
The VLDB Journal (2022) 31:1339–1363
https://doi.org/10.1007/s00778-021-00680-7

SPEC IAL ISSUE PAPER

PM-LSH: a fast and accurate in-memory framework for
high-dimensional approximate NN and closest pair search

Bolong Zheng1 · Xi Zhao1 · Lianggui Weng1 ·Quoc Viet Hung Nguyen2 · Hang Liu3 · Christian S. Jensen4

Received: 14 December 2020 / Revised: 29 April 2021 / Accepted: 4 June 2021 / Published online: 3 July 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Nearest neighbor (NN) search is inherently computationally expensive in high-dimensional spaces due to the curse of dimen-
sionality. As a well-known solution, locality-sensitive hashing (LSH) is able to answer c-approximate NN (c-ANN) queries
in sublinear time with constant probability. Existing LSH methods focus mainly on building hash bucket-based indexing
such that the candidate points can be retrieved quickly. However, existing coarse-grained structures fail to offer accurate
distance estimation for candidate points, which translates into additional computational overhead when having to examine
unnecessary points. This in turn reduces the performance of query processing. In contrast, we propose a fast and accurate in-
memory LSH framework, called PM-LSH, that aims to compute the c-ANN query on large-scale, high-dimensional datasets.
First, we adopt a simple yet effective PM-tree to index the data points. Second, we develop a tunable confidence interval to
achieve accurate distance estimation and guarantee high result quality. Third, we propose an efficient algorithm on top of
the PM-tree to improve the performance of computing c-ANN queries. In addition, we extend PM-LSH to support closest
pair (CP) search in high-dimensional spaces. Here, we again adopt the PM-tree to organize the points in a low-dimensional
space, and we propose a branch and bound algorithm together with a radius pruning technique to improve the performance
of computing c-approximate closest pair (c-ACP) queries. Extensive experiments with real-world data offer evidence that
PM-LSH is capable of outperforming existing proposals with respect to both efficiency and accuracy for both NN and CP
search.

Keywords High-dimensional data · Approximate nearest neighbor · Closest pair · LSH

B Bolong Zheng
bolongzheng@hust.edu.cn

Xi Zhao
zhaoxi@hust.edu.cn

Lianggui Weng
liangguiweng@hust.edu.cn

Quoc Viet Hung Nguyen
quocviethung.nguyen@griffith.edu.au

Hang Liu
hang.liu@stevens.edu

Christian S. Jensen
csj@cs.aau.dk

1 Huazhong University of Science and Technology, Wuhan,
China

2 Griffith University, Gold Coast, Australia

3 Stevens Institute of Technology, Hoboken, USA

4 Aalborg University, Aalborg, Denmark

1 Introduction

Nearest neighbor (NN) querying in high-dimensional spaces
is classic functionality that is used in a wide variety of
important applications, such as sequence matching [1],
recommendation [14], similar-item retrieval [30], and de-
duplication [38], to name but a few. Let D be a set of points
in d-dimensional space R

d . Given a query point q, an NN
query returns a point o∗ inD such that its Euclidean distance
to q is the minimum among all points in D.

While the exact NN query in low-dimensional space
already has efficient solutions [6,8], providing an efficient
solution for large-scale datasets with high dimensionality
remains a challenge, as both the query time and the space cost
may increase exponentially with respect to the dimensional-
ity. This phenomenon is called the “curse of dimensionality.”
Fortunately, it usually suffices to find an approximate nearest
neighbor (ANN). For a given approximation ratio c (c > 1)
and a query point q, a c-ANN query returns a point o whose

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00680-7&domain=pdf
http://orcid.org/0000-0001-8639-4570

1340 B. Zheng et al.

distance to q is at most cr∗, where r∗ is the distance between
q and its exact NN o∗.

Awidely adopted locality-sensitive hashing (LSH)method
enables computing c-ANN queries in sublinear time with
constant probability. Generally, LSH maps the points in the
dataset to buckets in hash tables by using a set of predefined
hash functions that are designed to be locality-sensitive so
that close points are hashed to the same bucket with high
probability. A query is answered by examining the points
that are hashed to the same bucket as the query point, or
to similar buckets. Based on their main ideas, we clas-
sify the mainstream LSH methods into three categories:
(1) Probing Sequence-based (PS) approaches [33,35,36]; (2)
Radius Enlarging-based (RE) approaches [18,27,48]; and (3)
Metric Indexing-based (MI) approaches [47]. PS approaches
use a carefully derived probing sequence to examinemultiple
hash buckets that are likely to contain the nearest neighbor of
a query. RE approaches process a sequence of range queries
by enlarging the query range repeatedly until a qualified point
is found. In MI approaches, the points are transformed into a
low-dimensional space, called the projected space. The coor-
dinates of a point in the projected space are the point’s hash
values.MI approaches then use ametric index to organize the
points such that the distance between two points in the pro-
jected space can be used to approximate the distance between
them in the original space.

When evaluating the performance of LSHmethods, many
pertinent performance metrics for c-ANN search exist,
including efficiency, accuracy, memory consumption, and
preprocessing overhead. Among these, both efficiency and
accuracy are important metrics since a desirable algorithm
should return results as soon as possible with a quality that
is as high as possible, while the memory consumption and
preprocessing overhead must be tolerable in the setting of
a commodity machine. The performance of LSH depends
on two aspects: (1) the estimation of distances between the
query point and candidate points and (2) the probing order of
buckets/points. It is proved [47] that the ratio of the projected
distance to the original distance between any two points fol-
lows a χ2 distribution. Therefore, if we are able to estimate
the distance between twopoints accurately,we are able tofind
high-quality candidates. In addition, a well-designed index
structure is required to quickly locate high-quality candi-
dates.

However, the existing LSH methods suffer from either
inaccurate distance estimation or unnecessary point probing
overhead. For instance, SRS [47] is the state-of-the-art algo-
rithm that uses an R-tree to index the points in the projected
space. By searching the R-tree, SRS is able to iteratively
return the next nearest point to q. The problem is that finding
the next exact NN in an R-tree generally causes additional
computational overhead, while the nextNN is not necessarily
the best next candidate in the original space. Next, Multi-

Probe [35] iteratively identifies the next hash bucket to be
examined that has the least distance to q. However, most of
the points in the identified buckets have to be probed due to
poor estimation of the distance between q and the candidate
point. Finally, QALSH [27] shares the same issue as Multi-
Probe, and it uses a large number of hash functions that may
incur high space consumption.

We propose a fast and accurate in-memory framework,
called PM-LSH, for computing c-ANN queries on large-
scale, high-dimensional datasets. The framework consists of
three components, namely data partitioning, distance esti-
mation, and point probing. First, we adopt the simple yet
effective PM-tree [46] to index the points in the projected
space. Second, in order to improve the distance estimation
accuracy, we exploit the strong relationship between the orig-
inal and projected distance of any two points, andwe develop
a tunable confidence interval on the projected distance w.r.t.
a given original distance. Third, we propose an efficient algo-
rithm to search the PM-tree with a sequence of range queries
with increasingly large radius. PM-LSH is able to achieve
both high efficiency and high accuracy when compared with
the existing LSH methods.

We extend the PM-LSH technique to solve another clas-
sical problem, approximate closest pair (CP) search in
high-dimensional spaces. Like NN search, CP search is used
in a wide range of settings, such as unsupervised classifica-
tion or clustering [42], user pattern similarity search [55],
and geographic information systems [22], to name but a few.
For a given approximation ratio c (c > 1) and a dataset D,
a c-approximate closest pair (c-ACP) query returns a point
pair (o1, o2) with distance at most cr∗, where r∗ is the dis-
tance of the exact closest pair in D. Early studies mainly
adopt space partitioning indexing techniques to solve exact
CP queries in two or three dimensions [12,13,26,29,44,45].
However, these methods cannot be extended directly to sup-
port high-dimensional CP queries efficiently due to the curse
of dimensionality. Therefore, improved indexes are pro-
posed to address the effects of dimensionality [17,19,31,41].
Nonetheless, when faced with hundreds or thousands of
dimensions, the performance of these methods still degen-
erates to nearly brute-force performance. Thus, another
direction is to use dimension reduction methods to solve
c-ACP, such as LSH or random projection. For instance,
the LSB-tree [49] uses a compound hash function to project
points into a low-dimensional space and adopts the Z-curve
to transform projected points into one-dimensional values
that are indexed by a B-tree. The candidate point pairs are
generated from points with the same Z-values. To improve
the query accuracy, L = O(

√
n)B-trees are built, which thus

requires a large space consumption. Next, ACP-P [7] projects
the points directly into a one-dimensional space. The points
with close distances in the projected space are considered

123

PM-LSH: a fast and accurate in-memory framework for high-dimensional approximate NN and… 1341

as candidate point pairs. However, the distance estimation is
inaccurate and leads to unnecessary candidate verification.

To compute approximate CP queries, we still employ the
PM-tree to index the points in the projected space, which
provides an accurate distance estimation for point pairs.Next,
we adopt a branch and boundmethod combined with a radius
pruning technique to improve the query efficiency, which
allows to generate enough candidate pairs with only a small
space consumption. We also note that our method is tunable
and enables different trade-offs between query accuracy and
query efficiency.

The major contributions are summarized as follows:

– We present a unified interpretation of the existing main-
stream LSH methods and thoroughly analyze the com-
petitors in relation to our method.

– We propose an accurate and fast method called PM-LSH
for c-ANN querying of large-scale, high-dimensional
datasets. First, we use the PM-tree to index the points in
the projected space. Second, we develop a tunable confi-
dence interval for distance estimation. Third, we propose
a c-ANN query algorithm that uses the PM-tree.

– We extend the PM-LSH to support CP queries. First,
we still employ the PM-tree to index the points in the
projected space. Next, we propose a branch and bound
algorithm together with a radius pruning technique for
computing c-ACP queries.

– We conduct an extensive performance study using real
datasets that covers the state-of-the-art algorithms, which
indicates that PM-LSH is efficient as well as accurate in
terms of both the overall ratio and recall for both NN and
CP search.

The paper extends its conference version [53] in several
respects. Key extensions include (1) the extension of PM-
LSH to support CP queries, (2) the coverage of related work
on high-dimensional CP search, and (3) the paper’s report on
the experimental evaluations of the corresponding proposals.
In addition, other parts of the paper have been revised when
compared to the conference version.

The rest of the paper is organized as follows. Section 2
presents the problem setting and preliminaries. Section 3
introduces a unified LSH framework, followed by our PM-
LSH framework in Sect. 4. Sections 5 and 6 introduce theNN
and CP query processing based on PM-LSH, respectively.
Section 7 covers experimental studies that offer insight into
the performance of the proposed PM-LSH and themain com-
petitors for both NN andCP search. Section 8 reviews related
work. Finally, Sect. 9 concludes the paper.

Table 1 Summary of notations

Notation Definition

D Dataset of points in R
d

n = |D| Dataset cardinality

d Dataset dimensionality

o A point in D
o′ A point o in the projected space

c Approximation ratio

h(o), h∗(o) Hash functions

m The number of hash functions

T The number of candidate points or pairs

M The node capacity of the PM-tree

2 Preliminaries

Weproceed to present the problemdefinitions of approximate
nearest neighbor (NN) and closest pair (CP) search, and the
basic idea of LSH. Frequently used notation is summarized
in Table 1.

2.1 Problem definition

LetD be a set of points in d-dimensional space R
d with car-

dinality |D| = n. Let ‖o1, o2‖ denote the Euclidean distance
between points o1, o2 ∈ D.

Definition 1 (c-ANN query) Assume a query point q and an
approximation ratio c > 1, and let o∗ be the exact nearest
neighbor of q inD. A c-approximate nearest neighbor query
returns a point o ∈ D such that ‖q, o‖ ≤ c · ‖q, o∗‖.

We generalize the c-ANN query to the (c, k)-ANN query
that returns k approximate nearest points.

Definition 2 ((c, k)-ANN query) Assume we have a query
point q, an approximation ratio c > 1, and a positive inte-
ger k. Let o∗

i be the i th exact nearest neighbor of q in
D. A (c, k)-approximate nearest neighbor query returns a
sequence of k points 〈o1, o2, . . . , ok〉 such that for each oi ,
we have ‖q, oi‖ ≤ c · ‖q, o∗

i ‖, i ∈ [1, k].
Definition 3 (c-ACPquery)Assumewehave an approximate
ratio c > 1, and let (o∗

1, o
∗
2) be the exact closest pair in

D. A c-approximate closest pair query returns a point pair
(o1, o2) ∈ D × D such that ‖o1, o2‖ ≤ c · ‖o∗

1, o
∗
2‖.

