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Abstract
Negative sampling, which samples negative triplets from non-observed ones in knowledge graph (KG), is an essential step
in KG embedding. Recently, generative adversarial network (GAN) has been introduced in negative sampling. By sampling
negative tripletswith largegradients, thesemethods avoid theproblemofvanishinggradient and thus obtain better performance.
However, they make the original model more complex and harder to train. In this paper, motivated by the observation that
negative triplets with large gradients are important but rare, we propose to directly keep track of them with the cache. In
this way, our method acts as a “distilled” version of previous GAN-based methods, which does not waste training time on
additional parameters to fit the full distribution of negative triplets. However, how to sample from and update the cache are two
critical questions. We propose to solve these issues by automated machine learning techniques. The automated version also
covers GAN-based methods as special cases. Theoretical explanation of NSCaching is also provided, justifying the superior
over fixed sampling scheme. Besides, we further extend NSCaching with skip-gram model for graph embedding. Finally,
extensive experiments show that our method can gain significant improvements on various KG embedding models and the
skip-gram model and outperforms the state-of-the-art negative sampling methods.

Keywords Knowledge Graph · Graph Embedding · Negative Sampling · Automated Machine Learning

1 Introduction

Knowledge graph (KG) is a special kind of graph structure,
with entities as nodes and relations as directed edges. Each
edge (also called a fact) is represented as a triplet with the
form (head entity, relation, tail entity), denoted as (h, r , t),
indicating that two entities are connected by a specific rela-
tion, e.g., (Steve Jobs, founded, Apple Inc.) in the example in
Fig. 1. These triplets are usually extracted manually or based
on automatically constructed knowledge bases [47]. KG is
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very general and useful, and it has been used as fundamental
building blocks for many applications like structured search
[16,39], question answering [7], recommendation [42,64]
andmedical diagnosis [63]. This importance has also inspired
many famous KG projects, such as FreeBase [6], DBpedia
[2] and YAGO [47].

As these triplets are hard to manipulate, how to find a
good representation for entities and relations in the KG
[41] is a fundamental problem. Early works towards this
goal lie in statistical relational learning by using the sym-
bolic triplet data [29,30,32]. However, these methods neither
lead to good generalization performance, nor can they be
applied for large scale knowledge graphs. In comparison, the
embedding-based methods have better generalization ability
and inference efficiency [8,44,69]. Recently, graph embed-
ding techniques [55] have been introduced in KG learning.
These methods attempt to encode entities and relations in
KG into a low-dimensional vector space while capturing the
original connection properties. They are scalable and have
also shown promising performance in basic KG tasks, such
as link prediction and triplet classification [8,55].
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Fig. 1 An example of knowledge graph

In recent years, constructing new scoring functions that
can better model the complex interactions between entities
and relations has been the main focus for improving the
performance of KG embedding approaches [25,51,56,60].
However, another very important perspective of KG embed-
ding, i.e., negative sampling, is not sufficiently emphasized.
The need for negative sampling comes from the fact that there
are usually only positive triplets inKG [30,55]. First, to avoid
trivial solutions of the embedding, a set that contains all the
possible negative samples needs to be hand-made. Then, in
consideration of both computation cost and memory space,
stochastic training is needed in each iteration. Specifically,
once we have picked up a positive triplet, we also need to
sample some negative triplets from its corresponding nega-
tive sample set. Besides, the quality of these negative triplets
does matter.

Due to its simplicity and efficiency, uniform sampling is
broadly used in KG embedding [55]. However, it is a fixed
scheme and ignores changes in the distribution of negative
triplets during the training process. As a result, it suffers seri-
ously from the vanishing gradient problem [54] and biased
estimation problem [45]. As observed in [54], most nega-
tive triplets in the sampling set can be easily classified. Since
the scoring functions tend to give observed (positive) triplets
large values, as training goes, most of the non-observed
(probably negative) triplets will have smaller values. Thus,
when negative triplets are uniformly sampled, it is very likely
that we pick up one with zero gradients. As a result, the
training process of KG embedding will be impeded by the
vanishing gradients rather than by the optimization algo-
rithm. This problem prevents KG embedding from getting
the desired performance. A better sampling scheme, the
Bernoulli sampling, is introduced in [56]. It improves uni-

form sampling by considering one-to-many, many-to-one
and many-to-many mapping in the relations between enti-
ties. For example, given a one-to-many relation, replacing
the tail entity will have a larger chance of getting a false neg-
ative triplet compared with replacing the head. However, it
is still a fixed and biased sampling scheme.

Therefore, dynamically sampling from thenegative triplets’
distribution to help the training process is important and
non-trivial. To efficiently capture them during training, we
have two main challenges for negative sampling: (i). How
to capture and model the negative triplets’ dynamic distribu-
tion? and (ii). How can we effectively sample the negative
triplets? Recently, there are two pioneeringworks, i.e., IGAN
[54] and KBGAN [11], attempting to address these chal-
lenges. Their ideas are to replace the fixed sampling scheme
with a generative adversarial network (GAN) [20]-based
sampling scheme. However, GAN-based solutions still have
many problems. First, GAN increases the number of train-
ing parameters because an extra generator should be learned
as sampler. Second, the training of the GAN model usu-
ally suffers from instability and degeneracy [1,22]. The
REINFORCE gradient [58], which is known to have high
variance, should be used to train the generator. Besides,
since only a few negative triplets can lead to large gra-
dient, IGAN and KBGAN take a lot of effort to model
the distributions of all the negative ones. These drawbacks
lead to instable performance for different scoring functions,
and hence, pretraining becomes a must for both IGAN and
KBGAN. Self-adversarial sampling (Self-Adv) [48] uses the
self-embedding model to replace the generator. It solves the
problem of training GAN model, but it cannot guarantee to
sample enough negative triplets with large gradient in each
iteration.
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Simple and automated negative sampling for knowledge graph embedding 261

In this paper, to address the challenges of capturing the
dynamic and complex negative sampling distribution while
avoid the problems of using GANs, we propose a simple
and efficient negative sampling method based on the cache,
called NSCaching. By empirically analyzing the gradient
norm distribution of negative triplets, we find that the dis-
tribution is highly skewed. In other words, there are only
a few pairs of training triplets (i.e., a positive triplet and a
negative triplet) have large gradient and the rest are use-
less. This observation motivates us to mainly maintain the
negative triplets that lead to large gradients during the train-
ing and dynamically update the maintained triplets. First,
we use the cache to store large-gradient negative triplets.
Then, we carefully design the updating and sampling rules
for the cache. In detail, the cache-based sampling problem is
formed as a hyper-parameter optimization (HPO) problem,
and we use automated machine learning (AutoML) [61] to
efficiently solve it. In this way, we automatically take good
care of “exploration and exploitation” (E&E) [34], which
balances exploring all possible high-quality negative triplets
and sampling from a few of them in the cache. Contributions
of our work are summarized as follows:

– We propose a simple, efficient and automated negative
sampling algorithm NSCaching, which is a general neg-
ative sampling scheme and can be easily injected into
manypopularly usedKGembeddingmodels.NSCaching
has fewer parameters than both IGAN [54] and KBGAN
[11].

– We provide intuitions about how NSCaching helps the
KG training under convex and non-convex cases. Specif-
ically, in the convex case, we show that the negative
sampling scheme in NSCaching can lead to a smaller
approximation error. In the general non-convex case, we
show that NSCaching can benefit from self-paced learn-
ing [3,31] by learning easy samples first and gradually
switching to harder ones.

– A critical issue in theNSCaching algorithm is how to bal-
ance “exploration and exploitation”(E&E) in updating
and sampling from the cache. Motivated by the suc-
cess of automated machine learning [61], we propose
an automated version of NSCaching, i.e., NSCaching
(auto). The AutoML-based method has a unified view
of the hyper-parameters (related to E&E) of NSCaching
and also covers IGAN/KBGAN as special cases. Thus, it
enables us to automatically balance E&E.

– We conduct experiments on five popular data sets,
i.e., WN18 and FB15K (and their variants WN18RR
and FB15K237) and YAGO3-10. Experimental results
demonstrate that the NSCaching algorithm is very effi-
cient and is more effective than the baselines as well.
The automated version further improves NSCaching by
balancing between exploration and exploitation better.

– We extend the negative sampling algorithm from KG
embedding to graph embedding. Random walk-based
graph embedding [21], which is trained with the widely
used skip-gram model [36], is chosen as the testbed. The
cache-based negative sampling is used to replace the
frequency-based negative sampling in skip-gram mod-
els. Experiments on the graph embedding show that
NSCaching adapts well to the new task.

The preliminary version of this paper has been published
in ICDE 2019 [67], Compared to [67], we have made the
following important improvements:

1. We systematically extend the algorithm by introduc-
ing AutoML to automatically balance E&E by hyper-
parameter optimization (Sect. 3.4). TheAutoMLapproach
not only helps to improve the performance ofNSCaching,
but also offers insight on howGAN-basedmethodswork;

2. We extend NSCaching to a new task, i.e., graph embed-
ding based on the skip-gram model (Sect. 4). We show
thatNSCaching algorithmcanbe easily adopted into such
a new application scenario and get good empirical per-
formance (Sect. 5.7).

3. We add theoretical explanation of how NSCaching leads
to a smaller approximation error when the objective is
convex in Sect. 3.3.1. The new result provides intuitions
about how NSCaching helps train embeddings.

4. Based on the theoretical analysis, we reform the prob-
lem from gradient point of view in Sect. 3.1 and added
positive sampling into the algorithm (Sect. 3.2.2). To our
knowledge, the positive sampling problem has not been
explored in KG embedding area.

5. Moreover, we have conducted more experiments with
new data sets, scoring functions and tasks to show
the effectiveness of our algorithm (Sect. 5.3), auto-
mated machine learning to further boost performance
(Sect. 5.4), ablation study to analyze the design com-
ponents (Sect. 5.5), synthetic setting to illustrate the
convergence properties (Sect. 5.6.2) and graph embed-
ding to verify the extension to the skip-gram model
(Sect. 5.7).

