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Abstract

Database fragmentation has been used as a protection mechanism of database’s privacy by allocating attributes with sensitive
associations into separate data fragments. A typical relational database consists of multiple relations. Thus, fragmentation
process is applied to each relation separately in a sequential manner. In other words, the existing database fragmentation
approaches regard each relation fragmentation problem as an independent task. When solving a sequence of fragmentation
problems, redundant computational resources are consumed when extracting the same fragmentation information and limit
the performance of those algorithms. In this paper, a multitasking database fragmentation problem for privacy preservation
requirements is formally defined. A multitasking distributed differential evolution algorithm is introduced, including a mul-
titasking distributed framework enriched by two new operators. The introduced framework can help exchange generic and
effective allocation information among different database fragmentation problems. A similarity-based alignment operator is
proposed to adjust the fragment orders in different database fragmentation solutions. A perturbation-based mutation operator
with adaptive mutation strategy selection is designed to sufficiently exchange evolutionary information in the solutions. Exper-
imental results show that the proposed algorithm can outperform other competitors in terms of solution accuracy, convergence
speed, and scalability.

Keywords Database fragmentation - Privacy preservation - Distributed differential evolution - Multitasking optimization

1 Introduction

Outsourced data storage can effectively reduce the overall
cost of data storage and improve the scalability in storage
volume [7,15,17]. Despite the tremendous benefits, out-
sourced data storage brings the new concern of data privacy
[2,22,26,27]. Although database encryption [16,24] can pro-
tect data privacy, the additional encryption and decryption
procedures reduce the query efficiency [23]. By partition-
ing sensitive associations and allocating the partitioned
components into separate data fragments (i.e., database frag-
mentation), data privacy can be protected without incurring
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time-consuming data transformation. Thus, the concept of
vertical relational database fragmentation was introduced
mainly to serve two useful purposes: efficient query pro-
cessing and independently as a mechanism for data privacy
protection [1,3,4].

To achieve effective privacy preservation, several data
fragmentation algorithms have been proposed. In [3], encrypted
vertical database fragmentation was presented to break the
sensitive associations between attributes. Authors in [4]
proved that the privacy-preserving database fragmentation
problem belongs to the class of NP-hard problem. The
authors also introduced two heuristic strategies to achieve the
optimal number of fragments. In [5], the authors investigated
the effectiveness of loose association in database fragmenta-
tion. In [13], a distributed memetic algorithm was proposed
to tackle the trade-off between privacy and utility. In [12],
an indicator named anonymity degree was introduced and
used to measure the privacy preservation degree in the given
database fragmentation. Although the proposed anonymity
degree in [12] can effectively measure the privacy preserva-
tion degree in the database fragmentation, its performance

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00718-w&domain=pdf
http://orcid.org/0000-0002-5955-6295

958

Y.-F.Ge etal.

is still limited by the population diversity and information
exchange efficiency. While optimizing the privacy preser-
vation degree, two performance factors, i.e., accuracy and
efficiency, are crucial. Within the same number of pri-
vacy preservation degree evaluations, an algorithm of higher
accuracy can generate solutions of higher privacy preser-
vation degrees. During the optimization, an algorithm of
higher efficiency can generate solutions of the same privacy
preservation degrees using fewer privacy preservation degree
evaluations. Such privacy preservation evaluations cost most
of the computational resources during the optimization.
Therefore, we can say that the cost of the additional evalua-
tions by the algorithms of lower efficiency is computational
redundancy. In the previous algorithms, each database frag-
mentation problem is tackled as an independent optimization
task. When optimizing a relational database containing mul-
tiple relations, effective fragmentation information extracted
in one relation cannot be utilized by the others. Redundant
computational resources (i.e., additional privacy preservation
degree evaluations) are consumed when extracting the same
fragmentation information in different fragmentation prob-
lems, which limit the optimization accuracy and efficiency of
these algorithms. To improve the solution accuracy and opti-
mization efficiency, it is worthy of developing a multitasking
algorithm, which can transfer effective fragmentation infor-
mation among different database fragmentation problems.

For NP-hard optimization problems, various differential
evolution (DE) algorithms have been proposed [10,11,20,
21]. They have shown the advantages in efficiency and relia-
bility in optimization problems such as seismic inversion [8],
microwave circuit design [28], and protein structure predic-
tion [29]. The concept of evolutionary multitasking was first
formalized in [14]. To tackle this problem, a cross-domain
optimization platform was designed. Afterward, authors in
[18,19] proposed two frameworks to transfer information
and knowledge among different tasks. The above evolu-
tionary multitasking algorithms only focus on continuous
optimization problems. In [6], an evolutionary multitask-
ing algorithm is designed for the capacitated vehicle routing
problem. These algorithms are designed in a sequential man-
ner, which limits the algorithms’ scalability and timeliness.
It is natural to think of designing a multitasking distributed
framework that all the optimization tasks are solved in par-
allel.

In this paper, a multitasking distributed differential evolu-
tion (MDDE) algorithm is proposed to address the privacy-
preserving database fragmentation problem. Each individual
in MDDE represents one database fragmentation solution,
and the update of the MDDE population helps identify better
database fragmentation solutions. In MDDE, a multitask-
ing distributed framework (MDF) including merge and split
operators is designed, in which each database fragmentation
task is optimized independently, and the effective fragmenta-
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tion information is extracted and exchanged among different
tasks. Moreover, a similarity-based alignment (SBA) oper-
ator is designed to adjust the fragment orders in different
solutions. A perturbation-based mutation (PBM) operator
with adaptive mutation strategy selection is designed to suffi-
ciently exchange evolutionary information in the individuals.
The experimental results demonstrate that the proposed
MDDE can outperform the state-of-the-art algorithms in
terms of solution accuracy, convergence speed, and compu-
tation efficiency.

The remainder of this paper is organized as follows. First,
the multitasking database fragmentation problem is defined,
and its complexity is analyzed. We then introduce the related
work of the evolutionary multitasking algorithm and existing
database fragmentation algorithms for privacy preservation.
Afterward, we illustrate the proposed MDDE algorithm in
detail. Subsequently, extensive experiments are carried out,
and the experimental results are analyzed. Finally, we con-
clude this paper.

2 Problem definition

In this problem, we only consider vertical database frag-
mentation. For the simplicity of presentation, we restrict the
content of the relational database to a single relation r over
the relational schema R, r(R). Let A be a set of attributes of
R and A C A be the primary key of r. A fragmentation of
relation r is a family of relations r; such that the natural join
of them (on A) reconstructs the relation r. We then can define
the legal fragmentation and the optimal fragmentation.

Definition 1 (legal fragmentation) Formally, for a given
r(R), we say that a fragmentation 7 = {Fy, ..., Fnr} (i.e.,
a solution) is legal if:

1. Vi A; € R:3j Fj € Fsuchthat A; € F; (a fragmenta-
tion covers all attributes in R);

2. VF;, Fj e F,i # j:F;NF; ={A} (the intersection of
different fragments in the fragmentation is A);

3. T(F) = Tap. (The lowest anonymity degree in the frag-
mentation can reach the threshold.)

Tap is the threshold of anonymity degree; T (F) is the
lowest anonymity degree in F and calculated as:

T(F) = min (AD(F,)) )
AD(F,) = M )
P77 NNDR(F,)

where AD(F),) is the anonymity degree of the pth frag-
ment in the given fragmentation F; NF indicates the number
of fragments; NR(F),) represents the number of records in
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fragment F,; and NNDR(F),) represents the number of non-
duplicate records in fragment £, in terms of all the non-prime
attributes, i.e., the number of different tuples in terms of all
the non-prime attributes. Therefore, for each fragment F,,
the value of NR(F,) is higher than or equal to the value of
NNDR(F), and thus AD(F)) > 1.

Definition 2 (optimal fragmentation) For r(R), we say a
fragmentation F is optimal if:

1. VF' is legal, AD(F') < AD(¥).

Such definition indicates the optimal fragmentation F is legal
and of the highest anonymity degree in all the legal fragmen-
tations. The anonymity degree AD(F) is calculated as:

Y e AD(Fy)

AD(F) = —NF 3)

In a multitasking database fragmentation problem, mul-
tiple tasks of different characteristics (e.g., data source,
fragment number) are optimized in parallel. In each task, the
optimization object is to identify an optimal fragmentation F
that can achieve the optimal anonymity degree. The optimiza-
tion objective of the multitasking database fragmentation
problem is to simultaneously find a set of fragmentations
SF ={F1, Fa, ..., Fnr}, where NT is the number of tasks
and each fragmentation in the set represents the optimal
fragmentation of the corresponding task. Table 1 lists the
notations in this section and the corresponding meanings.

