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Abstract
Subsequence anomaly (or outlier) detection in long sequences is an important problem with applications in a wide range of
domains. However, the approaches that have been proposed so far in the literature have severe limitations: they either require
prior domain knowledge or become cumbersome and expensive to use in situations with recurrent anomalies of the same
type. In this work, we address these problems and propose NormA, a novel approach, suitable for domain-agnostic anomaly
detection. NormA is based on a new data series primitive, which permits to detect anomalies based on their (dis)similarity
to a model that represents normal behavior. The experimental results on several real datasets demonstrate that the proposed
approach correctly identifies all single and recurrent anomalies of various types, with no prior knowledge of the characteristics
of these anomalies (except for their length). Moreover, it outperforms by a large margin the current state-of-the art algorithms
in terms of accuracy, while being orders of magnitude faster.

Keywords Data series · Time series · Anomalies discovery

1 Introduction

Massive collections of data series1 are becoming a reality
in virtually every scientific and social domain, and there is
an increasingly pressing need by relevant applications for

1 If the dimension that imposes the ordering of the sequence is time
then we talk about time series. In the rest of this paper, we will use the
terms sequence, data series, and time series interchangeably.
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developing techniques that can efficiently analyze them [8,
42,44].
[Anomaly Detection in Sequences] Anomaly, or outlier
detection is an old problem [9,16,30,55,64,65], finding appli-
cations in a wide range of domains. In the specific context of
sequences, which is the focus of this paper, we are interested
in identifying anomalous subsequences, that is, the outlier is
not a single value, but rather a sequence of values. This dis-
tinction is crucial for the following reason: even though all
individual values in a subsequence look normal when exam-
ined independently from one another, the sequence of these
same values may be anomalous (e.g., the trend, or shape of
the subsequence may not be normal).

Therefore, subsequence anomaly detection is a very useful
and important operation for many real-world applications
because it enables the early identification of problems that
would otherwise remain undetected until too late [7].
[Limitations of Previous Approaches] Existing techniques
either explicitly look for a set of predetermined types of
anomalies [4,25], or identify as anomalies the subsequences
with the largest distances to their nearest neighbors (termed
discords) [52,64]. We observe that these approaches pose
limitations to the subsequence anomaly identification task,
for several reasons, explained below.
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(a)

(b)

Fig. 1 a MBA ECG (2000 points snippet from patient 820), with two
anomalous supraventricular premature beats (S). b Euclidean distances
of each subsequence (length 75) to its best non-trivial match in the full
sequence: anomalies do not have the largest distance to their nearest
neighbors

First, the anomalous behavior is not always known. There-
fore, techniques that use specific domain knowledge for
mining anomalies (e.g., in cardiology [25], and engineer-
ing [7]) involve several finely tuned parameters, and do
not generalize to new cases and domains. For example,
early detection of anomalies in bearings (rolling elements
in rotating machines, such as an aircraft engine) is of
great importance for engine manufacturers, such as Safran2.
Even though existing techniques based on signal processing
achieve good performance [4], Safran engineers have noted
that these techniques require expertise and knowledge of the
specific system’s kinematic model, and would instead like to
have an automated method, capable of detecting anomalies
without expert knowledge [51].

Second, in the case of general, domain-agnostic tech-
niques for subsequence anomaly detection, the state-of-the-
art algorithms (e.g., [52,64]) have been developed for the
case of a single anomaly in the dataset, or multiple differ-
ent (from one another) anomalies. The reason is that these
algorithms are based on the distance of a subsequence to its
nearest neighbor (NN) in the dataset: the subsequence that
has the farthest NN is marked as an anomaly.

Figure 1 depicts this situation. We show a snippet of
the MIT-BIH Supraventricular Arrhythmia Database (MBA)
ECG recording [23,40] of patient 820. This sequence
includes repeated anomalous subsequences (ventricular pre-
mature contractions, marked by solid red rectangles). Fol-
lowing the state-of-the-art approaches [52,64], we plot in
Fig. 1b the distance of each subsequence (of length 75) to
its NN, and we observe that the (known) anomalies do not
correspond to the most distant NN (i.e., the highest peak in
Fig. 1b). This is because our dataset includes several anoma-
lies that are similar to one another (i.e., of the same type).
At the same time, these approaches mark as outliers subse-
quences that are normal (dotted black rectangle), resulting in
(a large number of) false positives.

2 http://www.safran-group.com/.

Third, in order to remedy this situation, the mth discord
approach has been proposed [61]. This approach takes into
account the multiplicity, m, of the anomalous subsequences
that are similar to one another, and marks as anomalies all
the subsequences in the same group, by computing the mth
(instead of the 1st) NNs for each subsequence. Neverthe-
less, this approach assumes that we know the multiplicitym,
which is not true in practice (otherwise,we need to re-execute
the algorithms for several different m values).

Fourth, another drawback of unsupervised methods for
subsequence anomaly detection is the non-stationarity of
data series: the data characteristics (e.g., basic statistics and
trends) may change over time. These situations are hard to
handle and confuse the discord and mth-discord methods,
since an anomalous subsequence may find a very near neigh-
bor among the subsequences of a latter part of the series that
involves a different set of normal (and anomalous) patterns.
[Proposed Approach] In this work, we address the afore-
mentioned problems, and propose NormA, a novel approach
suitable for subsequence anomaly detection. The proposed
approach allows us to detect anomalies based on their
(dis)similarity to amodel that represents the normal (expected)
behavior.

NormA starts by carefully selecting some of the subse-
quences of the dataset, based on a scoring mechanism. The
selected set of subsequences are then used to build the normal
behavior model, which is a set of sequences. This process is
automatic (using the minimum description length principle),
without the need for user intervention, and is effective even
when the dataset contains multiple anomalies. We also pro-
pose a variant of NormA that is able to handle situations,
where a single series exhibits multiple normal behaviors.
This is an important case in practice, e.g., when the underly-
ing data generation process changes among several normal
states. At the end, NormA detects subsequence anomalies by
comparing candidate subsequences to this normal behavior
model. We note that NormA is unsupervised, and computes
the normal behavior model based on the original (unlabeled)
dataset, despite the presence of anomalies in it.

Using a large variety of real and synthetic datasets, we
experimentally demonstrate that NormA is statistically sig-
nificantly better than current state-of-the-art algorithms in
detection accuracy, for both single and repeated anomalies.
At the same time, NormA is one order of magnitude faster
than the competition.
[Contributions] Our contributions can be summarized as
follows3.

• We summarize the state-of-the-art methods on subse-
quence anomaly detection, and discuss their practical

3 A preliminary version of this paper and a corresponding demo paper
have appeared elsewhere [10,11].
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shortcomings. To overcome these problems, we propose
a new definition of subsequence anomalies, based on the
distance to normal behavior.

• We formalize the concept of Normal Model, which is a
set of data series that represents the recurrent (normal)
behavior in a sequence. The Normal Model can be the
basis for anomaly detection, and can be instantiated in
different ways.

• We describe a new subsequence anomaly detection algo-
rithm that automatically constructs the Normal Model
series, based on the principles of frequency, coverage and
centrality. Subsequently, the algorithm uses the Normal
Model in order to identify anomalies in an unsupervised
and domain-agnostic manner. We propose two flavors of
this algorithm: NormA-SJ that is based on full computa-
tion, and NormA-smpl, based on sampling, that achieves
almost the same accuracy, but is considerably faster.

• Furthermore, we propose NormA-mn, an extension of
our approach, that is able to effectively handle cases
where a single series exhibits multiple normal behaviors.

• Finally, we conduct an extensive evaluation with the
largest set of real datasets tested in the literature (includ-
ing all datasets that have been used in the past), as well as
several synthetic datasets. The results demonstrate that
NormA is significantly more accurate than the state-
of-the-art approaches proposed in the data series and
multi-dimensional outliers literature, including a super-
vised method, even in the presence of many (similar
and/or diverse) anomalies. At the same time, NormA is
up to orders of magnitude faster.

[Paper Structure] The rest of this paper is organized as fol-
lows. We discuss the background and relevant challenges in
Sect. 2. Section 3 formulates the problem. In Sect. 4, we
describe our solution, and we report the results of our experi-
mental analysis in Sect. 5. In Sect. 6, we discuss relatedwork,
and we conclude in Sect. 7.

2 Preliminaries

A data series T ∈ R
n is a sequence of real-valued numbers

ti ∈ R [t1, t2, ..., tn]; |T | = n is the length (or size) of T .
We are typically interested in local regions of the data series,
namely subsequences.

A subsequence Ti,� ∈ R
� of a data series T is a subset

of contiguous values from T of length � (usually � � n)
starting at position i ; formally, Ti,� = [ti , ti+1, ..., ti+�−1].

The problemwe are addressing in this work is the identifi-
cation of anomalous subsequences (of a given length) within
a long data sequence.

Given two sequences, A and B, of the same length,
�, we can calculate their Z-normalized Euclidean dis-

tance, dist , as follows [18,41,56,58,63]: dist(A, B) =√∑l
1(

Ai,1−μA
σA

− Bi,1−μB
σB

)2, where μ and σ represent the
mean and standard deviation of the sequences. For the rest
of this paper, we will simply use the term distance.

Given a subsequence Ti,�, we say that its mth nearest
neighbor (mth NN) is Tj,�, if Tj,� has the mth shortest dis-
tance to Ti,�, among all the subsequences of length � in T ,
excluding trivial matches [66]; a trivial match of Ti,� is a
subsequence Ta,�, where |i − a| < �/2 (i.e., the two subse-
quences overlap by more than half their length).

