
The VLDB Journal (2021) 30:989–1015
https://doi.org/10.1007/s00778-021-00672-7

REGULAR PAPER

ExactSim: benchmarking single-source SimRank algorithms with
high-precision ground truths

Hanzhi Wang1 · Zhewei Wei2 · Yu Liu3 · Ye Yuan4 · Xiaoyong Du5 · Ji-Rong Wen6

Received: 4 August 2020 / Revised: 23 February 2021 / Accepted: 17 April 2021 / Published online: 5 June 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
SimRank is a popular measurement for evaluating the node-to-node similarities based on the graph topology. In recent
years, single-source and top-k SimRank queries have received increasing attention due to their applications in web mining,
social network analysis, and spam detection. However, a fundamental obstacle in studying SimRank has been the lack of
ground truths. The only exact algorithm, Power Method, is computationally infeasible on graphs with more than 106 nodes.
Consequently, no existing work has evaluated the actual accuracy of various single-source and top-k SimRank algorithms
on large real-world graphs. In this paper, we present ExactSim, the first algorithm that computes the exact single-source and
top-k SimRank results on large graphs. This algorithm produces ground truths with precision up to 7 decimal places with
high probability. With the ground truths computed by ExactSim, we present the first experimental study of the accuracy/cost
trade-offs of existing approximate SimRank algorithms on large real-world graphs and synthetic graphs. Finally, we use the
ground truths to exploit various properties of SimRank distributions on large graphs.

Keywords SimRank · Single-source · Exact computation · Ground truths · Power-law · Benchmarks

B Zhewei Wei
zhewei@ruc.edu.cn

Hanzhi Wang
hanzhi_wang@ruc.edu.cn

Yu Liu
dokiliu@pku.edu.cn

Ye Yuan
yuan-ye@bit.edu.cn

Xiaoyong Du
duyong@ruc.edu.cn

Ji-Rong Wen
jrwen@ruc.edu.cn

1 School of Information, Renmin University of China, Beijing,
China

2 Gaoling School of Artificial Intelligence, Renmin University
of China, Beijing, China

3 Wangxuan Institute of Computer Technology, Peking
University, Beijing, China

4 School of Computer Science and technology, Beijing Institute
of Technology, Beijing, China

5 MOE Key Lab DEKE, Renmin University of China, Beijing,
China

6 Beijing Key Lab of Big Data Management and Analysis
Method, Renmin University of China, Beijing, China

1 Introduction

Computing link-based similarity is an overarching problem
in graph analysis and mining. Amid the existing similarity
measures [28,37,45,46], SimRank has emerged as a popular
metric for assessing structural similarities between nodes in
a graph. SimRank was introduced by Jeh and Widom [10] to
formalize the intuition that “two pages are similar if they are
referenced by similar pages.” Given a directed graph G =
(V , E)with n nodes {v1, . . . , vn} andm edges, the SimRank
matrix S defines the similarity between any two nodes vi and
v j as follows:

S(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

1, for i = j;
∑

vi ′ ∈I(vi)

∑

v j ′ ∈I(v j)

c · S(i ′, j ′)
din(vi) · din(v j)

, for i �= j .

(1)

Here, c is a decay factor typically set to 0.6 or 0.8 [10,23].
I(vi) denotes the set of in-neighbors of vi , and din(vi)
denotes the in-degree of vi . SimRank aggregates similarities
of multi-hop neighbors of vi and v j to produce high-quality
similarity measure and has been adopted in various applica-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00672-7&domain=pdf

990 H. Wang et al.

tions such as recommendation systems [17], link prediction
[24], and graph embeddings [32].

A fundamental obstacle for studying SimRank is the lack
of ground truths on large graphs. Currently, the only meth-
ods that compute the SimRank matrix is Power Method and
its variations [10,22], which inherently takes Ω(n2) space
and at least Ω(n2) time as there are Ω(n2) node pairs in
the graphs. This complexity is infeasible on large graphs
(n ≥ 106). Consequently, the majority of recent works
[7,11,13,14,18,21,26,29,31,36,41] focus on single-source
and top-k queries. Given a source node vi , a single-source
query asks for the SimRank similarity between every node
and vi , and a top-k query asks for the k nodes with the highest
SimRank similarities to vi . Unfortunately, computing ground
truths for the single-source and top-k queries on large graphs
still remains an open problem. To the best of our knowledge,
Power Method is still the only way to obtain exact single-
source and top-k results,which is not feasible on large graphs.
Due to the hardness of exact computation, existing works on
single-source and top-k queries focus on approximate com-
putations with efficiency and accuracy guarantees.

The lack of ground truths has severely limited our under-
standing towards SimRank and SimRank algorithms. First
of all, designing approximate algorithms without the ground
truths is like shooting in the dark. Most existing works take
the following approach: they evaluate the accuracy on small
graphs where the ground truths can be obtained by the Power
Method with Ω(n2) space complexity. Then, they report
the efficiency/scalability results on large graphs with con-
sistent parameters. This approach is flawed for the reason
that consistent parameters may still lead to unfair compar-
isons. For example, some of the existing methods generate a
fixed number of random walks from each node, while others
fix the maximum error ε and generate log n

ε2
random walks

from each node. If we increase the graph size n, the com-
parison becomes unfair as the latter methods require more
random walks from each node. Secondly, it is known that
the structure of large real-world graphs can be very differ-
ent from that of small graphs. Consequently, the accuracy
results on small graphs can only serve as a rough guideline
for accessing the actual error of the algorithms in real-
world applications. We believe that the only right way to
evaluate the effectiveness of a SimRank algorithm is to eval-
uate its results against the ground truths on large real-world
graphs.

Second, the lack of ground truths has also prevented us
from exploiting the distribution of SimRank on real-world
graphs. For example, it is known [4] that the PageRank of
most real-world graphs follows the power-law distribution.
The natural question is that, does SimRank also follow the
power-law distribution on real-world graphs? Furthermore,
the performances of some existing methods [35] depend on
the density of the SimRank, which is defined as the percent-

age of node pairs with SimRank similarities larger than some
threshold ε. Analyzing the distribution or density of SimRank
is clearly infeasible without the ground truths.

Finally, the lack of ground truths restricts us to conduct
scientific benchmarking experiments towards these existing
approximation algorithms. Without insightful experimental
observations, we are hard to explore the connections between
algorithms’ characteristics and performances. For example,
what kinds of algorithms tend to show better scalabilities?
Algorithms belonging towhich categories can perform better
trade-off lines? A comprehensive benchmarking survey is
fundamentally based on the ground truths.
Exact Single-Source SimRank Computation. In this paper,
we study the problem of computing the exact single-source
SimRank results on large graphs. A key insight is that exact-
ness does not imply absolutely zero error. This is because
SimRank values may be infinite decimals, and we can only
store these values with finite precision. Moreover, we note
that the ground truths computed by Power Method also incur
an error of at most cL , where L is the number of itera-
tions in Power Method. In most applications, L is set to
be large enough such that cL is smaller than the numeri-
cal error and thus can be ignored. In this paper, we aim to
develop an algorithm that answers single-source SimRank
queries with an additive error of at most εmin = 10−7. Note
that the float type in various programming languages usually
supports precision of up to 6 or 7 decimal places. So by set-
ting εmin = 10−7, we guarantee the algorithm returns the
same answers as the ground truths in the float type. As we
shall see, this precision is extremely challenging for exist-
ing methods. To make the exact computation possible, we
are also going to allow a small probability to fail. We define
the probabilistic exact single-source SimRank algorithm as
follows.

Definition 1 With probability at least 1 − 1/n, for every
source node vi ∈ V , a probabilistic exact single-source Sim-
Rank algorithm answers the single-source SimRank query of
vi with additive error of at most εmin = 10−7.

Our Contributions In this paper, we propose ExactSim, the
first algorithm that enables probabilistic exact single-source
SimRank queries on large graphs. We show that existing
single-source methods share a common complexity term

O

(
n log n
ε2min

)

and thus are unable to achieve exactness on large

graphs. However, ExactSim runs in O

(
log n
ε2min

+ m log 1
εmin

)

time, which is feasible for both large graph size m and
small error guarantee εmin . We also apply several non-trivial
optimization techniques to reduce the query cost and space
overhead of ExactSim. In our empirical study, we show that
ExactSim is able to compute the ground truth with a preci-
sion of up to 7 decimal places within one hour on graphs with

123

ExactSim: benchmarking single-source SimRank algorithms... 991

billions of edges. Hence, we believe ExactSim is an effec-
tive tool for producing the ground truths for single-source
SimRank queries on large graphs.
Comparison with the conference version [33] We make the
following new contributions over the conference version.

– We conduct a comprehensive survey on all single-source
SimRank algorithms which can support large graphs. We
summarize the complexity of each method and analyze
the reasons why these methods cannot achieve exactness
on large graphs.

– Based on the ground truths provided by ExactSim, we
conduct the first empirical study on the accuracy/cost
trade-offs of existing approximate single-source algo-
rithms on large real-world graphs and synthetic graphs.

– We use ExactSim to exploit various properties of Sim-
Rank on large real-world graphs. In particular, we show
that the single-source SimRank values follow the power-
law distribution on real-world graphs. We also study the
density of SimRank values on large graphs.

2 Preliminaries and related work

In this section, we review the state-of-the-art single-source
SimRank algorithms which can support large graphs. We
introduce a taxonomy to classify these algorithms into three
categories: Monte Carlo methods, iterative methods, and
local push/sampling methods. Note that our ExactSim algo-
rithm is largely inspired by three prior works: Linearization
[26], PRSim [36], and pooling [21], and we will describe
them in details. In Sect. 5, we will also use the ground truths
provided by ExactSim to evaluate the algorithms mentioned
in this section. Table 1 summarizes the notations used in this
paper.

Table 1 Table of notations

Notation Description

n,m The numbers of nodes and edges in G

I(vi),O(vi) the in/out-neighbor set of node vi

S, S(i, j) The SimRank matrix and the SimRank similarity of
vi and v j

c The decay factor in the definition of SimRank

ε, εmin Additive error parameter and error required for exact-
ness (εmin = 10−7)

P , D The transition matrix and the diagonal correction
matrix

π i ,π
�
i , The Personalized PageRank and �-hop Personalized

PageRank vectors of node vi

h�
i the �-hop hitting probability vector of vi

2.1 Monte Carlo methods

A popular interpretation of SimRank is the meeting proba-
bility of random walks. In particular, we consider a random
walk from node u that, at each step, moves to a random in-
neighbor with probability

√
c, and stops at the current node

with probability 1 − √
c. Such a random walk is called a√

c-walk. Suppose we start a
√
c-walk from node vi and a√

c-walk from node v j , we call the two
√
c-walks meet if

they visit the same node at the same step. It is known [31]
that

S(i, j) = Pr[two √
c-walks from vi and v j meet]. (2)

According to Eq. (2), we can employ Monte Carlo sam-
pling to estimate S(i, j). That is, by simulating adequate
pairs of

√
c-walks from nodes vi , v j , the percentage of the

walks thatmeet in thewalking process serves as the estimator
of S(i, j). Hence, we classify the approximation algorithms
as Monte Carlo methods if they use the fraction of target
random walks to estimate the meeting probability based on
Eq. (2) or its variants. We will introduce some representative
Monte Carlomethods as below, and the complexities of these
methods are listed in Table 2.
MC [6] makes use of Eq. (2) to derive a Monte Carlo
algorithm for computing single-source SimRank. In the pre-
processing phase,we simulate R

√
c-walks fromeach node in

V . Given a source node vi , we compare the
√
c-walks from vi

and from each node v j ∈ V and use the fraction of
√
c-walks

that meet as an estimator for S(i, j). By standard concentra-
tion inequalities, the maximum error of estimated S(i, j) is

bounded by ε with high probability if we set R = O
(
log n
ε2

)
,

leading to a preprocessing time of O
(
n log n

ε2

)
.