We generalize the c-ACP query to the (c, k)-ACP query
that returns k approximate closest pairs.

Definition 4 ((c, k)-ACP query) Assumewe have an approx-
imate ratio c > 1, and a positive integer k. Let (o∗

i,1, o
∗
i,2)

be the i th exact closest pair in D. A (c, k)-approximate
closest pair query returns a sequence of k point pairs

123

1342 B. Zheng et al.

〈(o1,1, o1,2), (o2,1, o2,2), . . . , (ok,1, ok,2)〉 such that for each
(oi,1, oi,2), we have ‖oi,1, oi,2‖ ≤ c · ‖o∗

i,1, o
∗
i,2‖, i ∈ [1, k].

Example 1 As shown in Fig. 1a, the exact NNs of query q are
o2 and o14 with distance

√
2. For a 2-ANN query, any point

whose distance to q is within 2
√
2 can be considered as a

result, i.e., any object in the set {o2, o14, o12, o13, o6, o7}.
The exact CPs are (o4, o8) and (o12, o14) with distance

1. For a 2-ACP query, any point pair whose distance is
within 2 can be considered as a result, i.e., any pair in the
set {(o6, o7),(o4, o8),(o6, o9),(o6, o13),(o9, o13),
(o2, o14),(o5, o14),(o12, o14),(o3, o15),(o7, o15)}.

2.2 Basic locality-sensitive hashing

We first introduce the LSH scheme, and then explain how
to answer the (r , c)-ball cover and c-ANN queries using the
basic LSH [3,15].

Hash familyGiven adistance r , an approximation ratio c > 1,
two probability values p1 and p2, where p1 > p2, a family
H = {h : R

d → U } is called (r , cr , p1, p2)-locality-
sensitive, if for any o1, o2 ∈ R

d , it satisfies both of the
following conditions:

1. If ‖o1, o2‖ ≤ r then Pr [h(o1) = h(o2)] ≥ p1
2. If ‖o1, o2‖ ≥ cr then Pr [h(o1) = h(o2)] ≤ p2

A well-adopted hash function is formally defined as follows:

h(o) = �a · o + b

w
, (1)

where o is the vector representation of a point o ∈ R
d , a is a

d-dimensional vector where each dimension is drawn inde-
pendently froma p-stable distribution [15], b is a real number
uniformly drawn from [0, w), and w is a user-specified con-
stant. The 2-stable distribution is the normal distribution.

Formally, let τ = ‖o1, o2‖, and let f (·) denote the normal
probability distribution function (pdf). We then have:

p(τ) = Pr [h (o1) = h (o2)] =
∫ w

0

1

τ
· f

(
t

τ

)
·
(
1 − t

w

)
dt (2)

The intuition behind Eq. 2 is that, given a fixed w, the col-
lision probability of two hash values h(o1) and h(o2) grows
as the distance ‖o1, o2‖ decreases. Therefore, h(·) in Eq. 1
is (r , cr , p1, p2)-sensitive with p1 = p(r) and p2 = p(cr).

Before we consider how to answer the c-ANN query, we
define an (r , c)-ball cover query that can be directly answered
by (r , cr , p1, p2)-sensitive hash family.

Definition 5 ((r , c)-BC query) Given a query point q, a dis-
tance threshold r , and an approximation ratio c > 1. Let
B(q, r) denote a ball centered at q with radius r . An (r , c)-
ball cover query returns the following result:

1. If B(q, r) covers at least one point inD, it returns a point
in B(q, cr);

2. If B(q, cr) covers no points in D, it returns nothing.

E2LSH [3] is a seminal solution that forms L hash tables
and randomly chooses m hash functions for each hash table.
By concatenating the m hash functions, a compound hash
function G(o) = (h1(o), . . . , hm(o)) is formed in each hash
table, and each point o ∈ D is stored in a hash bucket based
on G(o). Given a query point q, E2LSH computes G(q) and
enumerates the points in the corresponding hash bucket. In
all L hash tables, it examines at most 3L points and returns
a point o if ‖q, o‖ ≤ cr . By setting m = log1/p2 n and

L = 1/pk1, the (r , c)-BC query can be answered correctly
with at least constant probability.

From (r , c)-BC to c-ANN It is easy to see that the ball cover
query can be considered as a decision version of the approx-
imate NN query. By processing a sequence of (r , c)-BC
queries with r = 1, c, c2, . . . , x , once a point is returned, we
take it as a result of the ANN query. Interestingly, as proved
by [28], the ANN query can be answered with approximation
ratio c2, i.e., c2-ANN.

Example 2 In the example in Fig. 1, we choose m = 2
hash functions h1(o) = � a1·o

4 , h2(o) = � a2·o+2
4 with

a1 = [1.0, 0.9], a2 = [0.2, 1.7], b1 = 0, b2 = 2, and w = 4.
For simplicity, we only construct L = 1 hash table. Fig-
ure 1b, c show the coordinates of the objects in the projected
space. To answer a (1, 2)-BC query with r = 1 and c = 2,
we first compute G(q) = (h1(q), h2(q)) = (2, 2). Then we
search the hash bucket (2, 2) that is indicated by a red rect-
angle; the (1, 2)-BC query returns o7. As o14 is the exact NN
with ‖q, o14‖ = √

2 and ‖q, o7‖ = √
5 < 4 × √

2, we have
that o7 is a result of the 4-ANN query of q.

3 A unified interpretation of LSH

We proceed to introduce the main competitors and give a
unified interpretation.

3.1 Main competitors

Probing sequence (PS) The representative PS methods
include Multi-Probe [35,36] and GQR [33] that use a care-
fully derived probing sequence to examine multiple hash
buckets that are likely to contain the nearest neighbors of
a query point. Unlike the basic LSH that builds L hash tables
and checks only one hash bucket in each hash table, PSprobes
multiple nearby buckets in order to achieve higher recall
with fewer hash tables. Given a query point q, PS adopts
a “generate-to-probe” paradigm that iteratively generates the

123

PM-LSH: a fast and accurate in-memory framework for high-dimensional approximate NN and… 1343

(a) (b)

(c)

Fig. 1 Running example with h1(o) = � a1·o
4 , h2(o) = � a2·o+2

4 and a1 = [1.0, 0.9], a2 = [0.2, 1.7]

next hash bucket to be examined with the least distance to q
in the remaining buckets.

Radius enlarging (RE) This category mainly includes the
LSB-Tree [48], C2LSH [18], and QALSH [27]. These do
not build multiple hash tables based on different radii.
Generally, RE builds a hash table like the basic LSH and
processes a sequence of (r , c)-BC queries by enlarging
r = 1, c, c2, . . . , x when a c-ANN query is issued. Sup-
pose ri = ci and r0 = 1. It has been shown [18] that
hri (·) = � h(·)

ri
 is (ri , cri , p1, p2)-sensitive. Instead of build-

ing multiple hash tables with corresponding hash functions
hri (·) to handle (ri , cri)-BC queries, RE adopts the smart
idea of “virtual rehashing” to avoid unnecessary space. For
the (1, c)-BC query, RE probes the hash bucket h(q). For the
remaining (ri , cri)-BC queries, RE probes rmi hash buck-
ets near h(q) in the original hash table in the i th iteration.
Note that among these rmi buckets, rmi−1 buckets were already
examined in the last iteration. Interestingly, it is easy to see
that the rmi hash buckets in the original hash table actually
correspond to the hash bucket hri (q) in the hash table w.r.t.
hri (·).
Metric indexing (MI) SRS [47] is the state-of-the-art algo-
rithm that projects the points from the original d-dimensional
space into a lower m-dimensional projected space by using
m hash functions. It utilizes an R-tree to index the points
based on their hash values in the projected space. Specifi-
cally, SRS uses the Euclidean distance between two points
in the projected space to approximate their distance in the
original space. The intuition is that the points close to the
query point q in the projected space are also likely close to q
in the original space. SRS repeatedly calls an incSearch func-
tion that utilizes the R-tree to return the next nearest point to
q in the projected space.

Fig. 2 Unified LSH framework

3.2 A way of probing

We proceed to introduce a unified interpretation of existing
LSH methods as shown in Fig. 2, which consists of three
components, namely data partitioning, distance estimation,
and point probing.

Generally, we adopt a random projection h(o) as the
locality-sensitive hash functions:

h∗(o) = a · o (3)

By using h∗(o), the points in the original space are mapped
into a projected space, as shown in Fig. 1a, b. Let o′ =
[h∗

1(o), . . . , h
∗
m(o)] denote point o in the projected space. For

any two points o1 and o2, let r = ‖o1, o2‖ and r ′ = ‖o′
1, o

′
2‖

denote the distance between o1 and o2 in the original and in
the projected space, respectively. In addition,we letρ(o1, o2)
denote an m-dimensional vector, where each dimension is
the hash value difference between points o1 and o2, i.e.,

123

1344 B. Zheng et al.

ρi = h∗
i (o1) − h∗

i (o2) = o′
1[i] − o′

2[i]. Therefore, we have
r ′ =

√∑m
i=1 ρ2

i .
Based on a property of a 2-stable distribution, for any d

real numbers o[1], . . . , o[d], independent and identically dis-
tributed (i.i.d.) random variables X1, . . . , Xd (corresponding
to a) following the 2-stable distribution,

∑
i o[i] · Xi has the

same distribution as the variable (
∑d

i=1 o[i]2)1/2 · X , where
X is a random variable with distribution N (0, 1). For any two
points o1 and o2, since ρ = h∗(o1)− h∗(o2) = a · (o1 − o2),
we know that ρ is a random variable with distribution r ·X . In
other words, ρ has distribution N (0, r2), i.e., ρ

r ∼ N (0, 1).

Lemma 1 r ′2/r2 follows the distribution χ2(m).

Proof If Y1, . . . ,Ym are i.i.d. variables with N (0, 1) then∑m
i=1 Y

2
i follows the χ2 distribution with m degrees of free-

dom. Given m hash functions h∗
1(·), . . . , h∗

m(·), for any o1
and o2, we have ρ1, . . . , ρm . Thus, r ′2/r2 follows the distri-
bution χ2(m). ��
Data partitioningAftermapping the points into the projected
space by using hash functions, the existing LSH methods
adopt the “divide-and-conquer” paradigm that partitions the
projected space into subspaces. When a query is issued, the
regions that are likely to contain the results are probed, and
finally the results of these regions are combined and returned.
Generally, there are two kinds of data partitioning approaches
in the existing LSH methods:

(1) Interval-based Partitioning. The basic LSH constructs
hash buckets based on G(o), and each bucket can be
viewed as an m-dimensional hypercube with equal side
lengthsw. Most of the LSHmethods belong to this class,
includingMulti-Probe, LSB-Tree, C2LSH, and QALSH.
Specifically, an LSB-Tree assigns each hypercube a Z-
order value and stores the values in a B-tree. In contrast,
QALSH does not physically build hypercubes, but stores
the values of h∗(o) in aB+-tree.When a query arrives, the
length-w intervals are virtually formed on the B+-tree.

(2) Metric Space Partitioning. SRS uses anR-tree to index all
the points o′ in the projected space such that an incremen-
tal kNN search is supported. For in-memory processing,
it is also able to use a Cover Tree. In our proposed PM-
LSH, we partition the projected space using a PM-tree so
that efficient range querying can be supported.

Distance estimation In order to accurately estimate distances,
two aspects are considered, i.e., the distance estimator and
the estimation granularity.

(1) Distance Estimator. As ρ follows distribution N (0, r2).
For any o1 and o2, ρ(o1, o2) = [ρ1, . . . , ρm]. We esti-
mate the value of r2 by using r ′2 as follows.

(a) (b)

Fig. 3 Comparison on recall and overall ratio

Lemma 2 r̂2 = r ′2
m is an unbiased estimator of r2.

Proof Let r̂2 be the estimated value of r2. We compute the
expectation of r ′ as follows.

E[r ′2] = E[
m∑
i=1

ρ2
i] =

m∑
i=1

E[ρ2
i] = mr2

Therefore, we have E[r̂2] = E[r ′2]/m = r2.
Alternatively, we provide a different yet interesting proof

by using the maximum likelihood estimation (MLE) [24].
MLE is a procedure for finding the value of one or more
parameters for a given statistic that maximizes the known

likelihood distribution. As Pr [ρ = ρi] = 1√
2πr

exp(− ρ2
i

2r2
),

the probability that the hash value difference ρ(o1, o2)
between o1 and o2 equals [ρ1, . . . , ρm] is computed as fol-
lows.