2.1 Data series discord

The state-of-the-art solutions for subsequence anomaly
detection use the following definition for the anomalies, also
called discords:

Definition 1 (discord [17,21,27,35,37,38,52,64]) Among all
subsequences of length � of series T , the subsequence Ti,�
that has the largest distance to its NN is called a (data series)
discord.

This is an intuitive definition: a subsequence is a discord if
its NN is very far away. Figure 2a depicts the discord Ti,� and
the distance, di , to its NN. (Note that for ease of exposition,
we represent each subsequence as a point in two-dimensional
space). Observe that distance di is the largest NN distance
among all other subsequences. However, this definition fails
when we have two neighboring discords, with a small dis-
tance to each other, and a very large distance to all the rest
of the subsequences. In order to capture these situations, the
mth-discord has been proposed:

Definition 2 (mth-discord [61]) Among all subsequences of
length � of series T , the subsequence Ti,� that has the largest
distance to its mth NN is called an mth-discord.

Naturally, in anomaly detection we are not only interested
in the most significant anomaly. We now propose a defini-
tion that extends the previous two for the case of the k most
significant anomalies:

Definition 3 (Top-k mth-discord) A subsequence Ti,� is a
Top-k mth-discord if it has the kth largest distance to its
mth NN, among all subsequences of length � of T .

Note that this definition subsumes the previous two: the
simple discord (Definition 1) is equivalent to Top-1 1st-
discord, and the mth-discord (Definition 2) is equivalent to
Top-1 mth-discord.

Example 1 Figure 2a, b illustrates these notions. This exam-
ple depicts the Top-1 1st-discord (Ti,� in Fig. 2a): its 1-NN
is the furthest away than the NNs of all other subsequences.
Figure 2a also shows two groups with 3 and 5 anomalous
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(a) (b) (c)

Fig. 2 Illustration of the different subsequence anomaly definitions: a discord; b mth-discord; c NormA

subsequences (containing Tj,� and Tk,�). These two groups
cannot be detected using Top-1 1st-discord. However, using
themth-discord definition, these groups can be detected. For
instance in Fig. 2b, Top-1 3rd-discord distance dk.3 of Tk,�
is large enough to identify it (and its corresponding group) as
anomalous. Similarly, for the group of 5 anomalies, we need
to use the Top-1 5rd -discord definition in order to correctly
identify subsequence Tj,� and the other subsequences in the
same group as anomalies.

Even though discords have been extensively studied and
used in the literature, they have shortcomings that can limit
their practical use. Therefore, we argue for the need of a
new, different approach on subsequence anomaly detection.
We elaborate on these issues in the following sections.

2.2 Shortcomings of discords

Subsequence anomaly detection based on discords has
attracted lots of attention in the past years. There exist several
studies that have proposed fast and scalable discord discov-
ery algorithms in various settings [17,21,27,37,38,52,61,64],
including simple and mth-discords4, in-memory and disk-
aware techniques, exact and approximate algorithms.

Nevertheless, we claim that the way discords are defined
may in some situations complicate the discovery of anoma-
lies.. The reason is twofold: (i) the number of anomalies
present in a dataset is usually more than one and is not
known in advance; and (ii) often times anomalous subse-
quences repeat themselves (approximately the same) in the
same dataset.

Example 2 Assume the dataset depicted in Fig. 2a, b. Run-
ning the algorithm with m = 1 will only identify the Top-1
1st-discord (that is, Ti,�). In fact, anomalies colored in light

4 The authors of these papers define the problem as kth-discord discov-
ery.

red in Fig. 2a are not identified with m = 1. In order to
identify the Top-1 3nd -discord (Tk, �), we will need to rerun
the algorithm with m = 3. Figure 2b represents this case
(m = 3): the group in the bottom of the plot is identified as
anomalous. However, the anomalous group in the middle of
the plot remains undetected (depicted in light red in Fig. 2b).
We will need to execute the algorithm up to m = 5 in order
to identify correctly all the anomalies colored in red in Fig. 2.
Since we do not know when to stop increasing the parameter
m, we may end up in a situation where the algorithm starts
reporting false positives, i.e., erroneously identifying normal
subsequences as anomalies (this happens for m = 13 in our
example).

3 Problem formulation

We now formulate a new approach for subsequence anomaly
detection, based on the notion of normal (expected) behav-
ior. Since we are interested in subsequence anomalies, we
first define the set of all subsequences of length � in a given
data series T : T� = {Ti,�|∀i .0 ≤ i ≤ |T | − � + 1}. In gen-
eral, we assume thatT� contains both normal and anomalous
subsequences. We then need a way to characterize normal
behavior:

Definition 4 (NormalModel, NM)Given a data series T , NM

is a model that represents the normal (i.e., not anomalous)
trends and patterns of T .

The above definition is not precise on purpose: it allows
several interpretations, which can lead to different kinds of
models. Nevertheless, subsequence anomalies can then be
defined in a uniform way: anomalies are the subsequences
that have the largest distances to the expected normal behav-
ior, NM (or their distance is above a set threshold).

There are several ways to create NM . In this work, we
propose a formalization for NM as follows: NM is a set
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of sequences, NM = {(N 0
M , w0), (N 1

M , w1), ..., (Nn
M , wn)},

where Ni
M is a subsequence of length �NM (the same for

all Ni
M ) that corresponds to a recurring behavior in the data

series T , andwi is its normality score (as we explain later, the
highest this score is, the more usual the behavior represented
by Ni

M is). In other words, this model averages (with proper
weights) the different recurrent behaviors observed in the
data, such that all the normal behaviors of the data series will
be represented in the normal model, while unusual behaviors
will not (or will have a very low weight).

Figure 2c is an illustration of a Normal Model. As
depicted, the Normal Model NM is a weighted combination
of a set of subsequences (points within the dotted circles).
The combination of these subsequences and their related
weights returns distances di , d j , dk that are high enough to be
differentiated from the normal points/subsequences. These
distances can be seen as the distance between subsequences
and a weighted barycenter B (in green) that represents NM .
Note that we do not actually compute this barycenter; we
illustrate it in Fig. 2c for visualization purposes.

We choose �NM > � in order to make sure that we do not
miss useful subsequences, i.e., subsequences with a large
overlap with an anomalous subsequence. For instance, for
a given subsequence of length �, a normal model of length
�NM = 2� will also contain the subsequences overlapping
with the first and last half of the anomalous subsequence.

In the experimental section, we demonstrate the effective-
ness of the above formalization of NM , using all datasets that
have been used in the literature for subsequence anomaly dis-
covery.

Definition 5 (Subsequence anomaly) Assume a data series
T , the set T� of all its subsequences of length �, and the
Normal Model NM of T . Then, the subsequence Tj,� ∈ T�

with anomaly score, i.e., distance to NM , d j = ∑
Ni
M

wi ∗
minx∈[0,�NM −�]

{
dist(Tj,�, Ni

Mx,�
)
}
, is an anomaly if d is in

the Top-k largest distances among all subsequences in T�,
or d > ε, where ε ∈ R>0 is a threshold.

Note that the only essential input parameter is the length �

of the anomaly (which is also one of the inputs in all relevant
algorithms in the literature [17,21,27,37,38,52,61,64]). The
parameter k (or ε) is not essential, as long as the algorithm
can rank the anomalies.

We stress that in practice, experts start by examining the
most anomalous pattern and then move down in the ranked
list, since there is (in general) no rigid threshold separating
anomalous from non-anomalous behavior [9]. All anomaly
discovery processes function this way.

Aswementioned above andwill detail later on, we choose
to define NM as a set of sequences that summarizes normality
in T , by representing the average behavior of a set of normal
sequences. Intuitively, NM is the set of data series, which

Algorithm 1: NormA Subsequence Anomaly Detec-
tion.
input : data series T , anomaly length �

output: Anomalies - list of anomalous subsequences

1 NM ← CompNM(T , �NM ); // compute Normal
Model

2 Anomalies ← CompAnom(T , NM , �);// detect
anomaly

tries to minimize the sum of Z-normalized Euclidean dis-
tances between itself and some of the subsequences in T . The
NormalModel and subsequence anomaly definition are illus-
trated in Fig. 3. Last but not least, we need to compute NM in
an unsupervised way, i.e., without having normal/abnormal
labels for the subsequences in T�.

Observe that this definition of NM implies the following
challenge: even though NM summarizes the normal behavior
only, it needs to be computed based on T , which may include
(several) anomalies. We address these challenges by taking
advantage of the fact that anomalies are a minority class.

We can now define the problem we want to solve.

Problem 1 (Subsequence anomaly detection) Given a data
series T , and the set T� of all its subsequences of length
�, define a function f : T�, k → A that returns A, a set
containing the k most important subsequence anomalies in
T�.

In this work, we focus on the Top-k anomalies; using
instead a threshold ε to detect anomalies is a straightforward
extension.

Table 1 summarizes the symbols we use in this paper.

4 Proposed approach

In this section, we describe NormA, our solution for auto-
mated subsequence anomaly detection.

Algorithm 1 summarizes our approach, which detects
anomalies based on their distance from the (set of) Normal
Model (sequences). It takes as input a data series T , and the
length � of the candidate anomalies. The algorithm first com-
putes the Normal Model NM based on T and subsequently
detects and returns a ranked list of the anomalous subse-
quences in T based on NM .

