
The VLDB Journal (2022) 31:321–346
https://doi.org/10.1007/s00778-021-00690-5

SPEC IAL ISSUE PAPER

RDFFrames: knowledge graph access for machine learning tools

Aisha Mohamed1 · Ghadeer Abuoda2 · Abdurrahman Ghanem3 · Zoi Kaoudi4 · Ashraf Aboulnaga1

Received: 14 September 2020 / Revised: 9 June 2021 / Accepted: 25 June 2021 / Published online: 26 August 2021
© The Author(s) 2021

Abstract
Knowledge graphs represented as RDF datasets are integral to many machine learning applications. RDF is supported by a
rich ecosystem of data management systems and tools, most notably RDF database systems that provide a SPARQL query
interface. Surprisingly, machine learning tools for knowledge graphs do not use SPARQL, despite the obvious advantages of
using a database system. This is due to the mismatch between SPARQL and machine learning tools in terms of data model and
programming style. Machine learning tools work on data in tabular format and process it using an imperative programming
style, while SPARQL is declarative and has as its basic operation matching graph patterns to RDF triples. We posit that a good
interface to knowledge graphs from a machine learning software stack should use an imperative, navigational programming
paradigm based on graph traversal rather than the SPARQL query paradigm based on graph patterns. In this paper, we present
RDFFrames, a framework that provides such an interface. RDFFrames provides an imperative Python API that gets internally
translated to SPARQL, and it is integrated with the PyData machine learning software stack. RDFFrames enables the user to
make a sequence of Python calls to define the data to be extracted from a knowledge graph stored in an RDF database system,
and it translates these calls into a compact SPQARL query, executes it on the database system, and returns the results in a
standard tabular format. Thus, RDFFrames is a useful tool for data preparation that combines the usability of PyData with
the flexibility and performance of RDF database systems.

Keywords Knowledge graphs · RDF · SPARQL · PyData · Data preparation · Machine learning

Aisha Mohamed and Ghadeer Abuoda: Joint first authors
Abdurrahman Ghanem and Zoi Kaoudi: Work done while at QCRI.

B Ghadeer Abuoda
gabuoda@hbku.edu.qa

Aisha Mohamed
ahmohamed@hbku.edu.qa

Abdurrahman Ghanem
ghanemabdo@gmail.com

Zoi Kaoudi
zoi.kaoudi@tu-berlin.de

Ashraf Aboulnaga
aaboulnaga@hbku.edu.qa

1 Qatar Computing Research Institute, HBKU, Education City,
Qatar

2 College of Science and Engineering, HBKU, Education City,
Qatar

3 Bluescape, San Carlos, USA

4 Technische Universität Berlin, Berlin, Germany

1 Introduction

There has recently been a sharp growth in the number of
knowledge graph datasets that are made available in the RDF
(Resource Description Framework)1 data model. Examples
include knowledge graphs that cover a broad set of domains
such asDBpedia [25], YAGO [41],Wikidata [42], andBabel-
Net [29], as well as specialized graphs for specific domains
like product graphs for e-commerce [13], biomedical infor-
mation networks [6], and bibliographic datasets [16,27].
The rich information and semantic structure of knowledge
graphs make them useful in many machine learning appli-
cations [10], such as recommender systems [21], virtual
assistants, and question answering systems [45]. Recently,
many machine learning algorithms have been developed
specifically for knowledge graphs, especially in the sub-field
of relational learning, which is dedicated to learning from the
relations between entities in a knowledge graph [30,32,44].

RDF is widely used to publish knowledge graphs as it
provides a powerful abstraction for representing heteroge-

1 https://www.w3.org/RDF

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00690-5&domain=pdf
https://www.w3.org/RDF

322 A. Mohamed et al.

neous, incomplete, sparse, and potentially noisy knowledge
graphs. RDF is supported by a rich ecosystem of data man-
agement systems and tools that has evolved over the years.
This ecosystem includes standard serialization formats, pars-
ing and processing libraries, and most notably RDF database
management systems (a.k.a. RDF engines or triple stores)
that support SPARQL,2 theW3Cstandard query language for
RDF data. Examples of these systems include OpenLink Vir-
tuoso,3 Apache Jena,4 andmanaged services such asAmazon
Neptune.5

However, we make the observation that none of the pub-
licly available machine learning or relational learning tools
for knowledge graphs that we are aware of uses SPARQL to
explore and extract datasets from knowledge graphs stored in
RDF database systems. This, despite the obvious advantage
of using a database system such as data independence, declar-
ative querying, and efficient and scalable query processing.
For example, we investigated all the prominent recent open
source relational learning implementations, and we found
that they all rely on ad hoc scripts to process very small
knowledge graphs and prepare the necessary datasets for
learning. This observation applies to the implementations
of published state-of-the-art embedding models, e.g., scikit-
kge [31,33],6 and also holds for the recent Python libraries
that are currently used as standard implementations for train-
ing and benchmarking knowledge graph embeddings, e.g.,
Ampligraph [8], OpenKE [20], and PyKEEN [3]. These
scripts are limited in performance, which slows down data
preparation and leaves the challenges of applying embedding
models on the scale of real knowledge graphs unexplored.

We posit that machine learning tools do not use RDF
engines due to an “impedance mismatch.” Specifically, typ-
ical machine learning software stacks are based on data in
tabular format and the split-apply-combine paradigm [46].
An example tabular format is the highly popular dataframes,
supported by libraries in several languages such as Python
and R (e.g., the pandas7 and scikit-learn libraries in Python),
and by systems such as Apache Spark [47]. Thus, the first
step in most machine learning pipelines (including relational
learning) is a data preparation step that explores the knowl-
edge graph, identifies the required data, extracts this data
from the graph, efficiently processes and cleans the extracted
data, and returns it in a table. Identifying and extracting this
refined data from a knowledge graph requires efficient and
flexible graph traversal functionality. SPARQL is a declara-

2 https://www.w3.org/TR/sparql11-query
3 https://virtuoso.openlinksw.com
4 https://jena.apache.org
5 https://aws.amazon.com/neptune
6 https://github.com/mnick/scikit-kge
7 https://pandas.pydata.org

tive patternmatching query language designed for distributed
data integration with unique identifiers rather than naviga-
tion [26]. Hence, while SPARQL has the expressive power
to process and extract data into tables, machine learning tools
do not use it since it lacks the required flexibility and ease of
use of navigational interfaces.

In this paper, we introduce RDFFrames, a framework that
bridges the gap between machine learning tools and RDF
engines. RDFFrames is designed to support the data prepa-
ration step. It defines a user API consisting of two type
of operators: navigational operators that explore an RDF
graph and extract data from it based on a graph traversal
paradigm, and relational operators for processing this data
into refined clean datasets for machine learning applications.
The sequence of operators called by the user represents a logi-
cal description of the required dataset. RDFFrames translates
this description to a SPARQL query, executes it on an RDF
engine, and returns the results as a table.

In principle, the RDFFrames operators can be imple-
mented in any programming language and can return data in
any tabular format. However, concretely, our current imple-
mentation of RDFFrames is a Python library that returns data
as dataframes of the popular pandas library so that further
processing can leverage the richness of the PyData ecosys-
tem. RDFFrames is available as open source8 and via the
Python pip installer. It is implemented in 6,525 lines of code,
and was demonstrated in [28].
Motivating Example We illustrate the end-to-end operation
of RDFFrames through an example. Assume the DBpedia
knowledge graph is stored in an RDF engine, and consider
a machine learning practitioner who wants use DBpedia to
study prolific American actors (defined as those who have
starred in 50 or more movies). Let us say that the practi-
tioner wants to see the movies these actors starred in and
the Academy Awards won by any of them. Listing 1 shows
Python code using the RDFFrames API that prepares a
dataframe with the data required for this task. It is important
to note that this code is a logical description of the dataframe
and does not cause a query to be generated or data to be
retrieved from the RDF engine. At the end of a sequence of
calls such as these, the user calls a specialexecute function
that causes a SPARQL query to be generated and executed
on the engine, and the results to be returned in a dataframe.

The first statement of the code creates a two-columnRDF-
Frame with the URIs (Universal Resource Identifiers) of all
movies and all the actors who starred in them. The second
statement navigates from the actor column in this RDFFrame
to get the birth place of each actor and uses a filter to keep only
American actors. Next, the code finds all American actors
who have starred in 50 or more movies (prolific actors).
This requires grouping and aggregation, as well as a filter

8 https://github.com/qcri/rdfframes

123

https://www.w3.org/TR/sparql11-query
https://virtuoso.openlinksw.com
https://jena.apache.org
https://aws.amazon.com/neptune
https://github.com/mnick/scikit-kge
https://pandas.pydata.org
https://github.com/qcri/rdfframes

RDFFrames: knowledge graph access for machine learning tools 323

on the aggregate value. The final step is to navigate from
the actor column in the prolific actors RDFFrame to get the
actor’s Academy Awards (if available). The result dataframe
will contain the prolific actors, movies that they starred in,
and their Academy Awards if available. An expert-written
SPARQL query corresponding to Listing 1 is shown in List-
ing 2. RDFFrames provides an alternative to writing such a
query that is simpler and closer to the navigational paradigm,
and is better-integrated with the machine learning environ-
ment. The case studies in Sect. 6.1 describe more complex
data preparation tasks and present the RDFFrames code for
these tasks and the corresponding SPARQL queries.

movies = graph.feature_domain_range(’dbp:
starring ’,

’movie ’, ’actor ’)
american = movies.expand(’actor ’,

[(’dbp:birthPlace ’, ’country ’)])\
.filter ({’country ’: [’=dbpr:United_States ’]})

prolific = american.group_by ([’actor ’])\
.count(’movie ’, ’movie_count ’)\
.filter ({’movie_count ’: [’ >=50’]})

result = prolific.expand(’actor ’, [(’dbpp:
starring ’,

’movie ’, INCOMING), (’dbpp:academyAward ’, ’
award ’,

OPTIONAL)])

Listing 1 RDFFrames code—Prolific American actors who have
Academy Awards.

SELECT *
FROM <http :// dbpedia.org >
WHERE

{ ?movie dbpp:starring ?actor
{ SELECT DISTINCT ?actor

(COUNT(DISTINCT ?movie) AS
?movie_count)

WHERE
{ ?movie dbpp:starring ?actor .

?actor dbpp:birthPlace
?actor_country

FILTER (?actor_country =
dbpr:United_States)

}
GROUP BY ?actor
HAVING (COUNT(DISTINCT ?movie) >= 50)

}
OPTIONAL

{ ?actor dbpp:academyAward ?award }
}

Listing 2 Expert-written SPARQL query corresponding to RDFFrames
code shown in Listing 1.

RDFFrames in a Nutshell The architecture of RDFFrames
is shown in Fig. 1. At the top of the figure is the user API,
which consists of a set of operators implemented as Python
functions. We make a design decision in RDFFrames to use
a lazy evaluation strategy. Thus, the Recorder records the
operators invoked by the user without executing them, stor-
ing the operators in a FIFO queue. The special execute
operator causes the Generator to consume the opera-
tors in the queue and build a query model representing the
user’s code. The query model is an intermediate represen-
tation for SPARQL queries. The goal of the query model is
(i) to separate the API parsing logic from the query build-
ing logic for flexible manipulation and implementation, and
(ii) to facilitate optimization techniques for building the
queries, especially in the case of nested queries. Next, the

Fig. 1 RDFFrames architecture

Translator translates the query model into a SPARQL
query. This process includes validation to ensure that the gen-
erated query has valid SPARQL syntax and is equivalent to
the user’s API calls. Our choice to use lazy evaluation means
that the entire sequence of operators called by the user is cap-
tured in the query model processed by the Translator.
We design the Translator to take advantage of this fact
and generate compact and efficient SPARQL queries. Specif-
ically, each query model is translated to one SPARQL query
and the Translatorminimizes the number of nested sub-
queries. After the Translator, the Executor sends the
generated SPARQL query to an RDF engine or SPARQL
endpoint, handles all communication issues, and returns the
results to the user in a dataframe.
Contributions The novelty of RDFFrames lies in:

• First, the API provided to the user is designed to be intu-
itive andflexible, in addition to being expressive. TheAPI
consists of navigational operators and data processing
operators based on familiar relational algebra operations
such as filtering, grouping, and joins (Sect. 3).

• Second, RDFFrames translates the API calls into effi-
cient SPARQL queries. A key element in this is the query
modelwhich exposes query equivalences in a simpleway.
In generating the query model from a sequence of API
calls and in generating the SPARQLquery from the query
model, RDFFrames has the overarching goal of generat-
ing efficient queries (Sect. 4). We prove the correctness
of the translation from API calls to SPARQL. That is,
we prove that the dataframe that RDFFrames returns is
semantically equivalent to the results set of the generated
SPARQL query (Sect. 5).

• Third, RDFFrames handles all the mechanics of process-
ing the SPARQLquery such as the connection to the RDF
engine or SPARQL endpoint, pagination (i.e., retrieving
the results in chunks) to avoid the endpoint timing out,
and converting the result to a dataframe. We present case

123

324 A. Mohamed et al.

studies and performance comparisons that validate our
design decisions and show that RDFFrames outperforms
several alternatives (Sect. 6).

2 Related work

Data Preparation for Machine Learning It has been reported
that 80% of data analysis time and effort is spent on the pro-
cess of exploring, cleaning, and preparing the data [9], and
these activities have long been a focus of the database com-
munity. For example, the recent Seattle report on database
research [1] acknowledges the importance of these activi-
ties and the need to support data science ecosystems such as
PyData and to “devote more efforts on the end-to-end data-
to-insights pipeline.”

This paper attempts to reduce the data preparation effort
by defining a powerful API for accessing knowledge graphs.
To underscore the importance of such an API, note that [40]
makes the observation that most of the code in a machine
learning system is devoted to tasks other than learning and
prediction. These tasks include collecting and verifying data
and preparing it for use in machine learning packages. This
requires a massive amount of “glue code,” and [40] observes
that this glue code can be eliminated by using well-defined
common APIs for data access (such as RDFFrames).

Some related work focuses on the end-to-end machine
learning life cycle (e.g., [2,5,48]). Some systems, such as
MLdp [2], focus primarily on managing input data, but they
do not have special support for knowledge graphs. RDF-
Frames provides such support.

