and
C′′ = {σ1, σ ′

2}. Then, both:
p1 = (Author , 1)

∗−→ (authorO f , 2) −→ (Paper , 1)
∗−→

(wri t tenBy, 2) −→ (Author , 1), and
p2 = (Author , 1)

∗−→ (authorO f , 2) −→ (Paper , 1)
∗−→

(reviewedBy, 2) −→ (Author , 1) are weak cycles in,
respectively, DG(C′) and DG(C′′). But only p1 isRWCsince
authorO f � wri t tenBy−.

We define a p-aware chase as a chase in the presence of a
RWC p. The aim is that the p-aware chase terminates with
a solution, although not a universal solution.

Definition 13 LetC be a set of constraint rules,A a set of facts
over Sig(C)∪Const, and p = (A1, R1, A2, . . . , An, Rn, A1)

a RWC over C. A p-aware chase of A with respect to C,
chase{p}

C (A), is a chase chaseC′(A), such thatC′ = C\{An �
∃Rn .A1}.

Intuitively, our goal is to prevent firing of the rule An �
∃Rn .A1. Instead, the rule R1 ◦ · · · ◦ Rn−1 � R−

n is applied.

Example 7 Let Cb = {σ1, σ2, σ3}, σ1, σ2 be defined in Exam-
ple 5, and σ3 = authorO f � wri t tenBy−. Then,

p = (Author , authorO f , Paper , wri t tenBy, Author)

is the weak cycle presented in Fig. 12. Because of σ3, p is
also a RWC. Let

A = {Author(a)}.

Then a p-aware chase, chase{p}
{σ1,σ2,σ3}(A), is the chase

chase{σ1,σ3}(A).

First-ordered forms of the rules involved in the chase are:

σ1 = ∀x(Author(x) → ∃y authorO f (x, y) ∧ Paper(y)),
σ3 = ∀x, y(authorO f (x, y) → wri t tenBy(y, x)).

The p-aware chase consists of the following steps:

{Author(a)} σ1,[x �→a]−−−−−→ {Author(a), authorO f (a,N1),

Paper(N1)} σ3,[x �→a,y �→N1]−−−−−−−−−−→ {Author(a),

authorO f (a,N1), Paper(N1), wri t tenBy(N1, a)} = A′.

A′ is a universal solution forA with respect to {σ1, σ3}, and
A′ is also a solution for A with respect to {σ1, σ2, σ3}, but
not a universal solution. To show that A′ is not a universal
solution for A with respect to {σ1, σ2, σ3}, let us note that,
for example,

A′′′ = {Author(a), authorO f (a,N1), Paper(N1),

wri t tenBy(N1,N2), Author(N2), authorO f (N2,N3),

Paper(N3), wri t tenBy(N3,N2), wri t tenBy(N1, a)}.

is also a solution forA with respect to {σ1, σ2, σ3}, but there
is not a homomorphism h : A′ → A′′′ preserving constants
(we have h(a) = a and h(a) = N2).

Theorem 2 Let p = (A1, R1, A2, . . . , An, Rn, A1) be a
RWC over a set C of constraint rules. Let chase{p}

C (A) =
chaseC′(A) = A′, C′ = C \ {An � ∃Rn .A1}, be a p-aware
chase. Then A′ is a universal solution for A with respect to
C′ and a solution for A with respect to C.

Proof The set C′ is weakly acyclic, so chaseC′(A) produces
a universal solution A′ for A with respect to C′. We have to
show that A′ is also a solution for A with respect to C, i.e.,
that also the removed rule, σ = An � ∃Rn .A1, holds in A′:

A′ |� An � ∃Rn .A1. (2)

Let A1 be a result of chasing just before applying the rule
σ ′ = ∀x, y((R1 ◦ · · · ◦ Rn−1)(x, y) → Rn(y, x)). Then

A1 |� {A1(a1), (R1 ◦ · · · ◦ Rn−1)(a1, an), An(an)},

for some constants a1, an . Now, the rule σ ′ is applicable.
After the application:

A1
σ ′,[x �→a1,y �→an]−−−−−−−−−−→ A1 ∪ {Rn(an, a1)} = A2,

and A2 also satisfies σ , i.e., A2 |� An � ∃Rn .A1.
The above reasoning shows that every result A′ =

chaseC′(A) of chasing that satisfies σ ′ also satisfies σ . This
proves thatA′ is a solution forAwith respect to C. However,
A′ is not a universal solution for A with respect to C, that
was shown in Example 7. �

123

118 T. Pankowski

The p-aware chase can be generalized to an arbitrary set of
RWCs. For p = (A1, R1, A2, . . . , An, Rn, A1), we denote
σ(p) = An � ∃Rn .A1.

Definition 14 Let C be a set of constraint rules, A a set of
facts over Sig(C) ∪ Const, and {p1, . . . , pk}, n ≥ 1, a set
of RWCs. A {p1, . . . , pk}-aware chase of A with respect
to C, chase{p1,...,pn}

C (A), is chaseC′(A), such that C′ = C \
{σ(p1), . . . , σ (pk)}.

8 Related work

8.1 Ontologies and databases

There is a long research tradition in investigating simi-
larities and differences between ontologies and databases
[1,13,14,49,50]. The investigations concern both the underly-
ing theories and behavior in practice. Ontologies offer richer
semantics due to the ability to represent both extensional (by
means of a set of facts) and intensional (by means of a set
of rules) knowledge. Thus, ontologies are commonly con-
sidered as the best method to specify conceptualizations of
application domains (conceptual models) [11,20,40]. How-
ever, the efficiency of query answering on ontologies is
unsatisfactory [17,37]. Databases, on the contrary, are char-
acterized by less expressive semantics but higher efficiency.
Therefore, databases based on relational or graph models
can be used to store ontological instances. Other differences
relate to the interpretation of the rules [1,50]. In particular, all
rules are interpreted as integrity constraints in databases and
as deductive rules in ontologies. To overcome the differences
in treating rules in ontologies and in databases, in [50] a con-
cept of the extended knowledge base is proposed, where the
set of rules is divided into a set of integrity constraint rules
(satisfied in the knowledge base) and a set of deductive rules
(representing intensional knowledge). Then, integrity con-
straints can be disregarded while answering positive queries
[50,51]. The combination of ontologies and databases has
found a satisfactory solution in ontology-based data access
(OBDA) [16,19,63,65,75], where the TBox of an ontology is
used as a global schema over a set of integrated databases.

An OBDA specification is a triple P ′ = (O′,M′, Sch),
where O′ = (T ,A) is an ontology, Sch is a data source
schema, and M′ is a mapping from Sch to the signature of
O′ [75]. For an instance, D of Sch, A = M′(D), and M′
is a set of source-to-target tuple-generating dependencies of
the form: ∀x, y((x, y) → α(x)), where is a conjunction
of n-ary atoms, and α is an unary or a binary atom. A query
q over O′ is rewritten with respect to T and M′ into a first-
order query over the data source. Notice that then: (a) the
rules in T are not satisfied in the data source; instead, they
are used in the first-order query rewriting and are not very

expressive, usually inDL-Lite [17] or sticky [37], (b) integrity
constraints are defined and managed in the data source man-
agement system.

In this paper, we present a DAFO approach to ontolog-
ical databases that differs from the OBDA as follows. Let
P = (Odb,M, Sch) be a DAFO specification, and P ′ =
(O′,M′, Sch),O′ = (T ,A), an OBDA specification. Then:
(a)Odb = (V, C,Adb), where T is a subset of C, T ⊆ C, and
is satisfied inAdb, as a result of the chase procedure; (b)M
is a mapping from the signature of Adb into Sch consisting
of dependencies of the form: ∀x(α(x) → ∃yR(x, y)), where
α ranges over unary and binary atoms, and R is an n-ary rela-
tion name, n ≥ 1. The inversion ofM, in the sense of Fagin
[5,32], is an OBDA mapping, (c) V is a set of rules defining
intensional predicates, i.e., predicates not occurring in Adb;
these predicates are used in query formulation and “compen-
sate” the poor expressive power of mapping dependencies in
DAFO; (d) the query rewriting inDAFO is reduced to unfold-
ing intensional predicates with their extensional definitions,
and to apply mappings in translating first-order queries into
SQL queries.