We note that the length of the anomalies, �, is the only
user-defined parameter in the subsequence anomaly detec-
tion techniques we propose in this work, and can be set by
the domain expert (e.g., in the case of electrocardiogramdata,
cardiologists are interested in analyzing heartbeats, which
have a known length). This parameter appears in all sub-
sequence anomaly detection methods [28,52,61,64] as well
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(a)

(b)

Fig. 3 a Normal model of series T (shown in (b)), composed of n
cluster centroids (thick lines) of subsequences (thin lines) of T . Each
subsequence of T is compared to all centroids Ni

M weighted by wi

(black box). c Anomaly score d of all subsequences of T : subsequence
Tj,� is normal (low score), while T ′

j,� is an anomaly (high score)

Table 1 Table of symbols Symbol Description

T A data series

|T | Cardinality of T

� Subsequence length

T� Set of all subsequences of length � in T

NM Normal Model of T

Ni
M The i th sequence of Normal Model of T

wi Normality score of Ni
M

�NM Length of Normal Model NM

Ni
M
�� T Join between Ni

M and T with subsequence length �

T
�� T Self-join of T with subsequence length �NM

S A subset of subsequences of T , of length �NM

C A set of clusters of subsequences of length �NM

c One cluster in C

Center(c) The centroid of cluster c

as in outlier techniques [14,36]. All the other parameters
described in the rest of this section are internal parameters
and are set automatically to their default values. For instance,
the length of the Normal Model sequences, �NM , needs to be
larger than �. In our experiments, we use the default value
�NM = 3�. (The results show stable performance as �NM

varies.) We further discuss this issue in our experimental
evaluation.

In the rest of this section, we describe in detail these two
steps: computation of the Normal Model, and detection of
anomalies.

4.1 Normal model based anomaly detection

Wefirst discuss the problemof how to identify the anomalous
subsequences in a series T , assuming that we have already

computed theNormalModel NM = {(N 0
M , w0), (N 1

M , w1)...,

(Nn
M , wn)}. Remember that NM (ideally) represents the

expected normal behavior of the data. Intuitively, the anoma-
lous subsequences are the ones that are far away from most
of the subsequences in NM .

Our technique starts by considering the pairwise distances
between each subsequence of length � in T to subsequences
of the same length in each of Ni

M in NM . For each subse-
quence Ni

M in NM , this operation results in a meta-sequence,
Ni
M
�� T (the join sequence), that contains at position j the

nearest neighbor distance between subsequence Tj,� and any
subsequence of the same length, �, in NM .We formally define
the join sequence.

Definition 6 (Data series join) Given two data series A and
B, and a subsequence length �, the Join between A and B
denoted by (A
�� B), is a meta data series, where |A
��

123



Unsupervised and scalable subsequence anomaly detection in large data series 915

Algorithm 2: CompAnom Normal Model Based
Anomaly Detection
input : data series T , NM , anomaly length �

output: Anomalies - ranked list of anomalous
subsequences of length �

1 all Join ← [];
2 foreach (Ni

M , wi ) in NM do
3 all Join ← Ni

M
�� T ;
4 end
5 AnomalyScore d ← [];
6 foreach j ∈ [0, |T | − �] do
7 d ← ∑

(Ni
M ,wi )∈NM

wi join[ j]
8 end
9 Anomalies ← subsequences with top-k d values;
// number of anomalies k ∈ [1, |NM
�� T |]

10 Anomalies ← sort subsequences in Anomalies in
order of decreasing values in d;

B| = |B| − � + 1, and ∀i .1 ≤ i ≤ |A
�� B|, (A
�� B)i,1 =
min(dist(Bi,�, A1,�), ... , dist(Bi,�, A|A|−�+1,�)).

In Algorithm 2, we report the pseudo-code of the anomaly
detection procedure. First we compute all the join sequences
Ni
M 
�� T (with (Ni

M , wi ) ∈ NM ), which contains the dis-
tances between each subsequence of T and their nearest
neighbor in Ni

M . As described in Definition 5, we then com-
pute the anomaly score for each subsequence. This score
corresponds to the nearest neighbor distance between the
subsequence to score and all the subsequences in each Ni

M
in NM . Given a subsequence Tj,�, we retrieve the near-
est neighbor distance between Tj,� and every Ni

M ∈ NM ,
(Ni

M 
�� T ) j . We then weigh these distances with wi and
sum them. Formally, for each subsequence in T at position
j , the anomaly score is computed as:

d j =
∑

(Ni
M ,wi )∈NM

wi (Ni
M
�� T ) j (1)

These scores represent the degree of abnormality: the
larger the score is, themore abnormal the subsequence is.We
then have to extract the k subsequences of length �, which
have the highest scores, and rank them. Algorithm 2 can also
operate in an iterative fashion. This means that the algorithm
can report the first (top) anomaly, and then, the user can
ask the algorithm to calculate and report the next anomaly,
according to the sorted (in descending order) anomaly scores.
The user can stop this process at any point.
[Complexity Analysis] In Algorithm 2, the anomaly extrac-
tion step is defined by the computation of Ni

M
�� T , which is
bounded by O((|T |−�+1)∗�NM ∗|NM |), where |NM | is the
number of subsequences in NM (remember that |NM | <<

|T |). Then, it costs O(|T | − � + 1) if we use a threshold to
select the anomalies:we simplymake apass over the anomaly
scores and report all subsequences that have a value greater
than the threshold. If we use a Max Heap to select the subse-
quences with the k largest values, this becomes O(k*log(k)).
Therefore, the anomalies extraction step is negligible and the
complexity is O((|T | − � + 1) ∗ �NM ∗ |NM |).

The distance measure we use for Ni
M 
�� T is the Z-

normalized Euclidean distance, thoughwe can replace it with
other distance measures, e.g., dynamic time warping (DTW)
in applications where local misalignments do not constitute
anomalies.

4.2 Computing the normal model

So far we have assumed that we know the Normal Model,
NM . In this section, we explain how we can derive it in an
automated way.

Recall that NM should capture (summarize) the normal
behavior of the data. This may not be very hard to do for
a sequence T that does not contain any anomalous subse-
quences. In practice, however, we would like to apply the
NormA approach in an unsupervised way on any sequence,
which may contain several anomalies. The challenge is then
how to compute NM based on a sequence T that contains
anomalies, without user intervention and no prior knowledge
of the anomalies (except for their length), and then identify
the anomalous subsequences in this same sequence T .

Note that the NM length, �NM is larger than the anomaly
length �, so that we do not miss subsequences with a large
overlap with an anomalous subsequence: given a subse-
quence of length �, if we choose a normal model of length
�NM = 2�, it will contain the subsequences overlapping with
the first and last half of the anomalous subsequence, which
is desirable.

We compute the NM sequences in three steps. First, we
extract the subsequences, which can serve as candidates
for building the NM . Then, we group these subsequences
according to their similarity, adopting a hierarchical cluster-
ing strategy, augmented by automated identification of the
right number of clusters, based on the minimum descrip-
tion length principle. The last step consists of scoring the
clusters computed in the previous step. Finally, we set the
Normal Model NM = {(N 0

M , w0), (N 1
M , w1)..., (Nn

M , wn)},
with Ni

M the centroid of the i th cluster, and wi its score.
We now elaborate on these NM computation steps.

4.2.1 Candidate subsequences selection

Remember that we are interested in describing the normal
behavior of a system. Hence, we need to identify the sub-
sequences (of the data series in which we wish to detect
anomalies) that occur approximately the same along the data
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series. These subsequences are a form of recurrent patterns
and should represent the normal behavior. Good candidate
subsequences are those that satisfy the following properties:
(i) they are similar to one another (normal behavior corre-
sponds repeats approximately the same); (ii) they cover a
large percentage of the data (not all extracted from the same
part of the series); and (iii) they have high cardinality (appear
frequently in the series).

We note that recurrent pattern discovery has been studied
under the name motif discovery. Supervised and unsuper-
vised motif discovery techniques assume that the user knows
how to set this range threshold [24,41], or otherwise define
the target cardinality of the motif set [34]. One can thus use
a motif method to extract good candidates (we show in the
experimental analysis that this strategy is accurate). How-
ever, these solutions are in general very expensive (quadratic
complexity). In this work, we propose a different strategy
requiring less computational time.
[Proposed Approach] In order to discover groups of recur-
rent patterns, we adopt a strategy that groups similar
subsequences, without knowing beforehand their range and
frequency. Since subsequence clustering has high time and
memory complexity, considering every possible subsequence
of a large input data series would not be a suitable solution,
both in execution time efficiency, and in accuracy [26]. We
thus decide to ignore some subsequences [49] and select only
a subset of them in the original data series.

We describe two variations of our candidate subsequence
selection strategy: one motif-based strategy and the other
random selection strategy. In the first strategy, we select sub-
sequences from T that have high similarity to T (excluding
overlapping subsequences). To that extent, we sort the sub-
sequences of T according to the distances to their 1st NN in
T . We can achieve this with the self-join:

Definition 7 (Data series self-join) Given a data series T ,
the self-join of T with subsequence length �, denoted by
T
�� T , is a meta data series, where |T
�� T | = |T | − �+ 1
and ∀i .1 ≤ i ≤ |T
�� T |, (T
�� T )i,1 = dist(Ti,�, 1st NN
of Ti,�).

For each position i , the self-join sequence contains the
nearest neighbor distance of the subsequence Ti,�. (An exam-
ple is shown in Fig. 1b.) Given the self-join of T , we can
discard the isolated occurrences, namely the subsequences
that do not have a close match, and thus have the highest
self-join values.

Given an input data series T and its self-join (T 
�� T ),
we define the set of the clustering candidate patterns (subse-
quences), Ssel f − join , selected by means of the self-join:

Definition 8 (Motif Set: Ssel f − join) Given a data series T
and a subsequence length �, Ssel f− join = {Ti,�NM |1 ≤ i ≤

|T | − �NM + 1∧ (T
�� T )i < ε}, where ε ∈ R
+. Moreover,

If Ti,�NM , Tj,�NM
∈ S

sel f − join ⇒ |i − j | ≥ �NM .

TheSsel f − join set contains non-overlapping subsequences
of T , which are not isolated occurrences.

