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Abstract
In the last decade, geospatial data which is extracted from GPS traces and satellites image has become ubiquitous. GeoVisual
analytics, abbr. GeoViz, is the science of analytical reasoning assisted by geospatial map interfaces. GeoViz involves two
phases: (1) spatial data processing: that loads spatial data and executes spatial queries to return the set of spatial objects to be
visualized. (2) Map visualization: that applies a map visualization effect, e.g., Heatmap, on the spatial objects produced in the
first phase. ExistingGeoViz system architectures decouple these two phases, which lose the opportunity to co-optimize the data
processing and map visualization phases in the same cluster. To remedy this, the paper presentsGeoSparkViz, a full-fledged
system that allows the user to load, process, integrate and execute GeoViz tasks on spatial data at scale.GeoSparkViz extends
a state-of-the-art distributed data management system to provide native support for general geospatial map visualization. The
system encapsulates the main steps of the map visualization process, e.g., pixelize spatial objects, pixel aggregation, and
map tile rendering into a set of massively parallelized map building operators. This allows the system to co-optimize the
spatial query operators and map building operators side by side. GeoSparkViz is also equipped with a GeoViz-aware spatial
partitioning operator that achieves load balancing for GeoViz workloads among all nodes in the cluster. Experiments based
on an implementation in Spark show that GeoSparkViz achieves up to an order of magnitude less data-to-visualization time
than its counterparts when running visual analytics tasks over large-scale spatial data extracted from the NYC taxi dataset
and OpenStreetMaps.

Keywords Distributed computation · Geospatial visualization · Big spatial data

1 Introduction

In the last decade, geospatial data which is extracted from
GPS traces and satellite images has become ubiquitous.
For example, NASA has released over 32 PB earth obser-
vation data captured by satellites and aircrafts [11]. By
2020, the number of GPS-installed smart phones worldwide
will exceed 1.34 billion [29]. Mobile applications such as
ride-sharing, geo-tagged social media and location-aware
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recommendation services generate massive-scale geospatial
data. GeoVisual analytics, abbr.GeoViz, is the science of ana-
lytical reasoning assisted by geospatial map interfaces. For
example, aGeoViz scatter plot of theNewYorkCity taxi trips
visualizes the hot taxi pick-up locations (see Fig. 1). Also,
a politician may utilize a GeoViz choropleth map to visual-
ize the Twitter sentiment of each presidential candidate in
each US county (see Fig. 1). GeoViz on big geospatial data
involves two main phases:

– Phase I: Spatial Data Processing In this phase, the sys-
temfirst loads the designated spatial data fromdistributed
data systems. Based on the application, the system may
then need to perform a data processing operation (e.g.,
spatial range query, spatial join) on the loaded spatial data
to return the set of spatial objects to be visualized.

– Phase II: Map Visualization In this phase, the system
applies themap visualization effect, e.g., Heatmap, on the
spatial objects produced in Phase I. The system pixelizes
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(a) NYC taxi trip scatter plot (b) Tweets Choropleth map

Fig. 1 Geospatial visual analytics (GeoViz) examples

the spatial objects, calculates the intensity of each pixel
and renders a geospatial map tile(s).

Existing GeoViz system architectures decouple the two
phases and demand substantial overhead to connect the data
management system to the map visualization tool because
each phase treats the other as a black box (see Fig. 2).
The user may spend additional coding effort to bridge them
through a server program (with JDBC and ODBC) or REST-
ful APIs [19]. The intermediate data between the two phases
may be very big and hence has to be dumped to disk files
and re-loaded by visualization tools. For instance, the user
may use a distributed spatial data system GeoSpark [40] to
get a spatial query result which costs tens of GBs. Then he
or she collects the on-disk result and asks Google Maps to
create a heat map. On the computer cluster used in Sect. 8,
this process tookmore than three hours andwas still not over.

Such decoupled solutions are not adequate for large-scale
GeoViz tasks due to the following challenges:

– Challenge I: Scalable and fast map visualization The
massive scale of available spatial data hinders tradi-
tional spatial visualization techniques from portraying
numerous objects on a single machine which has limited
resources. Moreover, the users usually do not have much
patience and would like to see map visualization as soon
as possible regardless of the data scale.

– Challenge II: High-resolution maps A user would like
to explore big spatial data on multi-scale maps (from the
bird eye view to his point-of-interest) after processing the
data [34]. Producing detailed spatial visualization (e.g.,
a high zoom level in Google Maps) requires extremely
high-resolution maps. Traditional single machine solu-

Fig. 2 Decoupled solution (each phase treats the other as a black box)
versus GeoSparkViz (co-optimize two phases)

tions take tremendous processing time to serve users with
qualified images.

To remedy this, a hybrid systemarchitecture that combines
the spatial data processing and map visualization phases
in the same distributed cluster can achieve more scalabil-
ity. There has been a large body of research on scaling the
geospatial map visualization phase using a massively paral-
lelized cluster computing system. For example, SHAHED[9]
and HadoopViz [10] produce high-resolution maps using
MapReduce clusters. They can take as input the data gener-
ated by state-of-the-art large-scale spatial data management
systems [3,8,36,40] installed in the same cluster. However,
such a hybrid architecture that executes the two GeoViz
phases sequentially loses the opportunity to co-optimize the
data processing and map visualization phases. And the inter-
mediate data still has to be dumped to disk. Hence, such
an approach still exhibits limited scalability and high data-
to-visualization time when executing a GeoViz task over
massive-scale spatial data.
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Table 1 Compare representative GeoViz systems (the full comparison is given in Sect. 2)

Declarative Distributed Accurate Spatial Map
GeoViz Data Process. Viz.

Traditional map viz. libraries (ArcGIS, Google Maps) ✗ ✗ ✓ ✗ ✓

Sampling/aggregation [4,12,24,33,38]) ✗ ✗ ✗ ✓ ✓

Scalable spatial data systems [1,3,8,14,20,32,36,40] ✗ ✓ ✓ ✓ ✗

Scalable map visualization systems [9,10] ✗ ✓ ✓ ✗ ✓

Declarative viz libraries [27,28] ✓ ✗ ✓ ✗ ✓

GeoSparkViz ✓ ✓ ✓ ✓ ✓

Recent research proposed to incorporate the visualization-
awareness in a database system [15,35]. Such an approach
allows users to define visualization workflows using SQL.
However, existing Viz-aware data systems either do not pro-
vide native support for spatial data or do not address the
problem of co-optimizing the data processing and visualiza-
tion phases in a distributed and parallel data system.

The paper presentsGeoSparkViz [39], a cluster comput-
ing system for visualizing massive-scale geospatial data. It
extends GeoSpark [40], an in-memory data system for pro-
cessing geospatial data at scale, to perform the spatial data
processing and map visualization phases in the same cluster.
Two benefits come as a byproduct of running the two phases
of the GeoViz process in the same cluster: (1) It provides the
user with a holistic system to perform the tasks in one place.
The user no longer needs to write separate code for both
phases and connect them via an additional program. (2) The
intermediate data reside in the cluster’s memory instead of
dumped to disk. This reduces the overhead of data loading.

Most importantly, GeoSparkViz has the following main
contributions:

• GeoSparkViz encapsulates themain steps of the geospa-
tial map visualization process into a set of massively
parallelized map building operators which allow user
to declaratively generate a variety of map visualiza-
tion effects, e.g., scatter plot, heat map, using GeoViz
SQL. Moreover, given GeoViz SQL queries from users,
GeoSparkViz can parse the queries, run optimization to
find efficient query plans which co-optimizes the spatial
query operators (e.g., spatial join) andmap building oper-
ators (e.g., pixelize) and execute the plans in the cluster.

• GeoSparkViz also proposes a GeoViz-aware spatial
partitioning operator that achieves load balancing for
GeoViz workloads among all nodes in the cluster. It par-
titions the data only once for both data processing and
map visualization phases and hence reduces the amount
of data shuffled across the cluster nodes.

• A full-fledged prototype of GeoSparkViz is imple-
mented in GeoSpark (a Spark-based data system). The
paper presents extensive experimental evaluation that

studies the performance of GeoSparkViz with state-
of-the-art GeoViz system architectures. The experiments
show that GeoSparkViz can achieve close to one order
of magnitude less data-to-visualization time than its
counterparts for a variety of GeoViz workloads over sev-
eral cluster settings.

The rest of the paper is organized as follows: Sect. 2
presents the related work. An overview of GeoSparkViz is
given in Sect. 3. Section 4 describes the declarative GeoViz
language inGeoSparkViz. Themainmapbuildingoperators
are described in Sect. 5. Section 6 explains theGeoViz-Aware
partitioning. Section 7 describes the GeoViz query execution
plan and GeoViz optimization strategies. A comprehensive
experimental evaluation is given in Sect. 8. Finally, Sect. 9
concludes the paper. Appendix A includes additional func-
tions, types and examples.

2 Related work

Table 1 lists the representative work in visual analytics, map
visualization and spatial data management.

2.1 Sampling/aggregation-based techniques

Existing sampling techniques only visualize a fraction of
the original dataset to achieve scalability interactivity. Ran-
dom sampling and stratified sampling are two widely used
approaches that only pick the most representative spatial
objects. Nano Cube[17] and Hashed Cube[6] maintain com-
pressed aggregates of the spatial data to scale the GeoViz
process. RS-Tree [33] augments the R-tree data structure
to retrieve just a sample of the spatial data that lie within
the query range. ScalaR [4] and Tabula [38] store precom-
puted multiple resolution aggregates/samples of the data
using a database system. VAS [24] and POIsam [12] pro-
pose online sampling techniques to yield more accurate
visualization results for geospatial data. CloudBerry sys-
tem [31] pre-fetches and caches subsets of query results
to support interactive visualization on large geospatial data
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but it does not completely address the scalability issue.
Several research projects, such as IncVisage [25], Viz-
dom [5] and imMens [18], propose to incorporate sampling
techniques in database systems to bolster interactive general-
purpose data visualization. Also, existing work comes up
with several features (e.g., zoom consistency and spatial
proximity [15,21,26]), which enable selecting a represen-
tative subset of the spatial objects (to be visualized on the
map) from a big spatial dataset. For example, the zoom con-
sistency feature [15,26] ensures that spatial objects appear on
a higher zoom level should still appear on a lower zoom level
of the map. The visibility constraint requires that the number
of selected objects should not be larger than a certain number.
The proximity constraint states that selected objects should
not be too close to each other. Sampling/aggregation-based
GeoViz approaches, though scale to big data, only generate
geospatial map visualization on a subset of the data. They
may reveal the global data distribution but are not capable
of showing detailed local maps when users zoom to their
points-of-interest.