8.2 Faceted queries over ontologies

In the traditional setting, the reasoning tasks in ontologies
include satisfiability and subsumption of concept expressions
(with respect to a TBox), and instance checking (with respect
to an ABox) [9,61]. New applications of ontology-based sys-
tems require not only reasoning capabilities, but also query
answering mechanisms [7,16,37,50,69]. Moreover, in [9] it
was shown that reasoning tasks over an ontology can be
realized by means of queries. Queries over ontologies can
be expressed using different query mechanisms [2,7], from
first-order logic formulas to graph query languages, such as
SPARQL [67], Cypher [36,39,68], or Gremlin [4]. However,
such expressive languages as SPARQL are not well-suited
for end-users. Thus, we observe attempts to develop interac-
tive graphic-oriented ontology query languages such as, for
example, ViziQuer [78], SPARQLGraph [62], OptiqueVQS
[66,73], SEWASIE [10], OntoVQL [31], NL-Graphs [27],
K-search [12], which present ontology views combined with
form-based query entry interfaces. A promising alternative to
the aforementioned languages is approaches based on faceted
search resulting in faceted queries [7,70].

Faceted search has emerged as a foundation for inter-
active information browsing and retrieval and has become
increasingly prevalent in online information access systems,
particularly for e-commerce and site search [7,70–72,74].
Especially significant is combining browsing and searching
in more flexible ways to support non-professional end-users
in finding information. The implementation of the browsing
paradigm allows for exploring and expressing information
needs in interactive and iterative ways [42,72,74]. Most

123

Ontological databases with ... 119

importantly, browsing and exploring concerns both data and
metadata. Faceted queries are created interactively and iter-
atively during the faceted search.

The first systems of this kind are /facet [43] and gFacet
[42], which identify and implement the basic features of
the semantic faceted search paradigm. These two systems
operate over RDF data. The expressive power of /facet and
gFacet is low. Multiple selections are connected by a log-
ical AND and thus restrict the result set to only objects
that satisfy all selections [42]. Exploration is restricted to
a navigation during which a conjunction of constraints is
added to or removed from a dynamically created faceted
query. In gFacet [42], facets and result sets are represented
as nodes connected by directed edges labeled by seman-
tic relations between nodes in a graph visualization. More
expressive faceted navigation for RDF data was proposed in
BrowseRDF [53]. The proposed set of operators describes
faceted browsing in terms of a set of manipulations and is
defined on an RDF graph. The operators are: basic selec-
tion, existential selection, not-existential selection, join and
their inversions, and intersection. Further enrichment of the
expressive power of exploratory search was proposed in such
systems as: Sewelis [35] (allows to search for a limited form
of cycles),VisiNav [41] andOpenLinkVirtuose [30]. Faceted
search solutions are offered as commercial products by some
leading software vendors (e.g., ORACLE [52], Microsoft
[45], IBM [23] and Apache [3]) There are a large number
of implemented systems, which are mostly based on RDF/S.
About 30 faceted search systems based on RDF/S datasets
are surveyed recently in [72].

Results in [7] can be considered a milestone in the devel-
opment of the theory of faceted search systems. The authors
propose a rigorous theoretical underpinning for faceted
search in the context of RDF and OWL 2 ontology pro-
files. The expressive power of the faceted search language
considered in [7] is limited to the description logic pos-
itive existential queries (PEQ). The theory is used in the
implementation of SemFacet [6,38] and Ontop [15]. Next,
the query language in SemFacet has been extended with a
restricted form of aggregation and recursion [47,64]. A first
approach to view an ontology as a nested facet system for
human data integration was proposed in [77].