In the second selection strategy,we use a randomsampling
strategy. Even though random motif selection could be per-
formed [32], we decide to use uniform random sampling as a
first baseline.We sample from T a subset of non-overlapping
subsequences, generating the candidate set as follows:

Definition 9 (Random set: Ssample) Given a data series T , a
subsequence length �NM , and a sampling rate 0 < r < 1,
S
sample = {Ti,�NM |0 ≤ i ≤ |T − �NM + 1|}, such that

|Ssample| < r ∗ |T�NM
|/�NM . Moreover, if Ti,�NM , Tj,�NM

∈
S
sample ⇒ |i − j | ≥ �NM .

In S
sample, we place the subsequences that are randomly

chosen until we reach the maximum size of |Ssample| that
respect the constraint in Definition 9. Thanks to the uniform
distribution of the random sampling, the subsequences in
S
sample also cover the entire length of the data series T .
Note that in the optimal case, where T is a periodic data

series, we know that there are at most |T�NM
|/�NM non-

overlapping recurrent patterns, assuming that �NM is the
length of the period. We thus consider this value as an upper
bound for the S

sel f − join cardinality. This value also repre-
sents the maximum number of fixed length cycles occurring
in anaperiodic data series.Among thedatasetswe consider in
the empirical evaluation, the maximum value of |T�NM

|/�NM

corresponds to the 1.3% of |T�NM
|. Moreover, we notice that

setting the threshold ε = μ(T 
�� T ) in S
sel f− join always

allows to filter isolated subsequences in T .

4.2.2 Candidate subsequences clustering

At this point, we are ready to present the adopted cluster-
ing technique to group subsequences in S (Ssel f − join , or
S
sample). In that regard, we consider their complete-linkage

(dendrogram), resulting from the agglomerative hierarchical
clustering [15]. Following previous work, we select a den-
drogram cut by applying the minimum description length
principle [49,50].

We define description length as the total number of bits
used to represents a subsequence, namely its entropy. Given
a data series T , we measure its entropy H(T ) as:

H(T ) = −
|T |∑
i=1

(P(T = Ti,1)log2P(T = Ti,1) (2)

The notation P(T = Ti,1) denotes the probability of finding
the value Ti,1 in T . The description length DL of T is then
defined as DL(T ) = |T | ∗ H(T ), and quantifies the storage
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Algorithm 3: SubsequencesClustering
input : subsequences set S
output: a cluster set C

1 Dendogram ← CompleteLinkage(S);
2 C ← ∅;
3 last Bitsave ← −∞;
4 foreach cut in Dendogram in top-down order do
5 C

′ ← get subsequences clusters from cut ;
6 if bitsave(C′) > last Bitsave then
7 C ← C

′;
8 last Bitsave ← bitsave(C′);
9 else

10 break;
11 end
12 end

requirement of a sequence. It is minimized as a data series
contains the highest number of repeated values. In this case,
bits compression reduces the space.

Once the subsequences are grouped, we can represent
them by using their distances to the cluster centers. If the
clustering is optimal, we expect that the sequences have high
similarity to their cluster centers. We consider the subse-
quences at the clustering stage in their SAX form (Symbolic
Aggregate approXimation),where each real value is assigned
a discrete label [54].

We introduce the conditional description length of a data
series T (that quantifies the bits needed to store it), when
knowing its cluster center sequence Center(c):

DL(T |Center(c)) = DL(T − Center(c)) (3)

Given a cluster of subsequences, c (with the centroid
Center(c)), we compute the conditional cluster description
length DLC , namely the amount of bits used to encode the
cluster using its center:

DLC(c|Center(c))

= DL(Center(c)) +
∑
d∈c

(DL(d|Center(c))) (4)

where the non-conditional DLC(c) = ∑
d∈c(DL(d)).

Given a set of clusters A, in order to quantify the compres-
sion achieved by A, we compare the bits needed to store all
the subsequences, with and without knowingCenter(c). We
thus apply the bitsave measure:

bitsave(A) =
∑
c∈A

DLC(c) − DLC(c|Center(c)) (5)

In Algorithm 3, we report the clustering procedure, which
selects and outputs the clusters of a dendrogram cut. The sub-
sequences linkage is computed in Line 1. Subsequently, we
iterate over the cuts in a top-down manner (Line 4). There-
fore, we start by considering the cuts that produce the least
number of clusters. We expect that the highest bitsave is
attained grouping subsequences in the smallest amount of
groups, if cluster intra-similarity is maximized. Hence, we
iterate the cuts until their clusters bitsave stops to increase
(Line 6). We thus pick the clusters resulting from the last
encountered cluster. This permits to group the subsequences,
maximizing their similarity and frequency.

4.2.3 Candidate clusters scoring

Each cluster we compute in Algorithm 3 becomes the can-
didate group of subsequences (candidate cluster), that are
considered to build the Normal Model. We now propose a
scoring function, which permits to compute wi (that can be
seen as the normality degree) for each candidate clusters i .
Intuitively, the cluster and subsequences with the top score
are themost representative of the different, recurring patterns
in the entire data series; the next cluster is less representa-
tive (but still contains subsequences that are close to normal
behavior).

Let S ⊆ T�NM
be a subset of subsequences in T of

length �NM . We can then compute the coverage of S,
Coverage(S) = MaxO f f set(S)−MinO f f set(S), which
measures the distance between the maximum and minimum
offsets in T (of two S subsequences), and corresponds to the
span of T from where the subsequences in S were extracted.
Wewill also refer to the frequency ofS, Frequency(S) = |S|
(equal to the cardinality of S).

Moreover, we want to consider an inter-clustering prop-
erty, namely the centrality. We borrow this definition from
the graph analysis literature [60], which states that the most
central node in a graph denotes its influence. Given a cluster
set C and a cluster c ∈ C, we define centrality as:

centrali t y(c,C) = 1∑
x∈C dist(Center(c),Center(x))

(6)

Recall that a cluster of subsequences, denoted by c, for-
mally coincides with a set of subsequences S. The Center
function we adopt in our work is the centroid, which is the
arithmetic mean vector of the subsequences in a cluster c.

Intuitively, in order to set the weights wi for all clusters i ,
we need to consider the subsequences that most often occurs
along the largest part of the data. This translates to identi-
fying the cluster with the highest frequency and the largest
coverage. In order to account themost recurrent subsequence,
we also adopt the centrality measure. If a subsequence is the
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(a) (b)

Fig. 4 a Norm cluster scoring of MBA ECG recordings (patient 803); b Norm cluster scoring of the concatenation of two MBA ECG recordings
(patient 803 and 805)

most recurrent, we expect that all its occurrences are grouped
in the cluster with the highest centrality.

We are now ready to score the candidate clusters, taking
into account the frequency and coverage of the subsequences
in each cluster, and its centrality as well. After normalizing
Frequency(c), Coverage(c), and Centrality(c) so that each
lies in the [1, 2] interval for all c ∈ C (normalization is
needed so that all three criteria have equal weight), the score
we assign to a cluster c, given also the complete clusters set
C, is the following:

Norm(c,C)

= Frequency(c)2 × Coverage(c) × centrali t y(c,C)

(7)

The Norm function provides an index, with regard to the
Normal Model properties we take in consideration. Since
high coverage values might erroneously be assigned to clus-
ters with low frequency, we favor clusters that have high
frequency. For this reason, it appears squared in Eq. 7.

4.2.4 Normal model extraction

In Fig. 4a, we report the cluster scores we obtain for the
MBA ECG recordings (patient 803). In the plot, we report
each cluster Norm score (the size of the red point is propor-
tional to Frequency(c)) coupled with their coverage (blue
line), which starts and ends, respectively, at the smallest and
largest offset of the cluster subsequences. In the right part of
Fig. 4, we depict the subsequences in each cluster. The x-axis
value assigned to each red point is the arithmetic mean of its
subsequences offsets in the corresponding cluster. This set
of clustersC = {c0, ..., cn} will be used in the normal model
NM = {(N 0

M , w0), ...(Nn
M , wn)}, with Ni

M = Center(ci )
and wi = Norm(ci ,C).

Algorithm 4: CompNM Compute Normal Model
input : data series T , Normal Model length �NM

output: Normal Model NM

1 compute Ssel f − join (or Ssample) from T ;
// compute the set of subsequences clusters

in T (C)

2 C ← SubsequencesClustering(S, �NM );
3 NM ← {} ;
4 for c in C do
5 add (centroid(c), Norm(c,C)) in NM ;
6 end

In this example, the subsequences contained in the clus-
ter with the highest Norm score, represent correct heartbeat
ventricles contracts. The centroid of this cluster will be the
most influential in NM . On the other hand, clusters with low
scores contain subsequences that do not represent any known
features (they may be noise, or even repeated anomalies) and
therefore, will not have a real influence in NM .

4.2.5 Overall algorithm

The overall procedure for computing the Normal Model is
then structured as shown in Algorithm 4. In Line 1, we select
a subset of subsequences, S, applying one of the two strate-
gies we discussed earlier (i.e., Ssel f − join , or Ssample), which
take into consideration several desired characteristics of the
correct (non-anomalous) part of the data. Subsequently, we
cluster them in Line 2. In Line 4, we iterate each cluster that
is assigned to the Norm score (Line 5) and then added to
the normal model as a tuple composed of its centroid and
its score. The assigned score quantifies how much a group
of similar subsequences (cluster) supports the properties we
define over correct data. We use NormA-SJ to refer to the
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algorithm that uses Ssel f − join , and NormA-smpl for the vari-
ation with Ssample.
[Complexity Analysis] The complexity of Algorithm 4
depends on the choice of the subsequence selection strategy,
performed in the initial part. We can compute S

sel f− join ,
using the state-of-the-art algorithm Stomp [66] in O(|T |2)
time. On the other hand, computing Ssample takes linear time
in the worst case (O(|T |)). In the experimental evaluation,
we test the two selection strategies in isolation to assess their
accuracy separately. Subsequently, the subsequences linkage
computation takes O(�|S|2).

