
The VLDB Journal (2022) 31:483–506
https://doi.org/10.1007/s00778-021-00707-z

REGULAR PAPER

Fast fully dynamic labelling for distance queries

Muhammad Farhan1 ·Qing Wang1 · Yu Lin1 · Brendan McKay1

Received: 28 February 2021 / Revised: 6 September 2021 / Accepted: 2 October 2021 / Published online: 19 October 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Finding the shortest-path distance between an arbitrary pair of vertices is a fundamental problem in graph theory. A tremendous
amount of research has explored this problem, most of which is limited to static graphs. Due to the dynamic nature of real-
world networks, such as social networks or web graphs in which a link between two entities may fail or become alive at
any time, there is a pressing need to address this problem for dynamic networks. Existing work can only accommodate
distance queries over moderately large dynamic networks due to high space cost and long pre-processing time required
for constructing distance labelling, and even on such moderately large dynamic networks, distance labelling can hardly be
updated efficiently. In this article, we propose a fully dynamic labelling method to efficiently update distance labelling so as
to answer distance queries over large dynamic graphs. At its core, our proposed method incorporates two building blocks:
(i) incremental algorithm for handling incremental update operations, i.e. edge insertions, and (ii) decremental algorithm for
handling decremental update operations, i.e. edge deletions. These building blocks are built in a highly scalable framework of
distance query answering. We theoretically prove the correctness of our fully dynamic labelling method and its preservation
of the minimality of labelling. We have also evaluated on 13 real-world large complex networks to empirically verify the
efficiency, scalability and robustness of our method.

Keywords Graph algorithms · Dynamic graphs · Distance labelling · Query processing

1 Introduction

The problem of answering distance queries has a wide range
of real-world applications, such as context-aware search in
web graphs [40,47], social network analysis [5,48] and man-
agement of resources in computer networks [7]. However,
the underlying graphs in these applications are typically
dynamic, and their topological structures may change over
time. For example, social networks are reported to be highly
dynamic [29,37,51], thereby requiring distance information
to be dynamically updated in order to perform social net-
work analysis accurately (i.e. find closeness and similarity
between users and contents) [48,52]. In computer networks,

B Muhammad Farhan
muhammad.farhan@anu.edu.au

Qing Wang
qing.wang@anu.edu.au

Yu Lin
yu.lin@anu.edu.au

Brendan McKay
brendan.mckay@anu.edu.au

1 Australian National University, Acton, Australia

communication between two points often happens through
links between routers, subnets, interfaces and network loca-
tions. In such an environment, a single cable damage or fault
in devices can affect many links to be unavailable which
requires to quickly replace communication channels with the
best available links using distance information.

Previous studies have primarily focused on distance
queries on static graphs [1,2,4,12,15,22,23,26–28,35,50],
with limited attention being paid to dynamics on graphs.
Traditionally, to speed up query response time on static
graphs, a key technique is to pre-compute a data structure
called distance labelling and use such an offline data struc-
ture to answer distance queries more efficiently. However,
when a graph dynamically changes, its distance labelling
needs to be changed accordingly; otherwise, distance queries
may yield underestimated or overestimated distances. Thus,
after a change is applied on a graph, one could naturally
consider either (1) recompute an offline distance labelling
from scratch or (2) conduct an online search on the changed
graph, in order to be able to answer distance queries cor-
rectly.However, both of these approaches are very inefficient.
Take graphs with a couple of millions of vertices such as

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00707-z&domain=pdf
http://orcid.org/0000-0002-1239-2107

484 M. Farhan et al.

Livejournal [33] and Hollywood [10] for example, it may
require hundreds to thousands of minutes to recompute a
distance labelling from scratch as a result of a single change
[26]. Furthermore, if only a very small portion of a graph
is affected against a change, recomputing distance labelling
from scratch would not only waste computing resources, but
also prevent the availability of distance queries during recom-
puting. We observe in our experiments that more than 90%
graph changes cause between 10−7% and 1% vertices to be
affected in many real-world networks. On the other hand,
answering a distance query entirely based on online search
is often too slow to be useful in time-sensitive applications;
for example, it takes about 30 seconds on average to answer
a distance query on a Twitter network with 42 millions of
vertices [10].

In this article, we aim to develop a robust solution for
distance queries on dynamic graphs with the following char-
acteristics: (1) fully dynamics—It can handle both edge/node
insertion and deletion on a graph; (2) time and space effi-
ciency—It can answer exact distance queries inmilliseconds;
and (3) scalability—It can scale to very large networks with
billions of vertices and edges. It is worth to note that previ-
ous studies generally consider real-world networks as being
in two categories [2,49]: (a) complex networks and (b) road
networks. It has been discussed that complex networks and
road networks often exhibit different properties such as small
diameter and local clustering [2,23,24]. Our work in this
article focuses on complex networks including web graphs,
social networks and computer networks.
Challenges It has been reported [3,19] that designing a fully
dynamic method for answering distance queries is very chal-
lenging. First, the difficulty of updating a distance labelling
lies in two aspects: (1)When adding an edge into a graph, out-
dated and redundant entries of distance labelling may occur.
Although outdated and redundant entries do not affect the
correctness of distance query answering, they would deteri-
orate the query performance over time. However, identifying
and removing such entries are known to be a complicated
task [3]; (2) when deleting an edge from a graph, outdated
distance entries have to be removed; otherwise, distance
queries cannot be correctly answered. Hence, entries of
distance labelling being affected must be accurately iden-
tified and repaired with new distances. However, finding the
new distances between affected vertices is computationally
expensive and indeed much more challenging than the case
of adding an edge into a graph [3,19,41]. Both aspects, in
a nutshell, require us to pinpoint affected vertices so as to
update their labels efficiently. Further, although query time
and update time are both critical for answering distance
queries on dynamic graphs, it is not easy (if not impossible)
to design a solution that is efficient in both. This requires
us to find new insights into dynamic properties of a distance
labelling, as well as a good trade-off between query time

and update time. Last but not least, scaling distance queries
to dynamic graphs with billions of nodes and edges is hard.
Previous work [3,19,26,41] hasmostly considered 2-hop dis-
tance labelling [14], which has quadratic space requirements
and unbearable index construction time; as a result, their
query and update performance is dramatically degraded on
large-scale dynamic graphs. Ideally, the labelling size of a
graph should bemuch smaller than its original size. However,
the state-of-the-art distance labelling technique, i.e. pruned
landmark labelling method (PLL) [2], still yields a distance
labelling whose size is several orders of magnitude larger
than the original size of a dataset.
Contributions To address these challenges, we propose a
fully dynamic method to efficiently answer distance queries
over large dynamic graphs. At its core, our proposed method
incorporates two building blocks: (i) incremental algorithm
for handling incremental update operations, i.e. edge inser-
tion, and (ii)decremental algorithm for handling decremental
update operations, i.e. edge deletion. These two building
blocks are built in a highly scalable framework of distance
query answering. To the best of our knowledge, our method
is the first fully dynamic method that can scale to graphs with
billions of vertices and edges, without compromising perfor-
mance on query time and labelling size. To summarize, the
main contributions of this work are as follows:

– Our incremental algorithm overcomes the challenge of
eliminating outdated and redundant distance entries in
order to preserve the minimality of labelling. None of the
previous studies have addressed this challenge because
detecting outdated and redundant distance entries is too
costly [3]. When an edge is inserted, previous studies
only add new distance entries or modify existing distance
entries. This, however, leads to an ever increasing size
of labelling. Then, both query performance and space
efficiency deteriorate over time.

– Ourdecremental algorithmcanefficiently identify affected
vertices and update their labels without compromising
on query time and labelling size. We achieve this based
on two observations. The first is to characterize a spe-
cial kind of vertices, called anchor vertices, which are
critical for updating labelling. The second is to prune
unnecessary searches by characterizing prunable ver-
tices, thereby improving update efficiency. Previouswork
[19] has reported that edge deletion requires much longer
update time than edge insertion, but no interpretation was
provided. We fill in this gap by analysing the fundamen-
tal differences between edge insertion and edge deletion
on dynamic graphs.

– We theoretically prove the correctness of our fully
dynamic method and show that it preserves the minimal-
ity of labelling under update operations (edge insertion
and edge deletion). Note that, by leveraging the property

123

Fast fully dynamic labelling for distance queries 485

Table 1 Flickr, UK and Clueweb12 are the largest networks evaluated by the methods FulPLL [3,19], FulFD [26] and FulHL (this work),
respectively, where “-” indicates no result due to scalability issues

Network Network Size Update Time Query Time Labelling Size
|V | |E | FulPLL FulFD FulHL FulPLL FulFD FulHL FulPLL FulFD FulHL

Flickr 1.7M 16M 6810 ms 7.655 ms 0.053 ms 0.009 ms 0.012 ms 0.007 ms 12.7 GB 152 MB 34 MB

UK 106M 3.7B – 337.6 ms 1.075 ms – 5.858 ms 3.488 ms – 11.8 GB 1.78 GB

Clueweb12 ∼1B 43B – – 1796 ms – – 9.375 ms – – 49.1 GB

of highway cover [22], the minimal size of a distance
labelling in this work is much smaller than the size of a
2-hop labelling in previous work [2,26]. Finally, we pro-
vide a complexity analysis for our fully dynamicmethod.

To empirically verify the efficiency and scalability of our
fully dynamicmethod, we have conducted experiments using
13 real-world large networks across different domains. In
particular, our methods can perform updates within a cou-
ple of seconds even on networks with billions of vertices and
edges, while still answering distance queries efficiently in the
order of milliseconds and maintaining very small labelling
sizes. Table 1 depicts the performance of our fully dynamic
method FulHL against with the two state-of-the-art methods
FulPLL [3,19] and FulFD [26]. We present the results for
the largest network that was previously evaluated by each of
these methods. We can see that FulHL significantly outper-
formsFulPLL and FulFD in all three dimensions, i.e. update
time, query time and labelling size, and can scale to billion-
scale networks. On the other hand, FulPLL and FulFD fail
to scale to networks of size over 16 millions and 3.7 billions
of edges, respectively. We will further discuss these results
in detail in Sect. 6.
Outline. The rest of the article is organized as follows. In
Sect. 2, we review existing work in the literature that is
related to our present work. In Sect. 3, we present the pre-
liminary notations and definitions used in this article. Then,
we formulate the fully dynamic framework and present our
incremental and decremental algorithms in Sect.‘4. The for-
mal proofs for showing that our algorithms are correct and
preserve the property of minimality are provided in Sect. 5.
In Sect. 6, we discuss our experimental results. In Sect. 7, we
discuss the extensions of our work on directed and weighted
graphs. Then, Sect. 8 discusses the advantages of design-
ing dynamic algorithms using highway cover framework.
Finally, we conclude the article and outline future research
directions in Sect. 9.

2 Related work

The problem of answering shortest-path distance queries has
been an active research topic for many years. Traditionally,

a distance query can be answered using Dijkstra’s algorithm
[45] on positively weighted graphs or breadth-first search
(BFS) algorithm on unweighted graphs. However, these tra-
ditional algorithms fail to achieve desired response time
performance required by many real-world applications that
operate on increasingly large graphs.

Labelling-based methods have emerged as an attractive
way of accelerating response time to distance queries [1,2,
12,12,14,22,23,28,50]. Most of these methods constructed a
labelling based on 2-hop cover labelling [14]. For example,
Cheng and Yu [13] proposed a heuristic-based algorithm to
construct a 2-hop distance labelling on directed graphs. Their
method used the property of strongly connected components
to exploit graph partitioning techniques. However, such a
graph partitioning process introduces high computational
time cost because it has to find vertex separators recursively.
Furthermore, their method is limited to handle only directed
graphs. Theoretically, it has been shown that computing a
minimal 2-hop cover labelling is NP-hard [1,14].

Tree decomposition-based approaches [4,50] have also
been studied for answering distance queries on graphs. Wei
[50] proposed an index for shortest-path query answering,
called TEDI, which heuristically decomposes a graph into
a tree through tree decomposition. Given a graph G, a tree
decomposition of G yields a tree T in which each vertex is
associated with a set of vertices in the graph G (also called a
bag [42]). The shortest-path distances between vertices in the
same bag are pre-computed and stored in the corresponding
bags. Then, given a distance query, a bottom-up operation
along the tree T can be carried out to answer the distance
query. Further, Akiba et al. [4] proposed an improved TEDI
index that exploited a core–fringe structure in a graph. How-
ever, due to the presence of core–fringe structure in complex
networks [11,38], these methods may produce bags of large
sizes in a decomposed tree and computing pairwise distances
of vertices in these large bags can require long pre-processing
time and huge storage space, making it impractical on large
graphs. Moreover, the decomposition time of a large graph
is very costly and only small-sized graphs can be processed
within a reasonable amount of time.

Hierarchical hub-labelling (HHL) was proposed by Abra-
ham et al. [1], which is based on the partial order of vertices.
In their method, they used a top-down approach to compute

123

486 M. Farhan et al.

a partial order of vertices that can produce a smaller HHL.
However, their method is not scalable to handle large graphs
due to very high storage and computation requirements for
finding the partial order of vertices. Another method called
Highway Centric Labeling (HCL) was proposed by Jin et al.
[28], which exploits highway structure of a graph by finding
a spanning tree that can be used as a highway to efficiently
compute 2-hop distance labelling for fast distance computa-
tion.