Most importantly,GeoSparkVizperforms accuratemulti-
scale visualization that generates the map tiles on the entire
dataset instead of a subset. Our system and the existing
sampling/aggregation methods are complementary to each
other. Many sampling approaches such as RS-Tree [33],
VAS [24] and POIsam [12] can work in conjunction with
GeoSparkViz to further improve the scalability and inter-
activity on large-scale map visualization.

2.2 Scalable spatial data management systems

There exist efforts that aimat extending state-of-the-art paral-
lel and distributed data systems as means to support massive-
scale geospatial data processing. Parallel SECONDO [20],
Hadoop-GIS [1] and SpatialHadoop [8] extend the Hadoop
ecosystem to support global and local spatial indexing and
to achieve efficient query processing over large-scale spatial
data. Although the Hadoop [13]-based spatial data systems
can scale out the workload, they show poor performance
due to the disk-based computation model and inefficient job
scheduling in Hadoop. Apache Spark [30] is an in-memory
cluster computing system that outperforms Hadoop. It pro-
vides a novel data abstraction called Resilient Distributed
Datasets (RDDs) that are collections of objects partitioned
across a cluster of machines. GeoMesa [14], SIMBA [36],
LocationSpark [32], SparkGIS [3] andGeoSpark [40] extend
Apache Spark to support SQL applications on Geospatial
data types. Although the aforementioned systems can scale
the spatial data processing phase on a cluster, they do not
support the map visualization.

2.3 Scalable map visualization systems

There is a large body of research that builds upon paral-
lel/distributed system approaches to scale the visualization
workflow [9,10,16,22]. SHAHED [9] and HadoopViz [10]
use MapReduce to parallelize the map image rendering
pipelines such as scatter plot and heat map. However, SHA-
HED and HadoopViz are not able to co-optimize the map
visualization process with other distributed query process-
ing operations. In such cases, the user has to load, process
and store the intermediate spatial data separately. Geotrel-
lis [16] extend Apache Spark to manipulate spatial objects
and pixels but they still cannot co-optimize classic query pro-
cessing operations (necessary for data processing) and map
visualization. MapD [22] leverages the Graphic Processing
Unit (GPU) to parallelize and hence speed up query and pixel
manipulation in visualization but it is still limited to a single
machine.

2.4 Declarative visualization

Precise visual encoding and grammar logic are necessary
components in defining data analytics graphics. Vega-Lite
[27] and Reactive Vega [28] provide a visualization alge-
bra to define customized visualization effects. However,
they only optimize the visualization pipeline and cannot
co-optimize database query operators with the visualization
operators. CVL [15] proposes a cartographic visualization
language, which generates cartography with a set of given
constraints. Ermac [35] proposes a vision for a Data Visu-
alization Management System (DVMS) that can translate
visualization workflows into SQL. Nonetheless, Ermac is
not designed to handle geospatial data. Similar to CVL and
Ermac, GeoSparkViz supports declarative visualization.
However, none of the above tackle the problem of executing
GeoViz tasks in a distributed and parallelized data system.
Thismay preclude the overall scalability of theGeoViz appli-
cation.

3 GEOSPARKVIZ overview

Figure 3 gives an overview of GeoSparkViz. The system
assumes that the spatial dataset is partitioned and dis-
tributed among the cluster nodes. The user interacts with
GeoSparkViz using a declarative SQL-like GeoViz lan-
guage. The system processes the GeoViz task and returns
the final map tiles to the user. To achieve this,GeoSparkViz
consists of the following components:
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Fig. 3 GeoSparkViz overview

3.1 Spatial RDD and spatial query operators

GeoSparkViz builds upon GeoSpark [40] which extends
Apache Spark to process geospatial data at scale.GeoSpark
Spatial RDD is the input data source of GeoSparkViz and
can be loaded from various spatial data files including Shape-
files, GeoJSON and Well-Known-Text. Spatial RDDs are
in-memory distributed datasets that intuitively extend tra-
ditional RDDs for accommodating spatial objects. The data
in Spatial RDD could be spatial partitioned (i.e., R-Tree)
and serialized to a compact in-memory format. GeoSpark
also provides efficient algorithms to run spatial range query
and join query in the cluster. Visualization (map building)
Operators: GeoSparkViz breaks down the map visualiza-
tion pipeline into a sequence of query operators (namely,
Pixelize, Pixel Aggregate and Render). The system paral-
lelizes the execution of each operator among the cluster
nodes. Furthermore, GeoSparkViz seamlessly integrates
the map visualization operators with classic database query
operators (e.g., range, join) used for the spatial data pro-
cessing phase. Furthermore,GeoSparkViz exposes the map
building operators to the user through the declarative GeoViz
language. The user can easily declare a new map visualiza-
tion effect in an SQL statement. For instance, the user can
define new coloring rules and pixel aggregation rules.

3.2 GeoViz-aware spatial partitioner

GeoSparkViz employs a partitioner operator that fragments
a givenpixel dataset across the cluster. Thepartitioner accom-
modates map visual constraints and also balances the load
among the cluster nodes when processing skewed geospatial

data. On the one hand, it makes sure that each data parti-
tion contains roughly the same number of pixels to avoid
“stragglers” (i.e., a machine that takes many more inputs
than others and hence performs slowly). On the other hand,
pixels are partitioned by their spatial proximity (i.e., pixels
in the same data partition are from the same map tile). This
way, the generated tile images can be easily stitched back
together.

3.3 GeoViz optimizer

The optimizer takes as input one or more GeoViz queries,
runs heuristic and cost-based optimization on the query exe-
cution plan, and figures out an efficient plan that co-optimizes
the map building operators and spatial query operators (i.e.,
used for data processing). It introduces several heuristic opti-
mization strategies: 1. single-query optimization (1) merge
partitioner (2) push operators up/down; 2. cross-query opti-
mization: merge repeated operators. For instance, if the
GeoViz task eventually plots the results of multiple spatial
range queries on the same dataset, the optimizer will decide
to first map spatial objects to pixels and then execute spatial
queries on pixels directly. This way, GeoSparkViz avoids
redundant pixelization operators.

4 Declarative GeoViz

To combine both the map visualization and data processing
phases, GeoSparkViz allows users to declaratively define a
geospatial visual analytics (GeoViz) task using a SQL-like
language (see Fig. 4). To achieve this, the system extends
SQL to support GeoViz-related commands. Additional spec-
ification and examples can be found in “Appendix A”.

GeoViz SQL only works on structured data and thus
extends the SQL interface of SparkSQL [2] which runs on
top of structured RDDs in which every record (i.e., “row”) is
structured to the same schema (same attributes), just like a
regular database table. Similarly, SpatialRDDs inGeoSpark
are also structured to the same table-like schema and hence
are compatible with GeoSparkViz. The schema includes
several attributes such as spatial attribute and pixel attribute.
Althoughwe use the term Table in this section, it is actually
a structured RDD.

4.1 Map building operators

GeoSparkViz breaks down the map visualization pipeline
to several declarative map building operators: pixelize, pixel
aggregate and render. The reason is twofold: (1) flexibility:
the users can easily customize each operator to achieve vari-
ous map visualization effects using the declarative language.
(2) optimization opportunity: when the user has a GeoViz
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Fig. 4 GeoSparkViz interactive GeoViz SQL notebook (deeply integrated with Apache Zeppelin)

Fig. 5 Data flow of the straightforward GeoViz query execution plan

task which consists of map building operators and spatial
queryoperators, theGeoVizoptimizermayfindabetter query
plan in terms of query execution time by re-organizing oper-
ators (see Sect. 7).

The map building operators must be executed in a sequen-
tial order: Pixelize − > Pixel aggregate − >

Render − > Overlay (optional). In the GeoViz
SQL, GeoSparkViz provides specific SQL functions for
each map building operator. Figure 5 shows an example of
the output table schema of each operator.

Pixelize GeoSparkViz offers ST_Pixelize SQL function
for the pixelize operator (see Sect. 5.1).

SELECT Pixel, [Observation / 1] AS Initial_weight
FROM [Spatial_dataset]
LATERAL VIEW ST_Pixelize([Spatial_attribute],

[width], [height]) AS Pixel

– Syntax The user should use the SQL LATERAL VIEW
syntax. ST_Pixelize function should be placed in the
LATERAL VIEW clause because it generates one or
more output rows per input row. The FROM clause can
directly accept any table that consists of at least one spa-
tial attribute.

– Semantics In ST_Pixelize, the user should specify a spa-
tial data attribute (e.g., point, polygon) which is to be
visualized, and the resolution of the desired map (in the
format of width * height, the unit is pixel). Depending on
the application, the user may opt to use a spatial observa-
tion attribute or “1” as the initial weight attribute in the
SELECT clause. In Fig. 5, “fare” attribute is used as the
initial weight.

– Output table schema The schema consists of two
attributes, a pixel attribute and a numerical attribute
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which is the initial weight. For every single spatial object,
ST_Pixelize may generate one or more pixels.

Pixel aggregate The user can freely aggregate the over-
lapped pixels to produce the weight for each pixel (see
Sect. 5.2).