Pr [ρ(o1, o2) = [ρ1, . . . , ρm]]

= f (ρ1, . . . , ρm |μ = 0, σ = r)

=
m∏
i=1

(
1√
2πr

)m

exp

(
−

∑m
i=1 ρ2

i

2r2

)

The objective of the maximum likelihood is to find an r
such that the above probability is maximized. Since ln f =
− 1

2m ln(2π)−m ln r −
∑

ρ2
i

2r2
and ∂(ln f)

∂r = −m
r +

∑
ρ2
i

r3
= 0.

Therefore, we have r̂2 =
∑m

i=1 ρ2
i

m = r ′2
m . ��

To evaluate the performance of our estimator in Lemma 2,
i.e., L2 = r ′ (the same as our estimator when m is fixed), we
compare it with other distance estimators: L1, QD [33], and
Rand (assign a random value). We randomly sample a small
dataset that contains 10K points from the Trevi dataset [34]
and choose 100 points as query points. For each query point
q, we first compute its exact 100NNs. With m = 15 hash
functions, we compute the distances in the projected space
between q and all the points based on different estimators.
Then, we choose the top-T points with smallest estimated
distances (T varies from 100 to 2,000). For each q, we com-
pare its exact 100NNs with the 100NNs from the T points.

123

PM-LSH: a fast and accurate in-memory framework for high-dimensional approximate NN and… 1345

Finally, we compute the average recall and overall ratio (dis-
cussed in Sect. 7) of these estimators. As shown in Fig. 3, we
can see that our estimator has the best performance in terms
of both the recall and overall ratio.

(2) Estimation Granularity. The distance estimation meth-
ods may use different granularities:

– Bucket to Bucket. The hash bucket-based indexingmeth-
ods, such as Multi-Probe, LSB-tree, and C2LSH, store
points in hash buckets. When a query is issued, we first
find its corresponding bucket and then decide which
buckets to probe. Therefore, the quality of the distance
estimation between buckets is affected by the bucket side
length w.

– Point to Bucket. QALSH is an improved version of
C2LSH that stores points by a B+-tree instead of using
a hash table. When a query q arrives, the length-w inter-
vals are conceptually built on the B+-tree with q as the
center. So the distance estimation can be considered as
between point q and bucket intervals.

– Point to Point. SRS uses the projected Euclidean distance
between two points to estimate their original distance,
which offers a finer precision than the previous twometh-
ods due to the fine granularity. Our PM-LSH also adopts
this method.

Point probingSupposewe probe T points. In the hash bucket-
based indexing methods, we directly probe the points in the
bucket, where the time cost is O(T). The second approach is
QALSH that searches the points in a B+-tree, where the time
cost is O(log n + T). Unlike the previous two approaches,
SRS indexes the points with an R-tree, and iteratively finds
the next NN in the projected space. The time cost is O(log n ·
T). Our PM-LSH can be considered as a combination of the
second and third approaches in that we build a PM-tree in the
projected space and execute range queries to retrieve points.

4 The PM-LSH framework

We proceed to present the details of the PM-LSH framework.
As mentioned previously, the RE methods quickly probe the
points stored in the hash buckets by enlarging the search
radius, but suffer from inaccurate distance estimation due to
a coarse-grained index structure, which translates into com-
putational overhead when having to examine unnecessary
points. In contrast, the MI methods index the points with an
R-tree and iteratively return the next nearest point to q in
the projected space. However, finding the next exact NN in
an R-tree is also computationally costly, and the next NN is
not necessarily the best next candidate in the original space.
To achieve the best of both worlds, PM-LSH combines the
ideas of the RE and MI methods, where we adopt the PM-

(a)

(b)

Fig. 4 Structure of PM-LSH

tree instead of the R-tree to index the points in the projected
space and execute a sequence of range queries with increas-
ingly large radius such that both efficiency and accuracy are
achieved.

Next, we briefly describe how to construct a PM-tree.
Then, we analyze the cost models of the PM-tree and the
R-tree to understand how the PM-tree performs better than
the R-tree for the relevant range query workload. Finally, we
present the details of the algorithms.

4.1 Building a PM-tree in the projected space

In the projected space, each o′
i w.r.t. oi ∈ D is an m-

dimensional vector. For the paper to be self-contained, we
briefly explain how to build a PM-tree on all o′

i s. Interested
readers may refer to [46] for more details on the PM-tree.

Selecting pivots The PM-tree combines M-tree together with
pivot mapping.Methods for selecting an optimal set of pivots
have been studied extensively. For each set of pivots, a PM-
tree region is the intersection of the M-tree hyper-spherical
region and hyper-rings caused by the pivots. We choose a set
of pivots with the aim of making the overall volume of the
corresponding PM-tree region the smallest.

PM-tree structure The structure of a PM-tree is shown in
Fig. 4. Since the PM-tree is an extension of the M-tree, it
retains all the information of the M-tree. For each node e,

123

1346 B. Zheng et al.

Table 2 Computation cost (CC)
of PM-tree and R-tree

Datasets Audio Cifar MNIST Trevi NUS GIST Deep

PM-tree 38,182 35,210 56,670 34,281 201,448 739,720 964,451

R-tree 40,565 54,869 59,043 63,884 252,187 889,974 1,017,604

Reduction (%) 6 36 4 46 20 17 5

it stores the covered radius e.r, a pointer to its covered sub-
tree e.ptr, the center of the covered hyper-sphere e.RO, the
distance e.PD between e.RO and its parent node, and the
smallest interval e.HR covering the distances between the
pivots and each of the point stored in leaves. For a data entry
o, it stores the point data, the ID of the point o, the distance
o.PD between o and its parent entry, and the minimum and
the maximum distances to pivots.

Range query processing A range query, denoted by
range(q, r), returns all points that are located in B(q, r). The
nodes in the PM-tree are traversed in a depth-first fashion.
When a node is accessed, we verify its pruning condition by
using the triangle inequality. When a data entry is accessed,
we insert the corresponding point into the result set if it is in
B(q, r).

Example 3 As shown in Fig. 4, we choose o1 and o11 as
pivots, and partition the space by using the ball partition-
ing, as shown in Fig. 4(a). The nodes e1, e2, · · · , e6 contain
the points inside a hyper-sphere region, whose center and
radius are saved as the part of an entry. When a range query
range(q, 2) is issued, we check the pruning conditions when
accessing the nodes. Only e4 and e6 are checked. Finally, we
return {o14} as result.

4.2 Cost models of the PM-tree versus the R-tree

To compare the performance of the PM-tree and the R-tree,
we adopt a node-based cost model [10] to examine how the
PM-tree performs compared to the R-tree from a theoretical
point of view.

In this cost model, a concept called distance distribution
of a dataset D is computed as follows.

F(x) = Pr
[‖oi , o j‖ ≤ x

]
, (4)

where oi , o j ∈ D. In addition, for each dataset used in our
experiments, we compute its “homogeneity of viewpoints”
(HV), which is shown in Table 3. HV evaluates the homo-
geneity of the distance distributions of the data points. Let
Fo(x) denote the distribution of the distances between all
points to point o. Given two points o1 and o2, a higher HV
means that o1 and o2 are more likely to have similar distance
distributions Fo1(x) and Fo2(x). The HV values of all the
datasets are no smaller than 0.9, which enables us to approx-

imate their distance distributions when estimating the cost
models of the two trees.

Cost model of the PM-tree Consider a range query
range(q, rq). Assume that a PM-tree has s pivot points
p1, · · · , ps . A node e is accessed iff the following condi-
tions are satisfied:

⎧⎪⎨
⎪⎩

‖q, e.RO‖ ≤ e.r + rq
∧s
i=1

{‖q, pi‖ − rq ≤ e.HR[i].max
}

∧s
i=1

{‖q, pi‖ + rq ≥ e.HR[i].min
} (5)

Therefore, the probability of e being accessed can be com-
puted as follows.

Pr [e] =F
(
e.r + rq

) ·
s∏

i=1

[
F

(
e.HR[i].max + rq

)

−F
(
e.HR[i].min − rq

)] (6)

Assume that there are N nodes in the PM-tree. The number
of distance computations (computation cost) is estimated by
considering the probability that a node is accessedmultiplied
by its number of entries N (e), thus obtaining the number of
distance computations as follows.

CC
(
range

(
q, rq

)) =
N∑
i=1

N (ei) · Pr [ei] (7)

Costmodel of the R-treeFor each node e of anm-dimensional
R-tree, we denote its minimum bounding rectangle as
MBR(e) = [l1, u1] × · · · × [lm, um]. Given a range query
range(q, rq), the condition of e being accessed is that
B(q, rq) intersects withMBR(e). Since it is hard to quantify
the probability that a ball intersects with a high-dimensional
rectangle, we substitute an isochoric hypercube for the ball.
Specifically, an m-dimensional ball with radius rq can be
substituted by a hypercube with the length of sides l =
m
√

2πm/2

mΓ (m/2)rq [28]. We also denote the data distribution of
dataset D on the i th dimension as follows.

Gi (x) = Pr [Xi ≤ x] , (8)

where Xi is the i th dimension of a random point in D. Sim-
ilarly, we let N be the number of nodes in the R-tree and
let N (ei) be the number of entries in node ei . We obtain

123

PM-LSH: a fast and accurate in-memory framework for high-dimensional approximate NN and… 1347

the number of distance computations as follows. (Details are
omitted for brevity.)

CC
(
range

(
q, rq

))

=
N∑
i=1

N (ei) ·
m∏
i=1

[Gi (ui + l) − Gi (li − l)] (9)

Comparison of the PM-tree and the R-tree In order to com-
pare the computation costs for the two trees, we construct
PM-trees and R-trees for the points in all the datasets (intro-
duced in Table 3) after transforming them into the projected
space. We choose m = 15 hash functions and set the maxi-
mum number of entries per node to 16. For each dataset, we
choose the same range r to estimate the cost of computing a
range query. The value of r is chosen to return approximately
the nearest 8% of all points, since these points usually suffice
to return a c-ANN result. The estimated computation costs
are computed based on Eqs. 7 and 9 , and the results are pre-
sented in Table 2. We can see that using the PM-tree reduces
the number of distance computations by about 5%−46% for
the different datasets. This observation offers evidence that
the PM-tree has better performance than the R-tree in our
setting.

4.3 Tunable confidence interval

Based on Lemma 2, we further estimate the confidence inter-
val of r ′ between o1 and o2 for a given r = ‖o1, o2‖.
Lemma 3 Given two points o1 and o2, we have:

– P1: The probability that r ′ < r
√

χ2
1−α(m) is α

– P2: The probability that r ′ > r
√

χ2
α(m) is α

Here, χ2
α(m) is the upper quantile of a χ2 distribution with

m degrees of freedom, where

∫ +∞

χ2
α(m)

f (x;m)dx = α,

and f (x;m) is the probability density function of a χ2 dis-
tribution with m degrees of freedom.

Proof From Lemmas 1 and 2 , we know r ′2
r2

∼ χ2(m). Con-

structing a confidence interval I = [u, v] for r ′2
r2

requires

that the probability that r ′2
r2

falls into I is 1 − 2α for any
given α. A standard approach is to select u and v that
make Pr [r ′2

r2
< u] = α, i.e., Pr [r ′2

r2
> u] = 1 − α, and

Pr [r ′2
r2

> v] = α. Further,
∫ +∞
u f (x;m)dx = 1 − α and∫ +∞

v
f (x;m)dx = α. According to the definition of upper

Fig. 5 A confidence interval

quantile, we have u = χ2
1−α(m) and v = χ2

α(m). The con-
fidence interval and its corresponding probability are shown
in Fig. 5. ��

According to Lemma 3, we establish a strong relationship
between an original distance and the confidence interval of
a projected distance, which can be used to answer (r , c)-BC
and c-ANN queries.

5 Nearest neighbor query processing

We proceed to introduce the nearest neighbor query process-
ing based on PM-LSH. First, we present the details of the
(r , c)-BC query processing. Then, we extend the discussion
to the (c, k)-ANN query processing.

5.1 The (r, c)-BC query

An (r , c)-BCquery canbe computed directly byAlgorithm1.
Given a query q and m hash functions, we compute the
hash value q ′ = (h∗

1(q), . . . , h∗
m(q)) and use the PM-tree

to answer a range query range(q ′, tr), where t is a parame-
ter that guarantees that a point inside B(q, r) in the original
space will fall into B(q ′, tr) in the projected space with a
constant probability. Then we collect the result of the range
query into a candidate set C .

According to Lemma 4, to be introduced in Sect. 5.3, the
correctness of the (r , c)-BCquery can be guaranteed. In other
words, by properly choosing a parameter β, we examine a
sufficient number of βn candidate points, and the following
two situations will hold with a constant probability.