3 Problem analysis

The analysis of the defined database fragmentation problem
is a reduction from the NP-hard problem of exact cover [9],
which can be formulated as follows: Given a collection S of
subsets of a set X, an exact cover is a subcollection S’ of
S such that each element in X is contained in exactly one
subset in S’. Formally, given a collection S of subsets of X,
an exact cover of X is a subcollection S’ of S that:

1. The intersection of any two distinct subsets in S’ is empty;
2. The union of the subsets in S’ is X.

In the database fragmentation problem, let X = A — {A},
where set X contains all the non-prime attributes in A. We can
observe that each combination of attributes in X and A forms
a fragment F;. With respect to the third condition in Defini-
tion 1, S = {VF;, AD(F;) > Tap}. During the construction
of the database fragmentation problem, a subcollection S’ of
S is chosen. With respect to the first and second conditions in
Definition 1, every attribute in X is covered by &', and every

Table 1 Notations and meanings

Notation Meaning

r Relation

R Relational schema

A Set of attributes

A Primary key

F Fragmentation

NF Number of fragments

A; The ith attribute

F; The jth fragment

T(F) The lowest anonymity degree in the fragmentation
AD(F)) Anonymity degree of pth fragment

Tap Threshold of anonymity degree

NR(F)) Number of records in the pth fragment
NNDR(F)) Number of non-duplicate records in the pth fragment
AD(F) Anonymity degree of the fragmentation

SF Set of fragmentations

NA Number of attributes

NR Number of records

NT Number of tasks

attribute appears in exact one subset (i.e., fragment) in S’. As
a consequence, any algorithm finding a legal fragmentation
in the database fragmentation problem can be exploited to
solve the exact cover problem.

4 Related work

In this section, a brief literature review of the evolutionary
multitasking algorithm is first presented. Then, the related
work of vertical database fragmentation for privacy preser-
vation is introduced.

4.1 Evolutionary multitasking algorithm

The concept of evolutionary multitasking was first introduced
in [14]. In this work, the concept of evolutionary multitasking
was formalized. Moreover, the differences between mul-
titasking optimization and multiobjective optimization are
illustrated. A cross-domain optimization platform was devel-
oped. Authors in [18] proposed a general framework named
the evolution of biocoenosis through symbiosis, which is
effective in the selection of candidates from offspring and the
adaptive information control among tasks. In [19], to address
the multitasking optimization problem, a novel framework
named symbiosis in biocoenosis optimization is proposed.
The proposed framework is designed to transfer information
and knowledge among different tasks. In [6], considering
that the autoencoding-based explicit evolutionary multitask-
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ing can only work on continuous optimization problems,
the authors conducted a study toward explicit evolutionary
multitasking for a combinational optimization problem, i.e.,
capacitated vehicle routing problem.

4.2 Database fragmentation for privacy
preservation

Authors in [1] first proposed a vertical database fragmenta-
tion algorithm for data privacy preservation. In this work, all
the database attributes are divided into two groups, which
limits the performance in complex problems. In [3], an
encrypted database fragmentation algorithm was introduced,
and the advantage in protecting the sensitive association
between attributes is verified. The database fragmentation
problem was proved to be NP-hard in [4]. Moreover, two
heuristic strategies were proposed to achieve the optimal
number of fragments. A graph-based algorithm based on con-
fidentiality constraints was proposed in [25]. The nodes in
the graph were utilized to represent the database fragmenta-
tion solutions. In [5], the effectiveness of loose association
in database fragmentation was investigated. The evolution-
ary algorithm was also utilized in database fragmentation. In
[13], a distributed memetic algorithm was proposed to tackle
the outsourced database fragmentation problem, in which
the database privacy is satisfied, and the database utility is
optimized. In [12], the anonymity degree measurement was
utilized, and the anonymity degree was set as the optimiza-
tion objective in database fragmentation.

5 Distributed differential evolution (DDE)

In this section, the process of the traditional DDE is illus-
trated. At the beginning of the evolution, the population is
divided into multiple subpopulations, and each subpopula-
tion is assigned to an island. As shown in Fig. 1, the islands
are connected according to a ring topology, and the sub-
population in each island evolves independently. The chosen
individual in each subpopulation is migrated to its neighbor
island in the topology with a given interval. When an island
receives a migrated individual, the migrated individual is
inserted into the current subpopulation to replace an individ-
ual. With the help of migration, the evolutionary information
in each subpopulation is exchanged. In the subpopulation, the
DE algorithm is performed on individuals to improve their
fitness values. In the DE algorithm, three operators, i.e., muta-
tion, crossover, and selection, are included and described as
follows.

@ Springer

Fig. 1 An example of the migration operator in DDE, in which four
subpopulations send their elite individuals (indicated by the triangles)
to the neighbor subpopulations

5.1 Mutation operator

In the mutation operator, the differences between individuals
are extracted and utilized to construct the mutant individuals.
Various strategies have been proposed to calculate the mutant
individual and listed as follows:

1. DE/rand/1
vE=x8 + F - (x5, —x%) )

P =

2. DE/current-to-best/1

VE=xP+ F (B —xH) +F-(x —x5) ®)
3. DE/best/1

Vi P - xE) ©
4. DE/best/2

Vo P X G X ()
5. DE/rand/2

Vi =X+ F () = X5) + F (% — xs) ®)

where Vf indicates the ith mutant individual at generation g;
xﬁest represents the best individual found at generation g; F
represents the differential factor; and 1, r2, 3, r4, and r5
are indexes of the random individuals.
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5.2 Crossover operator

In the crossover operator, we exchange the evolutionary
information in the mutant individual vf and the current indi-
vidual Xf . Then, a trial individual ulg is generated as follows:

x% .. otherwise

v¥ ., ifrand(0, 1) < Cror j = jrna

| ©)

ij
i,]°

where rand (0, 1) indicates a random float; Cr is the crossover
rate; and jpang 1S @ random bit in the mutant individual to
guarantee at least one bit of the trial individual comes from
the mutant individual.

5.3 Selection operator

In the selection operator, the fitness values of the current
individual and the generated trial individual are evaluated
and then compared. The individual of higher fitness value is
kept. The selection operator of a minimization problem f(x)
is formulated as:

o {u?’ . if f) < fx) (10,

1 .
x{, otherwise

where Xf *1is the selected individual.

When the DE algorithm is utilized to solve the database
fragmentation problem, each database fragmentation solu-
tion is represented by an individual in DE. The individual’s
fitness value indicates the anonymity degree of the database
fragmentation solution. With the evolution of the popula-
tion, individuals of higher fitness values are generated. Thus,
we can acquire database fragmentation solutions of higher
anonymity degrees.

6 Multitasking distributed differential
evolution (MDDE)

In this section, an algorithm named MDDE is proposed
for the multitasking database fragmentation problem. In the
beginning, the representation manner of MDDE is intro-
duced. Afterward, a framework including two operators, i.e.,
merge and split, is designed to migrate generic allocation
information among different subproblems. Two operators
named SBA and PBM are designed to sufficiently exchange
evolutionary information between individuals.

6.1 Representation

InFig. 2, an example of the representation of the MDDE algo-
rithm is shown. As shown in the figure, a database containing
nine attributes and six records is given. After the fragmen-
tation, the given database is divided into three fragments.
The first fragment contains three attributes, i.e., Area, YoB
(year of birth), and ZIP code. In the second fragment, three
attributes, i.e., Gender, Race, and LoS (Iength of stay), are
allocated. Finally, attributes Type and Disease are allocated
to the third fragment. Therefore, these three fragments make
up a fragmentation solution shown at the bottom of the figure.

In MDDE, each individual in the optimizer represents a
database fragmentation solution. To be specific, each bit of
the individual indicates an attribute, and its value indicates
the index of the fragment.

6.2 Multitasking distributed framework (MDF)

The MDF is proposed based on DDE. In MDF, same as
DDE, the entire population is divided into multiple subpopu-
lations, and each subpopulation evolves independently. With
a given interval, the best individuals in the subpopulations

are migrated among the subpopulations. There are two major
differences between MDF and DDE.

(1) Each subpopulation in DDE evolves for the same opti-
mization problem. In MDF, each subpopulation evolves
for a different optimization problem.

(2) In DDE, the individuals in all the subpopulations repre-
sent the same optimization problem. Differently, individ-
uals in MDF represent different optimization problems,
which affects the individuals’ universality.

To improve the individuals’ universality in different sub-
populations, two operators, i.e., merge and split, are designed.

6.2.1 Merge operator

In the migration operator, when a subpopulation receives
a migrated individual, the migrated individual’s evolution-
ary information is extracted to promote the subpopulation’s
search process. In the multitasking database fragmentation
problem, different database fragmentation problems may
contain different numbers of fragments. The merge opera-
tor is designed to decrease the number of fragments in the
migrated individual.