Database Support for PyData Some recent efforts to pro-
vide database support for the PyData ecosystem focus on the
scalability of dataframe operations, while other efforts focus
on replacing SQL as the traditional data access API with
pandas-like APIs. Koalas9 implements the pandas dataframe
API on top of Apache Spark for better scalability.Modin [35]
is a scalable dataframe systembased on a novel formalism for
pandas dataframes. Ibis10 defines a variant of the dataframe
API (not pandas) and translates it to SQL so that it can exe-
cute on a database system for scalability. Ibis also supports
other backends such as Spark. Koalas andModin do not sup-
port SQL backends, and Ibis does not have a pandas API. A
recent system that addresses these limitations isMagpie [22],
which translates pandas operations to Ibis for scalable execu-
tion on multiple backends, including SQL database systems.
Magpie chooses the best backend for a given program based
on the program’s complexity and the data size. Grizzly [19]
is a framework that generates SQL queries from a pandas-
like API and ships the SQL to a standard database system for

9 https://koalas.readthedocs.io/en/latest
10 https://ibis-project.org

scalable execution. Grizzly relies on the database system’s
support for external tables in order to load the data. It also cre-
ates user UDFs as native UDFs in the database system. The
AIDA framework [14] allows users to write relational and
linear algebra operators in Python and pushes the execution
of these operators into a relational database system.

All of these recent works are similar in spirit to RDF-
Frames in that they replace SQL for data access with a
pandas-like API and/or rely on a database backend for scala-
bility. However, all of the works focus on relational data and
not graph data. RDFFrames is the first to define a pandas-like
API for graph data (specifically RDF), and to support a graph
database system as a scalable backend.

WhyRDF?Knowledge graphs are typically represented in
the RDF data model. Another popular data model for graphs
is the property graph data model, which has labels on nodes
and edges as well as (property, value) pairs associated with
both. Property graphs have gained wide adoption in many
applications and are supported by popular database systems
such as Neo4j11 and Amazon Neptune. Multiple query lan-
guages exist for property graphs, and efforts are underway to
define a common powerful query language [4].

A popular query language for property graphs is Grem-
lin.12 Like RDFFrames, Gremlin adopts a navigational
approach to querying the graph, and some of the RDFFrames
operators are similar to Gremlin operators. The popularity of
Gremlin is evidence that a navigational approach is attractive
to users. However, all publicly available knowledge graphs
including DBpedia [25] and YAGO [38] are represented in
RDF format. Converting RDF graphs to property graphs is
not straightforwardmainly because the property graphmodel
does not provide globally unique identifiers and linking capa-
bility as a basic construct. In RDF knowledge graphs, each
entity and relation is uniquely identified by a URI, and links
between graphs are created by using theURIs fromone graph
in the other. RDFFrames offers a navigational API similar to
Gremlin to data scientists working with knowledge graphs in
RDF format and facilitates the integration of this API with
the data analysis tools of the PyData ecosystem.

WhySPARQL?RDFFrames uses SPARQLas the interface
for accessing knowledge graphs. In the early days of RDF,
other query languages were proposed (see [18] for a survey),
but none of them has seen broad adoption, and SPARQL has
emerged as the standard.

Some work proposes navigational extensions to SPARQL
(e.g., [24,34]), but these proposals add complex navigational
constructs such as path variables and regular path expressions
to the language. In contrast, the navigation used in RDF-
Frames is simple and well-supported by standard SPARQL
without extensions. The goal of RDFFrames is not complex

11 https://neo4j.com
12 https://tinkerpop.apache.org/gremlin.html

123

https://koalas.readthedocs.io/en/latest
https://ibis-project.org
https://neo4j.com
https://tinkerpop.apache.org/gremlin.html

RDFFrames: knowledge graph access for machine learning tools 325

navigation, but rather providing a simple yet rich suite of
common data access and preparation operators that can be
integrated in a machine learning pipeline.

Python Interfaces A Python interface for accessing RDF
knowledge graphs is provided by Google’s Data Commons
project.13 However, the goal of that project is not to provide
powerful data access, but rather to synthesize a single graph
frommultiple knowledge graphs, and to enable browsing for
graph exploration. The provided Python interface has only
one data access primitive: following an edge in the graph
in either direction, which is but one of many capabilities in
RDFFrames.

The Magellan project [17] provides a set of interoperable
Python tools for entitymatching pipelines. It is another exam-
ple of developing data management solutions by extending
the PyData ecosystem [12], albeit in a very different domain
fromRDFFrames. The same factors that madeMagellan suc-
cessful in theworld of entitymatching canmakeRDFFrames
successful in the world of knowledge graphs.

There are multiple recent Python libraries that pro-
vide access to knowledge graphs through a SPARQL end-
point over HTTP. Examples include pysparql,14 sparql-
client,15 and AllegroGraph Python client.16 However, all
these libraries solve a very different (and simpler) problem
compared to RDFFrames: they take a SPARQLquerywritten
by the user and handle sending this query to the endpoint and
receiving results. On the other hand, the main focus of RDF-
Frames is generating the SPARQL query from imperative
API calls. Communicating with the endpoint is also handled
by RDFFrames, but it is not the primary contribution.

Internals of RDFFrames The internal workings of RDF-
Frames involve a logical representation of a query. Query
optimizers use some form of logical query representa-
tion, and we adopt a representation similar to the Query
Graph Model [36]. Another RDFFrames task is to gener-
ate SPARQL queries from a logical representation. This task
is also performed by systems for federated SPARQL query
processing (e.g., [39]) when they send a query to a remote
site. However, the focus in these systems is on answering
SPARQL triple patterns at different sites, so the queries that
they generate are simple. RDFFrames requiresmore complex
queries so it cannot use federated SPARQL techniques.

3 RDFFrames API

This section presents an overview of the RDFFrames API.
RDFFrames provides the user with a set of operators, where

13 http://datacommons.org
14 https://code.google.com/archive/p/pysparql
15 https://pypi.org/project/sparql-client
16 https://franz.com/agraph/support/documentation/current/python

each operator is implemented as a function in a programming
language. Currently, this API is implemented in Python, but
we describe the RDFFrames operators in generic terms since
they can be implemented in any programming language. The
goal of RDFFrames is to build a table (the dataframe) from
a subset of information extracted from a knowledge graph.
We start by describing the data model for a table constructed
by RDFFrames, and then present an overview of the API
operators.

3.1 Datamodel

The main tabular data structure in RDFFrames is called an
RDFFrame. This is the data structure constructed by API
calls (RDFFrames operators). RDFFrames provides initial-
ization operators that a user calls to initialize an RDFFrame
and other operators that extend or modify it. Thus, an RDF-
Frame represents the data described by a sequence of one or
moreRDFFrames operators. SinceRDFFrames operators are
not executed on relational tables but are mapped to SPARQL
graph patterns, an RDFFrame is not represented as an actual
table in memory but rather as an abstract description of a
table. A formal definition of a knowledge graph and an RDF-
Frame is as follows:

Definition 1 (Knowledge Graph) A knowledge graph G :
(V , E) is a directed labeledRDFgraphwhere the set of nodes
V ∈ I ∪ L ∪ B is a set of RDF URIs I , literals L , and blank
nodes B existing in G, and the set of labeled edges E is a set
of ordered pairs of elements of V having labels from I . Two
nodes connected by a labeled edge form a triple denoting the
relationship between the two nodes. The knowledge graph is
represented in RDFFrames by a graph_uri.

Definition 2 (RDFFrame) Let R be the set of real numbers,
N be an infinite set of strings, and V be the set of RDF URIs
and literals. An RDFFrame D is a pair (C,R), where C ⊆ N
is an ordered set of column names of size m and R is a bag
ofm-sized tuples with values from V ∪R denoting the rows.
The size of D is equal to the size ofR.

Intuitively, an RDFFrame is a subset of information
extracted from one or more knowledge graphs. The rows of
an RDFFrame should contain values that are either (a) URIs
or literals in a knowledge graph, or (b) aggregated values
on data extracted from a graph. Due to the bag semantics,
an RDFFrame may contain duplicate rows, which is good in
machine learning because it preserves the data distribution
and is compatible with the bag semantics of SPARQL.

3.2 API operators

RDFFrames provides the user with two types of operators:
(a) exploration and navigational operators, which operate on

123

http://datacommons.org
https://code.google.com/archive/p/pysparql
https://pypi.org/project/sparql-client
https://franz.com/agraph/support/documentation/current/python

326 A. Mohamed et al.

a knowledge graph, and (b) relational operators, which oper-
ate on an RDFFrame (or two in case of joins). The full list
of operators, and also other RDFFrames functions (e.g., for
client–server communication), can be found with the source
code.17

The RDFFrames exploration operators are needed to deal
with one of the challenges of real-world knowledge graphs:
knowledge graphs in RDF are typically multi-topic, hetero-
geneous, incomplete, and sparse, and the data distributions
can be highly skewed. Identifying a relatively small, topic-
focused dataset from such a knowledge graph to extract into
an RDFFrame is not a simple task, since it requires knowing
the structure and schema of the dataset. RDFFrames pro-
vides data exploration operators to help with this task. For
example, RDFFrames includes operators to identify the RDF
classes representing entity types in a knowledge graph, and
to compute the data distributions of these classes.

Guided by the initial exploration of the graph, the user can
gradually build an RDFFrame representing the information
to be extracted. The first step is always a call to the seed oper-
ator (described below) that initializes the RDFFrame with
columns from the knowledge graph. The rest of the RDF-
Frame is built through a sequence of calls to the RDFFrames
navigational and relational operators. Each of these opera-
tors outputs an RDFFrame. The inputs to an operator can be
a knowledge graph, one or more RDFFrames, and/or other
information such as predicates or column names.

TheRDFFrames navigational operators are used to extract
information from a knowledge graph into a tabular form
using a navigational, procedural interface. RDFFrames also
provides relational operators that apply operations on an
RDFFrame such as filtering, grouping, aggregation, filtering
based on aggregate values, sorting, and join. These operators
do not access the knowledge graph, and one could argue that
they are not necessary in RDFFrames since they are already
provided by machine learning tools that work on dataframes
such as pandas.However, we opt to provide these operators in
RDFFrames so that they can be pushed into the RDF engine,
which results in substantial performance gains as we will see
in Sect. 6.

In the following, we describe the syntax and semantics of
the main operators of both types. Without loss of generality,
let G = (V , E) be the input knowledge graph and D =
(C,R) be the input RDFFrame of size n. Let D′ = (C′,R′)
be the output RDFFrame. In addition, let ��, ⟕, ⟖, ⟗, σ ,
π , ρ, and γ be the inner join, left outer join, right outer join,
full outer join, selection, projection, renaming, and grouping-
with-aggregation relational operators, respectively, defined
using bag semantics as in typical relational databases [15].

Exploration and Navigational Operators These operators
traverse a knowledge graph to extract information from it to

17 https://github.com/qcri/rdfframes

either construct a new RDFFrame or expand an existing one.
They bridge the gap between the RDF data model and the
tabular format by allowing the user to extract tabular data
through graph navigation. They take as input either a knowl-
edge graph G, or a knowledge graph G and an RDFFrame
D, and output an RDFFrame D′.

• G.seed(col1, col2, col3) where col1, col2, col3 are in
N ∪ V : This operator is the starting point for con-
structing any RDFFrame. Let t = (col1, col2, col3)
be a SPARQL triple pattern, then this operator creates
an initial RDFFrame by converting the evaluation of
the triple pattern t on graph G to an RDFFrame. The
returned RDFFrame has a column for every variable in
the pattern t . Formally, let Dt be the RDFFrame equiv-
alent to the evaluation of the triple pattern t on graph
G. We formally define this notion of equivalence in
Sect. 5. The returned RDFFrame is defined as D′ =
πN∩{col1,col2,col3}(Dt). As an example, the seed opera-
tor can be used to retrieve all instances of class type T
in graphG by callingG.seed(instance, rd f : t ype, T).
For convenience, RDFFrames provides implementations
for the most common variants of this operator. For exam-
ple, thefeature_domain_rangeoperator inListing
1 initializes the RDFFrame with all pairs of entities in
DBpedia connected by the predicate dbpp:starring,which
are movies and the actors starring in them.

• (G, D).expand(col, pred, new_col, dir , is_opt),
where col ∈ C, pred ∈ V , new_col ∈ N , dir ∈
{in, out}, and is_opt ∈ {true, f alse}: This is the main
navigational operator in RDFFrames. It expands anRDF-
Frame by navigating from col following the edge pred to
new_col in direction dir . Depending on the direction of
navigation, either the starting column for navigation col
is the subject of the triple and the ending column new_col
is the object, or vice versa. is_opt determines whether
null values are allowed. If is_opt is false, expand fil-
ters out the rows in D that have a null value in new_col.
Formally, if t is a SPARQL pattern representing the nav-
igation step, then t = (col, pred, new_col) if direction
is out or t = (new_col, pred, col) if direction is in. Let
Dt be the RDFFrame corresponding to the evaluation of
the triple pattern t on graph G. Dt will contain one col-
umn new_col and the rows are the objects of t if the
direction is in or the subjects if the direction is out . Then
D′ = D��Dt if is_opt is false or D′ = D⟕ Dt if is_opt
is true. For example, in Listing 1, expand is used twice,
once to add the country attribute of the actor to the
RDFFrame and once to find the movies and (if available)
Academy Awards for prolific American actors.

123

https://github.com/qcri/rdfframes

RDFFrames: knowledge graph access for machine learning tools 327

Relational Operators These operators are used to clean
and further process RDFFrames. Their semantics is the same
as in relational databases. They take as input one or two
RDFFrames and output an RDFFrame.

• D. f ilter(conds = [cond1 ∧ cond2 ∧ . . . ∧ condk]),
where conds is a list of expressions of the form
(col {<,>,=, . . .} val) or one of the pre-defined
Boolean functions found in SPARQL like isU RI (col)
or isLi teral(col): This operator filters out rows from an
RDFFrame that do not conform to conds. Formally, let
ϕ = [cond1∧cond2∧. . .∧condk] be a propositional for-
mulawhere condi is an expression. Then D′ = σϕ(D). In
Listing 1, filter is used two times, once to restrict the
extracted data to American actors and once to restrict
the results of a group by in order to identify prolific
actors (defined as having 50 or more movies). The lat-
ter filter operator is applied after group_by and
the aggregation function count, which corresponds to
a very different SPARQL pattern compared to the first
usage.However, this is handled internally byRDFFrames
and is transparent to the user.

• D.select_cols(cols), where cols ⊆ C: Similar to rela-
tional projection, it keeps only the columns cols and
removes the rest. Formally, D′ = πcols(D).

• D. join(D2, col, col2, j t ype, new_col), where D2 =
(C2,R2) is another RDFFrame, col ∈ C, col2 ∈
C2, and j t ype ∈ {��,⟕,⟖,⟗}: This operator joins
two RDFFrame tables on their columns col and col2
using the join type j t ype. new_col is the desired
name of the new joined column. Formally, D′ =
ρnew_col/col(D) j t ype ρnew_col/col2(D2).