READS [11] is an optimized version of the MC-based algo-
rithm. The key idea is to build an index of nR compressed√
c-walks such that the algorithm only needs to generate a

fewmore
√
c-walks in the query phase. An appealing feature

of READS is that its index supports efficient insertions and
deletions of edges. Consequently, READS is able to support
approximate single-source queries on large dynamic graphs.

The theoretical query cost of READS remains O
(
n log n

ε2

)
.

TSF [29] is a MC-based algorithm for single-source and top-
k SimRank queries on both static and dynamic graphs. TSF
builds an index that consists of Rg one-way graphs, each of
which contains the coupling of random walks of length T
from each node. In the query phase, TSF samples Rq more
random walks for each one-way graph to provide the final
estimators. TSF allows two random walks to meet multi-
ple times and assumes that there is no cycle with a length
shorter than T , leading to a lower precision in practice. The

123

992 H. Wang et al.

Table 2 Comparison of MC-based SimRank algorithms

Algorithm Query time Preprocessing time Index size Dynamic update time

MC [6] O
(
n log n/ε2

)
O

(
n log n/ε2

)
O

(
n log n/ε2

)
–

READS [11] O
(
n log n/ε2

)
O

(
n log n/ε2

)
O

(
n log n/ε2

)
O

(
log n/ε2

)

TSF [29] O
(
n log n/ε2

)
O

(
n log n/ε2

)
O

(
n log n/ε2

)
O

(
log n/ε2

)

Uniwalk [25] O
(
n2 ˙logn/ε2

)
0 0 O

(
n2 ˙logn/ε2

)

query time of TSF is bounded by O(nRgRq), which is in

turn bounded by O
(
n log n

ε2

)
for ε additive error.

Uniwalk [25] is a MC-based method for single-source and
top-k SimRank computation on undirected graphs. It ran-
domly generates R unidirectional random walks from the
given source node s. With the help of a rectified factor, Uni-
walk regards the probability of the node s walking along the
unidirectional path to the terminal node t as the SimRank
value S(s, t), that is, two random walks starting from s and
t meet at the midpoint of the original unidirectional path.
The query time of Uniwalk is bounded by O(RL), where L
denotes the expected length of the unidirectional path. How-
ever, the rectified factor can influence the error bound. On the

graph with a hub node, R can reach O
(
n2 ˙logn

ε2

)
for ε additive

error. Hence, the query time of Uniwalk can be bounded by

O
(
n2 ˙logn

ε2

)
.

2.2 Iterative methods

Given a graph G = (V , E), let P denote the (reverse) tran-
sition matrix, that is, P(i, j) = 1/din(v j) for vi ∈ I(v j),
and P(i, j) = 0 otherwise. S denotes the SimRank matrix.
Yu et al. [44] proved that the definition formula of SimRank
can be expressed as

S =
(
cP�SP

)
∨ I , (3)

where I denotes an n×n identity matrix and∨ is an element-
wise maximum operator that for any matrices A, B ∈
Rn×n and ∀i, j ∈ {0, 1, ..., n − 1}, (A ∨ B)(i, j) =
max{A(i, j), B(i, j)}. Equation (3) provides an iterative cal-
culation method to derive SimRank results. That is, we can
initialize S = I and repeat the iteration to update matrix S.
We classify all the SimRank algorithms as iterative methods
if they calculate SimRank values via iterative updating based

on Eq. (3) or its variants. We list all the iterative methods
which can support single-source SimRank queries on large
graphs in the following. Table 3 summarizes the complexities
of these iterative methods.
Linearization and ParSim It is shown in two independent
works, Linearization [26] and ParSim [42], that the iterative
definition Eq. (3) can be expressed as the following linear
summation:

S = cP�SP + D =
+∞∑

�=0

c�
(
P�

)�
DP�, (4)

where D is the diagonal correction matrix with each
diagonal element D(k, k) taking value from 1− c to 1. Con-
sequently, a single-source query for node vi can be computed
by

S · ei =
+∞∑

�=0

c�
(
P�

)�
DP� · ei, (5)

where ei denotes the one-hot vector with the i-th element
being1 and all other elements being0.Assuming the diagonal
matrix D is correctly given, the single-source query for node
vi can be approximated by

SL · ei =
L∑

�=0

c�
(
P�

)�
DP� · ei, (6)

where L is the number of iterations. After L iterations, the
additive error reduces to cL . So setting L = O

(
log 1

ε

)

is sufficient to guarantee a maximum error of ε. At the
�-th iterations, the algorithm performs 2� + 1 matrix–

vector multiplications to calculate c�
(
P�

)�
DP� · ei, and

each matrix-vector multiplication takes O(m) time. Conse-

quently, the total query time is bounded by O
(∑L

�=1 m�
)

=

Table 3 Comparison of iterative SimRank algorithms

Algorithm Query time Preprocessing time Index size Dynamic update time

Linearization [26] O
(
m log2 1

ε

)
O(n log 1

ε
log n

ε
log n/ε2) O(n) –

ParSim [42] O{min{m log 1
ε
, d2 log

1
ε }} 0 0 –

123

ExactSim: benchmarking single-source SimRank algorithms... 993

O(mL2) = O
(
m log2 1

ε

)
. Maehara et al. and Yu et al. also

show in [26] and [42] that if we first compute and store the
transition probability vectors u� = P� · ei for � = 0, . . . , L ,
then we can use the following equation to compute

SL · ei = D · u0 + cP�(D · u1 + · · · + cP�(D · uT−1

+ cP� · D · uT) · · ·). (7)

This optimization reduces the query time to O
(
m log 1

ε

)
,

while it requires a memory size of O(nL) = O
(
n log 1

ε

)
,

which is usually several times larger than the graph size m.
Therefore, [26] only uses the O

(
m log2 1

ε

)
algorithm in the

experiments.
Besides the large space overhead, another problem with

Linearization and ParSim is that the diagonal correction
matrix D is hard to compute. Linearization [26] formulates D
as the solution to a linear system and proposes aMonte Carlo

solution that takes O
(
n log n

ε2

)
to derive an ε-approximation

of D. On the other hand, ParSim directly sets D = (1− c)I ,
where I is the identity matrix. This approximation basically
ignores the first meeting constraint and has been adopted in
many other SimRankworks [8,9,13,16,38,39,41]. It is shown
that the similarities calculated by this approximation are dif-
ferent from the actual SimRank [13]. However, the quality of
this approximation is still a myth due to the lack of ground
truths on large graphs.

2.3 Local push/samplingmethods

Compared with Monte Carlo and iterative methods, local
push/samplingmethods locally restrict each SimRank update
operation and omit to touch a large fraction of nodes on
the graphs in each update. Hence, the time cost of each
update operation is smaller than O(n). This allows local
push/sampling methods to outperform other methods in
terms of scalability. In the following, we will present a
brief introduction to the local push/sampling single-source
SimRankmethods which can support large graphs. The com-
plexities of these methods are listed in Table 4.
SLING [31] is an index-based SimRank algorithm that sup-
ports fast single-source and top-k queries on static graphs.

Let h�
i = (√

cP
)� · ei denote the �-hop hitting probability

vector of vi . Note that h�
i describes the probability of an

√
c-

walk from node vi visiting each node at its �-th step. [31]
suggests that Eq. (5) can be rewritten as

S(i, j) =
∞∑

�=0

n∑

k=1

h�
i (k) · h�

j (k) · D(k, k). (8)

where D(k, k) denotes the k-th entry in the diagonal cor-
rection matrix D. It is shown [31] that D(k, k) can be
characterized by the meeting probability of two

√
c-walks

from the same node vk :

D(k, k) = Pr[two √
c-walks from vk never meet]. (9)

This interpretation implies a simple Monte Carlo algorithm
for estimating D(k, k): we simulate R pairs of

√
c-walks

from vk and use the fraction of pairs that do not meet as

the estimator for D(k, k). By setting R = O
(
log n
ε2

)
, we

can approximate each D(k, k) with additive error ε. SLING
precomputes each D(k, k) in the preprocessing phase using

O
(
n log n

ε2

)
time. SLING also precomputes h�

i (k) with addi-

tive error ε for each � and vi , vk ∈ V , using a local push
algorithm [2]. Given a single-source query for node vi ,
SLING retrievesh�

i (k)h
�
j (k) and D(k, k) for each v j , vk ∈ V

from the index and uses Eq. (8) to estimate S(i, j) for each
v j ∈ V . SLING answers a single-source query with time
O(min{n/ε,m}), and the index size is bounded by O

(n
ε

)
.

ProbeSim [21] is an index-free solution based on reverse
local sampling and local push. ProbeSim starts by sampling
a

√
c-walk from the source node vi . For the �-th node vk on

the
√
c-walk, ProbeSim uses a Probe algorithm to reversely

sample each node v j at level � with probability h�
j (k), the

hitting probability that any other node v j ∈ V can reach vk
at the �-th step. It is shown in [21] that each sample takesO(n)

time, and we need O
(
log n
ε2

)
samples to ensure an maximum

error of εwith high probability. Consequently, the query time

of ProbeSim is bounded by O
(
n log n

ε2

)
. ProbeSim naturally

works on dynamic graphs due to its index-free nature.

Table 4 Comparison of local push/sampling SimRank algorithms

Algorithm Query time Preprocessing time Index size Dynamic update time

SLING [31] O (n/ε) O
(
m
ε

+ n log n
δ

ε2

)
O (n/ε) -

O
(
m log2 1

ε

)

ProbeSim [21] O
(
n log n/ε2

)
0 0 O

(
n log n/ε2

)

PRSim [36] O
(
n log n · ‖π i‖2/ε2

)
. O (m/ε) O

(
min{ n

ε
,m}) -

TopSim [14] O
(
m2n/n2n

)
0 0 O

(
m2n/n2n

)

123

994 H. Wang et al.

PRSim [36] introduces a partial indexing and a probe algo-
rithm. Let π�

i = (1−√
c)h�

i = (1−√
c)

(√
cP

)� · ei denote
the �-hop Personalize PageRank vector of vi . In particular,
π�
i (k) is the probability that a

√
c-walk from node vi stops at

node vk in exactly � steps. PRSim suggests that Eq. (5) can
be rewritten as

S(i, j) = 1

(1 − √
c)2

∞∑

�=0

n∑

k=1

π�
i (k) · π�

j (k) · D(k, k). (10)

PRSim precomputes π�
j (k) with additive error ε for each �

and v j , vk ∈ V , using a local push algorithm [2]. To avoid
overwhelming index size, PRSim only precomputes π�

j (k)
for a small subset of vk . Furthermore, PRSim computes D
by estimating the product π�

i (k) · D(k, k) together with an

O
(
log n
ε2

)
time Monte Carlo algorithm. Finally, PRSim pro-

poses a new Probe algorithm that samples each node v j

according to π�
j (k). The average query time of PRSim is

bounded by

O
(
n log n

ε2
· ∑n

k=1 π(k)2
)
, where π(k) denotes the PageR-

ank of vk . It is well known that on scale-free networks, the
PageRank vector π follows the power-law distribution, and
thus, ‖π‖2 = ∑n

k=1 π(k)2 is a value much smaller than 1.
However, for worst-case graphs or even some “bad” source
nodes on scale-free networks, the running time of PRSim

remains O
(
n log n

ε2

)
.

TopSim [14] is an index-free algorithm based on local
exploitation. Given source node vi , TopSim firstly finds all
nodes vk reachable from vi within � = 1, . . . , L steps. For
each such vk on the �-th level, TopSimdeterministically com-
putes h�

j (k), the probability that each v j reaches vk in exactly
� steps. [14] also proposes various optimizations to reduce
the query cost. Due to the dense structures of real-world net-
works, TopSim is only able to exploit a few levels on large
graphs, which leads to a low precision.