In this paper, we extend the concept of “flat” facets pro-
posed in [7] to nested facets, which are used to propose a
faceted view of fac-ontologies. A faceted view equipped with
a set of operations is defined as a faceted interface allowing
to explore the ontology and creating queries. The queries are
formulated using this graphical tree-shaped faceted interface.
This way of querying determines so-called faceted normal
form (FacNF) of queries. We prove that every expression
in SROIQ (with some limitations) can be converted into
FacNF, thus can be created using a faceted interface. Thisway
of formulating queries requires that the ontology meets cer-

tain conditions. These conditions are met by fac-ontologies,
which are proposed in this paper.

9 Conclusions and future work

In this paper, we have proposed a formal approach and a
methodology to create ontological databases with a faceted
interface treated as a builder for faceted queries. We identi-
fied a class of ontologies, called fac-ontologies, over which a
faceted human-oriented interface can be created. We have
specified conditions for the class of fac-ontologies and
defined the concept of a nested facet, which provides a hierar-
chical faceted view over fac-ontologies. A hierarchical view
with a set of operations constitutes a faceted interface used
to formulate queries on the fac-ontology. The set of rules
in the TBox consists of two sets: (a) a set V of rules defin-
ing intensional predicates, which extend the vocabulary and
enrich the expressive power of the fac-ontology, and (b) a
set C of constraint rules, which are used in the chase proce-
dure to transforma fac-ontology into an ontological database.
We show that any query in the description logic SROIQ
(with some restrictions) can be formulated using the pro-
posed faceted interface.

We see many directions for future work. (1) Transform-
ing heterogeneous data sources into a relational database.
In the DAFO approach, an ontology is mapped to a rela-
tional database. In this way, an ontological specification of
data sources based on, e.g., XML [29], JSON [26] or RDF
[60], can bemapped andmaterialized in a relational database.
Then, the integrated repository can be effectively queried
using a faceted interface. (2) Exploratory search. Our solu-
tion has a rather limited capability to exploratory search of
ontologies, which is a characteristic of faceted search sys-
tems. Therefore, it would be interesting to enrich the faceted
interface with an extended ability to navigate through ontolo-
gies with the structure unknown to the user.

The considerations in the paper are based on the DAFO
(Data Access based on Faceted queries over Ontologies),
that was implemented on the top of a commercial relational
database engine and ensures high efficiency of query answer-
ing. Some details of the implementation as well as the high
efficiency of query answering are reported in our previous
work [55,56,58].

The performance of DAFO was evaluated on the basis
of bibliographic datasets containing data on authors, papers,
proceedings, and conferences [56]. Thebasic datasetwas pre-
pared by extracting data fromDBLP 1 resources (fromXML,
HTML, and BibTex files), and enriched with data extracted
from personal and conference home pages. This basic dataset
includes data on 1907 conferences, 1853 proceedings, 3818

1 DBLP Computer Science Bibliography, http://dblp.org.

123

http://dblp.org

120 T. Pankowski

papers, 65 affiliations, and 61 authors. The dataset is orga-
nized in the form of an ontological database. The DAFO
server is written in C# with NET Core 2.2, DAFO client is
written in JavaScript, and the extensional part of the onto-
logical database is stored in SQL Server (under the license
Microsoft Imagine Premium). The total execution time con-
sists of the time of: (1) transforming the faceted query into
an extensional first-order form, (2) translating the extensional
form into an SQL query, (3) executing the SQL query. It turns
out that step (1) is themost time-consuming. The experiments
showed that the total response time is very promising and for
queries similar to the examples in Sect. 6.1 is less than 50
ms. The system is available on GitHub [24].