Notations The mostly used symbols and their descriptions
are given in Table 1. Vectors are denoted by lowercase bold-
face, andmatrices by uppercase boldface. Re(·) takes the real
part out of complex numbers, conj(t) = treal − itimage is
the conjugate of complex vectors t = treal + itimage ∈ C

d .
〈a,b, c〉 = ∑d

i=1 ai · bi · ci is the inner product.
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Table 1 Symbols and notations Symbol Description

E ,R The set of entities and set of relations

h, t ∈ E , r ∈ R Head and tail entity, relation

S ≡ {(h, r , t)} The set of triplets

S̄i = {(h̄i , ri , t̄i )} The set of negative triplets for (hi , ri , ti )

h, t ∈ R
d1 Embedding of head entity and tail entity

r ∈ R
d2 Embedding of relation

C The cache

f (h, r , t) The scoring function of the triplet (h, r , t)

Ni ⊂ S̄i Candidate subset of negative triplets

N1, N2 Cache size |Ci |, candidate size |Ni |
α1, α2, α3 > 0 Temperature values for softmax function

Table 2 Definitions of some
popular scoring functions

Model Scoring function Definition

Transnational distance TransE [8] − ‖h + r − t‖1
TransH [56] − ∥

∥h − w�
r hwr + r−(t − w�

r twr )
∥
∥
1

TransD [25] − ∥
∥h + wrw�

h h + r−(t + wrw�
t t)

∥
∥
1

Semantic DistMult [60] 〈h, r, t〉
Matching ComplEx [51] Re (〈h, r, conj(t)〉)

SimplE [27] 〈h1, r1, t2〉 + 〈h2, r2, t1〉
All model embeddings are real values, except that ComplEx has complex values. h1, r1, t1 and h2, r2, t2 are
indexed from two different sets of embeddings

2 Preliminaries and related works

In this section, we introduce the stochastic training algorithm
forKG embedding in Sect. 2.1, current strategies for negative
sampling in Sect. 2.2 and AutoML techniques in Sect. 2.3.

2.1 Knowledge graph (KG) embedding

To build a KG embedding model, we first need to pick up a
scoring function f , which captures the similarities between
two entities based on a relation [55]. Different scoring func-
tions have their own weaknesses and strengths in capturing
the underneath interactions. Some popularly used scoring
functions are presented in Table 2. Besides, the observed
facts in KG are supposed to have larger scores than the
non-observed ones [55]. With the factual information, the
embeddings are learned by solving the optimization prob-
lem that maximizes the scoring function for observed triplets
and minimizes it for non-observed triplets at the same time.
Based on the properties of scoring functions, KG embedding
models are generally divided into two categories.

– The translational distance model exploits the distance-
based scoring functions. Inspired by the word analogy
results in word embeddings [37], the similarity is mea-
sured by the distance between two entities, after a

translation carried out by the relation. TransE [8], as a
representative translational model, is defined by the (neg-
ative) distance between h + r and t, i.e., f (h, r, t) =
− ||h + r − t||1. Other translational distance models like
TransH [56] and TransD [25] enhance over TransE by
introducing extra mapping matrices. The translational
distance models are generally optimized by minimizing
the ranking-based loss function

∑

(hi ,ri ,ti )∈S

∑

(h̄i ,ri ,t̄i )∈S̄i

[
γ − f (hi , ri , ti ) + f (h̄i , ri , t̄i )

]
+ ,

(1)

where γ > 0 is the margin value for the loss function.
– Scoring functions in semantic matching models exploit

the similarity of a triplet by matching latent semantics
of entities and relations embedded in their vector space
representations. Bilinear models are the state-of-the-art
among the semantic matching models and they share
the form as f (h, r, t) = h�Rt , where R ∈ R

d×d

is a matrix referring to the embedding of relation r
[55]. DistMult [60] measures the similarity by directly
computing the element-wise product of the embedding
vectors, i.e., f (h, r, t) = 〈h, r, t〉, which restricts R to
be a diagonal matrix. However, it cannot model asym-
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metric triplets since f (h, r , t) = f (t, r , h) is always
satisfied. ComplEx [51] and SimplE [27] improve over
DistMult by dealing with asymmetric triplets in differ-
ent ways. Another type of models conducts semantic
matching using neural networks. Multi-layer perceptron
(MLP) is used in [15] to measure the similarities. ConvE
[13] takes advantage of convolutional neural network
to increase the interactions among different dimensions.
Even though neural network models are more complex
than the bilinear models, they empirically perform worse
than them [27,51]. The semantic matching models are
mainly optimized by minimizing the classification-based
loss function

∑

(hi ,ri ,ti )∈S

∑

(h̄i ,ri ,t̄i )∈S̄i

� (1, f (hi , ri , ti ))+�
(−1, f (h̄i , ri , t̄i )

)

(2)

where (h̄, r , t̄) /∈ S is the hand-made negative triplet for
(h, r , t) and �(α, β) = log (1 + exp(−αβ)).

Algorithm 1 Stochastic gradient descent for knowledge
graph embedding [8,55].
Require: training set S = {(h, r , t)}, embedding dimension d and

scoring function f ;
1: initialize the embeddings for each e ∈ E and r ∈ R.
2: for i = 1, · · · , T do
3: sample an observed triplet (hi , ri , ti ) ∈ S ;
4: sample the corresponding negative triplet (h̄i , ri , t̄i ) ∈ S̄i ; // neg-

ative sampling
5: update parameters of embeddings w.r.t. the gradients using

(i). translational distance models:

∇ [
γ − f (hi , ri , ti ) + f

(
h̄i , ri , t̄i

)]
+ , (3)

or (ii). semantic matching models:

∇ [
� (+1, f (hi , ri , ti )) + �

(−1, f (h̄i , ri , t̄i )
)] ; (4)

6: end for

The above two objectives, i.e., (1) and (2), can be opti-
mized by using stochastic gradient descent in an unified
manner (Algorithm 1). In each iteration, an observed (pos-
itive) triplet (hi , ri , ti ) is firstly sampled from the training
set S at step 3. Since there are no negative triplets in S ,
in step 4, a negative triplet of (hi , ri , ti ) is sampled from the
corresponding negative triplets set S̄i [8], i.e.,

S̄i = {
(h̄, ri , ti ) /∈S | h̄ ∈ E

}∪{
(hi , ri , t̄) /∈S | t̄ ∈ E

}
.

(5)

Finally, embedding parameters are updated in step 5. Since
the quality of negative triplets in S̄i is diverse, how to sam-

ple a proper (h̄i , ri , t̄i ) has been developed as an important
perspective affecting the performance of knowledge graph
embedding [11,48,54,55].

2.2 Negative sampling in KG embedding

Negative sampling is important for improving learning
models when there are only positive samples. The typical
applications include natural language processing [12,33,38],
computer vision [59], graph embedding [21,44,49], recom-
mender system [14,46,62,66], and KG embedding [8,55]
here. Existing works on negative sampling can be divided
into two categories, i.e., sampling from fixed distribution and
sampling from dynamic distribution.

A uniform distribution over the negative samples in the
candidate set is a simple yet efficient choice [8,46], whereas
many of the uniformly generated negative samples are not
informative and too trivial to recognize [14,33,38,59]. In
order to generate more informative negative samples, impor-
tant statistics in the data set can be used to define the
distribution, such as the frequency of words [37] and person-
alized PageRank score of items [65]. However, the uniform
sampling methods are biased estimator of the full negative
sampling distribution [45].

As the training goes on, the distributions of scores and
gradients of negative samples keep changing. In order to
capture the dynamic distribution of negative samples, sev-
eral works are proposed to sample according to the scores
[9,12,14,18,33,54,59]. There are two approaches in gen-
eral. In one direction, the high-quality negative samples are
selected based on the scores in a small pool sampled from
all the candidates [33,48]. This approach is efficient since
only a small number of the scores need to be computed. In
another, a distribution on all the candidates is modeled to
generate the high-quality negative samples [18,54]. Having
an overall distribution of the negative samples makes these
method more flexible.

In the following content, we discuss the samplingmethods
specifically used in KG embedding tasks.

2.2.1 Sample from fixed distributions

In the early work [8], negative triplets are uniformly sampled
from the set S̄i . This strategy is simple yet very efficient.
Later, a better sampling scheme, i.e., Bernoulli sampling,
is introduced in [56]. It improves uniform sampling by
reducing the appearance of false negative triplets existing
in one-to-many, many-to-many and many-to-one relations
between head and tail entities. However, as mentioned in the
introduction, the Bernoulli method still samples from fixed
distributions, which can neither model the dynamic changes
in distributions of negative triplets nor can it sample triplets
with large gradient.
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As introduced in Sect. 1, the vanishing gradient (or zero
loss) problem [54]means a certain number of negative triplets
will lead to zero gradient and thus is not informative for
trainingwith gradient-based optimization algorithms. Taking
the ranking-based loss (3) for example, the score of negative
triplets f (h̄i , ri , t̄i ) is gradually minimized as training goes
on. For most of the negative triplets, the score will be very
small and the loss will decrease to zero soon, leading to zero
gradients. The gradient on classification loss (4) will go close
to zero if f (h̄i , ri , t̄i ) is small. As a result, those negative
triplets cannot provide enough gradient value to update the
embeddings. Besides, the fixed sampling methods cannot
capture the dynamic distribution of negative triplets, leading
to a biased estimator.

2.2.2 Sample from generative adversarial network (GAN)

GAN [20] is originally introduced as a powerful model for
image generation. It contains two modules: a generator that
serves as the sampler and a discriminator that measures the
quality of generated samples. Under elaborate control on the
training procedure of generator and discriminator, GAN has
achieved significant success in many fields, e.g., computer
vision [1,22], natural language processing [17], information
retrieval [53] and graphmining [52]. It has also been shown to
generate negative samples with high-quality for knowledge
graph embedding [11,48,54].

When GAN is applied to negative sampling, the jointly
trained generator can dynamically adapt to the new distribu-
tions by confusing the discriminator and keeping training.
The discriminator, i.e., the KG embedding model, learns
to distinguish between the positive triplets and the nega-
tive triplets sampled by the generator. Under an alternating
training process, the generator dynamically approximates the
negative sample distribution and the KG embedding model
is improved by the negative triplets with relatively large gra-
dient sampled by the generator.

Given a positive triplet (h, r , t), IGAN [54] models the
distribution h̄, t̄ ∼ p(e|(h, r , t)) over all the entities to sam-
ple a negative triplet (h̄, r , t̄). The gradient of (h̄, r , t̄) is
approximately measured by the discriminator, i.e., the loss
function � = [

γ − f (h, r , t) + f (h̄, r , t̄)
]
+ of the targetKG

embedding model. By joint training, IGAN can dynamically
capture the distribution of all negative triplets. Instead of
modeling a distribution over the whole entity set, KBGAN
[11] learns to sample from a subset of random entities. A set
of entities N = {(h̄, r , t̄)} is uniformly sampled first and
then the negative triplet is picked up from N . KBGAN is
more efficient than IGAN, but less effective since it is hard
to guarantee the candidate set N to contain enough large-
gradient negative triplets.