SELECT Pixel, [aggregate](Initial_weight) AS weight
FROM [Pixel_view]
GROUP BY Pixel

– Syntax The user can use the original SQL GroupBy syn-
tax to group records by the pixel attribute and apply
an aggregate function for each group. The FROM clause
should use the output table of Pixelize operator. No spe-
cialized function is needed in this operator.

– Semantics Several SQL aggregation functions (count,
min, max, avg) are supported. They should aggregate
the initial weight attribute. The aggregated weight value
determines the actual color of the associated pixel.

– Output table schema The schema consists of a pixel
attribute and a numerical attribute which is the weight of
this pixel. The pixel attribute is in a Pixel type introduced
by GeoSparkViz (see “Appendix A.1”)

Render The rendering process (see Sect. 5.3) can be com-
pleted by two SQL functions in sequence:

(1) ST_Colorize: given the weight of a pixel, this function
produces a color which is usually in proportion to the weight.
The user can also write her own user-defined colorize func-
tion to replace ST_Colorize as long as it follows the same
output format as this function.

SELECT Pixel, ST_Colorize(weight, [Max]) as Color
FROM [Pixel_aggregate_view]

– Syntax The user can use ST_Colorize as a regular SQL
function and put in theSELECT clause. TheFROM clause
should use the output table of the Pixel aggregate opera-
tor.

– Semantics ST_Colorize takes as input the weight and
a max weight. The Max weight is used to normalize the
weight to a particular RGBcolor range such that the func-
tion can produce a meaningful color. For example, the
user can set the max = 40 (◦C) for a temperature heatmap
so any place on the map which has temperature >= 40
will be plotted as red.

– Output table schema The schema consists of a pixel-
type attribute and an RGB color (in integer type).

(2) ST_Render: this function produces map tile images
based on pixels.

SELECT Tile_ID, ST_Render(Pixel, Color) as MapTile
FROM [Pixel_Colorize_view]
GROUPBY ST_TileID(Pixel) AS Tile_ID

– Syntax The user can use the original SQL GroupBy
syntax to group pixels by their map tile id and apply
ST_Render to each group of pixels. The FROM clause
uses theoutput table from the colorize step.TheST_TileID
function in the GROUPBY clause returns the tile ID of a
given pixel. If the user just wants to get a single image of
the entire dataset, he or she can abandon the GROUPBY
clause and simply apply the ST_Render to all pixels in the
pixel view to a single image (explained in “AppendixA”).

– Semantics ST_Render is an aggregation function. It
takes as input a group of pixels and their colors and pro-
duces a map tile based on a group of pixels.

– Output table schema The schema consists of two
attributes, a tile id attribute and a map tile attribute.
The map tile attribute is in Image type (explained in
“Appendix A”).

Overlay After getting a map, the user may opt to overlay
it with another map (see Sect. 5.4). GeoSparkViz offers a
ST_Overlay function to conduct this operation.

SELECT m1.Tile_ID, ST_Overlay(m1.MapTile, m2.MapTile)
as MapTile

FROM [Map tile view 1] m1, [Map tile view 2] m2
WHERE m1.Tile_ID = m2.Tile_ID

– Syntax The user should perform the Overlay operator
using the SQL inner join syntax. TheFROM clause should
have two map tile views, each of which is an output
table of a Render operator. The query joins two map tile
views together by their tild IDs. Then the user can use
ST_Overlay as a regular SQL function to overlay one tile
over another tile.

– Semantics The ST_Overlay function takes as input two
map tile attributes, both in Image type. The tile in the first
attribute will be the front image and the one in the second
attribute will be the back image. Both tiles have the same
tile ID.

– Output table schema The schema consists of two
attributes, a tile ID attribute and a map tile attribute. The
tiles in the map tile attribute are the overlay images of
two map tile images.

4.2 Assemble GeoViz queries

GeoSparkViz users can easily define a new map visual-
ization effect using declarative map building operators. The
users can also combine them together to a nested SQL query.
For example, given a set of NewYork City Taxi trips records,
the user can build a scatterplot of the taxi trip pickup points
as follows (Fig. 1):

1 /* Render: Render tiles */
2 SELECT Tile_ID, ST_Render(pixel, color)
3 FROM {
4 /* Render: Colorize pixels */
5 SELECT pixel, ST_Colorize(weight, MAX) as color
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6 FROM {
7 /* Pixel aggregate */
8 SELECT pixel, 1
9 FROM {

10 /* Pixelize */
11 SELECT pixel, 1
12 FROM NYCtaxi taxi
13 LATERAL VIEW ST_Pixelize(taxi.pickup,
14 16384, 16384) AS pixel }
15 GROUPBY pixel } }
16 GROUPBY ST_TileID(pixel) AS Tile_ID

Lines 10–14 of the query above is the first sub-query which
uses ST_Pixelize to conduct the pixelization operator and it
assumes the resolution of the final map is 16,384 * 16,384
(OSM Zoom Level 6 [23]). The query depicted by Lines 7–
9 and 15 performs the pixel aggregate operator. Lines 4–6
describes the third query which generates colors for pixels.
Lines 1–3 and 16 show the tile rendering.

4.3 Integrate map building operators with spatial
query operators

In GeoSparkViz, spatial query operators can also process
pixels. It is possible for the users to interleave spatial query
operators andmap building operators. GeoViz optimizer will
optimize the query plan (explained in Sect. 7).

4.3.1 With spatial range query

The system user may need to filter the spatial dataset in the
data processing phase before applying the map visualization
effect. This can be achieved through the well-known spatial
range query,which returns a subset of the input spatial objects
or pixels that lie within a given query window.

Given a GeoViz query, the system will generate different
GeoViz query execution plans which interleave the execu-
tion of the range query operator as well as the pixelize and
pixel aggregate map building operators in different orders
(see Fig. 6a), depending on the situation. The variety of query
execution plans allows GeoSparkViz to co-optimize both

phases of the GeoViz query (explained in Sect. 7). An exam-
ple is as follows:

Example 1 Given the scatterplot of taxi trip pickup points in
Sect. 4.2 , the user may only want to see the Manhattan area
of NYC. The original query plan will be the leftmost one in
Fig. 6a which is (1) retrieve New York City taxi trip pickup
points that are within Manhattan area (2) render the data to
the GeoViz effect. In GeoSparkViz, a re-written plan can
be expressed by the GeoViz SQL statement as follows:

SELECT Tile_ID, ST_Render(view.pixel, view.color)
FROM NYCtaxi_ScatterPlot view
WHERE ST_WITHIN(view.pixel, ManhattanBound)
GROUPBY ST_TileID(view.pixel) as Tile_ID

GeoViz Query 1 declares a spatial range query on the taxi
records to find those trips that lie within Manhattan using
the ST_WITHIN function. Instead of acting on the original
taxi records, the query actually uses a GeoViz view called
NYCtaxi_ScatterPlotwhich returns amap scatter plot
of Manhattan taxi trips. This view is a query which includes
the GeoViz SQL functions, ST_Pixelize, Pixel aggregate and
ST_Colorize (Lines 4–15 of the example in Sect. 4.2). The
produced map tiles follow the Open Street Map zoom level 6
specification [23]). The ST_Render function generates map
tiles on pixels that belong to the same tile and ST_TileID
produces the tile ID for each pixel.

4.3.2 With spatial join query

The data scientist may need to integrate multiple datasets
in the spatial data processing phase of the GeoViz task. To
achieve this, a spatial join operator takes as input two spa-
tial datasets R and S as well as a spatial join predicate and
returns every pair of objects in R and S that satisfy the spatial
predicate.

The system can interleave the execution of the spatial join
operator aswell as the pixelize andpixel aggregatemapbuild-
ing operators resulting in different GeoViz query execution
plans (see Fig. 6b). An example of a GeoViz query that com-
bines spatial join and map building operators is given below.

(a) (b)

Fig. 6 Combining map building operators with spatial query operators
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Example 2 Given a set of NYC taxi trips and a set of area
landmarks, the query finds all taxi trips with pickup location
lying within the area landmarks such as airports, cemeteries,
parks, schools, and visualizes the join result using a heat
map visualization effect. The original query plan will be the
leftmost one in Fig. 6b. The optimized query plan can be
expressed by the GeoViz SQL statement as follows:
SELECT Tile_ID, ST_Render (view.pixel,

view.pixel.color)
FROM NYCtaxi_HeatMap view, AreaLandmarks

arealm
WHERE ST_WITHIN(view.pixel, arealm.boundary)
GROUPBY ST_TileID(view.pixel) as Tile_ID

The viewNYCtaxi_HeatMapwhich returns a heat map
of all trip pick points in NYC is a query which includes
the GeoViz SQL functions, ST_Pixelize, Pixel aggregate and
ST_Colorize.

5 Map building operators

GeoSparkViz supports four main map building operators:
(1) Pixelize (Sect. 5.1), (2) Pixel Aggregate (Sect. 5.2)
and (3) Render (Sect. 5.3) (4) Overlay (optional). Each
map building operator works as a single step in the map
tile image generation pipeline (Pixelize − > Pixel
aggregate − > Render − > Overlay) and paral-
lelizes the corresponding logic over the geospatial dataset(s)
distributed among the cluster nodes.

Note that, although this section introduces the implemen-
tation details including input/output RDD formats of these
operators, the user only interacts with GeoSparkViz via
GeoViz SQL queries (see Sect. 4) and is not aware of the
internals.

5.1 Pixelize

To generate a map image, this operator pixelizes spatial
objects to corresponding pixels. Like a point object, each
pixel also possesses a coordinate/position on the screen coor-
dinate system. Different from the spatial coordinate system,
the pixel’s x coordinate and y coordinate have to be integers.
The number of pixels on this map is determined by the given
map resolution.