In [23], Fu et al. proposed IS-Label which gained a signif-
icant scalability in pre-computing a 2-hop distance labelling
for large graphs in a memory-constrained environment. IS-
Label uses the notion of an independent set of vertices in
a graph. It recursively computes independent sets of ver-
tices and augments edges by removing these sets to preserve
the distance information. Generally, IS-Label is regarded
as a hybrid method that combines distance labelling with
graph traversal. Then, Akiba et al. proposed the pruned land-
mark labelling (PLL) [2] to pre-compute a 2-hop distance
labelling by performing a pruned breadth-first search from
every vertex. The idea is to prune vertices whose distance
information can be obtained using the partially available
2-hop distance labelling constructed via previous breadth-
first searches. This work helps to achieve low construction
cost and small labelling size due to reduced search space
on million-scale networks and serves as the state-of-the-art
labelling-based distance queries. A recent method [34] par-
allelised PLL to further increase its scalability to answer
distance queries on large graphs. Apart from these 2-hop
distance labelling techniques, a multi-hop distance labelling
approach has also been studied in [12], which reduces the
size of labelling at the cost of increased response time.

So far, only a few attempts have been made to study dis-
tance queries over dynamic graphs [3,19,21,26,39,41],which
are mostly based on the idea of 2-hop cover labelling or its
variants. Akiba et al. [3] studied the problem of updating
pruned landmark labelling for incremental updates (i.e. ver-
tex additions and edge additions). This work, however, does
not remove outdated and redundant entries in distance labels
because the authors considered that detecting such entries is
too costly. This inevitably breaks the minimality of pruned
landmark labelling, leading to an ever increase of labelling
size and deteriorating query performance over time. Qin et al.
[41] and D’angelo et al. [19] studied the problem of updating
pruned landmark labelling for decremental updates (i.e. edge
deletions). Thesemethods can only scale to graphswith a few
millions of nodes due to their high time complexities. Their
experiments [19,41] showed that the average update time of
an edge deletion on a networkwith 19millions of edges is 135
seconds in [41] and on a network with 16 millions of edges
is 19 seconds in [19], which are significantly inefficient for
dynamic graphs. In the work by D’angelo et al. [19], they
combined the algorithm for incremental updates proposed

in [3] with their method for decremental updates to form a
fully dynamic algorithm. Nevertheless, this fully dynamic
algorithm can only be applied to networks with around 20
millions of edges. A recent method by D’Emidio et al. [20]
claims an improvement over the method proposed in [19]
for decremental updates. However, this method is limited to
graphs with few millions of nodes and updates labelling in
the order of seconds.

Alternatively, methods for maintaining all-pair shortest
paths (APSP) have also been studied to allow direct look-up
of the shortest-path distance at the cost of quadratic space
and update time. Theoretically, the update time and space
complexities of maintaining all-pair shortest paths (APSP)
data structure are prohibitively very high and cannot scale
to large graphs, e.g. the dynamic algorithm proposed in [16]
takes Õ(n2) amortized time per update operation and O(n3)
space. A recent method [25] proposed an improved bound in
the form of a deterministic algorithm with Õ(n2+2/3) update
time and a Las-Vegas algorithm with Õ(n2+1/2) update time
for unweighted graphs having Õ(n2) space requirements.
With these quadratic time and space requirements, they are
not practical to be applied to large graphs having millions of
vertices. Approximate methods for dynamically maintaining
APSP have also been studied in order to improve the update
time of maintaining APSP data structure. The work in [43]
maintains dynamic all-pair (1+ε) approximate shortest paths
in Õ(mn/t) update time and Õ(n2) space,where t is a param-
eter that describes the trade-off between the update time and
query time. Another (2+ε) approximate algorithm by Bern-
stein et al. [6] claimed a faster update time of o(mnεlogR/ε)

for any fixed ε, where R is the ratio between the largest and
the smallest edge weights. Unfortunately, their update times
suffer the drawback of a super-polynomial dependence on
ε. These approximate methods are not practical, particularly
when exact distances are sought.

To accelerate shortest-path distance queries on large
networks, another line of research is to combine a partial dis-
tance labelling with online shortest-path searches. Hayashi
et al. in [26] proposed a fully dynamic approach that selects
a small set of landmarks R and pre-computes bit-parallel
shortest-path trees (SPTs) rooted at each landmark r ∈ R.
Then, an online search is conducted on a sparsified graph
under an upper-distance bound being computed via the bit-
parallel SPTs. However, this method still fails to construct
labellingonnetworkswith billions of vertices because of very
high pre-processing time and space consumption of com-
puting bit-parallel SPTs. Following the same line, Farhan et
al. [22] introduced a highway-cover labelling method (HL),
which can provide fast response time (i.e. milliseconds) for
distance queries even on billion-scale graphs. This approach,
however, only works for static graphs. Very recently, Farhan
et al. [21] proposed an online incremental method which
solves the problem of eliminating outdated and redundant

123

Fast fully dynamic labelling for distance queries 487

entries caused by edge insertions. However, the update time
of this method is still high on large graphs with billions of
vertices and edges, which makes it impractical for applica-
tions that require updates to be performed in the order of
milliseconds.

The present work aims to propose a fully dynamic method
that can leverage the advantages of the approach [22] and also
overcome the limitations of previous methods for distance
queries on fully dynamic graphs. Unlike the incremental
algorithm proposed in [21] which can only handle incremen-
tal updates (edge insertions) through two stages, i.e. first find
affected vertices and then update their labels, this present
work unifies the separate processes in these two stages into
a single process, i.e. find affected vertices and update their
labels simultaneously, while still guaranteeing the minimal-
ity of labelling. This improvement is based on new insights
we gain about edge insertions (as formulated in Lemma 4
in Sect. 4.2). Further, not only handling edge insertions, the
present work has also designed a decremental algorithm to
handle edge deletions which has long been recognised as a
difficult task in the literature [3,19,41]. Taking the two sides
of update operations on graphs (i.e. both edge insertion and
edge deletion) into consideration, the fully dynamic method
proposed in the present work provides a novel, fast and scal-
able solution for answering distance queries on large and
dynamic graphs.

3 Preliminaries

Let G = (V , E) be an undirected graph where V is a set of
vertices and E ⊆ V × V is a set of edges. We denote by
N (v) the set of neighbours of a vertex v ∈ V , i.e. N (v) =
{u ∈ V |(u, v) ∈ E}. Given two vertices u and v in G, the
distance between u and v, denoted as dG(u, v), is the length
of the shortest path from u to v. If there does not exist a path
from u to v, then dG(u, v) = ∞. We use PG(u, v) to denote
the set of all shortest paths between u and v in G.

We consider two kinds of update operations: edge inser-
tion and edge deletion. Given a graph G = (V , E), an edge
insertion is to add an edge (a, b) into G where {a, b} ⊆ V
and (a, b) /∈ E . Conversely, an edge deletion is to delete an
edge (a, b) from G where (a, b) ∈ E . Note that we consider
vertex insertion and vertex deletion as a sequence of edge
insertions and edge deletions, respectively. When inserting a
new vertex, we first create an isolated vertex and then insert
edges incident to it, and vice versa for deleting a vertex. Sim-
ilarly, multiple updates (i.e. edge insertions or deletions) are
processed one by one. For clarity, we useG ↪→ G ′ to indicate
that a graph G is changed to a graph G ′ by an edge insertion
or an edge deletion.

The following facts are important for designing dynamic
algorithms. They state that an edge insertion may decrease

distances between vertices, and conversely, an edge deletion
may increase distances between vertices.

Fact 1 Let G ′ = (V , E ∪ {(u, v)}) be the graph after insert-
ing an edge (u, v) intoG = (V , E). Then for any two vertices
s, t ∈ V , dG(s, t) ≥ dG ′(s, t).

Fact 2 Let G ′ = (V , E∪{(u, v)}) be the graph after deleting
an edge (u, v) from G = (V , E). Then for any two vertices
s, t ∈ V , dG(s, t) ≤ dG ′(s, t).

3.1 2-hop cover labelling

Various labelling techniques have been previously used for
improving efficiency of answering distance queries on static
graphs, among which 2-hop cover labelling [14] is the most
well known. Let R ⊆ V be a small set of special ver-
tices, namely landmarks, in a graph G = (V , E). For each
vertex v ∈ V , the label of v is a set of distance entries
L(v) = {(r1, δL(r1, v)), . . . , (rn, δL(rn, v))}, where ri ∈ R
and δL(ri , v) = dG(ri , v). We call L = {L(v)}v∈V a dis-
tance labelling over G. The size of a distance labelling L is
defined as si ze(L) = ∑

v∈V |L(v)|.
Definition 1 (2-hop cover labelling) A distance labelling L
over a graph G = (V , E) is a 2-hop cover labelling if the
following holds for any two vertices u, v ∈ V :

dG(u, v) = min{δL(ri , u) + δL(ri , v)|
(ri , δL(ri , u)) ∈ L(u), (ri , δL(ri , v)) ∈ L(v)} (1)

Thus, for any two vertices u, v ∈ V , an exact distance
query can be answered by only looking up the labels of u and
v in a 2-hop cover labelling. Given a graphG, the complexity
of finding a minimal 2-hop cover labelling of G is known to
be NP-hard [14].

3.2 Highway cover labelling

Unlike the previous work [3,19,26,41,46] that uses 2-hop
cover labelling, we develop our fully dynamic method using
a highly scalable labelling approach, called highway cover
labelling [22].

Definition 2 (Highway) A highway H = (R, δH) over a
graph G = (V , E) consists of a set R of landmarks and
a distance decoding function δH : R × R → N

+ such that,
for any two landmarks r1, r2 ∈ R, δH (r1, r2) = dG(r1, r2)
holds.

Definition 3 (Highway cover labelling) A highway cover
labelling is a pair Γ = (H , L) where H is a highway and L
is a distance labelling satisfying that, for any vertex v ∈ V \R
and r ∈ R, we have:

dG(r , v) = min{δL (ri , v) + δH (r , ri) |

123

488 M. Farhan et al.

(ri , δL(ri , v)) ∈ L(v)} (2)

Highway cover labelling enjoys several nice theoretical
properties, such as minimality and order independence. It is
shown in [22] that there exists an algorithm that can construct
aminimal highway cover labelling independently of the order
of applying landmarks.

Given a highway cover labelling Γ = (H , L), an upper
bound on the distance between a pair of vertices u, v ∈ V in
a graph G = (V , E) can be computed as follows:

d�
uv = min

{
δL (ri , u) + δH

(
ri , r j

) + δL(r j , v)|
(ri , δL (ri , u)) ∈ L(u),
(
r j , δL(r j , v)

) ∈ L(v)
}

(3)

Then, an exact distance query Q(u, v, Γ) can be answered
by conducting a distance-bounded shortest-path search over
a sparsified graph G[V \R] (i.e. removing all landmarks in
R from G) under the upper bound d�

uv such that:

Q(u, v, Γ) =
{
dG[V \R](u, v) if dG[V \R](u, v) ≤ d�

uv,

d�
uv otherwise.

3.3 Problem definition

In this paper, we study the fully dynamic labelling prob-
lem for distance queries. Given a graph that is dynamically
changed by edge insertions or deletions over time, the fully
dynamic labelling problem is concerned about updating a
distance labelling to ensure that distance queries can be cor-
rectly answered on the dynamic graph. Formally, we define
this problem below.

Definition 4 (Fully dynamic labelling problem) Let G =
(V , E) and G ′ = (V , E ′) be two graphs, and G be changed
to G ′ by edge insertions or deletions. The fully dynamic
labelling problem is, given a distance labelling Γ over G
such that Q(u, v, Γ) = dG(u, v) for any two vertices u and
v in G, to compute a distance labelling Γ ′ over G ′ such that
Q(u, v, Γ ′) = dG ′(u, v) for any two vertices u and v in G ′.

In the following, we will discuss how to tackle the
fully dynamic labelling problem based on highway cover
labelling.

4 Fully dynamic framework

In this section,wepropose a fully dynamic framework for dis-
tance queries on large graphs. This framework consists of two
novel dynamic algorithms: incremental algorithm and decre-
mental algorithm, which efficiently update a highway cover
labelling after edge insertions or edge deletions, respectively.

We first introduce a key search strategy, i.e. jumped-and-
pruned search, used by both incremental algorithm and
decremental algorithm. Then, we present the algorithmic
details of these two algorithms.

4.1 Jumped-and-pruned search

To efficiently reflect changes on graphs, we develop a
jumped-and-pruned search strategy for updating distance
labelling. This strategy requires us to identify two special
types of vertices in a fully dynamic graph: affected vertices
and anchor vertices.

4.1.1 Affected vertices

When an update operation occurs on a graph G = (V , E),
no matter whether it is an edge insertion or an edge deletion,
there always exists a subset of “affected” vertices in V whose
labels need to be updated as a consequence of this update
operation on the graph. But, can we identify such vertices
efficiently? To answer this question, we define the notion of
affected vertices and analyse their properties.

Definition 5 (Affected vertex) Let G = (V , E) and R ⊆ V
be a set of landmarks on G. A vertex v ∈ V is affected by
G ↪→ G ′ if PG(v, r) �= PG ′(v, r) holds for at least one
r ∈ R, and unaffected otherwise.

For simplicity, we use Λr = {v ∈ V |PG(v, r) �=
PG ′(v, r)} to denote the set of all affected vertices w.r.t. a
landmark r andΛ = ⋃

r∈R Λr refers to the set of all affected
vertices. Note that vertices affected byG ↪→ G ′ are the same
as vertices affected by G ′ ↪→ G, i.e. the same set of vertices
is affected when inserting an edge (a, b) into a graph G or
deleting an edge (a, b) from a graph G ′.