Even though GAN provides a solution to model the
dynamic negative sample distribution, it is famous for

suffering from instability and degeneracy [1,22]. Besides,
REINFORCE gradient [58], which is known to have high
variance, has to be used to optimize the generator. There-
fore, pretraining is a must for both IGAN and KBGAN. It
increases the number of model’s parameters and brings extra
costs on training. A concurrent work Self-Adv [48] adopts
a similar approach as KBGAN. The differences are that (i)
Self-Advuses the self-model embedding tomeasure the qual-
ity rather than training an extra generator; (ii) Self-Adv treats
the probability as weights rather than the sampling proce-
dure. However, it still cannot guarantee the candidate setN
to contain large-gradient negative triplets.

2.3 Automatedmachine learning (AutoML)

Automated machine learning (AutoML) [24,61] has recently
shown its power in easing the usage of and in designing better
machine learning models. It can be regarded as a black-box
optimization problemwherewe target at efficiently searching
for better hyper-parameters or model structures. Regarding
the success of AutoML, there are two important perspectives

– Search space: This helps us to figure out important prop-
erties of the underlying learning model. The search space
cannot be too general, otherwise the searching cost in
such a space will be too expensive.

– Search algorithm: Since the computation cost of training
and evaluating the settings in search space is high, effi-
cient algorithms should be designed to search efficiently.
Taking hyper-parameter optimization (HPO) as an exam-
ple, gird search or random search [5] are the mostly used
method due to their simplicity. However, the searching is
usually inefficient and Bayesian optimization [4,23] is a
well-known method to improve the efficiency in HPO.

Considering that the distribution of negative triplets is
highly skewed, as will be discussed in Sect. 3, we should
take the sampling distribution seriously. As will be shown in
Sect. 3.4, the proposed NSCaching method naturally allows
a search space to automatically balance the exploration and
exploitation (E&E) problem in negative sampling, which can
further improve the quality of embeddings.

3 Proposedmodel

In this section, we first describe our key observations regard-
ing the negative sampling in Sect. 3.1, which are ignored
by existing works but are the main motivations of our work.
The proposed method is described in Sect. 3.2, where we
show how to address the challenges in negative sampling by
using cache. Then, we analyze the proposed method from
theoretical perspectives in Sect. 3.3. In Sect. 3.4, we balance
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Fig. 2 Distribution of training pairs’ gradients on WN18 trained by
Bernoulli-TransE (see Sect. 5.3.1). For a given triplet (hi , ri , ti ), we fix
the head entity h and relation r and compute the �2-norm of gradient
‖g‖2 in (3) for all t̄ ∈ E . We measure the complementary cumulative
distribution function (CCDF) F‖g‖2 (x) = P(‖g‖2 ≥ x) to show the

proportion of negative triplets that satisfy ‖g‖2 ≥ x . a is the distribu-
tion of training pairs in 5 timestamp of a certain triplet (hi , ri , ti ). b
is the distribution of 5 different triplets (hi , ri , ti ) after the pretraining
stage

exploration and exploitation through AutoML techniques for
the proposedmethod. Finally, we discuss the problemof false
negative triplets in Sect. 3.5.

3.1 Revisiting distribution of training pairs

Before introducing the proposed method, we analyze the
distribution of gradients for training pairs here. This moti-
vates us to use cache to efficiently approximate an unbiased
distribution of the training pairs. Recall that the gradient at
stochastic training of KG embedding is determined by a pair
of triplets, i.e., a positive one (hi , ri , ti ) from the training set
and a negative one (h̄i , ri , t̄i ) from negative set S̄i (step 3–4
in Algorithm 1). We show the distribution with the �2-norm
of all the training pairs’ gradients for a positive (hi , ri , ti ).

– Figure 2a shows changes of the training pair distribution
for a fixed positive triplet (hi , ri , ti ) in different epochs;
and

– Figure 2b shows the training pair distributions for five
different positive triplets (hi , ri , ti ) ∈ S .

First, we can see that the distribution of training pairs’ gra-
dient are dynamic and highly skewed. Second, the training
pairs with large gradients become rare along the iterating
(epoch gets more), which is consistent with the observations
in [11,54]. Besides, the distributions of training pairs’ gradi-
ent for different positive triplets are various.

Even thoughGANhas strong ability inmonitoring the full
distribution of negative triplets, the GAN-basedmethods still
have a lot of limitations. First, they waste a lot of parame-

ters and computational costs on learning hownegative triplets
with small gradient norms are distributed. Second, reinforce-
ment learning, which provides gradient to the generator but
increases the training difficulties, should be applied in the
GAN-based algorithms [11,54].

Besides, the GAN-based methods ignore the distribution
of positive triplets. Since each training pair is composed of a
positive triplet and a negative triplet, the differences among
positive triplets should also be considered. Some positive
triplets can have more large gradient negative samples (see
positive triplet 2 vs. positive triplet 1 in Fig. 2b). Thus, we
want to more frequently pick up the positive triplets with
more large gradient negative samples over the others during
the stochastic training, i.e., in step 3ofAlgorithm1.However,
all existing works including [11,48,54,67] use uniform sam-
pling over positive triplets. For methods sampling from fixed
distributions [8,56], they cannot model the difference of both
positive and negative triplets. GAN-based ones are already
too complex [11,54] to model the positive sampling. Captur-
ing the difference of positive triplets will further increase the
model’s parameters and make the training even harder.

3.2 NSCaching: the proposedmethod

From observations in Sect. 3.1, we have three questions on
how to sample the training pairs (i.e., a positive and a negative
triplet).

(1) Is it possible to directly keep track of negative triplets
which can give large gradient for a given positive triplet,
rather than the whole negative triplets’ distribution?
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(2) How can we adaptively sample positive triplets having
more large-gradient training pairs? Besides, considering
the distribution is dynamic and hard to estimate,

(3) How to balance exploring all the training pairs leading to
large gradient and exploiting those that have the largest
gradient norms?

In this section, we describe the proposed method to
address these three questions.

3.2.1 Core idea: caching training pairs

As in Sect. 3.1, the total number of large-gradient negative
triplets associated with a positive one is small. Therefore, we
are motivated to use a small amount of extra memory, which
caches negative samples with large gradient norms for each
triplet (hi , ri , ti ) ∈ S . Thedesigned cache acts as a truncated
representation of triplets’ distribution (h̄i , ri , t̄i ) ∈ S̄i . Such
an idea is previously explored in Word2Vec [37], where the
estimated distribution of negative samples is also truncated.
This improves both the efficiency and quality of negative
sampling.

Note that, as in (5), the negative triplet (h̄i , ri , t̄i ) /∈ S is
formed by either (h̄i , ri , ti ) or (hi , ri , t̄i ). Thus, we associate
each (hi , ri , ti ) with

– a cache Ci , which keeps large-gradient triplets from S̄i ,
to store a set of (h̄i , ri , ti ) or (hi , ri , t̄i ) and the corre-
sponding gradient norms ‖gi‖ (given by (3) or (4)).

However, since the size of S̄i is very large, evaluating
all of them in S̄i to pick up the large-gradient triplets is
intractable. The proposed method will adaptively sample
a pair of positive and negative triplets directly through the
cache. In the sequel, we show how the cache is updated and
sampled.

3.2.2 Algorithm framework

Algorithm 2 shows the KG embedding framework based on
our cache-based negative sampling scheme. Note that the
proposed algorithm does not depend on the choice of scoring
functions, all those in Table 2 can be used here. In Algo-
rithm 2: first, a pair of positive triplet and negative triplet is
sampled in step 3; then, the cache is updated in step 5; finally,
in step 7, the embeddings are updated based on the choice of
scoring functions and loss functions.

An overview comparison of the proposed method with
state-of-the-art negative sampling method is in Table 3. The
main difference with general KG embedding framework in
Algorithm 1 is step 3 in Algorithm 2, where the sampling
scheme is based on the cache rather than a uniform Bernoulli
sampling. Besides, compared with the complex GAN-based Ta
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Algorithm 2 NSCaching: Cache-based KG embedding.
Require: training setS = {(h, r , t)}, embedding dimension d , scoring

function f .
1: initialize embeddings for each e ∈ E and r ∈ R, and cache C ;
2: for i = 1, · · · , T do
3: sample a pair of positive and negate triplet, i.e., (h, r , t) and

(h̄, r , t̄), using Algorithm 3;
4: if i%(n + 1) == 0 then
5: update the cache Ci using Algorithm 4;
6: end if
7: update embeddings using (3) or (4);
8: end for

works [11,54], our method in Algorithm 2 acts like a dis-
criminative and distilled model of GAN, and it only cares
about negative triplets leading to large gradient norms dur-
ing the training. Thus, the proposed NSCaching algorithm
not only has fewer parameters, but also can be easily trained
from randomly initialized models (from the scratch). More-
over, experimental results in Sect. 5 show that NSCaching
achieves the best performance.

However, in order to achieve a good performance, we need
to carefully design how to sample from the cache (step 3) and
how to update the cache (step 5). In these steps, “exploration
and exploitation” (E&E) [34] is the main concern. Specifi-
cally, how to keep the balance between exploration (explore
all the possible large-gradient negative triplets in S̄ ) and
exploitation (sample the training pair leading to the largest
gradient norm in cache C ).
(1) Sampling from the cache (step 3) Before describing the
sampling scheme, we introduce some notations for subse-
quent usage. Let c(i) be a N1-dimensional vector containing
gradient norms of (h̄i j , ri , t̄i j ) ∈ Ci , j = 1 . . . N1. Thus, if

the j th element c(i)
j is larger, it means that the j th negative

triplet (h̄i j , ri , t̄i j ) in cache is of higher quality. Finally, we
further define a vector p, of which the length is the number
of positive triplets S and each element pi = ‖c(i)‖2. Intu-
itively, if pi is larger, then (hi , ri , ti ) is more likely to have
more large-gradient negative triplets.

As inAlgorithm2,we need to sample a pair of positive and
negative triplets. Based on the above notations, we can do it
as follows. First, we can pick up a positive triplet (hi , ri , ti ) ∈
S following a probability distribution given by

p((hi , ri , ti )) = σ1(pi ;p), (6)

where the distribution σ1(pi ;p) satisfies that

–
∑

a σ1(pa;p) = 1; and σ1(pa;p) ≥ σ1(pb;p) if pa ≥
pb.

In this way, (hi , ri , ti ) will be more frequently sampled if pi
is larger. Then, after picking up the positive triplet (hi , ri , ti ),

Algorithm 3 Sampling from the cache (step 3).
Require: Training set S and cache C .
1: sample a positive triplet (hi , ri , ti ) ∈ S according to p ((hi , ri , ti ))

in (6);
2: index the specific cache Ci of (hi , ri , ti );
3: sample a negative triplet (h̄ j , r j , t̄ j ) from Ci according to

p
(
(h̄i j , ri , t̄i j )

)
in (7).

we sample the negative triplet (h̄i j , ri , t̄i j ) ∈ Ci following

p
(
(h̄i j , ri , t̄i j )

) = σ2(c
(i)
j ; c(i)), (7)

where σ2(c) is defined in the same way as σ1(p). The full
procedures are shown in Algorithm 3.