• D.group_by(group_cols).aggregation(f n, col,
new_col), where group_cols ⊆ C, f n ∈ {max,min,

average, sum, count, sample}, col ∈ C andnew_col ∈
N : This operator groups the rows of D according to
their values in one or more columns group_cols. As
in the relational grouping and aggregation operation, it
partitions the rows of an RDFFrame into groups and
then applies the aggregation function on the values of
column col within each group. It returns a new RDF-
Frame which contains the grouping columns and the
result of the aggregation on each group, i.e., C′ =
group_cols∪{new_col}. The combinations of values of
the grouping columns in D′ are unique. Formally, D′ =
γgroup_cols, f n(col) �→new_col(D).Note that query genera-
tion has special handling for RDFFrames output by the
group_by operator (termed grouped RDFFrames).
This special handling is internal toRDFFrames and trans-
parent to the user. In Listing 1, group_by is used with
the count function to find the number of movies in
which each actor appears.

• D.aggregate(f n, col, new_col), where col ∈ C and
f n ∈ {max,min, average, sum, count, distinct_
count}: This operator aggregates values of the column
col and returns an RDFFrame that has one column and
one row containing the aggregated value. It has the same
formal semantics as the D.group_by().aggregation()

operator except that group_cols = ∅, so the whole
RDFFrame is assumed to be one group. No further
processing can be done on the RDFFrame after this oper-
ator.

• D.sort(cols_order), where cols_order is a set of pairs
(col, order) with col ∈ C and order ∈ {asc, desc}:
This operator sorts the rows of the RDFFrame accord-
ing to their values in the given columns and their sorting
order and returns a sorted RDFFrame.

• D.head(k, i), where k ≤ n: Returns the first k rows of
the RDFFrame starting from row i (by default i = 0). No
further processing can be done on the RDFFrame after
this operator.

4 Query generation

One of the key innovations in RDFFrames is the query gener-
ation process. Query generation produces a SPARQL query
from an RDFFrame representing a sequence of calls to RDF-
Frames operators. The guidelines we use in query generation
to guarantee efficient processing are as follows:

• Include all of the computation required for generating an
RDFFrame in the SPARQLquery sent to theRDFengine.
Pushing computation into the engine enablesRDFFrames
to take advantage of the benefits of a database system
such as query optimization, bulk data processing, and
near-data computing.

• Generate one SPARQL query for each RDFFrame, never
more. RDFFrames combines all graph patterns and oper-
ations described by an RDFFrame into a single SPARQL
query. Thisminimizes the number of interactionswith the
RDF engine and enables the query optimizer to explore
all optimization opportunities since it can see all opera-
tions.

• Ensure that the generated query is as simple as possible.
The query generation algorithm generates graph patterns
that minimize the use of nested subqueries and union
SPARQLpatterns, since these are known to be expensive.
Note that, in principle, we are doing part of the job of
the RDF engine’s query optimizer. A powerful-enough
optimizer would be able to simplify and unnest queries
whenever possible. However, the reality is that SPARQL
is a complex language on which query optimizers do not
always do a good job. As such, any steps to help the query

123

328 A. Mohamed et al.

Outer query model Inner query model

?p c
?yp6

p3

select vars

triple patterns

?p ?y

groupby vars

aggregates

sort vars limit o set

subqueries

all vars
?p ?y

optional block
union queries

graph URI
example.com

a: aa.com

select vars

triple patterns ?p ?y

groupby vars

sort vars limit o set

subqueries

all vars
?p ?y

optional block

union queries

?x

b

?z
?yp1

p2
p3

p4 a
p5

?w

?x
aggregates

count(?y) > 100

date(?z) > 2010

Fig. 2 Example of an RDFFrames nested query model.

optimizer are of great use. We show the performance
benefit of this approach in Sect. 6.

• Adopt a lazy executionmodel, generating and processing
a query only when required by the user.

• Ensure that the generated SPARQL query is correct, that
is, ensure the query is semantically equivalent to the
RDFFrame. We prove this in Sect. 5.

Query generation in RDFFrames is a two-step process.
First, the sequence of operators describing the RDFFrame
is converted to an intermediate representation that we call
the query model. Second, the query model is traversed to
generate the SPARQL query.

4.1 Querymodel

Our query model is inspired by the Query Graph Model
[36], and it encapsulates all components required to con-
struct a SPARQL query. Query models can be nested in cases
where nested subqueries are required. Using the querymodel
as an intermediate representation between an RDFFrame
and the corresponding SPARQL query allows for (i) flexi-
ble implementation by separating the operator manipulation
logic from the query generation logic, and (ii) simpler opti-
mization. Without a query model, a naive implementation
of RDFFrames would translate each operator to a SPARQL
pattern and encapsulate it in a subquery, with one outer
query joining all the subqueries to produce the result. This is
analogous to how some software-generated SQL queries are
produced. Other implementations are possible such as pro-
ducing a SPARQL query for each operator and re-parsing
it every time it has to be combined with a new pattern, or
directly manipulating the parse tree of the query. The query
model enables a simpler and more powerful implementation.

An example query model representing a nested SPARQL
query is shown in Fig. 2. The left part of the figure is the outer
query model, which has a reference to the inner query model
(right part of the figure). The figure shows the components
of a SPARQL query represented in a query model. These are
as follows:

• Graph matching patterns including triple patterns, filter
conditions, pointers to inner query models for sub-
queries, optional blocks, and union patterns. Graph
pattern matching is a basic operation in SPARQL. A
SPARQL query can be formed by combining triple pat-
terns in various ways using different keywords. The
default is that a solution is produced if and only if every
triple pattern that appears in a graph pattern is matched
to the triples in the RDF graph. The OPTIONAL key-
word adds triple patterns that extend the solution if they
are matched, but do not eliminate the solution if they
are not matched. That is, OPTIONAL creates left outer
join semantics. The FILTER keyword adds a condition
and restricts the query results to solutions that satisfy this
condition.

• Aggregation constructs including: group-by columns,
aggregation columns, and filters on aggregations (which
result in a HAVING clause in the SPARQL query). These
patterns are applied to the result RDFFrame generated so
far. Unlike graphmatching patterns, they are not matched
to the RDF graph. Aggregation constructs in inner query
models are not propagated to outer query models.

• Query modifiers including limit, offset, and sorting
columns. These constructs make final modifications to
the result of the query. Any further API calls after adding
these modifiers will result in a nested query as the cur-
rent query model is wrapped and added to another query
model.

• The graph URIs by the query, the prefixes used, and the
variables in the scope of each query.

4.2 Querymodel generation

The query model is generated lazily, when the special
execute function is called on an RDFFrame. We observe
that generating the query model requires capturing the order
of calls to RDFFrames operators and the parameters of these
calls, but nothing more. Thus, each RDFFrame D created by
the user is associated with a FIFO queue of operators. The
Recorder component ofRDFFrames (recall Fig. 1) records
in this queue the sequence of operator calls made by the user.
When execute is called, the Generator component of
RDFFrames creates the query model incrementally by pro-
cessing theoperators in this queue inFIFOorder.RDFFrames
starts with an empty querymodelm. For each operator pulled
from the queue of D, its corresponding SPARQL component
is inserted into m. Each RDFFrames operator edits one or
two components of m. All of the optimizations to generate
efficient SPARQL queries are done during query model gen-
eration.

Thefirst operator to be processed is always a seed operator
for which RDFFrames adds the corresponding triple pattern

123

RDFFrames: knowledge graph access for machine learning tools 329

to the query model m. To process an expand operator, it
adds the corresponding triple pattern(s) to m. For example,
the operator expand(x, pred, y, out, false)will result in the
triple pattern (?x, pred, ?y) being added to the triple pat-
terns of m. Similarly, processing the f ilter operator adds
the conditions that are input parameters of this operator to
the filter conditions in m. To generate succinct optimized
queries, RDFFrames adds all triple and filter patterns to the
same query modelm, as long as the semantics are preserved.
As a special case, when f ilter is called on an aggregated
column, the Generator adds the filtering condition to the
having component of m.

One of the main challenges in designing RDFFrames was
identifying caseswhere a nestedSPARQLquery is necessary.
We were able to limit to three cases where a nested query is
needed for correct semantics:

• Case 1: When an expand or f ilter operator has to be
applied on a grouped RDFFrame. The semantics here
can be thought of as creating an RDFFrame that satis-
fies the expand or filter pattern and then joining it with
the grouped RDFFrame. For example, the RDFFrames
code in Listing 3 expands the country column to obtain
the continent after the group_by and count. This
is semantically equivalent to building an RDFFrame of
countries and their continents and then performing an
inner join with the grouped RDFFrame.

df = graph.entities(’:dpo:Actor ’, ’actor ’)\
.expand(’actor ’, [(’dbp:birthPlace ’, ’

country ’)])\
.group_by ([’actor ’])\
.count(’country ’, ’country_count ’)\
.expand(’country ’, [(’dbo:continent ’, ’

continent ’])

Listing 3 RDFFrames code—Expanding a grouped RDFFrame.

• Case 2: When a grouped RDFFrame has to be joined
with another RDFFrame (grouped or non-grouped). For
example, Listing 4 represents a join between a grouped
RDFFrame and another RDFFrame.

df1 = graph.entities(’dbo:Actor ’, ’actor ’)\
.expand(’actor ’, [(’dbp:birthPlace ’, ’

country ’)])\
.group_by ([’actor ’]) .count(’country ’, ’

country_count ’)
df2 = graph.feature_domain_range(’dbp:

starring ’,
’movie ’, ’actor ’).join(df1 , ’actor ’,

InnerJoin)

Listing 4 RDFFrames code—Joining a grouped RDFFrame with
another RDFFrame.

• Case 3: When two datasets are joined by a full outer join.
For example, the RDFFrames code in Listing 5 is a full
outer join between two datasets.

df1 = graph.entities(’dpo:Actor ’, ’actor ’)\
.expand(’actor ’, [(’dbp:birthPlace ’, ’

country ’)])
df2 = graph.feature_domain_range(’dbp:

starring ’,

’movie ’, ’actor ’).join(df1 , ’actor ’,
OuterJoin)

Listing 5 RDFFrames code—Full outer join.

There is no explicit full outer join between patterns in
SPARQL, only left outer join using the OPTIONAL
pattern. Therefore, we define full outer join using the
UNION and OPTIONAL patterns as the union of the left
outer join and the right outer join of D1 and D2.
A nesting query is required to wrap the query model for
each RDFFrame inside the final query model.

In the first case, when an expand operation is called on
a grouped RDFFrame, RDFFrames has to wrap the grouped
RDFFrame in a nested subquery to ensure the evaluation of
the grouping and aggregation operations before the expan-
sion. RDFFrames uses the following steps to generate the
subquery: (i) create an empty query model m′, (ii) trans-
form the query model built so far m into a subquery of m′,
and (iii) add the new triple pattern from the expand opera-
tor to the triple patterns of m′. In this case, m′ is the outer
querymodel after the expand operator and thegroupedRDF-
Frame is represented by the inner query model m. Similarly,
when f ilter is applied on a grouping column in a grouped
RDFFrame, RDFFrames creates a nested query model by
transforming m into a subquery. This is necessary since the
filter operation was called after the aggregation and, thus, has
to be done after the aggregation to maintain the correctness
of the aggregated values.

The second case in which a nested subquery is required
is when joining a grouped RDFFrame with another RDF-
Frame. In the following, we describe in full the different
cases of processing the join operator, including the cases
when subqueries are required.

To process the binary join operator, RDFFrames needs
to join two query models of two different RDFFrames D1

and D2. If the join type is full outer join, a complex query
that is equivalent to the full outer join is constructed using
the SPARQL OPTIONAL (⟕) and UNION (∪) patterns.
Formally, D1⟗ D2 = (D1⟕ D2) ∪ ρreorder (D2⟕ D1).

To process a full outer join, two new query models are
constructed: The first query modelm1

′ contains the left outer
join of the query modelsm1 andm2, which represent D1 and
D2, respectively. The second query model m2

′ contains the
right outer join of the query models m1 and m2, which is
equivalent to the left outer join of m2 and m1. The columns
of m2

′ are reordered to make them union compatible with
m1

′. Nested queries are necessary to wrap the two query
modelsm1 andm2 insidem1

′ andm2
′. One final outer query

model unions the two new query models m1
′ and m2

′.

123

330 A. Mohamed et al.

For other join types, we distinguish three cases:

• D1 and D2 are not grouped: RDFFrames merges the two
query models into one by combining their graph patterns
(e.g., triple patterns and filter conditions). If the join type
is left outer join, the patterns of D2 are added inside a
single OPTIONAL block of D1. Conversely, for a right
outer join the D1 patterns are added as OPTIONAL in
D2. No nested query is generated here.

• D1 is grouped and D2 is not: RDFFrames merges the
two query models via nesting. The query model of D1 is
the inner query model, while D2 is set as the outer query
model. If the join type is left outer join, D2 patterns are
wrapped inside a single OPTIONAL block of D1, and
if the join type is right outer join, the subquery model
generated for D1 is wrapped in an OPTIONAL block in
D2. This is an example of the second case inwhich nested
queries are necessary. The case when D2 is grouped and
D1 is not is analogous to this case.

• Both D1 and D2 are grouped: RDFFrames creates one
query model containing two nested query models, one
for each RDFFrame, another example of the second case
where nested queries are necessary.

If D1 and D2 are constructed from different graphs, the
original graph URIs are used in the inner query to map each
pattern to the graph it is supposed to match.

To process other operators such as select_cols and
group_by, RDFFrames fills the corresponding component
in the query model. The head operator maps to the limit
and offset components of the query model m. To finalize the
join processing, RDFFrames unions the selection variables
of the two query models, and takes the minimum of the off-
sets and maximum of the limits (in case both query models
have offset and limit).

4.3 Translating to SPARQL

The query model is designed to make the translation to
SPARQL as direct and simple as possible. RDFFrames tra-
verses a query model and translates each component of the
model directly to the corresponding SPARQL construct, fol-
lowing the syntax and style guidelines of SPARQL.

For example, each prefix is translated to PREFIX
name_space:name_space_uri, graphURIs are added
to the FROM clause, and each triple and filter pattern is added
to the WHERE clause. The inner query models are translated
recursively to SPARQL queries and added to the outer query
using the subquery syntax defined by SPARQL. When the
query accesses more than one graph and different subsets of
graph patterns are matched to different graphs, the GRAPH
construct is used to wrap each subset of graph patterns with
the matching graph URI.