2.4 Other related work

Besides the state-of-the-art methods that we discuss above,
there are several other techniques for SimRank computation,
which we review in the following. Power method [10] is the
classic algorithm that computes all-pair SimRank similari-
ties for a given graph. Power method recursively computes
the SimRank Matrix S based on Eq. (3). Several follow-up
works [23,40,44] improve the efficiency or effectiveness of
the power method in terms of either efficiency or accuracy.
However, thesemethods still incurO(n2) space overheads, as
there are O(n2) pairs of nodes in the graph. Finally, there are
existing works on SimRank similarity join [27,30,48] and the
variants of SimRank [3,6,19,43,47], but the proposed solu-

tions are inapplicable for top-k and single-source SimRank
queries.
Pooling Finally, pooling [21] is an experimental method for
evaluating the accuracyof top-k SimRank algorithmswithout
the ground truths. Suppose the goal is to compare the accu-
racy of top-k queries for z algorithms A1, . . . , Az . Given a
query node vi , we retrieve the top-k nodes returned by each
algorithm, remove the duplicates, andmerge them into a pool.
Note that there are at most �k nodes in the pool. Then, we
estimate S(i, j) for each node v j in the pool using theMonte
Carlo algorithm. We set the number of random walks to be

O

(
log n
ε2min

)

so that we can obtain the ground truth of S(i, j)

with high probability. After that, we take the k nodes with the
highest SimRank similarity to vi from the pool as the ground
truth of the top-k query and use this “ground truth” to eval-
uate the precision of each of the � algorithms. Note that the
set of these k nodes is not the actual ground truth. However,
it represents the best possible k nodes that can be found by
the � algorithms that participate in the pool and thus can be
used to compare the quality of these algorithms.

Although pooling is proved to be effective in our scenario
where ground truths are hard to obtain, it has some draw-
backs. First of all, the precision results obtained by pooling
are relative and thus cannot be used outside the pool. This is
because the top-k nodes from the pool is not the actual ground
truth. Consequently, an algorithm that achieves 100% preci-
sion in the pool may have a precision of 0% when compared
to the actual top-k result. Secondly, the complexity of pool-

ing z algorithms is O

(
kz log n
ε2min

)

, so pooling is only feasible

for evaluating top-k queries with small k. In particular, we
cannot use pooling to evaluate the single-sources queries on
large graphs.

2.5 Limitations of existingmethods

Wenow analyze the reasonswhy existingmethods are unable
to achieve exactness (a.k.a an error of at most εmin = 10−7).
First of all, ParSim and TSF ignore the first meeting con-
straint and thus incur large errors. For other methods that
enforce the first meeting constraint, they all incur a complex-

ity term of O
(
n log n

ε2

)
, either in the preprocessing phase or

in the query phase. In particular, SLING and Linearization

simulate O
(
n log n

ε2

)
random walks to estimate the diago-

nal correction matrix D. For ProbeSim, MC, READS, and
PRSim, this complexity is caused by simulating random
walks in the query phase or the preprocessing phase. The

O
(
n log n

ε2

)
complexity is infeasible for exact SimRank com-

putation on large graphs, since it combines two expensive
terms n and 1

ε2min
. As an example, we consider the IT dataset

used in our experiment, with 4∗107 nodes and over 1 billion

123

ExactSim: benchmarking single-source SimRank algorithms... 995

edges. In order to achieve a maximum error of εmin = 10−7,
we need to simulate n log n

ε2
≈ 1023 random walks. This may

take years, even with parallelization on a cluster of thousands
of machines.

Besides, there are many works focusing on all-pairs Sim-
Rank queries [9,16,23,34,38]. As we shall show in Sect. 5.3,
the number of node pairs whose SimRank values are more
than 10−4 can nearly achieve n2. For large graphs with mil-
lion nodes, like Twitter(TW) dataset with 4 × 107 nodes,
this can cost 104 TB for storage, not to mention the exact
SimRank computation for each node pair. Hence, it’s may
infeasible for exact all-pairs SimRank computation within
reasonable time.

3 Basic ExactSim algorithm

In this section, we present ExactSim, a probabilistic algo-
rithm that computes the exact single-source SimRank results
within reasonable running time. We first present a basic ver-
sion of ExactSim. In Sect. 4, we will introduce some more
advanced techniques to optimize the query and space cost.

Our ExactSim algorithm is largely inspired by three prior
works: pooling [21], Linearization [26], and PRSim [36].
We now discuss how ExactSim extends from these existing
methods in details. These discussions will also reveal the
high level ideas of the ExactSim algorithm.

1. Despite its limitations, pooling [21] provides a key insight

for achieving exactness: while an O
(
n log n

ε2

)
algorithm

is not feasible for exact SimRank computation on large

graphs, we can actually afford an O
(
log n
ε2

)
algorithm.

The 1
ε2

term is still expensive for ε = εmin = 10−7;
however, the new complexity reduces the dependence on
the graph size n to logarithmic and thus achieves very
high scalability.

2. Linearization [26] and ParSim [42] show that if the diag-
onal correction matrix D is correctly given, then we
can compute the exact single-source SimRank results in

O
(
m log 1

c

1
εmin

)
time and O

(
n log 1

c

1
εmin

)
extra space.

For typical setting of c (0.6 to 0.8), the number of iter-
ations log 1

c

1
εmin

= log 107 ≤ 73 is a constant, so this
complexity is essentially the same as that of performing
BFS multiple times on the graphs. The scalability of the
algorithm is confirmed in the experiments of [42], where
D is set to be (1 − c)I . Moreover, the exact algorithms
[28] for Personalized PageRank and PageRank also incur

a running time of O
(
m log 1

εmin

)
and have been widely

used for computing ground truths on large graphs.

3. While the O
(
n log n

ε2

)
complexity seems unavoidable as

we need to estimate each entry in the diagonal correc-

Algorithm 1: Basic ExactSim Algorithm

Input: Graph G with transition matrix P , source node vi ,
maximum error ε

Output: Estimated single-source SimRank vector S · ei
1 L =

⌈
log 1

c

2
ε

⌉
;

2 π0
i ,π i = (1 − √

c)ei ;
3 for � from 1 to L do
4 π�

i = √
cP · π�−1

i ;
5 π i = π i + π�;

6 R = 6 log n
(1−√

c)4ε2
;

7 for k from 1 to n do
8 Invoke Algorithm 2 with R(k) = �R · π i (k)� to obtain an

estimator D̂(k, k) for D(k, k);

9 s0 = 1
1−√

c
D̂ · π L

i ;

10 for � from 1 to L do
11 s� = √

cP� · s�−1 + 1
1−√

c
D̂ · π L−�

i ;

12 Clear s�−1;

13 return sL ;

tion matrix D with additive error ε, PRSim [36] shows

that it only takes O
(
log n
ε2

)
time to estimate the product

π�
i (k)·D(k, k)with additive error ε for each k = 1, . . . , n

and � = 0, . . . ,∞, where π�
i is the �-hop Personalized

PageRank vector of vi . This result provides two crucial
observations: 1) It is possible to answer an single-source
query without an ε-approximation of each D(k, k); 2)
The accuracy of each D(k, k) should depend on π i (k),
the Personalized PageRank of vk with respect to the
source node vi .

We combine the ideas of PRSim and Linearization/
ParSim to derive the basic ExactSim algorithm. Given an
error parameter ε, ExactSim fixes the total number of

√
c-

walk samples to be R = O
(
log n
ε2

)
and distributes a fraction

of R · π i (k) samples (note that
n∑

k=1
π i (k) = 1) to estimate

D(k, k). Then, it performs Linearization/ ParSim with the
estimated D to obtain the single-source result. The algo-

rithm runs in O
(
log n
ε2

+ m log 1
ε

)
time and uses O

(
n log 1

ε

)

extra space. Since both complexity terms O
(
log n
ε2

)
and

O
(
m log 1

ε

)
are feasible for εmin = 10−7 and large graph

size m, we have a working algorithm for exact single-source
SimRank queries on large graphs.

Algorithm 1 illustrates the pseudocode of the basic Exact-
Sim algorithm. Note that to cope with Personalized PageR-
ank, we use the fact that π�

i = (
1 − √

c
) · (√

cP
)� · ei and

123

996 H. Wang et al.

Algorithm 2: Basic method for estimating D(k, k)

Input: Graph G, node vk , number of samples R(k)
Output: D̂(k, k) as an estimation for D(k, k)

1 D̂(k, k) = 0;
2 for x from 1 to R(k) do
3 Sample two independent

√
c-walks from vk ;

4 if The two
√
c-walks do not meet then

5 D̂(k, k) = D̂(k, k) + 1/R(k);

6 return D̂(k, k);

rewrite Eq. (5) as

S · ei = 1

1 − √
c

∞∑

�=0

(√
cP�)�

D · π�
i . (11)

Given a source node vi and a maximum error ε, we first set

the number of iterations L to be L =
⌈
log 1

c

2
ε

⌉
(line 1). We

then iteratively compute the �-hop Personalized PageRank
vector π�

i = (√
cP

)� · ei for � = 0, . . . , L , as well as the

Personalized PageRank vectorπ i = ∑L
�=0 π�

i (lines 2-5). To

obtain an estimator D̂ for the diagonal correction matrix D,
we set the total number of samples to be R = 6 log n

(1−√
c)4ε2

(line

6). For each D(k, k), we set R(k) = �Rπ i (k)� and invoke
Algorithm 2 to estimate D(k, k) (lines 7-8). Algorithm 2
essentially simulates R(k) pairs of

√
c-walks from node vk

and uses the fraction of pairs that do not meet as an estimator
D̂(k, k) for D(k, k). Finally, we use Eq. (11) to iteratively
compute s0 = 1

1−√
c
D̂ · π L

i ,

s1 = √
cP� · s0 + 1

1 − √
c
D̂ · π L−1

i

= 1

1 − √
c

(√
cP� · D̂ · π L

i + D̂ · π L−1
i

) (12)

(lines 9-12),..., and

sL =
(√

cP�
(
· · · (√cP� · D̂ · π L + D̂ · π L−1) + · · ·

)
+ D̂ · π0

)

1 − √
c

= 1

1 − √
c

L∑

�=0

(√
cP�)�

D̂ · π�
i . (13)

We return sL as the single-source query result (line 13).
AnalysisToderive the running time and space overhead of the
basic ExactSim algorithm, note that computing and storing
each �-hop Personalized PageRank vector π�

i takes O(m)

time andO(n) space. This results in a running timeofO(mL)

and a space overhead of O(nL). To estimate the diagonal
correction matrix D, the algorithm simulates R pairs of

√
c-

walks, each of which takes 1√
c

= O(1) time. Therefore, the

running time for estimating D can be bounded by O(R).

Finally, computing each s � also takes O(m) time, resulting
an additional running time of O(mL). Summing up all costs,
we have the total running time is bounded by O(mL + R) =
O

(
log n
ε2

+ m log 1
ε

)
, and the space overhead is bounded by

O(nL) = O
(
n log 1

ε

)
.

We now analyze the error of the basic ExactSim algo-
rithm. Recall that ExactSim returns sL(j) as the estimator
for S(i, j), the SimRank similarity between the source node
vi and any other node v j . We have the following theorem.

Theorem 1 With probability at least 1− 1/n, for any source
node vi ∈ V , the basic ExactSim provide an single-source
SimRank vector sL such that, for any node v j ∈ V , we have∣
∣sL(j) − S(i, j)

∣
∣ ≤ ε.

Theorem 1 essentially states that with high probability,
the basic ExactSim algorithm can compute any single-source
SimRank query with additive ε. The proof of Theorem 1 is
fairly technical. However, the basic idea is to show that the
variance of the estimator sL(j) can be bounded by O(1

R) =
O(ε2). In particular, we first note that by Eq. (13), sL(j) can
be expressed as

sL(j) = e�
j · sL = 1

1 − √
c
e�
j ·

L∑

�=0

(√
cP�)�

D̂ · π�
i

= 1

(1 − √
c)2

L∑

�=0

(
(1 − √

c)
(√

cP
)� · e j

)� · D̂ · π�
i .