When the number of fragments in the migrated individ-
ual exceeds the number of fragments in the subpopulation,
the merge operator is applied. During the merge operator,
two fragments in the individual are first chosen. Then, all the
attributes in the chosen fragments are extracted and inserted
into the same fragment. After the merge operator, the number
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’ ID l Area (A) IYoB (B) IGender (C)I Race (D) l ZIP (E) I LoS (F) I Type (G) Disease (H)
1 Western NY 1965 Male Black 2141 4 Urgent Fever
2 Central NY 1965 Male White 2155 2 Emergency Chest pain
3 Finger Lakes 1965 Female Black 2167 1 Elective Back pain
4 Western NY 1964 Female White 2142 1 Emergency Vomiting
5 Finger Lakes 1964 Female Black 2161 5 Elective Fever
6 Central NY 1964 Female White 2152 7 Urgent Chest pain
‘ ID | Area (A) |YoB (B)| ZIP (E) ‘ ’ ID ‘Gender(c)l Race (D) I LoS (F) ‘ ‘ ID | Type (G) | Disease (H)
1 Western NY 1965 2141 1 Male Black 4 1 Urgent Fever
2 Central NY 1965 2155 2 Male White 2 2 Emergency Chest pain
3 Finger Lakes | 1965 2167 3 Female Black 1 3 Elective Back pain
4 Western NY 1964 2142 4 Female White 1 4 Emergency Vomiting
5 Finger Lakes | 1964 2161 5 Female Black 5 5 Elective Fever
6 Central NY 1964 2152 6 Female White 7 6 Urgent Chest pain
Fq Area (A) YoB (B) ZIP (E)
F, Gender (C) Race (D) LoS (F)
Fs Type (G) Disease (H)

Fig. 2 In this figure, a sample database is provided, which contains
nine attributes and six records. This database is separated into three
fragments. The first fragment (F7) contains attributes Area, YoB, and

of fragments in the migrated individual decreases. If the num-
ber of fragments in the subpopulation is still lower than the
number of fragments in the migrated individual, the merge
operator is applied one more time. The merge operator is
executed until the numbers of fragments in the migrated indi-
vidual and the subpopulation are equal.

An example of the merge operator is given in Fig. 3. As
shown in the example, the migrated individual contains eight
attributes, and these attributes are divided into four frag-
ments. To be specific, the first fragment contains attributes
A and F; the second fragment contains attributes C and D.
When the given individual is migrated to a subpopulation
containing three fragments, the merge operator is applied.
Two fragments in the given individual are randomly selected.
In this example, the second fragment and the third fragment
in the individual are randomly chosen and merged. Thus,
the second fragment in the merged individual contains four
attributes, i.e., C, D, E, and G. The number of fragments in
the migrated individual is decreased to three.
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ZIP. The second fragment (F>) contains attributes Gender, Race, and
LoS. Finally, the third fragment (F3) contains attributes Type and Dis-
ease

With the merge operator’s help, the number of fragments
in the migrated individual equals the number of fragments
in the subpopulation. During the merge operator, the allo-
cation information in the merge fragments is maintained.
Also, the migrated individual can be directly inserted into the
subpopulation. During the subsequent process, the migrated
individual’s evolutionary information is extracted and uti-
lized to generate the offspring.

6.2.2 Split operator

The split operator is on the other side of the merge opera-
tor. It is designed to increase the number of fragments in the
migrated individual. During the split operator, one fragment
in the migrated individual is chosen by random. Then, all
the attributes in the chosen fragment are randomly assigned
to two empty fragments. Finally, two split fragments are
inserted into the fragments. After the split operator, the num-
ber of fragments in the migrated individual increases. Same
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Fqi Area (A) LoS (F)

F, Gender (C) Race (D)

F3 ZIP (E) Type (G)

F, YoB (B) Disease (H)

\ 4

F1 Area (A) LoS (F)
F, Gender (C) Race (D) ZIP (E) Type (G)
Fs YoB (B) Disease (H)

Fig. 3 An example of the merge operator, in which two fragments in
the given individual (F, and F3) are merged into one fragment. A new
individual containing the merged fragment (F,) is generated

Fi Area (A) YoB (B)
F,  Gender(C) Race (D) ZIP (E) Type (G)
Fs LoS (F) Disease (H)
$

Fy Area (A) YoB (B)

F,  Gender(C) ZIP (E)

Fs Race (D) Type (G)

Fa Los (F) Disease (H)

Fig.4 An example of the split operator, in which the second fragment
(F>) in the given individual is split into two fragments. A new individual
containing the split two fragments (F> and F3) is generated

as the merge operator, the split operator is executed until
the numbers of fragments in the migrated individual and the
subpopulation are equal.

As shown in Fig. 4, an example of the split operator
is given. In the example, the migrated individual contains
eight attributes and three fragments. The first fragment con-
tains attributes A and B, while the second fragment involves
attributes C, D, E, and G. During the split operator, the
second fragment is chosen randomly. Attributes C, E are
assigned to one fragment, and attributes D, G are assigned
to the other fragment. After the split operator, the number of

fragments in the migrated individual increases from three to
four.

The split operator helps guarantee that the migrated indi-
vidual and the subpopulation are of the same fragment
number. The allocation information in the split fragment
is partially maintained in the new fragments. During the
afterward evolution, the migrated individual’s allocation
information is exchanged with the other individuals in the
subpopulation, and offspring is generated.

6.3 Similarity-based alignment (SBA)

When updating the database fragmentation solutions, the
DE algorithm is performed. In DE, mutation and crossover
operators are utilized for exchanging allocation information
(i.e., which attribute is allocated to which fragment) among
different solutions. In the database fragmentation problem,
different fragments are of the same property, and their order
does not affect the result. If two database fragmentation solu-
tions assign the same attributes to the fragments and their
fragment orders are different, these two solutions are still
regarded as the same solution. When exchanging allocation
information between individuals, their fragment orders mat-
ter. If the fragment orders of two database fragmentation
solutions are similar, the difference in their allocation is easy
to extract. Otherwise, the difference between two database
fragmentation solutions is challenging to identify. In this
algorithm, the SBA operator is designed to adjust all the
database fragmentation solutions’ fragment orders.

In the SBA, the best individual of each subpopulation is
chosen as the alignment standard. Then, all the other individ-
uals are adjusted according to the given alignment standard.
First, for a given individual, all its fragments are compared
with the first fragment in the alignment standard, and the sim-
ilarity degrees are calculated. The fragment in the individual
with the highest similarity is extracted and reallocated to the
first position. Then, all the individuals’ left fragments are
compared with the second fragment in the alignment stan-
dard, and the similarity degrees are calculated. The fragment
with the highest similarity is reallocated to the second posi-
tion. The individual is finally reallocated according to the
alignment standard.

An example of the SBA is given in Fig. 5. The best indi-
vidual in the subpopulation is given and set as the alignment
standard. All the given individual fragments are compared
with the first fragment of the alignment standard. In this
example, the third fragment in the given individual is of the
highest similarity. Then, the third fragment is reallocated to
the first position. Afterward, the other fragments are com-
pared with the second fragment in the alignment standard,
and the second fragment is chosen. The second fragment in
the given individual is reallocated to the second position.
Similarly, the left fragment in the best individual (i.e., the
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— F Area (A) YoB (B) LoS (F)
— F,  Gender(C) Race (D)
Fs ZIP (E) Type (G)  Disease (H)
Fi Type (G)  Disease (H)
L F,  Gender(C) Race (D) LoS (F)
— F, Area (A) YoB (B) ZIP (E)
$
Fi Area (A) YoB (B) ZIP (E)
F, Gender (C) Race (D) LoS (F)
Fs Type (G)  Disease (H)

Fig. 5 An example of the SBA operator, in which the fragment order
in the given individual is adjusted according to the best individual.
Accordingly, a new individual is generated

third fragment) matches the first fragment in the given indi-
vidual. The orders of fragments in the given individual are
adjusted accordingly.

After performing the SBA operator, all the individuals’
fragment orders are adjusted according to the given align-
ment standard. In these individuals, all the fragments of the
same position contain similar attributes. The differences in
fragment allocation between two individuals can be directly
identified by comparing the fragments at the same position
in these individuals. Thus, during the afterward mutation and
crossover operators, the same allocation information in the
individuals can be kept, and the differences between individ-
uals can be extracted and exchanged.

6.4 Perturbation-based mutation (PBM)

In the traditional mutation operator, two parts are involved.
The first part is a chosen individual acting as the base. The
second part is the calculation result of the chosen individuals.
We can also regard the second part as a perturbation for the
base part. Taking “DE/rand/1” strategy as an example:

vE=x5 + F - (x5, —x%) (11)
we can see the first part (i.e., base part) is the first random indi-

vidual, and the second part (i.e., perturbation part) is acquired
by calculating the difference between the second and third
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random individuals. When tackling the continuous optimiza-
tion problem, it is natural to directly calculate the mutant
individual according to the given calculation rule. However,
when tackling the discrete database fragmentation problem,
these calculation rules cannot maintain their effectiveness.

Based on the “base-perturbation” manner, two perturbation-
based mutation strategies are proposed. The first mutation
strategy is a variant of the traditional “DE/rand/1” strategy,
which can help improve population diversity and exploration
ability. In this variant, three individuals are chosen randomly.
The first random individual acts as the base. Then, the dif-
ference between the latter two individuals is extracted as the
perturbation. Finally, the perturbation information is added
to the base part, and the mutation individual is generated.
The second mutation strategy is a variant of the traditional
“DE/best/1” strategy, which helps maintain the exploitation
ability. In this variant, the best individual and two random
individuals are utilized. The best individual serves as the
base, while the difference between two random individuals
serves as the perturbation.