The generated SPARQL query is sent to the RDF engine
or SPARQL endpoint using the SPARQL protocol18 over
HTTP. We choose communication over HTTP since it is the
most general mechanism to communicate with RDF engines
and the onlymechanism to communicate with SPARQL end-
points. One issue we need to address is paginating the results
of a query, that is, retrieving them in chunks. There are sev-
eral good reasons to paginate results, for example, avoiding
timeouts at SPARQL endpoints and bounding the amount of
memory used for result buffering at the client. When using
HTTP communication, we cannot rely on RDF engine cur-
sors to do the pagination as they are engine-specific and not
supported by the SPARQL protocol over HTTP. The HTTP
response returns only the first chunk of the result and the size
of the chunk is limited by the SPARQL endpoint configura-
tion. The SPARQL over HTTP client has to ask for the rest of
the result chunk by chunk but this functionality is not imple-
mented by many existing clients. Since our goal is generality
and flexibility, RDFFrames implements pagination transpar-
ently to the user and returns one dataframe with all the query
results.

5 Semantic correctness of query generation

In this section, we formally prove that the SPARQL queries
generated by RDFFrames return results that are consistent
with the semantics of the RDFFrames operators. We start
with an overview of RDF and the SPARQL algebra to estab-
lish the required notation. We then summarize the semantics
of SPARQL, which is necessary for our correctness proof.
Finally, we formally describe the query generation algorithm
in RDFFrames and prove its correctness.

5.1 SPARQL algebra

The RDF data model can be defined as follows. Assume
there are countably infinite pairwise disjoint sets I , B, and
L representing URIs, blank nodes, and literals, respectively.
Let T = (I ∪ B ∪ L) be the set of RDF terms. The basic
component of an RDF graph is an RDF triple (s, p, o) ∈
(I ∪ B) × I × T where s is the subject , o is the object ,
and p is the predicate. An RDF graph is a finite set of RDF
triples. Each triple represents a fact describing a relationship
of type predicate between the subject and the object nodes
in the graph.

SPARQL is a graph-matching query language that eval-
uates patterns on graphs and returns a result set. Its algebra
consists of two building blocks: expressions and patterns. Let
X = {?x1, ?x2, . . . , ?xn} be a set of variables disjoint from
the RDF terms T , the SPARQL syntactic blocks are defined

18 https://www.w3.org/TR/sparql11-protocol

123

https://www.w3.org/TR/sparql11-protocol

RDFFrames: knowledge graph access for machine learning tools 331

over T and X . For a pattern P , Var(P) is the set of all vari-
ables in P . Expressions and patterns are defined recursively
as follows:

• A triple t ∈ (I ∪ L ∪ X) × (I ∪ X) × (I ∪ L ∪ X) is a
pattern.

• If P1 and P2 are patterns, then P1 Join P2, P1Union P2,
and P1 Le f t Join P2 are patterns.

• Let all variables in X and all terms in I ∪ L be SPARQL
expressions; then (E1 + E2), (E1 − E2), (E1 × E2),
(E1/E2), (E1 = E2), (E1 < E2), (¬E1), (E1 ∧ E2),
and (E1 ∨ E2) are expressions. If P is a pattern and E
is an expression then Filter(E, P) is a pattern.

• If P is a pattern and X is a set of variables in Var(P),
then Project(X , P) and Distinct(Project(X , P)) are
patterns. These two constructs allow nested queries in
SPARQL and by adding them, there is no meaningful
distinction between SPARQL patterns and queries.

• If P is a pattern, E is an expression and ?x is a variable
not in Var(P), then Extend(?x, E, P) is a pattern. This
allows assignment of expression values to new variables
and is used for variable renaming in RDFFrames.

• If X is a set of variables, ?z is another variable, f is
an aggregation function, E is an expression, and P is
a pattern, then GroupAgg(X , ?z, f , E, P) is a pattern
where X is the set of grouping variables, ?z is a fresh
variable to store the aggregation result, E is often a vari-
able that we are aggregating on. This pattern captures
the grouping and aggregation constructs in SPARQL 1.1.
It induces a partitioning of a pattern’s solution map-
pings into equivalence classes based on the values of
the grouping variables and finds one aggregate value
for each class using one of the aggregation functions in
{max,min, average, sum, count, sample}.

SPARQLdefines somemodifiers for the result set returned
by the evaluation of the patterns. These modifiers include:
Order(X , order) where X is the set of variables to sort on
and order is ascending or descending, Limit(n) which
returns the first n values of the result set, andOffset(k)which
returns the results starting from the k-th value.

5.2 SPARQL semantics

In this section, we present the semantics defined in [23],
which assume bag semantics and integrate all SPARQL 1.1
features such as aggregation and subqueries.

The semantics of SPARQL queries are based on multi-
sets (bags) of mappings. A mapping is a partial function
μ from X to T where X is a set of variables and T is the
set of RDF terms. The domain of a mapping dom(μ) is the
set of variables where μ is defined. μ1 and μ2 are compat-
ible mappings, written (μ1 ∼ μ2), if (∀?x ∈ dom(μ1) ∩

dom(μ2), μ1(?x) = μ2(?x)). If μ1 ∼ μ2, μ1 ∪ μ2 is also
a mapping and is obtained by extending μ1 by μ2 mappings
on all the variables dom(μ2)\dom(μ1). A SPARQL pattern
solution is a multiset � = (S�, card�) where S� is the base
set of mappings, and the multiplicity function card� assigns
a positive number to each element of S�.

Let �E�G denote the evaluation of expression E on graph
G, μ(P) the pattern obtained from P by replacing its vari-
ables according to μ, and Var(P) the set of all the variables
in P . The semantics of patterns over graph G are defined as:

• �t�G : the solution of a triple pattern t is the multiset with
St = all μ such that dom(μ) = Var(t) and μ(t) ∈ G.
card�t�G (μ) = 1 for all such μ.

• �P1 Join P2�G = {{μ|μ1 ∈ �P1�G , μ2 ∈ �P2�G, μ =
μ1 ∪ μ2}}

• �P1 Le f t Join P2�G = {{μ|μ ∈ �P1 Join P2�G}}�
{{μ|μ ∈ �P1�G ,∀μ2 ∈ �P2�G , (μ � μ2)}}

• �P1 Union P2�G = �P1�G � �P2�G
• �Filter(E, P)�G = {{μ|μ ∈ �P1�G , �E�μ,G = true}}
• �Project(X , P)�G = ∀μ ∈ �P�G , if μ is a restriction
to X , then it is in the base set of this pattern and its mul-
tiplicity is the sum of multiplicities of all corresponding
μ.

• �Distinct(Q)�G = the multiset with the same base
set as �Q�G , but with multiplicity 1 for all mappings.
The SPARQL patterns Project(X , P) and Distinct
(Project(X , P)) define a SPARQL query. When used
in the middle of a query, they define a nested query.

• �Extend(?x, E, P)�G = {μ′|μ ∈ �P�G , μ′ = μ ∪
{?x → �E�μ,G}, �E�μ,G �= Error} � {μ|μ ∈ �P�G ,

�E�μ,G = Error} and Var(Extend(?x, E, P)) =
{?x} ∩ Var(P)

• Given a graph G, let v|x be the restriction of v to X , then
�GroupAgg(X , ?z, f , E, P)�G is the multiset with the
base set: {μ′|μ′ = μ|X ∪ {?z → vμ}, μ ∈ �P�G , vμ �=
Error} ∪ {μ′|μ′ = μ|X , μ ∈ �P�G , vμ = Error} and
multiplicity 1 for each mapping in the base set, where for
each mapping μ ∈ �P�G , the value of the aggregation
function on the group that themapping belongs to is vμ =
f ({v | μ′ ∈ �P�G, μ′|x = μ|x, v = �E�μ′,G}).

5.3 Semantic correctness

Having defined the semantics of SPARQL patterns, we now
prove the semantic correctness of query generation in RDF-
Frames as follows. First, we formally define the SPARQL
query generation algorithm. That is, we define the SPARQL
query or pattern generated by any sequence of RDFFrames
operators. We then prove that the solution sets of the gen-
erated SPARQL patterns are equivalent to the RDFFrames
tables defined by the semantics of the sequence of RDF-
Frames operators.

123

332 A. Mohamed et al.

5.3.1 Query generation algorithm

To formally define the query generation algorithm, we first
define the SPARQL pattern each RDFFrames operator gen-
erates. We then give a recursive definition of a non-empty
RDFFrame and then define a recursive mapping from any
sequence of RDFFrames operators constructed by the user
to a SPARQL pattern using the patterns generated by each
operator. Thismapping is based on the querymodel described
in Sect. 4.

Definition 3 (Non-empty RDFFrame) A non-empty RDF-
Frame is either generated by the seed operator or by applying
an RDFFrames operator on one or two non-empty RDF-
Frames.

Given a non-empty RDFFrame D, let OD be the sequence
of RDFFrames operators that generated it.

Definition 4 (Operators to Patterns) Let O = [o1, . . . , ok]
be a sequence of RDFFrames operators and P be a SPARQL
pattern. Also let g : (o, P) → P be the mapping from a
single RDFFrames operator o to a SPARQL pattern based
on the query generation of RDFFrames described in Sect. 4,
also illustrated in Table 1. Mapping g takes as input an RDF-
Frames operator o and a SPARQL pattern P corresponding
to the operators done so far on an RDFFrame D, applies
a SPARQL operator defined by the query model generation
algorithm on the input SPARQL pattern P , and returns a new
SPARQL pattern. Using g, we define a recursive mapping F
on a sequence of RDFFrames operators O , F : O → P , as:

F(O) =

⎧
⎪⎨

⎪⎩

g(o1, Null), if|O| ≤ 1.

g(ok , F(O[1:k−1]), F(OD2)), ok = join(D2, . . .).

g(ok , F(O[1:k−1])), otherwise.

(1)

F returns a triple pattern for the seed operator and then
builds the rest of the SPARQL query by iterating over
the RDFFrames operators according to their order in the
sequence O .

5.4 Proof of correctness

To prove the equivalence between the SPARQL pattern solu-
tion returned by F and the RDFFrame generating it, we first
define the meaning of equivalence between a relational table
with bag semantics and the solution sets of SPARQL queries.
First, we define a mapping that converts SPARQL solution
sets to relational tables by letting the domains of the map-
pings be the columns and their ranges be the rows. Next, we
define the equivalence between solution sets and relations.

Definition 5 (Solution Sets to Relations) Let � = (S�,

card�) be a multiset (bag) of mappings returned by the
evaluation of a SPARQL pattern and Var(�) = {?x; ?x ∈
dom(μ),∀μ ∈ S�} be the set of variables in �. Let
L = order(Var(�)) be the ordered set of elements in
Var(�). We define a conversion function λ: � → R, where
R = (C, T) is a relation. R is defined such that its ordered set
of columns (attributes) are the variables in � (i.e., C = L),
and T = (ST , cardT) is a multiset of (tuples) of values such
that for every μ in S�, there is a tuple τ ∈ ST of length
n = |(Var(�))| and τi = μ(Li). The multiplicity function
(cardT) is defined such that the multiplicity of τ is equal to
the multiplicity of μ in card�.

Definition 6 (Equivalence) A SPARQL pattern solution
� = (S�, card�) is equivalent to a relation R = (C, T),
written(� ≡ R), if and only if R = λ(�).

We are now ready to use this definition to present a lemma
that defines the equivalent relational tables for the main
SPARQL patterns used in our proof.

Lemma 1 If P1 and P2 are SPARQL patterns, then:

a. �(P1 Join P2)�G ≡ λ(�P1�G)��λ(�P1�G),
b. �(P1 Le f t Join P2)�G ≡ λ(�P1�G)⟕ λ(�P1�G),
c. �(P1 Union P2)�G ≡ λ(�P1�G)⟗ λ(�P1�G)

d. �(Extend(?x, E, P))�G ≡ ρ?x/E (λ(�P�G)

e. �(Filter(conds, P))�G ≡ σconds(λ(�P�G))

f. �(Project(cols, P))�G ≡
cols(λ(�P�G))

g. �(GroupAgg(∅, new_col, f n, col, P)))�G ≡
γcols, f n(col) �→new_col(λ(�P�G))

Proof Theproof of this lemma follows from (1) the semantics
of SPARQL operators presented in Sect. 5.2, (2) the well-
known semantics of relational operators, (3) Definition 5
which specifies the function λ, and (4) Definition 6 which
defines the equivalence between multisets of mappings and
relations. For each statement in the lemma, we use the def-
inition of the function λ, the relational operator semantics,
and the SPARQL operator semantics to define the relation on
the right side. Then we use the definition of SPARQL oper-
ators semantic to define the multiset on the left side. Finally,
Definition 6 proves the statement. ��

Finally, we present themain theorem in this section,which
guarantees the semantic correctness of theRDFFrames query
generation algorithm.

Theorem 1 Given a graph G, every RDFFrame D that is
returned by a sequence of RDFFrames operators OD =
[o1, . . . , ok] on G is equivalent to the evaluation of the
SPARQL pattern P = F(OD) on G. In other words, D ≡
�F(OD)�G.