Example 1 Consider Fig. 1a in which 0, 10 and 4 are three
landmarks. After inserting an edge (2, 5) in Fig. 1b–d,
we have Λ = {0, 1, 2, 5, 8, 9, 10, 13, 14} because Λ0 =
{5, 8, 9, 10, 13, 14}, Λ10 = {0, 1, 2} and Λ4 = {2}.

The following lemma states how affected vertices relate
to an edge being inserted or deleted.

Lemma 1 When G ↪→ G ′ for an edge insertion (a, b), a
vertex v ∈ Λr iff there exists a shortest path between v and
r in G ′ passing through (a, b). Similarly, when G ↪→ G ′ for
an edge deletion (a, b), a vertex v ∈ Λr iff there exists a
shortest path between v and r in G passing through (a, b).

Proof For any vertex v ∈ V , if dG ′(r , v) = dG ′(r , a) +
dG ′(a, b) + dG ′(b, v) after inserting an edge (a, b) and
dG(r , v) = dG(r , a) + dG(a, b) + dG(b, v) after deleting
an edge (a, b), then by Definition 5, PG(v, r) �= PG ′(v, r).
Thus, v is an affected vertex. �

123

Fast fully dynamic labelling for distance queries 489

(a) (b) (c) (d)

Fig. 1 An illustration of affected vertices by an edge insertion (2, 5)
occurring on the graph in (a), where three landmarks 0, 10 and 4 are
highlighted in yellow. In (b)–(d), the affected vertices w.r.t. the land-

marks 0, 10 and 4 are highlighted in green, respectively. Note that the
affected vertices w.r.t. the landmarks 0, 10 and 4 would remain the same
if an edge deletion (2, 5) occurs on the graph in (b)

Following Lemma 1, we have the following corollary.

Corollary 1 When G ↪→ G ′ with an inserted or deleted edge
(a, b), if dG(r , a) = dG(r , b) holds for a landmark r ∈ R,
then we have Λr = ∅.

This corollary allows us to reduce the search space of
affected vertices by eliminating landmarks r with dG(r , a) =
dG(r , b). Thus, we assume that dG(r , b) > dG(r , a) w.r.t. a
landmark r in the rest of this section w.l.o.g.

The following lemma enables us to further reduce the
search space of affected vertices by “jumping” from the root
of a BFS to the vertex b.

Lemma 2 When G ↪→ G ′ with an inserted or deleted edge
(a, b), dG(r , v) ≥ dG(r , a) + 1 hold for any affected vertex
v ∈ Λr .

Proof By Lemma 1, there exists a shortest path from any
affected vertex v to r going through the affected edge (a, b)
and thus through a. Since a is unaffected and the distance
from a to v is equal to or greater than 1, dG(r , v) ≥
dG(r , a) + 1 must hold. �

Remark 1 Algorithmically, by Corollary 1, we may design
algorithms for finding affected vertices as follows. Let (a, b)
be a graph change (either an edge insertion or an edge dele-
tion) and dG(r , b) > dG(r , a). (1) We start from the vertex
b with distance dG(r , a) + 1 on the changed graph to find
affected vertices w.r.t. each landmark r ∈ R. (2) We identify
the neighbours of b satisfying the condition in Lemma 2
as affected whose shortest path to r passes through the
change. (3) We then iteratively keep examining the neigh-
bours of already found affected vertices under the condition
in Lemma 2 until all the affected vertices are found. This
process corresponds to Lines 12–14 of Algorithm 1 for edge
insertions andLines 14–16 of FunctionFindAffected for
edge deletion (will be further discussed in detail in Sects. 4.2
and 4.3).

4.1.2 Anchor vertices

Although efficiently identifying affected vertices is critical
for dynamic algorithms, it is equally important to efficiently
update the labels of affected vertices against changes on a
graph. A naive approach is to run a full BFS from each land-
mark r on the changed graph in order to decide the new
distances of affected vertices w.r.t. a landmark r . However,
this is inefficient, particularly if only a very small portion of
vertices in a graph is affected by an update operation.Can we
pinpoint the differences between the old labels of affected ver-
tices in an original graph and their new labels in the changed
graph, so as to change a distance labelling in an efficient
way? To answer this question, we need to identify a special
kind of affected vertices, called anchor vertices, which have
the smallest distance to a landmark r on the changed graph.

Definition 6 (Anchor vertex)WhenG ↪→ G ′, a vertex v ∈ V
is an anchor vertex w.r.t. a landmark r in G ′ if v ∈ Λr and
dG ′(r , v) ≤ dG ′(r , u) for any vertex u ∈ Λr .

The following lemma states that the exact distances of
anchor vertices can be inferred from their unaffected neigh-
bours. Note that this does not generally hold for every
affected vertex. Let d∗

G ′(r , v) refer to a contingent distance
between a landmark r and a vertex v ∈ Λr in G ′, which is
the minimum length of paths between v and r going through
only unaffected vertices in G ′. If a vertex v ∈ Λr in G ′ has
no any unaffected neighbours, we consider d∗

G ′(r , v) = ∞.

Lemma 3 WhenG ↪→ G ′, if a vertex v ∈ Λr has the smallest
contingent distance to a landmark r among all vertices inΛr ,
then v is an anchor vertex w.r.t. landmark r and dG ′(r , v) =
d∗
G ′(r , v) holds.

Proof Weprove this by contradiction.Assume thatdG ′(r , v) �=
d∗
G ′(r , v) for such a vertex v. Then, dG ′(r , v) < d∗

G ′(r , v)

must hold because dG ′(r , v) is the shortest path distance.
Since d∗

G ′(v, r) is the minimum length of all paths between v

and r that go through only unaffected vertices, one shortest
path between v and r must go through at least one affected

123

490 M. Farhan et al.

(a) (b) (c)

Fig. 2 An illustration of our incremental algorithm IncHL for an edge
insertion (2,5): (a), (b) and (c) describe the JP-BFSs that are rooted at
the landmarks 0, 10 and 4, respectively, where yellow vertices denote

the landmarks (i.e. the roots), green colour denotes affected vertices
whose labels are updated and red colour denotes affected vertices that
are pruned during the JP-BFSs

vertex v′ ∈ Λr and d∗
G ′(v, r) > d∗

G ′(v′, r) must hold. This
contradicts with the assumption that v has the minimum con-
tingent distance to r in Λr . Hence, dG ′(r , v) = d∗

G ′(r , v).
Accordingly, v must be an anchor vertex w.r.t. r . �

The observation here is that once anchor vertices are iden-
tified, we can locally infer their new distances from their
unaffected neighbours. Then, new distances of other affected
vertices can be inferred inductively by a level-by-level prop-
agation in a BFS tree from r through unaffected neighbours
and affected neighbours whose new distances have already
been inferred.

Example 2 Firstly, we consider Fig. 2a in which the edge
(2, 5) is inserted. This causes the vertices {5, 8, 9, 10, 13, 14}
to be affected w.r.t. the landmark 0. Among these vertices,
the vertex 5 has the smallest contingent distance (i.e. the
distance through unaffected vertices) and thus is an anchor
vertex. Now, we consider Fig. 3a in which the edge (2, 5) is
deleted. This causes the same set of vertices to be affected
w.r.t. the landmark 0. However, in this case, the vertex 5 has
the contingent distance ∞ because there is no path between
vertex 5 and landmark 0 passing through only unaffected
vertices. Instead, the vertices {8, 10} have the smallest con-
tingent distances and thus are anchor vertices in this case.

4.1.3 Jumped-and-pruned BFS

Our dynamic algorithms, including both incremental and
decremental algorithms, use a jumped-and-pruned search
strategy to efficiently update a distance labelling. The key
idea is that, instead of conducting a full BFS from a landmark
to all vertices, we conduct a partial BFS (named as JP-BFS)
that jumps from the root of a BFS directly to affected ver-
tices, thereby skipping unaffected vertices. Further, a JP-BFS
exploits the property of highway cover labelling (i.e. an dis-
tance entry of a vertex v w.r.t. a landmark r can be pruned if
there is another landmark lying in a shortest path between v

and r) to prunes affected vertices as many as possible after
its jump.

Definition 7 (Prunable vertex) When G ↪→ G ′, a vertex v

is prunable w.r.t. a landmark r iff there exists a landmark
r ′ ∈ R − {r} such that all of the following conditions hold:

(1) dG(r , v) = dG(r , r ′) + dG(r ′, v);
(2) dG ′(r , v) = dG ′(r , r ′) + dG ′(r ′, v);
(3) dG(r ′, v) = dG ′(r ′, v).

A vertex v is weakly prunable iff it only satisfies the condi-
tions (2) and (3).

Intuitively, the conditions in the above definition state that
we can prune a vertex v only if there is another landmark r ′
lying in a shortest path between this vertex and the landmark
r in both G and G ′, i.e. (1) and (2), and the distance from
this vertex to r ′ also remains the same in both G and G ′,
i.e. (3). A vertex v satisfying these three conditions implies
that its label w.r.t. landmark r remains the same in G and G ′,
and a JP-BFS can thus prune v as well as the children of v

from search. When a vertex v is weakly prunable, it means
that the label of v may contain outdated or redundant entries
w.r.t. landmark r , which would affect the correctness of a
distance labelling in the case of edge deletion but not edge
insertion. In fact, the case of weakly prunable vertices can
only occur during edge insertion due to newly added shortest
path(s).

The following example illustrates the notions of prunable
vertex and weakly prunable vertex. We will discuss further
how vertices are pruned during a JP-BFS in our dynamic
algorithms in Sects. 4.2 and 4.3.

Example 3 Let us consider the vertex 8 in Fig. 2a which is
pruned because it satisfies all three conditions inDefinition 7.
We can see that the path 〈0, 1, 4, 8〉 exists before and after
adding the edge (2, 5) and passes through the landmark 4
satisfying all the conditions (1), (2) and (3). For the vertex
14 in Fig. 2a, it is weakly pruned due to the newly added
path 〈0, 2, 5, 10, 14〉 through landmark 10 that did not exist
before adding the edge (2, 5) thus satisfying only the con-
ditions (2) and (3). Now, we consider the pruned vertices

123

Fast fully dynamic labelling for distance queries 491

(a) (b) (c) (d) (e)

Fig. 3 An illustration of our decremental algorithmDecHL for an edge
deletion (2, 5): (a)–(b), (c)–(d) and (e) describe the JP-BFSs that are
rooted at the landmarks 0, 10 and 4, respectively, where yellow vertices

denote the landmarks (i.e. the roots), green colour denotes affected ver-
tices whose labels need to be updated, and red colour denotes affected
vertices being pruned

highlighted in Fig. 3a. All of these vertices satisfy the three
conditions in Definition 7, e.g. we prune from 10 because a
path 〈0, 3, 6, 10〉 exists between 0 and 10 before and after
deleting the edge (2, 5).

In a nutshell, a JP-BFS has the following two features: (1)
jumping from the root (i.e. a landmark) to affected vertices
so as to traverse locally, rather than globally; (2) pruning
affected vertices that are prunable or weakly prunable when-
ever possible.

4.1.4 Algorithmic design

Before introducing our dynamic algorithms in detail (as will
be shown in Sects. 4.2 and 4.3), we briefly discuss how this
jumped-and-pruned search strategy is applied in these algo-
rithms.

In the most general case, two kinds of JP-BFS are needed.
One kind of JP-BFS is to identify affected vertices w.r.t. a
landmark r . By Lemmata 1 and 2, such a JP-BFS jumps
from the root r to the vertex b and starts to identify affected
vertices iteratively through checking neighbours and their
old distances. The other kind of JP-BFS is to update affected
vertices w.r.t. a landmark r . By Lemma 3, such a JP-BFS
jumps from the root r to anchor vertices and starts to update
the labels of affected vertices through a level-by-level prop-
agation in order to infer the new distances of these affected
vertices.

Nonetheless, we notice the following:

– In the case of edge insertion, there exists exactly one
anchor vertex for an inserted edge; further, such an anchor
vertex can be easily identified according to the inserted
edges. This enables an efficient design for our incre-
mental algorithm which can not only identify affected
vertices, but also simultaneously update the labels of
affected vertices through a carefully designed propa-
gation on new distances. Hence, instead of conducting

two separate JP-BFSs, our incremental algorithmmerges
these two JP-BFSs into one JP-BFS for improving effi-
ciency. Section 4.2will discuss how themerged JP-BFS is
designed in our incremental algorithm (i.e. Algorithm 1).

– In the case of edge deletion, finding anchor vertices turns
out to be challenging. For a deleted edge, there may exist
multiple anchor vertices; further, these anchor vertices
can be far away from the deleted edge and cannot be
identified without knowing a full picture on how vertices
are affected by the deleted edge. Hence, our decremen-
tal algorithm must first find affected vertices in the first
JP-BFS, which leads to identifying anchor vertices, and
then update the labels of affected vertices in the second
JP-BFS based on the information about anchor vertices
and affected vertices obtained from the first JP-BFS. Sec-
tion 4.3 will discuss further on how these two separate
JP-BFS are designed in our decremental algorithm (i.e.
Algorithm 2).

4.2 Incremental algorithm

We now present our incremental algorithm, called IncHL.
This algorithm can efficiently update a highway cover
labelling to reflect changes caused by an edge insertion.

We start with the following lemma that characterises
anchor vertices in the case of edge insertion.

Lemma 4 For G ↪→ G ′ with an edge insertion (a, b), if
dG(r , a) < dG(r , b) holds for a landmark r ∈ R, then b
must be the only anchor vertex w.r.t. the landmark r .