Remark 1 The choice of σ is important, as it greatly affects
E&E and howwe can adapt to the sampling distributions. Let
us consider two extreme examples. First, if we pick σ1 as an
indicator function (as in Fig. 3c) where σ1(pi ;p) = 1 if pi is
the largest and σ1(p j ;p) = 0 for j = i . Then, it is equal to
deterministically select the negative triplet (hi , ri , ti )with the
highest-quality. However, as the distribution can change dur-
ing iterations of the algorithm, both of the embedding quality
and the negative triplets in the cache may not be accurate
enough for the sampling in the latest iteration. Besides, con-
sistently sampling the largest one may make the algorithm
only focus on a small amount of triplets, failing to capture
the distributionwell. Thus, we also need to consider the other
candidates except the one with the largest pi . Second, if we
take σ1(pi ;p) = 1/N for any i ∈ {1, . . . , N } (as in Fig. 3a)
where N is the total number of training triplets (i.e., uniform
sampling is used), then all triplets have equal possibilities to
be sampled. However, this ignores the difference of candi-
dates. The two cases also adapt to σ2 when negative triplets
are sampled from Ci . In Sect. 3.4, we will propose a novel
method to balance E&E automatically.

Algorithm 4 Updating the cache (step 4).
Require: cache Ci of size N1.
1: initialize Ĉi ← ∅, ĉ(i) = 0.
2: sample a subset Ni ⊂ S̄i with N2 triplets;
3: compute ‖gk‖2 for all (h̄, r , t̄) ∈ Ni ∪ Ci ;
4: for j = 1, · · · , N1 do
5: sample (h̄ik , ri , t̄ik ) with probability in (8);
6: remove (h̄ik , ri , t̄ik ) from Ni ∪ Ci ;
7: Ĉi ← Ĉi ∪ {(h̄ik , ri , t̄ik )};
8: ĉ(i)

k = ‖gk‖2;
9: end for
10: update by Ci ← Ĉi .
11: return Ci ← Ĉi and c(i) ← ĉ(i).

(2) Updating the cache (step 5) As mentioned in Sect. 3.1,
the cache needs to be dynamically changed during iterations
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of the algorithm. Otherwise, the content in cache will not be
changed and the sampling will be highly biased since most
of the negative triplets will not be visited. Thus, we need to
refresh the cache periodically. Moreover, the cache needs to
be updated in an efficient way.

As in (5), the number of negative triplets in S̄i is quite
large for a given positive triplet (hi , ri , ti ). However, it is
impossible for us to evaluate all the candidates in S̄i . Since
we want to efficiently capture the large-gradient negative
triplets in Ci , we sample a small subsetNi ⊂ S̄i of size N2,
with N2 � ∣

∣S̄i
∣
∣. Then, for each (h̄ik , ri , t̄ik ) ∈ Ni ∪ Ci ,

we evaluate the gradient norm ‖gk‖2 by (3) or (4). Then,
we construct a new set Ĉi ⊂ Ni ∪ Ci , whose components
are sampled from Ni ∪ Ci without replacement N1 times
following the probability distribution

p
(
(h̄ik , ri , t̄ik )

) = σ3 (gk; g) . (8)

Finally, Ĉi , which contains N1 negative triplets and their cor-
responding gradient norms ĉ(i), are returned.

Remark 2 Exploration and exploitation also need to be care-
fully balanced in Algorithm 4. As the cache needs to be
updated,we have to sample from S̄i . The subsetNi is chosen
as a substitute of S̄i in consideration of efficiency. There-
fore, a bigger N1 implies more exploitation, while a larger
N2 leads to more exploration. In step 5, indeed, the choice of
σ3 is important under the same consideration as σ1 and σ2.
The balance of E&E on N1, N2 and σ3 is further discussed
in Sect. 3.4.

3.2.3 Space and time complexities

In this part, we analyze the space and time complexities of
NSCaching (Algorithm 2). Comparing with basic training
framework in Algorithm 1, the main additional cost by intro-
ducing cache comes from step 5 inAlgorithm2, i.e., updating
the cache using Algorithm 4. In Algorithm 4, the main time
cost comes from computing the gradients ‖gk‖2 for N1 + N2

training pairs, whose complexity is O((N1+N2)d). The cost
of step 3 in Algorithm 2 is rather small, which comes from
importance sampling according to the gradient norms. This
part takes O(N1) time. Hence, the total cost by introduc-
ing the cache is O((N1 + N2)d) for a single training pair.
In practice, we can lazily update the cache every n epochs
rather than do immediate updating, which can further reduce
the updating complexity to O ((N1+N2)d/(n+1)).

As for the space complexity, evaluating the gradients for
N1 + N2 training pairs takes O((N1 + N2)d) space. Since
we only store indexes in the cache, it takes O(|S |N1) space
to store these indexes for negative triplets. Note that, N1 is
small since large-gradient negative triplets are rare. This is
also verified in our experiments in Sect. 5.4.3.

In comparison, to generate a training pair, the generator
in IGAN [54] takes O(|E |d) time since it needs to com-
pute the distribution over all entities. KBGAN [11] needs
O(N1d) time to measure a candidate set of N1 triplets. The
additional space cost for IGAN andKBGAN is also O(|E |d)

and O(N1d), respectively. Finally, the comparison of space
and time complexities is summarized in Table 3 with TransE
as the scoring function.

3.3 Theoretical analysis

In this part, we theoretically analyze the convergence and
learning performance of the proposed method.

3.3.1 Convex case: faster convergence

Before presenting our analysis, we first simplify and take a
uniform treatment over (1) and (2). Let w = {h, r, t}, then
we can take the loss φi (w) on a training pair for translational
distance model as

φi (w) = [
γ − f (hi , ri , ti ) + f (h̄i , ri , t̄i )

]
+ , (9)

and for semantic matching model as

φi (w) = � (1, f (hi , ri , ti )) + �
(−1, f (h̄i , ri , t̄i )

)
. (10)

Thus, we can express (1) and (2) as

min
w

F(w) ≡ 1

n

∑n

i=1
φi (w), (11)

where n is the number of all the training pair of positive
and negative triplets. Using above notation, we can abstract
NSCaching (Algorithm 2) as in Algorithm 5. Basically, the
cache scheme is used to generate a probability distribution
pt over all φi , which changes over iterations.

Algorithm 5 Abstraction of NSCaching.
1: for t = 1, · · · , T do
2: sample φit from {φi }ni=1 based on pt ;
3: update wt+1 by wt+1 = wt − η(npti )

−1∇φit (w
t );

4: end for

The convergence of Algorithm 5 is in Theorem 1, which
is inspired by some recent works in stochastic optimization
[40,68].

Theorem 1 If F is smooth and convex, then

1

T

∑T

t=1
E

[
F(wt )

] − E
[
F(w∗)

]
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≤ 2

ηT
‖w∗−wt‖2+ η

2σT

∑T

t=1
E

[
‖∇φit (w

t )/nptit ‖2
]
,

(12)

where w∗=argminw F, η is the step size for stochastic opti-
mization, and expectation is taken w.r.t. distribution pt .

The proof is in “Appendix A”. As we can see, how fast
and well wt converges to the optimal solution depends on pt

via the second term in (12). The solution which minimizes
this term is offered in Proposition 1.

Proposition 1 ([68]) E
[‖∇φit (w

t )/nptit ‖2
]
is minimized when

the possibility pt follows pti = ‖∇φi (wt )‖/∑n
j=1 ‖∇φ j (wt )‖.

Since the cache scheme is used to avoid vanishing gradient
problem and distill the full sampling distribution, the samples
with larger ‖∇φi (wt )‖ should have higher possibility to be
sampled. If the dynamic distribution pt is captured, we can
then adaptively sample from it. In other words, the sample it
with largerptit has larger possibility to be sampled.As a result,
the last term in (12) in NSCaching can have smaller value
compared with the uniform sampling. This indicates that
NSCaching has both faster convergence speed and smaller
approximation error. In practice, most of the existing embed-
dingmodels are non-convex and stochastic optimization [28]
is used to update the parameters. However, the above bound
still offers insights on how the proposed method works.

3.3.2 Non-convex case: self-paced learning

The main idea of self-paced learning (or curriculum learn-
ing) [3,31] is to pick up easy samples first and then gradually
switch to harder ones. In this way, the classifier can firstly
identify the rough position where the decision boundary
should locate. Then, the boundary can be further refined by
the hard examples. It is effective for complex and non-convex
models. Recently, self-paced learning is also introduced into
graph embedding and the improvement on the quality of
embeddings has been reported [18]. Besides, GAN is also
used to monitor the distribution of edges in the network,
and negative edges with scores above a given threshold are
sampled from the generator in GAN. Self-paced learning is
achieved by increasing the threshold during the training of
embedding [18]. As a comparison, the GAN models used in
KBGAN and IGAN are not benefited from self-paced learn-
ing.

In contrast, our caching scheme can explicitly benefit from
it. The reason is that the embedding model only has weak
discriminative ability in the beginning of the training. Thus,
while there exist a lot of negative triplets leading to large
gradient norms, it is more likely that they are easy ones as
most of the negative samples are easily classified. As train-
ing process continuous, those easy samples will gradually

have small gradients and are removed from the cache. These
mean NSCaching will learn from easy samples first, but then
gradually focus on hard ones, which is exactly the principle
of self-paced learning. The above explanations are also ver-
ified by experiments, where we can see the negative triplets
in the cache change from easy to hard ones (Sect. 5.6) and
NSCaching (training from scratch) can already achieve bet-
ter performance than IGAN and KBGAN with pretraining
(Sect. 5.3).

3.4 Automatic balancing exploration and
exploitation

In previous parts, we have described the proposed framework
(Sect. 3.2) and analyzed why it works (Sect. 3.3). Based
on Proposition 1, we aim to capture the dynamic sampling
distribution pti = ‖∇φi (wt )‖/∑n

j=1 ‖∇φ j (wt )‖. To guarantee effi-
ciency, we design the sampling scheme (Algorithm 3) and
updating scheme (Algorithm 4) to distill such a distribution.
However, the distributions for different tasks and for differ-
ent training status are different in practice. Therefore, we
should carefully adjust the sampling and updating schemes.
As mentioned in Sect. 3.2, to achieve better performance
for different scenarios, the remained question is how can we
carefully balance E&E? Here, we show how AutoML tech-
niques can be combined with the proposed framework to
automatically balance E&E.

