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Abstract
Private selection algorithms, such as the exponential mechanism, noisy max and sparse vector, are used to select items (such as
queries with large answers) from a set of candidates, while controlling privacy leakage in the underlying data. Such algorithms
serve as building blocks for more complex differentially private algorithms. In this paper we show that these algorithms can
release additional information related to the gaps between the selected items and the other candidates for free (i.e., at no
additional privacy cost). This free gap information can improve the accuracy of certain follow-up counting queries by up to
66%. We obtain these results from a careful privacy analysis of these algorithms. Based on this analysis, we further propose
novel hybrid algorithms that can dynamically save additional privacy budget.

Keywords Differential privacy · Exponential mechanism · Noisy max · Sparse vector

1 Introduction

Industry and government agencies are increasingly adopt-
ing differential privacy [18] to protect the confidentiality of
users who provide data. Current and planned major appli-
cations include data gathering by Google [7,21], Apple [43]
and Microsoft [13]; database querying by Uber [28]; and
publication of population statistics at the US Census Bureau
[2,9,26,34].

The accuracy of differentially private data releases is very
important in these applications. One way to improve accu-
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racy is to increase the value of the privacy parameter ε, known
as the privacy loss budget, as it provides a tradeoff between
an algorithm’s utility and its privacy protections. However,
values of ε that are deemed too high can subject a company
to criticisms of not providing enough privacy [42]. For this
reason, researchers invest significant effort in tuning algo-
rithms [1,11,22,29,40,47] and privacy analyses [8,20,38,40]
to provide better utility at the same privacy cost.

Differentially private algorithms are built on smaller
components called mechanisms [37]. Popular mechanisms
include the Laplace mechanism [18], geometric mechanism
[24], NoisyMax [19], sparse vector technique (SVT) [19,33]
and the exponential mechanism [36]. As we will explain in
this paper, someof thesemechanisms, such as the exponential
mechanism, Noisy Max and SVT, inadvertently throw away
information that is useful for designing accurate algorithms.
Our contribution is to present novel variants of these mech-
anisms that provide more functionality at the same privacy
cost (under pure differential privacy).

Given a set of queries, NoisyMax returns the identity (not
value) of the query that is likely to have the largest value—it
adds noise to each query answer and returns the index of the
query with the largest noisy value. The exponential mech-
anism is a replacement for Noisy Max in situations where
query answers have utility scores. Meanwhile, SVT is an
online algorithm that takes a stream of queries and a prede-
fined public threshold T . It tries to return the identities (not
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values) of the first k queries that are likely larger than the
threshold. To do so, it adds noise to the threshold. Then, as
it sequentially processes each query, it outputs “�” or “⊥”,
depending on whether the noisy value of the current query
is larger or smaller than the noisy threshold. The mechanism
terminates after k “�” outputs.

In recent work [45], using program verification tools,
Wang et al. showed that SVT can provide additional infor-
mation at no additional cost to privacy. That is, when SVT
returns “�” for a query, it can also return the gap between
its noisy value and the noisy threshold.1 We refer to their
algorithm as SVT with Gap.

Inspired by this program verification work, we propose
novel variations of exponential mechanism, SVT and Noisy
Max that add new functionality. For SVT, we show that
in addition to releasing this gap information, even stronger
improvements are possible—we present an adaptive version
that can answer more queries than before by controlling how
much privacy budget it uses to answer each query. The intu-
ition is that we would like to spend less of our privacy budget
for queries that are probably much larger than the threshold
(compared to queries that are probably closer to the thresh-
old). A careful accounting of the privacy impact shows that
this is possible. Our experiments confirm that Adaptive SVT
with Gap can answer many more queries than the prior ver-
sions [19,33,45] at the same privacy cost.

For Noisy Max, we show that it too inadvertently throws
away information. Specifically, at no additional cost to pri-
vacy, it can release an estimate of the gap between the largest
and second largest queries (we call the resulting mechanism
NoisyMaxwithGap).Wegeneralize this result toNoisyTop-
K—showing that one can release an estimate of the identities
of the k largest queries and, at no extra privacy cost, release
noisy estimates of the pairwise gaps (differences) among the
top k + 1 queries.

For exponential mechanism, we show that there is also a
concept of a gap, which can be used to test whether a non-
optimal query was returned. One of the challenges with the
exponential mechanism is that for efficiency purposes it can
use complex sampling algorithms to select the chosen can-
didate. We show that it is possible to release the noisy gap
information even if the sampling algorithms are treated as
black boxes (i.e., without access to its intermediate compu-
tations).

The extra noisy gap information opens up new direc-
tions in the construction of differentially private algorithms
and can be used to improve accuracy of certain subsequent
queries. For instance, one common task is to use Noisy Max
to select the approximate top k queries and thenuse additional

1 This was a surprising result given the number of incorrect attempts
at improving SVT based on flawed manual proofs [33] and shows the
power of automated program verification techniques.

privacy loss budget to obtain noisy answers to these queries.
We show that a postprocessing step can combine these noisy
answers with gap information to improve accuracy by up to
66% for counting queries. We provide similar applications
for the free gap information in SVT.

This paper is an extension of a conference paper [14].
For this extension we have added the following results: (a)
free gap results for the exponential mechanism, (b) free gap
results when Noisy Max and SVT are used with one-sided
noise, which improves on the accuracy reported in [14] for
two-sided noise, (c) novel hybrid algorithms that combine
SVT and Noisy Max into an offline selection procedure;
these algorithms return the identities of the approximate top-
k queries, but only if they are larger than a pre-specified
threshold. These algorithms save privacy budget if fewer than
k queries are approximately over the threshold, in which case
they also provide free estimates of the query answers. (If all k
queries are approximately over the threshold, then we obtain
information about the gaps between them).

We prove most of our results using the alignment of ran-
dom variables framework [11,33,45,46], which is based on
the following question: If we change the input to a program,
how must we change its random variables so that output
remains the same?This technique is used to prove the correct-
ness of almost all pure differential privacy mechanisms [19]
but needs to be used in sophisticated ways to prove the cor-
rectness of the more advanced algorithms [11,19,33,45,46].
Nevertheless, alignment of random variables is often used
incorrectly (as discussed by Lyu et al. [33]). Thus a sec-
ondary contribution of our work is to lay out the precise steps
and conditions that must be checked and to provide helpful
lemmas that ensure these conditions are met. The exponen-
tial mechanism does not fit in this framework and requires
its own proof techniques, which we explain in Sect. 8. To
summarize, our contributions are as follows:

1. We provide a simplified template for writing correctness
proofs for intricate differentially private algorithms.

2. Using this technique, we propose and prove the correct-
ness of two newmechanisms: Noisy Top-Kwith Gap and
Adaptive SVT with Gap.
These algorithms improve on the original versions of
NoisyMax and SVTby taking advantage of free informa-
tion (i.e., information that can be released at no additional
privacy cost) that those algorithms inadvertently throw
away. We also show that the free gap information can
be maintained even when these algorithms use one-sided
noise. This variation improves the accuracy of the gap
information.

3. We demonstrate some of the uses of the gap informa-
tion that is provided by these new mechanisms. When
an algorithm needs to use Noisy Max or SVT to select
some queries and then measure them (i.e., obtain their
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noisy answers), we show how the gap information from
our new mechanisms can be used to improve the accu-
racy of the noisy measurements. We also show how the
gap information in SVT can be used to estimate the con-
fidence that a query’s true answer really is larger than the
threshold.

4. We show that the exponentialmechanism can also release
free gap information. Noting that the free gap extensions
of Noisy Max and SVT required access to the internal
state of those algorithms, we show that this is unneces-
sary for exponential mechanism. This is useful because
implementations of exponential mechanism can be very
complex and use a variety of different sampling routines.

5. We propose two novel hybridizations of Noisy Max and
SVT. These algorithms can release the identities of the
approximate top-k queries as long as they are larger than
a pre-specified threshold. If fewer than k queries are
returned, the algorithms save privacy budget and the gap
information they release directly turns into estimates of
the query answers (i.e., the algorithm returns the query
identities and their answers for free). If k queries are
returned then the algorithms still return the gaps between
their answers.

6. We empirically evaluate the mechanisms on a variety of
datasets to demonstrate their improved utility.

In Sect. 2, we discuss related work. We present back-
ground and notation in Sect. 3. We present simplified proof
templates for randomness alignment in Sect. 4. We present
Adaptive SVT with Gap in Sect. 5 and Noisy Top-K with
Gap in Sect. 6. We present the novel algorithms that com-
bine elements of Noisy Max and SVT in 7. We present
exponential mechanism with gap algorithms in Sect. 8. We
present experiments in Sect. 9, proofs underlying the align-
ment of randomness framework in Sect. 10 and conclusions
in Sect. 11. Other proofs appear in “Appendix.”

2 Related works

Selection algorithms, such as exponential mechanism [36,
41], sparse vector technique (SVT) [19,33] and Noisy Max
[19] are used to select a set of items (typically queries)
from a much larger set. They have applications in hyperpa-
rameter tuning [11,32], iterative construction of microdata
[27], feature selection [44], frequent itemset mining [6],
exploring a privacy/accuracy tradeoff [31], data preprocess-
ing [12], etc. Various generalizations have been proposed
[5,10,31,32,41,44]. Liu and Talwar [32] and Raskhodnikova
and Smith [41] extend the exponential mechanism for arbi-
trary sensitivity queries. Beimel et al. [5] and Thakurta and
Smith [44] use the propose-test-release framework [17] to
find a gap between the best and second best queries and, if

Table 1 Noise distributions

Symbol Support Density/mass Mean Variance

Lap(β) R
1
2β exp

(− |x |
β

)
0 2β2

Exp(β) [0,∞) 1
β
exp

(− x
β

)
β β2

Geo(p) {0, 1, . . .} p(1 − p)n 1
p

1−p
p2

the gap is large enough, release the identity of the best query.
These two algorithms rely on a relaxation of differential pri-
vacy called approximate (ε, δ)-differential privacy [16] and
can fail to return an answer (in which case they return ⊥).
Our algorithmsworkwith pure ε-differential privacy. Chaud-
huri et al. [10] also proposed a largemarginmechanism (with
approximate differential privacy)which finds a large gap sep-
arating top queries from the rest and returns one of them.

There have also been unsuccessful attempts to general-
ize selection algorithms such as SVT (incorrect versions are
catalogued by Lyu et al. [33]), which has sparked innova-
tions in program verification for differential privacy (e.g.,
[3,4,45,46]) with techniques such as probabilistic coupling
[4] and a simplification based on randomness alignment
[46]. These are similar to ideas behind handwritten proofs
[11,19,33]—they consider what changes need to be made to
random variables in order to make two executions of a pro-
gram, with different inputs, produce the same output. It is a
powerful technique that is behind almost all proofs of differ-
ential privacy, but is very easy to apply incorrectly [33]. In
this paper, we state and prove a more general version of this
technique in order to prove correctness of our algorithms and
also provide the additional results that simplify the applica-
tion of this technique.

3 Background and notation

In this paper, we use the following notation. D and D′ refer to
databases. We use the notation D ∼ D′ to represent adjacent
databases.2 M denotes a randomized algorithm whose input
is a database. Ω denotes the range of M and ω ∈ Ω denotes
a specific output of M . We use E ⊆ Ω to denote a set of
possible outputs. Because M is randomized, it also relies
on a random noise vector H ∈ R

∞. This noise sequence is
infinite, but of courseM will only use a finite-length prefix of
H . Some of the commonly used noise distributions for this
vector H include the Laplace distribution, the exponential
distribution and the geometric distribution. Their properties
are summarized in Table 1.

2 The notion of adjacency depends on the application. Some papers
define it as D can be obtained from D′ by modifying one record [18]
or by adding/deleting one record [15].
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Table 2 Notation

Symbol Meaning

M Randomized algorithm

D, D′ Database

D ∼ D′ D is adjacent to D′

H = (η1, η2, . . .) Input noise vector

Ω The space of all output of M

ω A possible output; ω ∈ Ω

E A set of possible outputs; E ⊆ Ω

HD:E = HM
D:E {H | M(D, H) ∈ E}

HD:ω = HM
D:ω {H | M(D, H) = ω}

When we need to draw attention to the noise, we use
the notation M(D, H) to indicate the execution of M
with database D and randomness coming from H . Oth-
erwise we use the notation M(D). We define HM

D:E =
{H | M(D, H) ∈ E} to be the set of noise vectors that allow
M , on input D, to produce an output in the set E ⊆ Ω . To
avoid overburdening the notation, we write HD:E for HM

D:E
andHD′:E forHM

D′:E whenM is clear from the context.When
E consists of a single point ω, we write these sets as HD:ω
and HD′:ω. This notation is summarized in Table 2.

3.1 Formal privacy

Differential privacy [15,18,19] is currently the gold stan-
dard for releasing privacy-preserving information about a
database. It has a parameter ε > 0 known as the privacy
loss budget. The smaller it is, the more privacy is provided.
Differential privacy bounds the effect of one record on the
output of the algorithm (for small ε, the probability of any
output is barely affected by any person’s record).

Definition 1 (Pure differential privacy [15]) Let ε > 0. A
randomized algorithmM with output spaceΩ satisfies (pure)
ε-differential privacy if for all E ⊆ Ω and all pairs of adja-
cent databases D ∼ D′, we have

P[M(D, H) ∈ E] ≤ eε
P[M(D′, H ′) ∈ E] (1)

where the probability is only over the randomness of H .With
the notation inTable 2, the differential privacy condition from
Eq. (1) is P[HD:E ] ≤ eε

P[HD′:E ].
Differential privacy enjoys the following properties:

1. Resilience to postprocessing. If we apply an algorithm
A to the output of an ε-differentially private algorithm
M , then the composite algorithm A ◦ M still satisfies ε-
differential privacy. In otherwords, privacy is not reduced
by postprocessing.

2. Composition. If M1, M2, . . . , Mk satisfy differential pri-
vacy with privacy loss budgets ε1, . . . , εk , the algorithm
that runs all of them and releases their outputs satisfies
(
∑

i εi )-differential privacy.

Many differentially private algorithms take advantage of
the Laplace mechanism [36], which provides a noisy answer
to a vector-valued query q based on its �1 global sensitivity
Δq, defined as follows:

Definition 2 (Global sensitivity [19]) The �1 global sensitiv-
ity of a query q is Δq = supD∼D′

∥∥q(D) − q(D′)
∥∥
1 .

Theorem 1 (Laplace mechanism [18]) Given a privacy loss
budget ε, consider the mechanism that returns q(D) + H,
where H is a vector of independent random samples from the
Lap(Δq/ε) distribution. This Laplace mechanism satisfies ε-
differential privacy.

Other kinds of additive noise distributions that can be used
in place of Laplace in Theorem 1 include discrete Laplace
[24] (when all query answers are integers or multiples of a
common base) and Staircase [23].