By the above lemma, since b is the only anchor vertex in
the case of edge insertion, our incremental algorithm IncHL
is carefully designed tomerge two JP-BFSs (i.e. one for iden-
tifying affected vertices and the other for updating the labels
of affected vertices) into one JP-BFS to identify affected
vertices and updates their labels simultaneously. This signifi-
cantly improves update efficiency for edge insertion.Another
insight we obtain is that a large amount of weakly prunable

123

492 M. Farhan et al.

Algorithm 1: IncHL
Input: G = (V , E), (a, b) /∈ E , Γ = (H , L)

Output: Γ = (H , L)

1 foreach r ∈ R with dG(r , b) > dG(r , a) do
2 Q ← ∅, V in f er

r ← ∅, π ← dG(r , a) + 1
3 Enqueue (b, π) to Q
4 while Q is not empty do
5 Dequeue (v, π) from Q
6 if v is prunable then
7 if v is a landmark then
8 δH (r , v) ← π (Updating H)
9 end

10 else
11 Update(r , v, π , V in f er

r , ∅)
12 foreach w ∈ N (v) and dG(r , w) > π do
13 Enqueue (w, π + 1) to Q
14 end
15 end

16 Add (v, π) to V in f er
r

17 end
18 end

1 Function Update(r , v, π , V in f er
r , V unin f er

r)

2 Vparent (v) = {w|w ∈ N (v) and ((w, π) ∈ V in f er
r or

((w, π ′) /∈ V unin f er
r and Q(r , w, Γ) = π − 1))}

3 if ∀w ∈ Vparent (v) s.t. r appears in L(w) then
4 Add/Modify (r , π) to L(v)

5 else
6 Remove r from L(v) (if exists)
7 end
8 end

vertices can be pruned away during this merged JP-BFS to
further considerably improve update efficiency.

Algorithm 1 describes the detailed steps of our incremen-
tal algorithm. Given a graph G with an inserted edge (a, b)
and a highway cover labelling Γ = (H , L) over G, we con-
duct one JP-BFS for each landmark r ∈ R starting from
the vertex b with its new distance π = Q(r , a, Γ) + 1, and
enqueue (b, π) into Q (Lines 1–3, Algorithm 1). To iden-
tify all affected vertices and update their labels, this JP-BFS
works as follows. For every (v, π) ∈ Q, if v is prunable, then
we stop the search from v by simply updating the highway H
(Lines 6–9, Algorithm 1). This also eliminates weakly prun-
able vertices, and wewill prove this in Sect. 5. Otherwise, we
update the label of v in Function Update using the neigh-
bours of v that appear in at least one shortest path between
v and r in the changed graph G ′, i.e. Vparent (v) (Line 2,
Update). Based on Vparent (v), we update L(v) as follows.
If there exists at least one vertexw ∈ Vparent (v) that does not
contain r in its label, then there must exist another landmark
in a shortest path between v and r , andwe thus remove r from
L(v) if exists (Line 6, Update); otherwise, we add/modify
(r , π) in the label of v (Line 4, Update). After updating the

label of v, we enqueue all affected neighbours of v into Q
with new distancesπ+1 (Lines 12–14, Algorithm 1) and add
(v, π) to V in f er

r , where V in f er
r contains the set of affected

vertices w.r.t. the landmark r whose new distances have been
inferred (Line 16, Algorithm 1). This process of identifying
affected vertices and updating their labels continues until Q
is empty.

Example 4 Figure 2 illustrates how our incremental algo-
rithm updates affected labels as a result of inserting an edge
(2, 5). The JP-BFS starting from the anchor vertex 5 w.r.t.
the landmark 0 is depicted in Fig. 2a. The labels of vertices 5
and 9 are updated using the information in the labels of their
parents, i.e. Vparent (5) = {2} and Vparent (9) = {5}. This
JP-BFS is pruned from vertices 8 and 10 because the land-
mark 4 lies in the shortest path from vertex 8 to landmark 0,
and vertex 10 is a landmark itself. Accordingly, the highway
is updated. Similarly, the JP-BFS w.r.t. the landmark 10 is
depicted in Fig. 2b. This JP-BFS starts from vertex 2 which
updates the label of 2 with Vparent (2) = {5} and prunes from
the landmark 0 after updating the highway. The JP-BFSw.r.t.
the landmark 4 is depicted in Fig. 2c,whichworks in a similar
fashion.

Outdated and redundant entries may exist in a distance
labelling due to edge insertions. For clarity, we formally
define the notions of outdated and redundant entries below.

Definition 8 (Outdated entry) An entry (r , δL(r , v)) ∈ L(v)

is outdated on a graph G iff δL(r , v) �= dG(r , v).

Definition 9 (Redundant entry) An entry (r , δL(r , v)) ∈
L(v) is redundant on a graph G iff δL(r , v) = dG(r , v)

and Q(u, v, Γ) = Q(u, v, Γ ′) hold for any vertex u in G,
where Γ ′ is obtained from Γ by only removing (r , δL(r , v))

from L(v).

These entries do not affect the correctness of answering
distance queries when a graph is changed only by edge inser-
tions [19]. However, they may deteriorate query and update
performance over time. Thus, to ensure that neither outdated
nor redundant entries exist, we can revise the design of a
merged JP-BFS in IncHL by removing its pruning step (Line
6, Algorithm 1), which leads to a distance labelling without
any outdated and redundant entries. This variant of IncHL
is called IncHL- m. The proof for the preservation of mini-
mality by IncHL- m is provided in Sect. 5.

4.3 Decremental algorithm

We also propose a decremental algorithm, called DecHL,
which can efficiently update a highway cover labelling to
reflect changes caused by an edge deletion.

Different from edge insertion, by Fact 2, distances
between vertices may increase in the case of edge deletion.

123

Fast fully dynamic labelling for distance queries 493

Algorithm 2: DecHL
Input: G = (V , E ∪ {(a, b)}), (a, b) ∈ E , Γ = (H , L)

Output: Γ = (H , L)

1 foreach r ∈ R with dG(r , b) > dG(r , a) do
2 V in f er

r ← ∅, V unin f er
r ← FindAffected(r , b)

3 foreach (v, π) ∈ V unin f er
r with min. π do

4 if v is already pruned then
5 if v is a landmark then
6 δH (r , v) ← π (Updating H)
7 end
8 else
9 Update(r , v, π , V in f er

r , V unin f er
r)

10 end

11 foreach w ∈ N (v) and (w, π ′) ∈ V unin f er
r and

π ′ < π + 1 do
12 Modify (w, π ′) with (w, π + 1) in V unin f er

r
13 end

14 Remove (v, π) from V unin f er
r to V in f er

r

15 end
16 end

1 Function FindAffected(r , b)
2 Q ← ∅, Va f f ← ∅, π ′ ← Q(r , b, Γ)

3 Enqueue (b, π ′) to Q
4 while Q is not empty do
5 Dequeue (v, π ′) from Q
6 π ← ∞
7 if ∃w s.t. w ∈ N (v) and dG(r , w) ≤ π ′ and w /∈ Va f f

then
8 π ← min

w
{Q(r , w, Γ)} + 1

9 end
10 Add (v, π) to Va f f
11 if v is prunable then
12 continue
13 else
14 foreach w ∈ N (v) and dG(r , w) > π ′ do
15 Enqueue (w, π ′ + 1) to Q
16 end
17 end
18 end
19 return Va f f
20 end

This thus poses the following new challenges. First, outdated
and redundant entries do affect the correctness of answering
distance queries in the case of edge deletion. Second, identi-
fying anchor vertices becomesmuch harder for edge deletion
due to two reasons: (1)More than one anchor vertexmay exist
w.r.t. a landmark for edge deletion, in contrast to edge inser-
tion which has exactly one anchor vertex w.r.t. a landmark;
(2) anchor vertices can be far away from a deleted edge and
are thus difficult to identify, whereas for an inserted edge
there exists exactly one anchor vertex that must be incident
to the inserted edge, as stated in Lemma 4.

Example 5 Consider Fig. 3a, after deleting the edge (2, 5), the
set of affected vertices w.r.t. the landmark 0 is {5, 8, 9, 10,

13, 14}. Among these vertices, the vertices {8, 10, 13, 14} are
pruned. In Fig. 3b, there are two anchor vertices {8, 10}w.r.t.
the landmark 0. None of these vertices 8 and 10 are incident
to the deleted edge (2, 5).

Since anchor vertices for a deleted edge (a, b) may be
different from the vertex b (recall that dG(r , b) > dG(r , a)

is assumed), we need to conduct two JP-BFSs w.r.t. a land-
mark r in the case of edge deletion. The first JP-BFS starts
from b to identify affected vertices and their contingent dis-
tances through local neighbourhoods iteratively. The second
JP-BFS starts from anchor vertices to infer new distances
of affected vertices and update their labels via a level-by-
level propagation. Prunable vertices are identified and pruned
away in the first JP-BFS, which helps improve update effi-
ciency in the second JP-BFS significantly.

Algorithm 2 describes the detailed steps of our decre-
mental algorithm. Given a graph G with a deleted edge
(a, b) and a highway cover labelling Γ = (H , L) over
G, we conduct the first JP-BFS w.r.t. a landmark r ∈ R
in Function FindAffected starting from vertex b
with π = Q(r , b, Γ), and enqueue (b, π) to Q (Line
FindAffected). Then, for every (v, π ′) ∈ Q, if a neigh-
bour w of v is unaffected and has a depth less than or
equal to π ′, we compute the contingent distance π of v

w.r.t. r based on the distance between w and r (Lines 7–
9, FindAffected) and add (v, π) into Va f f (Line 10,
FindAffected). If v is prunable, we stop the search from
v; otherwise, we continue to traverse all the children of v

and enqueue them to Q as affected vertices (Lines 11–16,
FindAffected). This process continues iteratively until
Q is empty. Thus, the first JP-BFS identifies affected ver-
tices to be updated, as well as their contingent distances to r
in Va f f . If contingent distances of all vertices in Va f f are∞,
we remove the distance entry of r from the labels of these
vertices because the deleted edge must cut all these vertices
off from other vertices as being disconnected. Otherwise, we
return Va f f and perform the second JP-BFS.

The second JP-BFS starts from the anchor vertices which
are the vertices in Va f f with the minimum contingent
distance (Line 3, Algorithm 2) and infers new distances
of affected vertices iteratively. At each iteration, for each
(v, π) ∈ V unin f er

r with the minimum contingent distance π ,
if v is already pruned, then if it is a landmark, we update
the highway H ; otherwise, we update the label of v using
Function Update (Lines 4–10, Algorithm 2). After that, we
update the contingent distances of the affected neighbours
of v (Lines 11–13, Algorithm 2). Next, we remove v from
V unin f er
r to V in f er

r meaning that the new distance of v w.r.t.
r has been inferred so that V unin f er

r contains only affected
vertices whose new distances have not been inferred. This
process continues until the new distances of all affected ver-
tices in Va f f are inferred and updated.

123

494 M. Farhan et al.

Example 6 Figure 3 illustrates how our decremental algo-
rithm updates affected labels as a result of deleting an edge
(2, 5). Figure 3a depicts the first JP-BFS w.r.t. the land-
mark 0 for finding affected vertices. This JP-BFS identifies
affected vertices {5, 8, 9, 10, 13, 14}, among which vertices
{8, 10, 13, 14} are pruned. Then, the second JP-BFSw.r.t. the
landmark 0 for updating the labels is depicted in Fig. 3b. This
JP-BFS starts from anchor vertices {8, 10}with theminimum
contingent distances. Then, it moves to the affected neigh-
bours {5, 9} and updates their labels using the information
in the labels of their parents, i.e. Vparent (5) = {8, 10} and
Vparent (9) = {8, 10}. Similarly, the first JP-BFS w.r.t. the
landmark 10 is depicted in Fig. 3c which identifies affected
vertices {0, 1, 2}, amongwhich {0, 1} are pruned. The second
JP-BFS w.r.t. the landmark 10 is depicted in Fig. 3(d) which
starts from anchor vertex {0} with the minimum contingent
distance and moves to the affected neighbour {2} and update
its label using the information in Vparent (2) = {0}. Next,
the JP-BFSs w.r.t. the landmarks 4 are depicted in Fig. 2(e),
respectively, which work in the same manner.

5 Theoretical results

In this section, we prove the proposed fully dynamic method
to be (1) correct, i.e. after each update operation, queries on
the updated labelling return exact distances, and (2) able to
preserveminimality of the labelling, a desirable property that
has impacts on both query time and space efficiency. Then,
webriefly analyse the complexity of the proposed algorithms.

5.1 Proof of correctness

Let G1 ↪→ G2 . . . , ↪→ Gn by a sequence of update opera-
tions (edge insertions or edge deletions). Our fully dynamic
method, denoted as FulHL, is to update a highway cover
labelling Γ1 over G1 into a highway cover labelling Γn over
Gn such that IncHL and DecHL are applied for edge inser-
tions and edge deletions, respectively. We consider FulHL
to be correct iff, whenever Q(u, v, Γ1) = dG1(u, v) holds
for any two vertices u and v in G1, Q(u, v, Γn) = dGn (u, v)

also holds for any two vertices u and v in Gn .
Below, we first prove that Lemmata 5- 7 hold for both

algorithms IncHL and DecHL. For simplicity, letG ′ refer to
the changed graph after applying an edge insertion or deletion
on a graph G in the input of IncHL and DecHL.

Lemma 5 A pair (v, π) appears in Q iff v ∈ Λr .

Proof IncHL (Lines 12–14, Algorithm 1) guarantees that
an inserted edge (a, b) is in one shortest path between any
vertex added toQ and a landmark r in G ′. Similarly,DecHL
(Lines 14–16, FindAffected) guarantees that a deleted
edge (a, b) is in one shortest path between any vertex added

to Q and a landmark r in G. From Lemma 1, we thus have
that a vertex is added to Q iff v ∈ Λr . �

Lemma 6 A pair (v, π) is in V in f er
r iff π = dG ′(r , v).