It is important to note that the space of |S| is in general
two order of magnitude smaller than the original space of T .
In turn, selecting a dendrogram cut has worst case time com-
plexity of O(�|S|2), when all the cuts need to be evaluated.
As we show in the experimental evaluation, the number of
cuts considered in Algorithm 4 is very small in practice.

4.3 Multiple normal behaviors

In general, a system may be characterized by several (i.e.,
more than one) different recurrent patterns that all correspond
to normal behaviors. This may happen when the underlying
generation process changes among multiple different nor-
mal states of operation (e.g., when a machine has two, or
more operating states). In such cases, we would expect the
occurrence of multiple different and valid Normal Models
subsequences as well.

Thanks to the Normal Model structure, multiple normal
patterns can be identified. Assume a data series that is com-
posed of two segments (partitions) corresponding to two
different sets of normal behavior subsequences (patterns).
If these two subsequence sets have the same cardinality (i.e.,
the two segments are similar in size), then both of them will
be represented by one of the Normal patterns Ni

M , N j
M in

the Normal Model NM , and both Ni
M , N j

M will have simi-
lar weights wi , w j . In principle, NormA is capable to handle
data series composed of different segments. Figure 4b depicts
the scoring step on a data series composed of twoMBAECG
datasets. As we can see, the clusters are distributed between
the two parts that correspond to the offsets of the two seg-
ments. Moreover, the two normal patterns (N 0

M , N 1
M ) have

similar scores (i.e., value on the y-axis), and thus, will have
the same significance on the distance computation to the nor-
mal model.

However, since the normal subsequences of each segment
may be significantly different from one another, it may be
the case that an anomalous subsequence in one of the seg-
ments is similar to the normal subsequences of some other
segment. In this case, the algorithm will not be able to detect
this anomalous subsequence, which is obviously not desir-
able. In order to remove this undesirable effect, we define

NormA-mn, a variant of NormA-smpl, where we use a dif-
ferent method to compute the distance to the Normal Model.
For each subsequence Tj,� of T , the anomaly score is defined
as the distance d̃ j of that subsequence to the Normal Model,
computed as follows:

d̃ j =
( ∑

Ni
M

wi (Ni
M
�� T ) j

)
− β j (8)

In the equation above, (Ni
M
�� T ) j represents the distance of

Tj,� to its nearest neighbor in Ni
M , while the role of parameter

β j is to suppress the aforementioned noise. Assuming that S
is the changing point of the two segments of T , β j should be
equal to:

β j =

⎧
⎪⎪⎨
⎪⎪⎩

∑
k∈[0,S] dk

S
if we have: j ∈ [0, S]

∑
k∈[S,|T |] dk
|T | − S

if we have: j ∈ [S, |T |]
(9)

However, the changing point S is usually not known in
practice (and remains a challenging research problem [22]).
Moreover, it becomes even more difficult if there is more
than one changing point to find (i.e., for triple and quadruple
normalities). Thus, we compute β j as the average distance
of the Normal Model to subsequences in a time interval of
length τ around the subsequence Tj,�:

β j =
∑

k∈[I bj,τ (T ),I ej,τ (T )] dk
2τ

(10)

with:

I bj,τ (T ) = max(0,max(0, j − τ) − max( j + τ − |T |, 0))
I ej,τ (T ) = min(|T |,min(|T |, j + τ) + max(0, τ − j))

Note that in the above equation, τ ∈ [1, |T |]. In the
specific case when τ = |T |, we have I bj,τ (T ) = 0 and
I ej,τ (T ) = |T | and thus τ = μ(T ), with μ(T ) the mean
of the entire data series. As a matter of fact, using τ = |T |
is similar to using the classical NormA method. In practice,
β j is accurate if τ is large enough to consider a representa-
tive time neighborhood of the segment with mostly normal
subsequences (and maybe also a few anomalies). In the rest
of this paper, we set τ = 2|NM |. Our experimental evalua-
tion shows that varying this parameter does not have a strong
influence on the performance of our approach.

5 Experimental evaluation

In this section, we present the experimental results with
real datasets from different domains, including all annotated
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datasets that have been used in the discord discovery liter-
ature. To ensure reproducibility, we created a web page [3]
with the source code and datasets.

The experiments we conduct demonstrate the effective-
ness of NormA. We test the accuracy of anomaly detection
in datasets characterized by the presence of repeated (similar)
anomalies, but also in datasets,where anomalous occurrences
correspond to rare patterns, namely discords. We also study
the scalability of NormA, considering data series of different
and increasing size, and a real-use case dataset containing
20M of points.
[Summary of Results] In summary, the experimental analy-
sis demonstrates the superiority ofNormAagainst the current
state-of-the-art approaches, both in terms of accuracy and
scalability. In particular, over a wide variety of datasets,
NormA significantly outperforms (overall) all the competi-
tors used in our analysis, including time series discord
discovery algorithms, outlier algorithms for multidimen-
sional data, and a deep learning technique. Moreover, the
results show that NormA is up to one order of magnitude
faster than the competitors, irrespective of the anomaly length
considered (�), or the dataset characteristics (number of
anomalies, dataset length). Finally, we showcase the mean-
ingful results that NormA produced for two diverse real-use
cases.

5.1 Setup

We implemented our algorithms in C (compiled with gcc
5.4.0) and Python 3.5. The evaluation was conducted on a
server with Intel Xeon CPU E5-2650 2.20GHz and 250GB
RAM.
[Datasets] We benchmark our system using real and syn-
thetic datasets, for all of which a ground truth of anno-
tated anomalies is available (Table 2). Following previous
work [53], we use several synthetic datasets that contain sinu-
soid patterns at fixed frequency following a random walk
trend (Fig. 5). We then inject different number of anoma-
lies, in the form of sinusoid waveforms with different phases
and higher than normal frequencies (Fig. 5a), and add var-
ious levels of Gaussian noise on top (Fig. 5b). We refer to
those datasets using the label SRW-[# of anomalies]-[% of
noise]-[length of anomaly], and use them in order to test
the performance of the algorithms under different, controlled
conditions.

Our real datasets are the following: simulated engine
disks data (SED) from the NASA Rotary Dynamics Labora-
tory [5], representing disk revolutions recorded over several
runs (3K rpm speed). MIT-BIH Supraventricular Arrhyth-
mia Database (MBA) [23,40], which are electrocardiogram
recordings from 5 patients, containing multiple instances of
two different kinds of anomalies. Five additional real datasets
from various domains that have been studied in earlier

works [28,52] and their anomalies are simple discords (usu-
ally only 1): aerospace engineering (Space Shuttle Marotta
Valve [28]), gesture recognition (Ann’s Gun dataset [52]),
medicine (Patient’s respirationmeasured by the thorax exten-
sion [28], ECG recordings qtb/sel102 [28]), and electrical
consumption study (Dutch Power Consumption data [28]).

Finally, we use the following two non-annotated datasets:
TheNASABearing dataset [1] that consists of individual files
that are 1-s vibration signal snapshots of bearings installed
on a shaft, and the New York City Taxi and Limousine Com-
missions dataset (NTC) [2] that records the number of New
York City taxi passengers every for every 30 min from July
2014 to January 2015.

We note that the largest datasets used in the literature have
length of 15,000 and 36,000 points [28,52]. In contrast, we
use sequences that are 2 and 3 orders of magnitude larger,
with a maximal length up to 20,000,000 points (NASABear-
ing).
[Algorithms] We compare NormA to the current state-of-
the-art algorithms. We consider two techniques that enu-
merate Top-k 1st discords, GrammarViz (GV) [52] and
STOMP [64]. Moreover, we compare NormA against the
DiskAwareDiscordDiscovery algorithm (DAD) [61], which
finds mth discords. We also compare to Local Outlier Factor
(LOF) [14] and Isolation Forest [36]. These two methods are
not specific to subsequence anomaly detection, but consti-
tute strong baselines from the literature onmulti-dimensional
data outlier detection. Finally, we include in our comparison
LSTM-AD [39], a semi-supervised deep learning technique.
Note that the comparison to LSTM-AD is not fair to all the
other techniques: LSTM-AD has to first train on labeled nor-
mal data, which gives it an unfair advantage; all the other
techniques are unsupervised. We include it to get an indi-
cation as to how the unsupervised techniques compare to
a state-of-the-art supervised anomaly detection algorithm.
In practice, we train LSTM-AD on the longest subsequence
without anomalies: 4109-10846 points (7000 on average).
[Measures]We use the precision-at-k (P@k) accuracy mea-
sure to evaluate the effectiveness of the methods. P@k
accuracy is defined as the number of correctly identified
anomalies among the k answers of the algorithm, divided
by k. (This corresponds to precision on the anomaly class
T PA/(T PA + FPA), where T PA is the number of detected
true anomalies, and FPA the number of false positives.) Note
that we use k only for evaluation purposes: none of the algo-
rithms tested in the following section require k as a parameter.
In our accuracy evaluation, we set k to the number of anoma-
lies in the sequence (k = NA of Table 2). Recall that the
annotated datasets we use in this work have all their anoma-
lies annotated.

We also measure time, in order to evaluate the efficiency
and scalability of the methods.