Input format This operator takes as input (1) a Spatial
RDD (schema: <spatial object, weight>) which contains
numerous spatial objects (2) the designatedmap pixel resolu-
tion. Each spatial object carries an additional attribute as the
weight (loaded from the original data source, such as Shape-
file). A Spatial RDD can be from various data sources such
as persistent storage (e.g., AWS S3 or HDFS) or outputs of
spatial query operators.

Output format This operator outputs a <Pixel, weight>
RDD. Other visualization operators manipulate these pixels
and eventually plot them out on map tile images.

(a) Outline - Pixelize (b) Filling area - Pixelize

Fig. 7 Pixelize vector objects to pixels

Algorithm Algorithm 1 depicts the detail of this oper-
ator. This operator packages the pixelization into a single
distributed Map operation. GeoSparkViz adopts two pix-
elization rules: (1) outline-only (Fig. 7): only marks pixels
covered by spatial objects’ outlines; (2) filling area (Fig. 7):
marks all pixels covered by spatial objects.

Outline-only GeoSparkViz first decomposes the shape
of spatial objects (points, polygons and line strings) into line
segments. It is worth noting that a point is just a special line
segment that has the same starting and ending vertexes. For
vertexes, we can easily project it to a pixel using Eqs. 1 and 2.

X = longitude − (−180)

180 − (−180)
∗ width = longitude + 180

360
∗ width

(1)

Y = lati tude − (−90)

90 − (−90)
∗ height = lati tude + 90

180
∗ height (2)

Width and height that define the map resolution are in the
unit of pixels. After transforming the starting and ending ver-
texes of a line segment, we take the renowned Bresenham’s
line algorithm to decide the pixel trace which is approxi-
mately close to the line. Its basic idea is: from the starting
vertex X position to the ending vertex X position, this line
algorithm increases the X by 1 and takes the integer Y which
is closest to the ideal (fractional) Y. Each pixel covered by
a certain object is turned to a <Pixel, weight> pair in the
<Pixel, weight> RDD, the result of theMap operation. The
weight will be used to determine the pixel color. The initial
value of the weight is explained below.

Filling area If the user chooses the filling area pixeliza-
tion rule (only valid for polygons), we need to mark all
pixels covered by polygons. For each polygon in the input
RDD, GeoSparkViz first transforms all vertexes to pixels,
then locates pixels that fall inside the pixelized polygonal
boundary. All covered pixels are added to the output<Pixel,
weight> RDD.

Weight A spatial object needs to be pixelized to one or
many pixels which eventually have colors. The weight of
this object indicates the color of these pixels (explained in
Sect. 5.3). For example, in a heatmap, pixels with a higher
weight may show red while those with a lower weight show
green color. The user can decide the initial value of theweight
in the<Pixel, weight> RDD depending on the visualization
effects. If he or she just wants to plot a map based on the spa-
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Input: <Spatial object, weight> RDD, map resolution
(width*height)

Output: <Pixel, weight> RDD
Function Map(spatial object O)

/* weight is a spatial observation or 1
*/

switch Pixelization rule do
case "outline-only"

Decompose O into line segments;
Find all pixels covered by line segments;
return <Pixel coordinate, weight>;

end
case "filling area"

Find all pixels that are within the polygon
boundary;
return <pixel coordinate, weight>;

end
endsw

Algorithm 1: Operator I: Pixelize

Input: <Pixel, weight> RDD partitioned by the GeoViz-aware
spatial partitioner

Output: <Pixel, weight> RDD
Function MapPartition(a data partition P of the input
RDD)

Create an empty <Pixel, weight> HashMap HM ;
foreach <pixel, weight> pair in P do

Find the current weight of this pixel in HM if it exists;
// Aggregation stratgey: min, max,

count, average, uniform
Aggregate the weight and update the weight;
If the pixel does not exist, add it and its weight to the
HM ;

end
return HM ;
Algorithm 2: Operator II: Pixel aggregate

tial distribution of the dataset such as a Scatter plot/Heat map
of geo-tagged tweets, he can set the initial weight of all spa-
tial objects as 1. If the user wants to plot spatial observations
associated with spatial objects, he or she can use the spatial
observation as the initial weight of each Pixel. For example,
in a shapefile of land surface temperatures, each record has
a location and a temperature observation. The user can use
observed temperatures as the initial weights for locations and
plot a heat map.

Cost Given Nobjects input spatial object and P data
partitions, the cost of the pixelize operator CPixeli ze =
objects per parti tion, which is equivalent to

Nobjects
P

5.2 Pixel aggregate

The pixelize operator may produce many overlapped pixels
that are located at the same position on the screen coor-
dinate system. This is because (1) some spatial objects
overlap/intersect each other by nature (2) the resolution of
the final map is relatively low so that many objects over-
lap/intersect each other at this resolution. Since each position

on the map should only be associated with one pixel and
display the color of this pixel, GeoSparkViz aggregates
the weight of the overlapped pixels and determine the final
weight of this pixel.

Input format This operator takes as input a <pixel,
weight> RDD which is re-partitioned by the GeoViz-aware
spatial partitioner (see Sect. 6). In the re-partitioned RDD,
pixels in the same RDD partition are neighbors on the actual
map tile image.

Output format This operator outputs a <pixel, weight>
RDD. In this RDD, no pixels have the same screen coordi-
nates with others.

Algorithm The pixel aggregate operator uses a Map-
Partition function to run a partition-wise algorithm (see
Algorithm 2). For each partition in the <pixel, weight>
RDD, Algorithm 2 traverses all pixels in this partition and
puts every pixel in a key-value hash map. The key is the
pixel and the value is the current weight of this pixel. When
traversing the pixels, if a pixel already exists in the hash map,
Algorithm 2 will know this is an overlapped pixel and use an
aggregation strategy to update the weight stored in the hash
map.

GeoSparkViz allows several aggregation strategies to
aggregate overlappedpixels (seePixel aggregate inSect. 4.1):
(1) Min: keep the minimum weight of pixels that locate at
the same position (2) Max: similar to Min, but take the maxi-
mumweight (3) Average: similar toMin, but take the average
weight (4) Count: instead of aggregating the weight, it only
counts the number of pixels that overlap at the position (5)
Uniform: it always assigns a fixed weight to the pixel’s posi-
tion no matter how many pixels overlap each other here. It is
worth noting that, the first three strategies should be used to
visualize the spatial observations (i.e., land surface tempera-
ture) of spatial objects on the map and the user will observe a
colorful heatmap. The last two strategies are used to visualize
the spatial distribution of the objects in a Spatial RDD. The
difference is that Count will show a heat map while Uniform
prints a scatter plot which only has a single color.

Cost Given Npixels input pixels and P data partitions, the
cost of the pixel aggregate operator CPixel aggregate is equal

to the number of pixels per partition (
Npixels

P ).

5.3 Render

After aggregating pixels, the render operator decides a proper
color for each pixel according to theweight. Then it produces
a colorful map tile image for each RDD partition.

Input format The render operator takes as input the
<Pixel, Weight> RDD and a max weight (optional)

Output format This operator generates a distributed map
tile RDD in the format of <TileID, Map Tile>. The map
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Input: <Pixel, weight> RDD, max weight
Output: <Tile ID, Map tile> RDD
// Colorize
Function MapPartition(a data partition P of the input
RDD)

Create an empty <pixel, color> list L;
Optional photo filter: Update weights using the
convolution matrix;
foreach Pixel Px in P do

Decide Px’s color according to its weight;
Add < Px,Color > to L;

end
return < Px,Color > L;

// Render
Function MapPartition(a data partition P of the
< Px,Color > RDD)

Get the tile ID I D;
Create a blank image canvas I MG using the tile’s
resolution;
foreach Pixel Px in P do

Plot Px on I MG using Px’s color;
end
return < I D, I MG >;
Algorithm 3: Operator III: Render operator

tiles in this RDD compose the complete map at the given
map resolution.

Algorithm Algorithm 3 describes the two steps in the
Render operator: colorize and render.

Colorize The system accepts a user-defined function or
uses a default equation to decide the pixel color, which is
based on pixel weights. The weight can be pre-normalized
to domain [0,255]. GeoSparkViz plugs the color equation
into a MapPartition function to perform Colorize step. For
each pixel in this partition, it calculates the color and plots
the pixel on a blank image canvas. Two equation types are
common: (1) Linear equation (GeoSparkViz default). For
example,

Color(R,G, B) = Color(255, 255, weight) (3)

This equation will give the user an image with diverse
colors. (2) Piecewise equation. For instance,

Color =

⎧
⎪⎨

⎪⎩

Yellow weight ∈ [0, 100)
Pink weight ∈ [100, 200)
Red weight ∈ [200, 255]

The user will see a three-color image by using this equa-
tion.

In the colorize step, the user can opt to run an optional
image processing filter function which applies classic photo
filters such as sharp, blur (used in heat map) or diffusion to
the map tile image in order to deliver some special effects.
Its basic idea is, for a pixel in the image, add the weight

values from its neighbor pixels, controlled by a convolution
matrix, to this pixel. Each convolution matrix describes a
3*3 matrix in which each individual element indicates how
strong the center pixel’s color is affected by the correspond-
ing neighbor pixel’s color. The new weight value of a pixel is
∑Neighbors

i=a pixel i ′s impact ∗ i ′s weight . To achieve this, this operator
first puts all < pixel, weight > pairs in a HashMap. Before
calculating the color for a pixel, it first fetching the weights
of neighbor pixels and updates the weight of this pixel.

RenderThe operator then uses anotherMapPartition func-
tion to put pixels in each partition to an image and generates
a T ileI D,Maptile RDD. Each The newly generated image
of each data partition has a TileID. Each map tile is a Java
BufferedImage object which stores pixel colors in a compact
byte array. Note that some images generated using different
data partitions may have the same TileID since the data in
these partitions represents a portion of the same map tile (see
Sect. 6). A tile image browser can handle this easily. Even-
tually, all map tiles are rendered in parallel and the system
can then return the generated <TileID, Map Tile> to the
user.