– If the total number of points in C exceeds βn, there must
be at least a point from C inside B(q, cr).

– If there is no point in C inside B(q, cr), there exists no
point in D inside B(q, r).

Therefore, we can correctly answer an (r , c)-BC query by
processing a range query using the PM-tree. In Sect. 5.3, we
consider how to set parameters t and β.

123

1348 B. Zheng et al.

Algorithm 1: (r , c)-BC Query
Input: A query point q and parameters β, n, t , c, r
Output: A point p in B(q, cr) or nothing

1 Compute q ′ = (h∗
1(q), . . . , h∗

m(q));
2 Initialize a candidate set C ← the results of a range query q ′ with
radius t · r on the PM-tree;

3 if |C | ≥ βn + 1 then
4 return p in C that is closest to q;

5 else
6 if |{p | p ∈ C ∧ ‖p, q‖ ≤ c · r}| ≥ 1 then
7 return p in C that is closest to q;

8 else
9 return ∅;

5.2 The (c, k)-ANN query

Answering a c-ANNquery ismore complicated than answer-
ing an (r , c)-BC query since we do not know the distance
‖q, o∗‖ in advance. In order to answer a (c, k)-ANN query
with a constant probability, we must ensure that we access
enough points, i.e., at least βn points. Therefore, we have to
enlarge the search radius in the projected space when fewer
than βn points are found until k points inside B(q, cr) have
been obtained.

The details of computing a (c, k)-ANNquery can be found
in Algorithm 2. Most of the steps are almost the same as
Algorithm 1. The difference is that when both termination
conditions (Line 4 and Line 8) are violated, another range
query with a larger radius is required.

Selecting the radius r of a range query As executing multi-
ple range queries is time consuming, it is attractive to reduce
the number of iterations in the while-loop. Intuitively, we
hope to find a “magic” rmin such that the process terminates
quickly. An ideal rmin must yield a number of points inside
B(q ′, trmin) that exceedsβn+k such thatAlgorithm2 is able
to terminate after processing the range query B(q ′, trmin).
In addition, to avoid returning a large number of unneces-
sary points, which also is costly, the number of points inside
B(q ′, trmin/c) should be less than βn + k. Otherwise, the
range query B(q ′, trmin/c) with smaller radius is able to
return enough points.

As the rmin can be selected from a relatively large range,
we design a selection scheme as follows. Suppose that we
have obtained the distance distribution F(x) of all datasets.
Due to a good HV value, the distance distribution of a query
point can be estimated by the dataset. Then we can find a
suitable r that satisfies n · F(r) = βn+k, which implies that
βn+k points locate in B(q, r) on average. However, to avoid
the case where the number of points in B(q, r) exceeds βn+
k, we choose an rmin slightly smaller than r . As the choice of
rmin is not unique and the selection range is relatively large,

Algorithm 2: (c, k)-ANN Query
Input: A query point q, and parameters rmin , β, n, t , c, k
Output: k points

1 Initialize a candidate set C ← ∅ and r ← rmin ;
2 Compute q ′ = (h∗

1(q), . . . , h∗
m(q));

3 while true do
4 if |{p | p ∈ C ∧ ‖p, q‖ ≤ c · r}| ≥ k then
5 return top-k points that are closest to q in C ;

6 Initialize a range query q ′ with radius t · r on the PM-tree;
7 while |C | < βn + k do
8 Find a node in B(q ′, t · r) on the PM-tree; C ← C ∪ {the

points in the node};
9 if |C | ≥ βn + k then

10 return top-k points that are closest to q in C ;

11 r ← c · r ;

and since the performance is not strongly dependent on it,
the effect of the estimation is expected to be small.

Example 4 Setting βn = 4, we need to retrieve at least 5
points for a (2, 1)-ANNquery. Initially,we set rmin = r ′ = 2.
As explained in Example 3, o14 is returned. As the number of
returned points is below 5, we set r ′ = 4. In this round, only
the subtree of e5 can be discarded, and we check the points
in e3, e4, and e6 and obtain {o2, o5, o7, o12, o13, o14}. The
number of returned points is 6, and the process terminates.
Finally, we return the (2, 1)-ANN result o14.

5.3 Theoretical analysis

Quality guarantee In Algorithms 1 and 2 , we execute a range
query on the PM-tree with a radius tr in the projected space.
Therefore, we have to compare the projected distances of
candidate points to q with tr . Specifically, two types of points
need to be discussed, true positives (the points inside B(q, r))
and false positives (the points outside B(q, cr)).

Lemma 4 Given a query q, we set probabilities α1 and α2,
and parameter t such that they satisfy Eq. 10:

{
t2 = χ2

α1
(m)

t2 = c2χ2
1−α2

(m)
(10)

We then have:

– E1: If a point o exists inside B(q, r), its projected dis-
tance to q is smaller than tr .

– E2: There are fewer than βn (β > α2) points outside
B(q, cr)whose projected distances to q are smaller than
tr .

The probability that E1 occurs is at least 1 − α1, and the
probability that E2 occurs is at least 1 − α2

β
.

123

PM-LSH: a fast and accurate in-memory framework for high-dimensional approximate NN and… 1349

Proof Given a point o ∈ B(q, r), let ro = ‖o, q‖ ≤ r
and r ′

o = ‖o′, q ′‖ be the original and projected distances

to q, respectively. By setting t =
√

χ2
α1

(m), according to

Lemma 3, we have Pr [r ′
o > ro

√
χ2

α1
(m)] = Pr [r ′

o > tro] =
α1. Since ro ≤ r , Pr [r ′

o > tr] is at most α1. Therefore, we
know that Pr [E1] = Pr [r ′

o ≤ tr] > 1−α1. Likewise, given
a point o /∈ B(q, cr), let ro = ‖o, q‖ > cr and r ′

o = ‖o′, q ′‖
be the original and projected distances to q, respectively.

By setting t = c
√

χ2
1−α2

(m), according to Lemma 3, we

have Pr [r ′
o < ro

√
χ2
1−α2

(m)] = Pr [r ′
o < t roc] = α2. Since

ro
c > r , Pr [r ′

o < tr] is at most α2. Therefore, by using
Markov’s inequality, we have Pr [E2] > 1 − α2

β
. ��

Note that if E1 and E2 hold at the same time, then Algo-
rithm 1 is correct for solving the (r , c)-BC query.

Lemma 5 Algorithm 1 answers an (r , c)-BC query with at
least a constant probability.

Proof Let m = O(1). If α1 is a constant, α2 is also a con-
stant due to Eq. 10. By setting β = 2α2, the lower bound
probabilities of E1 and E2, i.e., 1 − α1 and 1 − α2

β
, will

also be constant. Therefore, we can guarantee that E1 and
E2 hold at the same time with at least a constant probability.
Thus, if we access at least βn + 1 points with projected dis-
tances smaller than t R to q, due to E2, there are at most βn
points outside B(q, cr), and we thus obtain at least one point
inside B(q, cr). On the other hand, if we access nomore than
βn + 1 points with projected distances smaller than t R to q,
the correctness of E2 is not guaranteed. Therefore, it is safe
to return either nothing or the points whose distances to q are
at most cr for an (r , c)-BC query. ��

As a typical setting in theLSHmethods,we choose param-
eters that satisfy Pr [E1] = 1−1/e and Pr [E2] = 1/2.Note
thatwe can choose other parameters that achieve amore accu-

rate result. Therefore, we have α1 = 1/e and t =
√

χ2
α1

(m).

Based on Eq. 10, both α2 and β can be determined easily.

Theorem 1 Algorithm 2 returns a c2-ANN with probability
at least 1/2 − 1/e.

Proof Due to Lemma 5, we find that E1 and E2 can hold
at same time with probability at least 1/2 − 1/e under such
parameters. Now we show that when E1 and E2 hold, the
output of Algorithm 2 is c2-approximate. We denote the set
of points whose projected distances to q are smaller than tr
as C(r). When enlarging r = 1, c, c2, · · · , there must exist a
radius ropt that makes |C(ropt)| ≥ 1+βn and |C(ropt/c)| <

1 + βn hold. Then, if r∗ = ||o∗, q|| ≤ ropt/c, its projected
distance to q is smaller than tropt/c according to E1, we
must have found it in C(ropt) due to C(ropt) ⊃ C(ropt/c),
Algorithm 2 returns the exact NN; if r = ||o∗, q|| > ropt/c,

according to E2, there is at least a point in C(ropt) whose
distance to q is at most cropt . Therefore, we return a point
whose distance to q is smaller than c2r∗. ��
Algorithm analysis of PM-LSH In PM-LSH, if we choose
a large m, it will be costly to process a sequence of range
queries in the projected space. Sowe considerm as a constant
and fix its value at 15 in all experiments.

Theorem 2 PM-LSH has space cost O(n) and time cost
O(log n + βn), where β is much smaller than 1.

Proof The space consumption is due mainly to the PM-tree,
which has n items. Each item consumes m + O(1) space, so
the overall space consumption is O(n) as m = O(1). The
query time cost comes from two parts: 1) finding candidate
points in the PM-tree and 2) verifying the real distances of
candidate points to q. The former has cost O(log n) and the
latter has cost O(βn) when d is considered as a constant.
Therefore, the total query time is O(log n + βn). ��

6 Closest pair query processing

We proceed to cover closest pair query processing based on
PM-LSH. First, we propose a branch and bound algorithm
that processes the nodes in the PM-tree in best-first manner.
Due to the low efficiency of the branch and bound algorithm,
we further develop a radius filtering method to improve the
query efficiency while sacrificing only slightly the accuracy
of the candidate pairs found in the projected space.

6.1 Branch and bound algorithm

A straightforward method is to employ a branch and bound
search strategy on the PM-tree. First, we aim to find T point
pairs in the PM-tree with the smallest distances in the pro-
jected space. Next, we verify their distances in the original
space. Finally, we report k closest pairs as the result.

For any two nodes e1 and e2, we denote the minimum dis-
tance of any point pair (o1, o2) ∈ e1 × e2 byMindist(e1, e2),
which is computed as follows.

Mindist(e1, e2) =

max

{
maxi L B(pi),

‖e1.RO, e2.RO‖ − e1.r − e2.r

(11)

For the first term, we define a pivot-based lower bound
LB(pi) of the minimum distance between e1 and e2 w.r.t.
pi , where pi is the i th global pivot. In Fig. 6, we have two
points o1 ∈ e1 and o2 ∈ e2. According to the property of
PM-tree, we know that ‖o1, pi‖ is in the range I1:

I1 = [e1.HR[i].min, e1.HR[i].max]

123

1350 B. Zheng et al.

Fig. 6 An illustration of computing Mindist

Likewise, ‖o2, pi‖ is in the range I2:

I2 = [e2.HR[i].min, e2.HR[i].max]

We compute LB(pi) based on the triangular inequality. Since
‖o1, o2‖ ≥ |‖o1, pi‖ − ‖o2, pi‖|, if I1 overlaps I2, we have
LB(pi) = 0. Otherwise, LB(pi) is the distance between
I1 and I2. For the example in Fig. 6, we have LB(pi) =
e2.HR.min − e1.HR.max .

For the second term, we estimate the minimum distance
between e1 and e2 using their centers. We compute ‖o1, o2‖
with e2.RO as follows.

‖o1, o2‖ ≥ ‖o1, e2.RO‖ − ‖e2.RO, o2‖

We continue to compute ‖o1, e2.RO‖ with e1.RO as follows.

‖o1, e2.RO‖ ≥ ‖e1.RO, e2.RO‖ − ‖e1.RO, o1‖

Combined with the fact that ‖e1.RO, o1‖ ≤ e1.r and
‖e2.RO, o2‖ ≤ e2.r, we obtain the second term.

Let dT be the current T th smallest distance in the pro-
jected space. We access the node pairs in best-first manner
according to the ascendingMindist order.When dT is smaller
than the Mindist of the next node pair to process, the search
terminates, and T point pairs are returned for verification.

The details of Algorithm 3 are explained as follows.

1. We initialize a point pair candidate set C of size |C | = T .
We apply a self-join on each leaf node in the PM-tree and
update C and dT accordingly.

2. We maintain a priority queue PQ to store the node pairs
in ascendingMindist order. We initialize PQ by inserting
(er , er), where er is the root of the PM-tree.