Proof In both IncHL (Lines 5 and 16, Algorithm 1) and
DecHL (Lines 3 and 14, Algorithm 2), (v, π) is added
into V in f er

r iff v has its new distance being inferred from
unaffected and affected vertices whose new distances have
already been inferred w.r.t. a landmark r inG ′. Following the
proof for Lemma 3, we can thus prove π = dG ′(r , v). �

Lemma 7 In Function Update, Vparent is sufficient and
necessary to update L(v).

Proof In both IncHL and DecHL, V in f er
r contains all

inferred vertices which lie in the shortest path(s) between
r and v, and whose new distances to r have been correctly
inferred in G ′ (according to Lemma 6). Therefore, Line 2
in Function Update ensures that Vparent consists of both
unaffected and affected vertices that are parents of v w.r.t. r
in G ′, which is sufficient and necessary to update L(v). �

Based on Lemmata 5-7, the definitions of prunable and
weakly prunable vertices, and the fact that a highway H is
updated by Algorithm 1 (Line 8) and Algorithm 2 (Line 6),
respectively, the following theorem can be proven.

Theorem 1 FulHL is correct.

5.2 Preservation of minimality

It has been reported in [22] that, given a graph G, a highway
cover labelling Γ = (H , L) overG can be constructed using
an algorithm proposed in their work and such a highway
cover labelling Γ is also guaranteed to be minimal in terms
of the labelling size, i.e. si ze(L ′) ≥ si ze(L) holds for any
Γ ′ = (H , L ′) over G. Following Lemmata 5-7 and Fact 2,
we can prove the following theorem.

Theorem 2 When G1 ↪→ G2 . . . , ↪→ Gn, let IncHL- m and
DecHL update a highway cover labelling Γ1 over G1 into a
highway cover labelling Γn over Gn for edge insertions and
edge deletions, respectively. If Γ1 is minimal over G1, then
Γn is also minimal over Gn.

We use FulHL- m to refer to our fully dynamic method
that preserves the minimality of labelling. More specifically,
for G1 ↪→ G2 . . . , ↪→ Gn by a sequence of update opera-
tions (edge insertions or edge deletions), FulHL- m updates
a highway cover labelling Γ1 over G1 into a highway cover
labelling Γn over Gn such that IncHL- m and DecHL are
applied for edge insertions and edge deletions, respectively.

123

Fast fully dynamic labelling for distance queries 495

5.3 Complexity analysis

Letm be the total number of affected vertices, l be the average
size of labels (i.e. l = si ze(L)/|V |) and d be the aver-
age degree. For each landmark, IncHL- m and IncHL visit
O(m) affected vertices in theworst case, update each affected
label by checking d neighbours in O(dl) time. Thus, the
time complexity of IncHL- m and IncHL is O(|R| × mdl).
On the other hand, DecHL takes O(mdl) time to find all
affected vertices with their contingent distances (in Function
FindAffected) and takes O(md) to fix the labels of all
affected vertices. We omit l from O(md) for Algorithm 2
because distances for all unaffected neighbours of affected
vertices can be stored during the first JP-BFS to avoid query
cost while updating the labels during the second JP-BFS.
Thus, the time complexity of DecHL is O(|R|×md(l+1)).
In our experiments, we notice thatm is usually orders ofmag-
nitudes smaller than the total number of vertices |V |, while
l is significantly smaller than |R|.

6 Experiments

In this section, we evaluate our dynamic algorithms, includ-
ing the incremental and decremental ones, aiming to answer
the following questions:

– How efficiently can our dynamic algorithms deal with
updates in very large dynamic networks, in comparison
with the state-of-the-art methods?

– How does the number of landmarks affect the perfor-
mance of our dynamic algorithms?

– How do affected vertices correlate to update efficiency in
our dynamic algorithms?

– How well can our dynamic algorithms scale to deal with
updates in very large dynamic networks?

6.1 Experimental setup

We first present the datasets, then discuss how updates and
queries are generated and introduce the baseline methods
considered in our experiments.

6.1.1 Datasets

We used 13 real-world large networks in our experiments,
in order to empirically verify the efficiency, scalability and
robustness of our algorithms. These networks are accessible
at Stanford Network Analysis Project [33], Laboratory for
web Algorithmics [8,10], Koblenz Network Collection [30]
and Network Repository [44]. We treated these networks as
undirected and unweighted graphs. The types of networks,
number of vertices and edges and statistical information of

these network datasets are summarized in Table 2, while a
brief description of each dataset is given below:

– Skitter: This is an Internet topology network, obtained
by running daily traceroute in 2005 [31], in which nodes
represent routers and edges represent communication
links.

– Flickr: This is a social network of users and their con-
nections in a photo sharing website Flickr (www.flickr.
com) [36].

– Hollywood: This is a social network of movie actors,
where vertices represent actors and two actors are joined
by an edge whenever they appeared in a movie together
in 2009 [8,10].

– Orkut: This is a social network of users and their con-
nections in a social networking website, Orkut (www.
orkut.com) [36].

– Enwiki: This is a network of hyperlinks from a snapshot
of English Wikipedia, obtained in 2013, where vertices
represent pages and edges indicate hyperlinks between
pages [8,10].

– Livejournal: This is a social network which allows
its members to manage their journals and blogs, and
to declare which other members and their friends they
belong to, in an online social website (www.livejournal.
com) [5,32].

– Indochina: This is a web graph of web pages, obtained
by performing a large crawl of the country domains of
Indochina in 2004 for the Nagaoka University of Tech-
nology [8,10].

– IT: This is a web graph, obtained by performing a fairly
large crawl of the .it domain in 2004 [8,10].

– Twitter: This is a social network with information about
who follows whom on Twitter, where vertices represent
users and edges represent follow relationships between
users, in an online social website (www.twitter.com) [8,
10].

– Friendster:This is a social gaming network, where users
are connected with friendship relationships, in an online
website (www.friendster.com) [53].

– UK: This is a web graph which is part of a time-aware
network, obtained by collectingmonthly snapshots of the
.uk domain for twelve months in 2006 and 2007 [9].

– Clueweb09: This is a web graph of web pages in ten
languages collected in January and February 2009, where
nodes are unique URLs (pages) and edges represent links
between pages [44].

– Clueweb12:This dataset is a successor to theClueweb09
dataset. It was obtained by crawling the web for about 1
billion English web pages between February 10, 2012,
and May 10, 2012 [8,10].

123

www.flickr.com
www.flickr.com
www.orkut.com
www.orkut.com
www.livejournal.com
www.livejournal.com
www.twitter.com
www.friendster.com

496 M. Farhan et al.

(a) (b) (c) (d)

Fig. 4 (a)–(b) show the distance distribution of 1000 pairs of vertices in EI on all the datasets, where the distance for each pair is recorded before
insertion, and (c)–(d) show the distance distribution of 1000 pairs of vertices in ED on all the datasets, where the distance for each pair is recorded
after deletion

6.1.2 Generation of updates and queries

For each network G = (V , E), we randomly sampled 1,000
pairs of vertices as edge insertions, denoted as EI ,where EI∩
E = ∅, and 1,000 pairs of vertices as edge deletions, denoted
as ED , where ED ⊆ E . We use EI and ED to evaluate
incremental and decremental algorithms, respectively. Then,
we randomly selected 1,000 pairs of vertices EF ⊆ EI ∪ ED

with 50% from EI (edge insertions) and 50% from ED (edge
deletions) to evaluate fully dynamic methods. The distance
distribution before applying updates in EI is shown in Fig.
4a, b, and the distance distribution after applying the updates
in ED is shown in Fig. 4c, d. We can see that most of the
pairs have a small distance ranging from 1 to 10 in EI and
from 1 to 4 in ED for most of the datasets and only a few of
them are disconnected (i.e. have distance ∞).

Furthermore, we randomly sampled 100,000 pairs of ver-
tices in each network as queries, to evaluate the query
performance on graphs being changed by updates in EF .
Table 2 shows the average distance in each network using

these 100,000 randomly sampled pairs of vertices. We can
see thatmost of these networks have a small average distance.
We also report the labelling size produced by fully dynamic
methods after performing updates in EF .

6.1.3 Baseline methods

Wecompared our fully dynamicmethods (i.e. FulHL- m and
FulHL), as well as the incremental and decremental algo-
rithms (IncHL, IncHL- m and DecHL), with the following
state-of-the-art methods:

(1) The dynamic algorithms IncFD,DecFD and FulFD pro-
posed in [26], which combine a distance labelling with a
graph traversal algorithm for answering distance queries;

(2) The dynamic algorithms IncPLL [3], DecPLL [19] and
FulPLL proposed in [3,19], which are based on the
pruned landmark labelling (PLL) [2] to answer distance
queries;

Table 2 Datasets, where |G|
denotes the size of a graph G
with each edge appearing in the
forward and reverse adjacency
lists and being represented by 8
bytes

Dataset Network |V | |E | |E |/|V | avg. deg. max. deg. avg. dist. |G|
Skitter comp (u) 1.7M 11M 6.54 13.081 35455 5.1 85 MB

Flickr social (u) 1.7M 16M 9.07 18.133 27224 5.3 119 MB

Hollywood social (u) 1.1M 114M 49.5 98.913 11467 3.9 430 MB

Orkut social (u) 3.1M 117M 38.1 76.281 33313 4.2 894 MB

Enwiki social (d) 4.2M 101M 21.9 43.746 432260 3.4 701 MB

Livejournal social (d) 4.8M 69M 8.84 17.679 20333 5.6 327 MB

Indochina web (d) 7.4M 194M 20.4 40.725 256425 7.7 1.1 GB

IT web (d) 41M 1.2B 24.9 49.768 1326744 7.0 7.7 GB

Twitter social (d) 42M 1.5B 28.9 57.741 2997487 3.6 9.0 GB

Friendster social (u) 66M 1.8B 27.4 55.056 5214 5.0 13 GB

UK web (d) 106M 3.7B 31.4 62.772 979738 6.9 25 GB

Clueweb09 web (d) 1.7B 7.8B 4.64 9.27 6444720 7.4 58.2 GB

Clueweb12 web (d) ∼1B 43B 39.1 78.249 75611696 5.2 279 GB

123

Fast fully dynamic labelling for distance queries 497

Table 3 Comparison of the update time, labelling size and query time of the proposed methods with the baseline methods, where “-” denotes that
a method did not finish to construct labelling in one day (24 hours) or ran out of memory (512 GB)

Dataset Update Time (ms) Labelling Size Query Time (ms)
FulHL- m FulHL FulFD FulPLL FulHL FulFD FulPLL FulHL FulFD FulPLL

Skitter 1.096 1.019 10.67 20400 42 MB 153 MB 11.6 GB 0.027 0.019 0.006

Flickr 0.055 0.053 7.655 6810 34 MB 152 MB 12.7 GB 0.007 0.012 0.009

Hollywood 0.223 0.212 10.54 – 27 MB 262 MB – 0.027 0.037 –

Orkut 1.234 1.075 40.12 – 70 MB 711 MB – 0.101 0.103 –

Enwiki 1.488 1.459 88.54 – 82 MB 608 MB – 0.054 0.035 –

Livejournal 0.275 0.179 2.564 – 122 MB 662 MB – 0.044 0.046 –

Indochina 1.414 0.598 107.2 – 87 MB 840 MB – 0.737 0.839 –

IT 22.96 10.62 160.3 – 862 MB 4.74 GB – 1.069 1.013 –

Twitter 73.37 72.76 2512 – 1.14 GB 3.83 GB – 0.863 0.177 –

Friendster 2.131 2.097 21.64 – 2.43 GB 9.14 GB – 0.814 0.904 –

UK 2.755 1.075 337.6 – 1.78 GB 11.8 GB – 3.443 5.858 –

Clueweb09 103.1 56.25 – – 163 GB – – 16.93 – –

Clueweb12 15950 1796 – – 49.1 GB – – 9.375 – –

(3) The online incremental algorithm IncHL+ proposed in
[21], which combines a highway cover labelling with a
graph traversal algorithm for answering distance queries;

(4) The parallel pruned landmark labelling methods PSL,
PSL+ and PSL∗ for static graphs proposed in [34], which
are also based on the pruned landmark labelling (PLL)
[2] to answer distance queries;

(5) The optimized online bidirectional BFS algorithm which
answers distance queries by applying an optimized strat-
egy to expand search from the direction with less vertices
[26], and we name this algorithm Opt- BiBFS in our
experiments.

The implementations of these baseline methods were
provided by their authors and are in C++. We used the
same parameter settings for these methods as suggested by
their authors unless otherwise stated. The initial distance
labellings were constructed using their original static meth-
ods, i.e. HL for FulHL [22], FD for FulFD [26] and PLL for
FulPLL [2,3,19]. For a fair comparison,we set the number of
landmarks to 20 for our methods, following the same setting
of FulFD [26] except for the largest datasets, i.e. Clueweb09
and Clueweb12. We set the number of landmarks to 150 for
Clueweb09 and Clueweb12 because a small number of land-
marks on such large networks do not help much in pruning
the search space. For parallel PLL methods PSL, PSL+ and
PSL∗ [34], we set the number of threads to the total number
of available cores in our server, i.e. 28. We developed our
software in C++11 using STL libraries, compiled with gcc
5.5.0with the -O3 option.We executed all of our experiments
using a single thread on a Linux server (Intel Xeon W-2175
with 2.50GHz (CPU) and 512GB of main memory).