In some cases, queries may have additional structure, such
as monotonicity, which can allow algorithms to provide pri-
vacy with less noise (such as one-sided noisy max [19]).

Definition 3 (Monotonicity) A list of queries q = (q1, q2,
. . .) with numerical values is monotonic if for all pair of
adjacent databases D ∼ D′ we have either ∀i : qi (D) ≤
qi (D′), or ∀i : qi (D) ≥ qi (D′).

Monotonicity is a natural property that is satisfied by
counting queries—when a person is added to a database, the
value of each query either stays the same or increases by 1.

4 Randomness alignment

To establish that the algorithms we propose are differentially
private, we use an idea called randomness alignment that
previously had been used to prove the privacy of a variety
of sophisticated algorithms [11,19,33] and incorporated into
verification/synthesis tools [3,45,46]. While powerful, this
technique is also easy to use incorrectly [33], as there are
many technical conditions that need to be checked. In this
section, we present the results (namely Lemma 1) that sig-
nificantly simplify this process and make it easy to prove the
correctness of our proposed algorithms.

In general, to prove ε-differential privacy for an algo-
rithm M , one needs to show P[M(D, H) ∈ E] ≤
eε
P[M(D′, H ′) ∈ E] for all pairs of adjacent databases

D ∼ D′ and sets of possible outputs E ⊆ Ω . In our notation,
this inequality is represented as P[HD:E ] ≤ eε

P[HD′:E ].
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Establishing such inequalities is often done with the help of
a function φD,D′ , called a randomness alignment (there is a
function φD,D′ for every pair D ∼ D′), which maps noise
vectors H into noise vectors H ′ so that M(D′, H ′) produces
the same output as M(D, H). Formally,

Definition 4 (Randomness alignment) Let M be a random-
ized algorithm. Let D ∼ D′ be a pair of adjacent databases.
A randomness alignment is a function φD,D′ : R∞ → R

∞
such that

1. The alignment does not output invalid noise vectors (e.g.,
it cannot produce negative numbers for random variables
that should have the exponential distribution).

2. For all H on which M(D, H) terminates, M(D, H) =
M(D′, φD,D′(H)).

Example 1 Let D be a database that records the salary of
every person, which is guaranteed to be between 0 and 100.
Let q(D) be the sum of the salaries in D. The sensitivity of q
is thus 100. Let H = (η1, η2, . . . ) be a vector of independent
Lap(100/ε) random variables. The Laplace mechanism out-
puts q(D) + η1 (and ignores the remaining variables in H ).
For every pair of adjacent databases D ∼ D′, one can define
the corresponding randomness alignmentφD,D′(H) = H ′ =
(η′

1, η
′
2, . . . ), where η′

1 = η1 + q(D) − q(D′) and η′
i = ηi

for i > 1. Note that q(D) + η1 = q(D′) + η′
1, so the output

of M remains the same.

In practice, φD,D′ is constructed locally (piece by piece)
as follows. For each possible output ω ∈ Ω , one defines a
function φD,D′,ω that maps noise vectors H into noise vec-
tors H ′ with the following properties: if M(D, H) = ω then
M(D′, H ′) = ω (that is, φD,D′,ω only cares about what it
takes to produce the specific output ω). We obtain our ran-
domness alignment φD,D′ in the obvious way by piecing
together the φD,D′,ω as follows: φD,D′(H) = φD,D′,ω∗(H),
where ω∗ is the output of M(D, H). Formally,

Definition 5 (Local alignment) LetM be a randomized algo-
rithm. Let D ∼ D′ be a pair of adjacent databases and
ω a possible output of M . A local alignment for M is
a function φD,D′,ω : HD:ω → HD′:ω (see notation in
Table 2) such that for all H ∈ HD:ω, we have M(D, H) =
M(D′, φD,D′,ω(H)).

Example 2 Continuing the setup from Example 1, consider
themechanismM1 that, on input D, outputs� if q(D)+η1 ≥
10,000 (i.e., if the noisy total salary is at least 10,000) and
⊥ if q(D) + η1 < 10,000. Let D′ be a database that differs
from D in the presence/absence of one record. Consider the
local alignments φD,D′,� and φD,D′,⊥ defined as follows.
φD,D′,�(H) = H ′ = (η′

1, η
′
2, . . . ) where η′

1 = η1 + 100
and η′

i = ηi for i > 1; and φD,D′,⊥(H) = H ′′ =

(η′′
1 , η

′′
2 , . . .) where η′′

1 = η1 − 100 and η′′
i = ηi for i > 1.

Clearly, if M1(D, H) = � then M1(D′, H ′) = � and if
M1(D, H) =⊥ then M1(D′, H ′′) =⊥. We piece these two
local alignments together to create a randomness alignment
φD,D′(H) = H∗ = (η∗

1, η
∗
2, . . . ) where:

η∗
1 =

{
η1 + 100 if M(D, H) = � (i.e. q(D) + η1 ≥ 10,000)

η1 − 100 if M(D, H) = ⊥ (i.e. q(D) + η1 < 10,000)

η∗
i = ηi for i > 1.

Special properties of alignments Not all alignments can be
used to prove differential privacy. In this section we dis-
cuss some additional properties that help prove differential
privacy.We first make twomild assumptions about themech-
anismM : (1) it terminateswith probability3 one and (2) based
on the output of M , we can determine how many random
variables it used. The vast majority of differentially private
algorithms in the literature satisfy these properties.

We next define two properties of a local alignment:
whether it is acyclic and what its cost is.

Definition 6 (Acyclic) Let M be a randomized algorithm.
Let φD,D′,ω be a local alignment for M . For any H =
(η1, η2, . . .), let H ′ = (η′

1, η
′
2, . . .) denote φD,D′,ω(H). We

say that φD,D′,ω is acyclic if there exists a permutation π and

piecewise differentiable functions ψ
( j)
D,D′,ω such that:

η′
π(1) = ηπ(1) + constant that only depends on D, D′, ω

η′
π( j) = ηπ( j) + ψ

( j)
D,D′,ω(ηπ(1), . . . , ηπ( j−1)) for j ≥ 2

Essentially, a local alignment φD,D′,ω is acyclic if there is
some ordering of the variables so that η′

j is the sum of η j and
a function of the variables that came earlier in the ordering.
The local alignments φD,D′,� and φD,D′,⊥ from Example 2
are both acyclic. (In general, each local alignment function
is allowed to have its own specific ordering and differen-
tiable functions ψ

( j)
D,D′,ω.) The pieced-together randomness

alignment φD,D′ itself need not be acyclic.

Definition 7 (Alignment cost) Let M be a randomized algo-
rithm that uses H as its source of randomness. Let φD,D′,ω
be a local alignment for M . For any H = (η1, η2, . . .), let
H ′ = (η′

1, η
′
2, . . .) denote φD,D′,ω(H). Suppose each ηi

is generated independently from a distribution fi with the
property that, for some αi , ln(

fi (x)
fi (y)

) ≤ |x−y|
αi

for all x, y
in the domain of fi , then the cost of φD,D′,ω is defined as:
cost(φD,D′,ω) = ∑

i

∣∣ηi − η′
i

∣∣ /αi . Distributions that we use
in this paper (see Table 1) with this property include the
Laplace (i.e., Lap(αi )), exponential (i.e., Exp(αi )), and geo-
metric (i.e., Geo(1 − e−1/αi )).

3 That is, for each input D, there might be some random vectors H for
which M does not terminate, but the total probability of these vectors
is 0, so we can ignore them.
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The following lemma uses those properties to establish
that M satisfies ε-differential privacy.

Lemma 1 Let M be a randomized algorithm with input ran-
domness H = (η1, η2, . . . ). If the following conditions are
satisfied, then M satisfies ε-differential privacy.

1. M terminates with probability 1.
2. The number of random variables used by M can be deter-

mined from its output.
3. Each ηi is generated independently from a distribution

fi with the property that ln( fi (x)/ fi (y)) ≤ |x − y| /αi

for all x, y in the domain of fi .
4. For every D ∼ D′ and ω there exists a local alignment

φD,D′,ω that is acyclic with cost(φD,D′,ω) ≤ ε.
5. For each D ∼ D′ the number of distinct local alignments

is countable. That is, the set {φD,D′,ω | ω ∈ Ω} is count-
able (i.e., for many choices of ω we get the same exact
alignment function).

We defer the proof to Sect. 10.

Example 3 Consider the randomness alignment φD,D′ from
Example 1. We can define all of the local alignments
φD,D′,ω to be the same function: φD,D′,ω(H) = φD,D′(H).
Clearly cost(φD,D′,ω) = ∑∞

i=0
ε

100

∣
∣η′

i − ηi
∣
∣ = ε

100∣∣q(D′) − q(D)
∣∣ ≤ ε. For Example 2, there are two acyclic

local alignments φD,D′� and φD,D′⊥, both have cost =
100 · ε

100 = ε. The other conditions in Lemma 1 are trivial to
check. Thus both mechanisms satisfy ε-differential privacy
by Lemma 1.

5 Improving sparse vector

In this section we propose an adaptive variant of SVT that
can answer more queries than both the original SVT [19,33]
and the SVT with Gap of Wang et al. [45]. We explain how
to tune its privacy budget allocation. We further show that
using other types of random noise, such as exponential and
geometric random variables, in place of the Laplace, makes
the free gap information more accurate at the same cost to
privacy. Finally, we discuss how the free gap information can
be used for improved utility of data analysis.

5.1 Adaptive SVT with Gap

The sparse vector technique (SVT) is designed to solve
the following problem in a privacy-preserving way: given a
stream of queries (with sensitivity 1), find the first k queries
whose answers are larger than a public threshold T . This
is done by adding noise to the queries and threshold and
finding the first k queries whose noisy answers exceed the

noisy threshold. Sometimes this procedure creates a feeling
of regret—if these k queries are much larger than the thresh-
old, we could have used more noise (hence consumed less
privacy budget) to achieve the same result. In this section, we
show that sparse vector can be made adaptive—so that it will
probably use more noise (less privacy budget) for the larger
queries. This means if the first k queries are very large, it will
still have privacy budget left over to find additional queries
that are likely to be over the threshold. Adaptive SVT is
shown in Algorithm 1.

Algorithm 1: Adaptive SVT with Gap. The hyper-
parameter θ ∈ (0, 1) controls the budget allocation
between threshold and queries.

input : q: a list of queries of global sensitivity 1
D: database, ε: privacy budget, T : threshold
k: minimum number of above-threshold

queries algorithm is able to output
1 function AdaptiveSparse (q, D, T , k, ε):
2 ε0 ← θε; ε1 ← (1 − θ)ε/k; ε2 ← ε1/2

3 σ ← 2
√
2/ε2 // std dev of Lap(2/ε2)

4 η ← Lap(1/ε0); T̃ ← T + η

5 cost ← ε0
6 foreach i ∈ {1, · · · , len(q)} do
7 ξi ← Lap(2/ε2); q̃i ← qi (D) + ξi
8 ηi ← Lap(2/ε1); q̂i ← qi (D) + ηi

9 if q̃i − T̃ ≥ 2σ then
10 output: (�, q̃i −T̃ , bud_used = ε2)
11 cost ← cost + ε2

12 else if q̂i − T̃ ≥ 0 then
13 output: (�, q̂i −T̃ , bud_used = ε1)
14 cost ← cost + ε1

15 else
16 output: (⊥, bud_used = 0)

17 if cost > ε − ε1 then break

The main idea behind this algorithm is that, given a target
privacy budget ε and an integer k, the algorithm will cre-
ate three budget parameters: ε0 (budget for the threshold),
ε1 (baseline budget for each query) and ε2 (smaller alterna-
tive budget for each query, ε2 < ε1). The privacy budget
allocation between threshold and queries is controlled by a
hyperparameter θ ∈ (0, 1) on Line 2. These budget parame-
ters are used as follows. First, the algorithm adds Lap(1/ε0)
noise to the threshold and consumes ε0 of the privacy budget.
Then, when a query comes in, the algorithm first adds a lot
of noise (i.e., Lap(2/ε2)) to the query. The first “if” branch
checks if this value is much larger than the noisy threshold
(i.e., checks if the gap is ≥ 2σ for some4 σ ). If so, then it
outputs the following three items: (1) �, (2) the noisy gap,
and (3) the amount of privacy budget used for this query

4 In our algorithm, we set σ to be the standard deviation of the noise
distribution.
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(which is ε2). The use of alignments will show that failing
this “if” branch consumes no privacy budget. If the first “if”
branch fails, then the algorithm adds more moderate noise
(i.e., Lap(2/ε1)) to the query answer. If this noisy value is
larger than the noisy threshold, the algorithm outputs: (1′)
�, (2′) the noisy gap, and (3′) the amount of privacy bud-
get consumed (i.e., ε1). If this “if” condition also fails, then
the algorithm outputs: (1′′) ⊥ and (2′′) the privacy budget
consumed (0 in this case).

To summarize, there is a one-time cost for adding noise
to the threshold. Then, for each query, if the top branch suc-
ceeds the privacy budget consumed is ε2, if themiddle branch
succeeds, the privacy cost is ε1, and if the bottom branch suc-
ceeds, there is no additional privacy cost. These properties
can be easily seen by focusing on the local alignment—if
M(D, H) produces a certain output, howmuch does H need
to change to get a noise vector H ′ so that M(D′, H ′) returns
the same exact output.

Local alignment To create a local alignment for each pair
D ∼ D′, let H = (η, ξ1, η1, ξ2, η2, . . .) where η is the
noise added to the threshold T , and ξi (resp. ηi ) is the noise
that should be added to the i th query qi in Line 7 (resp.
Line 8), if execution ever reaches that point. We view the
output ω = (w1, . . . , ws) as a variable-length sequence
where each wi is either ⊥ or a nonnegative gap (we omit
the � as it is redundant), together with a tag ∈ {0, ε1, ε2}
indicating which branch wi is from (and the privacy budget
consumed to output wi ). Let Iω = {i | tag(wi ) = ε2} and
Jω = {i | tag(wi ) = ε1}. That is, Iω is the set of indexes
where the output is a gap from the top branch, and Jω is
the set of indexes where the output is a gap from the mid-
dle branch. For H ∈ HD:ω define φD,D′,ω(H) = H ′ =
(η′, ξ ′

1, η
′
1, ξ

′
2, η

′
2, . . .) where

η′ = η + 1,

(ξ ′
i , η′

i ) =

⎧
⎪⎨

⎪⎩

(ξi + 1 + qi − q ′
i , ηi ), i ∈ Iω

(ξi , ηi + 1 + qi − q ′
i ), i ∈ Jω

(ξi , ηi ), otherwise

(2)

In other words, we add 1 to the noise that was added to the
threshold. (Thus if the noisy q(D) failed a specific branch,
the noisy q(D′) will continue to fail it because of the higher
noisy threshold.) If a noisy q(D) succeeded in a specific
branch, we adjust the query’s noise so that the noisy version
of q(D′) will succeed in that same branch.