3.4.1 Search space from NSCaching

From Remarks 1, 2 and Proposition 1, we can see that
σ(ai ; a) needs to cover three special cases, i.e., (i) uniformly
sampling on all elements, (ii) deterministically sampling the
max and (iii) importance sampling as Proposition 1. Thus,
we aremotivated to choose theweighted softmax distribution
as the probability function

σ(ai ; a) = exp(α·ai )/∑
j exp(α·a j ), (13)

where α ≥ 0 is a hyper-parameter to be tuned. We can see
α = 0 covers (i) as in Fig. 3, α = ∞ covers (ii) as in Fig. 3
and other values of α cover (iii) as in Fig. 3. Specifically, we
use three different α’s for (6), (7) and (8), respectively.

3.4.2 Search by Bayesian optimization

All hyper-parameters balancing E&E are summarized in
Table 4.Manually tuning these hyper-parameters is time con-
suming. Simple search approaches such as grid search and
random search are usually inefficient. Inspired by the choice
of (13), and the recent success of automatedmachine learning
(AutoML) [61], especially hyper-parameter optimization,we
use a versatile hyper-parameter optimization method, i.e.,
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Fig. 3 Example of the different distributions of σ , where x-axis indicates each dimension of a in (13) and y-axis is the sampling probability

Table 4 How exploration and
exploitation (E&E) in
Algorithm 2 are affected by
hyper-parameters

Hyper-parameters Functionality Larger leads to

α1 Positive sample (hi , ri , ti ) Exploitation

α2 Negative sample (h̄i , ri , t̄i ) Exploitation

α3 Update Ci Exploitation

N1 Size of cache Ci Exploitation

N2 Size of subset Ni Exploration

sequential model-based optimization for general algorithm
configuration (SMAC) [23]. SMAC allows efficiently and
automatically tuning of both discrete (N1 and N2) and con-
tinuous (α1, α2 and α3) hyper-parameters.

3.4.3 Discussion: connection with existing methods

The hyper-parameters in Table 4 can not only help us balance
E&E, but also give a unified view of the baselines, namely
covering Bernoulli, KBGAN and IGAN as special cases. In
this part, α1 is always 0 since none of the three methods
consider non-uniform positive sampling.

– Bernoulli [56]: In Bernoulli sampling, negative samples
are generated uniformly from the whole candidate space.
In this case, we can set both α2 and α3 to be 0. Then, the
cache updating is never dependent on scores as well as
the sampling schemes. Therefore, Bernoulli sampling is
a special case of NSCaching when α2 = α3 = 0;

– KBGAN [11]: The key thought in KBGAN is to use
a generator to pick up large-gradient negative samples
in a random subset Ni ∈ S̄i . Given a positive triplet
(hi , ri , ti ), the scores c

(i)
j stored in cachework as an alter-

native of the generator in KBGAN tomeasure the quality
of (h̄ j , r j , t̄ j ). Different from standard NSCaching, we
use α3 = 0, α2 > 0 and N2 = maxi

(|S̄i |
)
so that the

content in cache Ci is similar as that in Ni of KBGAN.
Self-Adv [48] uses in the similar approach as KBGAN.
Differently, Self-Adv uses the model’s embedding itself
to measure the quality of negative samples in Ni . Com-
pared with KBGAN and Self-Adv, NSCaching improves

upon them by controlling the quality of negative triplets
inNi .

– IGAN [54]: When N1 = maxi
(|S̄i |

)
and N2 = 0,

NSCaching resembles IGAN. In IGAN, the generator
chooses large-gradient negative samples from the entire
candidate set S̄i . Thus, we can set the cache size to be
maxi

(|S̄i |
)
andmask the positive positions. Besides, the

cache does not need to be updated by setting N2 = 0. We
useα2 > 0 to select large-gradient negative samples from
cache to replace the generator. In this way, NSCaching
can also approximate the sampling procedure in IGAN.

We show the values of α’s and N ’s in Table 5 about
how to cover the baselines by NSCaching. This finding also
explains why NSCaching (auto) is better than the baselines.
Besides, comparing with Bernoulli, KBGAN, IGAN and
Self-Adv, NSCaching (auto) adapts the sampling distribution
to approximate a relatively unbiased estimator for specific
tasks.

3.5 Understanding the false negative triplets

Since KG is incomplete [55], there exist triplets that do not
appear in the training set but are not necessarily false. For
example, the triplets in the valid or test set can be viewed
as false negative triplets during training. From the literature
[33,55,59], the false negative samples will have larger scores
but lower variance than the large-gradient negative samples.
We also have such an observation in Sect. 5.5.3. Thus, the
false negative triplets may be detected by tracing the variance
during the training. However, since the number of false nega-
tive triplets is small and evaluating the variance is expensive,
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Table 5 A unified view of the
proposed method and the
existing methods.

Hyper-parameters Bernoulli [56] KBGAN [11] /Self-Adv [48] IGAN [54]

α1 0 0 0

α2 0 > 0 > 0

α3 0 0 –

N1 – – maxi
(|S̄i |

)

N2 – maxi
(|S̄i |

)
0

“–” means not care

we show in Sect. 5.5.3 that false negatives are empirically
not a concern.

4 Extension to skip-grammodel

The skip-gram model [36] is a popular method originat-
ing from word embedding, which can explore surrounding
words given the current embedded one. Due to its superior
performance in natural language processing, two represen-
tative methods DeepWalk [44] and Node2vec [21] adopt
the skip-gram model for graph embedding. And they have
achieved significant improvements over previous works on
the embedding quality [10]. Moreover, motivated by the
success of the skip-gram model on the graph and word
embedding [21,36,37,44], we extend the NSCaching algo-
rithm to the skip-gram model here. We first introduce the
skip-grammodel [36] in Sect. 4.1. Then, we adapt the cache-
based negative sampling algorithm to the skip-gram model
for graph embedding in Sect. 4.2. In this way, we show that
the NSCaching algorithm (Algorithm 2) is not limited to KG
embeddings.

4.1 Negative sampling in skip-grammodel

Skip-grammodel is originally used to learnword embeddings
[36]. It aims at maximizing the co-occurrence probability
among the words that appear within a window W . Given a
positive word u, the training objective in skip-gram model is
to learn word embeddings that are good at predicting the
words v ∈ Wu , where Wu is a set of nearby or context
words of u. More formally, for a sequence of training words
u1, u2, . . . , uL with length L , the objective is to maximize
the average log probability

1

L

∑L

i=1

∑

v j∈Wui

log p
(
v j |ui

)
, (14)

where Wui = {v j | − c ≤ j ≤ c, j = 0}, c is a predefined
window size. Basically, the probability p

(
v j |ui

)
is defined

as the softmax function

p
(
v j |ui

) = exp
(
v�
j ui

)

/
∑|V |

k=1 exp
(
v�
k ui

)
, (15)

where the boldface represents the embedding and |V | is the
vocabulary size. However, since |V | is usually large, negative
sampling is used to avoid computing the dot product similar-
ity among all the words [37]. In this way, the log probability
log p

(
v j |ui

)
is computed based on

log σ(v�
j ui ) +

∑N

n=1
log σ(−v�

n ui ), (16)

where σ(x) = 1/1+exp(−x) is the sigmoid function and vn’s
are the negative samples drawn from the noise distribution
p(ui ). Generally, the noise distribution p(ui ) is a unigram
distribution, or a weighted distribution proportional to the
word frequency [37]. Similar as the methods in Sect. 2.2.1,
the negative sampling used for (16) is also fixed. Hence, the
quality of negative samples cannot be dynamically captured.

4.2 Graph embedding with skip-grammodel

In order to preserve the graph structure while making it easy
for a machine learning model to process, random walks are
widely used to learn graph embeddings [10,21,44]. A graph
is firstly represented as a set of random walk paths sampled
from it. Then, skip-gram model [36] is applied to preserve
graph properties carried by the paths [10].

DeepWalk [44], as a representative random walk-based
graph embedding model, first samples a set of paths from the
input graph. Then, the sampled paths are regarded as sen-
tences that describe the graph, and the nodes are regarded
as words. Skip-gram model is applied on the paths to max-
imize the probability of observing a node’s neighborhood
conditioned on its embedding. In this way, nodes with simi-
lar neighborhoods will have larger co-occurrence and more
similar embeddings. Node2vec [21] improves upon Deep-
Walk [44] by using a biased randomwalk. Two parameters p
and q are used to control breadth-first sampling or depth-first
sampling, which is shown to better capture the local topolo-
gies [21].

Different from KG, skip-gram model does not have exact
positive samples since the context in the window Wui =
{v j | − c ≤ j ≤ c, j = 0} does not necessarily to have
strong connection with ui . Therefore, we build a cache Ci

for each word rather than each training sample. Then, the
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negative part in (16) is sampled from the cache. We treat
the number of negative samples N as a hyper-parameter and
optimize it together with the cache-related hyper-parameters.
In addition, we use all the nodes that are not in Wui as the
negative samples. Therefore, balancing between E&E is also
important in this setting.

We use the Node2vec [21] model as the testbed for skip-
gram model. In Node2vec, a biased random walk method is
used to generate a sequence of walks from the graph. In this
way, embeddings are updated through the cache-based skip-
gram algorithm. The cache-based Node2vec method is given
in Algorithm 6.

Algorithm 6 Node2vec (NSCaching).
Require: GraphG = (V , E), embedding dimension d, walks per node

r , walk length l, window size w, p, q.
1: Initialize embeddings for each node v ∈ V .
2: computing the neighborhood sampling probability of each node

based on p and q;
3: Initialize walks to empty
4: for i = 1, · · · , r do
5: for all nodes v ∈ V do
6: sample a walk starting from u with length l;
7: append walk to walks.
8: end for
9: end for
10: repeat
11: sample a node ui and its context v j in the window Wui .
12: sample a set of negative nodes v̄n’s from the cache Ci .
13: update embedding using the gradient of (16).
14: until converge

5 Experiments

In this section, we conduct empirical study of our method.
All algorithms arewritten in PythonwithPyTorch framework
[43] and run on a TITAN Xp GPU.

5.1 Implementation details

Since a lot of triplets share the same (head, relation) or (rela-
tion, tail) pairs, we use two caches, namely a head cache
H(r ,t) and a tail cache T(h,r), to separately store negative
triplets in {(h̄, r , t) /∈ S |h̄ ∈ E } and {(h, r , t̄) /∈ S |t̄ ∈ E }.
Using two caches instead of one can help us to reduce the
time and space cost. The value we stored in cache is the
score of negative triplets according to the predefined scoring
function f , instead of gradient norms. The main consider-
ation is that gradient norms for each training pair can not
be efficiently obtained through mini-batches, especially for
complex scoring functions like TransD [25]. Given a posi-
tive triplet (hi , ri , ti ), the value pi is computed by the sum
of scores stored in H(r ,t) and T(h,r).