3. We pop the top element (e1, e2) from PQ. If we have
Mindist(e1, e2) > dT , the procedure stops; otherwise,

Algorithm 3: Branch and Bound Algorithm
Input: A dataset D, a PM-tree T indexing the projected data and

parameters T , n, k
Output: k point pairs

1 Apply a self-join on each leaf node in T and store k found pairs
with the smallest distance in the projected sapce;

2 dT ← maximum distance of pairs in C ;
3 Initialize a priority queue PQ to store the node pairs by
ascending order of their Mindist;

4 PQ ← (T .root, T .root);
5 while PQ is not empty do
6 (e1, e2) ← PQ.Pop;
7 if Mindist(e1, e2) > dT then
8 Break;

9 foreach child node e′
1 of e1 do

10 if e′
2 is a leaf node then

11 foreach point pair (o′
1, o

′
2) in e

′
1 × e′

2 do
12 Compute ‖o′

1, o
′
2‖ and update C and dT

accordingly;

13 else
14 foreach child node e′

2 of e2 do
15 Insert (e′

1, e
′
2) into PQ;

16 Verify the original distance of each point pair in C ;
17 Return Top-k results in verified pairs;

we continue to examine (e1, e2). Note that the PM-tree
is a balanced tree and that we only consider node pairs
at the same level. Therefore, if e1 and e2 are leaf nodes,
we compute the distance of each point pair in e1 × e2 and
updateC and dT accordingly. If e1 and e2 are inner nodes,
for each child node e′

1 of e1 and each child node e
′
2 of e2,

we insert (e′
1, e

′
2) into PQ. This process terminates when

PQ is empty if it did not terminate earlier.
4. We verify the original distance of each point pair inC and

return top-k point pairs.

Example 5 In Fig. 4, for a (2, 2)-ACP query, we set T = 3.
First, we apply a self-join to all leaf nodes e3, e4, e5 and e6,
obtaining the top-3 result (o7, o15), (o2, o14) and (o6, o13)
with dT = 1.70. Then, we consider pairs of points in
different leaf nodes. We initialize PQ with (er , er). As
Mindist(er , er) = 0 < dT , we continue to insert (e1, e1),
(e2, e2), and (e1, e2) into PQ. Next, (e1, e1) and (e2, e2) are
examined. For e1’s child nodes e3 and e4, since (e3, e3) and
(e4, e4) have been examined, we only need to insert (e3, e4)
into PQ. After employing a similar operation for e2, the node
pairs in PQ are {(e1, e2), (e5, e6), (e3, e4)}. This process
proceeds until we examine (e4, e6), since Mindist(e4, e6) =
2.91 > dT . We return the top-3 pairs (o7, o15), (o2, o14) and
(o6, o13) in the projected space. We verify their distances in
the original space and return (o7, o15) and (o6, o13) as the
result.

123

PM-LSH: a fast and accurate in-memory framework for high-dimensional approximate NN and… 1351

6.2 Limitations of the branch and bound algorithm

In the branch and bound algorithm, the search procedure ter-
minates when Mindist > dT , where Mindist is used as a
lower bound distance of unexamined pairs. However, this
bound is often so loose that the algorithm efficiency suf-
fers. Specifically, due to the property of the PM-tree, the
ranges covered by two nodes at the same level overlap
with high probability. No matter how small the overlap is,
Mindist(e1, e2) = 0.

To understand this issue better, we conduct an experiment
on dataset Audio to count the number of node pairs with
Mindist = 0. We employ the branch and bound algorithm to
search the PM-tree, and we count the number of node pairs
withMindist = 0 among all verified node pairs. We find that
more than 70% of the node pairs have Mindist = 0, which
indicates that most node pairs overlap each other.

This phenomenon may be explained by the fact that PM-
trees are built so that structured clusters are achieved for
the subtrees of each node. However, the difference between
nodes is not considered during construction, due to the very
high computational cost. Therefore, if the points are located
in a dense region, the tree nodes constructed for this region
are likely to overlap very substantially due to their limited
node capacity.

Consequently, we have to examine about 90% of all pairs
in the branch and bound algorithmwhen using aPM-treewith
m = 15, which makes the algorithm degenerate to nearly a
brute-force nested loop algorithm. On the other hand, if we
lowerm to a small value, the cost of finding exact closest pairs
in the projected space may be reduced. However, a small m
may lead to an inaccurate confidence interval when estimat-
ing the correlation between original and projected distances.
As a result, we have to verify more candidate pairs to achieve
a high recall.

6.3 Improvement with radius filtering

To overcome the shortcomings of the branch and bound algo-
rithm, we provide a radius filtering method. The idea is to
compute an upper bound distance of the kth best point pair
in the original space. We then estimate a candidate distance
in the projected space based on the upper bound and use this
distance to prune unnecessary node pairs.

Specifically, we still apply a self-join on each individual
leaf node in the PM-tree. Let ub denote the upper bound dis-
tance in the original space. We verify the original distances
of all self-join pairs and initialize ub to be the current kth
smallest distance. According to Lemma 4, if a point pair
exists whose original distance is smaller than ub, its pro-
jected distance is smaller than t · ub with a high probability.
Therefore, we aim to find point pairs in the PM-tree whose
projected distance is within t ·ub. As we have already exam-

ined all point pairs in leaf nodes via self-joins, we only need
to check pairs of points from different leaf nodes.

Let (o′
1, o

′
2) be the point pair of (o1, o2) in the projected

space. We observe that there is a strong relationship between
the projected distance ‖o′

1, o
′
2‖ and the radius of their lowest

common ancestor in the PM-tree. We define the concept of
lowest common ancestor as follows.

Definition 6 (Lowest commonancestor) The lowest common
ancestor (LCA) of two points o′

1 and o
′
2 is a node e in the PM-

tree such that:

– Points o′
1 and o′

2 are stored in the subtree of e;
– No child node e′ of e exists such that o′

1 and o′
2 are also

stored in the subtree of e′.

Let R = e.r denote the radius of the LCA node e of o′
1 and o

′
2.

We assume that γ ·‖o′
1, o

′
2‖ ≤ R holds with high probability,

where the setting of parameter γ is explained later. Therefore,
in order to find point pairs with projected distance smaller
than t · ub, we only have to examine the points of nodes in
the PM-tree whose radius is smaller than γ · t · ub.

We explain the details of Algorithm 4 as follows.

1. We initialize a point pair candidate set C with size |C | =
k. We apply a self-join on each leaf node in the PM-tree,
and we compute the original distances of all pairs found.
We then update C and ub accordingly.

2. Let R = γ · t · ub be the radius used for node filtering in
the PM-tree.

3. We employ the Procedure FindLCA() that traverses the
PM-tree to find the nodes with radius smaller than R. A
node e returned by FindLCA() may not be an LCA of the
points it covers. But we can find the LCA of any point pair
it covers in the subtree of e, and the radius of the LCA is
smaller than R. Therefore, it suffices to examine the point
pairs covered by e.

4. We consider the nodes returned by FindLCA() in ascend-
ing order of their radii. The intuition is that a node with
a small radius is likely to cover point pairs with small
projected distances.

5. Weexamine the nodes in turn. For any twopointso′
1 ando

′
2

in the sub-tree of a node e, we compute ‖o′
1, o

′
2‖ and com-

pare it with t ·ub. If ‖o′
1, o

′
2‖ < t ·ub, we consider (o1, o2)

as a candidate pair. Then, we compare ‖o1, o2‖ with ub
and update both ub andC if necessary. This process stops
when we have a sufficient number of T candidate pairs
from the PM-tree.

6. We return C as the result.

Example 6 In the example in Fig. 4, the PM-tree has 4 leaf
nodes e3, e4, e5 and e6. To compute a (2, 2)-ACP query, we

123

1352 B. Zheng et al.

Algorithm 4: Radius Filtering Method
Input: A dataset D, a PM-tree T indexing the projected data and

parameters T , n, t , k, γ
Output: k point pairs

1 Apply a self-join on each leaf node in T and verify all found
point pairs;

2 count ← The number of verified pairs;
3 ub ← The kth smallest real distance in found pairs;
4 R ← γ · t · ub;
5 C ← ∅;
6 Initialize an array A to store the nodes;
7 FindLCA(T .root, R, A);
8 Sort the nodes in A in ascending order of their radii;
9 foreach node e in A do

10 foreach point pair (o1, o2) in e’s subtree do
11 if ‖o′

1, o
′
2‖ < t · ub then

12 Verify (o1, o2) and update ub;
13 count++;

14 if count > T then
15 Break;

16 if count > T then
17 Break;

18 Return All pairs in C ;

Algorithm 5: FindLCA(e, R, A)

Input: A PM-tree node e, a radius R, and an array A
Output: A

1 if e is an inner node then
2 if e.r < R then
3 Insert e into A;

4 else
5 foreach child node ei of e do
6 FindLCA(ei , R, A);

first apply a self-join to all leaf nodes and obtain the prelim-
inary top-2 pairs (o4, o8) and (o12, o14), both with distance
1. We set ub = 1. Setting t = 3 and γ = 3, we get t ·ub = 3
and R = 9.We find all inner nodes whose ranges are within 9
and obtain e2. The unverified pairs in the subtree of e2 come
from e5 × e6. As ‖o′

4, o
′
2‖ = 3.2 > 3, we skip it and pro-

cess the remaining pairs. Finally, we obtain R = 〈(o4, o8),
(o12, o14)〉.
Determining the setting of γ For any two points o′

1 and o
′
2 in

the projected space, we observe that ‖o′
1, o

′
2‖ and the radius

of their LCA have a strong correlation. Let γ = R
‖o′

1,o
′
2‖ be

the ratio of R over ‖o′
1, o

′
2‖. To ensure the quality of the

nodes returned by the radius filtering, we need to find an
appropriate setting for γ . To do so, we study the probability
density functions of γ on real datasets.

Let us take dataset Audio (Details are provided in Sec. 7)
as an example. We usem = 15 hash functions. First, we ran-
domly select 10K data points. We then index these points in
the projected space using two PM-trees withM = 2 andwith

Fig. 7 Probability density function of γ

M = 16, respectively, where M is the tree node capacity. We
obtain about 50million point pairs from 10K points. For each
pair, we compute the value of γ . Figure 7 shows probability
density functions fγ (x) for M = 2 and M = 16. It is easy
to see that the two functions have similar trends that peak
quickly and then decline quickly. Therefore, an appropriate
value of γ is very likely to be within the neighborhood of
the peak, which indicates that γ varies slightly for different
pairs. With Pr(γ) being the success probability, we choose
γ such that Pr(γ) = ∫ γ

0 fγ (x)dx = 85% for all datasets.
Note that we can enlarge the value of Pr(γ) to examine more
nodes. But this is a trade-off between accuracy and efficiency,
and Pr(γ) = 85% already provides good performance. We
analyze the cost of computing γ experimentally in Sect. 7.
Specifically, the cost is the time it takes to compute the dis-
tances of 50 million point pairs, which is acceptable when
compared with the total cost.

Promotemethods for thePM-treeThePM-tree is built bottom
up by inserting the data points one by one. When a node e
overflows after inserting M + 1 entries, we allocate a new
node e′ at the same level and partition the M + 1 entries
into the two nodes. One study [9] contributes the concept of
a Promote method that selects two points as the centers of
two nodes e and e′. It is easy to see that a different selection
of centers may lead to distinct partitioning results, which
affects the algorithmperformance.Weconsider twoPromote
methods as follows.

– m_RAD selects twopoints fromall possible combinations
as the centers such that the sum of the two covering radii
is the minimum after partitioning. This method incurs
many distance computations but is also accurate in terms
of partitioning performance.

– RANDOM selects two points as node centers at random.

It is obvious that m_RAD provides no worse partitioning
performance than RANDOM, sincem_RAD aims tominimize
the sum of the two covering radii, which represents a locally
optimal partitioning of the M + 1 entries. Consequently, the
two nodes are covered by a parent node with a small radius.

123

PM-LSH: a fast and accurate in-memory framework for high-dimensional approximate NN and… 1353

Table 3 Datasets

Dataset n (×103) d HV RC LID

Audio 54 192 0.9273 2.97 5.6

Deep 1,000 256 0.9393 1.96 12.1

NUS 269 500 0.9995 1.67 24.5

MNIST 60 784 0.9531 2.38 6.5

GIST 983 960 0.9670 1.94 18.9

Cifar 50 1,024 0.9457 1.97 9.0

Trevi 100 4,096 0.9432 2.95 9.2

In this case, the radius filtering strategy enables to obtain T
candidate pairs with a higher quality.

Algorithm analysis of radius filtering In the radius filtering
method, as we have n(n − 1)/2 pairs, we set T = βn(n −
1)/2 + k, which is similar to the setting for the NN query.

Theorem 3 PM-LSH answers an ACP query with space cost
O(n) and time cost O(βn2), where β is much smaller than
1.