An example of two “base-perturbation” mutation strate-
gies is given in Fig. 6. In the random mutation strategy, three
random individuals are utilized. The difference between the
second individual x,» and the third random individual x,3 is
extracted. To be specific, on the first, fourth, fifth, and sev-
enth bits, the attributes are assigned to the same fragment.
Thus, no difference is extracted, and the corresponding val-
ues are directly copied to the perturbation vector p. On the
other attributes, they are assigned to different fragments in
two individuals. Thus, for each attribute, one fragment is
randomly selected from two individuals. On the second and
eighth bits, attributes are assigned according to Xx,», while
attributes on the third and sixth bits are assigned according
to x,3. Afterward, the difference between two random indi-
viduals is extracted and used to construct the perturbation
vector. Finally, the generated perturbation vector p is com-
bined with the base individual, and the mutant individual is
generated. On the first, fourth, fifth, and eighth bits, these
two vectors contain the same allocation information and are
kept in the mutant individual. On the third and sixth bits, the
mutant individual’s allocation information comes from the
base individual. On all the other bits, the allocation informa-
tion comes from the perturbation vector.

In the best mutation strategy, the same rule is applied. The
bestindividual in the subpopulation acts as the base. Two ran-
dom individuals are used to generate the perturbation vector.
Then, the mutant individual is generated based on the base
part and the perturbation vector. On the second, third, sev-
enth, and eighth bits, the contents from the base part and
the perturbation vector are the same and kept in the mutant
individual. On the fourth and sixth bits, the allocation infor-
mation comes from the base individual. On the left bits, the
allocation information comes from the perturbation vector.
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Fig.6 An example of the PBM operator, in which the random mutation strategy is utilized on individuals x,, X,2, and x,3, while the best mutation

strategy is utilized on individuals Xpegt, X,1, and X,

In the “base-perturbation” mutation strategies, the indi-
viduals’ evolutionary information is divided into two parts.
The first one is the base part. In the best mutation strategy, the
base part is the best individual in the subpopulation, which
can help improve the subpopulation’s exploitation ability.
In the random mutation strategy, the base part is a random
individual in the subpopulation, which helps maintain the
population diversity and exploration ability. The second one
is the perturbation part, which extracts the difference between
random individuals. Finally, the allocation information from
the base individual and the perturbation vector is combined.
The same allocation information is kept, while the different
allocation information is randomly selected.

6.5 Adaptive mutation strategy selection

In the above section, two mutation strategies are proposed,
i.e., random mutation strategy and best mutation strategy. In
the random mutation strategy, a random individual is set as
the base, which helps improve the exploration ability. On
the other hand, in the best mutation strategy, the best indi-
vidual in the subpopulation is set as the base, which helps
improve the exploitation ability. During the evolution, it is
crucial to achieving the trade-off between exploration ability
and exploitation ability. To balance the exploration ability
and exploitation ability, the mutation strategy is adaptively
selected.

At the beginning of the evolution, for each individual, a
mutation strategy is chosen by random. Then, in the first gen-
eration, the chosen mutation strategy is performed. During
the afterward selection operator, if the generated trial individ-
ual is better than the current individual, the chosen mutation
strategy remains unchanged. If the generated trial individ-
ual is not better, the chosen mutation strategy is changed to
the other one. If the current mutation strategy is the random

mutation strategy, it will be changed to the best mutation
strategy and vice versa.

The adaptive mutation strategy selection can help achieve
the trade-off between the exploration ability and the exploita-
tion ability. If the chosen mutation strategy can help generate
better offspring during the evolution, which means the cho-
sen mutation strategy is effective for the evolution, it will be
kept. If the chosen mutation strategy does not help generate
more competitive offspring, it will be replaced. In different
evolutionary stages, exploration ability and exploitation abil-
ity show different effectiveness. Different mutation strategies
are needed for different individuals, and the above adaptive
selection strategy can provide them different mutation strate-
gies according to the performance.

6.6 Crossover operator

The crossover operator is designed to combine the alloca-
tion information of the mutant individual and the current
individual to generate the trial individual. With the prede-
fined crossover rate Cr, the allocation information is extracted
from the mutant individual. With the 1 — Cr possibility, the
allocation information comes from the current individual.
Furthermore, one bit jnq is randomly chosen to guarantee
that at least one bit of the trial individual comes from the
mutant individual.

Figure 7 shows an example of the crossover operator. The
mutant individual and the current individual are given. The
sixth bit is chosen as the jiang bit, and the allocation informa-
tion on this bit comes from the mutant individual. Moreover,
with the crossover rate Cr, the allocation information on the
second, fourth, and seventh bits is also extracted from the
mutant individual. On all the other bits, the trial individual’s
attributes are assigned according to the current individual.

After the crossover operator, the allocation information in
the mutant individual and the current individual is sufficiently
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A B C D E F G H Algorithm 2 PseudospscodeofMDDEspsslavenodesps
1: procedure SLAVE NODE
2:  for each individual do
v R R TR SR TR al [Fa TR 3: Randomly choose a mutation strategy from the pool
l l I ! ' l 4:  end for
_u F F F F F F F F 5:  for every generation do
1 1 z B B i 3 2 6: Perform the SBA operator
T T T T T T 7: for each individual do
8: Perform the PBM operator
X F1 F1 F F 7 F2 Fs F2 9: Perform the crossovir operator
10: Perform the selection operator
11: if the generated individual is better then
F1 Area (A) YoB (B) Los (F) 12: Replace the current individual by the trial individual
13: else
F, Gender (C) Disease (H) 1451 o dC;ange the current mutation strategy
16: end for
17: if g % M1 = 0 then
F3 Race (D) ZIP (E) Type (G) 18: Send the best individual to the master node
19: Receive the migrated individual from the master node
Fig. 7 An example of the crossover operator, in which the mutant 20: if Migrated individual is with higher fragment number
individual v and the current individual x; exchange the allocation infor- then
mation and generate the trial individual u 21: Perform merge operator
22: end if
Algorithm 1 PseudospscodeofMDDEspsmasternodesps 23: if Migrated ind.ividual is with lower fragment number then
24: Perform split operator
1: procedure MASTER NODE 25: end if
2:  Assign the database fragmentation problems to slave nodes 26: Replace a randomly chosen individual
Set initial generation g =0 27: end if
Divide the population into N subpopulations 28:  end for

while terminal condition is not met do
if g % M1 = 0 then
Receive migrated individuals from slave nodes
Send the migrated individuals to the corresponding nodes
9: end if
10: g=g+1
11:  end while
12:  Collect the best solutions for the given database fragmentation
problems
13:  Output the best solutions
14: end procedure

A A

exchanged, and a trial individual is generated. In the trial
individual, the percentage of allocation information source
is decided by the predefined crossover rate Cr.

6.7 Overall process

In this section, the pseudo-code of the proposed MDDE
algorithm is given in Algorithms 1 and 2. As shown in the
pseudo-code, the proposed algorithm is implemented in a
master—slave manner. At the master node, the correspond-
ing database fragmentation problems are assigned to the
corresponding slave nodes. Then, the generation counter is
initialized as zero. The entire population is divided into N
subpopulations, and each subpopulation is assigned to one
slave node. With the migration interval M I, the master node
receives the migrated individuals from the slave nodes and
sends the migrated individuals to the corresponding slave
nodes. In the master node, the migration operator is executed
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29: end procedure

until the termination condition is met. The best solutions for
all the database fragmentation problems from all the slave
nodes are collected by the master node and outputted.

In each slave node, one database fragmentation prob-
lem and one subpopulation are assigned at the beginning of
the evolution. For each individual in the subpopulation, one
mutation strategy is selected by random. In every generation,
the SBA operator is performed to adjust the fragment order.
The PBM operator and crossover operator are performed
on all the individuals, and trial individuals are generated.
If the trial individual is better than the corresponding cur-
rent individual, the current individual is replaced by the trial
individual. Otherwise, the current individual is kept, and the
mutation strategy is changed. During the evolution, with the
migration interval M, each subpopulation sends the best
individual to the master node and receives a migrated individ-
ual from the master node. If the migrated individual contains
a higher fragment number, the proposed merge operator is
executed. If the migrated individual contains a lower frag-
ment number, the proposed split operator is executed. Then,
the migrated individual contains the same fragment number,
and one randomly chosen individual in the subpopulation is
replaced.

Based on the problem definition, the time complexity of
calculating the anonymity degree for a given fragmentation



MDDE: multitasking distributed differential evolution for privacy-preserving database... 967

is O(NA xNR xlog NR). According to the overall process of
the proposed MDDE, its time complexity is O(NA x NR? x
log NR) and space complexity is O(NA x NR x NT).