Since (1 − √
c)

(√
cP

)� · e j = π�
j , we have

sL(j) = 1

(1 − √
c)2

L∑

�=0

(
π�

j

)� · D̂ · π�
i . (14)

Summing up over the diagonal elements of D follows that

sL(j) = 1

(1 − √
c)2

L∑

�=0

n∑

k=1

π�
i (k) · π�

j (k) · D̂(k, k). (15)

We observe that there are two discrepancies between sL(j)
and the actual SimRank value S(i, j) (10): 1) We change the
number of iterations from∞ to L , and 2)we use the estimator
D̂ to replace actual diagonal correction matrix D. For the
first approximation, we can bound the error by cL ≤ ε/2 if

ExactSim sets L =
⌈
log 1

c

2
ε

⌉
. Consequently, we only need

to bound the error from replacing D with D̂. In particular,
we will make use of the following Bernstein Inequality.

Lemma 1 (Bernstein Inequality [5]) Let X1, · · · , XR be
independent random variables with |Xi | < b for i =

123

ExactSim: benchmarking single-source SimRank algorithms... 997

1, . . . , R. Let X = 1
R · ∑R

i=1 Xi , we have

Pr[|X − E[X]| ≥ λ] ≤ 2 · exp
(

− λ2 · R
2R · Var[X] + 2bλ/3

)

,

(16)

where Var[X] is the variance of X.

To make use of Lemma 1, we need to express sL(j) as
the average of independent random variables. In particular,
let D̂r (k, k), r = 1, . . . , R(k) denote the r -th estimator of
D(k, k) by Algorithm 2. We observe that each D̂r (k, k) is a
Bernoulli random variable, that is, D̂r (k, k) = 1 with proba-
bility D(k, k) and D̂r (k, k) = 0with probability 1−D(k, k).
We have

sL(j) = 1

(1 − √
c)2

L∑

�=0

n∑

k=1

π�
i (k) · π�

j (k) ·
∑R(k)

r=1 D̂r (k, k)

R(k)

= 1

(1 − √
c)2

n∑

k=1

R(k)∑

r=1

∑L
�=0 π�

i (k) · π�
j (k)

R(k)
· D̂r (k, k).

Let ρ(k) = R(k)/R be the fraction of pairs of
√
c-walks

assigned to vk , it follows that

sL (j) = 1

R
· 1

(1 − √
c)2

n∑

k=1

Rρ(k)∑

r=1

∑L
�=0 π�

i (k) · π�
j (k)

ρ(k)
· D̂r (k, k).(17)

We will treat each
∑L

�=0 π�
i (k)·π�

j (k)

ρ(k) · D̂r (k, k) as an indepen-
dent random variable. The number of such random variables
is

∑n
k=1 Rρ(k) = R, sowe have expressed sL(j) as the aver-

age of R independent random variables. To utilize Lemma 1,
we first bound the variance of sL(j).

Lemma 2 The variance of sL(j) is bounded by

Var[sL(j)] ≤ 1

(1 − √
c)4R

n∑

k=1

π i (k)2π j (k)2

ρ(k)
· D(k, k).

(18)

In particular, by setting ρ(k) = R(k)/R = �Rπ i (k)�/R in
the basic ExactSim algorithm, we have

Var[sL(j)] ≤ 1

(1 − √
c)4R

. (19)

Note that we only need Inequality (19) to derive the error
bound for the basic ExactSim algorithm. The more complex
Inequality (18) will be used to design various optimization
techniques.

Proof of Lemma 2 Note that D̂r (k, k) is a Bernoulli random
variable with expectation D(k, k) and thus has variance
Var[D̂r (k, k)] = D(k, k)(1 − D(k, k)) ≤ D(k, k). Since
D̂r (k, k)’s are independent random variables, we have

Var[sL(j)]

= 1

(1 − √
c)4R2

n∑

k=1

Rρ(k)∑

r=1

(∑L
�=0 π�

i (k) · π�
j (k)

ρ(k)

)2

· Var[D̂r (k, k)]

= 1

(1 − √
c)4R

n∑

k=1

(∑L
�=0 π�

i (k) · π�
j (k)

)2

ρ(k)

· D(k, k)(1 − D(k, k)).

By the Cauchy–Schwarz inequality, we have

(
L∑

�=0

π�
i (k) · π�

j (k)

)2

≤
(

L∑

�=0

π�
i (k)

)2 (
L∑

�=0

π�
j (k)

)2

≤ π i (k)
2π j (k)

2.

Combining with the fact that 1 − D(k, k) ≤ 1, we have

Var[sL(j)] ≤ 1

(1 − √
c)4R

n∑

k=1

π i (k)2π j (k)2

ρ(k)
· D(k, k).

(20)

and the first part of the lemma follows.
Plugging ρ(k) = R(k)/R = �Rπ i (k)�/R ≥ π i (k) into

Lemma 2, we have

Var[sL(j)] ≤ 1

(1 − √
c)4R

n∑

k=1

π i (k)2π j (k)2

π i (k)
· D(k, k)

≤ 1

(1 − √
c)4R

n∑

k=1

π i (k).

For the last inequality, we use the fact that D(k, k) ≤ 1
and π j (k) ≤ 1. Finally, since

∑n
k=1 π i (k) = 1, we have

Var[sL(j)] ≤ 1
(1−√

c)4R
, and the second part of the lemma

follows. ��
Proof of Theorem 1 We are now ready to prove Theorem 1.
To utilize Bernstein Inequality given in Lemma 1, we also
need to bound b, the maximum value of the random variables
∑L

�=0
π�
i (k)·π�

j (k)

ρ(k) · D̂r (k, k). We have

∑L
�=0 π�

i (k) · π�
j (k)

π i (k)
· D̂r (k, k)≤

∑L
�=0 π�

i (k)

π i (k)
≤ π i (k)

π i (k)
=1.

123

998 H. Wang et al.

Applying Bernstein Inequality with b= 1 and Var[sL(j)] ≤
1

(1−√
c)4R

, where R = 6 log n
(1−√

c)4ε2
, we have Pr[|sL(j) −

E[sL(j)]| > ε/2] < 1/n3. Combining with the ε/2
error introduced by the truncation L , we have Pr[|sL(j) −
S(i, j)| > ε] < 1/n3. By union bound over all possible
target nodes j = 1, . . . , n and all possible source nodes
i = 1, . . . , n, we ensure that for all n possible source node
and n target nodes,

Pr[∀i, j, |sL(j) − S(i, j)| > ε] < 1/n,

and the theorem follows. ��

4 Optimizations

Although the basic ExactSim algorithm is a working algo-
rithm for exact single-source SimRank computation on large
graphs, it suffers from some drawbacks. First of all, the
O(n log 1

ε
) space overhead can be several times larger than

the actual graph size m. Secondly, we still need to simulate

R = O
(
log n
ε2

)
of pairs of

√
c-walks, which is a significant

cost for εmin = 10−7. Although parallelization can help,
we are still interested in developing algorithmic techniques
that reduces the number of random walks. In this section,
we provide three optimization techniques that address these
drawbacks.
Sparse Linearization We design a sparse version of Lin-
earization that significantly reduces the O

(
n log 1

ε

)
space

overhead while retaining the O(ε) error guarantee. Recall
that this space overhead is causing by storing the �-hop
PersonalizedPageRank vectorsπ�

i for � = 0, . . . , L .Wepro-
pose to make the following simple modification: Instead of
storing the dense vector π�

i , we sparsify the vector by remov-
ing all entries of withπ�

i (k) ≤ (1−√
c)2ε. To understand the

effectiveness of this approach, recall that a nice property of
the �-hop Personalized PageRank vectors is that all possible
entries sum up to

∑∞
�=0

∑n
k=1 π�

i (k) = ∑n
k=1 π�(k) = 1.

By the Pigeonhole principle, the number of π�
i (k)’s that are

larger than (1 − √
c)2ε is bounded by 1

(1−√
c)2ε

. Thus, the

space overhead is reduced to O
(1

ε

)
. This overhead is accept-

able for exact computations where we set ε = εmin = 10−7,
as it does not scale with the graph size.
Sampling according to π i (k)2 Recall that in the basic Exact-
Sim algorithm, we simulate R pairs of

√
c-walks in total,

and distribute π i (k) fraction of the R samples to estimate
D(k, k). A natural question is that, is there a better scheme
to distribute these R samples? It turns out if we distribute
the samples according to π i (k)2, we can further reduce the
variance of the estimator and hence achieve a better running

time. More precisely, we will set R(k) = R
⌈

π i (k)2

‖π i‖2
⌉
, where

Algorithm 3: Improved method for estimating D(k, k)

Input: Graph G, node vk , sample number R(k)
Output: An estimator D̂(k, k) for D(k, k)

1 if din(vk) = 0 then
2 return D̂(k, k) = 1;

3 else if din(vk) = 1 then
4 return D̂(k, k) = 1 − c;

5 P�(x, k) = 0 for � ≥ 0, x ∈ V ;
6 P0(k, k) = 1;
7 Ek = 0;
8 for � from 0 to ∞ do
9 for each vq with nonzero

(
P�)�

(k, q) do
10 Calculate Z�(k, q) using equation (22);

11 for �′ from 0 to � do

12 for each vq ′ with nonzero
(
P�)�−�′

(k, q ′) do
13 for each vx with nonzero

(
P�)�′

(q ′, x) do
14 for each vq ∈ I(vx) do

15
(
P�)�′+1

(q ′, q)+ =
(
P�)�′

(q ′,x)
din (vx)

;

16 Ek+ = 1;

17 if Ek ≥ 2R(k)√
c

then
18 �(k) = � and goto OUTLOOP;

19 � = � + 1;

20 OUTLOOP;

21 D̂(k, k) = 1 − ∑�(k)
�=1

∑n
q=1 Z�(k, q);

22 for z from 1 to R(k) do
23 Sample two independent non-stop random walks from vk ;
24 if Two random walks reaches nodes vx and vy at the �(k)

steps without meeting then
25 Sample a

√
c-walks from vx and vy ;

26 if the two
√
c-walks meet then

27 D̂(k, k) = D̂(k, k) − c�(k)/R(k);

28 return D̂(k, k);

‖π i‖2 = ∑n
k=1 π i (k)2 is the squared norm of the Personal-

ized PageRank vector π i .
Local deterministic exploitation for D The inequality (18)
in Lemma 2 also suggests that we can reduce the variance
of the estimator sL(j) by refining the Bernoulli estimator
D̂(k, k). Recall that we sample R(k) = �Rπ i (k)� or R(k) =
R

⌈
π i (k)2

‖π i‖2
⌉
pairs of

√
c-walks to estimate D(k, k). If π i (k) is

large, we will simulate a large number of
√
c-walks from vk

to estimate D(k, k). In that case, the first few steps of these
random walks will most likely visit the same local structures
around vk , so it makes sense to exploit these local structures
deterministically, and use the random walks to approximate
the global structures. More precisely, let Z�(k) denote the
probability that two

√
c-walks from vk first meet at the �-th

step. Since these events are mutually exclusive for different

123

ExactSim: benchmarking single-source SimRank algorithms... 999

�’s, we have

D(k, k) = 1 − Pr[two √
c-walks from vkmeet]

= 1 −
∞∑

�=1

Z�(k).

The idea is to deterministically compute
∑�(k)

�=1 Z�(k) for
some tolerable step �(k), and using random walks to esti-
mate the other part

∑∞
�=�(k)+1 Z�(k). It is easy to see that by

deterministically computing Z�(k) for the first �(k) levels,
we reduce the variance Var(D(k, k)) by at least c�(k).