Acknowledgements This work was supported by the Polish Ministry
of Education and Science, grant 0311/SBAD/0710.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases.
Addison-Wesley, Reading, MA (1995)

2. Angles, R.,Arenas,M.,Barceló, P.,Hogan,A., Reutter, J.L.,Vrgoc,
D.: Foundations of modern query languages for graph databases.
ACM Comput. Surv. 50(5), 68:1-68:40 (2017)

3. Apache Solr: https://solr.apache.org/ (2021). Accessed 24 Novem-
ber 2021

4. Apache TinkerPop: http://tinkerpop.apache.org/docs/current/
reference/ (2021), Access 24 November 2021

5. Arenas,M., Barceló, P., Libkin, L.,Murlak, F.: Relational andXML
Data Exchange. Morgan & Claypool Publishers, Synthesis Lec-
tures on Data Management (2010)

6. Arenas, M., Grau, B.C., Kharlamov, E., Marciuska, S.,
Zheleznyakov,D.: Enabling Faceted Search overOWL2with Sem-
Facet. In: OWLED 2014. CEUR, vol. 1265, pp. 121–132 (2014)

7. Arenas, M., Grau, B.C., Kharlamov, E., Marciuska, S.,
Zheleznyakov, D.: Faceted search over RDF-based knowledge
graphs. J. Web Sem. 37–38, 55–74 (2016)

8. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev,M.: The
dl-lite family and relations. J. Artif. Intell. Res. 36, 1–69 (2009)

9. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Petel-
Schneider, P. (eds.): The Description Logic Handbook: Theory,
Implementation and Applications. Cambridge University Press,
Cambridge (2003)

10. Beneventano, D., Bergamaschi, S., Guerra, F., Vincini, M.: The
SEWASIE network of mediator agents for semantic search. J. UCS
13(12), 1936–1969 (2007)

11. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML
class diagrams. Artif. Intell. 168, 70–118 (2005)

12. Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli,
D.: Hybrid search: Effectively combining keywords and semantic
searches. In: ESWC. pp. 554–568 (2008)

13. Calì, A., Gottlob, G., Lukasiewicz, T., Pieris, A.: Datalog+/-: A
family of languages for ontology querying. In: Datalog. LNCS,
vol. 6702, pp. 351–368. Springer (2011)

14. Calì, A., Gottlob, G., Pieris, A.: Advanced processing for ontolog-
ical queries. PVLDB 3(1), 554–565 (2010)

15. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti,
D., Rezk, M., Rodriguez-Muro, M., Xiao, G.: Ontop: Answering
SPARQL queries over relational databases. Semantic Web 8(3),
471–487 (2017)

16. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi,
A., Rosati, R.: Ontology-based database access. In: SEBD 2007.
pp. 324–331 (2007)

17. Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.:
Tractable reasoning and efficient query answering in description
logics: the dl-lite family. J. Autom. Reason. 39(3), 385–429 (2007)

18. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati,
R.: EQL-Lite: Effective first-order query processing in description
logics. In: IJCAI. pp. 274–279 (2007)

19. Calvanese, D., Horrocks, I., Jiménez-Ruiz, E., Kharlamov, E.,
Meier, M., Rodriguez-Muro, M., Zheleznyakov, D.: On rewriting,
answering queries in OBDA systems for big data. In: OWLED.
CEUR, vol. 1080 (2013)

20. Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based rep-
resentation formalisms. J. Artif. Intell. Res. 11, 199–240 (1999)

21. ten Cate, B., Kolaitis, P.G.: Structural characterizations of schema-
mapping languages. Commun. ACM 53(1), 101–110 (2010)

22. Chen, P.P.: The entity-relationship model - toward a unified view
of data. ACM Trans. Database Syst. 1(1), 9–36 (1976)

23. Creating a faceted enterprise search application: https://www.
ibm.com/docs/en/search/faceted?scope=SS5RWK_3.0.0 (2021).
Access 24 November 2021

24. DAFO: Data Access based on Faceted queries over Ontology:
https://github.com/tpankowski/dafo (2019). Access 24 November
2021

25. Dumais, S.T.: Faceted search. In: Encyclopedia of Database Sys-
tems, pp. 1103–1109. Springer (2009)

26. ECMA-404: The JSON data interchange syntax: https://www.
ecma-international.org (2017). Access 24 November 2021

27. Elbedweihy, K., Mazumdar, S., Wrigley, S.N., Ciravegna, F.: Nl-
graphs: A hybrid approach toward interactively querying semantic
data. In: The SemanticWeb: Trends and Challenges - ESWC 2014.
pp. 565–579 (2014)

28. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems,
6th edn. Addison-Wesley, Boston (2011)

29. Extensible Markup Language (XML) 1.0 (Fifth Edition): http://
www.w3.org/TR/xml/ (2008). Access 24 November 2021

30. Faceted Browsing Tutorial, using LOD Cloud Cache data space:
http://vos.openlinksw.com/owiki/wiki/VOS/ (2019). Access 24
November 2021

31. Fadhil, A., Haarslev, V.: OntoVQL: A graphical query language
for OWL ontologies. In: DL. CEUR, vol. 250 (2007)

32. Fagin, R.: Inverting schemamappings. ACMTrans. Database Syst.
32(4), 25:1-25:53 (2007)

33. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange:
semantics and query answering. Theor. Comput. Sci. 336(1), 89–
124 (2005)

34. Ferré, S.: Expressive and scalable query-based faceted search over
SPARQL endpoints. In: ISWC. LNCS, vol. 8797, pp. 438–453.
Springer (2014)

35. Ferré, S., Hermann, A.: Semantic search: Reconciling expressive
querying and exploratory search. In: ISWC. LNCS, vol. 7031, pp.
177–192. Springer (2011)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://solr.apache.org/
http://tinkerpop.apache.org/docs/current/reference/
http://tinkerpop.apache.org/docs/current/reference/
https://www.ibm.com/docs/en/search/faceted?scope=SS5RWK_3.0.0
https://www.ibm.com/docs/en/search/faceted?scope=SS5RWK_3.0.0
https://github.com/tpankowski/dafo
https://www.ecma-international.org
https://www.ecma-international.org
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/
http://vos.openlinksw.com/owiki/wiki/VOS/

Ontological databases with ... 121

36. Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T.,
Marsault, V., Plantikow, S., Rydberg, M., Selmer, P., Taylor, A.:
Cypher: An evolving query language for property graphs. In: SIG-
MOD. pp. 1433–1445. ACM (2018)

37. Gottlob, G., Orsi, G., Pieris, A.: Query rewriting and optimization
for ontological databases. ACMTrans. Database Syst. 39(3), 25:1–
25:46 (2014)

38. Grau, B.C., Kharlamov, E., Zheleznyakov, D., Arenas, M., Mar-
ciuska, S.: On faceted search over knowledge bases. In: DL.CEUR,
vol. 1193, pp. 153–156 (2014)

39. Green, A., Guagliardo, P., Libkin, L., Lindaaker, T., Marsault, V.,
Plantikow, S., Schuster, M., Selmer, P., Voigt, H.: Updating graph
databases with cypher. VLDB 12(12), 2242–2253 (2019)

40. Gruber, T.R.: Toward principles for the design of ontologies used
for knowledge sharing? Int. J. Hum.-Comput. Stud. 43(5–6), 907–
928 (1995)

41. Harth, A.: VisiNav: A system for visual search and navigation on
web data. J. Web Sem. 8(4), 348–354 (2010)

42. Heim, P., Ertl, T., Ziegler, J.: Facet Graphs: Complex Semantic
Querying Made Easy. In: ESWC. LNCS, vol. 6088, pp. 288–302.
Springer (2010)

43. Hildebrand, M., van Ossenbruggen, J., Hardman, L.: /facet: A
browser for heterogeneous semantic web repositories. In: ISWC.
LNCS, vol. 4273, pp. 272–285. Springer (2006)

44. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible
SROIQ. In: Principles of Knowledge Representation and Reason-
ing. pp. 57–67. AAAI Press (2006)

45. How to build a facet filter in Azure Cognitive Search: https://docs.
microsoft.com/en-us/azure/search/search-filters-facets (2020).
Access 24 November 2021

46. Kazakov, Y.: An extension of complex role inclusion axioms in
the description logic SROIQ. In: IJCAR. LNCS, vol. 6173, pp.
472–486. Springer (2010)