123



Unsupervised and scalable subsequence anomaly detection in large data series 921

Table 2 List of dataset
characteristics: series length,
anomaly length (�), number of
annotated anomalies (NA),
domain

Datasets Length � NA Domain

Annotated

SED 100 K 75 50 Electronic

MBA (803) 100 K 75 62 Cardiology

MBA (805) 100 K 75 66 Cardiology

MBA (806) 100 K 75 27 Cardiology

MBA (820) 100 K 75 76 Cardiology

MBA (14046) 100 K 75 142 Cardiology

Marotta Valve 20 K 1K 1 Aerospace engineering

Ann Gun 11 K 800 1 Gesture recognition

Dutch power consumption 35 K 800 3 Elect. cons. study

Patient Respiration 24 K 800 1 Medicine

SRW-[20-100]-[0%]-[200] 100 K 200 var. Synthetic

SRW-[60]-[5%-25%]-[200] 100 K 200 60 Synthetic

SRW-[60]-[0%]-[100-1600] 100 K var. 60 Synthetic

Non-Annotated

NYC Taxi (NTC) 10K 100 – Transport

NASA Bearing 20M 20K – Bearings

(a)

(b)

Fig. 5 Synthetic datasets. (a) Random walk sequence (left), and sinu-
soid signal following the same trend (right) with injected anomalies
(red/bold subsequences). (b) A second example, with 20% of Gaussian
noise added on top (colour figure online)

Fig. 6 Cumulative P@k anomaly detection accuracy for NormA-SJ
(left) and NormA-smpl (right) on the 6 real annotated datasets with
multiple anomalies, when varying the Normal Model length

5.2 Normal model tuning

In this section, we evaluate the sensitivity of the Normal
Model NM , as a function of its length �NM (relevant for
NormA-SJ and NormA-smpl), and of the sampling rate r
(relevant for NormA-smpl).

First, we measure the performance for P@k anomaly
detection, setting k equal to the number of anomalies con-
tained in each one of our six real annotated datasets with
multiple anomalies, and we vary the length of the Normal
Model (�NM ), using a multiplicative factor ranging between
2-5 times the anomalous pattern length �. Figure 6 shows
the cumulative accuracy for each Normal Model length we
tested. (The results for NormA-smpl are averages over 100
runs.) We compute accuracy as the ratio of correctly iden-
tified anomalies over the total number of anomalies in each
dataset.

We observe that the accuracy values become stable once
the Normal Model length is at least 2.5x larger than the
anomaly length. We also note that this behavior is the same
for both NormA-SJ and NormA-smpl, and moreover, abso-
lute accuracy values are in both cases almost the same. In all
following experiments, we set the Normal Model length to
the default value of 4x the anomaly length.

Second, we computed accuracy as we vary the sampling
ratio r (seeDefinition 9) for computing theNormalModel for
NormA-smpl. We varied r between 0.1 and 0.6 and observed
that accuracy remained always (almost) stable (graphs omit-
ted for brevity). In all following experiments, we use the
default value r = 0.4.

Overall, we note that NormA only needs � as an input
parameter. (All the rest are set as discussed above.) Note that
� is also an input parameter for all other subsequence anomaly
detection algorithms,whichnevertheless also need additional
user-defined parameters (e.g., LOF and DAD require the
number of similar anomalies, m, that we want to detect).
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(a) (b)

Fig. 7 Distance measure impact experiment. a NormA-smpl accuracy score for MBA(803) for sbd , DTW and Euclidean distances. b Overall
accuracy for all the MBA datasets

5.3 Distancemeasure impact

In this section,we evaluate the impact of the distancemeasure
used in the NormA framework. (We use NormA-smpl as our
baseline.) For this purpose, we use in the dist function of 5
the Euclidean distance (i.e., the core distance measure for
our proposedmethod), the shape-baseddistance (SBD) [45],
and the dynamic time warping (DTW ) distance.

Figure 7a depicts the NormA-smpl score for the three dis-
tancemeasures for a 6000 points snippet of theMBA(803). In
Fig. 7b, we depict the averaged accuracy results over 10 dif-
ferent runs for the SED and all theMBA datasets. The results
show that the SBD, DTW , and Euclidean distances lead to
similar results (with no clear winner). Overall, Euclidean
provides accurate results. Moreover, through the use of the
MASS algorithm [64], it is significantly faster than the other
two distance measures. We thus use this distance for the rest
of the experimental section.

5.4 Anomaly detection evaluation

In this section, we report the anomaly detection accuracy
results.
[Anomalies Detection Accuracy] In Table 3, we show the
P@k accuracy (correctly identified anomalies among the k
retrieved divided by k), with k equal to the number of anoma-
lies. These experiments test the capability of each method
to correctly retrieve the k anomalous subsequences in each
dataset. For NormA, we simply have to report the P@k
anomalies that the algorithm produces. In the same manner,
we compute accuracy for Isolation Forest and LOF, consid-
ering the k subsequences assigned with the highest scores by
these two approaches. For the discord -based techniques, we
have to consider the Top-k 1st discord and the mth discord
(with m = k). Finally, LSTM-AD marks as anomalies the
subsequences that have the largest errors (distances) to the
sequences that the LSTM-AD algorithm predicts; we com-

pute accuracy considering the subsequenceswith the k largest
errors.

In the first section of Table 3, we report the results of
all techniques on the annotated real datasets with multiple
(diverse and similar) anomalies.NormA is clearly thewinner,
with the exception of MBA(14046), for which its perfor-
mance is still very close to the best performer. As expected,
Top-k 1st discord techniques (GV and STOMP) achieve low
accuracy, since anomalies do not correspond to rare subse-
quences (i.e., isolated discords).We also observe that themth
discord technique (DAD), which is able to detect groups of
m similar anomalous subsequences, does not perform well,
either. This is due to the many false positives produced by
the algorithm.

In the other three sections of Table 3, we report the accu-
racy of the evaluated methods on all the synthetic datasets
(where we vary the number of anomalies, the % of Gaussian
noise, and the anomaly subsequence length �). We note that
the accuracy of the discord discovery techniques substan-
tially improves, since in this case most anomalies correspond
to rare and isolated subsequences (i.e., different from one
another). Even in these cases, NormA is clearly superior
to the competitors. In contrast to GV, STOMP and DAD,
NormA’s performance is stable for increasing noise.

Regarding LSTM-AD, we note that in general it is more
accurate than the discord -based algorithms. Nevertheless,
we stress that LSTM-AD only achieves this performance,
because (contrary to the rest of the techniques) it benefits
from a training phase on labeled data. However, in sev-
eral situations labeled data are not available (and extremely
expensive to generate). Even as such though, LSTM-ADcan-
notmatch the performanceofNormA.Sincewewould expect
a supervised algorithm to perform at least as good as an unsu-
pervised one, these results suggest that supervised methods
still have lots of potential for improvement.
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Fig. 8 Critical difference diagram (α = 0.05) for the data series of
Table 3

Regarding LOF, we observe that it does not perform well
in our context. Isolation Forest achieves better performance,
but not as good as NormA.

Overall, we observe that NormA is more accurate than all
competitors (with very few exceptions, for which its perfor-
mance is still very close to the best one), in all the settings
we used in our evaluation. Furthermore, we note that the per-
formance of NormA-smpl is in almost all cases equal to that
of NormA-SJ, or very close to it.
[Critical Difference Diagram] After rejecting the null
hypothesis using the Friedman test, we use the pairwise post
hoc analysis using a Wilcoxon signed-rank test [59] to test
and produce the critical difference diagram for the algorithms
and datasets of Table 3. The critical difference diagram with
α = 0.05 (Fig. 8) shows that NormA-SJ and NormA-smpl
are the overall winners, with NormA-SJ and NormA-smpl
being significantly better than all previous algorithms.
[Varying k in P@k] In this part, we measure P@k accuracy
for different values of k (1,5,10,50,100). The objective of this
experiment is to evaluate the anomaly detection, testing the
ability of each technique to assign and place the real anomaly
in the first k places of the ranking, for a variable k. The
results shown in Table 4 show that NormA is the technique
with the best and most stable performance. Figure 9 helps us
understandwhy. In this figure, we depict on the left, the distri-
bution of the distances of each subsequence in theMBA(805)
dataset to their NN in the Normal Model, built by NormA.
On the right, we show for the same dataset, the distribution of
the distances between each subsequence and their NN in the
dataset itself (excluding trivial matches). In both diagrams,
each bar is gradually colored according to the number of
distances that belong to annotated anomalous subsequences,
from dark/black (many) to gray/light (few). We observe that
on the right plot, the subsequences with the k largest NN
distances are not the annotated anomalies, whereas on the
left plot the subsequences with the k largest distances are
the true anomalies, which are also the P@k anomalies dis-
covered by NormA. These results demonstrate that NormA
is able to correctly rank the real anomalies, according to the
highest distances to the NN in the Normal Model, whereas in
the discord ranking there are many subsequences with high
NN distance that are not anomalous (false positives).
[Rare Subsequence Anomalies] To further evaluate the
quality of the Normal Model, we consider a collection of
datasets, widely used in the data series anomaly (discord)
literature. Those are datasets characterized by one (three for

Table 4 Anomaly detection accuracy (average value of all annotated
datasets in Table 2) for different P@k, of NormA and the competitors

Method P@k Average

1 5 10 50 100

GV 0.25 0.13 0.20 0.18 0.23 0.15

DAD 0.50 0.30 0.30 0.34 0.41 0.37

STOMP 0.50 0.53 0.58 0.58 0.46 0.44

LSTM 0.75 0.61 0.58 0.62 0.61 0.64

LOF 0.83 0.86 0.81 0.72 0.56 0.64

IF 1.00 0.96 0.95 0.82 0.62 0.72

NormA-smpl 1.00 0.96 0.98 0.91 0.65 0.75

NormA-SJ 1.00 0.96 0.98 0.92 0.66 0.75

Bars are colored according the number of distances that belong to
anomalous subsequences, from dark/black (many) to gray/light (few).
(left) Distribution of distances to the NN in the Normal Model built by
NormA. (right) Distribution of the distances to the NN in the dataset
(excluding trivial matches)

Fig. 9 Distribution of nearest neighbor (NN) distance of theMBA(805)
subsequences

DutchPowerConsumption) anomalous subsequences,which
correspond to the P@k 1st-discord. In Fig. 10(left), we report
the excerpts of those datasets, whereas in Fig. 10(right), we
depict theNormalModel subsequencewith the largest Norm
score (weight wi ) computed by NormA in green/light color,
and the discord in red/dark color. The Normal Model sub-
sequence with the largest Norm score is in all cases very
different than the discords, which are always correctly iden-
tified by NormA as the Top-1 anomalies.