A simple algorithm to compute Z�(k) is to list all pos-
sible paths of length � from vk and aggregate all meeting
probabilities of any two paths. However, the number of paths
increases rapidly with the length �, which makes this algo-
rithm inefficient on large graphs. Instead, we will derive the
close form for Z�(k) in terms of the transition probabili-
ties. In particular, let Z�(k, q) denote the probability that
two

√
c-walks first meet at node vq at their �-th steps. We

have Z�(k) = ∑n
q=1 Z�(k, q), and hence

D(k, k) = 1 −
∞∑

�=1

n∑

q=1

Z�(k, q). (21)

Recall that P� (the �-th power of the (reverse) transition
matrix P) is the �-step (reverse) transition matrix. We have
the following lemma that relates Z�(k, q) with the transition
probabilities.

Lemma 3 Z�(k, q) satisfies the following recursive form:

Z�(k, q) =c�
(
P�)�

(k, q)2

−
�−1∑

�′=1

n∑

q ′=1

c�′ (
P�)�′

(q ′, q)2Z�−�′(k, q ′).
(22)

Proof Note that
(√

c
)� (

P�)�
(k, q) is the probability that

a
√
c-walk from vk visits vq at its �-th step. Consequently,

c�
(
P�)�

(k, q)2 is the probability that two
√
c-walks from

node vk visit node vq at their �-th step simultaneously. To
ensure this is the first time that the two

√
c-walks meet, we

subtract the probability mass that the two
√
c-walks have

met before. In particular, recall that Z�′(k, q ′) is the prob-
ability that two

√
c-walks from node vk first meet at vq ′

in exactly �′ steps. Due to the memoryless property of the√
c-walk, the two

√
c-walks will behave as two new

√
c-

walks from vq ′ after their �′-th step. The probability that
these two new

√
c-walks visit is vq in exact � − �′ steps is

c�−�′ (
P�)�−�′

(q ′, q)2. Summing up q ′ from 1 to n and �′
from 1 to � − 1, the lemma follows. ��

Given a node vk and a pre-determined target level �(k),
Lemma 3 also suggests a simple algorithm to compute
Z�(k, q) for all � ≤ �(k). We start by performing BFS from
node vk for up to �(k) levels to calculate the transition prob-

abilities
(
P�)�

(k, q) for � = 0, . . . , �(k) and vq ∈ V . For
each node q ′ visited at the �′-th level, we start a BFS from

q ′ for �(k) − �′ levels to calculate
(
P�)�(k)−�′

(q ′, q) for
� = 1, . . . , �(k) and vq ∈ V . Then, we use equation (22) to
calculate Z�(k, q) for � = 0, . . . , �(k) and q ∈ V . Note that
this approach exploits strictly less edges than listing all pos-
sible paths of length �(k), as some of the paths are combined
in the computation of the transition probabilities.

However, a major problem with the above method is that
the target level �(k) has to be predetermined, which makes
the running time unpredictable. An improper value of �(k)
could lead to the explosion of the running time. Instead, we
will use an adaptive algorithm to compute Z�(k).

Algorithm 3 illustrates the new method for estimating
D(k, k). Given a node vk and a sample number R(k), the goal
is to give an estimator for D(k, k). For the two trivial case
din(k) = 0 and din(k) = 1, we return D(k, k) = 1 and 1− c
accordingly (lines 1-4). For other cases, we iteratively com-

pute all possible transition probabilities
(
P�)�′+1

(q ′, q) for
all vq ′ that is reachable from k with � − �′ steps (lines 5-10).
Note that these vq ′ ’s are the nodes with

(
P�)�−�′

(k, q ′) > 0.
To ensure the deterministic exploitation stops in time, we
use a counter Ek to record the total number of edges tra-
versed so far (line 11). If Ek exceeds 2R(k)√

c
, the expected

number of steps for simulating R(k) pairs of
√
c-walks, we

terminate the deterministic exploitation and set �(k) as the
current target level for vk (lines 12-13). After we fix �(k)
and compute

∑�(k)
�=1 Z�(k) (lines 14-17), we will use random

walk sampling to estimate
∑∞

�=�(k)+1 Z�(k) (lines 18-23). In
particular, we start two special random walks from vk . The
randomwalks do not stop in its first �(k) steps; after the �(k)-
th step, each random walk stops with probability

√
c at each

step. It is easy to see that the probability of the two special
random walks meet after �(k) steps is 1

c�(k)

∑∞
�=�(k)+1 Z�(k).

Consequently, we can use the fraction of the random walks
that meet multiplied by c�(k) as an unbiased estimator for
∑∞

�=�(k)+1 Z�(k).
Parallelization. The ExactSim algorithm is highly paralleliz-
able as it only uses two primitive operations: matrix-(sparse)
vector multiplication and random walk simulation. Both
operations are embarrassingly parallelizable on GPUs or
multi-core CPUs. The only exception is the local determin-
istic exploitation for D(k, k). To parallelize this operation,
we can applyAlgorithm 3 tomultiple vk simultaneously. Fur-
thermore, we can balance the load of each thread by applying
Algorithm 3 to nodes vk’s with similar number of samples
R(k) in each epoch.

123

1000 H. Wang et al.

4.1 Analysis

Recall that Algorithm 3 provides an improved method for
estimating D(k, k). By invoking Algorithm 3 into the whole
ExactSim structure (line 8 in Algorithm 1), we can derive
the optimized version of ExactSim. The following theorem
presents the complexity analysis of the optimized ExactSim
in terms of time cost and space overhead.

Theorem 2 Let π i denote the Personalized PageRank vec-
tor with regards to node vi . Then, with probability at
least 1 − 1

n , for any source node vi ∈ V , the optimized
ExactSim can return a single-source SimRank vector s L

with O
(‖π i‖2 log n

ε2
+ m log 1

ε

)
time cost and O

(1
ε

)
space

overhead, such that for any node v j ∈ V , we have∥
∥sL(j) − S(i, j)

∥
∥ ≤ ε.

Concerning the three optimization techniques mentioned
above, sparse Linearization may influence the space over-
head; Sampling according to π i (k)2 reduces the number of
random walks, which can impact the time cost of estimating
D. Local deterministic exploitation can reduce the variance
Var(D(k, k)), while the level of time and space complexity
remains the same due to the setting of �(k). Consequently, to
prove Theorem 2, we can only analysis sparse Linearization
for space bound and Sampling according to π i (k)2 for time
cost, respectively.

Firstly, as for the space overhead, the following lemma
proves that the sparse Linearization will only introduce an
extra additive error of ε. If we scale down ε by a factor of
2, the total error guarantee and the asymptotic running time
of ExactSim will remain the same, and the space overhead is
reduced to O

(1
ε

)
.

Lemma 4 The sparse Linearization introduces an extra addi-
tive error of ε and reduces the space overhead to O

(1
ε

)
.

Proof We note that the sparse Linearization introduces an
extra error of (1 − √

c)2ε to each π�
i (k), k = 1, . . . , n, � =

0, . . . ,∞. According to Eq. (15), the estimator sL(j) can be
expressed as

sL(j) = 1

(1 − √
c)2

L∑

�=0

n∑

k=1

(
π�
i (k)±(1 − √

c)2ε
)

·π�
j (k) · D̂(k, k). (23)

Thus, the error introduced by sparse Linearization can be
bounded by

1

(1 − √
c)2

∞∑

�=0

n∑

k=1

(1 − √
c)2ε · π�

j (k) · D̂(k, k). (24)

Using the fact that
∑∞

�=0
∑n

k=1 π�
j (k) = 1 and D̂(k, k) ≤ 1,

the above error can be bounded by 1
(1−√

c)2
· (1−√

c)2ε = ε,
and the lemma follows. ��

Then, we analysis the time cost of Algorithm 3. The fol-
lowing lemma shows that by sampling according to π i (k)2,
we can reduce the number of sample R by a factor of ‖π i‖2.
Lemma 5 By sampling according to π i (k)2, the number of

random samples required is reduced to O
(‖π i‖2 log n

ε2

)
.

Proof Recall that ρ(k) is the fraction of sample assigned to

D(k, k). We have ρ(k) =
⌈
Rπ i (k)2

‖π i‖2
⌉

/R ≥ π i (k)2

‖π i‖2 . By the

inequality (18) in Lemma 2, we can bound the variance of
estimator sL(j) as

Var[sL(j)] ≤ 1

(1 − √
c)4R

n∑

k=1

π i (k)2π j (k)2

ρ(k)
· D(k, k)

≤ 1

(1 − √
c)4R

‖π i‖2
n∑

k=1

π j (k)
2

= 1

(1 − √
c)4R

‖π i‖2‖π j‖2.

Here, we use the fact that ‖π j‖2 = ∑n
k=1 π j (k)2 and

D(k, k) ≤ 1. Since we need to bound the variance for
all possible nodes v j (and hence all possible ‖π j‖2), we
make the relaxation that ‖π j‖2 ≤ ‖π j‖21 = 1, where
‖π j‖21 = (

∑n
k=1 |π j (k)|)2. And thus

Var[sL(j)] ≤ 1

(1 − √
c)4R

‖π i‖2.

This suggests that by sampling according to π i (k)2, we
reduce the variance of the estimators by a factor ‖π i‖2.
Recall that the ExactSim algorithm computes the Personal-
ized PageRank vector π i before estimating D; we can obtain
the value of ‖π i‖2 and scale R down by a factor of ‖π i‖2.
This simple modification will reduce the running time to

O
(‖π i‖2 log n

ε2

)
.

One small technical issue is that the maximum of the ran-

dom variables
∑∞

�=0 π�
i (k)·π�

j (k)

ρ(k) · D̂r (k, k) may gets too large
as the fraction ρ(k) gets too small. However, by the fact that

ρ(k) =
⌈
Rπ i (k)2

‖π i‖2
⌉

/R and D̂r (k, k) ≤ 1, we have

∑∞
�=0 π�

i (k) · π�
j (k)

ρ(k)
· D̂r (k, k) ≤ π i (k)

ρ(k)

= Rπ i (k)/

⌈
Rπ i (k)2

‖π i‖2
⌉

.

If we view the right side of the above equality as a func-

tion of π i (k), it takes maximum when Rπ i (k)2

‖π i‖2 = 1, or

123

ExactSim: benchmarking single-source SimRank algorithms... 1001

equivalently π i (k) =
√

‖π i‖2
R . Thus, the random variables in

Eq. (17) can be bounded by R
√

‖π i‖2
R = ‖π i‖

√
R. Plugging

b = ‖π i‖
√
R and Var[sL(j)] ≤ ‖π i‖2

(1−√
c)4R

into Bernstein
Inequality, and the lemma follows. ��

To demonstrate the effectiveness of sampling according
to π i (k)2, notice that in the worst case, ‖π i‖2 is as large
as ‖π i‖21 = 1, so this optimization technique is essen-
tially useless. However, it is known [4] that on scale-free
networks, the Personalized PageRank vector π i follows a
power-law distribution: let π i (k j) denote the j-th largest

entry of π i , we can assume π i (k j) ∼ j−β

n1−β for some power-

law exponent β ∈ (0, 1). In this case, ‖π i‖2 can be bounded
by O

(
∑n

j=1

(
j−β

n1−β

)2
)

= O
(
max

{
lnn
n , 1

n2−2β

})
, and the

‖π i‖2 factor becomes significant for any power-law expo-
nent β < 1.

Note that the expected length of every random walk is
1

1−√
c
, which is a constant. Hence, by Lemma 5, the time

cost of Algorithm 3 can be bounded by O
(‖π i‖2 log n

ε2

)
.

Recall that after we derive the estimated matrix D, the
linearized summation for sL takes O(m log 1

ε
) time. Con-

sequently, the total time cost of the optimized ExactSim is

O
(‖π i‖2 log n

ε2
+ m log 1

ε

)
, which follows Theorem 2.