47. Kharlamov, E., Giacomelli, L., Sherkhonov, E., Grau, B.C.,
Kostylev, E.V.,Horrocks, I.: SemFacet:Making hard faceted search
easier. In: CIKM. pp. 2475–2478. ACM (2017)

48. Krötzsch, M., Simancik, F., Horrocks, I.: A description logic
primer. CoRR abs/1201.4089 (2012), http://arxiv.org/abs/1201.
4089, Access 24 November 2021

49. Libkin, L., Sirangelo, C.: Data exchange and schema mappings
in open and closed worlds. J. Comput. Syst. Sci. 77(3), 542–571
(2011)

50. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap betweenOWL
and relational databases. J. Web Semant. 7(2), 74–89 (2009)

51. Nikolaou, C., Grau, B.C., Kostylev, E.V., Kaminski, M., Horrocks,
I.: Satisfaction and implication of integrity constraints in ontology-
based data access. In: IJCAI. pp. 1829–1835 (2019)

52. Oracle Commerce Guided Search: https://docs.oracle.com/cd/
E67226_02/Common.112/pdf/GettingStarted.pdf (2015), Access
24 November 2021

53. Oren, E., Delbru, R., Decker, S.: Extending faceted navigation for
RDF data. In: ISWC. LNCS, vol. 4273, pp. 559–572. Springer
(2006)

54. OWL2WebOntologyLanguageProfiles (SecondEdition): (2012),
www.w3.org/TR/owl2-profiles, Access 24 November 2021

55. Pankowski, T.: Exploring ontology-enhanced bibliography
databases using faceted search. In: TPDL. LNCS, vol. 10450, pp.
27–39. Springer (2017)

56. Pankowski, T.: Rewriting and Executing Faceted Queries over
Ontology-Enhanced Databases. In: KES. pp. 137–146. Procedia
Computer Science, Elsevier (2017)

57. Pankowski, T., Bak, J.: DAFO: an ontological database systemwith
faceted queries. In: ESWC Satellite Events. LNCS, vol. 11762, pp.
152–155. Springer (2019)

58. Pankowski, T., Brzykcy, G.: Data access based on faceted queries
over ontologies. In: DEXA. LNCS, vol. 9828, pp. 275–286.
Springer (2016)

59. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini,
M., Rosati, R.: Linking data to ontologies. In: Journal on Data
Semantics X, pp. 133–173. Springer-Verlag (2008)

60. Resource Description Framework (RDF) Model and Syntax Spec-
ification: (1999), www.w3.org/TR/PR-rdf-syntax/, Access 24
November 2021

61. Rudolph, S.: Foundations of description logics. In: ReasoningWeb.
Semantic Technologies for the Web of Data. LNCS, vol. 6848, pp.
76–136. Springer (2011)

62. Schweiger,D., Trajanoski, Z., Pabinger, S.: SPARQLGraph: aweb-
based platform for graphically querying biological Semantic Web
databases. BMC Bioinformat. 15(279), 1–55 (2014)

63. Sequeda, J.F., Arenas, M., Miranker, D.P.: OBDA: query rewriting
or materialization? In practice, both! In: ISWC. LNCS, vol. 8796,
pp. 535–551. Springer (2014)

64. Sherkhonov, E., Grau, B.C., Kharlamov, E., Kostylev, E.V.: Seman-
tic faceted searchwith aggregation and recursion. In: ISWC.LNCS,
vol. 10587, pp. 594–610. Springer (2017)

65. Skjæveland, M.G., Giese, M., Hovland, D., Lian, E.H., Waaler, A.:
Engineering ontology-based access to real-world data sources. J.
Web Sem. 33, 112–140 (2015)

66. Soylu, A., Giese, M., Jiménez-Ruiz, E., Kharlamov, E.,
Zheleznyakov, D., Horrocks, I.: Ontology-based end-user visual
query formulation:Why, what, who, how, andwhich?Univ. Access
Inf. Soc. 16(2), 435–467 (2017)