5.5 Multi-normality

In this experiment, we demonstrate the ability of NormA-mn
to capture anomalies in data series that have more than one
normal behavior patterns.By concatenating real datasets enu-
merated in Table 2 (SED andMBA datasets), we evaluate the
P@kaccuracy ofNormA-mnand some state-of-the-artmeth-
ods for datasets with 2–4 different normal patterns, for a total
of points equal to 200,000 (for two-normality), 300,000 (for
three-normality), and 400,000 points (for four-normality).
Note that apart from having different normal patterns, the
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(a)

(b)

(c)

(d)

(e)

Fig. 10 (left) Excerpts of 5 datasets used in the literature. (a) Patient’s
respiration [28]. (b) Dutch Power Consumption [28,52]. (c) Ann Gun
centroid dataset [52]. (d) Space Shuttle Marotta Valve dataset [28].
(right) Normal Model subsequence with the largest Norm score
extracted (green/light), and anomalous pattern (red/dark)

concatenated data series also have different value ranges in
each segment. These are challenging cases for our problem.

In this experiment, we only consider the three best com-
petitors according to Table 3, namely STOMP, Isolation
Forest (IF), and Local Outlier Factor (LOF). We assume that
the segmentation is not known: thus, Norma and the other
methods are run on the entire data series, without any infor-
mation on where each segment starts and ends. (We do not
include LSTM-AD in this experiment, because it would need
to be trained on normal subsequences from each different
segment, and thus require prior knowledge of the segments
as well.)

Table 5 shows the P@k accuracy (average results over
10 executions). The results show that the change of normal
behavior by the different segments of the series does not
have a strong impact on the anomaly discovery accuracy of
NormA-mn. On the contrary, IF is significantly less accurate,
which means that it sensitive to normality changes (compare
to Table 3). Table 5 also shows that the accuracy of IF is
getting significantly smaller as the number of the different
normal behaviors increase. This does not affect much the
other methods.

Figure 11 summarizes all the above results and compares
the accuracy between NormA-mn and IF/LOF/ STOMP
(Fig. 11a, b, c, respectively) for datasets with single, dou-
ble, triple, and quadruple normality. These graphs show that
the majority of points (representing the datasets of Table 5)

are under the diagonal, whichmeans that NormA-nm ismore
accurate for the majority of the datasets. Moreover, Fig. 11d
depicts the average accuracy results for each algorithm as a
function of the number of normal behaviors in the dataset.
The results demonstrate that the accuracy of all methods
decreases as the number of normal behaviors increases and
the problem becomes harder, with IF (black dashed line)
being the most sensitive of all.
[Influence of τ ] We also evaluate the influence of parameter
τ on the Precision@k of NormA-nm. Remember that in this
work, we always use the default value of τ = 2�NM (see
Sect. 4.3).

Figure 12 depicts the evolution of Precision@k for (a)
double, (b) triple, and (c) quadruple normality datasets, when
we vary τ . As expected, Precision@k is low when τ is very
small. In this case, the algorithm considers too few neighbors
to have a representative local sample. We observe a conver-
gence of the Precision@k for values of τ a bit larger than
�NM , which then remains stable as τ increases further.
[Critical Difference Diagram] We once again employ the
pairwise post hoc analysis using a Wilcoxon signed-rank
test [59] to test and produce the critical difference diagram
for the algorithms and datasets of Table 5. The critical differ-
ence diagram with α = 0.05 depicted in Fig. 13 shows that
NormA-mn is significantly better than all competitors.

5.6 Scalability evaluation

Wenow present scalability tests. (We do not consider LSTM-
AD, since supervised methods have a completely different
way of operation and associated costs, e.g., data labeling and
model training.)

In Fig. 14a, we report the execution time (seconds in log
scale) of NormA and all the competitors, when varying the
size of the dataset.Weuse several prefix snippets (50K, 100K,
500K, 1M, 2M points) of the real dataset MBA(14406), and
we set k equal to the number of anomalies that are annotated
in each snippet.Weobserve thatNormA-smpl is 1–2orders of
magnitude faster than the competitors, and gracefully scales
with the dataset size. This is because the number of distance
calculations performed by NormA-smpl in Algorithm 3 for
each subsequence in the data (computation of join sequence)
is limited to the subsequences contained in NM .

NormA performs a limited number of distance calcula-
tions during subsequence clustering (Algorithm 3), since
only a small part of subsequences in the input series are
selected to be clustered (Ssel f − join , or S

sample). Thus,
NormA-SJ that uses the STOMP algorithm for the Normal
Model computation stage, has a small additional time over-
head (when compared to STOMP).GV,DAD, andLOFadopt
different pruning strategies in order to reduce the number
of Euclidean distance computations, which prove to be less
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Table 5 P@k accuracy for STOMP, LOF, IF, and NormA-mn (with the default sampling rate r = 0.4) applied to multi-normal datasets

Data series Anomalies repartition STOMP LOF Isolation Forest (stddev) NormA-mn (stddev)

Double Normality

MBA(803 + 805) 0.48/0.52 0.32 0.53 0.53(0.03) 0.95(0.02)

MBA(803 + 806 ) 0.69/0.31 0.58 0.64 0.75(0.00) 0.89(0.03)

MBA(803 + 820) 0.45/0.55 0.78 0.67 0.75(0.05) 0.92(0.01)

MBA(803 + 14046) 0.30/0.70 0.52 0.80 0.97(0.02) 0.41(0.09)

MBA(803) + SED 0.55/0.45 0.67 0.44 0.45(0.00) 0.60(0.14)

MBA(805 + 806 ) 0.83/0.17 0.20 0.54 0.68(0.04) 0.85(0.01)

MBA(805 + 820) 0.46/0.54 0.51 0.79 0.49(0.04) 0.97(0.00)

MBA(805 + 14046) 0.31/0.69 0.43 0.68 0.88(0.07) 0.64(0.10)

MBA(805) + SED 0.56/0.44 0.30 0.39 0.37(0.01) 0.87(0.05)

MBA(806 + 820) 0.26/0.74 0.83 0.68 0.78(0.00) 0.92(0.01)

MBA(806 + 14046) 0.16/0.84 0.59 0.85 0.84(0.00) 0.58(0.05)

MBA(806) + SED 0.35/0.65 0.62 0.62 0.57(0.01) 0.84(0.01)

MBA(820 + 14046) 0.34/0.66 0.70 0.81 0.66(0.00) 0.65(0.04)

MBA(820 + SED 0.60/0.40 0.82 0.40 0.38(0.01) 0.92(0.02)

MBA(14046) + SED 0.73/0.27 0.61 0.61 0.28(0.00) 0.83(0.08)

Average 0.47/0.53 0.56 0.63 0.63 0.79

Triple Normality

MBA(803 + 805 + 806) 0.40/0.42/0.18 0.37 0.56 0.43(0.02) 0.84(0.01)

MBA(803 + 805 + 820) 0.30/0.32/0.37 0.54 0.67 0.37(0.02) 0.86(0.06)

MBA(803 + 805) + SED 0.35/0.37/0.28 0.41 0.41 0.26(0.00) 0.60(0.12)

MBA(803 + 805 + 14046) 0.23/0.24/0.53 0.44 0.71 0.73(0.02) 0.25(0.21)

MBA(803 + 806 + 820) 0.38/0.16/0.46 0.74 0.66 0.68(0.05) 0.82(0.04)

MBA(803 + 806) + SED 0.45/0.19/0.36 0.62 0.52 0.34(0.01) 0.67(0.04)

MBA(803 + 806 + 14046) 0.27/0.12/0.61 0.53 0.80 0.88(0.00) 0.32(0.22)

MBA(803 + 820) + SED 0.33/0.40/0.27 0.75 0.41 0.26(0.00) 0.64(0.02)

MBA(803 + 820 + 14046) 0.22/0.27/0.51 0.64 0.80 0.73(0.00) 0.66(0.07)

MBA(805 + 806 + 820) 0.39/0.16/0.45 0.53 0.69 0.41(0.02) 0.85(0.00)

MBA(805 + 806) + SED 0.46/0.19/0.35 0.35 0.49 0.31(0.00) 0.79(0.02)

MBA(805 + 820) + SED 0.34/0.40/0.26 0.54 0.44 0.24(0.00) 0.94(0.01)

MBA(806 + 820) + SED 0.18/0.50/0.32 0.78 0.48 0.31(0.00) 0.82(0.01)

Average 0.33/0.29/0.38 0.55 0.59 0.46 0.70

Quadruple Normality

MBA(803 + 805 + 806 + 820) 0.27/0.29/0.12/0.33 0.53 0.67 0.32(0.02) 0.86(0.03)

MBA(803 + 805 + 806) + SED 0.30/0.32/0.13/0.24 0.44 0.53 0.23(0.00) 0.74(0.06)

MBA(803 + 806 + 820) + SED 0.29/0.13/0.35/0.23 0.71 0.50 0.23(0.00) 0.60(0.27)

MBA(805 + 806 + 820) + SED 0.30/0.12/0.35/0.23 0.55 0.50 0.21(0.00) 0.55(0.30)

Average 0.29/0.21/0.24/0.26 0.56 0.55 0.25 0.69

The repartition of anomalies is reported as the percentage of anomalies in each segment

effective. DAD and LOF, in particular, reach the time-out
point (8 h in our experiments) for datasets ≥ 1M points.