Table 6 Detailed information of the datasets used in KG embedding
experiments

Dataset #entity #relation #train #valid #test

WN18 40,943 18 141,442 5000 5000

WN18RR 40,943 11 86,835 3034 3134

FB15K 14,951 1345 484,142 50,000 59,071

FB15K237 14,541 237 272,115 17,535 20,466

YAGO3-10 123,188 37 1,079,040 5000 5000

In general, the training of KG embedding model is under
the open world assumption, which means that KGs contain
only positive triplets and non-observed triplets can be either
false or just missing [55]. To reduce sampling the negative
examples that are just missing, we use the same scheme
proposed in Bernoulli sampling [56] to get the subset Ni .
Specifically, different probabilities are given when replacing
the head or the tail for different relations. For each relation
r , we compute and denote the average number of tail entities
per head as tph and the average number of head entities per
tail as hpt . Then, the probabilities of replacing the head and
the tail are tph/tph+hpt and hpt/tph+hpt, respectively.

To constrain values of α’s in a certain range, we rescale
the value of pi , c

(i)
j and gi to lie in the interval [0, 1] before

computing the sampling probability σ(ai ; a). Specifically,
given the vector a and let q low and qhigh be the quantiles of
a, we choose q low to be 20th and qhigh to be 80th percentiles,
respectively. Then, the rescaling function r(ai ) is formed as:

r(ai ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 ai > qhigh,

0 ai < q low,

ai−q low

qhigh−q low
otherwise

(17)

The rescaling function can also help us to avoid the case that
some samples have extremely large score. In this case, these
samples will be selected for too many times.

5.2 Experiment setup

Five datasets are used here, i.e., WN18, FB15K and their
variants WN18RR, FB15K237 and YAGO3-10. WN18 and
FB15K are firstly introduced in [8]. They are widely tested
in the literature [8,11,25,27,51,54,67]. WN18RR [13] and
FB15K237 [50] are variants that remove near-duplicate or
inverse-duplicate relations fromWN18 and FB15K. The two
variants are harder and more realistic. YAGO3-10 is much
larger than the others and is a subset of YAGO [47]. Their
statistics are shown in Table 6.

Following previous KG embedding works [8,25,51,56]
and the GAN-based works [11,54], we mainly test the per-
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formance on link prediction task. This is also the testbed to
measureKG embeddingmodels. Link prediction aims to pre-
dict the missing entity h or t for a positive triplet (h, r , t).
In this task, we measure the rank of head entity h and tail
entity t among all the entities in E . Thus, link prediction
emphasizes the rank of the correct entities rather than their
concrete scores. Besides, to further verify the quality of the
learned embedding,we test the learned embeddings on triplet
classification task. This task is to confirm whether a given
triplet (h, r , t) is correct or not, i.e., binary classification of
triplet [56]. In practice, it can help us to quickly answer the
truth-or-false questions.

As in previous works [8,11,27,51,54], we evaluate the link
prediction performance based on the following twometrics1:

– Mean reciprocal ranking (MRR): It is computed by the
average of the reciprocal ranks 1/|S |∑|S |

i=1
1

ranki
where

ranki , i ∈ {1, . . . , |S |} is a set of ranking results;
– Hit@10: The percentage of appearance in the top-10
ranking: 1/|S |∑|S |

i=1 I(ranki ≤ 10), where I(·) is the
indicator function;

MRR and Hit@10 measure the top rankings of posi-
tive entity in different levels. Hit@10 cares about general
top rankings while the top 1 samples contribute most to
MRR. The larger value of MRR and Hit@10 indicates better
performance. To avoid underestimating the performance of
different models, we report the performance in a “filtered”
setting, i.e., all the corrupted triplets that exist in train, valid
and test set are filtered out [11,54]. A large amount of scor-
ing functions have been proposed in the literature, please
see a recent survey [55] for a review. In this part, follow-
ing [11,54], TransE [8], TransH [56], TransD [25], DistMult
[60] and ComplEx [51] will be used as scoring functions for
comparison; besides, the recently developed scoring function
SimplE [27] is also included (see Table 2).

5.3 Comparison with state of the arts

In this section, we focus on the comparison between our pro-
posed cache-based negative sampling with the other baseline
sampling methods.

5.3.1 Compared methods

The following methods for negative sampling in KG embed-
ding are compared:

1 The mean rank (MR) metric, which is given in the conference version
[67], is removed in the journal version since (i) space is limited. and (ii)
the mean rank is easily influenced by low ranking samples.

– Bernoulli [56]: As an extension of the uniform sampling
scheme used in TransE, Bernoulli sampling controls
the probability for sampling (h̄, r , t) or (h, r , t̄) in the
one-to-many, many-to-one and many-to-many relations.
Specifically, it samples (h̄, r , t) or (h, r , t̄) under a fixed
Bernoulli distribution for each r .

– KBGAN [11]2: This method firstly samples a setN uni-
formly from the whole entity set E . Then, the head or
tail entity is replaced with the entities in N to form a
set of candidate (h̄, r , t) and (h, r , t̄). The generator in
KBGAN tries to pick up one triplet among them. As pro-
posed in [11], we choose the simplest model TransE as
the generator. For a fair comparison, the size of setN is
the same as our cache size N1.We use the published code
and change the configure same as ours in the comparison.
Self-Adv [48] works similarly as KBGAN. The main dif-
ference is that Self-Adv uses the target embeddingmodel
itself as the generator.

– NSCaching (Algorithm 2): As in Sect. 3 and 5.1, the neg-
ative triplets are formed by replacing the head entity h
or tail entity t with the one sampled from head-cache
H or tail-cache T . The cache is updated as in Algo-
rithm 4. Note that we can also lazily update the cache
several iterations later to save time. We use n = 0 with-
out lazy-update unless otherwise specified. Besides, we
use AutoML to denote the improved version which tunes
the hyper-parameters to balance E&E.

As the source code of IGAN [54] is not available,we do not
compare with it here. Instead, we directly use the reported
performance in the sequel. Finally, we also use Bernoulli
sampling to choose between (h̄, r , t) and (h, r , t̄) forKBGAN
and NSCaching. Besides, as in [11,54], two strategies are
used for KBGAN and NSCaching:

– Scratch: The embedding of relations and entities is ini-
tialized by the Xavier uniform initializer [19], and the
models (denoted as KBGAN + scratch and NSCaching +
scratch) are directly applied to train the given KG;

– Pretrain: Same as [11,54],wefirstly pretrain each scoring
function with Bernoulli sampling, several epochs on the
data sets. We denote it as pretrained. Then, the obtained
parameters are used to warm-start the givenKG.We keep
training the warm-started KG embedding and evaluate
the performance under different sampling methods, i.e.,
Bernoulli,KBGAN+pretrain andNSCaching+pretrain.
Besides, the generator in KBGAN is warm-started with
corresponding TransE model.

Same as the KG embedding works in the literature
[8,26,27], we use grid search to select the KG embedding

2 https://github.com/cai-lw/KBGAN

123

https://github.com/cai-lw/KBGAN


274 Y. Zhang et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4 Testing performance versus clock time (in seconds) based on TransD (best viewed in color) (color figure online)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5 Testing performance versus clock time (in seconds) based on SimplE (best viewed in color) (color figure online)

related hyper-parameters: hidden dimension d ∈ {50, 100,
200}, batch size m ∈ {1024, 2048, 4096}, learning rate η ∈
{0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1}. For transla-
tional distance models, we tune the margin value γ ∈ {1, 2,
3, 4}. And for semanticmatchingmodels, we tune the penalty
value λ ∈ {0.001, 0.01, 0.1} [51]. We use Adam [28], which
is a popular variant of SGD algorithm for the training, and
adopt its default settings except for the learning rate. The
best hyper-parameters are tuned under Bernoulli sampling
scheme and evaluated by the MRR metric on the valid set.
We keep them fixed for the baselines Bernoulli, KBGAN and
NSCaching here. Following [11], we save and record the pre-

trained model after initial training epochs. Then, Bernoulli
method keeps training until 3000 epochs; and the results
of KBGAN and NSCaching algorithm are evaluated within
1000 epochs, either from scratch or with pretraining. All the
recorded results are tested basedon the best hyper-parameters
chosen by the MRR value on valid set. For cache related
hyper-parameters, we choose α1 = α2 = 0, α3 = 1 and
N1 = N2 = 50 for NSCaching.
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5.3.2 Results on translational distance models

The performance on link prediction task is compared in
Table 7. First, we can see that, for the translational distance
models (TransE, TransH and TransD), KBGAN, NSCaching
and IGAN (both pretrain and scratch) gain significant
improvements upon the baseline scheme Bernoulli, espe-
cially for the performance gaining on theMRRmetric, which
is mainly influenced by the top rankings. This verifies the
advantages of using large-gradient negative triplets during
negative sampling and these methods can effectively pick up
these negative triplets.

Then, IGAN and KBGAN with pretraining can perform
better, indicated by MRR and Hit@10, than from scratch.
This shows that pretraining is helpful for the GAN-based
methods. In comparison,NSCaching trained from either state
(pretrain or scratch) can outperform IGAN and KBGAN on
all the scoring functions.

The learning curve of the testing performance for vari-
ous algorithms is shown in Fig. 4. We use TransD here as
the testbed. As can be seen, all algorithms will converge to
some points with stable testing performance, which empiri-
cally verifies the convergence of Adam optimizer [28]. Then,
pretrain is a must for KBGAN to achieve good performance.
When the generator is trained from scratch, the whole model
will suffer from instability, especially at the initial training
stages. As a result, it prevents the GAN-based models con-
verging to some good local points. NSCaching can obtain
good performance either from scratch or with pretrain. Note
that, even though the updating and sampling scheme intro-
duces extra training cost, we can achieve better performance
with fewer iterations. As a result, in all cases, NSCaching
has better anytime performance than both Bernoulli and
KBGAN.

5.3.3 Results on semantic matching models

The performance on semantic matching models is shown in
the bottom rows of Table 7. Same as that on translational
distance models, NSCaching outperforms baseline scheme
Bernoulli significantly as indicated by the bold and underline
numbers. However, KBGAN does not show a consistent per-
formance. In most settings, KBGAN from scratch performs
even worse than Bernoulli. This observation further verifies
the fact that GAN-based methods usually suffer from insta-
bility and degeneracy. They need careful balance between the
generator and the discriminator, i.e., the target KG embed-
ding model. However, NSCaching works consistently and
performs the best both with pretrain or from scratch.