Proof The space consumption is due mainly to the PM-tree
with n points. Each point consumes m + O(1) space, so the
overall space consumption is O(n) as m = O(1). The query
time cost stems from two operations: 1) finding candidate
pairs in the PM-tree and 2) verifying the real distances of
candidate pairs. Both operations have cost O(T) when d is
considered as a constant. According to the setting of T , the
total query time is O(βn2). ��

7 Experiments

We report on extensive experiments with real datasets that
offer insight into the performance of PM-LSH for both NN
and CP queries.

7.1 Experimental settings

All the algorithms are implemented in C++ compiled with
the O3 optimization. All experiments are run on a Linux
machine with an Intel 3.4GHz CPU and 32GB memory.

Datasets We use seven real datasets: Audio, Deep, NUS,
MNIST, GIST, Cifar, and Trevi, which are used widely
in existing LSH studies [18,27,33,34,47]. Table 3 reports
key statistics of the datasets: Homogeneity of Viewpoints
(HV [10]), Relative Contrast (RC [25]), and Local Intrin-
sic Dimensionality (LID [2]). RC computes the ratio of the
mean distance to the NN distance for the data points. LID
computes the local intrinsic dimensionality.A smallRCvalue
and a large LID value imply that it is challenging to compute
NN results for the dataset. HV evaluates the homogeneity

of the distance distributions of the data points. A higher HV
means that the points are more likely to have similar distance
distributions.

Query set For NN queries, we randomly select 200 points
from each dataset and repeat each experiment 20 times.
We set the default value of c to 1.5, and vary its value in
{1.1, 1.2, . . . , 2.0}. We vary the value of k in {1, 10, 20,
. . . , 100} and set the default value to 50. For CP queries,
we repeat each experiment 20 times and report the average
value. We vary the value of k in {1, 10, 102, . . . , 104} and
set the default value to 103. The default value of c is 4 in
PM-LSH and LSB-tree.

Competing algorithms For NN queries, we compare PM-
LSH with the following competitors:

1. Multi-Probe [35]: A probing sequence (PS)-based algo-
rithm.

2. QALSH [27]: A radius enlarging (RE)-based algorithm.
3. SRS [47]: A metric indexing (MI)-based algorithm.
4. R-LSH: In order to study the advantages of the PM-tree

over the R-tree, we index the points in the projected space
with an R-tree instead of a PM-tree to see how PM-LSH
then performs. We call this method R-LSH.

5. LScan: We consider a linear scan algorithm called LScan
that randomly selects a portion of points (default 70%)
and returns the top-k points with the smallest distances to
the query.

For CP queries, we compare PM-LSH with the following
competitors:

1. LSB-tree [49]: The LSB-tree supports both NN and CP
queries.

2. M k CP [19]: MkCP supports CP queries with the M-tree.
We choose the variant called GMA that uses grouping and
N-consider techniques that enables trade-offs between
time and accuracy.

3. ACP-P [7]: The state-of-the-art solution for CP queries.
4. NLJ: Nested loop join (NLJ) is an exact algorithm that

computes the distance between any two points with two
nested loops and then returns the top-k CPs.

Parameter settings For NN queries, we choose m = 15 hash
functions for all the algorithms except QALSH and Multi-
Probe. In our method, we set the number of pivots s = 5 and
α1 = 1/e, so α2 = 0.1405 and β = 0.2809 are obtained
according to Eq. 10, and rmin is determined according to
description in the previous section. For QALSH, the false
positive percentage β = 100/n, and the error probability
δ = 1/e. For SRS, the threshold of its early termination
condition p′

τ = 0.8107, and the maximum percentage of

123

1354 B. Zheng et al.

(a) (b) (c) (d)

Fig. 8 Performance of PM-LSH when varying s and m

points accessed in the projected space is T = 0.4010 when
c = 1.5.

For CP queries, we choosem = 15 hash functions for our
algorithm. we set the number of pivots s = 5, Pr(γ) = 0.85
and α1 = 1/e, so α2 = 0.0024 are obtained according to
Eq. 10 and thus T = α2n(n − 1) + k. For ACP-P, we set
the hyper-parameter h = 5 and range value is 5 according
to the advice of the author. For MkCP, we set the number
of grouping N = 2. For LSB-tree, the approximation ratio
c = 4.

Evaluation metricsWe adopt three metrics to assess the per-
formance of the algorithms: query time (ms for NN, s for
CP), overall ratio, and recall, where the query time quanti-
fies the algorithm efficiency and the overall ratio and recall
capture result quality. For an NN query q, we denote the
result of a (c, k)-ANN query by R = 〈o1, o2, · · · , ok〉. Let
R∗ = 〈o∗

1, o
∗
2, · · · , o∗

k 〉 be the exact kNNs. The overall ratio
and recall are computed as follows.

OverallRatio = 1

k

k∑
i=1

‖q, oi‖
‖q, o∗

i ‖
(12)

Recall = |R ∩ R∗|
|R∗| (13)

For a CP query, we denote the result of a (c, k)-ACP
query by R = 〈(o1,1, o1,2), (o2,1, o2,2), . . . , (ok,1, ok,2)〉.
Let R∗ = 〈(o∗

1,1, o
∗
1,2), (o

∗
2,1, o

∗
2,2), . . . , (o

∗
k,1, o

∗
k,2)〉 be the

exact kCPs. The recall is the same as for the NN query, and
the overall ratio is computed as follows.

OverallRatio = 1

k

k∑
i=1

‖oi,1, oi,2‖
‖o∗

i,1, o
∗
i,2‖

(14)

7.2 Evaluation of NN Query processing

To evaluate the performance of PM-LSH for NN query
processing, we first conduct an evaluation to determine
parameter settings. Then, we compare the performance of
all algorithms with default parameter settings on all datasets.

Finally, we compare the algorithms by studying the changes
of the overall ratio and recall under fixed query times.
Parameter study on PM-LSH for NN query We discuss two
parameters that may affect the performance of PM-LSH, i.e.,
the number of pivots s and the number of hash functions m.
Here, we only show results from the Trevi dataset. It is easy
to see that s only affects the query time. The overall ratio
and recall will not change when we vary the value of s. As
shown in Fig. 8a, when s changes, the query time remains
steady, which indicates that PM-LSH is largely unaffected
by different settings for s. When using a larger number of
pivots, we have a higher chance to prune subtrees in the PM-
tree. However, the cost of checking on the pruning condition
also increases. In conclusion, we set s = 5.

As shown in Fig. 8, when the value of m increases, we
obtain a higher overall ratio and recall, but the query time
also increases. The higher quality occurs because a larger
m can lead to more accurate distance estimation. However,
the average cost to retrieve a point from the PM-tree also
increases. Taking both efficiency and accuracy into consid-
eration, we set m = 15.

When comparing PM-LSH with R-LSH, we observe in
all the experiments that PM-LSH outperforms R-LSH on all
metrics, which confirms the expected superiority of the PM-
tree over the R-tree.
Performance overview of NN query To compare all the
algorithms with default parameter settings, we report the
query time (ms), overall ratio, and recall on all datasets in
Table 4. PM-LSH is more efficient than the competitors on
all datasets, and its overall ratio and recall are also better
than those of its competitors. Moreover, we find that either
query time, overall ratio, or recall depend only slightly on
the dataset dimensionality. For instance, Audio,MNIST, and
Cifar have nearly the same cardinality, but different dimen-
sionality, i.e., 192, 784, and 1024. However, the query times
of PM-LSH on them vary much and it is not only affected
by data dimensionality. So we explain it by query time is
affected by data distribution. In Table 3, we can see that the
dataset NUS and GIST have large LID values and small RC
values, so they are considered as challenging datasets. As

123

PM-LSH: a fast and accurate in-memory framework for high-dimensional approximate NN and… 1355

Table 4 Performance overview
of NN queries

PM-LSH SRS QALSH Multi-Probe R-LSH LScan

Audio Query time (ms) 13.5 15.3 22.5 15.3 14.2 19.6

Overall ratio 1.0014 1.0025 1.0043 1.0242 1.0019 1.0073

Recall 0.9662 0.9126 0.9003 0.8669 0.9633 0.6839

MNIST Query Time (ms) 12.3 18.4 24.7 19.1 16.2 60.3

Overall ratio 1.0076 1.0101 1.0085 1.0103 1.0095 1.0276

Recall 0.8857 0.8514 0.8655 0.8502 0.8705 0.7073

NUS Query time (ms) 125.7 142.1 133.2 125.9 129.6 176.8

Overall ratio 1.0009 1.0015 1.0027 1.0025 1.0011 1.0053

Recall 0.9257 0.9247 0.8677 0.8782 0.9214 0.7057

Trevi Query time (ms) 37.2 47.9 145.5 239.3 63.9 57.68

Overall ratio 1.0004 1.0015 1.0029 1.0057 1.0044 1.0084

Recall 0.9961 0.9342 0.8240 0.8534 0.9568 0.7103

Cifar Query time (ms) 11.6 16.1 38.3 26.8 35.6 58.2

Overall ratio 1.0009 1.0025 1.0057 1.0038 1.0056 1.0125

Recall 0.9746 0.9624 0.7917 0.8011 0.9610 0.7081

GIST Query time (ms) 398.7 452.5 627.7 782.9 425.3 1528.3

Overall ratio 1.0047 1.0049 1.0037 1.0053 1.0059 1.0076

Recall 0.8436 0.8145 0.8534 0.8122 0.8098 0.7023

Deep Query time (ms) 227.8 252.9 458.2 401.4 457.5 507.5

Overall ratio 1.0037 1.0077 1.0124 1.0112 1.0152 1.0145

Recall 0.8816 0.8894 0.646 0.8118 0.8801 0.6938

The data are in bold since PM-LSH has a better performance with smaller query times, smaller ratio, and
higher recall

(a) (b) (c)

Fig. 9 Performance on Cifar when varying k of NN queries

shown in Table 4, they have larger query times than the other
datasets.
Effect of k In this set of experiments, we study the perfor-
mance when varying the value of k in {1, 10, 20, · · · , 100}.
Due to the space limitation, we only report the performance
on three datasets, i.e., Deep, Cifar, and Trevi. The results are
shown in Figs. 9, 10, and 11. In the Cifar and Trevi datasets,
we can see that PM-LSH achieves the best performance on
all the aspects. SRS is the second-best algorithm.When using

the Deep dataset, PM-LSH has the smallest query time and
overall ratio, and its recall is close to that of SRS.

As k increases, all algorithms achieve a higher overall ratio
and a smaller recall, but the query time is relatively steady. In
fact, the algorithms return the best k objects from a candidate
set whose size exceeds βn+k. Therefore, a larger k has little
affect on the query time but obviously has an adverse effect
on the result quality.

When considered across different datasets with different
cardinality n and dimension d, PM-LSH exhibits a consistent

123

1356 B. Zheng et al.

(a) (b) (c)

Fig. 10 Performance on deep when varying k of NN queries

(a) (b) (c)

Fig. 11 Performance on Trevi when varying k of NN queries

(a) (b) (c)

Fig. 12 Recall–time curve of NN queries

(a) (b) (c)

Fig. 13 Ratio–time curve of NN queries

123

PM-LSH: a fast and accurate in-memory framework for high-dimensional approximate NN and… 1357

high accuracy. This is because PM-LSH is unaffected by the
dimensionality of the datasets and because its cost is sublin-
ear in the cardinality of the datasets. In contrast, Multi-Probe
is affected significantly by the dimensionality of datasets.
The hash number of QALSH is O(n log n), so its query time
increases super-linearly with the dataset cardinality. Simi-
larly, when the dataset cardinality increases, SRS incurs a
higher query cost to find an NN in the projected space.

To sum up, PM-LSH has the smallest query time among
all competitors. In addition, the accuracy is high. Only SRS
is able to achieve a competitive recall in some cases but takes
longer query time than PM-LSH.
Recall–timeandoverall ratio–time curves In this set of exper-
iments, we evaluate the relationship between the recall or
overall ratio and the query time for (c, k)-ANN queries on all
the datasets when varying c to obtain different query times.
The results are shown in Figs. 12 and 13. As the trade-off
between the query quality and the query time is the key
trade-off, the LSH methods focus on returning a relatively
good result with a much smaller time than those of exact NN
algorithms. The results show that all algorithms return more
accurate results when more query time is used. They also
show that PM-LSH achieves superior efficiency and accu-
racywhen compared to SRS,QALSH, andMulti-Probe. This
can be explained as follows. First, PM-LSH has a better dis-
tance estimator than QALSH and Multi-Probe, so PM-LSH
outperforms them with the same number of retrieved points.
Second, PM-LSH needs lower time to obtain the same num-
ber of retrieved points since only one or two range queries
are required. In contrast, SRS needs T rounds of incremental
NN search.