Cost Given Npixels pixels and P data partitions, the cost

CRender of the render operator is equal to
Npixels

P * 2 because
there are twoMapPartition functions used. The cost of apply-
ing photo filters does not affect it because fetching 3*3 values
from a HashMap is O(1) complexity.

5.4 Overlay

The user may also need to overlay multiple map layers such
as transport map layer or county boundary layer on top of
the base map image for analytics purposes. For instance, the
user may want to overlay a taxi trip pick up point heat map
with the area landmarks in NewYork City to understand why
some regions attract much more taxis.

Input format As an optional operator, the overlay opera-
tor takes as input two<Tile ID,MapTile>RDDsandoverlay
them one by one in the order specified by the user.

Output format This operator outputs a unified<Tile ID,
Map Tile> RDD.

Algorithm This operator first leverages ReduceByKey
operation on two input RDDs (a front image RDD and a
back image RDD) with the tile ID as the key so that two map
tiles from two RDDs are shuffled together across the clus-
ter. Then this operator merges together the two tiles which
all describe the same area of the overall image. During this
process, the overlay operator makes sure that the map tile
from the front image RDD stands in the front. This operator
generates a new <Tile ID, Map Tile> RDD which can be
persisted to external storage devices or continue to overlay
with another <Tile ID, Map Tile> RDD

Cost The cost of Overlay operator includes two parts:
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COverlay = Cshu f f le tiles + Cmerge tiles (4)

Shuffling tiles needs to send Npixel pixels so that its cost
can be estimated as Npixel . The output RDD of the shuf-
fling step is actually repartitioned according to map tile ID.
Assume the pixels are uniformly distributed, there will be
same number of pixels belong to every map tile ID. Merging
tiles re-plots pixels that are from two sets but have the same
ID to one tile. Therefore, the cost ofmerging tilesCmerge tiles

is equal to the number pixels in the merged tiles (
Npixel
T ).

6 GeoViz-aware spatial partitioner

A good spatial data partitioning method should (1) parti-
tion spatial objects by their spatial proximity while still (2)
ensure the load balance: each partition contains roughly the
same number of spatial objects [7,40]. Moreover, because
GeoSparkViz wants to partitions data once for both the
data processing and map visualization phases to reduce the
amount of data shuffling in the cluster (explained in Sect. 7),
the data partitioner should also (3) follow map visualization
constraint: the produced images can be used as uniform map
tiles easily.

Existing spatial partitioning approaches, such as R-Tree
and Quad-Tree, exhibit good performance when executing
spatial queries for the data processing phase [36,40]. How-
ever, these approaches do not consider the map visualization
constraint (see Fig. 8c). In other words, existing spatial parti-
tioning techniques are not able to be used in the visualization
operators that process pixels and produce map tiles. On the
other hand, partitioning the workload based on the uniform
map tile boundaries avoids the tedious process of recovering
the map tiles. However, the tile-based partitioning approach
cannot handle the spatial data skewness and hence fails at bal-
ancing the workload among the cluster nodes (see Fig. 8b).

Input format The GeoViz-aware spatial partitioner pro-
posed by GeoSparkViz takes as input a SpatialRDD or a
<pixel, weight> RDD (see Sect. 5).

Output format This partitioner outputs a repartitioned
SpatialRDD or a repartitioned <pixel, weight> RDD. Each
spatial object (or pixel) internally possesses a tile ID that indi-
cates the uniform map tile where this object lies in. While
enforcing the spatial proximity constraint, spatial objects
assigned to the same partition should also belong to the same
map tile image. In other words, all geospatial objects in a
data partition should have the same map tile ID.

Algorithm To determine the partitions, the partitioner
employs a three-step algorithm:

Step I: Spatial Data Sampling This step draws a ran-
dom sample from the input spatial dataset and uses it as a

Fig. 8 Spatial partitioning approaches

representative set in order to diminish the data scale. Geo-
metrical boundaries of every finalized data partition will be
applied again to the entire dataset and make sure all objects
are assigned to partitions.

Step II: Tile-aware Data Partitioning As shown in Fig. 8,
this step first splits the space into uniform map tiles, which
represent the initial geometrical boundaries for data parti-
tions. Starting from the initial tiles, the partitioner repartitions
each tile in a Top-down fashion. Similar to a Quad-Tree,
the partitioning algorithm recursively splits a full tile quad-
rant space into four sub-tiles if a tile still contains too many
objects.As the splitting goes on, tile boundaries becomemore
andmore non-uniform, but load balanced.When the splitting
totally stops (reach the maximum tile splitting level L, given
by the user), the leaf level sub-tiles become the geometrical
boundaries for the physical data partitions (see the last level
in Fig. 8).

Step III: Physical Partitioning This step passes the par-
tition structure (Fig. 8) stored in the master machine to all
machines in the cluster. For every spatial object or pixel,
GeoViz partitioner first decides the uniform map tile that it
belongs to. Then, this step searches the corresponding Quad-
tree in a top-down fashion and stops at a sub-tile boundary
that fully covers the spatial object. If the search algorithm
stops at a leaf-level sub-tile, the object is assigned to the cor-
responding partition. If the search stops at a non-leaf sub-tile
(i.e., given a large polygon as input), the object is assigned
to all leaf-level sub-tiles under this non-leaf sub-tile. Eventu-
ally, objects or pixels that fall in the same leaf-level sub-tiles
are physically located in the same cluster node.

Cost Note that the three steps run sequentially and each
step runs on a distributed spatial dataset (i.e., geospatial
objects or pixels) in parallel. Therefore, the overall cost for
GeoSparkViz GeoViz-aware spatial partitioner is:

CParti tioner = CSampling + CCalcParti tion

+ CReparti tionAll
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Consider a set of geospatial objects or pixels with
Nobjects /Npixels elements in total and P data partitions, sam-
pling ratio s, the cost of the parallel spatial sampling step
CSampling , which performs a local scan per partition, is N

P .
The costCCalcParti tion of deciding the tile-aware spatial par-
titions on the master machine is equivalent to scanning the
sample once is s ∗ N . For a geospatial object or pixel in a
partition, Step III searches the corresponding Quad-tree to
locate the relevant data partition. Assuming that every map
tile is splitted until the max tile splitting level L (L = 3 by
default) and there are 4L sub-tiles under each tile, the search
cost is: CLocatePart = = log4(4L) = L

Given that each partition contains N
P objects/pixels, the

cost of assigning partition ID and shuffling all records across
the cluster is as follows (N can be either Nobjects or Npixels):

CReparti tionAll = N

P
∗ CLocatePart + Cshu f f le

= N

P
∗ L + N

7 GeoViz optimizer

A GeoViz query execution plan involves several operators:
(1)mapbuildingoperators: performpixelization, pixel aggre-
gation and map tile rendering. (2) GeoViz-aware spatial
partitioner: repartitions geospatial data and pixels across the
cluster nodes based upon spatial proximity and visualiza-
tion constraints. (3) spatial query operators: process spatial
queries on the input dataset.

The optimizer takes as input a GeoViz query, written in
SQL, parses it and finds the straightforward GeoViz execu-
tion plan which performs the two GeoViz phases (i.e., data
processing and map visualization) separately in a serial fash-
ion. Then, the optimizer enumerates a set of candidate plans
by interleaving map building operators and spatial query
operators and picks the one which minimizes the total run
time of the GeoViz task.

7.1 Estimate the intermediate data size

An important aspect that GeoSparkViz takes into account
is the intermediate data size produced by each operator.
Reducing the intermediate data size leads to less data passed
between different GeoViz operators and hence reduces the
amount of data shuffle across the network. Note that esti-
mating the intermediate data size is difficult since operators
in the GeoViz pipeline do not only deal with complex spa-
tial objects (e.g., polygons, points, and line strings), but also
manipulate pixels and map tiles. Suppose the GeoViz task is
to visualize a set of uniformly distributed rectangular spatial
objects (size: Nobjects).

Pixelize operator The number of pixels (Npixels) pro-
duced by the pixelize operator may not be the same as the
number of input spatial objects Nobjects . When the map res-
olution R is high, each rectangle object will be pixelized to
a single pixel and the human eye cannot identify the shape
using the low-resolution map. On the other hand, in case
the resolution is high, a rectangle object may be assigned to
multiple pixels and the human eye can hence identify detailed
shapes on the final map. Therefore, the estimated output data
size is in proportion to R. We propose a parameter called
Scale Up Factor (denoted as SFup). It indicates how many
times the pixelize operator multiplies its data. Thus, the esti-
mated output data size is:

Npixels = Nobjects ∗ SFup (5)

By default, we assume that

SFup = 2zoom level

where zoom level is a parameter defined by OpenStreetMap
[23]:

Zoomlevel = log4(
R

256 ∗ 256
)[23]

This is because spatial objects in the big datasets used by
our experiments and in practice are at the road/block level
and usually appear as a few pixels if the zoom level is low
(i.e., level 2). However, the users can change the parameter
if their scenarios differ from our assumption. For example,
if all objects in the input dataset are points, SFup can be set
as 1.

Pixel aggregate operator This operator shrinks the inter-
mediate data size when the designated map resolution is low.
This is due to the fact that many overlapped pixels are aggre-
gated into a single pixel and the size of the output pixels is
never more than the resolution R. In case the resolution is
much higher than the produced pixels Npixels from the pix-
elize operator, the pixel aggregate operator may not reduce
the size of the intermediate results. If we assume input pixels
are uniformly distributed, the number of output pixels after
the aggregation is:

Npixels = min(Npixels, R) (6)

Spatial query operators The spatial range query opera-
tor filters the input data size using a range query window
so that it also reduces the intermediate data size. Spa-
tial join operator may prune less intermediate data since it
consists of many range windows. GeoSparkViz estimates
the intermediate data size using the classic spatial query
selectivity factor estimation. Thus, suppose Nwindow query
windows have the same area Areawindow, query operators’
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(a) (b) (c)

Fig. 9 (Multi-) GeoViz Query 1: Multi-Range+map building

impact on the intermediate data size can be estimated by
adding up the selectivity of each query window: Noutput =
Query selectivi t y ∗ N = Areawindow

Dataset area ∗ Nwindow ∗ N , N
can be either Nobjects or Npixels . If there are too many query
windows (e.g., in a spatial join query), the optimizer samples
the windows and estimates the selectivity.