Lemma 2 Let M be the Adaptive SVT with Gap algorithm.
For all D ∼ D′ and ω, the functions φD,D′,ω defined above
are acyclic local alignments for M. Furthermore, for every
pair D ∼ D′, there are countably many distinct φD,D′,ω.

Proof Pick an adjacent pair D ∼ D′ and an ω =
(w1, . . . , ws). For a given H = (η, ξ1, η1, . . . ) such that

M(D, H) = ω, let H ′ = (η′, ξ ′
1, η

′
1, . . . ) = φD,D′,ω(H).

Suppose M(D′, H ′) = ω′ = (w′
1, . . . , w

′
t ). Our goal is to

show ω′ = ω. Choose an i ≤ min(s, t).

– If i ∈ Iω, then by (2) we have

q ′
i + ξ ′

i − (T + η′)
= q ′

i + ξi + 1 + qi − q ′
i − (T + η + 1)

= qi + ξi − (T + η) ≥ σ.

This means the first “if” branch succeeds in both execu-
tions and the gaps are the same. Therefore, w′

i = wi .
– If i ∈ Jω, then by (2) we have

q ′
i + ξ ′

i − (T + η′) = q ′
i + ξi − (T + η + 1)

= q ′
i − 1 + ξi − (T + η) ≤ qi + ξi − (T + η) < σ,

q ′
i + η′

i − (T + η′) = q ′
i + ηi + 1

+ qi − q ′
i − (T + η + 1)

= qi + ηi − (T + η) ≥ 0.

The first inequality is due to the sensitivity restriction:∣∣qi − q ′
i

∣∣ ≤ 1 �⇒ q ′
i − 1 ≤ qi . These two equations

mean that the first “if” branch fails and the second “if”
branch succeeds in both executions, and the gaps are the
same. Hence w′

i = wi .
– If i /∈ Iω ∪ Jω, then by a similar argument we have

q ′
i + ξ ′

i − (T + η′) ≤ qi + ξi − (T + η) < σ,

q ′
i + η′

i − (T + η′) ≤ qi + ηi − (T + η) < 0.

Hence both executions go to the last “else” branch and
w′
i = (⊥, 0) = wi .

Therefore for all 1 ≤ i ≤ min(s, t), we have w′
i = wi .

That is, either ω′ is a prefix of ω, or vice versa. Let q be
the vector of queries passed to the algorithm and let len(q)
be the number of queries it contains (which can be finite or
infinity). By the termination condition of Algorithm 1 we
have two possibilities.

1. s = len(q): in this case there is still enough privacy bud-
get left after answering s − 1 above-threshold queries,
and we must have t = len(q) too because M(D′, H ′)
will also run through all the queries. (It cannot stop until
it has exhausted the privacy budget or hits the end of the
query sequence.)

2. s < len(q): in this case the privacy budget is exhausted
after outputting ws and we must also have t = s.

Thus t = s and hence ω′ = ω. The local alignments are
clearly acyclic (e.g., use the identity permutation). Note that
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φD,D′,ω only depends on ω through Iω and Jω (the sets
of queries whose noisy values were larger than the noisy
threshold). There are only countably many possibilities for
Iω and Jω and thus countably many distinct φD,D′,ω. ��
Alignment cost and privacy Now we establish the alignment
cost and the privacy property of Algorithm 1.

Theorem 2 The Adaptive SVT with Gap satisfies ε-differen-
tial privacy.

Proof First, we bound the cost of the alignment function
defined by Eq. (2). We use the ε0, ε1, ε2 and ε defined in
Algorithm 1. From (2) we have

cost(φD,D′,ω)

= ε0
∣∣η′ − η

∣∣+
∞∑

i=1

(ε2

2

∣∣ξ ′
i − ξi

∣∣+ ε1

2

∣∣η′
i − ηi

∣∣
)

= ε0 +
∑

i∈Iω

ε2

2

∣
∣1 + qi − q ′

i

∣
∣+

∑

i∈Jω

ε1

2

∣
∣1 + qi − q ′

i

∣
∣

≤ ε0 + ε2 |Iω| + ε1 |Jω| ≤ ε.

The first inequality is from the assumption on sensitivity:∣∣1 + qi − q ′
i

∣∣ ≤ 1 + ∣∣qi − q ′
i

∣∣ ≤ 2. The second inequality
is from loop invariant on Line 17: ε0 + ε2 |Iω| + ε1 |Jω| =
cost ≤ ε − ε1 + max(ε1, ε2) = ε.

Conditions 1, 2, 3 of Lemma 1 are trivial to check, 4 and
5 follow from Lemma 2 and the above bound on cost. Thus
Theorem 2 follows from Lemma 1. ��

Algorithm 1 can be easily extended with multiple addi-
tional “if” branches. For simplicity we do not include such
variations. In our setting, ε2 = ε1/2 so, theoretically, if
queries are very far from the threshold, our adaptive version
of Sparse Vector will be able to find twice as many of them as
the non-adaptive version. Lastly, if all queries are monotonic
queries, then Algorithm 1 can be further improved: We can
use Lap(1/ε2) in Line 7 and Lap(1/ε1) noises in 8 instead.5

Choice of θ . We can optimize the budget allocation between
threshold noise and query noises by following the methodol-
ogy of [33], which is equivalent tominimizing the variance of
the gap between a noisy query and the threshold. If themajor-
ity of gaps are expected to be returned from the top branch,
then we optimize Var(q̃i − T̃ ) = 2

ε20
+ 8

ε22
= 2

ε2
( 1
θ2

+ 16k2

(1−θ)2
).

This variance attains itsminimumvalue of 2(1+ 3
√
16k2)3/ε2

5 In the case of monotonic queries, if ∀i : qi ≥ q ′
i , then the alignment

changes slightly: We set η′ = η (the random variable added to the
threshold) and set the adjustment to noise in the winning “if” branches
to qi − q ′

i instead of 1 + qi − q ′
i . (Hence cost terms become |qi − q ′

i |
instead of |1 + qi − q ′

i |.) If ∀i : qi ≤ q ′
i then we keep the original

alignment but in the cost calculation we note that |1+qi −q ′
i | ≤ 1 (due

to the monotonicity and sensitivity).

when θ = 1/(1+ 3
√
16k2). If on the other hand the majority

of gaps are expected to be returned from the middle branch,
then we optimize Var(q̂i − T̃ ) = 2

ε20
+ 8

ε21
= 2

ε2
( 1
θ2

+ 4k2

(1−θ)2
).

In this case, the minimum value is 2(1 + 3
√
4k2)3/ε2 when

θ = 1/(1 + 3
√
4k2). If all queries are monotone, then the

optimal variance further reduces to 2(1 + 3
√
4k2)3/ε2 in the

top branch when θ = 1/(1+ 3
√
4k2), and 2(1+ 3

√
k2)3/ε2 in

the middle branch when θ = 1/(1 + 3
√
k2).

These allocation strategies also extend to SVT with Gap
(originally proposed in [45]). SVT with Gap can be obtained
by removing the first branch of Algorithm 1 (Line 9 through
11) or setting σ = ∞. For reference, we show its pseudocode
as Algorithm 2. In [45], θ is set to 0.5, which is suboptimal.
The optimal value is θ = 1/(1 + 3

√
4k2).

Algorithm 2: SVT with Gap [45]
input : same as Algorithm 1
1 function GapSparse (q, D, T , k, ε):
2 ε0 ← θε; ε1 ← (1 − θ)ε/k;
3 η ← Lap(1/ε0); T̃ ← T + η

4 cost ← ε0
5 foreach i ∈ {1, · · · , len(q)} do
6 ηi ← Lap(2/ε1); q̃i ← qi (D) + ηi

7 if q̃i − T̃ ≥ 0 then
8 output: (�, q̃i −T̃ , bud_used = ε1)
9 cost ← cost + ε1

10 else
11 output: (⊥, bud_used = 0)

12 if cost > ε − ε1 then break

5.2 Using exponential or geometric noise

In this section, we show that Adaptive SVT with Gap also
satisfies differential privacy if the Laplace noise is replaced
by the exponential distribution or the geometric distribution
(when query answers are guaranteed to be integers). Both of
these are one-sided distributions that result in a gap estimate
with lower variance (see Table 1 for information about those
distributions). The same result carries over to SVT with Gap
[45].

Exponential noiseWhen using random noise from the expo-
nential distribution,weneed to subtract off the expected value
of the noise from the queries and threshold. Wemake the fol-
lowing changes to Lines 3, 4, 7 and 8 of Algorithm 1:

3 σ ← 2/ε2 //std dev of Exp(2/ε2)

4 η ← Exp(1/ε0); T̃ ← T + η − 1/ε0

7 ξi ← Exp(2/ε2); q̃i ← qi (D) + ξi − 2/ε2

8 ηi ← Exp(2/ε1); q̂i ← qi (D) + ηi − 2/ε1
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In more detail, the changes are:

1. Line 3: the algorithm changes the value of σ from
2
√
2/ε2, the standard deviation of Lap(2/ε2), to 2/ε2,

the standard deviation of Exp(2/ε2). It is worth repeating
that the one-sided exponential noise results in a reduction
of variance.

2. Lines 4, 7 and 8: change Laplace noises to exponential
noises of the same scale, and then subtracts the expected
values of the noises.

If all queries are counting queries, we further replace ε1 and
ε2 in Line 3, 7 and 8 with 2ε1 and 2ε2 respectively.

Geometric noise When all queries have integer values (e.g.,
counting queries), we could utilize geometric noise to ensure
that the gap is also an integer. To do sowemake the following
changes to Algorithm 1:

3 σ ← e
ε2
4 /
(
e

ε2
2 − 1

)
//std dev of Geo

(
1 − e− ε2

2
)

4 η ← Geo
(
1 − e−ε0

); T̃ ← T + η − 1/
(
1 − e−ε0

)

7 ξi ← Geo
(
1 − e− ε2

2
); q̃i ← qi (D) + ξi − 1/

(
1 − e− ε2

2
)

8 ηi ← Geo
(
1 − e− ε1

2
); q̂i ← qi (D) + ηi − 1/

(
1 − e− ε1

2
)

If all queries are counting queries, we further replace ε1 and
ε2 in Line 3, 7 and 8 with 2ε1 and 2ε2 respectively.

Local alignment and privacy The alignment in Eq. 2 for the
Adaptive SVT with Gap with Laplace noise also works for
both exponential noise and geometric noise, because η′−η =
1 and ξ ′

i −ξi , η
′
i−ηi ∈ {0, 1 + qi − q ′

i

}
. The value 1+qi −q ′

i
is always ≥ 0 and is an integer when qi , q ′

i are integers.
Recall that if f (x) is the probability density function

of Exp(β), then ln f (x)
f (y) ≤ 1

β
|x − y|. Similarly, if g(x) is

the probability mass function of Geo(p), then ln g(x)
g(y) =

ln p(1−p)x

p(1−p)y ≤ − ln(1 − p) |x − y|. Therefore, our choice of
the parameters ensures that the alignment cost is the same
as that of Laplace noise, which is bounded by ε. Thus both
variants are ε-differentially private.

Choice of θ . As before, we choose the θ that minimizes
the variance of the gap to make the result most accurate.
Note that exponential distribution has half the variance of
the Laplace distribution of the same scale. Thus, when expo-
nential noise is used, the minimum variance of the gap is
(1+ 3

√
16k2)3/ε2 in the top branchwhen θ = 1/(1+ 3

√
16k2),

and (1+ 3
√
4k2)3/ε2 in the middle branch when θ = 1/(1+

3
√
4k2). If all queries aremonotone, then the optimal variance

further reduces to (1 + 3
√
4k2)3/ε2 in the top branch when

θ = 1/(1+ 3
√
4k2), and (1+ 3

√
k2)3/ε2 in the middle branch

when θ = 1/(1 + 3
√
k2).

Since the geometric distribution is the discrete analogue
of the exponential distribution, the above results apply to
geometric noise as well. For example, when all queries are

Fig. 1 The blue dots are values of θmin = argmin( eθε

(eθε−1)2
+

e(1−θ)ε/k

(e(1−θ)ε/k−1)2
) for k from 1 to 50. The orange curve is the function

θ = 1/(1 + 3
√
k2) (colour figure online)

counting queries and geometric noise is used, then Var(q̂i −
T̃ ) = eε0

(eε0−1)2
+ eε1

(eε1−1)2
= eθε

(eθε−1)2
+ e(1−θ)ε/k

(e(1−θ)ε/k−1)2
in the

middle branch. The variance of the gap, albeit complicated,
is a convex function of θ on (0, 1). We used the LBFGS
algorithm [39] from SciPy to find the θ where the variance is
minimum, and found that those values are almost the same
as those for exponential noise (see Fig. 1). Therefore, we can
use the budget allocation strategy for exponential noise as
the strategy for geometric noise too.

5.3 Utilizing gap information

When SVT with Gap or Adaptive SVT with Gap returns a
gap γi for a query qi , we can add to it the public threshold
T . This means γi + T is an estimate of the value of qi (D).
We can ask two questions: how can we improve the accuracy
of this estimate and how can we be confident that the true
answer qi (D) is really larger than the threshold T ?

Lower confidence interval Recall that the randomness in the
gap in Adaptive SVT with Gap (Algorithm 1) is of the form
ηi − η where η and ηi are independent zero mean Laplace
variables with scale 1/ε0 and 1/ε∗, where ε∗ is either ε1 or
ε2, depending on the branch. The random variable ηi −η has
the following lower tail bound:

Lemma 3 For any t ≥ 0 we have

P(ηi − η ≥ −t) =
⎧
⎨

⎩
1 − ε20e

−ε∗t−ε2∗e−ε0 t

2(ε20−ε2∗)
ε0 �= ε∗

1 − ( 2+ε0t
4

)
e−ε0t ε0 = ε∗

For proof see “Appendix.” For any confidence level, say
95%, we can use this result to find a number t0.95 such that
P((ηi − η) ≥ −t0.95) = 0.95. This is a lower confidence
bound, so that the true value qi (D) is ≥ our estimated value
γi + T minus t0.95 with probability 0.95.
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Improving accuracy To improve accuracy, one can split the
privacy budget ε in half. The first half ε′ ≡ ε/2 can be used
to run SVT with Gap (or Adaptive SVT with Gap) and the
second half ε′′ ≡ ε/2 can be used to provide an independent
noisymeasurement of the selected queries (i.e., if we selected
k queries, we add Lap(k/ε′′) noise to each one). Denote the k
selected queries by q1, . . . , qk , the noisy gaps by γ1, . . . , γk
and the independent noisy measurements by α1, . . . , αk . The
noisy estimates can be combined togetherwith the gaps to get
improved estimates βi of qi (D) in the standard way (inverse-
weighting by variance):

βi =
(

αi
Var(αi )

+ γi+T
Var(γi )

)/( 1
Var(αi )

+ 1
Var(γi )

)
.