67. SPARQL Query Language for RDF: http://www.w3.org/TR/rdf-
sparql-query/ (2008). Access 24 November 2021

68. The Neo4j Cypher Manual v4.1: https://neo4j.com/docs/pdf/
neo4j-cypher-manual-4.1.pdf (2020). Access 24 November 2021

69. Thorne, C., Calvanese, D.: Controlled aggregate tree shaped ques-
tions over ontologies. In: FQAS. LNCS, vol. 5822, pp. 394–405.
Springer (2009)

70. Tunkelang, D.: Faceted Search. Morgan & Claypool Publishers
(2009)

71. Tzitzikas, Y., Analyti, A.: Mining the meaningful term con-
junctions from materialised faceted taxonomies: algorithms and
complexity. Knowl. Inf. Syst. 9(4), 430–467 (2006)

72. Tzitzikas, Y., Manolis, N., Papadakos, P.: Faceted exploration of
RDF/S datasets: a survey. J. Intell. Inf. Syst. 48(2), 329–364 (2017)

73. Vega-Gorgojo, G., Slaughter, L., Giese, M., Heggestøyl, S., Soylu,
A., Waaler, A.: Visual query interfaces for semantic datasets: An
evaluation study. J. Web Sem. 39, 81–96 (2016)

74. Wagner, A., Ladwig, G., Tran, T.: Browsing-oriented semantic
faceted search. In: DEXA. LNCS, vol. 6860, pp. 303–319. Springer
(2011)

75. Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A.,
Rosati, R., Zakharyaschev, M.: Ontology-based data access: A sur-
vey. In: IJCAI. pp. 5511–5519 (2018)

76. Xiao, G., Lanti, D., Kontchakov, R., Komla-Ebri, S., Kalayci, E.G.,
Ding, L., Corman, J., Cogrel, B., Calvanese, D., Botoeva, E.: The
Virtual Knowledge Graph System Ontop. In: ISWC. LNCS, vol.
12507, pp. 259–277. Springer (2020)

77. Zhang, G., Tao, S., Zeng, N., Cui, L.: Ontologies as nested facet
systems for human-data interaction. Semantic Web 11(1), 79–86
(2020)

78. Zviedris, M., Barzdins, G.: ViziQuer: A Tool to Explore and Query
SPARQL Endpoints. In: ESWC. LNCS, vol. 6644, pp. 441–445.
Springer (2011)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://docs.microsoft.com/en-us/azure/search/search-filters-facets
https://docs.microsoft.com/en-us/azure/search/search-filters-facets
http://arxiv.org/abs/1201.4089
http://arxiv.org/abs/1201.4089
https://docs.oracle.com/cd/E67226_02/Common.112/pdf/GettingStarted.pdf
https://docs.oracle.com/cd/E67226_02/Common.112/pdf/GettingStarted.pdf
www.w3.org/TR/PR-rdf-syntax/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.1.pdf
https://neo4j.com/docs/pdf/neo4j-cypher-manual-4.1.pdf

	Ontological databases with faceted queries
	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Running example and motivations
	2.1 A sample ontology BibOn
	2.2 Motivation of the paper

	3 Ontological database
	3.1 Faceted ontologies and ontological database
	3.2 mathcalSROIQFac—a subset of mathcalSROIQ
	3.3 Query answering in ontological databases

	4 Faceted views and faceted interfaces over ontological databases
	4.1 Nested facet
	4.2 Faceted view
	4.3 Faceted interface

	5 Faceted queries over ontological databases
	5.1 Syntax and semantics of faceted queries—faceted normal form (FacNF) of queries
	5.2 Transformation of mathcalSROIQFac into FacNF

	6 Faceted query formulation in DAFO
	6.1 Examples of query formulation
	6.2 Expressiveness of DAFO compared to other systems

	7 Materialization of constraint rules
	7.1 Termination of chase
	7.2 Reflexive weak cycles

	8 Related work
	8.1 Ontologies and databases
	8.2 Faceted queries over ontologies

	9 Conclusions and future work
	Acknowledgements
	References