7.3 Evaluation of CP Query processing

To evaluate the performance of PM-LSH for CP query pro-
cessing, we first conduct an evaluation to determine the
setting of γ and compare two Promote methods. Then, we
compare with the other competitors by varying the parameter
values. Finally, we show the changes of the overall ratio and
recall under different query times.
Determining the setting of γ In this set of experiments, we
study the effects of the node capacity M and the dataset car-
dinality on choosing γ in datasets Audio, Trevi, and NUS.
We choose M = 16 and m_RAD as defaults. We randomly
sample n′ = 10K points from each dataset. After we build
a PM-tree, we compute the value of γ for each pair and use
the probability density distribution function fγ (x) to study
the effects.

We first consider fγ (x) when varying the value of M
in {2, 16, 64}. As shown in Fig. 14, the tendency of fγ (x)
remains nearly unchanged when varying M . However, the
peak position, the peak value, and the gradient are affected
slightly by M . To make Pr(γ) = 0.85, the settings for γ

Table 5 Construction time of m_RAD and RANDOM

Dataset Construction time (s)

RANDOM m_RAD

Audio 0.82 28.75

NUS 2.84 116.81

Trevi 1.06 45.09

are different. Note that when M = 2, fγ (x) has the smallest
peak position, the largest peak value, and the largest gradi-
ent. This indicates that a small M yields a good partitioning.
However, a small γ increases the PM-tree size and leads to
additional computation costs. To achieve a good trade-off,
we set M = 16.

Next, we study fγ (x) when varying the number of sam-
pled points n′ in {5000, 10000, 20000}. As shown in Fig. 15,
fγ (x) changes slightly when varying n, which enables us
to determine the setting of γ by using only a subset that
preserves the information of the whole dataset. The cost of
computing γ equals the time needed to compute the distances
of 50 million point pairs formed by 10K points, which is
about 0.3s when we use m = 15 hash functions for each
dataset.
Effect of Promote methodsWe compare the performance of
two Promote methods, m_RAD and RANDOM. In Fig. 16,
we can see that the recall and overall ratio are very similar
for the two Promotemethods, but the query time of m_RAD
is smaller than that of RANDOM. This can be explained by
the fact that the PM-tree constructed with the m_RAD has a
better structure, meaning that fewer candidate pairs need to
be verified to achieve a high recall. So we choose m_RAD
as the default Promote method. On the other hand, Table 5
shows that the construction of the PM-treewithm_RAD costs
more time than with RANDOM, while still being acceptable.
Performance overview of CP query We compare the algo-
rithms with default settings on all datasets and report the
query time (s), overall ratio, and recall in Table 6.We observe
that PM-LSH has the best performance for all evaluation
metrics and datasets. To analyze what affects the query
time of PM-LSH on different datasets, we notice that Cifar
costs more time than Trevi. However, the cardinality and
dimensionality of Cifar are both smaller than those of Trevi,
indicating that the query time is not only affected by the
dataset cardinality and dimensionality. Other factors, includ-
ing the data distribution, also have an effect. All algorithms
exhibit a poor performance on NUS. This can be explained
by NUS having a small RC value and a large LID value,
which make it challenging to compute CP queries. MkCP
has the worst performance on all datasets. The reason is that
MkCP uses the M-Tree to index points directly, causing vul-
nerability to the effect of the curse of dimensionality. For

123

1358 B. Zheng et al.

(a) (b) (c)

Fig. 14 Effect of M for fγ (x)

(a) (b) (c)

Fig. 15 Effect of dataset cardinality for fγ (x)

(a) (b) (c)

Fig. 16 Effect of Promote methods

high-dimensional datasets, theMkCPquery algorithmnearly
degenerates to being a brute-force algorithm. In practice,
operations such as computing lower bounds and maintain-
ing priority queues incur additional costs.
Effect of k Next, we study the performance when varying
the value of k in {1, 10, 102, 103, 104}. For brevity, we only
report the performance on datasets Audio, Trevi, and NUS.
We chooseAudio andNUS instead ofCifar andDeep because
MkCPandACP-P are inefficient for the latter two.The results
are shown in Figs. 17, 18 and 19.

We notice that with the increase of k, most algorithms
have longer query times and worse recall and overall ratio.
The reason for a larger query time is that k affects the number
of candidate pairs. PM-LSH, ACP-P, and MkCP all use the

kth smallest distance for pruning, so a large k means that
more candidate pairs must be verified. LSB-Tree returns the
best k objects from nearly fixed-size candidate sets, so its
query time increases only slowly with k. An exceptional case
occurs for the LSB-tree on NUS. The overall ratio improves
with the increase of k. This is becausemany pairs have almost
the same distances. When the result size increases, although
the exact results are not found, the ratio of the distance of i th
returned pair over that of i th exact pair decreases.

When considered across datasets, PM-LSHexhibits a con-
sistent high accuracy. However, for each algorithm, the query
time varies substantially across the different datasets, which
can be explained by three observations. (1) The query time is
affected significantly by dataset cardinality n. For instance,

123

PM-LSH: a fast and accurate in-memory framework for high-dimensional approximate NN and… 1359

Table 6 Performance overview
of CP queries

PM-LSH LSB-tree ACP-P MkCP NLJ

Audio Query time (s) 0.83 12.82 384.60 756.26 388.03

Overall ratio 1.002 1.004 1.004 1.083 1.000

Recall 0.964 0.911 0.930 0.288 1.000

MNIST Query time (s) 33.59 38.80 597.53 2946.45 1900.42

Overall ratio 1.004 1.006 1.005 1.103 1.000

Recall 0.937 0.911 0.928 0.313 1.000

NUS Query time (s) 107.03 179.43 921.19 / 23322.10

Overall ratio 1.298 3.904 1.669 / 1.000

Recall 0.446 0.005 0.190 / 1.000

Trevi Query time (s) 10.92 66.96 933.33 / 28400.6

Overall ratio 1.014 1.019 1.016 / 1.000

Recall 0.946 0.905 0.918 / 1.000

Cifar Query time (s) 91.83 106.18 376.17 4140.29 2609.30

Overall ratio 1.034 1.070 1.047 1.094 1.000

Recall 0.721 0.499 0.619 0.449 1.000

GIST Query time (s) 81.77 125.45 985.02 / 590321.43

Overall ratio 1.101 1.998 1.283 / 1.000

Recall 0.772 0.16 0.504 / 1.000

Deep Query time (s) 128.74 132.73 129.16 / 174900.00

Overall ratio 2.337 2.420 7.115 / 1.000

Recall 0.445 0.427 0.192 / 1.000

The data are in bold since PM-LSH has a better performance with smaller query times, smaller ratio, and
higher recall

(a) (b) (c)

Fig. 17 Performance on audio when varying k of CP queries

the query times of PM-LSH, the LSB-tree, and ACP-P are
subquadratic to n; the query time of MkCP is O(n2) in the
worst case. (2) The query time is affected by dataset dimen-
sionality d. All algorithms need to verify candidate pairs, and
the cost is linear in d. (3) The data distribution also affects
the query time, which is a key determining factor for when
the algorithms terminate.

To sum up, PM-LSH has the smallest query time among
all competitors. In addition, the accuracy is high. Only LSB-

tree is able to achieve a competitive recall in some cases but
takes longer query time than PM-LSH.
Recall–time and overall ratio–time curves We proceed to
study the relationship between the recall or overall ratio and
the query time for (c, k)-ACPqueries on all the datasetswhen
varying their configurations to obtain different query times,
such as c for PM-LSH, N for MkCP, L for the LSB-tree, and
repeat times for ACP-P. The results are shown in Figs. 20 and
21 . As the query quality and the query time represent the key
trade-off, the algorithms focus on returning relatively good

123

1360 B. Zheng et al.

(a) (b) (c)

Fig. 18 Performance on NUS when varying k of CP queries

(a) (b) (c)

Fig. 19 Performance on Trevi when varying k of CP queries

(a) (b) (c)

Fig. 20 Recall–time curve of CP queries

(a) (b) (c)

Fig. 21 Ratio–time curve of CP queries

123

PM-LSH: a fast and accurate in-memory framework for high-dimensional approximate NN and… 1361

results with much smaller query times than those of exact CP
algorithms. The results show that all algorithms return more
accurate results when more query time is used. They also
show that PM-LSH achieves superior efficiency and accu-
racy when compared to the LSB-tree, ACP-P, and MkCP.
This can be explained as follows. First, PM-LSH has a better
distance estimator than the LSB-tree andACP-P, so PM-LSH
outperforms them with the same number of retrieved points.
Second, PM-LSH uses a radius filtering technique to gener-
ate candidate pairs, which reduces substantially the cost of
generating candidate pairs and provides awell-designed con-
dition to terminate the process early. Third, the hyper-ball and
hyper-ring space partitioning help reduce unnecessary ver-
ification overhead. In addition, although MkCP also finds
approximate closest pairs in a space partitioning tree, it
indexes high-dimensional data directly, which makes prun-
ing difficult. Therefore, its query time is much larger than
those of the other methods.

8 Related work

8.1 LSH for nearest neighbor search

Locality-sensitive hashing (LSH) is a prominent approach to
speeding up the processing of approximate nearest neighbor
querying [5,15,16,20,35]. LSH was originally proposed by
Indyk et al. [28] for the use in Hamming space, and it has
since attracted substantial attention due to its excellent per-
formance. Datar et al. [15] propose an LSH function based on
p-stable distributions in Euclidean space, which has become
a mainstream method that yields low computation cost, a
simple geometric interpretation, and a good quality guar-
antee. Since then, many LSH methods build on this work
to choose hash functions [18,23,27,35,47,48]. In addition to
the competitors introduced in Sect. 3, other proposals also
deserve mention. Based on a rigorous theoretical analysis,
Panigrahy et al. [39] propose an entropy-based LSH, and
Satuluri et al. [43] propose a BayesLSH. The former tries to
reduce the number of hash tables by usingmultiple perturbed
queries, and the latter aims to reduce the query time by esti-
mating the similarity between data and query objects based
on Bayes rule. However, both yield limited performance
improvements as the assumptions made on the underlying
dataset are hard to satisfy and verify. Another interesting
proposal is LazyLSH [54], which supports queries in multi-
ple l p spaces by using one index, thus effectively reducing
the space overhead. Another line of hashing-based methods
is learning to hash (L2H) [50], which is orthogonal to our
work. LSH uses predefined hash functions without consid-
ering the underlying dataset, while L2H learns tailored data
dependent hash functions. Many learning algorithms have
been proposed, such as iterative quantization (ITQ) [21], and
generate-to-probe QD ranking (GQR) [33].

8.2 High-dimensional closest pair search

Closest pair (CP) search is an important problem in the
databasedomain.Early studies targetmainly low-dimensional
closest pair search [12,13,26,29,44,45]. They adopt spatial
index structures, such as the R-tree and Quadtree and their
variants, to organize the data. However, these methods fail
to handle high-dimensional closest pair search due to the
curse of dimensionality. Corral et al. [11] propose a join
method based on the VA-file, which is an array structure
rather than a tree structure. Angiulli et al. [4] adopt the Z-
curve to reduce the dimensionality and generate candidates
in one-dimensional spaces. Tao et al. [49] propose an LSB-
tree that uses a compound hash function to project points
into a low-dimensional space. Next, they adopt the Z-curve to
map the projected points into one-dimensional values that are
indexed by aB-tree. Candidate point pairs are generated from
the points with the same Z-values. However, L = O(

√
n) B-

trees are required, thus causing a large space consumption.
Mueen et al. [37] partition the data based on their distances
to a pivot point and thus convert the high-dimensional data
into a one-dimensional space. Other studies use LSH [32,52]
or random projection [7] to reduce the dimensionality. For
instance, Cai et al. [7] project the data directly into a one-
dimensional space. Nearby points in the projected space are
considered as candidate point pairs. However, the distance
estimation is inaccurate and leads to unnecessary verifica-
tion.

Unlike the previously covered methods that use dimen-
sion reduction, yet other studies organize the original data
directly by means of novel index structures, such as the LTC
index [40], the multi-ball [17,31], and the eD-Index [41].
Specifically, Gao et al. [19] propose several efficient algo-
rithms using the count M-tree. However, these methods still
suffer from the curse of dimensionality.

In addition, distributed indexing-based approaches [32,
51] are proposed to accelerate CP search. These enable in-
memory processing of large-scale datasets.