6.2 Performance comparison

We first compare our methods against the labelling-based
methods in terms of update time, labelling size and query
time. After that, we compare our methods against online
search methods.

6.2.1 Labelling-based dynamic methods

Update Time. Table 3 shows that the average update times
taken by ourmethodsFulHL- m and FulHL are significantly
less than the average update times taken by the baselinemeth-
ods FulFD and FulPLL. As we can see, only our methods
can scale to very large networks with billions of vertices
and edges. Specifically, FulFD failed to have results for
Clueweb09 and Clueweb12, and FulPLL failed for 11 out
of 13 networks. There are several reasons why FulPLL can-
not scale to large networks. Firstly, FulPLL is based on the
pruned landmark labelling algorithm [2] which has very high
space requirements and construction time of labelling on
large networks. Secondly, FulPLL has a very high updat-
ing cost in restoring the 2-hop cover property [19] for the
decremental case. Overall, our methods are more than 30
times faster as compared to FulFD and several orders of
magnitude faster than FulPLL.

In Table 4, the average update times taken by incremen-
tal and decremental algorithms are compared separately. For
incremental algorithms, our methods IncHL- m and IncHL
significantly outperform the baseline methods IncHL+,
IncFD and IncPLL on all the datasets. Further, IncHL is
faster than IncHL- mwhich strictly preserves the minimality
of labelling. This performance difference between IncHLand

123

498 M. Farhan et al.

Ta
bl
e
4

C
om

pa
ri
so
n
of

th
e
up
da
te
tim

e
fo
r
ed
ge

in
se
rt
io
n
an
d
ed
ge

de
le
tio

n
of

th
e
pr
op
os
ed

m
et
ho
ds

In
cH

L
-
m
,I
n
cH

L
an
d
D
ec

H
L
w
ith

th
e
ba
se
lin

e
m
et
ho

ds

D
at
as
et

In
cr
em

en
ta
lA

lg
or
ith

m
s

D
ec
re
m
en
ta
lA

lg
or
ith

m
s

In
cH

L
-
m
(m

s)
In
cH

L
(m

s)
In
cH

L
+
(m

s)
In
cF

D
(m

s)
In
cP

L
L
(m

s)
D
ec

H
L
(m

s)
D
ec

FD
(m

s)
D
ec

PL
L
(s
ec
.)

Sk
itt
er

0.
13
3

0.
07
5

0.
19
4

0.
44
7

2.
18
9

1.
44
3

19
.4
8

21
.3

Fl
ic
kr

0.
00
5

0.
00
5

0.
00
6

0.
04
6

1.
86
9

0.
15
2

17
.7
1

11
.7

H
ol
ly
w
oo
d

0.
02
7

0.
02
6

0.
03
1

0.
07
8

48
.9
7

0.
26
5

21
.0
3

–

O
rk
ut

1.
68
7

1.
42
3

2.
02
6

2.
03
9

–
0.
41
8

48
.1
2

–

E
nw

ik
i

0.
11
9

0.
10
5

0.
13
4

0.
12
9

6.
59
6

2.
96
9

16
3.
8

–

L
iv
ej
ou
rn
al

0.
20
1

0.
12
2

0.
24
5

0.
22
5

–
0.
30
0

7.
40
6

–

In
do
ch
in
a

2.
58
7

1.
18
7

5.
44
3

16
7.
7

20
21

0.
23
3

60
.6
0

–

IT
49
.7
7

21
.3
4

95
.9
2

24
1.
8

–
5.
84
3

21
0.
5

–

Tw
itt
er

0.
01
7

0.
01
5

0.
02
7

0.
10
6

–
19
2.
6

51
26

–

Fr
ie
nd
st
er

0.
11
9

0.
11
9

0.
15
9

0.
39
6

–
2.
40
9

42
.9
2

–

U
K

4.
07
1

2.
13
2

11
.4
9

39
7.
7

–
0.
26
7

15
1.
5

–

C
lu
ew

eb
09

27
.0
4

9.
20
5

40
.6
8

–
–

13
1.
8

–
–

C
lu
ew

eb
12

26
36
5

20
61

61
66
1

–
–

21
29

–
–

IncHL- m provides us good insights on the additional cost
required by guaranteeing theminimality property of labelling
on dynamic graphs. For the decremental algorithms, we can
also see that the average update time taken by DecHL is sig-
nificantly less than DecFD and DecPLL on all the datasets.
DecPLL took time in seconds to update the labellings and
failed to update the labelling for Hollywood, Enwiki and
Indochina due to very high update time complexity, which
is cubic in the worst case in terms of the number of vertices
[19].
Labelling Size. Table 3 shows that the labelling sizes of
our method FulHL after applying updates in EF are signif-
icantly (ranges from 30% to 90%) smaller than the labelling
sizes of FulFD and FulPLL. When updates occur on a
graph, the labelling sizes of FulFD and FulHL remain
stable because their average label size is bounded by the con-
stant (i.e. the size of landmarks set |R|). Specifically, FulFD
stores complete shortest-path treesw.r.t. the landmarks,while
FulHL stores pruned shortest-path trees, thereby leading to
a labelling of much smaller sizes than FulFD. However, the
labelling sizes of FulPLL increase because its incremental
algorithm does not remove outdated and redundant entries.
In Table 6, we present the differenceΔIncPLL andΔIncPLL in
the labelling sizes before and after updating the labelling by
our method IncHL and the baseline method IncPLL, respec-
tively. This also shows howmuch the labelling sizes increase
after applying the updates in EI in several datasets. It con-
firms that the increase in the labelling size by our method
is negligibly small, while IncPLL has considerably large
increase in the labelling sizes. Particularly, IncPLL has a
huge increase (several gigabytes) in the labelling size of
Indochina for just 1000 updates. Thus, IncPLL may cause
FulPLL to produce an ever increasing labelling sizes, par-
ticularly when graphs are updated frequently.
Query Time. Table 3 shows that the average query times
after applying updates in EF . FulHL performs comparably
with FulFD and FulPLL. More specifically, as compared
to FulFD, the query time of FulHL outperforms on 7 out
of 11 datasets where FulFD can construct labelling. For the
two largest datasets, FulFD fails to construct labelling and
thus cannot answer queries. Notice that FulHL considerably
underperforms FulFD on Twitter when ignoring updates on
graphs. This is because the maximum degree of Twitter is
very high (Table 2) and FulFDmaintains shortest-path trees
for landmarks along with their neighbours which may cause
a large fraction of pairs to be covered by very high degree
landmarks. However, if we consider the overall query time
on dynamic graphs as the sum of the total update time plus
the query time after the update operation, then our method
FulHL would indeed significantly outperform FulFD on
Twitter. It has been reported in [19] that the average query
time is dependent on the labelling size. As discussed in Sect.
6.2.1, the update operations do not considerably affect the

123

Fast fully dynamic labelling for distance queries 499

Table 5 Construction time,
labelling size and query time of
the state-of-the-art methods
PSL, PSL+ and PSL∗ where “-”
denotes that a method did not
finish to construct labelling in
one day (24 hours) or ran out of
memory (512 GB)

Dataset Construction Time (sec.) Labelling Size (GB) Query Time (ms)
PSL PSL+ PSL∗ PSL PSL+ PSL∗ PSL PSL+ PSL∗

Skitter 28 24 17 2.16 1.72 1.01 0.003 0.005 0.007

Flickr 36 26 16 2.80 1.78 0.98 0.004 0.004 0.005

Hollywood 577 325 261 11.2 6.17 4.15 0.020 0.020 0.146

Orkut 22755 22983 18971 147 146 121 0.086 0.086 0.192

Enwiki 363 368 302 10.0 9.84 7.04 0.005 0.005 0.021

Livejournal 6149 5754 3179 80.7 73.8 40.4 0.035 0.035 0.047

Indochina 336 79 71 17.3 5.05 3.39 0.004 0.003 0.007

IT – 15599 10377 – 227 130 – 0.016 0.059

Twitter – – – – – – – – –

Friendster – – – – – – – –

UK – – – – – – – – –

Clueweb09 – – – – – – – – –

Clueweb12 – – – – – – – – –

Table 6 Comparison of the
difference in the labelling sizes
of the proposed method IncHL
and the baseline method IncPLL
after applying 1,000 updates

si ze(LAfter) − si ze(LBefore) Datasets
Skitter Flickr Hollywood Enwiki Indochina

ΔIncPLL 5 MB 9 MB 22 MB 2 MB 7,334 MB

ΔIncHL 7 KB 5 KB 1 KB 0 KB 1,833 KB

labelling sizes of FulFD and FulHL; thus, their query times
remain stable. The query time of FulPLL increases because
it allows the existence of outdated and redundant entries in
the labels of affected vertices which deteriorates query per-
formance over time, particularly when graphs are updated
frequently.

6.2.2 Labelling-based static methods

To understand how our dynamic algorithms perform against
the state-of-the-art methods for static graphs, we compare
the performance of our proposed methods against the paral-
lelised pruned landmark labelling methods PSL, PSL+ and
PSL∗, which have been shown to achieve the state-of-the-art
performance for answering distance queries on static graphs
[34]. The results for PSL, PSL+ and PSL∗ are presented in
Table 5. It is worth to note that PSL, PSL+ and PSL∗ are
not dynamic methods, thereby requiring us to reconstruct
labelling from scratch after each update in a graph. As we
can see in Table 5 that the construction time of distance
labelling is by far greater than the update time of ourmethods
FulHL- m and FulHL in Table 3. For example, our meth-
ods FulHL- m and FulHL take 1 millisecond on average to
update labelling on Skitter, whereas PSL takes 28 seconds
on average to construct labelling. Furthermore, PSL, PSL+
and PSL∗ all failed to scale to large graphs. Specifically, PSL
failed for 6 out of 13 datasets, and PSL+ and PSL∗ failed for
5 out of 13 datasets and have a very high construction cost on

datasets with large average degrees such as Orkut and Live-
journal. Although the construction times of PSL+ and PSL∗
are reduced using index reduction techniques, these index
reduction techniques affect the query performance. For query
performance, PSL∗ is comparable to our method FulHL on
Flickr, Hollywood, Orkut, Enwiki and Livejournal.

We also notice that the labelling sizes of PSL, PSL+
and PSL∗ (as presented in Table 5) are much larger than
FulHL (as presented in Table 3). As we can see in Table
5, PSL* produces the labelling of size almost 99% larger
than the labelling of FulHL for Orkut and IT. The query
times of PSL are the fastest among all baseline methods,
but unfortunately, unbearably long construction times and
large labelling sizes make these methods hardly scale to very
large graphs. This situation becomes even worse when the
underlying graphs are dynamic. Considering the overall per-
formance w.r.t. three main factors, i.e. query time, labelling
size and construction time, FulHL stands out in claiming the
best trade-offs between query time, labelling size and con-
struction time among all other baselinemethods for large and
dynamic graphs.

6.2.3 Online search methods

To understand the impact of labelling on distance queries,
we also compare the query performance of our fully dynamic
method FulHL with an online search method Opt- BiBFS.
The results are shown in Fig. 5. To make a fair comparison,

123

500 M. Farhan et al.

0 25 50 75 100x102
10−1

100

101

102

103
Q
ue

ry
Ti
m
e
(s
ec
.) Skitter

0 25 50 75 100x102
10−3

10−2

10−1

100
101
102
103

Flickr

0 25 50 75 100x102
10−2

10−1

100

101

102

103
Hollywood

0 25 50 75 100x102
10−1

100

101

102

103

104
Orkut

0 25 50 75 100x102
10−2

10−1

100
101
102
103
104

Enwiki

0 25 50 75 100x102
10−2

10−1

100

101

102

103

Q
ue

ry
Ti
m
e
(s
ec
.) Livejournal

0 25 50 75 100x102

of updates
10−1

100

101

102

103

Q
ue

ry
Ti
m
e
(s
ec
.) Indochina

0 25 50 75 100x102

of updates
101

102

103

104
IT

0 25 50 75 100x102

of updates
10−2

10−1

100
101
102
103
104
105

Twitter

0 25 50 75 100x102

of updates
10−2

10−1

100
101
102
103
104
105

Friendster

0 25 50 75 100x102

of updates
10−1

100

101

102

103

104

Q
ue

ry
Ti
m
e
(s
ec
.) UK

0 25 50 75 100x102

of updates
100

101

102

103
Clueweb09

0 25 50 75 100x102

of updates
100

101

102

103
Clueweb12

OPT-BIBFS
FULHL+QT

Fig. 5 Comparison of query time of the proposed method FulHL against online search method Opt- BiBFS. Opt- BiBFS has no results for
Clueweb09 and Clueweb12 because it did not finish within 24 hours

we consider the overall query time of our method as the sum
of the total update time on labelling for randomly sampled
updates of varying sizes (i.e. 1 to 10,000) plus the query
time of 1,000 queries after applying the updates, denoted
as FulHL+QT. For the baseline method Opt- BiBFS, we
take only the query time of 1,000 queries after applying
updates. We see that the overall performance of our methods
is significantly better than Opt- BiBFS on all the datasets.
In particular, our methods show promising performance on
large networks even when the number of updates is 10,000.
Only FulHL is able to have results within 24 hours for the
two largest datasets Clueweb09 and Clueweb12. These con-
firm that our method is efficient and can scale to very large
networks.

6.3 Performance with varying landmarks

We also evaluate the performance of our method FulHL
under different numbers of landmarks. The results are pre-
sented in Fig. 6. For the largest two datasets Clueweb09 and
Clueweb12, the baseline method FulFD failed to construct
labelling. Thus, Fig. 6 (as well as Fig. 7) does not include
any results for FulFD on these two datasets.