7 Experimental result

In this section, the results of various experiments are pre-
sented. First, the experimental setup and performance metric
are introduced. Then, the proposed MDDE algorithm is com-
pared with competitive database fragmentation algorithms
and state-of-the-art evolutionary multitasking algorithms in
terms of accuracy and efficiency. Afterward, the impact of
the proposed components in MDDE is investigated, and the
speedup ratio of MDDE is calculated. Finally, the parameter
setting of MDDE is discussed.

7.1 Experimental setup

In the experiments, 16 test cases are utilized to verify the
proposed MDDE algorithm’s effectiveness in database frag-
mentation. These test cases are generated based on the public
datasets of the New York State Department of Health.! In
each test case, different characteristics (e.g., fragment num-
ber, data source) are assigned to different tasks. Table 2
outlines the properties of these test cases, which include
numbers of records NR, numbers of sample records NSR,
numbers of attributes NA, numbers of tasks NT, numbers of
fragments NF, and numbers of data sources NDS.

In the proposed MDDE algorithm, the number of sub-
populations in MDDE is set as NT; the subpopulation size
SPS is set as 10; the migration interval M1 is set as 10; and
the crossover rate Cr is set as 0.5. For all the algorithms,
the anonymity degree threshold Tap is set as 2.0; the maxi-
mum fitness evaluation number maxNFEs is set as NR /100.
Furthermore, in each test case, the proposed MDDE and the
compared approaches are performed in 25 independent runs.

The island model of MDDE is implemented by the Mes-
sage Passing Interface (MPI). Each subpopulation is assigned
to a computation core in the CPU. The communication
between subpopulations is implemented by the message
exchange between CPU cores. Moreover, MDDE and all
the compared algorithms in this paper are implemented in
C++ and performed on a local cluster containing 60 com-
pute nodes (OS: Ubuntu 16.04; CPU: 3.40 GHz 4-Core Intel
i5-7500; Memory: 8 GB).

! https://health.data.ny.gov/Health/Hospital- Inpatient- Discharges-
SPARCS-De-Identified/82xm-y6g8.

Table 2 Properties of 16 test cases

Testcases  NR NSR NA NT NF NDS
T 100,000 10,000 31 4 2,3,4,5 1
e 100,000 20,000 31 4 2,3,4,5 1
T3 100,000 30,000 31 4 2,3,4,5 1
14 100,000 40,000 31 4 2,3,4,5 1
Ts 200,000 10,000 36 4 2,3,4,5 1
Ts 200,000 20,000 36 4 2,3,4,5 1
T; 200,000 30,000 36 4 2,3,4,5 1
T3 200,000 40,000 36 4 2,3,4,5 1
Ty 300,000 10,000 31 4 2,3,4,5 4
Tio 300,000 20,000 31 4 2,3,4,5 4
T 300,000 30,000 31 4 2,3,4,5 4
T 300,000 40,000 31 4 2,3,4,5 4
T3 400,000 10,000 36 4 2,3,4,5 4
Tia 400,000 20,000 36 4 2,3,4,5 4
Tis 400,000 30,000 36 4 2,3,4,5 4
Tie 400,000 40,000 36 4 2,3,4,5 4

7.2 Performance metric

The average anonymity degree AD is defined as the per-
formance metric, which calculates the average value of AD
obtained by all the fragmentations in SF. More formally,
this metric is calculated as:

NT AD(F,)

AD(SF) = NT

12)

where F; is the obtained fragmentation of tth task; AD(F;)
indicates its anonymity degree; and NT is the task number.

7.3 Comparisons with competitive database
fragmentation algorithms

To verify the effectiveness of the proposed MDDE algo-
rithm in test cases, three competitive database fragmentation
approaches, i.e., DE [21], S-DDE [12], and HA [4] are com-
pared. The specific descriptions of these three algorithms are
listed as follows:

(1) DE [21]: This approach acts as a baseline algorithm.
The differences between DE and MDDE in performance
show the effectiveness of the proposed operators in
MDDE.

(2) S-DDE [12]: In this algorithm, the discrete database
fragmentation problem is optimized by the proposed set-
based mutation and crossover operators.

(3) HA [4]: This is a state-of-the-art heuristic algorithm for
database fragmentation problems, in which two heuristic
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Table 3 Comparisons with competitive database fragmentation algorithms

Test cases DE S-DDE HA MDDE

Avg Std Avg Std Avg Std Avg Std

T 1.69E+02 4.92E+01 1.47E+02 5.85E+01 1.14E+02 1.18E+02 3.21E+027 1.29E+02
p) 6.11E+02 1.96E+02 7.10E+02 2.70E+02 4.07E+02 2.59E+02 7.87E+02" 245E+02
Tz 1.35E+03 3.71E+02 1.17E+03 3.69E+02 8.05E+02 4.00E+02 1.72E+03" 3.02E+02
14 2.22E+03 3.36E+02 1.90E+03 5.03E+02 1.11E+03 6.78E+02 3.45E+03" 5.73E+02
Ts 3.18E+01 2.30E+01 4.74E+01 3.10E+01 3.70E+01 5.14E+01 6.47E+017 6.14E+01
Ts 3.16E+02 1.33E+02 2.93E+02 2.28E+02 1.96E+02 2.30E+02 4.77TE+027 1.38E+02
T; 6.49E+02 2.21E+02 6.24E+02 1.57E+02 2.97E+02 2.68E+02 1.05E+03" 3.76E+02
T3 1.24E+03 4.50E+02 9.74E+02 3.60E+02 4.77E+02 3.44E+02 1.59E+03" 5.02E+02
Ty 3.07E+02 1.11E+02 3.59E+02 1.98E+02 2.00E+02 1.61E+02 3.91E+02° 1.20E+02
Tio 8.97E+02 2.44E+02 1.08E+03 2.68E+02 7.30E+02 3.16E+02 1.23E+037 2.49E+02
T 1.82E+03 4.41E+02 1.78E+03 4.00E+02 1.30E+03 5.35E+02 3.11E+03" 6.38E+02
T2 2.96E+03 4.95E+02 2.56E+03 5.72E+02 1.72E+03 6.45E+02 4.60E+03" 8.19E+02
T3 1.18E+02 5.24E+01 1.10E+02 4.79E+01 1.20E+02 1.13E+02 2.18E+02° 1.00E+02
T4 5.44E+02 1.45E+02 4.42E+02 1.53E+02 3.60E+02 2.64E+02 7.88E+027 2.46E+02
Tis 1.11E+03 3.72E+02 9.49E+02 3.50E+02 7.53E+02 4.63E+02 1.23E+03" 3.53E+02
Tie 1.81E+03 4.64E+02 1.34E+03 3.92E+02 1.16E+03 5.60E+02 2.13E+03° 3.79E+02

strategies are designed to achieve the optimal fragmen-
tation. Moreover, the correctness and complexity of the
proposed heuristic strategies are analyzed.

The average and standard deviation values obtained by
these approaches are calculated and listed in Table 3. The
best results are labeled in boldface. Overall, MDDE algo-
rithm can outperform the compared algorithms in all the test
cases. Compared with DE and S-DDE, the advantage of the
proposed framework and operators is verified. First, MDF
helps maintain population diversity and improve exploration
ability. Moreover, the individuals’ allocation information is
effectively extracted by the SBA and PBM operators. Due to
the advantage of population diversity, MDDE can achieve a
better performance than HA. In HA, the search direction is
led by the predefined heuristic strategy, and its search direc-
tion is narrow. In complex test cases, HA is more likely to
get trapped by the local optima. Besides, Wilcoxon rank-
sum (significance level 0.05) is employed to verifty MDDE’s
advantage in a statistical sense. As shown in Table 3, symbol
T shows the labeled results can achieve significant differences
from the compared results.

The obtained convergence curves in six typical test cases
are plotted in Fig. 8. Four lines out of seven indicate the con-
vergence curves obtained by DE, S-DDE, HA, and MDDE,
respectively. For each point, the value on the horizontal axis
represents the number of fitness evaluations, while the verti-
cal axis represents the average anonymity degrees obtained
in 25 independent runs. In the beginning, all three algo-
rithms converge rapidly. HA quickly gets trapped by the local
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optima and stagnates. Thanks to the exploration ability of
DE, S-DDE, and MDDE, they can continuously improve the
anonymity degree during the search. The differences between
the lines of MDDE and the lines of DE verify the effective-
ness of the proposed framework and operators in MDDE.
Overall, MDDE can achieve the highest convergence speed
due to the trade-off between exploration and exploitation.
More specifically, in Table 4, ten values of AD with
the same margin are listed, and the corresponding values
of NFEs cost by these four algorithms are calculated. The
best results are labeled in boldface. For example, in the first
line of the DE algorithm, the value 2.00E+02 indicates that
the DE algorithm costs 200 fitness evaluations to achieve
value 340 in anonymity degree. The label “~” indicates that
the corresponding algorithm cannot achieve the given value.
Moreover, the ratio of NFEs of each compared algorithm is
calculated by dividing NFEs of MDDE into NFEs achieved
by the compared algorithm. If the value of ratio exceeds
100%, it indicates that the compared algorithm costs more fit-
ness evaluations to achieve the same value of AD as MDDE.
Correspondingly, the MDDE algorithm shows higher effi-
ciency when reaching the chosen value of AD. In contrast,
it indicates that the compared algorithm costs fewer fitness
evaluations to reach the same value of AD as MDDE. Thus,
the compared algorithm is more efficient when achieving the
value of AD. Comparing DE and MDDE, we can see that
DE can reach six values in the list, while MDDE can achieve
all ten values. In other words, DE cannot achieve the same
accuracy degree as MDDE. Focusing on the ratio, we can find
that the first three ratios in DE are equal to 100%, which indi-
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Fig.8 Convergence curves of MDDE and all the compared algorithms in six typical test cases