9 Conclusion

We present a fast and accurate in-memory framework, called
PM-LSH, for computing (c, k)-ANN and (c, k)-ACP queries
with theoretical result quality guarantees. For NN queries,
we first adopt the PM-tree to index the data points to be
queried in a projected space. Second, in order to improve
the distance estimation accuracy in the projected space, we
develop a tunable confidence interval on the projected dis-
tance w.r.t. a given original distance. Finally, we propose an
efficient algorithm to compute the PM-tree range queries.
The experimental study using 7 widely used datasets shows
that PM-LSH outperforms five competitors in terms of both

123

1362 B. Zheng et al.

query efficiency and result accuracy. Specifically, PM-LSH
improves the query time by an average of 30% when com-
pared to the closest competitor (SRS). When all competitors
are given the approximately same query time, PM-LSH
improves the recall by about 10% when compared to the
closest competitor (SRS).

For CP queries, we also use the PM-tree to index the
points in the projected space. Next, we propose a radius fil-
tering technique for finding closest pairs on the PM-tree.
The experimental study shows that PM-LSH outperforms
four competitors in terms of both query efficiency and result
accuracy. Specifically, PM-LSH improves the query time by
an average of 40% when compared to the closest competitor
(LSB-tree). When all the competitors are given the approx-
imately same query time, PM-LSH improves the recall by
about 50% when compared to the closest competitor (LSB-
tree).

Acknowledgements This research is supported in part by the NSFC
(GrantsNo. 61902134, 62011530437), theHubeiNatural ScienceFoun-
dation (Grant No. 2020CFB871), and the Fundamental Research Funds
for the Central Universities (HUST: Grants No. 2019kfyXKJC021,
2019kfyXJJS091).

References

1. Abdulhayoglu, M.A., Thijs, B.: Use of locality sensitive hashing
(LSH) algorithm to match web of science and scopus. Scientomet-
rics 116(2), 1229–1245 (2018)

2. Amsaleg, L., Chelly, O., Furon, T., Girard, S., Houle, M.E.,
Kawarabayashi, K., Nett,M.: Estimating local intrinsic dimension-
ality. In: KDD, pp. 29–38 (2015)

3. Andoni, A., Indyk, P.: LSH algorithm and implementation
(E2LSH) (2016)

4. Angiulli, F., Pizzuti, C.: An approximate algorithm for top-k closest
pairs join query in large high dimensional data. Data Knowl. Eng.
53(3), 263–281 (2005)

5. Bawa, M., Condie, T., Ganesan, P.: LSH forest: self-tuning indexes
for similarity search. In: WWW, pp. 651–660 (2005)

6. Beckmann, N., Kriegel, H.. Schneider, R., Seeger, B.: The R*-tree:
an efficient and robust access method for points and rectangles. In:
SIGMOD, pp. 322–331 (1990)

7. Cai, X., Rajasekaran, S., Zhang, F.: Efficient approximate algo-
rithms for the closest pair problem in high dimensional spaces. In:
PAKDD (3), volume 10939 of Lecture Notes in Computer Science,
pp. 151–163 (2018)

8. Chen, L., Gao, Y., Li, X., Jensen, C.S., Chen, G.: Efficient metric
indexing for similarity search. In: ICDE, pp. 591–602 (2015)

9. Ciaccia, P., Patella, M., Rabitti, F., Zezula, P.: Indexing metric
spaces with m-tree. In: SEBD, pp. 67–86 (1997)

10. Ciaccia, P., Patella, M., Zezula, P.: A cost model for similarity
queries in metric spaces. In: PODS, pp. 59–68 (1998)

11. Corral, A., D’Ermiliis, A.,Manolopoulos, Y., Vassilakopoulos,M.:
VA-files versus R*-trees in distance join queries. In: ADBIS, vol-
ume 3631 of Lecture Notes in Computer Science, pp. 153–166
(2005)

12. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos,
M.: Closest pair queries in spatial databases. In: SIGMOD, pp.
189–200 (2000)

13. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos,
M.: Algorithms for processing k-closest-pair queries in spatial
databases. Data Knowl. Eng. 49(1), 67–104 (2004)

14. Das,A.,Datar,M.,Garg,A.,Rajaram,S.:Google newspersonaliza-
tion: scalable online collaborative filtering. In:WWW, pp. 271–280
(2007)

15. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-
sensitive hashing scheme based on p-stable distributions. In:
Symposium on Computational Geometry, pp. 253–262 (2004)

16. Dong,W.,Wang, Z., Josephson,W., Charikar,M., Li, K.:Modeling
LSH for performance tuning. In: CIKM, pp. 669–678 (2008)

17. Fredriksson, K., Braithwaite, B.: Quicker similarity joins in metric
spaces. In: SISAP, volume 8199 of Lecture Notes in Computer
Science, pp. 127–140 (2013)

18. Gan, J., Feng, J., Fang, Q., Ng, W.: Locality-sensitive hashing
scheme based on dynamic collision counting. In: SIGMOD, pp.
541–552 (2012)

19. Gao, Y., Chen, L., Li, X., Yao, B., Chen, G.: Efficient k-closest pair
queries in general metric spaces. VLDB J. 24(3), 415–439 (2015)

20. Gionis, A., Indyk, P.,Motwani, R.: Similarity search in high dimen-
sions via hashing. In: VLDB, pp. 518–529 (1999)

21. Gong,Y., Lazebnik, S., Gordo,A., Perronnin, F.: Iterative quantiza-
tion: a procrustean approach to learning binary codes for large-scale
image retrieval. TPAMI 35(12), 2916–2929 (2013)

22. Gutierrez, G., Sáez, P.: The k closest pairs in spatial databases—
when only one set is indexed. GeoInformatica 17(4), 543–565
(2013)

23. Haghani, P., Michel, S., Aberer, K.: Distributed similarity search
in high dimensions using locality sensitive hashing. In: EDBT, pp.
744–755 (2009)

24. Harris, J., Stöcker, H.: Handbook of Mathematics and Computa-
tional Science (1998)

25. He, J., Kumar, S., Chang, S.: On the difficulty of nearest neighbor
search. In: ICML (2012)

26. Hjaltason, G.R., Samet, H.: Incremental distance join algorithms
for spatial databases. In: SIGMOD, pp. 237–248 (1998)

27. Huang, Q., Feng, J., Zhang, Y., Fang, Q., Ng, W.: Query-aware
locality-sensitive hashing for approximate nearest neighbor search.
PVLDB 9(1), 1–12 (2015)

28. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards
removing the curse of dimensionality. In: STOC, pp. 604–613
(1998)

29. Kim, Y.J., Patel, J.M.: Performance comparison of the R∗-tree and
the quadtree for knn and distance join queries. TKDE 22(7), 1014–
1027 (2010)

30. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for
scalable image search. In: ICCV, pp. 2130–2137 (2009)

31. Kurasawa, H., Takasu, A., Adachi, J.: Finding the k-closest pairs
in metric spaces. In: NTSS, pp. 8–13 (2011)

32. Li, H., Nutanong, S., Xu, H., Yu, C., Ha, F.: C2net: a network-
efficient approach to collision counting LSH similarity join. TKDE
31(3), 423–436 (2019)

33. Li, J., Yan, X., Zhang, J., Xu, A., Cheng, J., Liu, J., Ng, K. K. W.,
Cheng, T.: A general and efficient querying method for learning to
hash. In: SIGMOD, pp. 1333–1347 (2018)

34. Li, W., Zhang, Y., Sun, Y., Wang, W., Li, M., Zhang, W., Lin, X.:
Approximate nearest neighbor search on high dimensional data—
experiments, analyses, and improvement. TKDE 32(8), 1475–1488
(2020)

35. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe
LSH: efficient indexing for high-dimensional similarity search. In:
VLDB, pp. 950–961 (2007)

36. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Intelli-
gent probing for locality sensitive hashing: multi-probe LSH and
beyond. PVLDB 10(12), 2021–2024 (2017)

123

PM-LSH: a fast and accurate in-memory framework for high-dimensional approximate NN and… 1363

37. Mueen, A., Keogh, E. J., Zhu, Q., Cash, S., Westover, M. B.: Exact
discovery of time series motifs. In: SDM, pp. 473–484 (2009)

38. Narang, A., Bhattacherjee, S.: Real-time approximate range motif
discovery and data redundancy removal algorithm. In: EDBT, pp.
485–496 (2011)

39. Panigrahy, R.: Entropy based nearest neighbor search in high
dimensions. In: SODA, pp. 1186–1195 (2006)

40. Paredes, R., Reyes, N.: Solving similarity joins and range queries in
metric spaces with the list of twin clusters. J. Discrete Algorithms
7(1), 18–35 (2009)

41. Pearson, S.S., Silva, Y.N.: Index-based R-S similarity joins. In:
SISAP, volume 8821 of Lecture Notes in Computer Science, pp.
106–112 (2014)

42. Pirbonyeh, M., Rezaie, V., Parvin, H., Nejatian, S., Mehrabi, M.:
A linear unsupervised transfer learning by preservation of cluster-
and-neighborhood data organization. Pattern Anal. Appl. 22(3),
1149–1160 (2019)

43. Satuluri, V., Parthasarathy, S.: Bayesian locality sensitive hashing
for fast similarity search. PVLDB 5(5), 430–441 (2012)

44. Shan, J., Zhang, D., Salzberg, B.: On spatial-range closest-pair
query. In: SSTD, volume 2750 of Lecture Notes in Computer Sci-
ence, pp. 252–269 (2003)

45. Shin, H., Moon, B., Lee, S.: Adaptive and incremental processing
for distance join queries. TKDE 15(6), 1561–1578 (2003)

46. Skopal, T., Pokorný, J., Snásel, V.: Nearest neighbours search using
the PM-tree. In: DASFAA, pp. 803–815 (2005)

47. Sun, Y., Wang, W., Qin, J., Zhang, Y., Lin, X.: SRS: solv-
ing c-approximate nearest neighbor queries in high dimensional
Euclidean space with a tiny index. PVLDB 8(1), 1–12 (2014)

48. Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Quality and efficiency in high
dimensional nearest neighbor search. In: SIGMOD, pp. 563–576
(2009)

49. Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Efficient and accurate nearest
neighbor and closest pair search in high-dimensional space. ACM
Trans. Database Syst. 35(3), 20:1–20:46 (2010)

50. Wang, J., Zhang, T., Song, J., Sebe, N., Shen, H.T.: A survey on
learning to hash. TPAMI 40(4), 769–790 (2018)

51. Wang, Y., Metwally, A., Parthasarathy, S.: Scalable all-pairs simi-
larity search in metric spaces. In: KDD, pp. 829–837 (2013)

52. Yu, C., Nutanong, S., Li, H.,Wang, C., Yuan, X.: A generic method
for accelerating lsh-based similarity join processing. TKDE 29(4),
712–726 (2017)

53. Zheng, B., Zhao, X.,. Weng, L., Hung, N. Q. V., Liu, H., Jensen. C.
S.: PM-LSH: A fast and accurate LSH framework for highdimen-
sional approximate NN search. PVLDB 13(5):643–655 (2020)

54. Zheng, Y., Guo, Q., Tung, A.K.H., Wu, S.: Lazylsh: approximate
nearest neighbor search for multiple distance functions with a sin-
gle index. In: SIGMOD, pp. 2023–2037 (2016)

55. Zhou, X., Wu, B., Jin, Q.: Analysis of user network and correla-
tion for community discovery based on topic-aware similarity and
behavioral influence. IEEE Trans. Hum. Mach. Syst. 48(6), 559–
571 (2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	PM-LSH: a fast and accurate in-memory framework for high-dimensional approximate NN and closest pair search
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem definition
	2.2 Basic locality-sensitive hashing

	3 A unified interpretation of LSH
	3.1 Main competitors
	3.2 A way of probing

	4 The PM-LSH framework
	4.1 Building a PM-tree in the projected space
	4.2 Cost models of the PM-tree versus the R-tree
	4.3 Tunable confidence interval

	5 Nearest neighbor query processing
	5.1 The (r,c)-BC query
	5.2 The (c,k)-ANN query
	5.3 Theoretical analysis

	6 Closest pair query processing
	6.1 Branch and bound algorithm
	6.2 Limitations of the branch and bound algorithm
	6.3 Improvement with radius filtering

	7 Experiments
	7.1 Experimental settings
	7.2 Evaluation of NN Query processing
	7.3 Evaluation of CP Query processing

	8 Related work
	8.1 LSH for nearest neighbor search
	8.2 High-dimensional closest pair search

	9 Conclusion
	Acknowledgements
	References