123

RDFFrames: knowledge graph access for machine learning tools 333

Ta
bl
e
1

M
ap
pi
ng
s
of

R
D
FF

ra
m
es

op
er
at
or
s
on

gr
ap
h
G

an
d/
or

R
D
FF

ra
m
e
D

to
SP

A
R
Q
L
pa
tte

rn
s
on

G

R
D
FF

ra
m
es

O
pe
ra
to
r
O

SP
A
R
Q
L
pa
tte
rn
:g

(O
,
P

)

se
ed

(c
ol

1
,
co
l 2

,
co
l 3

)
P
ro

je
ct

(V
ar

(t
),
t)

,
w
he
re

t
=

(c
ol

1
,
co
l 2

,
co
l 3

)

ex
pa

nd
(x

,
pr

ed
,
y,
ou

t,
fa

ls
e)

P
��

(?
x,

pr
ed

,
?y

)

ex
pa

nd
(x

,
pr

ed
,
y,
in

,
fa

ls
e)

P
��

(?
y,

pr
ed

,
?x

)

ex
pa

nd
(x

,
pr

ed
,
y,
ou

t,
T
ru

e)
P
⟕

(?
x,

pr
ed

,
?y

)

ex
pa

nd
(x

,
pr

ed
,
y,
in

,
T
ru

e)
P
⟕

(?
y,

pr
ed

,
?x

)

jo
in

(
D
2
,
co
l,
co
l 2

,
��

,
ne

w
_c
ol

)
E
xt
en

d
(n
ew

_c
ol

,
co
l,
P

)��
E
xt
en

d
(n
ew

_c
ol

,
co
l 2

,
P 2

),
P 2

=
F

(O
D
2
)

jo
in

(
D
2
,
co
l,
co
l 2

,
⟕

,
ne

w
_c
ol

)
E
xt
en

d
(n
ew

_c
ol

,
co
l,
P

)
⟕

E
xt
en

d
(n
ew

_c
ol

,
co
l 2

,
P 2

),
P 2

=
F

(O
D
2
)

jo
in

(
D
2
,
co
l,
co
l 2

,
⟖

,
ne

w
_c
ol

)
E
xt
en

d
(n
ew

_c
ol

,
co
l 2

,
P 2

)
⟕

E
xt
en

d
(n
ew

_c
ol

,
co
l,
P

),
P 2

=
F

(O
D
2
)

jo
in

(
D
2
,
co
l,
co
l 2

,
⟗

,
ne

w
_c
ol

)
(
P
1
⟕

P 2
)
∪(

P 2
⟕

P 1
),

P 1
=

E
xt
en

d
(n
ew

_c
ol

,
co
l,
P

),
P 2

=
E
xt
en

d
(n
ew

_c
ol

,
co
l 2

,
F

(O
D
2
))

fi
lt
er

(c
on

d
s

=
[co

nd
1
∧c

on
d 2

∧·
··

∧c
on

d k
])

F
il
te
r(
co
nd

s,
P

)

se
le
ct
_c
ol
s(
co
ls

)
P
ro

je
ct

(c
ol
s,

P
)

gr
ou

pb
y(
gr

ou
p_

co
ls

).
P
ro

je
ct

(g
ro
u
p_

co
ls

∪{
ne

w
_c
ol

},
ag

gr
eg
at
io
n(

fn
,
sr
c_
co
l,
ne

w
_c
ol

)
G
ro
u
p
A
gg

(g
ro
u
p_

co
ls

,
ne

w
_c
ol

,
fn

,
sr
c_
co
l,
P

))

ag
gr

eg
at
e(

fn
,
co
l,
ne

w
_c
ol

)
P
ro

je
ct

({n
ew

_c
ol

},G
ro
u
p
A
gg

(∅
,
ne

w
_c
ol

,
fn

,
co
l,
P

))

P
is
th
e
SP

A
R
Q
L
pa
tte

rn
eq
ui
va
le
nt

to
th
e
se
qu

en
ce

of
R
D
FF

ra
m
es

op
er
at
or
s
ca
lle

d
so

fa
r
on

D
(o
r
nu
ll
if
D

is
ne
w
)

123

334 A. Mohamed et al.

Proof We prove that D ≡ λ(�F(OD)�G) via structural
induction on non-empty RDFFrame D. For simplicity, we
denote the proposition D ≡ �F(OD)�G as A(D).
Base case: Let D be an RDFFrame created by one RDF-
Frames operator OD = [seed(col1, col2, col3)]. The first
operator (and the only one in this case) has to be the seed
operator since it is the only operator that takes only a
knowledge graph as input and returns an RDFFrame. From
Table 1:

F(OD) = g(seed(col1, col2, col3), Null)

= Project(Var(t), t)

where t = (col1, col2, col3). By definition of the RDF-
Frames operators in Sect. 3, D =
X∩{col1,col2,col3} (λ

(�(t)�G)) and by Lemma 1(f), A(D) holds.
Induction hypothesis: Every RDFFrames operator takes as
input one or two RDFFrames D1, D2 and outputs an RDF-
Frame D. Without loss of generality, assume that both D1

and D2 are non-empty and A(D1) and A(D2) hold, i.e.,
D1 ≡ �F(OD1)�G and D2 ≡ �F(OD2)�G .
Induction step: Let D = D1.Op(optional D2), P1 =
F(OD1), and P2 = F(OD2). We use RDFFrames seman-
tics to define D, the mapping F to define the new pattern P ,
then Lemma 1 to prove the equivalence between F and D.
We present the different cases next.

• If Op is expand(x, pred, y, out, f alse) then: D =
D1��λ(�t�G) according to the definition of the oper-
ator in Sect. 3.2 and Table 1, where t is the triple
pattern (?x , pred, ?y). By the induction hypothesis, it
holds that D1 = λ(�P1)�G). Thus, it holds that D =
λ(�P1�G)��λ(�t�G) andbyLemma1(a), A(D)holds. The
same holds when Op is expand(x, pred, y, in, f alse)
except that t = (?y, pred, ?x).

• If Op is join(D2, col, col2, ��, new_col) then: D =
ρnew_col/col(D1)��ρnew_col/col2(D2), and by A(D1), D1

= λ(�P1�G) andD2 = λ(�P2�G). Thus,D = ρnew_col/col

λ(�P1�G))��ρnew_col/col2(λ(�P2�G)) and by Lemma 1
(a,c), A(D) holds. The same argument holds for other
types of join, using the relevant parts of Lemma 1.

• If Op is f ilter(conds = [cond1∧cond2∧· · ·∧condk])
then: D = σconds(D1), and by A(D1), D1 = λ(�P1�G).
So, D = σcondsλ(�P1�G)) and by Lemma 1(e), A(D)

holds.
• IfOp is groupby(cols).aggregation(f , col, new_col)

then: D = γcols, f (col) �→new_col(D1), and by A(D1),
D1 = λ(�P1�G). So, D = γcols, f (col) �→new_colλ(�P1�G))

and by Lemma 1(f,g), A(D) holds.

Thus, A(D) holds in all cases. ��

6 Evaluation

We present an experimental evaluation of RDFFrames in
which our goal is to answer two questions: (1) How effective
are the design decisions made in RDFFrames? and (2) How
doesRDFFrames perform compared to alternative baselines?

We use two workloads for this experimental study. The
first is made up of three case studies consisting of machine
learning tasks on two real-world knowledge graphs. Each
task starts with a data preparation step that extracts a pan-
das dataframe from the knowledge graph. This step is the
focus of the case studies. In the next section, we present the
RDFFrames code for each case study and the corresponding
SPARQLquery generated byRDFFrames. As in ourmotivat-
ing example, we will see that the SPARQL queries are longer
and more complex than the RDFFrames code, thereby show-
ing thatRDFFrames can indeed simplify access to knowledge
graphs. The full Python code for the case studies can be found
in Appendix A. The second workload in our experiments is
a synthetic workload consisting of 16 queries. These queries
are designed to exercise different features of RDFFrames for
the purpose of benchmarking.Wedescribe the twoworkloads
next, followed by the experimental setup and the results.

6.1 Case studies

6.1.1 Movie genre classification

Classification is a basic supervised machine learning task.
This case study applies a classification task on movie data
extracted from the DBpedia knowledge graph. Many knowl-
edge graphs, including DBpedia, are heterogeneous, with
information about diverse topics, so extracting a topic-
focused dataframe for classification is challenging.

This task uses RDFFrames to build a dataframe of movies
fromDBpedia, alongwith a set ofmovie attributes that can be
used formovie genre classification. The task bears some sim-
ilarity to the code inListing 1. Let us say that the classification
dataset that we want includes movies that star American
actors (since they are assumed to have a global reach) or
prolific actors (defined as those who have starred in 100 or
more movies). We want the movies starring these actors, and
for each movie, we extract the movie name (i.e., title), actor
name, topic, country of production, and genre. Genre is not
always available so it is an optional predicate. The full code
for this data preparation step is shown in Listing 6, and the
SPARQLquery generated byRDFFrames is shown inListing
7.

The extracted dataframe can be used as a classification
dataset by any popular Python machine learning library. The
movies that have the genre available in the dataframe can be
used as labeled training data to train a classifier. The features
for this classifier are the attributes of the movies and the

123

RDFFrames: knowledge graph access for machine learning tools 335

actors, and the classifier is trained to predict the genre of a
movie based on these features. The classifier can then be used
to predict the genres of all movies that are missing the genre.

Note that the focus of RDFFrames is the data prepa-
ration step of a machine learning pipeline (i.e., creating
the dataframe). That is, RDFFrames addresses the follow-
ing problem: Most machine learning pipelines require as
their starting point an input dataframe, and there is no easy
way to get such a dataframe from a knowledge graph while
leveraging an RDF engine. Thus, the focus of RDFFrames
is enabling the user to obtain a dataframe from an RDF
engine, and not how the machine learning pipeline uses this
dataframe. Nevertheless, it is interesting to see this dataframe
within an end-to-end machine learning pipeline. Specifi-
cally, for the current case study, can the dataframe created
by RDFFrames be used for movie genre classification? We
emphasize that the accuracy of the classifier is not our main
concern here; our concern is demonstratingRDFFrames in an
end-to-end machine learning pipeline. Issues such as using a
complex classifier, studying feature importance, or analyzing
the distribution of the retrieved data are beyond the scope of
RDFFrames.

To show RDFFrames in an end-to-end machine learning
pipeline, we built a classifier based on the output of Listing
6 to classify the six most frequent movie genres, specifically,
drama, sitcom, science fiction, legal drama, comedy, and fan-
tasy. The classification dataset consisted of 7,635 movies
that represent the English movies in these six movie genres.
We trained a random forest classifier using the scikit-learn
machine learning library based on movie features such as
actor country, movie country, subject, and actor name. This
classifier achieved 92.4% accuracy on evaluation data that is
30% of the classification dataset.

We performed a similar experiment on song data from
DBpedia. We extracted 27,956 triples of English songs in
DBpedia alongwith their features such as album, writer, title,
artist, producer, album title, and studio. We used the same
methodology as in the movie genre classification case study
to classify songs into genres such as alternative rock, hip
hop, indie rock, and pop-punk. The accuracy achieved by a
random forest classifier in this case was 70.9%.

movies = graph.feature_domain_range(’dbpp:
starring ’, ’movie ’, ’actor ’)

movies = movies.expand(’actor ’ ,[(’dbpp:
birthPlace ’,
’actor_country ’), (’rdfs:label ’, ’

actor_name ’)])\
.expand(’movie ’, [(’rdfs:label ’, ’

movie_name ’),
(’dcterms:subject ’, ’subject ’),
(’dbpp:country ’, ’movie_country ’),
(’dbpo:genre ’, ’genre ’, Optional)]).

cache ()
american = movies.filter({’actor_country ’:\

[’=dbpr:UnitedStates ’]})
prolific = movies.group_by ([’actor ’])\

.count(’movie ’, ’movie_count ’, unique=True)
\

.filter ({’movie_count ’: [’ >=100’]})
dataset = american.join(prolific ,’actor ’,

OuterJoin)\
.join(movies , ’actor ’, InnerJoin)

Listing 6 RDFFrames code—Movie genre classification.

SELECT DISTINCT ?actor_name ?movie_name ?
actor_country ?genre ?subject

FROM <http :// dbpedia.org >
WHERE
{ ?movie dbpp:starring ?actor .

?movie rdfs:label ?movie_name .
?movie dcterms:subject ?subject .
?actor dbpp:birthPlace ?actor_country .
?actor rdfs:label ?actor_name
OPTIONAL
{ ?movie dbpp:genre ?genre }
{{ SELECT * WHERE

{{ SELECT * WHERE
{ ?movie dbpp:starring ?actor .

?movie rdfs:label ?movie_name .
?movie dcterms:subject ?subject .
?actor dbpp:birthPlace ?

actor_country .
?actor rdfs:label ?actor_name
FILTER regex(str(? actor_country), "

USA")
OPTIONAL

{ ?movie dbpp:genre ?genre }
}

}
OPTIONAL

{ SELECT DISTINCT ?actor (COUNT(DISTINCT
?movie) AS ?movie_count)

WHERE
{ ?movie dbpp:starring ?actor .
?movie rdfs:label ?movie_name .
?movie dcterms:subject ?subject .
?actor dbpp:birthPlace ?

actor_country .
?actor rdfs:label ?actor_name
OPTIONAL

{ ?movie dbpp:genre ?genre }
}
GROUP BY ?actor
HAVING (COUNT(DISTINCT ?movie) >=

100)
}

}
}

UNION
{ SELECT * WHERE
{{ SELECT DISTINCT ?actor (COUNT(DISTINCT

?movie) AS ?movie_count) WHERE
{ ?movie dbpp:starring ?actor .

?movie rdfs:label ?movie_name .
?movie dcterms:subject ?subject .
?actor dbpp:birthPlace ?actor_country

.
?actor rdfs:label ?actor_name

OPTIONAL
{ ?movie dbpp:genre ?genre }

}
GROUP BY ?actor
HAVING (COUNT(DISTINCT ?movie) >= 100

)
}
OPTIONAL
{ SELECT * WHERE

{ ?movie dbpp:starring ?actor .
?movie rdfs:label ?movie_name .
?movie dcterms:subject ?subject .
?actor dbpp:birthPlace ?

actor_country .
?actor rdfs:label ?actor_name
FILTER regex(str(? actor_country), "

USA")
OPTIONAL

{ ?movie dbpp:genre ?genre }
}

}

123

336 A. Mohamed et al.

}
}

}
}

Listing 7 SPARQL query generated by RDFFrames for the code shown
in Listing 6.

6.1.2 Topic modeling

Topic modeling is a statistical technique commonly used to
identify hidden contextual topics in the text. In this case
study, we use topic modeling to identify the active topics
of research in the database community. We define these as
the topics of recent papers published by authors who have
published many SIGMOD and VLDB papers. This is clearly
an artificial definition, but it enables us to study the capabil-
ities and performance of RDFFrames. As stated earlier, we
are focused on data preparation not the details of themachine
learning task.

papers = graph.entities(’swrc:InProceedings ’,’
paper ’)

papers = papers.expand(’paper ’ ,[(’dc:creator ’,\
’author’), (’dcterm:issued ’, ’date’) ,\
(’swrc:series ’, ’conference ’),\
(’dc:title ’, ’title ’)]).cache ()

authors = papers.filter({’date’: [’ >=2000’],
’conference ’: [’In(dblp:vldb , dblp:sigmod)’

]})
.group_by ([’author ’]) .count(’paper ’, ’

n_papers ’)\
.filter ({’n_papers ’: ’ >=20’, ’date’: [’ >=2010

’]})\
titles = papers.join(authors , ’author ’,

InnerJoin)\
.select_cols ([’title ’])

Listing 8 RDFFrames code—Topic modeling.

SELECT ?title
FROM <http :// dblp.l3s.de >
WHERE

{ ?paper dc:title ?title ;
rdf:type swrc:InProceedings

;
dcterm:issued ?date ;
dc:creator ?author

FILTER (year(xsd:dateTime (?date)) >=
2005)

{ SELECT ?author
WHERE

{ ?paper rdf:type swrc:
InProceedings ;

swrc:series ?conference
;

dc:creator ?author ;
dcterm:issued ?date

FILTER ((year(xsd:dateTime (?date)
) >= 2005)

&& (?conference IN (dblprc:vldb ,
dblprc:sigmod)))

}
GROUP BY ?author
HAVING (COUNT (? paper) >= 20)

}
}

Listing 9 SPARQL query generated by RDFFrames for the code shown
in Listing 8.