Note that Var(βi )
Var(αi )

= Var(γi )
Var(αi )+Var(γi )

< 1.

As discussed in Sect. 5.1, the optimal budget alloca-
tion between threshold noise and query noises within SVT
with Gap is the ratio 1: 3

√
4k2. Under this setting, we have

Var(γi ) = 8(1 + 3
√
4k2)3/ε2. Also, we know Var(αi ) =

8k2/ε2. Therefore, E(|βi−qi |2)
E(|αi−qi |2) = Var(βi )

Var(αi )
= (1+ 3√

4k2)3

(1+ 3√
4k2)3+k2

.

Since limk→∞ (1+ 3√
4k2)3

(1+ 3√
4k2)3+k2

= 4
5 , the improvement in accu-

racy approaches 20% as k increases. For monotonic queries,
the optimal budget allocation within SVT with Gap is 1 :
3
√
k2. Thenwe have Var(γi ) = 8(1+ 3

√
k2)3/ε2 and therefore

Var(βi )
Var(αi )

= (1+ 3√
k2)3

(1+ 3√
k2)3+k2

which is close to 50%when k is large.

When the algorithm uses exponential noise, the variance of
the gap further reduces to Var(γi ) = 4(1 + 3

√
k2)3/ε2 and

therefore Var(βi )
Var(αi )

= (1+ 3√
k2)3

(1+ 3√
k2)3+2k2

which is close to a 66%

reduction of mean squared errors when k is large. Our exper-
iments in Sect. 9 confirm this improvement.

6 Improving report noisy max

In this section, we present novel variations of the Noisy Max
mechanism [19]. Given a list of queries with sensitivity 1, the
purpose of Noisy Max is to estimate the identity (i.e., index)
of the largest query. We show that, in addition to releasing
this index, it is possible to release a numerical estimate of
the gap between the values of the largest and second largest
queries. This extra information comes at no additional cost
to privacy, meaning that the original Noisy Max mechanism
threwawayuseful information. This result can be generalized
to the setting in which one wants to estimate the identities
of the top k queries—we can release (for free) all of the
gaps between each top k query and the next best query (i.e.,
the gap between the best and second best queries, the gap
between the second and third best queries, etc.). When a user

subsequently asks for a noisy answer to each of the returned
queries, we show how the gap information can be used to
reduce squared error by up to 66% (for counting queries).

6.1 Noisy Top-K with Gap

Our proposed Noisy Top-Kwith Gapmechanism is shown in
Algorithm 3. (The function argmaxc returns the top c items.)
We can obtain the classical noisy max algorithm [19] from
it by setting k = 1 and throwing away the gap informa-
tion (the boxed items on Lines 6 and 7). The Noisy Top-K
with Gap algorithm takes as input a sequence of n queries
q1, . . . , qn , each having sensitivity 1. It adds Laplace noise to
each query. It returns the indexes j1, . . . , jk of the k queries
with the largest noisy values in descending order. Further-
more, for each of these top k queries q ji , it releases the noisy
gap between the value of q ji and the value of the next best
query. Our key contribution in this section is the observation
that these gaps can be released for free. That is, the classical
Top-K algorithm, which does not release the gaps, satisfies
ε-differential privacy. But, our improved version has exactly
the same privacy cost yet is strictly better because of the extra
information it can release.

Algorithm 3: Noisy Top-K with Gap
input: q: a list of n queries of global sensitivity 1

D: database, k: # of indexes, ε: privacy budget
1 function NoisyTopK (q, D, k, ε):
2 foreach i ∈ {1, · · · , n} do
3 ηi ← Lap(2k/ε); q̃i ← qi (D) + ηi

4 ( j1, . . . , jk+1) ← argmaxk+1 (̃q1, . . . , q̃n)
5 foreach i ∈ {1, · · · , k} do
6 gi ← q̃ ji − q̃ ji+1 // i th gap

7 return (( j1 , g1 ), . . . , ( jk , gk ))

We emphasize that keeping the noisy gaps hidden does
not decrease the privacy cost. Furthermore, this algorithm
gives estimates of the pairwise gaps between any pair of the
k queries it selects. For example, suppose we are interested
in estimating the gap between the ath largest and bth largest
queries (wherea < b ≤ k). This is equal to

∑b−1
i=a gi because:∑b−1

i=a gi = ∑b−1
i=a (q̃ ji − q̃ ji+1) = q̃ ja − q̃ jb and hence its

variance is Var(q̃ ja − q̃ jb ) = 16k2/ε2.
The original Noisy Top-Kmechanism satisfies ε-differen-

tial privacy. In the special case that all the qi are counting
queries then it satisfies ε/2-differential privacy [19]. We will
show the same properties for Noisy Top-K with Gap. We
prove the privacy property in this section and then in Sect. 6.3
we show how to use this gap information.

Local alignment To prove the privacy of Algorithm 3, we
need to create a local alignment function for each possible

123



Free gap estimates from the exponential mechanism, sparse vector, noisy max and related… 33

pair D ∼ D′ and output ω. Note that our mechanism uses
precisely n random variables. Let H = (η1, η2, . . . ) where
ηi is the noise that should be added to the i th query. We view
the output ω = (( j1, g1), . . . , ( jk, gk)) as k pairs where in
the i th pair ( ji , gi ), the first component ji is the index of i th
largest noisy query and the second component gi is the gap
in noisy value between the i th and (i + 1)th largest noisy
queries. As in prior work [19], we will base our analysis on
continuous noise so that the probability of ties among the top
k + 1 noisy queries is 0. Thus each gap is positive: gi > 0.

Let Iω = { j1, . . . , jk} and Ic
ω = {1, . . . , n} \ Iω, i.e., Iω

is the index set of the k largest noisy queries selected by the
algorithm and Ic

ω is the index set of all unselected queries.
For H ∈ HD:ω define φD,D′,ω(H) = H ′ = (η′

1, η
′
2, . . .) as

η′
i =
⎧
⎨

⎩

ηi i ∈Ic
ω

ηi +qi −q ′
i +max

l∈Ic
ω

(q ′
l +ηl)−max

l∈Ic
ω

(ql+ηl) i ∈Iω
(3)

The idea behind this local alignment is simple: We want
to keep the noise of the losing queries the same (when the
input is D or its neighbor D′). But, for each of the k selected
queries, we want to align its noise to make sure it wins by
the same amount when the input is D or its neighbor D′.

Lemma 4 Let M be the Noisy Top-K with Gap algorithm.
For all D ∼ D′ and ω, the functions φD,D′,ω defined above
are acyclic local alignments for M. Furthermore, for every
pair D ∼ D′, there are countably many distinct φD,D′,ω.

Proof Given D ∼ D′ and ω = (( j1, g1), . . . , ( jk, gk)), for
any H = (η1, η2, . . . ) such that M(D, H) = ω, let H ′ =
(η′

1, η
′
2, . . . ) = φD,D′,ω(H). We show that M(D′, H ′) = ω.

Since φD,D′,ω is identity on components i ∈ Ic
ω, we have

maxl∈Ic
ω
(q ′

l + η′
l) = maxl∈Ic

ω
(q ′

l + ηl). From (3) we have
that when i ∈ Iω,

η′
i = ηi + qi − q ′

i + max
l∈Ic

ω

(q ′
l + ηl) − max

l∈Ic
ω

(ql + ηl)

�⇒ q ′
i + η′

i − max
l∈Ic

ω

(q ′
l + ηl) = qi

+ ηi − max
l∈Ic

ω

(ql + ηl)

�⇒ q ′
i + η′

i − max
l∈Ic

ω

(q ′
l + η′

l) = qi

+ ηi − max
l∈Ic

ω

(ql + ηl)

So, for the kth selected query, (q ′
jk

+ η′
jk
) − maxl∈Ic

ω
(q ′

l +
η′
l) = (q jk +η jk )−maxl∈Ic

ω
(ql +ηl) = gk > 0. This means

on D′ the noisy query with index jk is larger than the best of
the unselected noisy queries by the same margin as it is on
D. Furthermore, for all 1 ≤ i < k, we have

(
q ′
ji + η′

ji

)
−
(
q ′
ji+1

+ η′
ji+1

)

=
(
q ji + η ji + max

l∈Ic
ω

(q ′
l + ηl) − max

l∈Ic
ω

(ql + ηl)

)

−
(
q ji+1 + η ji+1 + max

l∈Ic
ω

(q ′
l + ηl) − max

l∈Ic
ω

(ql + ηl)

)

= (
q ji + η ji

)− (
q ji+1 + η ji+1

) = gi > 0.

In other words, the query with index ji is still the i th largest
query on D′ by the samemargin. Therefore,M(D′, H ′) = ω.

The local alignments are clearly acyclic (any permutation
that puts Ic

ω before Iω does the trick). Also, note that φD,D′,ω
only depends on ω through Iω (the indexes of the k largest
queries). There are n queries and therefore

(n
k

) = n!
(n−k)!k!

distinct φD,D′,ω. ��
Alignment cost and privacy To establish the alignment cost,
we need the following lemma.

Lemma 5 Let (x1, . . . , xm), (x ′
1, . . . , x

′
m) ∈ R

m be such that
∀i, ∣∣xi − x ′

i

∣∣ ≤ 1. Then
∣∣maxi (xi ) − maxi (x ′

i )
∣∣ ≤ 1.

Proof Let s be an index that maximizes xi and let t be an
index that maximizes x ′

i . Without loss of generality, assume
xs ≥ x ′

t . Then xs ≥ x ′
t ≥ x ′

s ≥ xs − 1. Hence
∣
∣xs − x ′

t

∣
∣ =

xs − x ′
t ≤ xs − (xs − 1) = 1.

Theorem 3 The Noisy Top-K with Gap mechanism satis-
fies ε-differential privacy. If all of the queries are counting
queries, then it satisfies ε/2-differential privacy.

Proof First we bound the cost of the alignment function
defined in (3). Recall that the ηi ’s are independent Lap(2k/ε)
random variables. By Definition 7

cost(φD,D′,ω) =
∞∑

i=1

∣∣η′
i − ηi

∣∣ ε

2k

= ε

2k

∑

i∈Iω

∣
∣∣∣qi − q ′

i + max
l∈Ic

ω

(q ′
l + ηl) − max

l∈Ic
ω

(ql + ηl)

∣
∣∣∣ .

By the global sensitivity assumption we have
∣∣qi − q ′

i

∣∣ ≤
1. Apply Lemma 5 to the vectors (ql + ηl)l∈Ic

ω
and (q ′

l +
ηl)l∈Ic

ω
, we have

∣∣maxl∈Ic
ω
(q ′

l + ηl) − maxl∈Ic
ω
(ql + ηl)

∣∣ ≤
1. Therefore,

∣∣∣∣qi − q ′
i + max

l∈Ic
ω

(q ′
l + ηl) − max

l∈Ic
ω

(ql + ηl)

∣∣∣∣

≤ ∣∣qi − q ′
i

∣∣+
∣∣∣∣max
l∈Ic

ω

(q ′
l + ηl) − max

l∈Ic
ω

(ql + ηl)

∣∣∣∣

≤ 1 + 1 = 2.

Furthermore, if q is monotonic, then

– either ∀i : qi ≤ q ′
i in which case qi − q ′

i ∈ [−1, 0] and
maxl∈Ic

ω
(q ′

l + ηl) − maxl∈Ic
ω
(ql + ηl) ∈ [0, 1],
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– or ∀i : qi ≥ q ′
i in which case qi − q ′

i ∈ [0, 1] and
maxl∈Ic

ω
(q ′

l + ηl) − maxl∈Ic
ω
(ql + ηl) ∈ [−1, 0].

In both cases we have qi − q ′
i + maxl∈Ic

ω
(q ′

l + ηl) −
maxl∈Ic

ω
(ql + ηl) ∈ [−1, 1] so |qi − q ′

i + maxl∈Ic
ω
(q ′

l +
ηl) − maxl∈Ic

ω
(ql + ηl)| ≤ 1. Therefore,

cost(φD,D′,ω)

= ε

2k

∑

i∈Iω

∣
∣∣∣qi − q ′

i + max
l∈Ic

ω

(q ′
l + ηl) − max

l∈Ic
ω

(ql + ηl)

∣
∣∣∣

≤ ε

2k

∑

i∈Iω

2

⎛

⎝or
ε

2k

∑

i∈Iω

1 if q is monotonic

⎞

⎠

= ε

2k
· 2 |Iω|

(
or

ε

2k
· |Iω| if q is monotonic

)

= ε (or ε/2 if q is monotonic) .

Conditions 1 through 3 of Lemma 1 are trivial to check, 4
and 5 follow from Lemma 4 and the above bound on cost.
Therefore, Theorem 3 follows from Lemma 1. ��

6.2 Noisy top-K with exponential noise

The original noisy max algorithm also works with one-sided
exponential noise [19]with smaller variance than the Laplace
noise. In this subsection, we show that this result extends to
the Noisy Top-K with Gap algorithm by simply changing
Line 3 of Algorithm 3 to ηi ← Exp(2k/ε) and privacy is
maintainedwhile the variance of the gap decreases. However,
the proof relies on a different local alignment.

Local alignment The alignment used in Sect. 6.1 will not
work here because it might set our noise random vari-
ables to negative numbers. Thus we need a new alignment.
As before, let H = (η1, η2, . . . ) where ηi is the noise
that should be added to the i th query. We view the output
ω = (( j1, g1), . . . , ( jk, gk)) as k pairs where in the i th pair
( ji , gi ), the first component ji is the index of i th largest noisy
query and the second component gi > 0 is the gap in noisy
value between the i th and (i + 1)th largest noisy queries.