7.2 Query optimization

To conduct the query optimization, the optimizer enumerates
a set of candidate plans based upon heuristic optimization
strategies (Heuristic Based Optimization). Then the opti-
mizer calculates the time cost of each candidate GeoViz
execution plan using the cost models provided in Sects. 5
and 6 and selects the plan with the minimum execution time
cost (Cost-Based Optimization).

7.2.1 Heuristic-based optimization

The GeoViz optimizer generates a set of candidate query
plans by directly applying several heuristic-based optimiza-
tion strategies to the original query plan obtained from the
query parser.

The user may submit a GeoViz application which involves
multiple GeoViz tasks (e.g., prints customized maps for dif-
ferent regions of a big dataset). Therefore, the heuristic-based
optimization runs in two steps:

Step I: Single-query heuristic strategy No matter how
many GeoViz queries exist in one application, the optimizer
first applies heuristics to eachGeoViz query: (1) merge parti-
tioners: if there are multiple spatial partitioning operators in
the plan, the optimizer only keeps the plan’s first partitioner
which is the GeoViz-aware spatial partitioner. This can avoid
unnecessary data shuffles. (2) push operators up/down: some
operators may reduce the cost if they are put at difference
places in the plan. For example, spatial query operators can
reduce intermediate data size (e.g., Spatial Range and Spatial
Join) and hence reduce the cost of their subsequent opera-
tors. The optimizer will try to move them to difference places

of the query plan and thus yield a number of new candidate
plans.

Step II:Cross-queryheuristic strategy If amapbuilding
operator or a spatial partitioner appears multiple times across
several queries in the application, the optimizer will merge
the repeated operators to avoid redundant computation. Note
that, the optimizer merges the same map building operator
only if the operator’s input sub-tree remains the same in all
queries. In other words, this operator should have the same
input data and parameters in all queries of this batch (see
Fig. 9(c) andCase 1 inSect. 7.3). The optimizerwill cache the
output of the merged operator after the first round execution
of this operator. This persists the output inmemory and hence
allows it to be re-used by subsequent operators.

7.2.2 Cost-based optimization

After applying the heuristic strategies, GeoSparkViz opti-
mizer produces candidate execution plans. The optimizer
then calculates the time cost of each candidate query plan
using the cost models provided in Sects. 5 and 6 and finds
the plan with the minimum cost.

Cost of spatial range query operator Given Nobjects

input spatial objects or Npixels input pixels, each partition
has N

P records, where P is the number of partitions. The time
cost of a spatial range query can be estimated as the time of
scanning one partition (Crange = N

P ). If the input data is
partitioned by the spatial partitioner, the query may be faster
because some partitions can be pruned if their boundaries do
not intersect the query window. This is useful when the com-
puting resources are scarce. However, since the query runs
in a cluster, the cost is dominated by scanning the remaining
partitions (as known as the “stragglers”): Crange = N

P .
Cost of spatial join query operatorGiven Nobjects input

spatial objects or Npixels input pixels plus Nwindow, without
considering indexes, the cost of a spatial join query operator
is equivalent to a local nested loop join on P data partitions in
parallel. Thus, its cost is ( N∗Nwindow

P2 ), N can be eitherNobjects

or Npixels .
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(a) (b) (c)

Fig. 10 GeoViz Query 3: Range+Join+map building

We take the leftmost plan in Fig. 6a as an example
to illustrate how to compute the cost of a GeoVIz query
plan. The complete plan includes the following opera-
tors: Spatial Range -> Pixelize -> Partitioner ->

Pixel aggregate -> Render. The corresponding cost is:

Cost =Crange + Cpixeli ze + Cparti tioner

+ Cpixel aggregate + Crender
(7)

We substitute the costs with their actual values and obtain
the following equation:

Cost =N

P
+ Nrange

P
+

(
Npixeli ze ∗ L

P
+ Npixeli ze

)

+ Npixeli ze

P
+ Npixel aggregate ∗ 2

P

(8)

where N is the size of the input dataset and Nwith subscripts
are the output sizes of the corresponding operators.

7.3 Case study

In this section, we study two typical GeoViz workloads to
show the optimized query execution plans over the straight-
forward execution plans.

Case 1:Multiple (range +mapbuilding)Given a dataset
about attractions around the world, the data scientist wants
to create scatter plots or heat maps for several regions he or
she is interested in. This workload includes multiple GeoViz
Query 1, range query +map visualization. Each spatial range
query has a different query window. The straightforward
execution plan that runs the data processing and visualiza-
tion in series is given in Fig. 9a. If GeoSparkViz follows
the straightforward execution plan, several operators will be
executed multiple times: pixelize, pixel aggregate and spatial
partitioner. However,GeoSparkViz pushes the spatial range
query operator to a place after the pixelize aggregate operator
and finds that a cross-query operator merging optimization

can be applied here. The optimizer decides to pixelize spa-
tial objects only once and then executes spatial range queries
multiple times. Moreover, the optimizer caches the output
of the pixel aggregate operator.

Case 2: Range + spatial join + map building Assume
that the data scientist wants to visualize a heat map of Man-
hattan taxi trips that were picked up in Manhattan landmark
areas, e.g., parks and schools.

Example 3 Given a set of NYC taxi trip pickup points and
a set of area landmarks, the query finds all Taxi trips with
pickup location lying within Manhattan and the area land-
marks that also lie within Manhattan. The query applies
spatial join between Manhattan Taxi trips and the Manhat-
tan landmarks and visualizes the join result using a heat map
visualization effect. The corresponding SQL is as follows:

SELECT ST_Render (view.pixel, view.color)
FROM NYCtaxi_HeatMap view, AreaLandmarks A
WHERE ST_WITHIN(view.pixel, ManhattanBound),

ST_WITHIN(A.boundary, ManhattanBound),
ST_WITHIN(view.pixel, A.boundary);

GROUPBY ST_TileID(view.pixel, 6)

The non-optimized execution plan (see Fig. 10) first per-
forms range queries on NewYork City taxi trip pickup points
and US landmark area boundaries using Manhattan region
as the query window, respectively. Then, it joins the results
of the two range queries and passes the join result to the
map visualization operators, which in turn generate the map
image. However, as shown in Figs. 5 and 10, the straight-
forward plan exhibits two time-consuming data shuffling
operations introduced by spatial data partitioners.

On theother hand, the optimizedplanpickedbyGeoSparkViz
first applies the spatial range predicate on the two datasets to
reduce the data scale. Then, it performs the pixelize operator
on the point object dataset (NYC Manhattan taxi trips), then
runs the pixel aggregate operator on the overlapped pixels to
reduce the intermediate data size. Instead of directly pixeliz-
ing the polygon dataset (landmark area boundaries), which
leads to large-scale intermediate data, the optimizer joins the
city boundaries with pixels. Moreover, since both the spa-
tial join operator and the pixel aggregate operator run on
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the same partitioned data, the two spatial partitioning oper-
ators are merged and placed at the beginning of the plan
(i.e., pushed down). In addition, the duplicate removal step
is skipped by the optimizer because it does not affect the
visualization effect.

8 Experiments

In this section, we conduct a comprehensive experimental
evaluation of GeoSparkViz.

Objectives We study the performance of GeoSparkViz
from the following aspects: (1) overall map building speed
(Sect. 8.1). (2) the effectiveness of GeoViz-aware spatial par-
titioner (Sect. 8.1) (3) the effectiveness of GeoViz query
optimization (Sects. 8.2, 8.3 and8.4) (4) systemscalability on
different cluster sizes and map resolutions (Sects. 8.5, 8.6).
Our main evaluation metric is the execution time.

Datasets We use six real spatial datasets in the experi-
ments (see Table 2 and Fig. 11): (1) TIGER Area Landmarks:
130,000 polygonal boundaries of all area landmarks (i.e.,
hospitals, airports) collected by U.S. Census Bureau TIGER
project. (2) OpenStreetMap Postal Area Dataset: 170,000
polygonal boundaries of postal areas (major cities) on the
planet. Each polygon in this dataset is represented by 10 or
more vertexes. (3) TIGER Roads: includes the shapes of 20
million roads in US. Each road is represented in the format
of a line string which is internally composed by many con-
nected line segments. (4) TIGER Edges: contains the shapes
of 73 million edges (i.e., roads, rivers, rails) in US. Each
edge shape is represented by a line string which has con-
nected line segments. (5) New York Taxi [37]: contains 1.3
billion New York City taxi trip records from January 2009
through December 2016. Each record includes pick-up and
drop-off dates/times, pick-up and drop-off location coordi-
nates, trip distances, itemized fares, and payment method.
But we only use the pickup point coordinates in the experi-
ments. (6) OpenStreetMap Point: contains 1.7 billion spatial
points on the planet, e.g., boundary vertices of attractions and
road traces.

Cluster settings We conduct the experiments on a clus-
ter which has one master node and two worker nodes. Each
machine has an Intel Xeon E5-2687WV4 CPU (12 cores,
3.0 GHz per core), 100 GB memory, and 4 TB HDD. We
also install Apache Hadoop 2.6, Apache Spark 2.11, Spatial-
Hadoop 2.4 (+ visualization extension called HadoopViz),
GeoSpark0.9 (+visualization extension), andGeoSparkViz
in this cluster.