The dataframe required for this task is extracted from
the DBLP knowledge graph represented in RDF through the
sequence of RDFFrames operators shown in Listing 8. First,

we identify the authorswhohave published 20 ormore papers
in SIGMOD and VLDB since the year 2000, which requires
using the RDFFrames grouping, aggregation, and filtering
capabilities. For the purpose of this case study, these are con-
sidered the thought leaders of the field of databases. Next,
we find the titles of all papers published by these authors
since 2010. The SPARQL query generated by RDFFrames
is shown in Listing 9.

We then run topicmodeling on the titles to identify the top-
ics of the papers, which we consider to be the active topics of
database research.We use off-the-shelf components from the
rich ecosystem of pandas libraries to implement topicmodel-
ing (see Appendix A). Specifically, we use NLP libraries for
stop-word removal and scikit-learn for topic modeling using
SVD. This shows the benefit of using RDFFrames to get data
into a pandas dataframe with a few lines of code, since one
can then utilize components from the PyData ecosystem.

6.1.3 Knowledge graph embedding

Knowledge graph embeddings are widely used relational
learning models, and they are state of the art on benchmark
datasets for link prediction and fact classification [43,44].
The input to thesemodels is a dataframe of triples, i.e., a table
of three columns: [subject, predicate, object] where the
object is a URI representing an entity (i.e., not a literal). Cur-
rently, knowledge graph embeddings are typically evaluated
only on small pre-processed subsets of knowledge graphs
like FB15K [7] andWN18 [7] rather than the full knowledge
graphs, and thus, the validity of their performance results has
been questioned recently inmultiple papers [11,37]. Filtering
the knowledge graph to contain only entity-to-entity triples
and loading the result in a dataframe is a necessary first step
in constructing knowledge graph embedding models on full
knowledge graphs. RDFFrames can perform this first step
using one line of code as shown in Listing 10 (generated
SPARQL in Listing 11). With this line of code, the filtering
can be performed efficiently in an RDF engine, and RDF-
Frames handles issues related to communication with the
engine and integrating with PyData. These issues become
important, especially when dealing with large knowledge
graphs where the resulting dataframe has millions of rows.

graph.feature_domain_range(s, p, o)\
.filter ({o: [’isURI ’]})

Listing 10 RDFFrames code—Knowledge graph embedding.

SELECT *
FROM <http :// dblp .13s.de/>
WHERE {

?sub ?pred ?obj .
FILTER (isIRI (?obj))
}

Listing 11 SPARQL query corresponding to RDFFrames code shown
in Listing 10.

123

RDFFrames: knowledge graph access for machine learning tools 337

6.2 Synthetic workload

While the case studies in the previous section show RDF-
Frames in real applications, it is still desirable to have a more
comprehensive evaluation of the framework. To this end, we
created a synthetic workload consisting of 16 queries writ-
ten in RDFFrames that exercise different capabilities of the
framework. All the queries are on the DBpedia knowledge
graph, and two queries join DBpedia with the YAGO knowl-
edge graph. One query joins the three knowledge graphs
DBpedia, YAGO, and DBLP. Four of the queries use only
expand and filter (up to 10 expands, including some with
optional predicates). Four of the queries use grouping with
expand (including onewith expand after the grouping). Eight
of the queries use joins, including complex queries that exer-
cise features such as outer join, multiple joins, joins between
different graphs, and joins on grouped datasets. A descrip-
tion of the queries and theRDFFrames features and SPARQL
capabilities that they exercise can be found in Appendix B.

6.3 Experimental setup

6.3.1 Dataset details

The three knowledge graphs used in the evaluation have dif-
ferent sizes and statistical features. The first is the English
version of the DBpedia knowledge graph. We extracted the
December 2020 core collection from DBpedia Databus.19

The collection contains 6 billion triples. The second is the
DBLP computer science bibliography dataset (2017 ver-
sion) containing 88 million triples.20 The third (used in
three queries in the synthetic workload) is YAGO version
3.1, containing 1.6 billion triples. DBLP is relatively small,
structured, and dense, while DBpedia and YAGO are hetero-
geneous and sparse.

6.3.2 Hardware and software configuration

We use an Ubuntu server with 128GB of memory to run a
Virtuoso OpenLink Server (version 7.2.6-rc1.3230-pthreads
as of Jan 9, 2019) with its default configuration. We load the
DBpedia, DBLP, and YAGO knowledge graphs to the Vir-
tuoso server. RDFFrames connects to the server to process
SPARQL queries over HTTP using SPARQLWrapper,21 a
Python library that provides a wrapper for SPARQL end-
points. Recall that the decision to communicate with the
server over HTTP rather than the cursor mechanism of Virtu-
oso was made to ensure maximum generality and flexibility.
When sending SPARQL queries directly to the server, we use

19 https://databus.dbpedia.org/dbpedia/collections/latest-core
20 http://www.rdfhdt.org/datasets
21 https://rdflib.github.io/sparqlwrapper

the curl tool. The client always runs on a separate core of
the same machine as the Virtuoso server so we do not incur
communication overhead. In all experiments, we report the
average running time of three runs.

6.3.3 Alternatives compared

Our goal is to evaluate the design decisions of RDF-
Frames and to compare it against alternative baselines. To
evaluate the design decisions of RDFFrames, we ask two
questions: (1) How important is it to generate optimized
SPARQL queries rather than using a simple query generation
approach? and (2) How important is it to push the processing
of relational operators into the RDF engine? Both of these
design choices are clearly beneficial and the goal is to quan-
tify the benefit.

To answer the first question, we compare RDFFrames
against an alternative that uses a naive query generation
strategy. Specifically, for each API call to RDFFrames, we
generate a subquery that contains the pattern corresponding
to that API call and we finally join all the subqueries in one
level of nesting with one outer query. For example, each call
to an expand creates a new subquery containing one triple
pattern described by the expand operator. We refer to this
alternative as Naive Query Generation. The naive
queries for the first two case studies are shown in Appen-
dices C and D. The SPARQL query for the third case study
is simple enough that Listing 11 is also the naive query.

To answer the second question, we compare to an alterna-
tive that uses RDFFrames (with optimized query generation)
only for graph navigation using the seed and expand opera-
tors, and performs any relational-style processing in pandas.
We refer to this alternative as Navigation + pandas.

If we do not use RDFFrames, we can envision three alter-
natives for pre-processing the data and loading it into a
dataframe, and we compare against all three:

• Donot use anRDF engine at all, but ratherwrite an ad hoc
script that runs on the knowledge graph stored in some
RDF serialization format. To implement this solution we
write scripts using the rdflib library22 to load the RDF
dataset into pandas, and use pandas operators for any
additional processing. The rdflib library can process any
RDF serialization format, and in our case, the data was
stored in the N-Triples format.We refer to this alternative
as rdflib + pandas.

• Use an RDF engine, and use a simple SPARQL query
to load the RDF dataset into a dataframe. Use pandas for
additional processing. This is a variant of the first alterna-
tive but it uses SPARQL instead of rdflib. The advantage

22 https://github.com/RDFLib/rdflib

123

https://databus.dbpedia.org/dbpedia/collections/latest-core
http://www.rdfhdt.org/datasets
https://rdflib.github.io/sparqlwrapper
https://github.com/RDFLib/rdflib

338 A. Mohamed et al.

is that the required SPARQL is very simple, but still ben-
efits from the processing capabilities of the RDF engine.
We refer to this alternative as SPARQL + pandas.

• Use a SPARQL query written by an expert (in this
case, the authors of the paper) to do all the pre-
processing inside the RDF engine and output the result
to a dataframe. This alternative takes full advantage of
the capabilities of the RDF engine, but suffers from the
“impedance mismatch” described in the introduction:
SPARQL uses a different programming style compared
to machine learning tools and requires expertise to write,
and additional code is required to export the data into
a dataframe. We refer to this alternative as Expert
SPARQL.

We verify that the results of all alternatives are identical.
Note that RDFFrames, Naive Query Generation,
and Expert SPARQL generate semantically equivalent
SPARQL queries. The query optimizer of an RDF engine
should be able to produce query execution plans for all three
queries that are identical or at least have similar execution
cost. We will see that Virtuoso, being an industry-strength
RDF engine, does indeed deliver the same performance for
all three queries in many cases. However, we will also see
that there are cases where this is not true, which is expected
due to the complexity of optimizing SPARQL queries.

6.4 Results on case studies

6.4.1 Evaluating the design decisions of RDFFrames

Figure 3 shows the running time of Naive Query
Generation, Navigation + pandas, and
RDFFrames on the three case studies.

Movie Genre Classification This task requires heavy pro-
cessing on the DBpedia dataset and returns a dataframe of
19,633 movies. The results are presented in Figure 3a. The
running time of RDFFrames is 687.96 seconds. Of this time,
less than 5 milliseconds is spent on preparing the SPARQL
query (i.e., recording the RDFFrames operations, generating
the query model, and producing the query). The remaining
time is spent on issuing the query to the engine and retrieving
the results. This is typical in all our experiments: RDF-
Frames needs a few milliseconds to generate the SPARQL
query and the remaining time is spent on query processing.
The query produced by naive query generation did not fin-
ish in one hour and we terminated it after this time, which
demonstrates the need for RDFFrames to generate optimized
SPARQLandnot rely exclusively on the query optimizer. The
Navigation + pandas alternative also timed out after
one hour, which demonstrates the need for pushing compu-
tation into the engine.

TopicModelingThis task requires heavy processing on the
DBLP dataset and returns a dataframe of 4,209 titles. The
results are depicted in Figure 3b. Naive query generation
did well here, with the query optimizer generating a good
plan for the query Nonetheless, naive query generation is 2x
slower than RDFFrames. This further demonstrates the need
for generating optimized SPARQL. The Navigation +
pandas alternative here was particularly bad, reinforcing
the need to push computation into the engine.

KnowledgeGraph EmbeddingThis task keeps only triples
where the object is an entity (i.e., not a literal). It does not
require heavy processing but requires handling the scalability
issues of returning a huge final dataframe with all triples of
interest. The results on DBLP are shown in Fig. 3c. All the
alternatives have similar performance for this task, since the
required SPARQL query is simple and processed well by
Virtuoso, and since there is no processing required in pandas.

6.4.2 Comparing RDFFrames with alternative baselines

Figure 4 compares the running time of RDFFrames on the
three case studies to the three alternative baselines: rdflib
+ pandas,SPARQL + pandas, andExpert SPARQL.

MovieGenreClassificationBoth therdflib + pandas
and SPARQL + pandas baselines crashed after more than
one hour due to scalability issues, showing that they are
not viable alternatives. On the other hand, RDFFrames and
Expert SPARQL have similar performance. This shows
that RDFFrames does not add overhead and is able to match
the performance of an expert-written SPARQL query, which
is the best case for an automatic query generator. Thus, the
flexibility and usability of RDFFrames do not come at the
cost of reduced performance.

Topic Modeling The baselines that perform computation
in pandas did not crash as before, but are orders of magnitude
slower thanRDFFrames and Expert SPARQL. In this case
as well, the running time of RDFFrames matches the expert-
written SPARQL query.

Knowledge Graph Embedding In this experiment,
rdflib + pandas is 3x slower than RDFFrames and
SPARQL + pandas is 2x slower than RDFFrames, while
RDFFrameshas the sameperformance asExpert SPARQL.
These results reinforce the conclusions drawn earlier.

6.5 Results on synthetic workload

In this experiment, we use the synthetic workload of 16
queries to do a more comprehensive evaluation of RDF-
Frames. The previous section showed that Navigation +
pandas,rdflib + pandas, andSPARQL + pandas
are not competitivewithRDFFrames. Thus, we exclude them
from this experiment. Instead, we focus on the quality of the
queries generated by RDFFrames and whether this broad set

123

RDFFrames: knowledge graph access for machine learning tools 339

(a) (b) (c)

Fig. 3 Evaluating the design of RDFFrames.

(a) (b) (c)

Fig. 4 Comparing RDFFrames to alternative baselines.

Fig. 5 Results on the synthetic workload.

of queries shows that naive query generation would work
well. Figure 5 compares naive query generation and RDF-
Frames to expert-written SPARQL. The y-axis shows the
ratio between the running time of naive query generation
and expert-written SPARQL, and between the running time
of RDFFrames and expert-written SPARQL. Thus, expert-
written SPARQL is considered the gold standard and the
figure shows how well the two query generation alternatives
match this standard. To improve the comparison, the absolute
running time of expert-written SPARQL in seconds is shown

under each query on the x-axis. The queries are sorted in
ascending order by the ratio of naive query generation to
expert-written SPARQL (the blue bars in the figure). The
dashed horizontal line represents a ratio of 1.

The ratios for RDFFrames range between 0.99 and 1.04,
which shows that RDFFrames is good at generating queries
that match the performance of expert-written queries. On the
other hand, the ratios for naive query generation vary widely.
The first six queries have ratios between 1.01 and 1.14. For
these queries, the Virtuoso optimizer does a good job of gen-
erating a close-to-optimal plan for the naive query. The next
six queries have ratios between 1.24 and 4.56. Here, we are
seeing the weakness of naive query generation and the need
for the optimizations performed byRDFFrames during query
generation. The situation is worse for the last four queries:
naive query generation is an order of magnitude slower for
two queries and the last two queries time out after one hour.
Thus, the results on this more comprehensive workload vali-
date the quality of the queries generated by RDFFrames and
the need for its sophisticated query generation algorithm.

6.6 Effect of operator complexity

In our final experiment, we study how the complexity of var-
ious RDFFrames operators affects performance. Unlike the
previous experiment, in which we varied the complexity of
large queries as indicated in Appendix B, this experiment

123

340 A. Mohamed et al.

Table 2 Running time with
varying operator complexity

Running Time (seconds)
Filter (on genre) No. of Movies Count Select Group_by Join

Sitcom 5015 0.088 0.114 0.115 0.342

Sitcom, Drama, Comedy 12115 0.574 0.635 0.704 1.838

No filter (all genres) 87811 3.26 3.163 6.286 77.896

studies the issue of complexity at the granularity of an oper-
ator. The cost of operators is highly dependent on the RDF
engine being used (Virtuoso in our case). Nevertheless, we
want to see if there are any patterns in performance.

To study the effect of operator complexity, we create four
RDFFrames queries of increasing complexity that operate on
movies in the DBpedia knowledge graph. The performance
of these queries is shown in Table 2. The first query counts
the number of movies. We find movies by finding entities
that are the subject of a “starring” predicate. We then use
the expand RDFFrames operator to get the movie titles and
apply the count aggregation function on these titles. The
second query uses the select RDFFrames operator to retrieve
all movie titles. The third query uses the group_by operator
to group movies by genre and counts the number of movies
in each genre. The fourth query is a join query that finds
actors who are also movie directors. This query creates a
dataset of actors and a dataset of directors, and then joins the
two datasets through an inner join operator on actor/director
name.