Let Iω = { j1, . . . , jk} and Ic
ω = {1, . . . , n} \ Iω, i.e., Iω

is the index set of the k largest noisy queries selected by the
algorithmandIc

ω is the index set of all unselected queries. For
H ∈ HD:ω we will use φD,D′,ω(H) = H ′ = (η′

1, η
′
2, . . .) to

refer to the aligned noise. In order to define the alignment,
we need the following quantities:

s = argmax
l∈Ic

ω

(ql + ηl), t = argmax
l∈Ic

ω

(q ′
l + ηl)

i∗ = argmini∈Iω

{
qi −q ′

i +max
l∈Ic

ω

(q ′
l +ηl)−max

l∈Ic
ω

(ql+ηl)

}

= argmini∈Iω

{
qi − q ′

i

}
(the other terms have no i)

δ∗ = min
i∈Iω

{
qi − q ′

i + max
l∈Ic

ω

(q ′
l + ηl) − max

l∈Ic
ω

(ql + ηl)

}

= qi∗ − q ′
i∗ + (q ′

t + ηt ) − (qs + ηs)

Note that i∗ ∈ Iω and s, t ∈ Ic
ω. We define the alignment

according to the value of δ∗. When δ∗ ≥ 0, we use the same
alignment as in the Laplace version of the algorithm:

η′
i =

{
ηi i ∈ Ic

ω

ηi + qi − q ′
i + (q ′

t + ηt ) − (qs + ηs) i ∈ Iω

(4)

When δ∗ < 0 that alignment could result in a negative η′
i for

some i ∈ Iω. So instead, we take that alignment and further
add the positive quantity−δ∗ in several places so that overall
we are adding nonnegative numbers to each ηi to get η′

i . (This
ensures that η′

i is nonnegative for each i .) Thus, when δ∗ < 0,
define

η′
i =

⎧
⎪⎨

⎪⎩

ηi i ∈ Ic
ω \ {t}

ηi − δ∗ i = t

ηi + qi − q ′
i + (q ′

t + ηt ) − (qs + ηs) − δ∗ i ∈ Iω

=

⎧
⎪⎨

⎪⎩

ηi i ∈ Ic
ω \ {t}

ηi − δ∗ i = t

ηi + qi − q ′
i − qi∗ + q ′

i∗ i ∈ Iω

(5)

Lemma 6 Let M be the Noisy Top-Kwith Gap algorithm that
uses exponential noise. For all D ∼ D′ and ω, the functions
φD,D′,ω defined above are acyclic local alignments for M.
Furthermore, for every pair D ∼ D′, there are countably
many distinct φD,D′,ω.

Proof First, we show that ∀i, η′
i ≥ ηi . Recall that δ∗ =

mini∈Iω

{
qi − q ′

i + (q ′
t + ηt ) − (qs + ηs)

}
. When δ∗ ≥ 0,

we have η′
i − ηi = qi − q ′

i + (q ′
t + ηt ) − (qs + ηs) ≥ δ∗ ≥ 0

for all i ∈ Iω. When δ∗ < 0, we have η′
t −ηt = −δ∗ > 0 and

η′
i − ηi = (qi − q ′

i ) − (qi∗ − q ′
i∗) ≥ 0 for i ∈ Iω. Therefore,

all η′
i are nonnegative.

The proof that (4) is an alignment when δ∗ ≥ 0 is the same
as in the Laplace noise case. To show that (5) is an alignment
when δ∗ < 0, first note that since t = argmaxl∈Ic

ω
(q ′

l + ηl)

and −δ∗ > 0, we have t = argmaxl∈Ic
ω
(q ′

l + η′
l). Then from

(5), we have that when i ∈ Iω,

η′
i = ηi + qi − q ′

i + (q ′
t + ηt ) − (qs + ηs) − δ∗

�⇒ q ′
i + η′

i − (q ′
t + (ηt − δ∗)) = qi

+ ηi − (qs + ηs)

�⇒ q ′
i + η′

i − (q ′
t + η′

t ) = qi + ηi − (qs + ηs)

�⇒ q ′
i + η′

i − max
l∈Ic

ω

(q ′
l + η′

l) = qi

+ ηi − max
l∈Ic

ω

(ql + ηl)
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Thus by a similar argument in Lemma 4, all relative orders
among the k largest noisy queries and their associated gaps
are preserved. The facts that φD,D′,ω is acyclic and there are
finitely many φD,D′,ω are clear. ��
Alignment cost and privacy Recall from Table 1 that if f (x)
is the density of Exp(β), then for x, y ≥ 0, ln f (x)

f (y) = y−x
β

≤
|y−x |

β
. When δ∗ ≥ 0, the alignment cost computation is the

same as with the Laplace version of the algorithm. When
δ∗ < 0, we have

cost(φD,D′,ω) =
∞∑

i=1

∣∣η′
i − ηi

∣∣ ε

2k

= ε

2k
|δ∗| + ε

2k

∑

i∈Iω

∣∣qi − q ′
i − qi∗ + q ′

i∗
∣∣

= ε

2k
|δ∗|+ ε

2k

∑

i∈Iω\{i∗}

∣∣qi −q ′
i −qi∗ +q ′

i∗
∣∣ .

and note that there are k − 1 terms in the right-most sum-

mation. It is clear that
∣∣∣qi − q ′

i − qi∗ + q ′
i∗

∣∣∣ ≤ 2 (or 1 if q is

monotone). Also, it is shown in the proof of Theorem 3 that
|δ∗| = |qi∗ − q ′

i∗ + maxl∈Ic
ω
(q ′

l + ηl) − maxl∈Ic
ω
(ql + ηl)|

≤ 2 (or 1 if q is monotone). Therefore,

cost(φD,D′,ω)

= ε

2k
|δ∗| + ε

2k

∑

i∈Iω\{i∗}

∣∣qi − q ′
i − qi∗ + q ′

i∗
∣∣

(note that there are 1 + (k − 1) = k terms above)

≤ ε

2k
· 2 · k

(
or

ε

2k
· 1 · k if q is monotonic

)

= ε (or ε/2 if q is monotonic).

Thus, Algorithm 3with Exp(2k/ε) noise on Line 3 instead of
Lap(2k/ε) noise, satisfies ε-differential privacy. If all of the
queries are counting queries, then it satisfies ε/2-differential
privacy.

6.3 Utilizing gap information

Let us consider one scenario that takes advantage of the gap
information. Suppose a data analyst is interested in the iden-
tities and values of the top k queries. A typical approach
would be to split the privacy budget ε in half—use ε/2 of the
budget to identify the top k queries using Noisy Top-K with
Gap. The remaining ε/2 budget is evenly divided between
the selected queries and is used to obtain noisymeasurements
(i.e., add Lap(2k/ε) noise to each query answer). Thesemea-
surements will have variance σ 2 = 8k2/ε2. In this section
we show how to use the gap information from Noisy Top-
K with Gap and postprocessing to improve the accuracy of
these measurements.

Problem statement Let q1,. . . , qk be the true answers of the
top k queries that are selected byAlgorithm 3. Let α1, . . . , αk

be their noisy measurements. Let g1, . . . , gk−1 be the noisy
gaps between q1, . . . , qk that are obtained from Algorithm
3 for free. Then αi = qi + ξi where each ξi is a Lap(2k/ε)
random variable and gi = qi + ηi − qi+1 − ηi+1 where each
ηi is a Lap(4k/ε) random variable, or a Lap(2k/ε) random
variable if the query list is monotonic (recall the mechanism
was run with a privacy budget of ε/2). Our goal is then to
find the best linear unbiased estimate (BLUE) [30] βi of qi
in terms of the measurements αi and gap information gi .

Theorem 4 With notations as above let q = [q1, . . . , qk]T,
α = [α1, . . . , αk]T and g = [g1, . . . , gk−1]T. Suppose the
ratio Var(ξi ) : Var(ηi ) is equal to 1 : λ. Then the BLUE of q
is β = 1

(1+λ)k (Xα + Yg) where

X =

⎡

⎢⎢
⎢
⎣

1 + λk 1 · · · 1
1 1 + λk · · · 1
.
.
.

.

.

.
. . .

.

.

.

1 1 · · · 1 + λk

⎤

⎥⎥
⎥
⎦

k×k

Y =

⎛

⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

⎡

⎢
⎢⎢⎢⎢⎢⎢⎢
⎣

k − 1 k − 2 · · · 1

k − 1 k − 2 · · · 1

k − 1 k − 2 · · · 1

.

.

.
.
.
.

. . .
.
.
.

k − 1 k − 2 · · · 1

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

−

⎡

⎢⎢⎢⎢
⎢
⎣

0 0 · · · 0
k 0 · · · 0
k k · · · 0
.
.
.

.

.

.
. . . 0

k k · · · k

⎤

⎥⎥⎥⎥
⎥
⎦

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

k×(k−1)

For proof, see “Appendix.” Even though this is a matrix
multiplication, it is easy to see that it translates into the fol-
lowing algorithm that is linear in k:

1. Compute α = ∑k
i=1 αi and p = ∑k−1

i=1 (k − i)gi .
2. Set p0 = 0. For i = 1, . . . , k−1 compute the prefix sum

pi = ∑i
j=1 g j = pi−1 + gi .

3. For i = 1, . . . , k, set βi = (α +λkαi + p− kpi−1)/(1+
λ)k.

Now, each βi is an estimate of the value of qi . How does
it compare to the direct measurement αi (which has variance
σ 2 = 8k2/ε2)? The following result compares the expected
error of βi (which used the direct measurements and the gap
information) with the expected error of using only the direct
measurements (i.e., αi only).

Corollary 1 For all i = 1, . . . , k, we have

E(|βi − qi |2)
E(|αi − qi |2)

= 1 + λk

k + λk
= Var(ξi ) + k Var(ηi )

k(Var(ξi ) + Var(ηi ))
.

For proof, see Appendix. In the case of counting queries,
we have Var(ξi ) = Var(ηi ) = 8k2/ε2 and thus λ = 1. The
error reduction rate is k−1

2k which is close to 50% when k is
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large. If we use exponential noise instead, i.e., replace ηi ←
Lap(2k/ε) with ηi ← Exp(2k/ε) at Line 3 of Algorithm 3,
then Var(ηi ) = 4k2/ε2 = Var(ξi )/2 and thus λ = 1/2. In
this case, the error reduction rate is 2k−2

3k which is close to
66% when k is large. Our experiments in Sect. 9 confirm
these theoretical results.

7 SVT/noisy max hybrids with gap

In this section, we present two hybrids of SVT with Gap
and Noisy Top-K with Gap. Recall that SVT with Gap is an
online algorithm that returns the identities and noisy gaps
(with respect to the threshold) of the first k noisy queries it
sees that are larger than the noisy threshold. Its benefits are:
(i) Privacybudget is saved if fewer than k queries are returned.
(ii) The queries that are returned comewith estimates of their
noisy answers (obtained by adding the public threshold to the
noisy gap), while the drawbacks are that the returned queries
are likely not to resemble the k largest queries. (Queries that
come afterward are ignored, no matter how large their values
are.)

Meanwhile, Noisy Top-K with Gap returns the identities
and gaps (with respect to the runner-up query) of the top k
noisy queries. Its benefits are: (i) The queries returned are
approximately the top k. (ii) The gap tells us how large the
queries are compared to the best non-selected noisy query.
The drawbacks are: (i) k queries are always returned, even if
their values are small. (ii) Only gap information is returned
(not estimates of the query answers).

For userswho are interested in identifying the top k queries
that are likely to be over a threshold, we present two hybrid
algorithms that try to combine the benefits of both algorithms
while minimizing the drawbacks. Both algorithms take as
input a number k, a list of answers to queries having sensi-
tivity 1, and a public threshold T . They both return a subset of
the top k noisy queries that are larger than the noisy thresh-
old T ; hence, the privacy cost is dynamic and is smaller if
fewer than k queries are returned. The difference is in the gap
information.

The first hybrid (Algorithm 4) is a variant of Noisy Top-K
with gap. It adds the public threshold T to the list of queries
(it becomes Query 0), adds the same noise to them (Lines 2
and 4). In line 6, it takes the top k noisy queries (sorted in
decreasing order) and their gaps with the next best query. It
filters out any that are smaller than the noisy Query 0. For
the queries that did not get removed, it returns their identities
(recall the threshold is Query 0) and their gap with the next
best query. If the last returned item is Query 0, this means
that the gap information tells us how much larger the other
returned queries are compared to the noisy threshold Query
0, and this allows us to get numerical estimates for those
query answers by adding in the public threshold.

Algorithm 4: Hybrid Noisy Top-K with Gap
input: q: a list of n queries of global sensitivity 1

D: database, ε: privacy budget
T : public threshold, k: # of indexes

1 function NoisyTopK (q, D, T , k, ε):
2 η0 ← Exp(2k/ε); q̃0 ← T + η0
3 foreach i ∈ {1, · · · , n} do
4 ηi ← Exp(2k/ε); q̃i ← qi (D) + ηi

5 ( j1, . . . , jk+1) ← argmaxk+1 (̃q0, q̃1, . . . , q̃n)
6 foreach i ∈ {1, · · · , k} do
7 gi ← q̃ ji − q̃ ji+1 ; t ← i
8 if ji = 0 then
9 break

10 return (( j1, g1), . . . , ( jt , gt ))

Alignment and privacy cost for Algorithm 4. By replacing
the index sets Iω in Eqs. (4) and (5) with Iω = { j1, . . . , jt },
the same formula can be used as the alignment function for
Algorithm 4. Note that since |Iω| = t ≤ k, the privacy cost
is (t/k)ε.

Lemma 7 If Algorithm 4 is run with privacy budget ε and
returns t queries (and their associated gaps), then the actual
privacy cost is (t/k)ε.

The second hybrid (Algorithm 5) is essentially SVT with
Gap applied to the list of queries that is sorted in descending
order by their noisy answers. We note that it adds more noise
to each query than Algorithm 4 but always returns the noisy
gap between the noisy query answer and the noisy threshold,
just like SVT with Gap.

Algorithm 5: Hybrid Sparse Vector with Gap
input: same as Algorithm 4

1 function GapSparse (q, D, T , k, ε):
2 ε0 ← θε; ε1 ← (1 − θ)ε/k;
3 η ← Exp(1/ε0); T̃ ← T + η − 1/ε0
4 foreach i ∈ {1, · · · , n} do
5 ηi ← Exp(2/ε1); q̃i ← qi (D) + ηi − 2/ε1

6 ( j1, . . . , jk) ← argmaxk (̃q1, . . . , q̃n)
7 t ← 0
8 foreach i ∈ {1, · · · , k} do
9 if q̃ ji ≥ T̃ then

10 gi ← q̃ ji − T̃ ; t ← i
11 else
12 break

13 return (( j1, g1), . . . , ( jt , gt )) // ∅ if t = 0

Alignment and privacy cost for Algorithm 5 The alignment
for Algorithm 5 is the same as the one for SVT with Gap and
is hence omitted here. Note that the privacy cost is ε0+ tε1 =
(θ+(t/k)(1−θ))ε where t is the number of queries returned.
As discussed in Sect. 5.1, the optimal θ is 1/(1 + 3

√
4k2).
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Lemma 8 If Algorithm 5 is run with privacy budget ε and
returns t queries (and their associated gaps), then the actual
privacy cost is (θ + (t/k)(1 − θ))ε.