Compared approaches In order to carefully investigate
the visual analytics performance, we compare the follow-
ing approaches on generating scatter plot and heat map:
(1) GeoSparkViz: This approach is the full GeoSparkViz
system which fully employs spatial query operators, map

building operators, GeoViz-aware Partitioner, and optimizer.
Given a test scenario,GeoSparkViz optimizes the execution
plan as far as possible. (2)GeoSparkViz*: This approach is
the full GeoSparkViz but it only tries a part of the heuristic
strategies. The detailed explanation is put in correspond-
ing sections. (3) SparkViz: this approach is GeoSpark and
its visualization extension. It leverages Apache Spark to
transfer intermediate data via memory but runs a GeoViz
in two separate phases (data processing SparkViz-Proc and
map visualization SparkViz-Viz) without any optimization.
It uses regular spatial partitioning method in data pro-
cessing and map tile partitioning in map visualization. (4)
HadoopViz: this approach is SpatialHadoop and its visual-
ization extension, namely HadoopViz. It also runs a GeoViz
in two separate phases (data processing HadoopViz-Proc and
map visualization HadoopViz-Viz) without any optimiza-
tion. Intermediate data in this approach is transferred through
disk.

GeoViz Query Workload To analyze the performance
of GeoSparkViz, we perform experiments on three main
GeoViz query workloads. The Map building only work-
load only runs the GeoViz-aware spatial partitioner and
map building operators. GeoSparkViz does not run spa-
tial queries and query optimization for this workload. The
MultiRange+map building workload is similar to GeoViz
Query 1, which issues a spatial range query and visualize
its result to either scatter plot or heat map. The query is
performed five times in this workload (see below) using
five different spatial range predicates. GeoSparkViz uses
the plan depicted in Fig. 9c and the other approaches use
the straightforward plan. We use the following range query
predicates: (1) Arizona state boundary for Roads (2) Ari-
zona state boundary for Roads Edges (3) Manhattan island
boundary for NYCtaxi (4) US mainland boundary for OSM-
point. The Range+Join+map building workload is similar
to GeoViz Query 3. GeoSparkViz runs the plan depicted in
Fig. 10c and the other approaches use the straightforward
plan depicted in Fig. 10a. For this workload, we use the
following range and join predicates: (1) AreaLandmarks in
Arizona joinedwithRoads inArizona, (2)AreaLandmarks in
Arizona joined with Edges in Arizona (3) AreaLandmarks in
Manhattan joinedwithNYCtaxi inManhattan , and (4)OSM-
Postal in US mainland joins OSMpoint in US.

Default parameter settings By default, we use Open-
StreetMap standard zoom level 6 as the defaultmapvisualiza-
tion setting for all compared approaches: it requires 4096map
tiles (256*256 pixels per tile), 268million pixels in total. The
maximum tile splitting level inGeoSparkVizGeoViz-aware
spatial partitioner is 3, which means each map tile is split at
most 3 times. Unless mentioned otherwise, SparkViz uses
Quad-Tree partitioning in data processing phase and map
tile partitioning for the map visualization phase. HadoopViz
uses R-Tree data partitioning in the data processing phase
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Fig. 11 Map visualization examples (best viewed in color)

Table 2 Test datasets

Dataset Records Description

Tiger landmarks 130 thousand Polygonal boundaries of area landmarks in US

OSM postal codes 171 thousand Polygonal boundaries of postal areas (major cities) in the world

TIGER roads 20 million Line string shapes of all roads in the world

TIGER edges 73 million Line string shapes of all rivers, roads, rails in US

NYC taxi 1.3 billion New York City taxi trip pickup points

OSM point 1.7 billion All points in the world

(a) Scatter plot (b) Heat map

Fig. 12 Performance of GeoViz partitioner

and map tile partitioning in the map visualization phase. All
compared approaches use the 64MB as initial data partition
size.

8.1 Impact of spatial partitioning

In this section, we study the performance of GeoSparkViz
map building and GeoViz-aware spatial partitioner. To this
end, we compare four different spatial data partitioning
approaches,GeoSparkVizGeoViz-aware partitioning, map
tile partitioning, Quad-Tree spatial partitioning and R-Tree
partitioning. All these partitioning methods are implemented
inGeoSparkViz. The GeoViz workload used in this section
contains only map visualization, which directly performs the
visualization effect on the entire spatial datasets and produces
scatter plots or heat maps. ForGeoSparkViz partitioner, we
also vary the maximum tile splitting level parameter (i.e.,
Level 1, 2, and 3).

As shown in Fig. 12,GeoSparkVizGeoViz optimizer run
1.5X–2X faster than uniformmap tile partitioning method as
expected. This is because the map tile partitioning approach
does not balance the load among the cluster nodes. This
degrades the performance evenmore when the spatial dataset
is very skewed. Moreover, a visualization task with larger
GeoSparkVizmax tile splitting level run 15% faster than its
variant with the lower splitting level. This happens since the
GeoViz-aware partitioner can produce more balanced data
partitionswhen it keeps splitting tiles (until reaching themin-
imum data partition boundary). Furthermore, the Quad-Tree
and R-Tree partitioning approaches are 50–70% slower than
other partitioning methods because such partitioning meth-
ods do not consider the map tile sizes and hence the system
has to add an extra shuffling step to recover the map tiles
before rendering. The map tile recovery step assigns each
pixel a TileID and groups pixels by their TileID. This step
leads to an additional data shuffling operations to group pix-
els.

8.2 Performance of MultiRange+map building

In this section, we study the performance of the GeoViz
queryoptimizationby running theMultiRange+mapbuilding
GeoViz queryworkload.We run the query onGeoSparkViz,
GeoSparkViz*, SparkViz, andHadoopVizGeoViz approaches.
The experiment also involves four datasets with different
scale. GeoSparkViz* only applies Heuristic Strategy 1 and
does not merge operators across queries.
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(a) Scatter plot (b) Heat map

Fig. 13 Performance of MultiRange+map building

(a) Scatter plot (b) Heat map

Fig. 14 Performance of Range+Join+map building

As shown inFig. 13, compared toGeoSparkViz, SparkViz
spends 50% more time and GeoSparkViz* costs around
20% more time, for generating scatter plots. GeoSparkViz
is around an order of magnitude faster than HadoopViz.

The result makes sense: (1) GeoSparkViz* is faster than
SparkViz because the GeoViz partitioner in GeoSparkViz
is more load-balanced than the map tile partitioning adopted
by SparkViz. Note that, GeoSparkViz* pixelizes spatial
objects and renders tiles after the spatial range query.
Because, after applying Heuristic Strategy 1 (Fig. 9b),
GeoSparkViz* still thinks that "query first and pixelize
later" exhibits a lower cost and thus goes back to this plan:
spatial range -> pixelize-> pixel aggregate
-> render. (2)GeoSparkViz is faster thanGeoSparkViz*
because it applies both Heuristic 1 and 2 and thus finds a
better plan. Its execution plan (see Fig. 9c) first pixelizes spa-
tial objects to pixels and caches them into memory, and all
spatial range queries (with different predicates) run directly
on the cached pixel dataset. (3) GeoSparkViz is faster
than HadoopViz because it uses an efficient query plan and
HadoopViz reads/writes intermediate data on disk.

When generating the heat map visualization effect for
the MultiRange+map building workload, GeoSparkViz is
around two times faster than SparkViz. Generating the heat
map visualization effect takes 20%-50%more time than gen-
erating a scatter plot because generating heat map effect
needs to apply an image processing filter to colors in the
Render operator and this leads to more local iterations on
each data partition.

(a) Scatter plot (b) Heat map

Fig. 15 Effect of the size of the query area (km2)

8.3 Performance of Range+Join+map building

Figure 14 studies the performance of the GeoViz query
optimization by running Range+Join+map building GeoViz
queryworkload inGeoSparkViz,GeoSparkViz*, SparkViz
and HadoopViz on four different datasets. GeoSparkViz*
tries Heuristic 1(1) “merge partitioners” (Fig. 10b) but does
not perform Heuristic 1(2) “Push operators up/down”.

As it turns out from the figure, GeoSparkViz is around
two times faster than SparkViz and an order of magni-
tude faster than HadoopViz on all data scales. This happens
because (1) The “merge partitioner” strategy picked by
GeoSparkViz andGeoSparkViz* (see Fig. 10b) only leads
to a single data shuffling operation, which happens at the
very beginning. Meanwhile, SparkViz and HadoopViz per-
form two data shuffling operations, which takes its toll on the
overall data-to-visualization time. Based on the experiments,
for the case of OSMpoint data, shuffling intermediate data
across cluster inGeoSparkViz only sends around 1 GBytes
of data across network. On the other hand, SparkViz transfers
more than 5 GBytes of data during the shuffling phase. (2) on
large-scale datasets NYCtaxi and OSMpoint,GeoSparkViz
aggregates the pixels before performing the spatial join oper-
ator, and hence reduces the amount of intermediate data
passed to the spatial join operator, which improves the perfor-
mance w.r.t time. This is also the reason why GeoSparkViz
runs 20–50% faster than GeoSparkViz* in this case. On
small-scale datasets such as Roads and Edges, after trying
the "Push operators up/down" strategy, GeoSparkViz still
decides to use the plan in Fig. 10b instead of the one in
Fig. 10c because of the cost. Thus, its execution time is simi-
lar toGeoSparkViz* in this case. Moreover,GeoSparkViz
is around 6 times faster than HadoopViz. This happens due
to the fact that HadoopViz performs two data shuffling steps
and the shuffled data needs to be written/read to HDFS.