We ran the four queries with f ilter operators of varying
selectivity. In one case, we had no filter (i.e., we ran the query
on all movies). In the second case, we had a filter specifying
that movie genre has to be one of sitcom, drama, or comedy.
In the third case, the filter specified that movie genre has to
be sitcom (the most selective filter).

Each row in Table 2 represents a filter, and the number
of movies retrieved by this filter is presented in the second
column. The rows of the table are sorted by this column.
The next four columns in each row show the running time
of the four queries for this filter. In all cases, the time that
RDFFrames spends to generate the SPARQL query is less
than one millisecond, so we do not report it separately.

Looking at each running time column from top to bottom,
we see that the bigger the input data, themore time is required.
Looking at each row from left to right, we see that the more
complex the query, the more time is required. Both of these
results are expected.Another observation aboutTable 2 is that
the variation in running times is not excessive. Even the most
expensive query, the join query with no filter, which joins a
dataset of 31221 actors with a dataset of 1784 directors, runs
in a reasonable 77.896 seconds.

Thus, the experiment shows that operator complexity and
dataset size do have an effect on performance. The observed
effect is in-line with expectations and does not affect the

usability of RDFFrames. The robust performancewe observe
is partly due to the robustness of Virtuoso and partly due to
our process for SPARQL query generation.

7 Conclusion

We presented RDFFrames, a framework for seamlessly
integrating knowledge graphs into machine learning appli-
cations. RDFFrames is based on a number of powerful
operators for graph navigation and relational processing
that enable users to generate tabular datasets from knowl-
edge graphs using procedural programming idioms that are
familiar in machine learning environments such as PyData.
RDFFrames automatically converts these procedural calls to
optimized SPARQL queries and manages the execution of
these queries on a local RDF engine or a remote SPARQL
endpoint, shielding the user from all details of SPARQL
query execution. We provide a Python implementation of
RDFFrames that is tightly integrated with the pandas library
and experimentally demonstrate its efficiency.

Directions for future work include conducting a com-
prehensive user study to identify and resolve any usability-
related issues that could be faced by RDFFrames users. A big
problem in RDF is that users need to know the knowledge
graph vocabulary and structure in order to effectively query
it. To address this problem, one direction for future work
is expanding the exploration operators of RDFFrames to
include keyword search. Testing and evaluating RDFFrames
onmultiple RDF engines is another possible future direction.

Funding Open access funding provided by the Qatar National Library.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

RDFFrames: knowledge graph access for machine learning tools 341

A full Python code for case studies

A.1 Movie genre classification

RDFFrames imports , graph , and prefixes

from rdfframes.knowledge_graph import KnowledgeGraph

from rdfframes.dataset.rdfpredicate import RDFPredicate

from rdfframes.utils.constants import JoinType

from rdfframes.client.http_client import HttpClientDataFormat , HttpClient

graph = KnowledgeGraph(graph_uri=’http :// dbpedia.org’,

prefixes= {’dcterms’: ’http :// purl.org/dc/terms/’,

’rdfs’: ’http ://www.w3.org /2000/01/rdf -schema#’,

’dbpprop’: ’http :// dbpedia.org/property/’,

’dbpr’: ’http :// dbpedia.org/resource/’})

RDFFrames code for creating the dataframe

dataset = graph.feature_domain_range(’dbpp:starring’,’movie’, ’actor’)

dataset = dataset.expand(’actor’ ,[(’dbpp:birthPlace ’, ’actor_country ’),(’rdfs:label’, ’actor_name ’)])

.expand(’movie’, [(’rdfs:label’, ’movie_name ’),(’dcterms:subject’, ’subject’),

(’dbpp:country’, ’movie_country ’),(’dbpo:genre’, ’genre’, Optional)]). cache ()

american = dataset.filter ({’actor_country ’:[’regex(str(? actor_country),"USA")’]})

prolific = dataset.group_by([’actor’]) .count(’movie’, ’movie_count ’, unique=True).

filter ({’movie_count ’: [’ >=100’]})

movies = american.join(prolific ,’actor’, OuterJoin).join(dataset , ’actor’, InnerJoin)

Client and execution

output_format = HttpClientDataFormat.PANDAS_DF

client = HttpClient(endpoint_url=endpoint , return_format=output_format)

df = movies.execute(client , return_format=output_format)

Preprocessing and preparation

import re

import nltk

def clean(dataframe):

for i, row in df.iterrows ():

if df.loc[i][’genre’] != None:

value =df.at[i, ’genre’]

if re.match(regex ,str(value)) is not None:

df.at[i, ’genre’] = value.split(’/’)[-1]

return dataframe

Remove URL from the ’genre ’ and convert to label keys

df=clean(df)

Find the most most frequent genres

all_genres = nltk.FreqDist(df[’genre’]. values)

all_genres_df = pd.DataFrame({’genre’:list(all_genres.keys()), ’Count’:list(all_genres.values ())})

all_genres_df.sort_values(by=[’Count’],ascending=False)

In this example , use 900 movies as a cut off for the frequent movies

most_frequent_genres = all_genres_df[all_genres_df[’Count’]> 900]

df = df[df[’genre’].isin(list(most_frequent_genres[’genre’]))]

Features and factorization

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

df= df.apply(lambda col: pd.factorize(col , sort=True)[0])

features = ["movie_name", "actor_name", "actor_country","subject","movie_country", "subject"]

df = df.dropna(subset =[’genre’])

x = df[features]

y = df[’genre’]

x_train , x_test , y_train , y_test = train_test_split(x, y, random_state =20)

sc = StandardScaler ()

x_train = sc.fit_transform(x_train)

x_test = sc.fit_transform(x_test)

Random Forest classifier

from sklearn.ensemble import RandomForestClassifier

model=RandomForestClassifier(n_estimators =100)

model.fit(x_train ,y_train)

model.fit(x_train ,y_train)

y_pred=clf.predict(x_test)

print("Accuracy:",metrics.accuracy_score(y_test , y_pred))

Listing 12 Full code for movie genre classification.

123

342 A. Mohamed et al.

A.2 Topic modeling
RDFFrames imports , graph , prefixes , and client

import pandas as pd

from rdfframes.client.http_client import HttpClientDataFormat , HttpClient

from rdfframes.knowledge_graph import KnowledgeGraph

graph = KnowledgeGraph(

graph_uri = ’http :// dblp.l3s.de’,

prefixes = {"xsd": "http ://www.w3.org /2001/ XMLSchema#",

"swrc": "http :// swrc.ontoware.org/ontology#",

"rdf": "http ://www.w3.org /1999/02/22 -rdf -syntax -ns#",

"dc": "http :// purl.org/dc/elements /1.1/",

"dcterm": "http :// purl.org/dc/terms/",

"dblprc": "http :// dblp.l3s.de/d2r/resource/conferences/"})

output_format = HttpClientDataFormat.PANDAS_DF

client = HttpClient(endpoint_url=endpoint , port=port ,return_format=output_format)

RDFFrames code for creating the dataframe

papers = graph.entities(’swrc:InProceedings ’, paper)

papers = papers.expand(’paper’ ,[(’dc:creator’, ’author ’),(’dcterm:issued ’, ’date’),

(’swrc:series ’, ’conference ’), (’dc:title’, ’title’)]). cache()

authors = papers.filter ({’date’: [’ >=2005’],’conference ’: [’In(dblp:vldb , dblp:sigmod)’]}).

group_by([’author ’])

. count(’paper’, ’n_papers’). filter ({’n_papers’: ’ >=20’, ’date’: [’ >=2005’]})

titles = papers.join(authors , ’author ’, InnerJoin). select_cols ([’title’])

df = titles.execute(client , return_format=output_format)

Preprocessing and cleaning

from nltk.corpus import stopwords

df[’clean_title ’] = df[’title’].str.replace("[^a-zA-Z#]", " ")

df[’clean_title ’] = df[’clean_title ’]. apply(lambda x: x.lower ())

df[’clean_title ’] = df[’clean_title ’]. apply(lambda x: ’ ’.join([w for w in str(x).split() if len(w)>3]))

stop_words = stopwords.words(’english’)

tokenized_doc = df[’clean_title ’]. apply(lambda x: x.split ())

df[’clean_title ’] = tokenized_doc.apply(lambda x:[item for item in x if item not in stop_words])

Vectorization and SVD model using the scikit -learn library

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.decomposition import TruncatedSVD

vectorizer = TfidfVectorizer(stop_words=’english’, max_features= 1000, max_df = 0.5, smooth_idf=True)

Tfidf_title = vectorizer.fit _transform(df[’clean_title ’])

svd_model = TruncatedSVD(n_components=20, algorithm=’randomized ’,n_iter =100, random_state =122)

svd_model.fit(Tfidf_titles)

Extracting the learned topics and their keyterms

terms = vectorizer.get_feature_names ()

for i, comp in enumerate(svd_model.components_):

terms_comp = zip(terms , comp)

sorted_terms = sorted(terms_comp , key= lambda x:x[1], reverse=True)[:7]

print_string = "Topic"+str(i)+": "

for t in sorted_terms: print_string += t[0] + " "

Listing 13 Full code for topic modeling.

A.3 Knowledge graph embedding
Get all triples where the object is a URI

from rdfframes.knowledge_graph import KnowledgeGraph

from rdfframes.dataset.rdfpredicate import RDFPredicate

from rdfframes.client.http_client import HttpClientDataFormat , HttpClient

output_format = HttpClientDataFormat.PANDAS_DF

client = HttpClient(endpoint_url=endpoint ,

port=port , return_format=output_format ,

timeout=timeout , default_graph_uri=default_graph_url , max_rows=max_rows)

dataset = graph.feature_domain_range(s, p, o). filter ({o: [’isURI’]})

df = dataset.execute(client , return_format=output_format)

Train/test split and create ComplEx model from ampligraph library

from ampligraph.evaluation import train_test_split_no_unseen

triples = df.to_numpy()

X_train , X_test = train_test_split_no_unseen(triples , test_size =10000)

from ampligraph.latent_features import ComplEx

from ampligraph.evaluation import evaluate_performance, mrr_score, hits_at_n_score

model = ComplEx(batches_count =50, epochs =300,k=100,eta=20, optimizer=’adam’,optimizer_params ={’lr’:1e-4},

loss=’multiclass_nll ’,regularizer=’LP’, regularizer_params={’p’:3, ’lambda ’:1e-5}, seed=0,verbose=True)

model.fit(X_train)

Evaluate embedding model

filter _triples = np.concatenate ((X_train , X_test))

ranks = evaluate_performance(X_test , model=model , filter _triples=filter _triples ,

use_default_protocol=True , verbose=True)

mr = mr_score(ranks)

mrr = mrr_score(ranks)

Listing 14 Full code for knowledge graph embedding.

123

RDFFrames: knowledge graph access for machine learning tools 343

B Description of queries in the synthetic
workload

Table 3 Description of the queries in the synthetic workload

Query English
Description

RDFFrames
Operators

SPARQL
Features

Q1 Get a list of films
in DBpedia.
For each film,
return the actor,
language,
country, genre,
story, and
studio, in
addition to the
director,
producer, and
title (if
available).

expand
(including
optional
predicates)

OPTIONAL,
DISTINCT

Q2 Get a list of
actors available
in the DBpedia
or YAGO
graphs.

join (outer)
between two
graphs, filter

OPTIONAL,
FILTER,
UNION

Q3 Get a list of
American
actors available
in both the
DBpedia and
YAGO graphs.

join (inner)
between two
graphs, expand,
filter

FILTER

Q4 Get the
nationality,
place of birth,
and date of
birth of each
basketball
player in
DBpedia, in
addition to the
sponsor, name,
and president
of his team (if
available).

join (left outer)
between two
expandable
datasets,
expand
(including
optional
predicates)

OPTIONAL

Q5 Get the players
(athletes) in
DBpedia and
their teams,
group by teams,
count players,
and expand the
team’s name.

group_by, count,
expand

GROUP BY,
COUNT,
DISTINCT

Table 3 continued

Query English
Description

RDFFrames
Operators

SPARQL
Features

Q6 For films in
DBpedia that
are produced
by any studio in
India or the
United States
excluding
“Eskay
Movies,” and
that have one of
the following
genres (film
score,
soundtrack,
rock music,
house music, or
dubstep), get
the actor,
director,
producer, time
and language.

expand, filter FILTER

Q7 For the films in
DBpedia, get
actors, director,
country,
producer,
language, title,
genre, story,
and studio.
Filter on
country, studio,
genre, and
runtime.

expand, filter FILTER

Q8 Get the
nationality,
place of birth,
and date of
birth of each
basketball
player in
DBpedia, in
addition to the
sponsor, name,
and president
of his team.

join (inner)
between two
expandable
datasets,
expand

Multiple
conjunctive
graph patterns

Q9 Get the list of
basketball
players in
DBpedia, their
teams, and the
number of
players on each
team.

group_by, count,
expand

GROUP BY,
COUNT,
DISTINCT

123

344 A. Mohamed et al.

Table 3 continued

Query English
Description

RDFFrames
Operators

SPARQL
Features

Q10 For films in
DBpedia that
are produced
by any studio in
India or the
United States
excluding
“Eskay
Movies,” and
that have one of
the following
genres (film
score,
soundtrack,
rock music,
house music, or
dubstep), get
the actor and
language, in
addition to the
producer,
director, and
title (if
available).

expand
(including
optional
predicates),
filter

OPTIONAL,
FILTER

Q11 Get the list of
athletes in
DBpedia. For
each athlete,
return his
birthplace and
the number of
athletes who
were born in
that place.

group_by, count,
expand

GROUP BY,
COUNT,
DISTINCT

Q12 Get the pairs of
films in
DBpedia that
belong to the
same genre and
are produced in
the same
country. For
each film in
each pair,
return the actor,
country, story,
language,
genre, and
studio, in
addition to the
director,
producer, and
title (if
available).

group_by on
multiple
columns, count,
expand
(including
optional
predicates)

GROUP BY,
COUNT,
OPTIONAL,
DISTINCT

Table 3 continued

Query English
Description

RDFFrames
Operators

SPARQL
Features

Q13 Get the sponsor,
name,
president, and
the number of
basketball
players of each
basketball team
in DBpedia.

join (inner)
between two
datasets
(expandable,
group_by)

GROUP BY,
COUNT,
DISTINCT

Q14 Get the sponsor,
name,
president, and
the number of
basketball
players (if
available) of
each basketball
team in
DBpedia.

join (left outer)
between two
datasets
(expandable,
group_by),
expand
(including
optional
predicates)