Benefits of the Hybrid Algorithms Compared with Noisy
Top-K with Gap, the hybrid algorithms have these advan-
tages: (i) saving privacy budget: The actual privacy bud-
get consumption for the hybrid algorithms is dynamic—it
depends on the number of queries returned.Thus if the thresh-
old T is set high, the hybrid algorithms will likely return
fewer than k queries and consume less privacy budget; (ii)
providing query estimates: Algorithm 5 always returns the
noisy gap with the threshold. (Hence, by adding in the public
threshold value, this gives an estimate of the query answer.)
Meanwhile, Algorithm 4 only returns the noisy gap with the
threshold if the last query returned is the noisy threshold
Query 0. (Otherwise it functions like Noisy Top-K with Gap
and returns the gaps with the runner up query.)

Compared with SVT with Gap, the hybrid algorithms are
trying to select the overall top k queries that are above the
threshold, whereas SVTwithGap tries pick the first k queries
it sees that are above the threshold. So the queries returned
by the hybrid algorithms are expected to have much higher
values. There is an important distinction though: SVT with
Gap is an online algorithm that can process queries as they
arrive, whereas the hybrid algorithms require all queries to
be known beforehand.

The first hybrid (Algorithm 4) is more likely to provide
accurate identity information than the second hybrid (Algo-
rithm5). That is, the queries it returns aremore likely to be the
actual queries whose true values are largest (because the first
algorithm adds less noise to the query answers). However,
as mentioned before Algorithm 5 always provides estimates
of query answers, whereas Algorithm 4 only provides such
estimates if the last query returned is the noisy threshold
Query 0. Therefore, if it is more desirable to always have
query answer estimates then one should use Algorithm 5.
Otherwise Algorithm 4 is a good default choice.

8 Improving the exponential mechanism

The exponential mechanism [36] was designed to answer
non-numeric queries in a differentially private way. In this
setting, D is the set of possible input databases and R =
{ω1, ω2, . . . , ωn} is a set of possible outcomes. There is a
utility function μ : D × R → R where μ(D, ωi ) gives us
the utility of outputting ωi when the true input database is D.
The exponential mechanism randomly selects an output ωi

with probabilities that are defined by the following theorem:

Theorem 5 (The Exponential Mechanism [36])Given ε > 0
and a utility function μ : D × R → R, the mechanism

M(D, μ, ε) that outputs ωi ∈ R with probability propor-
tional to exp( εμ(D,ωi )

2Δμ
) satisfies ε-differential privacy where

Δμ, the sensitivity of μ, is defined as

Δμ = max
D∼D′ max

ωi∈R
∣∣μ(D, ωi ) − μ(D′, ωi )

∣∣ .

We show that the exponential mechanism can also out-
put (for free) a type of gap information in addition to the
selected index. This gap provides noisy information about
the difference between the utility scores of the selected out-
put and non-selected outputs. What is surprising about this
result is that we can treat the exponential mechanism as
a black box (i.e., it does not matter how the sampling is
implemented). In contrast, the internal state of the noisy max
algorithm was needed (i.e., the gap was computed from the
noisy query answers). The details are shown in Algorithm 6,
which makes use of the Logistic(θ ) distribution having pdf

f (x; θ) = e−(x−θ)

(1+e−(x−θ))2
.

Algorithm 6: Exponential Mechanism w. Gap
input: μ: utility function with sensitivity Δμ

D: database, ε: privacy budget
1 function GapExpMech (D, μ, ε):
2 ωs ← ExpMech(D, μ, ε) // Selected query

3 θ ← εμ(D,ωs )
2Δμ

− ln
∑

j �=s exp(
εμ(D,ω j )

2Δμ
)

4 while true do
5 gs ← Logistic(θ) // Location=θ, scale=1
6 if gs > 0 then
7 break

8 return ωs , gs

Theorem 6 Algorithm 6 satisfies ε-differential privacy and
the expected value of gs is (1+e−θ ) ln(1+eθ )where s is the
index of the query returned by the exponential mechanism

and θ = εμ(D,ωs )
2Δμ

− ln
∑

j �=s exp(
εμ(D,ω j )

2Δμ
) is the location

parameter of the sampling distribution.

Utilizing the Gap Information. From Theorem 6 and Algo-
rithm 6, we see that θ is a kind of gap (scaled by ε/2Δμ)
between the selected query ωs and a softmax of the remain-
ing items. While θ can be numerically estimated from gs ,
one can also use gs for the following purpose.

The exponential mechanism is randomized, so an impor-
tant question is whether it returned a query that has the
highest utility. We can use the noisy gap information gs from
Algorithm 6 to answer this question in a hypothesis testing
framework. Specifically, let H0 be the null hypothesis that
the returned query ωs does not have the highest utility score.
Then gs can tell us how unlikely this null hypothesis is—the
quantityP[gs ≥ γ | H0] is the significance level (also known
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Table 3 Statistics of datasets

Dataset # of Records # of Unique items

BMS-POS 515,597 1657

Kosarak 990,002 41,270

T40I10D100K 100,000 942

as a p value), and small values indicate the null hypothesis
is unlikely. Its computation is given in Theorem 7.

Theorem 7 P[gs ≥ γ | H0] ≤ 2/(1 + eγ ).

We note that if we want a significance level of α = 0.05
(i.e., there is less than a 5% chance that a non-optimal query
could have produced a large noisy gap) then we need gs ≥
ln( 2

α
− 1) ≈ 3.66.

9 Experiments

We evaluate the algorithms proposed in this paper using
the two real datasets from [33]: BMP-POS, Kosarak and
a synthetic dataset T40I10D100K created by the generator
from the IBMAlmadenQuest research group. These datasets
are collections of transactions. (Each transaction is a set of
items.) In our experiments, the queries correspond to the
counts of each item (i.e., how many transactions contained
item #23?)

The statistics of the datasets are listed below (Table 3).

9.1 Improving query estimateswith gap information

The first set of experiments is to measure how gap informa-
tion can help improve estimates in selected queries. We use
the setup of Sects. 5.3 and 6.3. That is, a data analyst splits
the privacy budget ε into half. She uses the first half to select
k queries using Noisy Top-K with Gap or SVT with Gap (or
Adaptive SVTwith Gap) and then uses the second half of the
privacy budget to obtain independent noisy measurements of
each selected query.

If one were unaware that gap information came for free,
onewould just use those noisymeasurements as estimates for
the query answers. The error of this approach is the gap-free
baseline. However, since the gap information does come for
free, we can use the postprocessing described in Sects. 5.3
and 6.3 to improve accuracy (we call this latter approach
SVT with Gap with Measures and Noisy Top-K with Gap
with Measures).

Wefirst evaluate the percentage reduction ofmean squared
error (MSE) of the postprocessing approach compared to
the gap-free baseline and compare this improvement to our
theoretical analysis. As discussed in Sect. 5.3, we set the
budget allocation ratio within the SVT with Gap algorithm

(i.e., the budget allocation between the threshold and queries)

to be 1 : k 2
3 for monotonic queries and 1 : (2k)

2
3 otherwise—

such a ratio is recommended in [33] for the original SVT.
The threshold used for SVT with Gap is randomly picked
from the top 2k to top 8k in each dataset for each run.6 All
numbers plotted are averaged over 10,000 runs. Due to space
constraints, we only show experiments for counting queries
(which are monotonic).

Our theoretical analysis in Sects. 5.3 and 6.3 suggested
that in the case of monotonic queries, the error reduction rate
can reach up to 50% when Laplace noise is used, and 66%
when exponential or geometric noise is used, as k increases.
This is confirmed in Fig. 2a, for SVT with Gap and Fig. 2b,
for our Top-K algorithm using the BMS-POS dataset. (the
results for the other datasets are nearly identical.) These fig-
ures plot the theoretical and empirical percent reduction of
MSE as a function of k and show the power of the free gap
information.

We also generated corresponding plots where k is held
fixed and the total privacy budget ε is varied.We only present
the result for the kosarak dataset as the results for the other
datasets are nearly identical. For SVT with Gap, Fig. 3a con-
firms that this improvement is stable for different ε values.
For our Top-K algorithm, Fig. 3b confirms that this improve-
ment is also stable for different values of ε.

9.2 Benefits of adaptivity

In this section we present an evaluation of the budget-saving
properties of our novel Adaptive SVT with Gap algorithm to
show that it can answermore queries than SVT and SVTwith
Gap at the same privacy cost (or, conversely, answer the same
number of queries but with leftover budget that can be used
for other purposes). First note that SVT and SVT with Gap
both answer exactly the same amount of queries, so we only
need to compare Adaptive SVTwith Gap to the original SVT
[19,33]. In both algorithms, the budget allocation between the
threshold noise and query noise is set according to the ratio

1 : k 2
3 (i.e., the hyperparameter θ in Adaptive SVT with Gap

is set to 1/(1 + k
2
3 )), following the discussion in Sect. 5.1.

The threshold is randomly picked from the top 2k to top 8k
in each dataset and all reported numbers are averaged over
10,000 runs.

Number of queries answered. We first compare the number
of queries answered by each algorithm as the parameter k
is varied from 2 to 24 with a privacy budget of ε = 0.7.
(The results for other settings of the total privacy budget
are similar.) The results are shown in Fig. 4a–c. In each of

6 Selecting thresholds for SVT in experiments is difficult, but we feel
this may be fairer than averaging the answer to the top kth and k + 1th
queries as was done in prior work [33].
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(a) (b)

Fig. 2 Percent reduction of mean squared error on monotonic queries, for different k, for SVT with Gap and Noisy Top-K with Gap when half the
privacy budget is used for query selection and the other half is used for measurement of their answers. Privacy budget ε = 0.7

Fig. 3 Percent reduction of mean squared error on monotonic queries, for different ε, for SVT with Gap and Noisy Top-K with Gap when half the
privacy budget is used for query selection and the other half is used for measurement of their answers. The value of k is set to 10

these bar graphs, the left (blue) bar is the number of answers
returned by SVT and the right bar is the number of answers
returned by Adaptive SVTwith Gap. This right bar is broken
down into two components: the number of queries returned
from the top “if” branch (corresponding to queries that were
significantly larger than the threshold even after a lot of noise
was added) and the number of queries returned from the
middle “if” branch. Queries returned from the top branch
of Adaptive SVT with Gap have less privacy cost than those
returned by SVT. Queries returned from the middle branch
of Adaptive SVT with Gap have the same privacy cost as
in SVT. We see that most queries are answered in the top
branch of Adaptive SVT with Gap, meaning that the above-
threshold queries were generally large (much larger than the
threshold). Since Adaptive SVT with Gap uses more noise
in the top branch, it uses less privacy budget to answer those
queries and uses the remaining budget to provide additional
answers (up to an average of 20 more answers when k was
set to 24).

Precision and F-Measure. Although the adaptive algorithm
can answer more above-threshold queries than the original,
one can still ask the question of whether the returned queries
really are above the threshold. Thus we can look at the preci-
sion of the returned results (the fraction of returned queries
that are actually above the threshold) and the widely used
F-Measure (the harmonic mean of precision and recall). One
would expect that the precision of Adaptive SVT with Gap
should be less than that of SVT, because the adaptive version
can use more noise when processing queries. In Fig. 5a–c
we compare the precision and F-Measure of the two algo-
rithms. Generally we see very little difference in precision.
On the other hand, since Adaptive SVT with Gap answers
more queries while maintaining high precision, the recall of
Adaptive SVT with Gap would be much larger than SVT,
thus leading to the F-Measure being roughly 1.5 times that
of SVT.

Remaining Privacy Budget. If a query is large, Adaptive SVT
with Gap may only need to use a small part of the privacy
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(a) (b) (c)

Fig. 4 # of queries answered by SVT and Adaptive SVT with Gap under different k’s for monotonic queries. Privacy budget ε = 0.7 and x-axis: k

(a) (b) (c)

Fig. 5 Precision and F-measure of SVT and Adaptive SVT with Gap under different k’s for monotonic queries. Privacy budget ε = 0.7 and x-axis:
k

Fig. 6 Remaining privacy budget when Adaptive SVT with Gap is
stopped after answering k queries using different datasets. Privacy bud-
get ε = 0.7

budget to determine that the query is likely above the noisy
threshold. That is, it may produce an output in its top branch,
where a lot of noise (hence less privacy budget) is used. If
we stop Adaptive SVT with Gap after k returned queries,
it may still have some privacy budget left over (in contrast
to standard versions of sparse vector, which use up all of
their privacy budget). This remaining privacy budget can then
be used for other data analysis tasks. For all three datasets,
Fig. 6 shows the percentage of privacy budget that is left over

when Adaptive SVT with Gap is run with parameter k and
stopped after k queries are returned.We see that roughly 40%
of the privacy budget is left over, confirming that Adaptive
SVT with Gap is able to save a significant amount of privacy
budget.

9.3 Benefits of the hybrid algorithms

We next evaluate whether our hybrid algorithms combine
the best properties of SVT (saving budget if few queries are
over the threshold) and Noisy Top-K (selecting queries with
higher values than SVT).

To evaluate the budget-saving properties, we set the
threshold T to be the 12th largest query and let k vary from 2
to 24. This creates settings where fewer than k queries may
be returned (i.e., when k > 12). The remaining privacy bud-
get for different k is shown in Fig. 7. When k > 12, SVT and
the hybrid algorithms use less privacy budget because they
return fewer than k queries. However, Noisy Top-K uses the
full budget because it returns k queries, even when we do
not want the ones below the threshold. Hybrid Noisy Top-K
saves more privacy budget than hybrid SVT because hybrid
SVT spends a fixed amount of budget θε on the threshold
whereas Hybrid Noisy Top-K treats the threshold as a query
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Fig. 7 Percentage of remaining privacy budget of hybrid algorithms,
Noisy Top-K and SVT on the BMS-POS dataset. Results on Kosarak
and T40I10D100K are similar. Privacy budget ε = 0.7

Fig. 8 Average query answers of the hybrid algorithms, Noisy Top-
K and SVT on the BMS-POS dataset. Results on Kosarak and
T40I10D100K are similar. Privacy budget ε = 0.7

and only spends ε/k on it. SVT behaves similarly to hybrid
SVT in terms of budget consumption.

Next, we compare how well the algorithms return queries
whose answers are large. Using the same settings as before,
we show how the average of the answers to the returned
queries (as k varies) in Fig. 8.

Since the threshold is set at the value of the 12th largest
query, when k ≤ 12, the algorithms tend to return k queries.
HereNoisyTop-Kand thehybrid algorithms returnmuchbet-
ter queries than SVT. However, when k > 12, we are only
interested in the queries that are larger than the threshold.
Noisy Top-K has no ability to filter out the queries below
the threshold and so the average query quality decreases.
Meanwhile, SVT and our hybrid algorithms filter out the
queries that are likely to be below the threshold, resulting
in higher average quality. Thus we see that the hybrid algo-
rithms indeed inherit the best properties of SVT and Noisy
Top-K.