5 Experiments

In this section, we experimentally study ExactSim and the
other single-source algorithms. We first evaluate ExactSim
against fourmethodsMC, ParSim, Linearization, and PRSim
to proveExactSim’s ability of exact computation (i.e., εmin =
10−7). Then,we conduct an ablation study to demonstrate the
effectiveness of the optimization techniques. Finally, based
on the ground truths computed by ExactSim, we conduct
a comprehensive empirical study on existing single-source
SimRank algorithms and SimRank distributions.
Datasets and Environment We use six small datasets, six
large datasets, and two dynamic datatsets123 The details of
these datasets can be found in Table 5. All experiments are
conducted on a machine with an Intel(R) Xeon(R) E7-4809
@2.10GHz CPU and 196GB memory.

5.1 Evaluation towards ExactSim

Methods andParametersWeevaluate ExactSimwith the four
state-of-the-artmethods, including oneMonteCarlomethod:

1 http://snap.stanford.edu/data
2 http://law.di.unimi.it/datasets.php
3 http://konect.cc/categories/Hyperlink/

Table 5 Datasets

Data set Type n m

PPI (PI) Undirected 3,890 38739

ca-GrQc (GQ) Undirected 5,242 28,968

AS-2000(AS) Undirected 6,474 25,144

CA-HepTh(HT) Undirected 9,877 51,946

Wikivote (WV) Directed 7,115 103,689

CA-HepPh (HP) Undirected 12,008 236978

DBLP-Author (DB) Undirected 5,425,963 17,298,032

LiveJournal (LJ) Directed 4,847,571 68,475,391

IndoChina (IC) Directed 7,414,768 191,606,827

Orkut-Links (OL) Undirected 3,072,441 234,369,798

It-2004 (IT) Directed 41,290,682 1,135,718,909

Twitter (TW) Directed 41,652,230 1,468,364,884

Wiki-Pl (WP) Dynamic 1,033,050 25,026,208

Wiki-De (WD) Dynamic 2,166,669 86,337,879

MC[6], two iterativemethods: Linearization [26] andParSim
[42], and one Local push/ sampling methods: PRSim [36].
For a fair comparison, we run each algorithm in the single
thread mode on static graphs.

MC has two parameters: the length of each random walk
L and the number of random walks per node r . We vary
(L, r) from (5, 50) to (5000, 50000) on small graphs and
from (5, 50) to (50, 500) on large graphs. ParSim has one
parameter L , the number of iterations. We vary it from 50 to
5 × 105 on small graphs and from 5 to 500 on large graphs.
Finally, Linearization, PRSim, and ExactSim share the same
error parameter ε, and we vary ε from 10−1 to 10−7 (if
possible) on both small and large graphs. We evaluate the
optimized ExactSim unless otherwise stated. In all experi-
ments, we set the decay factor c of SimRank as 0.6.
Metrics We use MaxError and Precision@k to evaluate
the quality of the single-source and top-k results. Given a
source node vi and an approximate single-source result with
n similarities Ŝ(i, j), j = 1, . . . , n, MaxError is defined
to be the maximum error over n similarities: MaxError =
maxnj=1

∣
∣
∣Ŝ(i, j) − S(i, j)

∣
∣
∣. Given a source node vi and an

approximate top-k result Vk = {v1, . . . , vk}, Precision@k is
defined to be the percentage of nodes in Vk that coincides
with the actual top-k results. In our experiments, we set k to
be 500. Note that this is the first time that top-k queries with
k > 100 are evaluated on large graphs. On each dataset,
we generate 50 query nodes for each dataset. For each set of
parameters and each method, we issue one query from each
query node and report the average MaxError and Preci-
sion@500 among the 50 query nodes.
Experiments on small graphs We first evaluate ExactSim
against other single-source algorithms on six small graphs.
We compute the ground truths of the single-source and top-k

123

http://snap.stanford.edu/data
http://law.di.unimi.it/datasets.php
http://konect.cc/categories/Hyperlink/

1002 H. Wang et al.

Fig. 1 MaxError v.s. Query time on small graphs

Fig. 2 Precision@500 v.s. Query time on small graphs

queries using Power Method [10]. We omit a method if its
query or preprocessing time exceeds 24 hours.

Figure 1 shows the trade-offs betweenMaxError and the
query time of each algorithm. The first observation is that
ExactSim is the only algorithm that consistently achieves
an error of 10−7 within 104 seconds. Linearization is able
to achieve a faster query time when the error parameter ε is
large. However, as we set ε ≤ 10−5, Linearization is troubled

by its O
(
n log n

ε2

)
preprocessing time and is unable to finish

the computation of the diagonal matrix D in 24 hours.
Figure 2 presents the trade-offs between Precision@500

and query time of each algorithm. We observe that Exact-
Sim with ε = 10−7 is able to achieve a precision of 1 on
all six graphs. This confirms the exactness of ExactSim.
We also note that ParSim is able to achieve high preci-
sions on most of graphs despite its large MaxError in
Fig. 1. This observation demonstrates the effectiveness of

123

ExactSim: benchmarking single-source SimRank algorithms... 1003

Fig. 3 MaxError v.s. Preprocessing time on small graphs

Fig. 4 MaxError v.s. Index size on small graphs

the D ∼ (1 − c)I approximation on small datasets. Finally,
for the index-based methods MC, PRSim, and Linearization,
we also plot the trade-offs between MaxError and prepro-
cessing time/index size in Figs. 3 and 4. The index sizes
of Linearization form a vertical line, as the algorithm only
recomputes and stores a diagonal matrix D. PRSim generally
achieves the smallest error given a fixed amount of prepro-
cessing time and index size.

Experiments on large graphs. For now, we have both theo-
retical and experimental evidence that ExactSim is able to
obtain the exact single-source and top-k SimRank results. In
this section, we will treat the results computed by ExactSim
with ε = 10−7 as the ground truths to evaluate the perfor-
mance of ExactSim with larger ε on large graphs.

Figures 5 and 6 show the trade-offs between the query time
andMaxError /Precision@500of each algorithm. Figures 7
and 8 display the MaxError and preprocessing time/index

123

1004 H. Wang et al.

Fig. 5 MaxError v.s. Query time on large graphs

Fig. 6 Precision@500 v.s. Query time on large graphs

size plots of the index-based algorithms. For ExactSim with
ε = 10−7, we set itsMaxError as 10−7 andPrecision@500
as 1. We observe from Fig. 6 that ExactSim with ε = 106

also achieves a precision of 1 on all four graphs. This sug-
gests that the top-500 results of ExactSim with ε = 10−6

are the same as that of ExactSim with ε = 10−7. In other
words, the top-500 results of ExactSim actually converge
after ε = 10−6. This is another strong evidence of the exact
nature of ExactSim. From Fig. 5, we also observe that Exact-

Sim is the only algorithm that achieves an error of less than
10−6 on all six large graphs. In particular, on the TW dataset,
no existing algorithm can achieve an error of less than 10−4,
while ExactSim is able to achieve exactness within 104 sec-
onds.
Ablation studyWe now evaluate the effectiveness of the opti-
mization techniques. Recall that we use sampling according
to π i (k)2 and local deterministic exploitation to reduce the
query time and sparse Linearization to reduce the space over-

123

ExactSim: benchmarking single-source SimRank algorithms... 1005

Fig. 7 MaxError v.s. Preprocessing time on large graphs

Fig. 8 MaxError v.s. Index size on large graphs

head. Figure 9 shows the time/error trade-offs of the basic
ExactSim and the optimized ExactSim algorithms. Under
similar actual error, we observe a speedup of 10−100 times.
Table 6 shows the memory overhead of the basic ExactSim
and the optimized ExactSim algorithms. We observe that the
space overhead of the basic ExactSim algorithm is usually
larger than the graph size, while sparse Linearization reduces
the memory usage by a factor of 3 − 5 times. This demon-
strates the effectiveness of our optimizing techniques.

5.2 Benchmarking approximate SimRank
algorithms

We have proved the effectiveness of ExactSim on both small
and large graphs against the state-of-the-art methods in each
category. In the following, wewill use the ground truths com-
puted by ExactSim to evaluate the performances of existing
single-source SimRank algorithms. To the best of our knowl-

123

1006 H. Wang et al.

Fig. 9 Basic ExactSim v.s. Optimized ExactSim

Table 6 Memory overhead on large graphs

Memory overhead (GB) DB IC IT TW

Basic ExactSim 2.49 3.40 18.95 19.12

Optimized ExactSim 0.47 0.58 3.26 3.54

Graph size (GB) 0.48 1.88 10.94 13.30

edge, this is the first experimental study on the accuracy/cost
trade-offs of SimRank algorithms on large graphs.
Methods.Recall that in Sect. 2, we present a detailed analysis
about all existing single-source SimRank algorithms which
can support large graphs. Because Uniwalk only supports
undirected graphs, we omit it methods in our evaluation
and consider the other nine single-source algorithms, includ-
ing three Monte Carlo methods: MC [6], READS [11], and
TSF [29], two iterative methods: Linearization [26] and Par-
Sim [42], and four Local push/sampling methods: ProbeSim
[21], PRSim [36], SLING [31], and TopSim [14]. Among
them, ProbeSim and ParSim are index-free methods, and the
others are index-based methods; READS, TSF, ProbeSim,
TopSim, and ParSim can handle dynamic graphs, and the
other methods can only handle static graphs. For the fairness
of evaluation, we conduct each method in the single thread
mode.
Experiments on Real-World Graphs We first evaluate the
performance of each method on real-world graphs. The
parameters ofMC, ParSim, Linearization, and PRSim are the
same as that in Sect. 5.1. Besides, READS has two param-
eters: the length of each random walk L and the number
of random walks per node r . To cope with its better opti-
mization, we vary (L, r) in larger ranges, from (102, 103) to
(106, 107) on small graphs and from (10, 100) to (500, 5000)
on large graphs. TSF has three parameters Rg, Rq , and
T , where Rg is the number of one-way graphs, Rq is the
number of samples at query time, and T is the number of
iterations/steps. We vary (Rg, Rq , T) from (100, 20, 10) to
(10000, 2000, 1000) on small graphs and from (100, 20, 10)
to (4000, 800, 400) on large graphs. TopSim has four param-
eters T , h, η, and H , which correspond to the maximum
length of a random walk, the lower bound of the degree
to identify a high degree node, the probability threshold to
eliminate a path, and the size of priority pool, respectively.

As advised in paper [14], we fix 1/h = 100 and η = 0.001
and vary (T , H) from (3, 100) to (20, 109) on small graphs
and from (3, 100) to (7, 106) on large graphs. ProbeSim and
SLING share the same error parameter ε, and we vary ε

from 10−1 to 10−7 (if possible) on both small and large
graphs.

Figures 10, 11, 12, 13, 14, and 15 present the bench-
marking studies of existing single-source algorithms against
the ground truths. Specifically, Fig. 10 plots the trade-
offs between query time and MaxError. Figure 11 shows
the trade-off lines between query time and AvgError@50,
where

AvgError@k = 1

k

∑

v j∈Vk

∣
∣
∣Ŝ(i, j) − S(i, j)

∣
∣
∣ ,

where Vk denotes the set of approximate top-k nodes. Fig-
ure 12 draws the trade-off plots between query time and
Precision@500. Figure 13 shows the relations betweenmem-
ory cost and MaxError. Besides, as for those index-based
methods, Figs. 14 and 15 plot the trade-offs between
preprocessing time/index size and MaxError,
respectively.