GROUP BY,
COUNT,
OPTIONAL,
DISTINCT

Q15 Get a list of the
books in
DBpedia that
were written by
American
authors who
wrote more
than two books.
For each
author, return
the birth place,
country, and
education, and
for each book
return the title,
subject, country
(if available),
and publisher
(if available).

join (outer),
group_by,
count, expand
(including
optional
predicates),
filter

GROUP BY,
COUNT,
HAVING,
OPTIONAL,
FILTER,
UNION

Q16 Get a list of
people in the
DBpedia graph
who were born
in the United
States. Get a
list of authors
from the DBLP
graph who have
publications
dated after
2015. Get a list
of people in the
YAGO graph
who are
citizens of the
United States.
Join the three
lists retrieved
from the three
graphs on
name.

join (full outer)
between three
graphs, expand
(including
optional
predicates),
filter

OPTIONAL,
FILTER,
DISTINCT,
UNION

123

RDFFrames: knowledge graph access for machine learning tools 345

C Naive SPARQL query for movie genre clas-
sification

PREFIX dbpp: <http://dbpedia.org/property/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dbpo: <http://dbpedia.org/ontology/>
PREFIX dbpr: <http://dbpedia.org/resource/>
SELECT DISTINCT ?actor_name ?movie_name ?actor_country

?subject ?genre
FROM <http://dbpedia.org> WHERE
{{{ SELECT * WHERE

{{ SELECT * WHERE
{ { SELECT ?movie ?actor WHERE

{ ?movie dbpp:starring ?actor } }
{ SELECT ?actor ?actor_country WHERE

{ ?actor dbpp:birthPlace ?
actor_country } }

{ SELECT ?actor ?actor_name WHERE
{ ?actor rdfs:label ?actor_name } }

{ SELECT ?movie ?movie_name WHERE
{ ?movie rdfs:label ?movie_name } }

{ SELECT ?movie ?subject WHERE
{ ?movie dcterms:subject ?subject }

}
{ SELECT ?movie ?movie_country WHERE

{ ?movie dbpp:country ?
movie_country } }

{ SELECT ?actor ?actor_country WHERE
{ ?actor dbpp:birthPlace ?

actor_country
FILTER regex(str(?actor_country),

"USA") } }
{ SELECT ?movie ?genre WHERE

{ OPTIONAL
{ ?movie dbpo:genre ?genre } }

} } }
OPTIONAL
{ SELECT DISTINCT ?actor (COUNT(DISTINCT ?

movie) AS ?movie_count) WHERE
{ { SELECT ?movie ?actor WHERE

{ ?movie dbpp:starring ?actor } }
{ SELECT ?actor ?actor_country WHERE

{ ?actor dbpp:birthPlace ?
actor_country } }

{ SELECT ?actor ?actor_name WHERE
{ ?actor rdfs:label ?actor_name }

}
{ SELECT ?movie ?movie_name WHERE

{ ?movie rdfs:label ?movie_name }
}

{ SELECT ?movie ?subject WHERE
{ ?movie dcterms:subject ?subject

} }
{ SELECT ?movie ?movie_country WHERE

{ ?movie dbpp:country ?
movie_country } }

{ SELECT ?movie ?genre WHERE
{ OPTIONAL

{ ?movie dbpo:genre ?genre }
} } }

GROUP BY ?actor
HAVING (COUNT(DISTINCT ?movie) >= 100)

} } }
UNION
{ SELECT * WHERE
{ { SELECT DISTINCT ?actor (COUNT(DISTINCT ?

movie) AS ?movie_count) WHERE
{ { SELECT ?movie ?actor WHERE

{ ?movie dbpp:starring ?actor } }
{ SELECT ?actor ?actor_country WHERE

{ ?actor dbpp:birthPlace ?
actor_country } }

{ SELECT ?actor ?actor_name WHERE
{ ?actor rdfs:label ?actor_name } }

{ SELECT ?movie ?movie_name WHERE
{ ?movie rdfs:label ?movie_name } }

{ SELECT ?movie ?subject WHERE
{ ?movie dcterms:subject ?subject }

}
{ SELECT ?movie ?movie_country WHERE

{ ?movie dbpp:country ?
movie_country } }

{ SELECT ?movie ?genre WHERE
{ OPTIONAL { ?movie dbpo:genre ?

genre } } } }
GROUP BY ?actor
HAVING (COUNT(DISTINCT ?movie) >= 100)

}
OPTIONAL
{ SELECT * WHERE

{ { SELECT ?movie ?actor WHERE
{ ?movie dbpp:starring ?actor } }

{ SELECT ?actor ?actor_country WHERE
{ ?actor dbpp:birthPlace ?

actor_country } }
{ SELECT ?actor ?actor_name WHERE

{ ?actor rdfs:label ?actor_name }
}

{ SELECT ?movie ?movie_name WHERE
{ ?movie rdfs:label ?movie_name }

}
{ SELECT ?movie ?subject WHERE

{ ?movie dcterms:subject ?subject
} }

{ SELECT ?movie ?movie_country WHERE
{ ?movie dbpp:country ?

movie_country } }
{ SELECT ?actor ?actor_country WHERE

{ ?actor dbpp:birthPlace ?
actor_country

FILTER regex(str(?actor_country
), "USA") } }

{ SELECT ?movie ?genre WHERE
{ OPTIONAL { ?movie dbpo:genre ?

genre } } } } } } } } }

Listing 15 Naive SPARQL query corresponding to the SPARQL query
shown in Listing 7.

DNaive SPARQL query for topic modeling
SELECT ?title
FROM <http://dblp.l3s.de> WHERE
{ {SELECT ?paper WHERE {?paper rdf:type swrc:

InProceedings}}.
{SELECT ?paper ?author WHERE {?paper dc:creator ?

author}}.
{SELECT ?paper ?date WHERE {?paper dcterm:issued ?

date }}.
{SELECT ?paper ?conference WHERE {?paper swrc:series

?conference}} .
{SELECT ?paper ?title WHERE {?paper dc:title ?title

}}.
{SELECT ?paper ?date WHERE {?paper dcterm:issued ?

date FILTER (year(xsd:dateTime(?date)) >= 2005
) } }

{ SELECT ?author WHERE
{ { SELECT ?author COUNT(?paper) as ?count_paper

WHERE
{ {SELECT ?paper WHERE {?paper rdf:type swrc:

InProceedings}}.
{SELECT ?paper ?author WHERE {?paper dc:

creator ?author}}.
{SELECT ?paper ?date WHERE {?paper dcterm:

issued ?date }}.
{SELECT ?paper ?conference WHERE {?paper

swrc:series ?conference}} .
{SELECT ?paper ?title WHERE {?paper dc:title

?title}}.
{SELECT ?paper ?date WHERE {?paper dcterm:

issued ?date FILTER (year(xsd:dateTime
(?date)) >= 2000) }} .

{SELECT ?paper ?conference WHERE {?paper
swrc:series ?conference FILTER(?
conference IN (dblprc:vldb, dblprc:
sigmod))}}}

GROUP BY ?author }
FILTER (?count_paper >= 20) } } }

Listing 16 Naive SPARQL query corresponding to the SPARQL query
shown in Listing 9.

123

346 A. Mohamed et al.

References

1. Abadi, D., et al.: The Seattle report on database research. SIGMOD
Rec. 48(4), 44–53 (2019)

2. Agrawal, P. et al.:Data platform formachine learning. In: SIGMOD
(2019)

3. Ali, M. et al.: PyKEEN 1.0: A python library for training
and evaluating knowledge graph embeddings. arXiv preprint
arXiv:2007.14175 (2020)

4. Angles, R. et al.: G-CORE: a core for future graph query languages.
In: SIGMOD (2018)

5. Baylor, D. et al.: TFX: a TensorFlow-based production-scale
machine learning platform. In: SIGKDD (2017)

6. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.:
Bio2RDF: towards a mashup to build bioinformatics knowledge
systems. J. Biomed. Inf. 41, 706–716 (2008)

7. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko,
O.: Translating embeddings for modeling multi-relational data. In:
NIPS (2013)

8. Costabello, L., et al.: AmpliGraph: a library for representation
learning on knowledge graphs. https://doi.org/10.5281/zenodo.
2595043 (2019)

9. Dasu, T., Johnson, T.: Exploratory DataMining andData Cleaning.
Wiley, Hoboken (2003)

10. Davis, R., Shrobe, H., Szolovits, P.: What is a knowledge represen-
tation? AI Mag. 14, 17–17 (1993)

11. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional
2d knowledge graph embeddings. In: AAAI (2018)

12. Doan A (2018) Human-in-the-loop data analysis: a personal
perspective. In: Proc.Workshop onHuman-In-the-LoopData Ana-
lytics (HILDA)

13. Dong, XL.: Challenges and innovations in building a product
knowledge graph. In: SIGKDD (2018)

14. Dsilva, J.V., De Moor, F., Kemma, B.: AIDA - Abstraction for
advanced in-database analytics. PVLDB 11, 1400–1413 (2018)

15. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems:
The Complete Book, 2nd edn. Pearson, London (2008)

16. Giles, CL., Bollacker, KD., Lawrence, S.: CiteSeer: an automatic
citation indexing system. In: ACM DL (1998)

17. Govind, Y., et al.: Entity matching meets data science: a progress
report from the Magellan project. In: SIGMOD (2019)

18. Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A comparison of
RDF query languages. In: ISWC (2004)

19. Hagedorn, S., Kläbe, S., Sattler, KU.: Putting Pandas in a box. In:
CIDR (2021)

20. Han, X., et al.: OpenKE: an open toolkit for knowledge embedding.
In: EMNLP (2018)

21. Jenatton,R.,Roux,NL.,Bordes,A.,Obozinski,GR.:A latent factor
model for highly multi-relational data. In: NIPS (2012)

22. Jindal, A., et al.: Magpie: Python at speed and scale using cloud
backends. In: CIDR (2021)

23. Kaminski, M., Kostylev, EV., Cuenca Grau, B.: Semantics and
expressive power of subqueries and aggregates in SPARQL 1.1.
In: WWW (2016)

24. Kochut, K., Janik,M.: SPARQLeR: Extended SPARQL for seman-
tic association discovery. In: ESWC (2007)

25. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowl-
edge base extracted from Wikipedia. Semant. Web 6, 167–195
(2015)

26. Matsumoto, S., Yamanaka, R., Chiba, H.: Mapping RDF graphs
to property graphs. In: Proc. Joint Int. Semantic Technology Conf.
(JIST) (2018)

27. McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating
the construction of Internet portalswithmachine learning. Inf. Retr.
3(2), 127–163 (2000)

28. Mohamed, A., Abuoda, G., Ghanem, A., Kaoudi, Z., Aboulnaga,
A.: RDFFrames: knowledge graph access for machine learning
tools. PVLDB 13, (Demonstration) (2020)

29. Navigli, R., Ponzetto, S.P.: Babelnet: the automatic construction,
evaluation and application of a wide-coverage multilingual seman-
tic network. Artif. Intell. 193, 217–250 (2012)

30. Nguyen, DQ.: An overview of embedding models of entities
and relationships for knowledge base completion. arXiv preprint
arXiv:17030.8098 (2017)

31. Nickel, M., Tresp, V., Kriegel, HP.: A three-way model for collec-
tive learning on multi-relational data. In: ICML (2011)

32. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of
relational machine learning for knowledge graphs. Proc. IEEE 104,
11–33 (2015)

33. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of
knowledge graphs. In: AAAI (2016)

34. Pérez, J., Arenas, M., Gutiérrez, C.: nSPARQL: a navigational lan-
guage for RDF. J Web Semant. 8, 255–270 (2010)

35. Petersohn, D., et al.: Towards scalable dataframe systems. PVLDB
13,(2020)

36. Pirahesh, H., Hellerstein, JM., Hasan, W.: Extensible/rule based
query rewrite optimization in Starburst. In: SIGMOD (1992)

37. Pujara, J., Augustine, E., Getoor, L.: Sparsity and noise: where
knowledge graph embeddings fall short. In: EMNLP (2017)

38. Rebele, T., et al.: YAGO: a multilingual knowledge base from
Wikipedia, Wordnet, and Geonames. In: ISWC (2016)

39. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.:
FedX: optimization techniques for federated query processing on
linked data. In: ISWC (2011)

40. Sculley, D., et al.: Hidden technical debt in machine learning sys-
tems. In: NIPS (2015)

41. Suchanek, FM., Kasneci, G.,Weikum, G.: YAGO: a core of seman-
tic knowledge. In: WWW(2007)

42. Vrandecic, D.: Wikidata: a new platform for collaborative data
collection. In: WWW (2012)

43. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embed-
ding: a survey of approaches and applications. TKDE 29, 2724–
2743 (2017)

44. Wang, Y., Gemulla, R., Li, H.: On multi-relational link prediction
with bilinear models. In: AAAI (2018)

45. West, R., et al.: Knowledge base completion via search-based ques-
tion answering. In: WWW (2014)

46. Wickham, H.: The split-apply-combine strategy for data analysis.
J. Stat. Softw. 40, 1–29 (2011)

47. Zaharia, M., et al.: Apache spark: a unified engine for big data
processing. CACM 59, 56–65 (2016)

48. Zaharia,M., et al.: Accelerating themachine learning lifecyclewith
MLflow. IEEE Data Eng. Bull. 41, 39–45 (2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/2007.14175
https://doi.org/10.5281/zenodo.2595043
https://doi.org/10.5281/zenodo.2595043
http://arxiv.org/abs/17030.8098

	RDFFrames: knowledge graph access for machine learning tools
	Abstract
	1 Introduction
	2 Related work
	3 RDFFrames API
	3.1 Data model
	3.2 API operators

	4 Query generation
	4.1 Query model
	4.2 Query model generation
	4.3 Translating to SPARQL

	5 Semantic correctness of query generation
	5.1 SPARQL algebra
	5.2 SPARQL semantics
	5.3 Semantic correctness
	5.3.1 Query generation algorithm

	5.4 Proof of correctness

	6 Evaluation
	6.1 Case studies
	6.1.1 Movie genre classification
	6.1.2 Topic modeling
	6.1.3 Knowledge graph embedding

	6.2 Synthetic workload
	6.3 Experimental setup
	6.3.1 Dataset details
	6.3.2 Hardware and software configuration
	6.3.3 Alternatives compared

	6.4 Results on case studies
	6.4.1 Evaluating the design decisions of RDFFrames
	6.4.2 Comparing RDFFrames with alternative baselines

	6.5 Results on synthetic workload
	6.6 Effect of operator complexity

	7 Conclusion
	A full Python code for case studies
	A.1 Movie genre classification
	A.2 Topic modeling
	A.3 Knowledge graph embedding

	B Description of queries in the synthetic workload
	C Naive SPARQL query for movie genre classification
	D Naive SPARQL query for topic modeling
	References