cates that DE can achieve the same efficiency as MDDE at the
beginning of the evolution. Afterward, limited by the pop-
ulation diversity and information sharing, DE cannot keep
the same optimization efficiency as MDDE. Similarly, when
comparing S-DDE and MDDE, we can see that the S-DDE
algorithm shows lower optimization accuracy than MDDE.
Five ratios of S-DDE are higher than or equal to 100%, which
indicates that S-DDE cannot achieve higher efficiency than
MDDE during the optimization. In HA, all the listed three
ratios are equal to or higher than 100%, which indicates
that HA cannot maintain the same efficiency as MDDE. As
mentioned above, with the help of the predefined heuristic
strategy, HA can achieve quick convergence at the beginning
of the optimization. Also, led by the heuristic strategy, its
search direction is narrow, and it is more likely to be trapped
by the local optima. Its optimization accuracy cannot be guar-
anteed. Overall, the proposed MDDE can achieve the highest
accuracy in the comparison. Also, its optimization efficiency
is equal to or higher than the compared algorithms during the
entire optimization.

Based on the original papers, the time complexity of HA
is O(NA? x NR x log NR). Compared with MDDE, since
the value of NA is lower than NR in the test cases, the time
complexity of HA is slightly lower than MDDE. On the other
hand, the time complexity of the other two evolutionary algo-
rithms (DE and S-DDE) is O(NA x NR2 x log NR), which

is the same as MDDE. In addition, the space complexity of
DE, S-DDE, and HA is O(NA x NR x NT), which is the
same as the space complexity of MDDE. To sum up, in terms
of time complexity, HA shows its advantage, while the other
algorithms are the same as MDDE. In terms of space com-
plexity, MDDE and all the compared algorithms do not show
significant differences. Moreover, the space consumption of
MDDE and the compared algorithms is plotted in Fig. 9.
In each test case, the space consumption of different algo-
rithms does not show a significant difference, which is also
reflected by the above analysis regarding the space complex-
ity. In these test cases, most of the space is occupied by the
records in the tackled databases, and the minor differences
between different algorithms are caused by the different data
structures utilized during the optimization.

7.4 Comparisons with state-of-the-art evolutionary
multitasking algorithms

To further verify the effectiveness of the proposed MDDE
algorithm, three state-of-the-art evolutionary multitasking
algorithms, i.e., MFEA [14], EBS [18], and SBO [19], are
compared. The specific descriptions of these three algorithms
are listed as follows:
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Table 5 Comparisons with state-of-the-art evolutionary multitasking algorithms

Test cases MFEA EBS SBO MDDE
Avg Std Avg Std Avg Std Avg Std

T 1.94E+02 8.52E+01 1.74E+02 8.69E+01 1.72E+02 6.01E+01 3.21E+02° 1.29E+02
) 7.03E402 3.73E+02 6.87E+02 2.43E+02 6.67E+02 2.34E+02 7.87E+027 2.45E+02
T3 1.30E+03 3.73E+02 1.22E+03 3.52E+02 1.43E+03 3.40E+02 1.72E+03" 3.02E+02
T4 2.16E+03 4.71E+02 2.27E+03 5.18E+402 2.28E+03 5.13E+02 3.45E+037 5.73E+02
Ts 3.76E+01 2.93E+01 3.61E+01 2.55E+01 3.64E+01 2.26E+01 6.47E+017 6.14E+01
Ts 2.89E+02 1.42E+02 2.92E+02 1.36E+02 3.44E+02 1.22E+02 4.77E+027 1.38E+02
17 6.22E+02 1.79E+02 5.79E+02 1.54E+02 6.59E+02 1.38E+02 1.05E+03" 3.76E+02
Ty 1.09E+03 3.74E+02 1.05E+03 4.55E+02 1.30E+03 4.47E+02 1.59E+03" 5.02E+02
Ty 3.80E+02 2.26E+02 2.33E+02 4.80E+01 2.38E+02 4.31E+01 3.91E+02° 1.20E+02
Tio 1.01E+03 2.43E+02 8.70E+02 2.35E+02 8.71E+02 2.41E+02 1.23E+03" 2.49E+02
T 1.69E+03 3.86E+02 1.87E+03 3.31E+02 1.78E+03 3.47E+02 3.11E+03" 6.38E+02
T1> 2.84E+03 4.43E+02 2.95E+03 5.59E+02 2.90E+03 4.37E+02 4.60E+03" 8.19E+02
T3 9.83E+01 5.26E+01 1.27E+02 7.07E+01 1.27E+02 7.39E+01 2.18E+02° 1.00E+02
T4 4.95E+02 1.77E+02 5.13E+02 1.67E+02 5.80E+02 2.29E+02 7.88E+027 2.46E+02
Tis 9.57E+02 3.09E+02 9.83E+02 3.20E+02 1.08E+03 3.56E+02 1.23E+037 3.53E+02
Ti6 1.56E+03 4.73E+02 1.39E+03 3.60E+02 1.61E+03 4.79E+02 2.13E+037 3.79E+02

Further, according to the data presented in Table 4, we
can analyze these algorithms in terms of accuracy and effi-
ciency. MFEA, EBS, and SBO algorithms all reach six AD
values, which is lower than the value achieved by MDDE
(i.e., ten). In other words, when utilizing the same number
of fitness evaluations, these compared three algorithms can-
not achieve the same accuracy degree as MDDE. Moreover,
when comparing the efficiency of MFEA and MDDE, we
can see the first two ratios of MFEA are 100%, which indi-
cates MFEA can achieve the same efficiency as MDDE at
the beginning of the optimization. Afterward, the ratios of
MFEA are all higher than 100%, which indicates that MDDE
can acquire the same values of AD by costing lower numbers
of fitness evaluations. Similarly, the ratios achieved by EBS
and SBO algorithms are also equal to 100% at the beginning
of the optimization. Afterward, their ratios exceed 100%.
Such comparisons indicate that the proposed components
(i.e., MDF, SBA, and PBM) can enhance the performance of
MDDE in terms of optimization accuracy and efficiency.

According to the original papers, the time complexity
of all the compared multitasking evolutionary algorithm is
O(NA x NR? x log NR), which is the same as MDDE. Since
MDDE is implemented based on the distributed framework,
parallel computation can help reduce the running time and
achieve speedup. In terms of space consumption, the space
complexity of MFEA, EBS, and SBO is O(NA x NR x NT),
which is the same as the space complexity of MDDE. To
sum up, in terms of time and space complexity, MDDE and
the compared evolutionary multitasking algorithms do not
show significant differences. In Fig. 9, the space consump-

tion of MDDE and the compared evolutionary multitasking
algorithms is shown. Each point in the figure indicates the
space cost by the algorithm in the corresponding test case.
As shown in the figure, the positions of points in the same
test case are quite similar, indicating that these algorithms’
space consumption is similar. During the optimization of
these algorithms, most of the space is occupied by the records
in the tackled databases, which can also verify the above anal-
ysis regarding the space complexity.

7.5 Impact of proposed components

The proposed algorithm’s new components contain the MDF,
SBA operator, and PBM operator. To verify these compo-
nents’ effectiveness, three DE variants are implemented and
compared with the original DE algorithm. These variants are
listed as follows:

(1) DE-MDF: In this variant, the MDF is embedded into the
DE algorithm.

(2) DE-SBA: The SBA operator is adopted in the DE algo-
rithm.

(3) DE-PBM: The PBM operator is embedded into the DE
algorithm.