From these experimental results, we can derive the fol-
lowing observations. First of all, PRSim generally provides
the best overall performance among the index-based meth-
ods in terms of query-time/error trade-offs. This suggests
that the local push/sampling approach is more suitable for
large graphs. Secondly, the two recent dynamic methods,
ProbeSim and READS, achieve similar accuracy on large
graphs for the typical query time range (< 10 seconds) of
the approximate algorithms. However, ProbeSim is an index-
free algorithm and thus has better scalability. In particular,
READS runs out of memory on the TW dataset with the
number of samples per node r > 1000. Thirdly, ParSim is
unable to achieve the same high precisions as it does on small
graphs, which suggests that the D ∼ (1−c)I approximation
is not as effective on large graphs. SLING and Linearization
also quickly become unbearable on large graphs due to their

O
(
n log n

ε2

)
preprocessing time. This shows the necessity of

evaluating the accuracy on large graphs. Finally, Fig. 13
shows iterative methods (ParSim and Linearization) perform
the best in terms of space overhead.

Besides, we evaluate sensitivity of each method to the
choice of k as for the Precision@k. Figure 16 shows the
precision plots with varying k from 10 to 1000 on DB and
TW datasets. For each method, we only pick one group of
parameters to view the change of Precision@k. For fairness,
we try to keep each method staying in the same level of
precision by appropriate parameter settings. In detail, we set
L = 20, r = 200 for MC; L = 5 for ParSim; L = 100,
r = 10 for READS; Rg = 100, Rq = 20, T = 10 for TSF;

123

ExactSim: benchmarking single-source SimRank algorithms... 1007

T = 4 and H = 1000 for TopSim; ε = 0.1 for Linearization,
PRSim, ProbeSim, and SLING. We observe that larger k
always leads to low precisions. The only exception is ParSim
on TW, which shows a slightly increment with larger k. This
reflects that ParSim can maintain the relative order of top-k
nodes well.
Experiments on Synthetic Datasets We also analyze the
trade-off of each method with fixed parameters on synthetic
datasets to vary network structures and sizes. For fairness,

we choose the parameters to guarantee the accuracy of each
method remains in the same level. In particular, we set
L = 50 and r = 500 for MC; L = 500 for ParSim; L = 10
and r = 100 for READS; Rg = 100, Rq = 20, and T = 10
for TSF; T = 3 and H = 100 for TopSim; ε = 0.1 for Lin-
earization, PRSim, ProbeSim, and SLING. On each dataset,
we also generate 50 query nodes for each dataset. For each
set of parameters and each method, we issue one query from

Fig. 10 Trade-offs: MaxError v.s. Query time on large graphs

Fig. 11 Trade-offs: AvgError@50 v.s. Query time on large graphs

123

1008 H. Wang et al.

Fig. 12 Trade-offs: Precision@500 v.s. Query time on large graphs

Fig. 13 Trade-offs: MaxError v.s. Memory Cost on large graphs

each query node and report the average MaxError and Pre-
cision@500 among the 50 query nodes.

We first evaluate the performance of each method on
power-law graphs. Using the hyperbolic graph generator
given in [1,12], we generate a set of graphs with various
power-law exponent γ , graph size n, and average degree
d̄ . We fix the graph size n = 100, 000 and the average
degree d̄ = 10 and vary γ from 2.0 to 3.0. Figure 17a
reports the query time of each γ . From Fig. 17a, we observe

that the query time of most of methods increase with 1/γ
except for Linearization, ParSim and SLING. For Lineariza-
tion and ParSim, in the query phase, the two iterativemethods
repeat to do matrix multiplications with fixed times, lead-
ing to the unchanged query time. As for SLING, it heavily
relies on the index and its query time with large ε is too
short to be impacted by γ . In Fig. 17b, we fix γ = 3 and
d̄ = 10 and vary n from 104 to 107 to evaluate the trade-offs
between query time and the graph size n. We observe that

123

ExactSim: benchmarking single-source SimRank algorithms... 1009

Fig. 14 Trade-offs: MaxError v.s. Preprocessing time on large graphs

Fig. 15 Trade-offs: MaxError v.s. Index size on large graphs

local push/sampling methods’ scalabilities outperform other
methods in general. This is because these methods mainly
focus on local information and are less influenced by the
graph size. For Fig. 17c, we try to explore the performance
of each method on the power-law graphs with different aver-
age degrees. Specifically, we fix γ = 3 and n = 100, 000,
and vary d̄ from 5 to 1,000.We observe that the query time of
PRSim increases at the slowest speed among these methods.
This reveals the ability of PRSim to support dense graphs.

On the contrary, TopSim shows a rapidly growing query time
as the average degree increases.

Besides, we use Erdős and Rényi (ER) model to gener-
ate non-power-law graphs for evaluations. According to ER
model, any pair of node will be assigned an edge with a
specified probability p. In Fig. 18a, we vary the graph size
n from 104 to 106. We adjust the probability p to fix the
average degree d̄ = 10. In Fig. 18b, we vary d̄ from 5 to
103 with fixed n = 100, 000. Because by fixing the average

123

1010 H. Wang et al.

Fig. 16 Precision@k v.s. k

degree, the structures of ER graphs nearly remain unchanged
with the increment of n. As shown in Fig. 18(a), the query

time of MC-based methods (MC,READS and TSF) does not
increase with n on the ER graphs. However, we observe that
the query time of the threemethods show obvious increments
on power-law graphs. We attribute this difference to the exis-
tence of the hub nodes on power-law graphs.

Finally, we generate graphs using the stochastic block
model with four parameters, including the graph size n, the
number of clusters c, the probability p to assign an edge for
any pair of node belonging to the same cluster, and the prob-
ability q to assign an edge for any two nodes belonging to
different clusters. In Fig. 19a, we modulate the values of p
and q to keep the average degree d̄ = 10 and the number of

(c)(b)(a)

Fig. 17 Results on power-law graphs

Fig. 18 Results on
non-power-law graphs

(b)(a)

(a) (b) (c)

Fig. 19 Results on stochastic block graphs

123

ExactSim: benchmarking single-source SimRank algorithms... 1011

clusters c = 5 and vary the graph size n from 104 to 106. In
Fig. 19b, we fix n = 105 and c = 5 and adjust p and q to vary
the average degree d̄ from 10 to 1000. In Fig. 19c, we vary the
number of clusters c from 5 to 500 and fix n = 105, d̄ = 10.
We observe that the result of each method is similar with that
on ER graphs, which reflects that stochastic block model is
a generalized version of ER model. Figure 19c shows that
the number of clusters does not has a significant effect on the
query time of these methods.
Experiments on Dynamic Datasets. In this section, we eval-
uate the performances of the methods which can support
dynamic graphs. Recall that ParSim [42], ProbeSim [21],
and TopSim [14] are index-free methods and can support
dynamic graphs naturally. READS [11] and TSF [29] are
two index-basedmethods which can support dynamic graphs
by modifying index structures. Since the vertex modifica-
tion can be treated as several edge modifications, we use
the two dynamic graphs WD and WP which only contains
edge modifications for ease of readability. The parameters of
each method are the same with that in Sect. 5.2. For the four
index-free methods, we run them on the final graphs of WP
andWD. For READS and TSF, we first load the initial graph
without the last 10,000 edge modifications and construct the
index. Then, we run the two methods on the dynamic graphs
with 10,000 edge modifications. After the updating process,
we compare the computational quality of the six methods
and plot their trade-offs between the query time and Max-
Error/Precision@500 in Fig. 20 and Fig. 21, respectively. In
Fig. 20,weobserve that eachmethod’s performance is similar
with that on static graphs. ProbeSim achieves the high-
est approximation quality within the same query time. We
observe that the performances of index-freemethods are sim-
ilar with that on static graphs. ProbeSim still shows the best
performance among these methods. However, theMaxError
of READS is hard to be reduced with increasing query time.
This is very different from what we have observed on static
graphs, where READS and ProbeSim achieve similar accu-
racy. In Fig. 22, 23, and 24, we plot the trade-offs between
MaxError and preprocessing time/index size/updating time
of the two index-based methods TSF and READS. Note
that the updating time is the average time per edge inser-
tion/deletion in the updating process.We observe that the two
methods both incur large maximum error. READS shows a
better performance than TSF.

5.3 SimRank distribution

We now design experiments to seek the answers for two open
questions regarding the distribution of SimRank:

– Does the single-source SimRank result follow the power-
law distribution on real-world graphs?

Fig. 20 MaxError v.s. Query time on dynamic graphs

Fig. 21 Precision@500 v.s. Query time on dynamic graphs

Fig. 22 MaxError v.s. Preprocessing time on dynamic graphs

Fig. 23 MaxError v.s. Index size on dynamic graphs

Fig. 24 MaxError v.s. Update Time per edge insertion/deletion on
dynamic graphs

123

1012 H. Wang et al.

Fig. 25 The distribution of SimRank and PPR on real-world graphs

– What is the density of SimRank values on real-world
graphs?

We use ExactSim to compute the ground truths of 50 ran-
dom single-source queries on each of the six large graphs.
Then, we compute the average frequency of SimRank val-
ues in every range of length 10−5 and plot these frequencies
against the SimRank values in Fig. 25. Besides, we plot the
frequencydistributionofPersonalizedPageRank (PPR) com-
puted by its Power Method [28] with teleport probability
α = 0.2, which has been proved following the power law
[20]. The results suggest SimRank values indeed exhibit a
power-law shaped distribution on real-world graphs as PPR
does. In particular, the power-law exponent (slope) on TW
appears to be significantly more skewed than that on IT,
which explains why TW is a harder dataset for computing
single-source SimRank queries. For sake of completeness,
we also plot the degree distributions of the six graphs in
Fig. 26. We compute the average frequency of each degree
in every range of length 10.Weobserve that the largest degree
can achieve 106 on TW, which is apparently larger than other
datasets. This also demonstrates the hardness to compute
SimRank on TW.

Besides, we plot the SimRank distribution on synthetic
power-lawgraphs inFig. 27using theKronecker graphmodel
[15],which cangenerate large graphs ofmillion nodes.Wefix
the probability seedmatrix as (0.9, 0.5; 0.5, 0.1) and vary the
graph size n from106 to 5×107.On the four synthetic graphs,
SimRank values still exhibit a power-law shaped distribution.
We also plot the degree distribution of the four synthetic

power-law graphs in Fig. 28. The degree distribution of the
four synthetic graphs is all power-law shaped.

In comparison, we generate non-power-law graphs using
the Erdős and Rényi(ER) model and show the SimRank dis-
tributions on the synthetic non-power-law graphs. According
to the settings of ER-model, an edge is attached to each node
with a user-defined probability p. We vary the number of
nodes n from 104 to 5×105 and tune p to guarantee the aver-
age degree d = 10. Figure 29 plots the SimRank and PPR
distributions. Figure 30 displays the degree distributions on
these ER graphs. We observe that the distributions of Sim-
Rank and PPR both show non-power-law shaped curves on
ER graphs.

Next, we analyze the density of single-source SimRank
queries. The density of SimRank is the percentage of Sim-
Rank values that are larger than some threshold ε. Figure 31
shows the average density of 50 queries on six large datasets,
with ε varying from 0.1 to 10−7. The result shows that the
densities can vary widely on different datasets. For example,
on the TW dataset, the density of SimRank values quickly
reaches close to 1 for ε < 10−4. On the other hand, the
density on the IT dataset seems to converge on 10−4. This
suggests that density-sensitive methods such as [35] can
achieve satisfying results on IT and may run out of mem-
ory on dense graphs such as TW. This result also implies
that it is essentially hopeless to design an exact algorithm
for all-pair queries on large real-world graphs, as the number
of nonzero entries in the SimRank matrix can be as large as
O(n2).