Fig. 9 The estimated probability of p ≤ α when the output index
from Exponential Mechanism with Gap is not optimal. Utility scores
are sampled from BMS-POS

9.4 pValues from Exponential Mechanismwith Gap

Algorithm 6 returns a selected query ωs and a gap estimate
gs that we can use for hypothesis testing. Let H0 be the null
hypothesis that ωs is not the query with the highest utility.
Theorem 7 shows how to convert gs into a p value and one
would reject the null hypothesis if the p value is below a
pre-specified significance level α (such as 0.01 or 0.05). As
a simple experiment to verify the validity of this procedure,
we simulate the utility scores of 100 queries by sampling 100
numbers from the datasets and we vary ε from 1 × 10−6 to
11× 10−6 to ensure a decent chance of a non-optimal query
being returned.We run the ExponentialMechanismwithGap
for n = 100,000 times and record as c1 the number of times
the returned ωs is not optimal (H0 is true). Thus c1/n is an
estimate of P[H0]. Among the c1 occurrences where H0 is
true, we record as c2 the number of times Theorem7 gives a p
value ≤ α (for α = 0.05 and for α = 0.01), causing the null
hypothesis to be erroneously rejected. The quantity c2/c1 is
an estimate of how frequently this happens. (This is called
the Type I error and must be ≤ α in order for the hypothesis
testing framework to be considered valid.)As shown inFig. 9,
the errors of the hypothesis test using Theorem 7 are indeed
less than the significance levels.

10 General randomness alignment and
Proof of Lemma 1

In this section, we prove Lemma 1, which was used to estab-
lish the privacy properties of the algorithms we proposed.
The proof of the lemma requires a more general theorem for
working with randomness alignment functions. We explic-
itly list all of the conditions needed for the sake of reference.
(Many prior works had incorrect proofs because they did not
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have such a list to follow.) In the general setting, the method
of randomness alignment requires the following steps.

1. For each pair of adjacent databases D ∼ D′ and
ω ∈ Ω , define a randomness alignment φD,D′ or
local alignment functions φD,D′,ω : HD:ω → HD′:ω
(see notation in Table 2). In the case of local align-
ments this involves proving that if M(D, H) = ω then
M(D′, φD,D′,ω(H)) = ω.

2. Show thatφD,D′ (or all theφD,D′,ω) is one-to-one (it does
not need to be onto). That is, if we know D, D′, ω and
we are given the value φD,D′(H) (or φD,D′,ω(H)), we
can obtain the value H .

3. For each pair of adjacent databases D ∼ D′, bound
the alignment cost of φD,D′ (φD,D′ is either given or
constructed by piecing together the local alignments).
Bounding the alignment cost means the following: If f
is the density (or probability mass) function of H , find
a constant a such that f (H)

f (φD,D′ (H))
≤ a for all H (except

a set of measure 0). In the case of local alignments, one
can instead show the following. For all ω, and adjacent
D ∼ D′ the ratio f (H)

f (φD,D′,ω(H))
≤ a for all H (except on

a set of measure 0).
4. Bound the change-of-variables cost of φD,D′ (only nec-

essary when H is not discrete). One must show that the

JacobianofφD,D′ , defined as JφD,D′ = ∂φD,D′
∂H , exists (i.e.,

φD,D′ is differentiable) and is continuous except on a set
of measure 0. Furthermore, for all pairs D ∼ D′, show
the quantity

∣∣∣det JφD,D′
∣∣∣ is lower bounded by some con-

stant b > 0. If φD,D′ is constructed by piecing together
local alignments φD,D′,ω then this is equivalent to show-

ing the following (i)
∣∣∣det JφD,D′,ω

∣∣∣ is lower bounded by

some constant b > 0 for every D ∼ D′ and ω, and
(ii) for each D ∼ D′, the set Ω can be partitioned into
countably many disjoint measurable sets Ω = ⋃

i Ωi

such that whenever ω and ω∗ are in the same partition,
then φD,D′,ω and φD,D′,ω∗ are the same function. Note
that this last condition (ii) is equivalent to requiring that
the local alignments must be defined without using the
axiom of choice (since non-measurable sets are not con-
structable otherwise) and for each D ∼ D′, the number
of distinct local alignments is countable. That is, the set
{φD,D′,ω | ω ∈ Ω} is countable (i.e., for many choices
of ω we get the same exact alignment function).

Theorem 8 Let M be a randomized algorithm that termi-
nates with probability 1 and suppose the number of random
variables used by M can be determined from its output. If, for
all pairs of adjacent databases D ∼ D′, there exist random-
ness alignment functions φD,D′ (or local alignment functions

φD,D′,ω for all ω ∈ Ω and D ∼ D′) that satisfy conditions 1
though 4 above, then M satisfies ln(a/b)-differential privacy.

Proof We need to show that for all D ∼ D′ and E ⊆ Ω ,
P[HD:E ] ≤ (a/b)P[HD′:E ].

First, we note that if we have a randomness alignment
φD,D′ , we can define corresponding local alignment func-
tions as follows φD,D′,ω(H) = φD,D′(H). (In other words,
they are all the same.) The conditions on local alignments
are a superset of the conditions on randomness alignments,
so for the rest of the proof we work with the φD,D′,ω.

Let φ1, φ2, . . . be the distinct local alignment functions
(there are countably many of them by Condition 4). Let
Ei = {

ω ∈ E | φD,D′,ω = φi
}
. By Conditions 1 and 2 we

have that for each ω ∈ Ei , φi is one-to-one on HD:ω and
φi (HD:ω) ⊆ HD′:ω. Note that HD:Ei

= ∪ω∈EiHD:ω and
HD′:Ei

= ∪ω∈EiHD′:ω. Furthermore, the sets HD:ω are
pairwise disjoint for different ω and the sets HD′:ω are pair-
wise disjoint for different ω. It follows that φi is one-to-one
on HD:Ei

and φi (HD:Ei
) ⊆ HD′:Ei

. Thus for any H ′ ∈
φi (HD:Ei

) there exists H ∈ HD:Ei
such that H = φ−1

i (H ′).

By Conditions 3 and 4, we have f (H)
f (φi (H))

= f (φ−1
i (H ′))
f (H ′) ≤ a

for all H ∈ HD:Ei
, and

∣∣det Jφi
∣∣ ≥ b (except on a set of

measure 0). Then the following is true:

P[HD:Ei
]

=
∫

HD:Ei
f (H)dH =

∫

φi (HD:Ei )
f (φ−1

i (H ′)) dH ′
∣∣det Jφi

∣∣

≤
∫

φi (HD:Ei )
a f (H ′)1

b
dH ′ = a

b

∫

φi (HD:Ei )
f (H ′)dH ′

≤ a

b

∫

H
D′ :Ei

f (H ′)dH ′ = a

b
P[HD′:Ei

].

The second equation is the change of variables formula in
calculus. The last inequality follows from the containment
φi (HD:Ei

) ⊆ HD′:Ei
and the fact that the density f is non-

negative. In the case that H is discrete, simply replace the
density f with a probability mass function, change the inte-
gral into a summation, ignore the Jacobian term and set
b = 1. Finally, since E = ∪i Ei and Ei ∩ E j = ∅ for
i �= j , we conclude that

P[HD:E ] =
∑

i

P[HD:Ei
] ≤ a

b

∑

i

P[HD′:Ei
]

= a

b
P[HD′:E ].

��
We now present the proof of Lemma 1.
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Proof Let φD,D′,ω(H) = H ′ = (η′
1, η

′
2, . . .). By acyclicity

there is some permutation π under which ηπ(1) = η′
π(1) − c

where c is some constant depending on D ∼ D′ and ω. Thus
ηπ(1) is uniquely determined by H ′. Now (as an induction
hypothesis) assume ηπ(1), . . . , ηπ( j−1) are uniquely deter-
mined by H ′ for some j > 1, then ηπ( j) = η′

π( j) −
ψ

( j)
D,D′,ω(ηπ(1), . . . , ηπ( j−1)), so ηπ( j) is also uniquely deter-

mined by H ′. Thus by strong induction H is uniquely
determined by H ′, i.e., φD,D′,ω is one-to-one. It is easy to
see that with this ordering, JφD,D′,ω is an upper triangular
matrix with 1’s on the diagonal. Since permuting variables

does not change
∣∣∣det JφD,D′,ω

∣∣∣, we have
∣∣∣det JφD,D′,ω

∣∣∣ = 1

since that is the determinant of upper triangular matrices.
Furthermore, (recalling the definition of the cost of φD,D′,ω)

we have ln f (H)
f (φω(H))

= ∑
i ln

fi (ηi )
fi (η′

i )
≤ ∑

i
|ηi−η′

i |
αi

≤ ε. The

first inequality follows fromCondition 3 of Lemma 1 and the
second from Condition 4. ��

11 Conclusions and future work

In this paper we introduced variations of SVT, Noisy Max,
and exponentialmechanism that provide additional noisy gap
information for free (without affecting the privacy cost). We
also presented applications of how to use the gap information.
Future work includes applying this gap information in larger
differentially private algorithms to increase the accuracy of
privacy-preserving data analysis.

A Proofs

A.1 Proof of Theorem 4 (BLUE)

Proof Let q1, . . . , qk be the true answers to the k queries
selected by Noisy Top-K with gap algorithm. Let αi be the
estimate of qi using Laplace mechanism, and gi be the esti-
mate of the gap between qi and qi+1 from Noisy Top-K with
gap.

Recall that αi = qi + ξi and gi = qi + ηi − qi+1 − ηi+1

where ξi and ηi are independent Laplacian random variables.
Assume without loss of generality that Var(ξi ) = σ 2 and
Var(ηi ) = λσ 2. Write in vector notation

q =
⎡

⎢
⎣

q1
...

qk

⎤

⎥
⎦ , ξ =

⎡

⎢
⎣

ξ1
...

ξk

⎤

⎥
⎦ , η =

⎡

⎢
⎣

η1
...

ηk

⎤

⎥
⎦ ,α =

⎡

⎢
⎣

α1
...

αk

⎤

⎥
⎦ ,

g =
⎡

⎢
⎣

g1
...

gk−1

⎤

⎥
⎦ ,

then α = q + ξ and g = N (q + η) where

N =
⎡

⎢
⎣

1−1
. . .

. . .

1−1

⎤

⎥
⎦

(k−1)×k

.

Our goal is then to find the best linear unbiased estimate
(BLUE) β of q in terms of α and g. In other words, we need
to find a k × k matrix X and a k × (k − 1) matrix Y such that

β = Xα + Yg (6)

with E(‖β − q‖2) as small as possible.Unbiasedness implies
that ∀q, E(β) = Xq + Y Nq = q. Therefore X + Y N = Ik
and thus

X = Ik − Y N . (7)

Plugging this into (6), we have β = (Ik − Y N )α + Yg =
α − Y (Nα − g). Recall that α = q + ξ and g = N (q + η),
we have Nα − g = N (q + ξ − q − η) = N (ξ − η). Thus

β = α − Y N (ξ − η). (8)

Write θ = N (ξ − η), then we have β − q = α − q − Y θ =
ξ −Y θ . Therefore, finding the BLUE is equivalent to solving
the optimization problem Y = argminΦ where

Φ = E(‖ξ − Y θ‖2) = E((ξ − Y θ)T (ξ − Y θ))

= E(ξ T ξ − ξ T Y θ − θT Y T ξ + θT Y T Y θ)

Taking the partial derivatives of Φ w.r.t Y , we have

∂Φ

∂Y
= E(0 − ξθT − ξθT + Y (θθT + θθT ))

By setting ∂Φ
∂Y = 0 we have Y E(θθT ) = E(ξθT ) thus

Y = E(ξθT )E(θθT )−1. (9)

Recall that (ξθT )i j = ξi (ξ j − ξ j+1 − η j + η j+1), we have

E(ξθT )i j =

⎧
⎪⎨

⎪⎩

E(ξ2i ) = Var(ξi ) = σ 2 i = j

−E(ξ2i ) = −Var(ξi ) = −σ 2 i = j + 1

0 otherwise

Hence

E(ξθT ) = σ 2

⎡

⎢⎢
⎢⎢
⎣

1

−1
. . .

. . . 1
−1

⎤

⎥⎥
⎥⎥
⎦

k×(k−1)

= σ 2NT .
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Similarly, we have

(θθT )i j = (ξi − ξi+1 − ηi + ηi+1)(ξ j − ξ j+1 − η j +η j+1)

= ξiξ j + ξi+1ξ j+1 − ξiξ j+1 − ξi+1ξ j

+ ηiη j + ηi+1η j+1 − ηiη j+1 − ηi+1η j

− (ξi − ξi+1)(η j − η j+1)

− (ηi − ηi+1)(ξ j − ξ j+1)

Thus

E(θθT )i j

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E(ξ2i + ξ2i+1 + η2i + η2i+1) = 2(1 + λ)σ 2 i = j

E(−ξ2i − η2i ) = −(1 + λ)σ 2 i = j + 1

E(−ξ2j − η2j ) = −(1 + λ)σ 2 i = j − 1

0 otherwise

Hence

E(θθT ) = (1 + λ)σ 2

⎡

⎢⎢
⎢⎢⎢
⎣

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎤

⎥⎥
⎥⎥⎥
⎦

(k−1)×(k−1)

.

It can be directly computed that E(θθT )−1 is a symmetric
matrix whose lower triangular part is

1

k(1 + λ)σ 2

⎡

⎢⎢⎢⎢⎢
⎣

(k − 1) · 1 · · · · · · · · · · · ·
(k − 2) · 1 (k − 2) · 2 · · · · · · · · ·
(k − 3) · 1 (k − 3) · 2 (k − 3) · 3 · · · · · ·

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 · 1 1 · 2 1 · 3 · · · 1 · (k − 1),

⎤

⎥⎥⎥⎥⎥
⎦

i.e., E(θθT )−1
i j = E(θθT )−1

j i = 1
k(1+λ)σ 2 · (k − i) · j for all

1 ≤ i ≤ j ≤ k − 1. Therefore, Y = E(ξθT )E(θθT )−1 =

1

k(1 + λ)

⎛

⎜⎜⎜⎜
⎜
⎝

⎡

⎢⎢⎢⎢
⎢
⎣

k − 1 k − 2 · · · 1
k − 1 k − 2 · · · 1
k − 1 k − 2 · · · 1

...
...

. . .
...

k − 1 k − 2 · · · 1

⎤

⎥⎥⎥⎥
⎥
⎦

−

⎡

⎢⎢⎢⎢
⎢
⎣

0 0 · · · 0
k 0 · · · 0
k k · · · 0
...

...
. . . 0

k k · · · k

⎤

⎥⎥⎥⎥
⎥
⎦

⎞

⎟⎟⎟⎟
⎟
⎠

k×(k−1)

Hence

X = Ik − Y N = 1

k(1+λ)

⎡

⎢⎢⎢
⎣

1 + kλ 1 · · · 1
1 1 + kλ · · · 1
...

...
. . .

...

1 1 · · · 1 + kλ

⎤

⎥⎥⎥
⎦

k×k

.