Figure 6a shows the labelling sizes produced by FulHL
and FulFD after applying the updates in EF under differ-
ent numbers of landmarks on all the datasets. As we can
see, when the number of landmarks increases, the labelling
sizes of FulHL and FulFD also increase. The labelling sizes
of our method FulHL increase sublinearly when increasing

the number of landmarks. This is due to the pruning during
JP-BFSs. In contrast, the labelling sizes of FulFD increase
linearly with increasing the number of landmarks since it
does not have the minimality of labelling. Thus, the labelling
sizes of FulHL are always by far smaller than the labelling
sizes of FulFD.

Figure 6(b)–(c) shows the average update times of our
methods IncHL and DecHL against the baseline methods
IncFD and DecFD after applying the updates in EI and
ED , respectively. As we can see in Fig. 6b, IncHL outper-
forms IncFD on all the datasets against every selection of
landmarks, except Orkut and Enwiki for which IncHL and
IncFD have comparable results. This is because the average
distances on these networks are small, and only a small frac-
tion of vertices are affected to update their labels. In such
cases, the performance of our method is comparable with
IncFD. When a large fraction of vertices is affected against a
graph change, ourmethod better leverages the pruning power
to perform than IncFD. For instance, our method signifi-
cantly outperforms IncFD on the datasets Indochina and UK
because a large fraction of affected vertices are caused by
graph changes, as can be seen from Fig. 8d.

From Fig. 6c, we can also confirm that DecHL out-
performs DecFD on all the datasets under every selection
of landmarks. Further, we observe that the average update
times of our methods IncHL and DecHL either remain low
or increase very slowly when we increase the number of
landmarks. This is because a larger number of landmarks
can contribute more to leverage the pruning power of our

123

Fast fully dynamic labelling for distance queries 501

(a)

(b)

(c)

Fig. 6 Comparison of the proposed method FulHL (in coloured bars)
and the baseline method FulFD (in coloured plus grey bars) under
10-150 landmarks: (a) labelling size, (b) average update time for incre-

mental updates and (c) average update time for decremental updates.
Note that there are no results of FulFD for Clueweb09 and Clueweb12
as FulFD failed to construct labelling

(a)

(b)

Fig. 7 Comparison of the proposed method FulHL and the baseline method FulFD: (a) average query time for FulHL, and (b) average query
time for FulFD. Note that there are no results of FulFD for Clueweb09 and Clueweb12 as FulFD failed to construct labelling

123

502 M. Farhan et al.

(a) (b)

(c) (d)

Fig. 8 1000 edge insertions from EI : (a)–(b) show the distribution
of update times, and (c)–(d) show the distribution of the numbers of
affected vertices

(a) (b)

(c) (d)

Fig. 9 1000 edge deletions from ED : (a)–(b) show the distribution
of update times, and (c)–(d) show the distribution of the numbers of
affected vertices

methods, thereby performing much better than the baseline
methods.

In Fig. 7, we also show the trend in the average query
times of our method FulHL in comparison with the baseline
method FulFDunder varying landmarks {10, 20, 30, 40, 50}
for all datasets and {150} for the two largest datasets after
applying the updates in EF . As we can see in Fig. 7a, gen-
erally the trend in the average query times of FulHL is
decreasing or remains the same, whereas the trend in Fig. 7b
is increasing for FulFD with the increased number of land-
marks. Furthermore, we notice that the trend in the average
query times of Indochina, IT and UK in Figs. 7a and 7b
is all decreasing. This is because they have large average

distances (in Table 2), due to which an increased number
of landmarks might cover a large fraction of shortest paths
and yield the tighter upper-distance bounds to help efficient
querying. Overall, the increased number of landmarks help
improve query time performance.

6.4 Analysis of affected vertices

To understand how affected vertices correlate with update
times against different types of updates: edge insertion and
deletion, we analyse the distributions of the numbers of
affected vertices and their update times. The results are pre-
sented in Figs. 8 and 9, in which 1000 edge insertions and
edge deletions are taken from EI and ED , respectively, and
their numbers of affected vertices and update times are sorted
in ascending order.

From the figures, we can see that there is a correlation
between the number of affected vertices and update times of
these updates. We observe that the difference in the number
of affected vertices is not significant among these updates and
only a few updates correspond to a large number of affected
vertices for which the update times are also high in most of
the datasets.

6.5 Scalability of updates

We analyse the performance of our methods with increasing
the number of updates. We start with 500 updates and then
iteratively increase 500 updates until 10,000 updates. Figures
10–11 show the average update times after constructing the
labelling from scratch, and updating the labelling using our
incremental and decremental algorithms after each increase.
We observe from Fig. 10 that the update time of IncHL on
all the datasets is almost always below the construction time
of labelling. On IT and Twitter, the update time reaches the
construction time after performing 5,000 updates. This is
because the average distance of IT is large as depicted in
Table 2, which may lead to high percentages of affected ver-
tices to be updated; although the average distance of Twitter
is small, the density of Twitter is high and fewer updates can
still cause a large fraction of vertices to be affected as can
be observed from Fig. 8(d). In Fig. 11, we can also see that
DecHL generally performs well on all the datasets. Com-
pared to the other datasets,DecHL performs relatively worse
on Skitter, Enwiki, Twitter and Clueweb12. This is because
the updates in these networks can have larger distances after
removal, as can be observed from the distance distribution
in Fig. 4, which may cause more vertices to be affected and
require more update time as depicted in Fig. 9. Overall, the
performance of the proposed algorithms is dependent on the
fraction of affected vertices and our methods can scale to
perform large batches of updates efficiently.

123

Fast fully dynamic labelling for distance queries 503

0 25 50 75 100x102

of updates
10−1

100

101
U
pd

at
e
Ti
m
e
(s
ec
.) Skitter

0 25 50 75 100x102

of updates
10−2

10−1

100

101
Flickr

0 25 50 75 100x102

of updates
10−2

10−1

100

101
Hollywood

0 25 50 75 100x102

of updates
10−1

100

101

102
Orkut

0 25 50 75 100x102

of updates
100

101

102
Enwiki

0 25 50 75 100x102

of updates
10−2

10−1

100

101

102

U
pd

at
e
Ti
m
e
(s
ec
.) Livejournal

0 25 50 75 100x102

of updates
10−1

100

101
Indochina

0 25 50 75 100x102

of updates
100

101

102

103
IT

0 25 50 75 100x102

of updates
101

102

103

104
Twitter

0 25 50 75 100x102

of updates
10−2

10−1

100
101
102
103
104

Friendster

0 25 50 75 100x102

of updates
10−1

100

101

102

103

U
pd

at
e
Ti
m
e
(s
ec
.) UK

0 25 50 75 100x102

of updates
101

102

103

104

105
Clueweb09

0 25 50 75 100x102

of updates

103

104

105
Clueweb12

Construction
INCHL

Fig. 10 Comparison of average update time of the proposed method IncHL for performing up to 10,000 updates against the construction time

0 25 50 75 100x102

of updates
10−1

100

101

U
pd

at
e
Ti
m
e
(s
ec
.) Skitter

0 25 50 75 100x102

of updates
10−2

10−1

100

101
Flickr

0 25 50 75 100x102

of updates
10−2

10−1

100

101
Hollywood

0 25 50 75 100x102

of updates
100

101

102
Orkut

0 25 50 75 100x102

of updates
100

101

102
Enwiki

0 25 50 75 100x102

of updates
10−1

100

101

102

U
pd

at
e
Ti
m
e
(s
ec
.) Livejournal

0 25 50 75 100x102

of updates
10−1

100

101
Indochina

0 25 50 75 100x102

of updates
100

101

102
IT

0 25 50 75 100x102

of updates
101

102

103

104
Twitter

0 25 50 75 100x102

of updates
10−1

100

101

102

103

104
Friendster

0 25 50 75 100x102

of updates
100

101

102

103

U
pd

at
e
Ti
m
e
(s
ec
.) UK

0 25 50 75 100x102

of updates
101

102

103

104

105
Clueweb09

0 25 50 75 100x102

of updates
103

104

105
Clueweb12

Construction
DECHL

Fig. 11 Comparison of average update time of the proposed method DecHL for performing up to 10,000 updates against the construction time

7 Extensions

7.1 Directed graphs

Our methods can be extended to handle directed graphs. We
can store two sets of labels, namely forward label L f (v)

and backward label Lb(v) for each vertex v, which con-
tain pairs (ri , δriv) after performing forward and backward

pruned BFSs w.r.t. each landmark ri ∈ R, respectively.
Further, we can store a forward highway H f = (R, δH f)

and a backward highway Hb = (R, δHb), where for any
two landmarks ri , r j ∈ R, δH f (ri , r j) = dG(ri , r j) and
δHb(r j , ri) = dG(r j , ri). Then, to repair the labels and high-
ways affected by a update, we conduct pruned BFSs twice:
once in the forward direction and once in the backward direc-
tion. To answer a distance query (s, t), we can use L f (s) and

123

504 M. Farhan et al.

Lb(t) to compute the upper bound distance from s to t in the
same way as described in Equation 3.

7.2 Weighted graphs

Ourmethods can also be extended to handleweighted graphs.
We may conduct pruned Dijkstra’s algorithm in place of
pruned BFSs for constructing the labelling and conduct a
similar jumped-and-pruned Dijkstra’s algorithm in place of
JP-BFSs for updating the labelling.

8 Discussion

Now, we discuss the advantages of designing dynamic algo-
rithms upon the highway cover labelling [22] over other
state-of-the distance querying methods.

Generally, current research for answering distance queries
using pre-computed distance labelling has delved into two
directions: (1) full labelling-based methods, which target to
answer distance queries for any pairs of vertices only using
distance labelling, and (2) partial labelling-based methods,
which aim to answer distance queries using a combination
of online searching and partial distance labelling. Although
full labelling-based methods often provide promising query
response performance, they have some significant limitations
in handling distance queries on large and dynamic graphs:

(i) Full labelling-based methods cannot scale to very large
networks due to the quadratic growth of labelling sizes,
leading to very high space requirements and unbearably
long construction time. As shown in our experiments,
PLL [2] has failed to construct distance labelling on net-
works with over hundreds of millions of edges, and the
recent parallel PLLmethods [34] have failed to construct
distance labelling on networks with over 1.2B edges.

(ii) Full labelling-based methods do not perform well for
dynamic graphs because they requiremuchmore compli-
cated analyses to reflect graph changes into a full distance
labelling that captures distance information of all pairs
of vertices in a graph, than a partial distance labelling
that only captures distance information of some essential
pairs of vertices (e.g. the distance between a vertex and
a landmark or between two landmarks) in the graph.

Hence, in this work, we choose to design our dynamic algo-
rithms based on the highway cover labelling [22] which is a
partial distance labelling, rather than PLL which provides a
full distance labelling [2].

Notice that the work in [26] has also proposed a fully
dynamic algorithm by combining a partial distance labelling
with a graph traversal algorithm for answering distance
queries. However, the partial distance labelling in this work

was designed naively—simply storing the distance informa-
tion between any vertex to landmarks. Unlike this work, the
highway cover labelling has pruned vertices whose distance
information can be obtained from the highway and the labels
of other vertices. Therefore, our proposed methods are able
to answer distance queries on large dynamic graphs using a
more compact data structure for improving the scalability as
compared to the work in [26]. It is evident from experiments
that our methods provide best trade-offs between query time,
update time and labelling size among all the state-of-the-art
methods for handling distance queries on large and dynamic
graphs.

9 Conclusion and future work

In this article, we have studied the problem of answering dis-
tance queries on very large (billion-scale) dynamic networks.
We have considered two fundamental update operations on
dynamic graphs, i.e. edge insertions and edge deletions. Our
proposed algorithms exploit properties of a recent novel
technique called highway cover labelling [22] for dynamic
graphs in order to efficiently maintain labelling after a graph
change. We have shown that our proposed fully dynamic
algorithms are correct and can preserve the minimality prop-
erty of labelling [22] after update operations. We have also
conducted extensive experiments to empirically verify the
efficiency and scalability of our proposed algorithms. The
results show that our proposed algorithms significantly out-
perform the state-of-the-art methods.

For future work, we plan to investigate the following
research directions: 1) It would be interesting to extend the
proposed algorithms DecHL or IncHL to handle batches of
updates, i.e. sets of updates occurring on a network simulta-
neously [17,18]. One possibleway to explore in this direction
could be that of studying how the updates in a batch are
related and how they affect the structure of the labelling
when occurring simultaneously and comparing this effect
with operations taken individually, 2) re-positioning of land-
marks in a dynamic setting in order to reduce the size of the
labelling and improve the query performance and 3) explor-
ing the possibility of applying the proposed algorithms to
road networks.