123

ExactSim: benchmarking single-source SimRank algorithms... 1013

Fig. 26 Degree distribution of real-world graphs

Fig. 27 SimRank and PPR distribution of the Kronecker graphs (varying n from 106 to 5 ∗ 107)

Fig. 28 Degree distribution of the Kronecker graphs (varying n from 106 to 5 ∗ 107)

6 Conclusions

This paper presents ExactSim, an algorithm that produces the
ground truths for single-source and top-k SimRank queries
with precision up to 7 decimal places on large graphs. Using
the ground truths computed by ExactSim, we present the first
experimental study of the accuracy/cost trade-offs of exist-
ing SimRank algorithms on large graphs. We also exploit
various properties of the distributions of SimRank on large

real-world graphs. For futurework,wenote that theO
(
log n
ε2

)

complexity of ExactSim prevents it from achieving a pre-
cision of 10−14 (i.e., the precision of the double type). To

achieve such extreme precision, we need an algorithm with

O
(
log n

ε

)
complexity, which remains a major open problem

in SimRank study.

Acknowledgements Zhewei Wei was supported by National Natu-
ral Science Foundation of China (NSFC) No. 61972401 and No.
61932001, by the Fundamental Research Funds for the Central Uni-
versities and the Research Funds of Renmin University of China under
Grant 18XNLG21, and by Alibaba Group through Alibaba Innovative
ResearchProgram.Thework is partially done atBeijingKeyLaboratory
of BigDataManagement andAnalysisMethods,MOEKey LabDEKE,
Renmin University of China, and Pazhou Lab, Guangzhou, 510330,
China. Hanzhi Wang was supported by the Outstanding Innovative Tal-
ents Cultivation Funded Programs 2020 of RenminUniversity of China.

123

1014 H. Wang et al.

Fig. 29 The distribution of SimRank and PPR on E-R graphs (varying n from 104 to 5 × 105)

Fig. 30 Degree distribution on E-R graphs (varying n from 104 to 5 × 105)

Fig. 31 SimRank density on large graphs

Ye Yuan was supported by NSFCNo. 61932004 and No. 61622202 and
by FRFCU No. N181605012. Ji-Rong Wen was supported by NSFC
No. 61832017 and by Beijing Outstanding Young Scientist Program
NO. BJJWZYJH012019100020098. Xiaoyong Du was supported by
NSFC No. U1711261.

References

1. Aldecoa, Rodrigo, Orsini, Chiara, Krioukov, Dmitri: Hyperbolic
graph generator. Computer Phys. Commun. 196, 492–496 (2015)

2. Andersen, Reid., Chung, Fan R. K., Lang, Kevin J.: Local graph
partitioning using pagerank vectors. InFOCS, pp. 475–486, (2006)

3. Antonellis, Ioannis,Molina,HectorGarcia, Chang, ChiChao: Sim-
rank++: query rewriting through link analysis of the click graph.
PVLDB 1(1), 408–421 (2008)

4. Bahmani, Bahman, Chowdhury, Abdur, Goel, Ashish: Fast incre-
mental and personalized pagerank. VLDB 4(3), 173–184 (2010)

5. Chung, Fan R.K., Lu, Lincoln: Concentration inequalities andmar-
tingale inequalities: a survey. Internet Math. 3(1), 79–127 (2006)

6. Fogaras, Daniel., Racz, Balazs.: Scaling link-based similarity
search. In: WWW, pp. 641–650, (2005)

7. Fogaras, Dániel, Rácz, Balázs, Csalogány, Károly, Sarlós, Tamás:
Towards scaling fully personalized pagerank: algorithms, lower
bounds, and experiments. Internet Math. 2(3), 333–358 (2005)

8. Fujiwara, Yuichiro., Nakatsuji, Makoto., Shiokawa, Hiroaki.,
Onizuka, Makoto.: Efficient search algorithm for simrank. In:
ICDE, pp. 589–600, (2013)

9. He, Guoming., Feng, Haijun., Li, Cuiping., Chen, Hong.: Parallel
simrank computation on large graphs with iterative aggregation.
In: KDD, pp. 543–552, (2010)

10. Jeh, G., Widom, J.: Simrank: a measure of structural-context sim-
ilarity. In: SIGKDD, pp. 538–543, (2002)

11. Jiang, M., Fu, A.W.C., Wong, R.C.W.: Reads: a random walk
approach for efficient and accurate dynamic simrank. PPVLDB
10(9), 937–948 (2017)

12. Krioukov, Dmitri, Papadopoulos, Fragkiskos, Kitsak, Maksim,
Vahdat, Amin, Boguná, Marián: Hyperbolic geometry of complex
networks. Phys. Rev. E 82(3), 036106 (2010)

13. Kusumoto, M., Maehara, T., Kawarabayashi, K-I.: Scalable simi-
larity search for simrank. In: SIGMOD, pp. 325–336, (2014)

14. Lee, P., Lakshmanan, LVS., Yu, JX.: On top-k structural similarity
search. In: ICDE, pp. 774–785, (2012)

15. Leskovec, J, Chakrabarti, D, Kleinberg, J, Faloutsos, C, Ghahra-
mani, Z: Kronecker graphs: an approach to modeling networks. J.
Mach. Learn. Res. 11(2), (2010)

16. Li, C., Han, J., He, G., Jin, X., Sun, Y., Yu, Y., Wu, T.: Fast com-
putation of simrank for static and dynamic information networks.
In: EDBT, pp. 465–476, (2010)

17. Li, L., Li, C., Chen, H., Du, X.: Mapreduce-based simrank compu-
tation and its application in social recommender system. In: 2013
IEEE International Congress on Big Data, pp. 133–140. IEEE,
(2013)

18. Li, Zhenguo, Fang, Yixiang, Liu, Qin, Cheng, Jiefeng, Cheng,
Reynold, Lui, John:Walking in the cloud: parallel simrank at scale.
PVLDB 9(1), 24–35 (2015)

19. Lin, Zhenjiang, Lyu, Michael R., King, Irwin: Matchsim: a novel
similarity measure based on maximum neighborhood matching.
KAIS 32(1), 141–166 (2012)

123

ExactSim: benchmarking single-source SimRank algorithms... 1015

20. Litvak, N., Scheinhardt, W.R.W., Volkovich, Y.: In-degree and
pagerank: why do they follow similar power laws? Internet Math.
4(2–3), 175–198 (2007)

21. Liu, Y., Zheng, B., He,X.,Wei, Z., Xiao, X., Zheng,K., Jiaheng, L.:
Probesim: scalable single-source and top-k simrank computations
on dynamic graphs. PVLDB 11(1), 14–26 (2017)

22. Lizorkin, D., Velikhov, P., Grinev,M., Turdakov, D.: Accuracy esti-
mate and optimization techniques for simrank computation. VLDB
J. 19(1), 45–66 (2010)

23. Lizorkin, D., Velikhov, P., Grinev, M.N., Turdakov, D.: Accuracy
estimate and optimization techniques for simrank computation.
VLDB J. 19(1), 45–66 (2010)

24. Lü, Linyuan, Zhou, Tao: Link prediction in complex networks: a
survey. Phys. A: Stat. Mech. Appl. 390(6), 1150–1170 (2011)

25. Luo, X., Gao, J., Zhou, C., Yu, J. X.: Uniwalk: Unidirectional ran-
dom walk based scalable simrank computation over large graph.
In: 2017 IEEE 33rd International Conference onData Engineering
(ICDE), pp. 325–336, (2017)

26. Maehara, T., Kusumoto, M., Kawarabayashi, K.: Efficient simrank
computation via linearization. CoRR, abs/1411.7228, (2014)

27. Maehara, T., Kusumoto, M., Kawarabayashi, K.: Scalable simrank
join algorithm. In: ICDE, pp. 603–614, (2015)

28. Page,L.,Brin, S.,Motwani,R.,Winograd,T.: Thepagerank citation
ranking: bringing order to the web. (1999)

29. Shao, Y., Cui, B., Chen, L., Liu, M., Xie, X.: An efficient similarity
search framework for simrank over large dynamic graphs. PVLDB
8(8), 838–849 (2015)

30. Tao, W., Minghe, Y., Li, G.: Efficient top-k simrank-based similar-
ity join. PVLDB 8(3), 317–328 (2014)

31. Tian, B., Xiao, X.: SLING: a near-optimal index structure for sim-
rank. In: SIGMOD, pp. 1859–1874, (2016)

32. Tsitsulin, A., Mottin, D., Karras, P., Müller, E.: Verse: Versa-
tile graph embeddings from similarity measures. In: WWW, pp.
539–548. International World Wide Web Conferences Steering
Committee, (2018)

33. Wang, H., Wei, Z., Yuan, Y., Du, X., Wen, J.: Exact single-source
simrank computation on large graphs. In: Proceedings of the 2020
ACM SIGMOD International Conference onManagement of Data,
pp. 653–663, (2020)

34. Wang, Y, Che, Y, Lian, X, Chen, L, Luo, Q: Fast and accurate
simrank computation via forward local push and its parallelization.
In: IEEE Transactions on Knowledge and Data Engineering (2020)

35. Wang, Y., Chen, L., Che, Y., Luo, Q.: Accelerating pairwise sim-
rank estimation over static and dynamic graphs. VLDB J. 28(1),
99–122 (2019)

36. Wei, Z., He, X., Xiao, X., Wang, S., Liu, Y., Du, X., Wen, J.: Prsim:
sublinear time simrank computation on large power-law graphs. In:
SIGMOD, pp. 1042–1059. ACM, (2019)

37. Xi,W., Fox, EA., Fan,W., Zhang, B., Chen, Z., Yan, J., Zhuang, D.:
Simfusion: measuring similarity using unified relationship matrix.
In: SIGIR, pp. 130–137. ACM, (2005)

38. Yu, W., Lin, X., Zhang, W.: Fast incremental simrank on link-
evolving graphs. In: ICDE, pp. 304–315, (2014)

39. Weiren, Y., Lin, X., Zhang, W., Chang, L., Pei, J.: More is simpler:
effectively and efficiently assessing node-pair similarities based on
hyperlinks. PVLDB 7(1), 13–24 (2013)

40. Yu,W.,McCann, J.:Gauging correct relative rankings for similarity
search. In: CIKM, pp. 1791–1794, (2015)

41. Weiren, Y., McCann, J.A.: Efficient partial-pairs simrank search
for large networks. PVLDB 8(5), 569–580 (2015)

42. Yu, W., McCann, J.A.: Efficient partial-pairs simrank search on
large networks. Proc. VLDB Endow. 8(5), 569–580 (2015)

43. Yu, W., McCann, JA.: High quality graph-based similarity search.
In: SIGIR, pp. 83–92, (2015)

44. Weiren, Y., Zhang, W., Lin, X., Zhang, Q., Le, J.: A space and
time efficient algorithm for simrank computation.WorldWideWeb
15(3), 327–353 (2012)

45. Zhang, J., Tang, J., Ma, C., Tong, H., Jing, Y., Li, J.: Panther: Fast
top-k similarity search on large networks. In: SIGKDD, pp. 1445–
1454. ACM, (2015)

46. Zhao, P., Han, J., Sun, Y.: P-rank: a comprehensive structural simi-
larity measure over information networks. In: CIKM, pp. 553–562.
ACM, (2009)

47. Zhao, P., Han, J., Sun, Y.: P-rank: a comprehensive structural simi-
larity measure over information networks. In: CIKM, pp. 553–562,
(2009)

48. Zheng,W., Zou, L., Feng, Y., Chen, L., Zhao, D.: Efficient simrank-
based similarity join over large graphs. PVLDB 6(7), 493–504
(2013)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	ExactSim: benchmarking single-source SimRank algorithms with high-precision ground truths
	Abstract
	1 Introduction
	2 Preliminaries and related work
	2.1 Monte Carlo methods
	2.2 Iterative methods
	2.3 Local push/sampling methods
	2.4 Other related work
	2.5 Limitations of existing methods

	3 Basic ExactSim algorithm
	4 Optimizations
	4.1 Analysis

	5 Experiments
	5.1 Evaluation towards ExactSim
	5.2 Benchmarking approximate SimRank algorithms
	5.3 SimRank distribution

	6 Conclusions
	Acknowledgements
	References