The learning curve of the testing performance for various
algorithms is shown in Fig. 5. SimplE is used in this part. As
can be seen, both Bernoulli and NSCaching will converge to
some stable points. In the contrast, KBGAN will turn down
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Table 8 Comparison of various algorithms on triplet classification task

model Dataset WN18RR FB15K237

TransD Bernoulli 86.81 78.24

KBGAN Pretrained 85.93 79.03

Scratch 86.01 79.05

NSCaching Pretrained 87.84 80.63

Scratch 87.64 80.69

SimplE Bernoulli 84.48 77.64

KBGAN Pretrained 79.87 74.11

Scratch 71.73 72.61

NSCaching Pretrained 84.96 79.88

Scratch 84.83 80.21

Bold numbers indicate the best performance. Underline numbers indi-
cate the second best.

and overfit on FB15K237 data set. However, NSCaching,
either with pretrain or from scratch, leads the performance
and iswell adopted on the semanticmatchingmodelswithout
further tuning. Besides, as forNSCaching (auto), we find that
even though the sampling cost is higher, the performance
improvement is obvious and consistent on all these data sets.

5.3.4 Results on triplets classification

We do triplets classification in the same way as [56]. This
task is to confirm whether a given triplet (h, r , t) is correct
or not, i.e., do binary classification on the triplet. Compared
with link prediction, triplets classification is more conve-
nient in answering yes-or-no questions. The decision rule
of classification is learned as follows: for each (h, r , t), if
its score is no less than the relation-specific threshold σr ,
then we predict it to be positive, otherwise negative. The
threshold σr is determined by maximizing the classification
accuracy on the valid set. We test this task on WN18RR and
FB15K237 data sets based on TransD and SimplE. As shown
in Table 8, NSCaching still outperforms various baselines.
This task further justifies that NSCaching can help learn a
better embedding of the KG.

5.4 Balancing E&E

In this part, we analyze the designing concerns on the
hyper-parameters regarding “exploration and exploitation”
in Table 4. SimplE and WN18RR are used as the scoring
function and data set, respectively.

5.4.1 ˛1: Sampling positive triplet

Given a set of training triplets and the cache, how to sam-
ple the positive triplet is the first question we care about. In
Algorithm3, themost related hyper-parameters areα1,which

controls the distribution of positive samples in cache C , and
α3, which controls the content in the indexed cache Ci . The
testing performance with different values of α1 is compared
in Fig. 6a. Since the content in cache is influenced by α3, we
use 0 (low), 1 (middle) and 100 (high) as values of α3 for the
testing. As can be seen, when α3 is small, different choices of
α1 perform relatively bad and does not have regular influence
on embedding performance. As α3 becomes larger, we see
that a larger value of α1 performs better, which verifies the
better convergence property in Theorem 1. However, it will
decrease with too large α1. Take the distribution in Fig. 3c as
an example, some positive triplets will not be selected when
α1 is too large, leading to a problematic training process.

5.4.2 ˛2 and˛3: Sampling and updating cache

Once a positive triplet (hi , ri , ti ) is sampled, we can get its
corresponding cache Ci which stores the negative triplets.
The main parameters influencing the choice of negative
triples are α2 and α3, namely the temperature for sampling
from cache and updating the cache. To show how α2 and α3

balance E&E, we fix α3 in certain ranges (low: 0, middle:
1 and high: 100) and change α2 in Fig. 6b and then do it
alternatively in Fig. 6c.

From Fig.6b, c, we can see that balancing α2 and α3 are of
vital importance. When α2 or α3 has small value, increasing
the other onewill improve the performance since exploitation
is limited at this stage. However, when α2 or α3 becomes
larger, the other one should choose an appropriate value in
order to avoid exploiting too much. The performance goes
up at initial stage and turns down as the break up of balance.
The reason is that too large values of α2 and α3 will limit
exploration such that a few negative triplets will be selected
too many times. Besides, false negative triplets will be more
frequently sampled. Fortunately, E&E is well balanced under
a wide range of α’s values where NSCaching performs well
without much effort in tuning α’s.

Besides,when the cache is updatedwithout referring to the
gradient norms, i.e.,α3 = 0 andα2 > 0,NSCachingworks as
an alternative version of KBGAN and outperforms Bernoulli
baseline approach. It works stabler than KBGAN which suf-
fers from the instable training of the generator. However, the
performance is still not the best since balance of E&E is not
in the best state when cache is updated without considering
the negative triplets’ qualities.

5.4.3 N1 and N2: Cache size

Basically, N1 is the size of cache Ci . Then, N2 is the size of
randomly sampled subset Ri of negative triplets from S̄i ,
which will later be used to update the cache. In this part, we
show their impact on the performance of NSCaching. The
three temperature values are set as α1 = α2 = 0, α3 = 1.
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(a) (b) (c)

Fig. 6 Balancing on exploration and exploitation with different values of α1, α2 and α3 with SimplE on WN18RR

Table 9 Searching range of
hyper-parameters and searched
best value for different data sets

Hyper-parameters Ranges Best searched
WN18 WN18RR FB15K FB15K237 YAGO3-10

α1 [0, 1] 0.0668 0.013 0.0069 0 6.7e-4

α2 [0, 100] 3.463 0 0 3.122 16.62

α3 [0, 100] 24.25 2.759 1.848 2.579 0.2228

N1 {10, 30, . . . , 90} 70 90 30 70 70

N2 {10, 30, . . . , 90} 70 50 10 70 70

Figure 7a shows how performance changes by varying the
cache size N1 among {10, 30, 50, 70, 90} with fixed N2 =
50. When the cache size is small, average quality of triplets
stored in the cache should be larger than those in a cache with
larger size. As a result, false negative triplets will be more
likely to be sampled, which will influence the embedding
quality. With the others values of N1, NSCaching performs
quite stable. The convergence speed is similar, as well as
the values in converged state. Thus, when we need to set
appropriate cache size, the value of N1 can be searched from
smaller values to larger ones until the performance is stable.

Different performances of the random candidate subset
size N2 are shown in Fig. 7b. The entities in cache will be
updated more frequently when N2 gets larger, which lead
to better exploration. But the trade-off is that larger value
of N2 is more expensive. As shown by the colored lines in
Fig. 7b, NSCaching performs consistently when N2 is larger
than 10. However, if the random subset is small, the content
in cache will be harder to be updated, thus leading to poor
performance as the yellow dashed line (N2 = 10).

By combining together the influence of cache size N1

and the random subset size N2 in Fig. 7, we find that (i)
NSCaching is not sensitive to the two sizes; (ii) both sizes
cannot be too small; (iii) N1 = N2 is a good balance.

5.4.4 Automatically balancing E&E

In previous part, we have shown the importance of balancing
betweenE&E.Here,we useAutoML techniques [61] to auto-

(a) (b)

Fig. 7 Comparison of different N1 when random subset size N2 is fixed
to 50, and different N2 when cache size N1 is fixed to 50. Evaluated by
SimplE model onWN18RR (best viewed in color) (color figure online)

matically balance E&E and further improve the performance
on five benchmarks.

For each dataset, we use the same value of learning rate,
batch size, embedding dimension and regularizer penalty as
the Bernoulli baseline to make a fair comparison. The other
hyper-parameters related to the negative sampling algorithm
are searched within the ranges given in Table 9 by SMAC
[23], a well-known AutoML algorithm for hyper-parameter
optimization. The initial hyper-parameter setting is α1 =
α2 = α3 = 0 and N1 = N2 = 50, namely a setting similar
to Bernoulli sampling. Besides, we take random search [5]
as a baseline rather than the grid search, as random search is
generally more effective [5].

Figure 8 shows theMRRfrom the best (denoted by “top1”)
and top three (denoted as “top3”) models obtained during the
search procedure. Once the searching starts, the top perfor-
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Fig. 8 Performance comparison of SMAC and random search (top1
and top3 average). x-axis is number of running times for different
hyper-parameter. y-axis is the mean MRR on validation set. The MRR
performance of NSCaching is given as the black-dashed line for a ref-
erence (best viewed in color) (color figure online)

mance will soon be boosted for both SMAC and random
by exploring hyper-parameters with better balance of E&E.
Both of the two search algorithms find hyper-parameters
that outperform the original NSCaching+scratch. However,
with the help of Bayesian optimization, SMAC is more effi-
cient and effective than random. This verifies the importance
of introducing AutoML into the framework of NSCaching.
After searching and running for 50 hyper-parameter settings,
we show the performance of the best hyper-parameter on test-
ing data in Table 7. The hyper-parameter settings with best
performance are given in Table 9.

5.5 Ablation study

5.5.1 Lazy update

In Sect. 3, we have introduced the lazy update parameter n
to reduce the computation cost of NSCaching. In this part,
we analyze the influence of n on the learning curve in Fig. 9.
We run each model for 1,000 epochs and report the best per-
formance and running time. The relative time and MRR are
divided by the corresponding values of n = 0, respectively.
When n increases, the computation cost is reduced since less
update operations are conducted. However, the performance
is gradually decreasing since the cachewill be less frequently
updated, reducing the exploration. Fortunately, the decrease
of performance is not obvious (less than 3%) when n ≤ 10.
So the value of n can be regarded as a trade-off for time and
performance, adapting to different application requirements.

5.5.2 Comparing with Self-Adv

In this part, we compare NSCaching with the concurrent
work Self-Adv by using the RotatE scoring function [48]:
f (h, r , t) = −‖h◦r−t‖1, where h, r, t are complex embed-
dings and ◦ is the Hadmard product in the complex space.

As discussed in Sect. 5.3.1, Self-Adv relies on sampling
a small subset N from Ei and then sampling from N . A

Fig. 9 Influence of different lazy update value n ofNSCaching (SimplE
is used as the testbed)

(a) (b)

Fig. 10 Learning curve of different negative sampling method on
RotatE

similar setting in NSCaching is when α3 = 0, where the
cache is updated without depending on the scores so that the
cache can have the same distribution with Rm . As shown in
Fig. 10, both Self-Adv and NSCaching outperform Bernoulli
sampling. This again demonstrates the universality of using
large-gradient negative samples to improve the performance.
Then, Self-Adv andNSCaching (α3 = 0) have the similar best
performance, but NSCaching (α3 = 0) is a bit slower due to
the updating procedure. Besides,NSCaching (auto) achieves
the best performance by using the cache Ci , which has more
large-gradient samples than N in Self-Adv.

5.5.3 Influence of false negatives

In Sect. 3.5, we show that variance can be used as a standard
to detect the false negatives. In this part, we empirically ana-
lyze the potential influence of introducing variance into the
samplingmethod with SimplEmodel andWN18RR data set.
We use the valid and test set here as the set of false negative
samples.