References

1. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierar-
chical hub labelings for shortest paths. In: Proceedings of the 20th
Annual European Conference on Algorithms, pp. 24–35 (2012)

2. Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance
queries on large networks by pruned landmark labeling. In: Pro-
ceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, pp. 349–360 (2013)

123

Fast fully dynamic labelling for distance queries 505

3. Akiba, T., Iwata, Y., Yoshida, Y.: Dynamic and historical shortest-
path distance queries on large evolving networks by pruned
landmark labeling. In: Proceedings of the 23rd International Con-
ference on World Wide Web, pp. 237–248 (2014)

4. Akiba, T., Sommer, C., Kawarabayashi, K.: Shortest-path queries
for complex networks: exploiting low tree-width outside the core.
In: Proceedings of the 15th International Conference on Extending
Database Technology, pp. 144–155 (2012)

5. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group
formation in large social networks: Membership, growth, and evo-
lution. In: Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD, pp.
44–54 (2006). https://doi.org/10.1145/1150402.1150412

6. Bernstein, A.: Fully dynamic (2 + epsilon) approximate all-pairs
shortest paths with fast query and close to linear update time. In:
Proceedings of the 2009 50th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS, pp. 693–702 (2009)

7. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.:
Complex networks: structure and dynamics. Phys. Rep. 424(4–5),
175–308 (2006). https://doi.org/10.1016/j.physrep.2005.10.009

8. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propa-
gation: a multiresolution coordinate-free ordering for compressing
social networks. In: Proceedings of the 20th International Confer-
ence onWorldWideWeb,WWW, pp. 587–596 (2011). https://doi.
org/10.1145/1963405.1963488

9. Boldi, P., Santini, M., Vigna, S.: A large time-aware graph. SIGIR
Forum 42(2), 33–38 (2008)

10. Boldi, P., Vigna, S.: The webgraph framework i: compression tech-
niques. In: Proceedings of the 13th International Conference on
World Wide Web, WWW, pp. 595–602 (2004). https://doi.org/10.
1145/988672.988752

11. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.:
Network robustness and fragility: percolation on random graphs.
Phys. Rev. Lett. 85, 5468–5471 (2000). https://doi.org/10.1103/
PhysRevLett.85.5468

12. Chang, L., Yu, J.X., Qin, L., Cheng, H., Qiao, M.: The exact dis-
tance to destination in undirected world. VLDB J. 21(6), 869–888
(2012). https://doi.org/10.1007/s00778-012-0274-x

13. Cheng, J., Yu, J.X.: On-line exact shortest distance query pro-
cessing. In: Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Technol-
ogy, EDBT, pp. 481–492 (2009). https://doi.org/10.1145/1516360.
1516417

14. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and
distance queries via 2-hop labels. In: Proceedings of the Thirteenth
AnnualACM-SIAMSymposiumonDiscreteAlgorithms, pp. 937–
946 (2002)

15. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Robust dis-
tance queries on massive networks. In: European Symposium on
Algorithms, pp. 321–333. Berlin, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44777-2_27

16. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs
shortest paths. J. ACM 51(6), 968–992 (2004). https://doi.org/10.
1145/1039488.1039492

17. D’Andrea, A., D’Emidio, M., Frigioni, D., Leucci, S., Proietti,
G.: Dynamically maintaining shortest path trees under batches
of updates. In: Revised Selected Papers of the 20th International
Colloquium on Structural Information and Communication Com-
plexity - Volume 8179, SIROCCO, pp. 286–297 (2013)

18. D’Andrea, A., D’Emidio, M., Frigioni, D., Leucci, S., Proietti, G.:
Experimental evaluation of dynamic shortest path tree algorithms
on homogeneous batches. In: Proceedings of the 13th International
Symposium on Experimental Algorithms - Volume 8504, pp. 283–
294 (2014). https://doi.org/10.1007/978-3-319-07959-2_24

19. D’angelo, G., D’emidio, M., Frigioni, D.: Fully dynamic 2-hop
cover labeling. J. Exp. Algorithmics 24(1) (2019). https://doi.org/
10.1145/3299901

20. D’Emidio,M.: Faster algorithms formining shortest-path distances
from massive time-evolving graphs. Algorithms 13(8), 191 (2020)

21. Farhan, M., Wang, Q.: Efficient maintenance of distance labelling
for incremental updates in large dynamic graphs. In: 24th Inter-
national Conference on Extending Database Technology EDBT
(2021)

22. Farhan, M., Wang, Q., Lin, Y., McKay, B.D.: A highly scalable
labelling approach for exact distance queries in complex networks.
In: 22nd International Conference on Extending Database Tech-
nology EDBT, pp. 13–24 (2019)

23. Fu, A.W.C., Wu, H., Cheng, J., Wong, R.C.W.: Is-label: an
independent-set based labeling scheme for point-to-point distance
querying. Proc. VLDB Endow. 6(6), 457–468 (2013)

24. Goldberg, A.V., Harrelson, C.: Computing the shortest path: a
searchmeets graph theory. In: Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 156–165
(2005)

25. Gutenberg, M.P., Wulff-Nilsen, C.: Fully-dynamic all-pairs short-
est paths: Improved worst-case time and space bounds. In: Pro-
ceedings of the Thirty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pp. 2562–2574 (2020)

26. Hayashi, T., Akiba, T., Kawarabayashi, K.: Fully dynamic shortest-
path distance query acceleration onmassive networks. In: Proceed-
ings of the 25th ACM International on Conference on Information
and Knowledge Management, pp. 1533–1542 (2016)

27. Jiang, M., Fu, A.W.C., Wong, R.C.W., Xu, Y.: Hop doubling label
indexing for point-to-point distance querying on scale-free net-
works. Proc. VLDB Endow. 7(12), 1203–1214 (2014). https://doi.
org/10.14778/2732977.2732993

28. Jin, R., Ruan, N., Xiang, Y., Lee, V.: A highway-centric labeling
approach for answering distance queries on large sparse graphs. In:
Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data, pp. 445–456 (2012)

29. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of
online social networks. In: Proceedings of the 12th ACMSIGKDD
International Conference on Knowledge Discovery and Data Min-
ing, KDD, pp. 611–617 (2006). https://doi.org/10.1145/1150402.
1150476

30. Kunegis, J.: Konect: The koblenz network collection. In: Proceed-
ings of the 22nd International Conference on World Wide Web,
WWW, pp. 1343–1350 (2013). https://doi.org/10.1145/2487788.
2488173

31. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densi-
fication laws, shrinking diameters and possible explanations. KDD
(2005). https://doi.org/10.1145/1081870.1081893

32. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Com-
munity structure in large networks: natural cluster sizes and the
absence of large well-defined clusters. Internet Math. 6(1), 29–123
(2009)

33. Leskovec, J., Sosič, R.: Snap: A general-purpose network analysis
and graph-mining library. ACM Trans. Intell. Syst. Technol. 8(1),
2898361 (2016). https://doi.org/10.1145/2898361

34. Li, W., Qiao, M., Qin, L., Zhang, Y., Chang, L., Lin, X.: Scaling
distance labeling on small-world networks. In: Proceedings of the
2019 International Conference onManagement of Data, pp. 1060–
1077 (2019)

35. Li, Y., U, L.H., Yiu, M.L., Kou, N.M.: An experimental study on
hub labeling based shortest path algorithms. Proc. VLDB Endow.
11(4), 445–457 (2017)

36. Mislove,A.,Marcon,M.,Gummadi,K.P.,Druschel, P., Bhattachar-
jee, B.: Measurement and analysis of online social networks. In:
IMC, pp. 29–42 (2007)

123

https://doi.org/10.1145/1150402.1150412
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1145/988672.988752
https://doi.org/10.1145/988672.988752
https://doi.org/10.1103/PhysRevLett.85.5468
https://doi.org/10.1103/PhysRevLett.85.5468
https://doi.org/10.1007/s00778-012-0274-x
https://doi.org/10.1145/1516360.1516417
https://doi.org/10.1145/1516360.1516417
https://doi.org/10.1007/978-3-662-44777-2_27
https://doi.org/10.1007/978-3-662-44777-2_27
https://doi.org/10.1145/1039488.1039492
https://doi.org/10.1145/1039488.1039492
https://doi.org/10.1007/978-3-319-07959-2_24
https://doi.org/10.1145/3299901
https://doi.org/10.1145/3299901
https://doi.org/10.14778/2732977.2732993
https://doi.org/10.14778/2732977.2732993
https://doi.org/10.1145/1150402.1150476
https://doi.org/10.1145/1150402.1150476
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/1081870.1081893
https://doi.org/10.1145/2898361

506 M. Farhan et al.

37. Myers, S.A., Leskovec, J.: The bursty dynamics of the twitter
information network. In: Proceedings of the 23rd International
Conference on World Wide Web, pp. 913–924 (2014)

38. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with
arbitrary degree distributions and their applications. Phys. Rev. E
64, 026118 (2001). https://doi.org/10.1103/PhysRevE.64.026118

39. Ouyang, D., Yuan, L., Qin, L., Chang, L., Zhang, Y., Lin, X.: Effi-
cient shortest path index maintenance on dynamic road networks
with theoretical guarantees. Proc. VLDB Endow. 13(5), 602–615
(2020)

40. Potamias,M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path
distance estimation in large networks. In: Proceedings of the 18th
ACM Conference on Information and Knowledge Management,
pp. 867–876 (2009)

41. Qin, Y., Sheng, Q.Z., Falkner, N.J., Yao, L., Parkinson, S.: Efficient
computation of distance labeling for decremental updates in large
dynamic graphs. World Wide Web 20(5), 915–937 (2017). https://
doi.org/10.1007/s11280-016-0421-1

42. Robertson, N., Seymour, P.D.: Graphminors. iii. planar tree-width.
J. Comb. Theory Ser. B 36(1), 49–64 (1984). https://doi.org/10.
1016/0095-8956(84)90013-3

43. Roditty, L., Zwick, U.: On dynamic shortest paths problems. In:
Albers, S., Radzik, T. (eds.) European Symposium on Algorithms,
pp. 580–591. Springer, Berlin (2004)

44. Rossi, R.A., Ahmed, N.K.: The network data repository with inter-
active graph analytics and visualization. In: Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI,
pp. 4292–4293 (2015)

45. Tarjan, R.E.: Data Structures and Network Algorithms. Society for
Industrial and AppliedMathematics, 3600 University City Science
Center Philadelphia, PA, United States (1983). https://doi.org/10.
1137/1.9781611970265

46. Tretyakov, K., Armas-Cervantes, A., García-Bañuelos, L., Vilo,
J., Dumas, M.: Fast fully dynamic landmark-based estimation of
shortest path distances in very large graphs. In: Proceedings of the
20th ACM International Conference on Information and Knowl-
edge Management, CIKM, pp. 1785–1794 (2011). https://doi.org/
10.1145/2063576.2063834

47. Ukkonen, A., Castillo, C., Donato, D., Gionis, A.: Searching the
wikipedia with contextual information. In: Proceedings of the 17th
ACM Conference on Information and Knowledge Management,
CIKM, pp. 1351–1352 (2008). https://doi.org/10.1145/1458082.
1458274

48. Vieira, M.V., Fonseca, B.M., Damazio, R., Golgher, P.B., Reis,
D.d.C., Ribeiro-Neto, B.: Efficient search ranking in social net-
works. In: Proceedings of the Sixteenth ACM Conference on
Conference on Information and Knowledge Management, CIKM,
pp. 563–572 (2007). https://doi.org/10.1145/1321440.1321520

49. Wang, Y.,Wang, Q., Koehler, H., Lin, Y.: Query-by-sketch: Scaling
shortest path graph queries on very large networks. In: Proceedings
of the 2021 International Conference on Management of Data, pp.
1946–1958 (2021)

50. Wei, F.: Tedi: efficient shortest path query answering on graphs. In:
Proceedings of the 2010 ACM SIGMOD International Conference
on Management of Data, pp. 99–110 (2010)

51. Xu, B., Huang, Y., Kwak, H., Contractor, N.: Structures of broken
ties: exploring unfollow behavior on twitter. In: Proceedings of
the 2013 Conference on Computer Supported Cooperative Work,
CSCW, pp. 871–876 (2013). https://doi.org/10.1145/2441776.
2441875

52. Yahia, S.A., Benedikt, M., Lakshmanan, L.V.S., Stoyanovich, J.:
Efficient network aware search in collaborative tagging sites. Proc.
VLDB Endow. 1(1), 710–721 (2008). https://doi.org/10.14778/
1453856.1453934

53. Yang, J., Leskovec, J.: Defining and evaluating network commu-
nities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213
(2015). https://doi.org/10.1007/s10115-013-0693-z

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1103/PhysRevE.64.026118
https://doi.org/10.1007/s11280-016-0421-1
https://doi.org/10.1007/s11280-016-0421-1
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1137/1.9781611970265
https://doi.org/10.1137/1.9781611970265
https://doi.org/10.1145/2063576.2063834
https://doi.org/10.1145/2063576.2063834
https://doi.org/10.1145/1458082.1458274
https://doi.org/10.1145/1458082.1458274
https://doi.org/10.1145/1321440.1321520
https://doi.org/10.1145/2441776.2441875
https://doi.org/10.1145/2441776.2441875
https://doi.org/10.14778/1453856.1453934
https://doi.org/10.14778/1453856.1453934
https://doi.org/10.1007/s10115-013-0693-z

	Fast fully dynamic labelling for distance queries
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 2-hop cover labelling
	3.2 Highway cover labelling
	3.3 Problem definition

	4 Fully dynamic framework
	4.1 Jumped-and-pruned search
	4.1.1 Affected vertices
	4.1.2 Anchor vertices
	4.1.3 Jumped-and-pruned BFS
	4.1.4 Algorithmic design

	4.2 Incremental algorithm
	4.3 Decremental algorithm

	5 Theoretical results
	5.1 Proof of correctness
	5.2 Preservation of minimality
	5.3 Complexity analysis

	6 Experiments
	6.1 Experimental setup
	6.1.1 Datasets
	6.1.2 Generation of updates and queries
	6.1.3 Baseline methods

	6.2 Performance comparison
	6.2.1 Labelling-based dynamic methods
	6.2.2 Labelling-based static methods
	6.2.3 Online search methods

	6.3 Performance with varying landmarks
	6.4 Analysis of affected vertices
	6.5 Scalability of updates

	7 Extensions
	7.1 Directed graphs
	7.2 Weighted graphs

	8 Discussion
	9 Conclusion and future work
	References