Table 6 shows the comparisons of experimental results
where the best results are highlighted in boldface. To be spe-
cific, DE-MDF can achieve the best results in 5 test cases;
DE-SBA can outperform DE in 10 test cases; and DE-PBM
achieves the best result in the left 1 test case. When com-

@ Springer



972 Y.-F.Geetal.
Table 6 Impact of the proposed components
Test cases DE DE-MDF DE-SBA DE-PBM

Avg Std Avg Std Avg Std Avg Std
T 1.69E+02 4.92E+01 2.20E+02 8.08E+01 2.67E+02 1.11E+02 2.20E+02 5.39E+01
) 6.11E+02 1.96E+02 8.10E+02 2.23E+02 7.77E+02 2.52E+02 7.04E+02 2.29E+02
Tz 1.35E+03 3.71E+02 1.51E+03 3.80E+02 1.66E+03 3.02E+02 1.54E+03 2.83E+02
T4 2.22E+03 3.36E+02 2.67E+03 4.82E+02 3.19E+03 5.87E+02 2.46E+03 3.51E+02
Ts 3.18E+01 2.30E+01 5.14E+01 4.05E+01 3.07E+01 1.84E+01 3.00E+01 1.46E+01
Ts 3.16E+02 1.33E+02 5.07E+02 2.06E+02 5.00E+02 1.67E+02 3.55E+02 1.23E+02
T; 6.49E+02 2.21E+02 9.25E+02 3.36E+02 1.05E+03 3.77E+02 7.59E+02 1.73E+02
T3 1.24E+03 4.50E+02 1.26E+03 5.05E+02 1.60E+03 4.91E+02 1.49E+03 5.12E+02
Ty 3.07E+02 1.11E+02 3.00E+02 1.12E+02 3.39E+02 1.13E+02 2.95E+02 8.43E+01
Tio 8.97E+02 2.44E+02 1.19E+03 2.59E+02 1.10E+03 2.13E+02 9.69E+02 2.49E+02
Ti1 1.82E+03 4.41E+02 2.18E+03 4.98E+02 3.11E+03 5.53E+02 2.17E+03 2.26E+02
T2 2.96E+03 4.95E+02 3.59E+03 7.89E+02 3.93E+03 6.31E+02 3.49E+03 3.93E+02
Ti3 1.18E+02 5.24E+01 1.94E+02 6.62E+01 1.79E+02 6.62E+01 1.37E+02 5.78E+01
T4 5.44E+02 1.45E+02 7.29E+02 2.71E+02 7.64E+02 2.45E+02 5.93E+02 1.89E+02
Tis 1.11E+03 3.72E+02 1.07E+03 3.21E+02 1.23E+03 3.50E+02 1.25E+03 3.49E+02
Tie 1.81E+03 4.64E+02 1.88E+03 4.95E+02 2.24E+03 4.57E+02 1.92E+03 4.20E+02
+/=/- - 14/072 15/0/1 14/0/2

paring DE and DE-MDF, the impact of the proposed MDF
is verified. In all the compared 16 test cases, DE-MDF can
outperform DE in 14 test cases, which indicates that the pro-
posed MDF can help improve the population diversity and
exploration search ability. Compared with DE, DE-SBA can
achieve better performance in 15 test cases, which verifies
that the SBA operator can improve the effectiveness of infor-
mation exchange during the evolution. Correspondingly, the
comparison between DE and DE-PBM shows the advantage
of the PBM operator. With the help of the PBM operator, DE
can outperform DE in 14 test cases. Overall, all the proposed
components (i.e., MDF, SBA, and PBM) can contribute to
the overall performance of MDDE.

7.6 Speedup ratio

In the MDDE algorithm, the MDF component is designed
for two features. The first feature is to improve the efficiency
in information exchange, whose impact has been verified in
the last section. The second feature is to reduce the running
time, which is based on the implementation of the distributed
computation. To investigate the impact of the MDF compo-
nent on the running time, the speedup ratio of the MDDE
is measured. The speedup ratio is calculated by dividing the
distributed algorithm’s running time into the sequential algo-
rithm’s running time. A distributed algorithm with a higher
speedup ratio indicates it can achieve higher parallel effi-
ciency and scalability.

@ Springer

In the MDDE algorithm, each subpopulation is allocated
to a single computation core, and each subpopulation evolves
independently. The number of subpopulations in MDDE
indicates its parallel granularity. The MDDE algorithm with-
out the MDF is regarded as the sequential algorithm, and the
MDDE algorithm with MDF is regarded as the distributed
version. The running time of these two algorithms is mea-
sured, and the corresponding speedup ratios are calculated.

In Table 7, the running time of two algorithms and the
speedup ratios in 16 test cases are listed. In all the test cases,
the proposed MDDE algorithm can achieve speedup ratios
higher than 3.3, which indicates the distributed framework
of the MDDE algorithm can provide effective computational
acceleration. The speedup ratios in different test cases vary.
This is because different test cases are of different complexity
and need different evaluation time. In test cases such as Tig,
the speedup ratios of MDDE are higher. This is because these
test cases are of higher complexity.

7.7 Parameter analysis

In MDDE, three parameters, i.e., subpopulation size SPS,
crossover rate Cr, and migration interval M1, are utilized.
These three parameters can directly affect the performance
of MDDE and thus need to be carefully set.

When the value of SPS is low, the search of MDDE
becomes relatively exploitative. In this case, the evolutionary
information in the individuals is quickly exchanged among
individuals, and the population diversity decreases. In con-
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Table 7 Speedup ratios

achieved by MDDE algorithm Test cases —VRVith‘?“‘ MDE With MDE :
with MDF unning time (ms) Running time (ms) Speedup ratio
T 2480.03 732.34 3.39
T 10,215.37 2922.67 3.50
T3 23,696.21 6613.13 3.58
T 42,993.42 12,072.87 3.56
Ts 2697.92 791.31 341
Ts 11,138.55 3196.47 3.48
T; 25,898.08 7274.01 3.56
T3 46,841.2 13,063.72 3.59
Ty 2449.3 693.96 3.53
Tio 10,079.42 2850.96 3.54
T 23,406.72 6412.77 3.65
T 42,937.07 11,703.63 3.67
T3 2624.25 767.18 342
Tia 11,019.55 3110.82 3.54
Tis 25,087.8 7083.4 3.54
Tie 45,262.05 12,605.41 3.59
Table 8 Parameters of MDDE and the corresponding recommended 6
ranges 7 |
Parameters Low High Recommended range 5 2 7
- %
SPS Exploitative Exploratory 5-15 77 % 7 7 %
Cr Exploitative Exploratory 0.3-0.7 S A1 — 1V v v
MI Exploitative Exploratory 5-25 §
S 3 AU v
4
<
trast, the search of MDDE tends to be exploratory, which is 2V v RZRZR7ZRZR
due to the high population diversity achieved by the large
subpopulations. If the value of Cr is low, the evolutionary BNZBZB7ZE BZRZ 727
information in the mutant individual is less likely to be intro- 2
duced in the trial individual. Thus, the search of MDDE 5/0.3 5/0.5 5/0.7 10/0.3 10/0.5 10/0.7 15/0.3 15/0.5 15/0.7
becomes exploitative. On the contrary, the search of MDDE SPS/Cr

tends to be exploratory, which is due to the high population
diversity achieved by the high crossover rate. If the value
of M1 is low, the evolutionary information identified by the
subpopulations is exchanged frequently, and the search of
MDDE tends to be exploitative. On the contrary, the popula-
tion in MDDE with high M I maintains high diversity. Thus,
the search of MDDE is exploratory. In Table 8, the impact
of these three parameters on the MDDE algorithm is listed.
Moreover, the recommended ranges of these parameters are
listed, which are identified based on the prior experiments.
To identify which value combination of SPS and Cr can
achieve the best performance in the given test cases, the aver-
age ranks of MDDE variants with different values of SPS
and Cr are calculated. As shown in Fig. 10, the average ranks
achieved by all the variants are between 4.5 and 6. There is no
significant difference between these average ranks when the
SPS and Cr values are defined in the given range. Moreover,

Fig. 10 Average ranks of MDDE variants with different value combi-
nations of SPS and Cr

in Fig. 11, the average ranks of five MDDE variants adopting
different values of M I are plotted. As shown in this figure,
the average ranks achieved by these variants are between 2.5
and 3.5. To sum up, the parameter combination adopted in
this paper (i.e., SPS = 10, Cr = 0.5, M I = 10) can achieve
the best performance.

8 Conclusion
The multitasking database fragmentation problem is defined

in this paper. For this problem, the MDDE algorithm is intro-
duced, which includes MDF and two operators (i.e., SBA and

@ Springer
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Fig. 11 Average ranks of MDDE variants with different values of M/

PBM). MDF is effective in exchanging information among
different database fragmentation problems. The SBA opera-
tor can help adjust the fragment orders in different solutions.
The PBM operator with adaptive mutation strategy selection
is designed to sufficiently exchange allocation information in
the individuals. Experimental results verify the advantages of
the proposed algorithm in optimization performance. In the
future, we can further investigate the approximation guaran-
tee of the proposed algorithm. Furthermore, considering the
effectiveness of the proposed MDF, we will apply it in other
multitasking optimization problems.