��

A.2 Proof of Corollary 1

Recall that αi = qi + ξi and gi = qi + ηi − qi+1 − ηi+1

where ξi and ηi are independent Laplacian random variables.
Assume without loss of generality that Var(ξi ) = σ 2 and
Var(ηi ) = λσ 2 as before. From the matrices X and Y in
Theorem 4 we have that βi = xi+yi

k(1+λ)
where

xi = α1 + · · · + (1 + kλ)αi + · · · + αk

= (q1 + ξ1) + · · · + (1 + kλ)(qi + ξi ) + · · · + (qk + ξk)

and

yi = −g1 − 2g2 − · · · − (i − 1)gi−1

+ (k − i)gi + . . . + 2gk−2 + gk−1

= −(q1 + η1) − (q2 + η2) − · · · − (qi−1 + ηi−1)

+ (k − 1)(qi +ηi ) − (qi+1+ηi+1) − · · · − (qk + ηk).

Therefore

Var(xi ) = σ 2 + · · · + (1 + kλ)2σ 2 + · · · + σ 2

= (k2λ2 + 2kλ + k)σ 2

Var(yi ) = λσ 2 + · · · + (k − 1)2λσ 2 + · · · + λσ 2

= (k2 − k)λσ 2

and thus Var(βi ) = Var(xi )+Var(yi )
k2(1+λ)2

= 1+kλ
k+kλσ 2. Recall that

Var(αi ) = Var(ξi ) = σ 2, we have Var(βi )
Var(αi )

= 1+kλ
k+kλ .

A.3 Proof of Lemma 3

The density function of ηi − η is fηi−η(z) = ∫∞
−∞ fηi (x) fη

(x−z) dx = ε0ε∗
4

∫∞
−∞ e−ε∗|x |e−ε0|x−z| dx . First consider the

case ε0 �= ε∗. When z ≥ 0, we have

fηi−η(z)

= ε0ε∗
4

∫ ∞

−∞
e−ε∗|x |e−ε0|x−z| dx

= ε0ε∗
4

( ∫ 0

−∞
eε∗xeε0(x−z) dx

+
∫ z

0
e−ε∗xeε0(x−z) dx +

∫ ∞

z
e−ε∗xe−ε0(x−z) dx

)

= ε0ε∗
4

( e−ε0z

ε0 + ε∗
+ e−ε∗z − e−ε0z

ε0 − ε∗
+ e−ε∗z

ε0 + ε∗

)

= ε0ε∗(ε0e−ε∗z − ε∗e−ε0z)

2(ε20 − ε2∗)
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Thus by symmetry we have that for all z ∈ R, fηi−η(z) =
ε0ε∗(ε0e−ε∗|z|−ε∗e−ε0 |z|)

2(ε20−ε2∗)
, and

P(ηi − η ≥ −t) =
∫ ∞

−t
fηi−η(z) dz=

∫ 0

−t
fηi−η(z) dz+ 1

2

= 1 − ε20e
−ε∗t − ε2∗e−ε0t

2(ε20 − ε2∗)
.

Now if ε0 = ε∗, by similar computationswe have fηi−η(z) =
( ε0
4 + ε20 |z|

4 )e−ε0|z| and P(ηi − η ≥ −t) = 1 − ( 2+ε0t
4 )e−ε0t .

A.4 Proofs in Sect. 8 (Exp. Mech. with Gap)

A well-known, but inefficient, folklore algorithm for the
exponential mechanism is based on the Gumbel-Max trick
[25,35]: Given numbers μ1, . . . , μn , add independent Gum-
bel(0) noise to each and select the index of the largest noisy
value. This is the same as sampling the i th item with prob-
ability proportional to eμi . Let Cat(μ1, . . . , μn) denote the
categorical distribution that returns item ωi with probability

exp(μi )∑n
j=1 exp(μ j )

. The Gumbel-Max theorem provides distribu-

tions for the identity of the noisy maximum and the value of
the noisy maximum:

Theorem 9 (The Gumbel-Max Trick [25,35]) Let Gi , . . . ,
Gn be i.i.d.Gumbel(0) random variables and letμ1, . . . ,μn

be real numbers. Define Xi = Gi + μi . Then

1. The distribution of argmaxi (X1, . . . , Xn) is the same as
Cat(μ1, . . . , μn).

2. The distribution of maxi (X1, . . . , Xn) is the same as the
Gumbel(ln

∑n
i=1 exp(μi )) distribution.

Using the Gumbel-Max trick, one can propose an Expo-
nential Mechanism with Gap by replacing Laplace or expo-
nential noise in Noisy Max with Gap with the Gumbel
distribution as shown in Algorithm 7. (Boxed items repre-
sent gap information.) We first prove the correctness of this
algorithm and then show how to replace the Gumbel-max
trick with any efficient black box algorithm for the exponen-
tial mechanism.

Algorithm 7: Exponential Mechanism w. Gap
input: μ: utility function with sensitivity Δμ

D: database, ε: privacy budget
1 function GapExpMech (D, μ, ε):
2 foreach i ∈ {1, · · · , n} do
3 xi ← εμ(D, ωi )/2Δμ + Gumbel(0)

4 s, t ← argmax2(x1, . . . , xn)

5 return ωs , xs − xt

We first need the following results.

Lemma 9 Let ε > 0. Letμ : D×R → R be a utility function
of sensitivity Δμ. Define ν : D → R and its sensitivity Δν

as

ν(D) = ln
∑

ω∈R
e

εμ(D,ω)
2Δμ , Δν = max

D∼D′
∣∣ν(D) − ν(D′)

∣∣ .

Then Δν , the sensitivity of ν, is at most
ε
2 .

Proof of Lemma 9 From the definition of ν we have

∣
∣ν(D)−ν(D′)

∣
∣ =

∣∣
∣∣∣
ln
∑

ω∈R
e

εμ(D,ω)
2Δμ − ln

∑

ω∈R
e

εμ(D′,ω)
2Δμ

∣∣
∣∣∣

=
∣
∣∣∣∣
ln

(
∑

ω∈R
e

εμ(D,ω)
2Δμ

)

/

(
∑

ω∈R
e

εμ(D′,ω)
2Δμ

)∣∣∣∣∣

By definition of sensitivity, we have

μ(D′, ω)−Δμ ≤ μ(D, ω) ≤ μ(D′, ω)+Δμ, and therefore

e− ε
2
∑

ω∈R
e

εμ(D′,ω)
2Δμ ≤

∑

ω∈R
e

εμ(D,ω)
2Δμ ≤ e

ε
2
∑

ω∈R
e

εμ(D′,ω)
2Δμ

Thus
∣∣ν(D) − ν(D′)

∣∣ ≤ ε
2 , and hence Δν ≤ ε

2 . ��

Lemma 10 Let f (x; θ) = e−(x−θ)

(1+e−(x−θ))2
be the density of the

logistic distribution, then
∣∣∣ln f (x;θ)

f (x;θ ′)

∣∣∣ ≤ ∣∣θ − θ ′∣∣ .

Proof of Lemma 10 Note that
∣∣∣ln f (x;θ)

f (x;θ ′)

∣∣∣ =
∣∣∣ln f (x;θ ′)

f (x;θ)

∣∣∣ so

without loss of generality, we can assume that θ ≥ θ ′ (i.e.,
the location parameter in the numerator is≥ the parameter in
the denominator). From the formula of f we have f (x;θ)

f (x;θ ′) =
eθ−θ ′ ·

(
1+e−x eθ ′
1+e−x eθ

)2
. Clearly eθ ≥ eθ ′ �⇒ 1+e−x eθ ′

1+e−x eθ ≤ 1.

Also,

1+e−x eθ ′
1+e−x eθ = eθ ′−θ (eθ−θ ′+e−x eθ )

1+e−x eθ ≥ eθ ′−θ (1+e−x eθ )

1+e−x eθ = eθ ′−θ .

Therefore, eθ ′−θ = eθ−θ ′ · (eθ ′−θ )2 ≤ f (x;θ)
f (x;θ ′) ≤ eθ−θ ′

. Thus
∣∣∣ln f (x;θ)

f (x;θ ′)

∣∣∣ ≤ ∣∣θ − θ ′∣∣ . ��

Theorem 10 Algorithm 7 satisfies ε-differential privacy. Its
output distribution is equivalent to selecting ωs with proba-
bility proportional to exp

(
εμ(D,ωs )

2Δμ

)
and then independently

sampling the gap from the logistic distribution (conditional
on only sampling nonnegative values) with location param-

eter θ = εμ(D,ωs )
2Δμ

− ln
∑

j �=s
exp(

εμ(D,ω j )

2Δμ
).
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Proof of Theorem 10 For ωi ∈ R, let μi = εμ(D,ωi )
2Δμ

and

μ′
i = εμ(D′,ωi )

2Δμ
. Let Xi ∼ Gumbel(μi ) and X ′

i ∼
Gumbel(μ′

i ).
We consider the probability of outputting the selected ωs

with gap γ ≥ 0 when D is the input database:

P(ωs is chosen with gap ≥ γ | D)

=
∫

R

P(Xs = z + γ )
∏

i �=s

P(Xi ≤ z) dz

=
∫

R

exp(−(z+γ −μs)−e−(z+γ−μs ))
∏

i �=s

e−e−(z−μi ) dz

=
∫

R

eμs−γ exp(−z − eμs−γ e−z)
∏

i �=s

exp(−eμi e−z) dz

(let μ∗ = ln(
∑

i �=s e
μi ) and θ = μs − μ∗)

=
∫

R

eμs−γ exp(−z − eμs−γ e−z) exp(−eμ∗
e−z) dz

=
∫

R

eμs−γ exp(−z − (eμs−γ + eμ∗
)e−z) dz

= eμs−γ

eμs−γ + eμ∗ exp(−(eμs−γ + eμ∗
)e−z)

∣∣∣
+∞
−∞

= eμs−γ

eμs−γ + eμ∗ = 1

1 + e−(μs−γ−μ∗) = 1

1 + e−(θ−γ )

and so

P(ωs is chosen with gap ∈ [0, γ ] | D)

= P(ωs is chosen | D)

− P(ωs is chosen with gap ≥ γ | D)

= eμs

eμs + eμ∗ − 1

1 + e−(μs−γ−μ∗) = 1

1 + e−θ

− 1

1 + e−(θ−γ )

Taking the derivative with respect to γ , we get the density
f (ωs, γ | D) of ωs being chosen with gap equal to γ :

f (ωs, γ | D) = d

dγ

(
1

1 + e−θ
− 1

1 + e−(θ−γ )

)

= e−(γ−θ)

(e−(γ−θ) + 1)2
1[γ≥0] (10)

= eμs

eμs + eμ∗

(
e−(γ−θ)

(e−(γ−θ) + 1)2
1[γ≥0]

)/ eμs

eμs + eμ∗

= eμs

eμs + eμ∗

(
e−(γ−θ)

(e−(γ−θ) + 1)2
1[γ≥0]

)/ 1

1 + e−θ
(11)

Now, in Eq. 11, the term eμs

eμs+eμ∗ = eμs

eμs+∑i �=s e
μi = eμs∑

i e
μi

is the probability of selecting ωs .

The term e−(γ−θ)

(e−(γ−θ)+1)2
1[γ≥0] is the density of the event that

a logistic random variable with location θ has value γ and is
nonnegative.

Finally, the term 1
1+e−θ is the probability that a logistic

random variable with location θ is nonnegative.

Thus
(

e−(γ−θ)

(e−(γ−θ)+1)2
1[γ≥0]

)/
1

1+e−θ is the probability of a

logistic random variable having value γ conditioned on it
being nonnegative.

Therefore Eq. 11 is the probability of selecting ωs and
independently sampling a nonnegative value γ from the con-
ditional logistic distribution location parameter θ = μs −μ∗
(i.e., conditional on it only returning nonnegative values).

Now, recall that μi = εμ(D,i)
2Δμ

, we apply Lemmas 10 and
9 with the help of Eq. 10 to finish the proof:

∣∣
∣∣ln

f (ωs, γ | D)

f (ωs, γ | D′)

∣∣
∣∣ ≤ ∣

∣(μs − μ∗) − (μ′
s − μ∗′)

∣
∣

≤ |μs − μ′
s | + | ln

∑

i �=s

eμi − ln
∑

i �=s

eμ′
i |

≤ ε/2 + ε/2 = ε.

��
Proof of Theorem 6 The first part follows directly from The-
orem 10. Also, from the proof of Theorem 10 the gap gs has

density f (x; θ) =
(

e−(x−θ)

(e−(x−θ)+1)2
1[x≥0]

)/
1

1+e−θ . Since

∫ t

0

e−x+θ

(e−x+θ + 1)2
· x dx =

∫ t

0

ex−θ

(1 + ex−θ )2
· x dx

=
∫ t

0
x ·
( −1

1 + ex−θ

)′
dx = −x

1 + ex−θ

∣
∣∣
t

0

+
∫ t

0

1

1 + ex−θ
dx

= −t

1 + et−θ
+ (x − ln(1 + ex−θ ))

∣∣∣
t

0

= −t

1 + et−θ
+ t − ln(1 + et−θ ) + ln(1 + e−θ )

= −t

1 + et−θ
+ ln

et

1 + et−θ
+ ln(1 + e−θ )

We have

∫ ∞

0

e−x+θ

(e−x+θ + 1)2
· x dx = lim

t→∞

∫ t

0

e−x+θ

(e−x+θ + 1)2
· x dx

= lim
t→∞

( −t

1 + et−θ
+ ln

et

1 + et−θ
+ ln(1 + e−θ )

)

= 0 + ln(eθ ) + ln(1 + e−θ ) = ln(1 + eθ )
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Hence E(gs) = (1 + e−θ ) ln(1 + eθ ). ��
Proof of Theorem 7 Assume H0 is true, i.e., there exists a t �=
s such that μ(D, ωs) < μ(D, ωt ). Then

θ = εμ(D,ωs )
2Δμ

− ln
∑

j �=s

exp(
εμ(D,ω j )

2Δμ
)

≤ εμ(D,ωs )
2Δμ

− ln exp εμ(D,ωt )
2Δμ

= εμ(D,ωs )
2Δμ

− εμ(D,ωt )
2Δμ

< 0

Using be the density of the gap from above, we have

P[x ≥ γ | H0] = (1 + e−θ )

∫ ∞

γ

e−x+θ

(1 + e−x+θ )2
dx

= (1 + e−θ )

∫ ∞

γ

ex−θ

(1 + ex−θ )2
dx

= (1 + e−θ ) ·
( −1

1 + ex−θ

∣∣∣
∞
γ

)

= 1 + e−θ

1 + eγ−θ
= eθ + 1

eθ + eγ
<

2

1 + eγ

because eθ+1
eθ+eγ is an increasing function of θ and θ < 0. ��
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