8.4 Impact of range query area

This section studies the effectiveness of GeoViz query opti-
mization by varying the range query window size which
affects the cost of query plans. We use NYCtaxi dataset
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(a) Scatter plot (b) Heat map

Fig. 16 MultiRange+map building on different CPU cores

(a) Scatter plot (b) Heat map

Fig. 17 Range+Join+map building on different CPU cores

and MultiRange+map building GeoViz workload but vary
the range query window area. The smallest query window
area is a 320km2 rectangle region in the center of New York
City region. We keep multiplying this area by 4 and gener-
ate another three query windows, 4*320km2, 16*320km2,
64*320km2. Each test workload takes as input a range query
window andGeoVizQuery 1 in this workload repeats 5 times
using this query window. We also compare GeoSparkViz
with SparkViz and HadoopViz.

As shown in Fig. 15, the execution time of all three
compared approaches increases with the growth of query
window area. However, SparkViz and HadoopViz cost more
and more time on larger query area while the time cost
of GeoSparkViz increases slowly. On the largest query
area, 64*320km2, GeoSparkViz is around 50% faster
than SparkViz and 10 times faster than HadoopViz. This
makes sense because GeoSparkViz optimizer decides to
first pixelize spatial objects and cache aggregated pixels
into memory. The rest 4 GeoViz Query 1 in this work-
load work on the cached pixels and plot qualified pixels
directly. It is worth noting that, for the smallest querywindow
320km2,GeoSparkViz achieves the sameperformancewith
SparkViz becauseGeoSparkViz optimizer actually chooses
the naive plan shown in Fig. 9, which is same with SparkViz
and HadoopViz. The optimized plan is not good for very
small query windows (only return a few qualified records)
because it has to pixelize all objects no matter how many
objects are needed for visualization. ButGeoSparkViz opti-
mizer is able to figure out the fastest plan for the given
scenario.

(a) Range + Viz (b) Range + Join + Viz

Fig. 18 Impact of map zoom level

8.5 Effect of parallelism

To demonstrate the parallel efficiency of GeoSparkViz, we
test its performance on different cluster settings. We vary the
number of CPU cores to be 6 cores, 12 cores and 24 cores.
In order to make sure there is enough memory for processing
intermediate data, we only change the number of CPU cores
registered in Apache Spark without changing the number of
workers.

Asdepicted inFigs. 16 and17, the timecost ofGeoSparkViz
increases as we decrease the number of cores in the cluster.
This makes sense due to the fact that a larger cluster (more
CPU cores) can process more tasks in parallel.

On the other hand, we runs all experiments on four
main datasets, Roads, Edges, NYCtaxi and OSMpoint (see
Figs. 16, 17). The latter two datasets have over 1 billion
records which are around 30 times larger than Edges and
70 times larger than Roads. The experiments also show that
the time spent on large-scale datasets (NYCtaxi and OSM-
point) is only close to an order ofmagnitude (instead of 30–70
times) higher than that on smaller datasets. This makes sense
because although the small datasets havemuch fewer records,
their internal objects are line strings, which contain multiple
line segments. Processing line strings including check spa-
tial query predicate and pixelize takes more time due to their
complex geometrical shape.

8.6 Impact of map zoom level

Figure 18 studies the impact of different map zoom levels on
GeoSparkViz. We use OpenStreetMap standard zoom level
as our criteria. Higher zoom level means that GeoSparkViz
produces more map tiles. We use 256*256 pixel resolution
for each map tile and vary the zoom level to be L2, L4 and
L6. OSM zoom level 2 has 16 tiles, 1 million pixels; level
4 stands for 256 tiles, 16 million pixels; level 6 demands
4096 tiles, 268 million pixels. We run the two GeoViz work-
loads (i.e., MutliRange+map building and Range+Join+Viz)
on these map levels and produce scatter plots map visual-
ization. As shown in Fig. 18, the higher the zoom level,
the more time GeoSparkViz takes to execute the GeoViz
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query. This makes sense because, with smaller zoom levels,
GeoSparkViz only generates low resolution map tiles. In
this case, the pixlelize, pixel aggregate, and rendering oper-
ators process fewer pixels.

9 Conclusion and future work

In this paper, we presentedGeoSparkViz, a cluster comput-
ing system for visualizingmassive-scale geospatial data. The
proposed approach pushes the geospatial map visualization
functionality inside the core engine of a distributed/parallel
data management system. The GeoSparkViz approach
allows users to declaratively define geosaptial visual analyt-
ics (GeoViz) tasks. Thanks to its hybrid nature, the system
adopts a GeoViz-aware spatial partitioning scheme and exe-
cution strategies that co-optimize the map visualization
operations with spatial query operators. Experiments based
on real spatial data show thatGeoSparkViz can achieveup to
one order of magnitude less data-to-visualization time com-
pared to its counterparts. In the future, we plan to incorporate
classic database query optimization strategies, e.g., materi-
alizing pixel aggregates, to reduce the data-to-visualization
time evenmore.Wealso plan to integrateGeoSparkVizwith
recently developed declarative visualization libraries (e.g.,
Vega-Lite [27], Reactive Vega [28]) as well as sampling-
based systems (e.g., ScalaR [4], RS-Tree [33]) to support
interactive GeoViz operations (e.g., Zoom-In/out).

A Additional GeoViz SQL specification

This section includes an additional specification about
GeoViz SQL. This is complementary to the content in Sect. 4.
We also give more examples to demonstrate how to assemble
map effects.

A.1 Type and function specification

GeoViz SQL allows declarative SQL-like queries over struc-
tured RDDs. Each RDD has a schema which consists of a
number of attributes. Each attribute has a type in Spark.

A.1.1 Types

GeoSparkViz adds two new types of objects: pixels and
image. This way, Spark can understand and manipulate data
for maps. In addition, GeoSpark itself adds a new type in
Spark called Geometry to represent geospatial data.

Geometry [40] This is a generic data type which inter-
nally represents a variety of spatial objects, such as points,
line strings, and polygons. It has several fields such as coor-
dinates.

Pixel This type extends the Geometry type to support pix-
els and hence spatial query operators can process it directly. It
is used by several map building operators: Pixel, Pixel aggre-
gate and Render. Besides the original fields in Geometry, it
has several additional fields: (1) resolution (2) tile id. A pixel
can be considered as a point object.

Image This type is a serializable wrapper of Java
BufferedImage class and actually holds the map tile data.
It provides serialization functions to BufferedImage. Each
map tile in GeoSparkViz is an Image type object.

A.1.2 Functions

ST_TileId Each pixel in GeoSparkViz has several internal
attributes. The tile ID of a pixel is used to partition the pixels
properly.
SELECT ST_TileID(pixel)
FROM Pixel_view

– Input The function takes as input a pixel attribute.
– Output It returns the tile ID of this pixel. The ID is a
string type object.

ST_EncodeImage This function returns the base64 string
representation of an image. This is a specific function for the
server-client environment. For example, some client libraries
such as Apache Zeppelin can directly display base64 images.

SELECT ST_EncodeImage(map_tile)
FROM Map_tile_view

– Input The function takes as input an image attribute.
– Output It returns a base64 string of the image.

A.2 Additional GeoViz query examples

In this section, we provide more examples about how to
assemble GeoViz queries. Another example, scatter plot of
taxi trip pickup points, can be found in Sect. 4.2.

Spatial dataset We use the NYC taxi trip dataset men-
tioned in Fig. 5 as the running example in this section. The
dataset is loaded into a structured Spatial RDD.

Heat map of taxi trip pick up points This shows a heat
map of the distribution of pickup points of taxi trips. The
color is in proportion to the density of pickup points. The
max weight is 100 which means: if there are more than 100
trips picked up in a place, this place shows red color. The
initial weight in Pixelize operator is 1 and the aggregation
strategy is count().

1 /* Render: Render tiles */
2 SELECT Tile_ID, ST_Render(pixel, color)
3 FROM {
4 /* Render: Colorize pixels */
5 SELECT pixel, ST_Colorize(weight, 100) as color
6 FROM {
7 /* Pixel aggregate */
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8 SELECT pixel, count(*)
9 FROM {

10 /* Pixelize */
11 SELECT pixel, 1
12 FROM NYCtaxi taxi
13 LATERAL VIEW ST_Pixelize(taxi.pickup,
14 16384, 16384) AS pixel }
15 GROUPBY pixel } }
16 GROUPBY ST_TileID(pixel) AS Tile_ID

Single-image map of taxi trip pick up points This shows a
heat map of the distribution of pickup points of taxi trips in a
map image which does not have any tiles. Other parameters
are the same as the previous one. This is similar to the queries
shown in Fig. 4.

1 /* Render: Render tiles */
2 SELECT Tile_ID, ST_Render(pixel, color)
3 FROM {
4 /* Render: Colorize pixels */
5 SELECT pixel, ST_Colorize(weight, 100) as color
6 FROM {
7 /* Pixel aggregate */
8 SELECT pixel, count(*)
9 FROM {

10 /* Pixelize */
11 SELECT pixel, 1
12 FROM NYCtaxi taxi
13 LATERAL VIEW ST_Pixelize(taxi.pickup,
14 16384, 16384) AS pixel
15 }
16 }
17 }

Heat map of trip fare This shows a heat map of trip fare. If
trips picked up from a place cost more money, this place will
show a red color. The max weight is 30 which means: if trips
from a place cost more than 30 dollars, this place will show
a red color. The initial weight in the Pixelize operator is the
“trip fare” attribute and the aggregation strategy is avg().

1 /* Render: Render tiles */
2 SELECT ST_Render(pixel, color) as map
3 FROM {
4 /* Render: Colorize pixels */
5 SELECT pixel, ST_Colorize(weight, 30) as color
6 FROM {
7 /* Pixel aggregate */
8 SELECT pixel, avg(initial_weight) as weight
9 FROM {

10 /* Pixelize */
11 SELECT pixel, trip_fare as initial_weight
12 FROM NYCtaxi taxi
13 LATERAL VIEW ST_Pixelize(taxi.pickup,
14 16384, 16384) AS pixel }
15 GROUPBY pixel } }
16 GROUPBY ST_TileID(pixel) AS Tile_ID
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