References

1. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kentha-
padi, K., Motwani, R., Srivastava, U., Thomas, D., Xu, Y.: Two
can keep a secret: a distributed architecture for secure database
services. In: 2005 CIDR Conference (2005)

2. Attasena, V., Darmont, J., Harbi, N.: Secret sharing for cloud data
security: a survey. VLDB J. 26(5), 657-681 (2017). https://doi.org/
10.1007/s00778-017-0470-9

3. Ciriani, V., Di Vimercati, S.D.C., Foresti, S., Jajodia, S., Para-
boschi, S., Samarati, P.: Fragmentation and encryption to enforce
privacy in data storage. In: European Symposium on Research in
Computer Security, pp. 171-186. Springer (2007)

4. Ciriani, V., Vimercati, S.D.C.D., Foresti, S., Jajodia, S., Paraboschi,
S., Samarati, P.: Combining fragmentation and encryption to pro-
tect privacy in data storage. ACM Trans. Inf. Syst. Secur. 13(3),
1-33 (2010)

5. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G.,
Paraboschi, S., Samarati, P.: Loose associations to increase utility
in data publishing. J. Comput. Secur. 23(1), 59-88 (2015)

6. Feng, L., Huang, Y., Zhou, L., Zhong, J., Gupta, A., Tang, K., Tan,
K.C.: Explicit evolutionary multitasking for combinatorial opti-
mization: a case study on capacitated vehicle routing problem.
IEEE Trans. Cybern. (2020). https://doi.org/10.1109/tcyb.2019.
2962865

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Gao, J., Yu, 1.X., Jin, R., Zhou, J., Wang, T., Yang, D.: Outsourc-

ing shortest distance computing with privacy protection. VLDB
J. 22(4), 543-559 (2013). https://doi.org/10.1007/s00778-012-
0304-8

. Gao, Z., Pan, Z., Zuo, C., Gao, J., Xu, Z.: An optimized deep

network representation of multimutation differential evolution and
its application in seismic inversion. IEEE Trans. Geosci. Remote
Sens. 57(7), 47204734 (2019). https://doi.org/10.1109/tgrs.2019.
2892567

. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman and Company,
New York (1979)

Ge, Y.F, Yu, W, Lin, Y., Gong, Y.J., Zhan, Z.H., Chen, W.N.,
Zhang, J.: Distributed differential evolution based on adaptive
mergence and split for large-scale optimization. IEEE Trans.
Cybern. 48(7), 2166-2180 (2018). https://doi.org/10.1109/tcyb.
2017.2728725

Ge, Y.F, Yu, WJ., Zhan, Z.H., Zhang, J.: Competition-based
distributed differential evolution. In: 2018 IEEE Congress on Evo-
lutionary Computation. IEEE (2018). https://doi.org/10.1109/cec.
2018.8477758

Ge, Y.F, Cao, J., Wang, H., Zhang, Y., Chen, Z.: Distributed dif-
ferential evolution for anonymity-driven vertical fragmentation in
outsourced data storage. In: 2020 International Conference on Web
Information Systems Engineering, pp. 213-226 (2020)

Ge, Y.F, Yu, W], Cao,J., Wang, H., Zhan, Z.H., Zhang, Y., Zhang,
J.: Distributed memetic algorithm for outsourced database frag-
mentation. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/
tcyb.2020.3027962

Gupta, A., Ong, Y.S., Feng, L.: Multifactorial evolution: toward
evolutionary multitasking. IEEE Trans. Evol. Comput. 20(3), 343—
357 (2016). https://doi.org/10.1109/tevc.2015.2458037

Hore, B., Mehrotra, S., Canim, M., Kantarcioglu, M.: Secure mul-
tidimensional range queries over outsourced data. VLDB J. 21(3),
333-358 (2011). https://doi.org/10.1007/s00778-011-0245-7
Kohler, J., Jiinemann, K., Hartenstein, H.: Confidential database-
as-a-service approaches: taxonomy and survey. J. Cloud Comput.
4(1), 1-14 (2015)

Li, J., Yao, W.,, Zhang, Y., Qian, H., Han, J.: Flexible and fine-
grained attribute-based data storage in cloud computing. IEEE
Trans. Serv. Comput. 10(5), 785-796 (2017). https://doi.org/10.
1109/ts¢.2016.2520932

Liaw, R.T., Ting, C.K.: Evolutionary many-tasking based on
biocoenosis through symbiosis: a framework and benchmark prob-
lems. In: 2017 IEEE Congress on Evolutionary Computation,
pp- 2266-2273. IEEE (2017). https://doi.org/10.1109/cec.2017.
7969579

Liaw, R.T., Ting, C.K.: Evolutionary manytasking optimization
based on symbiosis in biocoenosis. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, pp. 4295-4303
(2019). https://doi.org/10.1609/aaai.v33i01.33014295

Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A
Practical Approach to Global Optimization. Springer, Berlin (2006)
Price, K.V.: Differential evolution. In: Handbook of Optimization,
pp. 187-214 (2013)

Rani, K., Sagar, R.K.: Enhanced data storage security in cloud envi-
ronment using encryption, compression and splitting technique. In:
2017 International Conference on Telecommunication and Net-
works. IEEE (2017) https://doi.org/10.1109/tel-net.2017.8343557
UbaidurRahman, N.H., Balamurugan, C., Mariappan, R.: A novel
DNA computing based encryption and decryption algorithm. Proc.
Comput. Sci. 46, 463-475 (2015)

Wang, Y., Yan, Z., Feng, W, Liu, S.: Privacy protection in mobile
crowd sensing: a survey. World Wide Web 23(1), 421-452 (2019).
https://doi.org/10.1007/s11280-019-00745-2


https://doi.org/10.1007/s00778-017-0470-9
https://doi.org/10.1007/s00778-017-0470-9
https://doi.org/10.1109/tcyb.2019.2962865
https://doi.org/10.1109/tcyb.2019.2962865
https://doi.org/10.1007/s00778-012-0304-8
https://doi.org/10.1007/s00778-012-0304-8
https://doi.org/10.1109/tgrs.2019.2892567
https://doi.org/10.1109/tgrs.2019.2892567
https://doi.org/10.1109/tcyb.2017.2728725
https://doi.org/10.1109/tcyb.2017.2728725
https://doi.org/10.1109/cec.2018.8477758
https://doi.org/10.1109/cec.2018.8477758
https://doi.org/10.1109/tcyb.2020.3027962
https://doi.org/10.1109/tcyb.2020.3027962
https://doi.org/10.1109/tevc.2015.2458037
https://doi.org/10.1007/s00778-011-0245-7
https://doi.org/10.1109/tsc.2016.2520932
https://doi.org/10.1109/tsc.2016.2520932
https://doi.org/10.1109/cec.2017.7969579
https://doi.org/10.1109/cec.2017.7969579
https://doi.org/10.1609/aaai.v33i01.33014295
https://doi.org/10.1109/tel-net.2017.8343557
https://doi.org/10.1007/s11280-019-00745-2

MDDE: multitasking distributed differential evolution for privacy-preserving database... 975

25.

26.

217.

28.

Xu, X., Xiong, L., Liu, J.: Database fragmentation with confi-
dentiality constraints: a graph search approach. In: 2015 ACM
Conference on Data and Application Security and Privacy, pp. 263—
270 (2015)

Yu, J., Wang, G., Mu, Y., Gao, W.: An efficient generic framework
for three-factor authentication with provably secure instantiation.
IEEE Trans. Inf. Forensics Secur. 9(12), 2302-2313 (2014)

Yu, Y., Au, M.H.,, Ateniese, G., Huang, X., Susilo, W., Dai, Y., Min,
G.: Identity-based remote data integrity checking with perfect data
privacy preserving for cloud storage. IEEE Trans. Inf. Forensics
Secur. 12(4), 767-778 (2017)

Zheng, L.M., Zhang, S.X., Zheng, S.Y., Pan, Y.M.: Differential
evolution algorithm with two-step subpopulation strategy and its
application in microwave circuit designs. IEEE Trans. Ind. Inform.
12(3), 911-923 (2016). https://doi.org/10.1109/tii.2016.2535347

29. Zhou, X.G., Peng, C.X., Liu, J., Zhang, Y., Zhang, G.J.:

Underestimation-assisted global-local cooperative differential evo-
lution and the application to protein structure prediction. IEEE
Trans. Evol. Comput. 24(3), 536-550 (2019). https://doi.org/10.
1109/teve.2019.2938531

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.1109/tii.2016.2535347
https://doi.org/10.1109/tevc.2019.2938531
https://doi.org/10.1109/tevc.2019.2938531

	MDDE: multitasking distributed differential evolution for privacy-preserving database fragmentation
	Abstract
	1 Introduction
	2 Problem definition
	3 Problem analysis
	4 Related work
	4.1 Evolutionary multitasking algorithm
	4.2 Database fragmentation for privacy preservation

	5 Distributed differential evolution (DDE)
	5.1 Mutation operator
	5.2 Crossover operator
	5.3 Selection operator

	6 Multitasking distributed differential evolution (MDDE)
	6.1 Representation
	6.2 Multitasking distributed framework (MDF)
	6.2.1 Merge operator
	6.2.2 Split operator

	6.3 Similarity-based alignment (SBA)
	6.4 Perturbation-based mutation (PBM)
	6.5 Adaptive mutation strategy selection
	6.6 Crossover operator
	6.7 Overall process

	7 Experimental result
	7.1 Experimental setup
	7.2 Performance metric
	7.3 Comparisons with competitive database fragmentation algorithms
	7.4 Comparisons with state-of-the-art evolutionary multitasking algorithms
	7.5 Impact of proposed components
	7.6 Speedup ratio
	7.7 Parameter analysis

	8 Conclusion
	References