In the next set of experiments, we measure the execution
time (seconds in log scale) of the algorithms as we vary the
number of anomalies; we use the MBA(14406) and instruct
the algorithms to find 20,40,60,80,142 anomalies (Fig. 14b),
and the SRW-[20-100]-[0%]-[200] (Fig. 14c) datasets. In

all experiments, the algorithms compute the Top-k anoma-
lies. We observe that the time performance of NormA is not
influenced by the number of anomalies, since for every sub-
sequence in the dataset we compute anyway the distance to
its nearest neighbor in theNormalModel. Similarly, STOMP,
IF, and LOF enumerate in quadratic time all the Top-k 1st
discords, always consuming the same amount of time. In
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(a) (b) (c) (d)

Fig. 11 NormA-mn P@k accuracy versus Isolation Forest (a), Local
Outlier Factor (b), and STOMP (c). Blue dots represent single normality
datasets, green crosses represent double normality, and red crosses rep-
resent triple normality datasets. d depicts the P@k accuracy evolution

for different number of normalities. Each point is the average accu-
racy for all datasets of the corresponding type (single, double, triple
normality)

(a) (b) (c)

Fig. 12 Precision@k for a double, b triple, c quadruple normality datasets as a function of τ (refer to Sect. 4.3)

Fig. 13 Critical difference diagram (α = 0.05) for the multiple-
normality data series of Table 5

contrast, the performance ofGVandDAD is negatively influ-
enced by the number of anomalies. This confirms that the
pruning strategies they use are influenced by the number of
anomalies to discover.

Figure 14d depicts the time performance results aswe vary
the length of the anomalies between 100 and 1600 points
(SRW-[60]-[0%]-[100-1600] datasets). The performance of
STOMP is constant, because its complexity is not affected
by the (anomaly) subsequence length. NormA remains rel-
atively stable, since in Algorithms 2 and 4 the Euclidean
distances are computed using the STOMP algorithm. In
NormA, only the clustering operations are affected by the
length of the subsequences to consider (Algorithm 3), which
in all experiments we ran was always a very small number
(∼1–2% of all subsequences). We observe that the execution
time for NormA-SJ decreases as we move from anomaly
length 100 to length 200. This decrease is explained by the
reduction of the number of non-overlapping subsequences

to cluster, which drops from 242 (anomaly length 100) to
128 (anomaly length 200). Regarding NormA-smpl, we see
a slight fluctuation in execution time, between 1.1 and 2.4
sec. LOF and IF are computing distances using all overlap-
ping subsequences, and the computational time is therefore
affected by their length. As shown in Fig. 14d, both of
these two methods perform orders of magnitude worse than
STOMP and NormA. GV and DAD do not scale with the
anomaly length, either.

5.7 NTC dataset use case

We now consider the NTC dataset. As depicted in Fig. 15,
NormA correctly discovered anomalies that have been
reported in earlier studies [6]: Daylight Saving Time (DST)
(c), Thanksgiving (d), Christmas (e), New Year’s day (f),
and snow storm of January 26–27, 2015 (h). In addition to
the above anomalies though, NormA identified additional
anomalous subsequences that were not reported by the earlier
studies. These anomalies occurred during the Independence
Day (a), Labor Day (b), and the bad weather of January 18,
followed by theMartin LutherKing (MLK) day (January 19),
that caused more than 400 accidents and flooding around the
NYC area. These three events resulted in unusually low taxi
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(a) (b) (c) (d)

Fig. 14 Scalability: execution time vs (a) dataset size, (b) number of anomalies for MBA(14406), (c) number of anomalies for synthetic, (d)
anomaly length. Timeout at 8 h

Fig. 15 NormA results on the NTC dataset. (top) The join with the
Normal Model. Events in green (c, d, e, f, h): anomalies discovered
by NormA and earlier studies. Events in red (a, b, g): new anomalies
discovered by NormA. (bottom) NTC data series with the anomalies
marked in red

traffic in NYC, which was detected by NormA. These results
underline the effectiveness of NormA to discover anomalous
subsequences.

5.8 NASA bearing dataset use case

The NASABearing dataset consists of 984 records of 20,480
points series each, measuring the vibrations of gear bearings.
In total, this dataset contains (more than) 20 million points.
The goal is to detect the records with failures (anomalous
vibrations), which is slightly different than the problem we
have considered so far (i.e., subsequence anomalydiscovery).
We adapt ourmethod by concatenating all records, extracting
the Normal Model NM using subsequences in Ssample.

We then score anomalies by considering the join of each
record R with the NormalModel and compute the average of
the join. Summing up theEuclidean distances from the record
subsequences to the ones in the Normal Model, permits to
quantify the degree of anomalous activity of the record.

In Fig. 16, we plot the series of the scores of all records
in the NASA Bearing dataset. Given C , the concatenation of
records that do not contain anomalies (in our case the first
400 records), we set a threshold T = μ(C) + 3 ∗ σ(C) (i.e.,

Fig. 16 NormA on the NASA Bearing Dataset. In blue, data series S
composed of all records R anomaly scores. In orange, the threshold
computed on the first 400 records. When S is above Threshold , we
flag a failure

3 standard deviations away from the mean), as commonly
used in statistics to mark outliers. Based on the results of
the analysis by Safran [51] and other experts [7], both of
which are based on application-specific algorithms andmake
heavy use of domain knowledge, the failures start at record
534. NormA detects failures starting at record 533. These
results demonstrate again the versatility of NormA, which
successfully identifies anomalies in an unsupervised manner
and no domain knowledge.

6 Related work

The problem of subsequence anomaly discovery has been
studied by several works that use the discord definition [17,
21,27,37,38,52,64]. In these studies, anomalies are consid-
ered the isolated subsequences, that is, the ones that have
the highest Euclidean distances to their NNs. In practice,
these approaches (that are based on the discord definition)
fail when the dataset contains multiple anomalies that are
similar to one another. The notion of mth discord has been
proposed in order to resolve the problem of multiple similar
anomalies [62]. The approach described in this study finds
the sequence that has the farthestmth NN in Euclidean space.
During the search, a space pruning strategy based on the inter-
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mediate results of the simple discord discovery is applied. As
we have already discussed, the mth discord definition fixes
themain problemof simple discord but is very sensitive to the
m parameter, can lead to false positives, and is not scalable.
NormA avoids all these shortcomings, because it is based on
a new different primitive for identifying anomalies.

Several methods have been proposed for efficient and
scalable similarity (and nearest neighbor) search [19,20,29,
33,43,47,48], which can be used for subsequence anomaly
detection. Nevertheless, even though such methods have the
potential to speed up discord-based techniques (like the ones
described above), they will not remove the drawbacks of the
discord definition we have discussed in this work.

Wang et al. [57] proposed a framework for mining
anomalies of different lengths. However, their algorithm
(SLADE-TS) can only be applied in the specific context of
a collection of several series, which need to be aligned and
periodic. This requirement allows them to identify anomalies
based on the behavior of the rest of the sequences, but cannot
be applied in the case of subsequence anomaly detection in
a single series, which is the focus of our work.

In multi-dimensional data, the Local Outlier Factor [14] is
the degree of being an outlier assigned to each data instance,
depending on how distant a data instance is from other points
in its neighborhood. Similarly, Isolation Forest [36] is a
machine learning technique that isolates anomalies instead
of modeling normality. It first proceeds on building binary
trees with random splitting nodes to partition the dataset. The
anomaly score is defined as a function of the averaged path
length between a particular sample and the root of the trees.

In outlier trajectory detection (than can be seen as a
special kind of data series and a sub task of subsequence
anomaly detection), relevant approaches have been pro-
posed [16,30,65]. These approaches partition trajectories
into smaller parts, cluster the resulting trajectories, and
identify outlier trajectories with respect to these clusters
(taking advantage of both distance-based and density-based
approaches). We note that these methods identify as outliers
individual trajectories within a trajectory dataset (following
the partitioning phase), while in our case, we want to detect
an anomalous subsequence within a single long series.

LSTM-AD [39] is a supervised subsequence anomaly
detection algorithm, and as such not directly comparable
to our (unsupervised) approach. LSTM-AD first trains an
LSTM neural network using the data segments that do not
contain anomalies and then forecasts the values in the series:
when the error between the forecast and the real value is
above some threshold, the subsequence is classified as an
anomaly. LSTM-AD learns the threshold in the validation
set, picking the value that maximizes the F-score of the clas-
sification. The LSTM model has also been used in a zero
positive learning framework, where the annotated anomalies
are not necessary for the training phase [31]. Themajor draw-

back of this approach is that it is supervised, requiring a large
amount of clean, normal data for training. In practice, this is
not always possible to do.

7 Conclusions

Even though the problem of anomaly detection in data series
has attracted lots of attention, the techniques that have been
proposed so far fall short in terms of effectiveness and effi-
ciency. In our work, we describe a novel approach that
is based on the representation of normal behavior, which
enables us to detect both single and recurrent anomalies,
irrespective of the domain, and leads to superior accuracy
and time performance. As part of future work, we plan to
study alternative ways for computing the Normal Model,
as well as compare to the recently proposed Series2Graph
approach [12,13,46].
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