First, we analyze the possibility of sampling the false neg-
ative triplets from the cache. In Fig. 11a, we show the ratio of
false negative triplets in the cache (denoted as cache) and the
percentage of false negatives in the sampled negative triplets
(denoted as sampled) during training. The cache does con-
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(a) (b)

Fig. 11 Understanding false negative (FN) triplets with SimplE on
WN18RR

Fig. 12 Adding variance with different γ with SimplE on WN18RR

tain a few false negative triplets, but less than 0.03% contents
are false negative. The ratio of false negatives among the
sampled triplets is even smaller. Besides, we set N1 = N2

and use different values to show how the cache size influ-
ences the ratio of false negative triplets. When the cache size
N1 increases, the possibility of sampling the false negative
triplets decreases. Since in each iteration, only one negative
triplet is generated and the cache keeps updating, we can
avoid frequently picking up the false negative samples.

Second, we show that variance can be used as a standard to
detect false negatives. In Fig. 11b, we plot the average vari-
ance of 5000 false negative triplets and 5000 large-gradient
negative triplets. The false negative triplets are sampled from
the valid and test set. For the large-gradient negative triplets,
we run NSCaching for 1000 epochs first and then sample
5000 triplets, which are not false negative, from the final
cache. The scores of triplets are estimated per epoch, and
the variances are computed based on the recorded scores.
As shown in Fig. 11b, the variance of large-gradient nega-
tive samples is larger than that of false negative ones. This
indicates that the false negative triplets may be detected by
tracing the variance during training.

Finally, we show the influence of adding variance into the
sampling method. We record the score measured by SimplE
and std of the scores for the negative samples. To save the
memory cost, we use the Welford’s online algorithm [57] to

estimate the std of negative triplets. Then, we use score +
νstd, where ν > 0 is a weighting parameter, as the metric
here to sample the large-gradient negative triplets. As shown
inFig. 12,when ν is given an appropriate value like ν ≤ 1, the
best performance is almost the same, but the computation cost
increases a lot. The training will be instable after adding the
std term, especially when the value of ν is large. Therefore,
it is not necessary to consider the variance to reduce the
problem of false negative triplets in this work. Instead, we
control α’s to avoid frequently sampling the false negative
triplets.

5.6 Theoretical explanation

Here, we study the theoretical perspective of the proposed
approach, which gives more insights and helps us understand
NSCaching better.

5.6.1 Illustration of vanishing gradients

To further clarity the vanishing gradient problem, we plot
the average �2-norm of gradients versus number of epochs
in Fig. 13. Adam [28], a stochastic gradient descent algo-
rithm, is used as the optimizer. First, we can see that while
the norms of gradients for both NSCaching and Bernoulli
become smaller, they will not decrease to zero since the
sampling process of the mini-batch will introduce noise into
gradients. However, the norm from NSCaching is larger than
that from Bernoulli, which dues to the usage of cache-based
negative sampling scheme. Thus, we can see NSCaching can
successfully avoid the problem of vanishing gradient. We
also show the changes with different α’s. When the value of
α’s increases, the gradient norm will become larger, espe-
cially after the warmup procedure, i.e., after 400 epochs. For
the TransD model, when α2 = α3 = 10, the training will
become unstable. This also verifies that we should control
the value of α through the AutoML technique.

5.6.2 Convex case: faster convergence

To demonstrate the faster convergence illustrated in The-
orem 1, we use TransE as the scoring function and use
classification loss in (2) for KG embedding. As mentioned in
Sect. 3.3.1, this does not fall into any existing KG embedding
models, but it satisfies assumptions in Theorem 1. Thus, it
is a good synthetic model to be studied. We use the same
hyper-parameters identified for NSCaching in Sect. 5.3 and
compare it withBernoulli scheme. FB15K237 andWN18RR
are considered here. The comparison of average training loss
per epoch versus epoch between NSCaching and Bernoulli
is shown in Fig. 14. As we can see, NSCaching indeed leads
to faster convergence than Bernoulli, which is explained by
Theorem 1.
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Fig. 13 Average �2-norm of
gradients within a mini-batch
versus number of epochs for
Bernoulli and NSCaching on
WN18RR

(b)(a)

Fig. 14 Average training loss in one epoch versus number of epochs
for Bernoulli and NSCaching

5.6.3 Non-convex case: self-paced learning

Finally, we visualize the changes of content in the cache,
which verifies the effects of self-paced learning introduced
in Sect. 3.3.2. Following [54], we also use FB13 here,
which has 75,043 entities, 13 relations and 316,232 training
triplets, since triplets in this dataset are more interpretable
than the five evaluated datasets. We pick up (manorama,
prof ession, actor) as the positive triplet, and the changes in
its tail-cacheTr ,t are shown in Table 10. As can be seen, neg-
ative tails are firstly meaningless, e.g., ostrava and ben_lilly,
then they gradually changes to human jobs, e.g., artist and
sex_worker.

5.7 Graph embedding

In this part, we perform experiments with the skip-gram
model on the task of graph embedding.

5.7.1 Experiment setup

Two famous graph data sets are used here: Cora and Citeseer,
both of which are academic citation networks introduced in
[35]. Cora contains 2,708 papers with 5,429 connections in
machine learning area. These papers belong to 7 different
classes. Citeseer is formed by 3,312 papers in 6 areas. The
total number of connections is 4,660. In this part we compare
NSCaching (in Algorithm 6) with the following methods.

– LINE [49]: In this method, the embeddings are trained
to preserve the first order, i.e., the direct connections,
and second order, i.e., the neighborhood similarities, in
graphs.

– Node2vec [21]: Different from LINE, Node2vec uses
biased randomwalk to preserve the topology information
on graphs. The generatedwalks are regarded as sentences
in the language model. In this way, skip-gram model is
used to learn the embeddings. The distribution used to
sample negative nodes is proportional to 3/4 of the nodes’
frequency.

Table 10 Examples of negative
entities in cache on FB13

Epoch Entities in cache

0 allen_clarke, jose_gola, ostrava, ben_lilly, hans_zinsser

20 accountant, frank_pais, laura_marx, como, domitia_lepida

100 artist, , aviator, hans_zinsse, john_h_cough

200 physician, artist, raich_carter, coach, mark_shivas

500 artist, physician, cavan, sex_worker, attorney_at_law

Each line displays 5 randomsampled negative entities from tail-cache of a positive fact (manorama, profession,
actor) in different epochs
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– SeedNE [18]: To improve the negative sampling in skip-
gram model, SeedNE selects the negative nodes whose
similarities with the positive node are higher than an
increasing threshold. Either the self-embedding or a
learned generator can be used to indicate the similarities.
To guarantee stability, we use self-embedding in this part.
This sampling method also has some connection with the
self-paced learning, but the problem of E&E is not well
addressed.

In order to make a fair comparison with the baselines, we
set the embedding dimension to be 100 for all the datasets as
in [18]. Similar as [21], 10 random walks are generated for
each nodewith p = 0.25, q = 0.25, both ofwhich are hyper-
parameters controlling the biased randomwalk. The window
size |Wu | is set to be 10 for each node in the walks. The walks
are fixed when comparing different models. Finally, we use
Adam [28] as the optimizer. The learning rate is set as the
default value 10−3 and we use λ = 10−7 as the weight decay
value.

To measure the quality of the learned embeddings of dif-
ferentmethods, we use node classification task as the testbed.
After the embeddings are learned, a logistic regressionmodel
is learned as the classifier. Specifically, we use the cache-
based skip-gram model to train the node embeddings. Then,
the embeddings and their corresponding labels are fed into
the classifier. Following [18,21,49], we use F1-score, which
considers both the precision and recall, to measure the test
accuracy. It is a widely used metric in binary classification
and is computed by F1 = 2 · precision·recall/precision+recall. Con-
sidering that the problem here is a multi-class task, we use
two variants

– Micro-F1: the precision and recall are computedby ignor-
ing the type, and then computing the F1-score.

– Macro-F1: the precision and recall are computed sepa-
rately on each class, and return the average F1-score.

The larger values of the F1-scores indicate better perfor-
mance.

5.7.2 Empirical results

We randomly select {30%, 50%, 70%} labeled nodes to
train the classifier five times and evaluate the performance
the remaining nodes, respectively. We report the average
and the standard deviation on the node classification task
in Table 11. Comparing with the frequency-based negative
sampling method, i.e., Node2vec [21], the NSCaching-based
skip-grammethod and SeedNE gain significant improvement
since they are able to capture the dynamic distribution of
negative samples. By comparing Node2vec (skip-gram) with
LINE, we can see that the randomwalk-based model is better Ta
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than LINE, which only uses direct connection and neighbors
to measure the similarity. Besides, NSCaching outperforms
another self-paced negative sampling method SeedNE with
better control of E&E.

6 Conclusion

In this paper, we propose NSCaching, a novel negative sam-
pling method for knowledge graph embedding learning. The
negative samples are sampled from a cache that can dynami-
cally hold large-gradient negative samples. We theoretically
understand the convergence and effectiveness from both con-
vex and non-convex case. In order to balance exploration and
exploitation during the sampling procedure, we use AutoML
to automatically balance E&E for NSCaching in regard of
sampling and updating the cache. In addition, we extend
NSCaching to skip-gram model, which is widely used in
word embedding and graph embedding. Experimentally, we
test NSCaching on benchmark datasets and various scor-
ing functions. Empirical results show that the method can
generalize well under various settings and achieves state-
of-the-art performance. In future work, we will further see
how to improve efficiency on extremely large graph or
knowledge graph with advanced data structure like hash
tables.

A Appendix: Proof of Theorem 1

Proof Following [68], we consider a more general optimiza-
tion formulation as minw F̄(w) ≡ 1

n

∑n
i=1 φi (w) + λr(w),

which covers (11) as a special case with λ = 0. Then, the
stochastic training gives wt+1 as

wt+1 =argmin
w

[
(nptit )

−1w�∇φit (w
t )+λr(w)

+1

ηt
Bψ(w,wt )

]

, (18)

whereBψ is a Bregman distance function measuring the dif-
ference betweenw andwt . Based on (18),we stateTheorem3
in [68] as

Theorem 2 ([68]) Let wt be generated from (18). Assume
Bψ is σ -strongly convex w.r.t. a norm ‖ · ‖, F̄ and r are
convex, if ηt = η, the following inequality holds for any
T ≥ 1

1

T

∑T

t=1
E[F̄(wt )] − E[F̄(w∗)]

≤ 1

T

[
1

η
Bψ(w∗,w1) + η

2σ

∑T

t=1
E‖∇φit (w

t )/nptit ‖2
]

where the expectation is take with distribution pt .

In our Algorithm 5, we do not have r and thus λ = 0 in
(11). Besides, Bψ(w,wt ) = 1

2‖w − wt‖2 in our case; thus,
σ = 1. Above all, we have Theorem 1 which is derived from
Theorem 2. ��
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