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Abstract
Crowdsourced query processing is an emerging technique that tackles computationally challenging problems by human
intelligence. The basic idea is to decompose a computationally challenging problem into a set of human-friendly microtasks
(e.g., pairwise comparisons) that are distributed to and answered by the crowd. The solution of the problem is then computed
(e.g., by aggregation) based on the crowdsourced answers to themicrotasks. In thiswork,we attempt to revisit the crowdsourced
processing of the top-k queries, aiming at (1) securing the quality of crowdsourced comparisons by a certain confidence level
and (2) minimizing the total monetary cost. To secure the quality of each paired comparison, we employ statistical tools
to estimate the confidence interval from the collected judgments of the crowd, which is then used to guide the aggregated
judgment.We propose novel frameworks, SPR and SPR+, to address the crowdsourced top-k queries. Both SPR and SPR+ are
budget-aware, confidence-aware, and effective in producing high-quality top-k results. SPR requires as input a budget for each
paired comparison, whereas SPR+ requires only a total budget for the whole top-k task. Extensive experiments, conducted
on four real datasets, demonstrate that our proposed methods outperform the other existing top-k processing techniques by a
visible difference.

Keywords Crowdsourcing · Top-k query · Preference judgments · Confidence · Budget control

1 Introduction

Recently, crowdsourcing has been employed to process a
variety of database queries, including the MAX queries [7,8,
18,22,40], the JOINqueries [31,42], and the top-k queries [25,
26,29]. In this work, we focus on the crowdsourced top-k
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queries over a collection of data items, where humans are
involved in deciding the orderings of items. Such crowd-
sourced top-k queries are particularly helpful in computer-
hostile but human-friendly ranking tasks.

Examples. In the field of machine translation, it is an
emerging requirement to find the best translations of a sen-
tence among a set of candidate translations. This is a difficult
task for computers since the judgment relies on advanced nat-
ural language skills. However, humans can easily point out
the better translation of two candidates if they speak both
languages. Thus, applications such as Google Translate1,
Duolingo2, and Twitter3 etc. use crowdsourcing to rank the
candidate translations. Other examples emerge in the field
of public opinion analysis. For instance, finding the top-3
best-performing soccer players of the year is the ever inter-
esting topic for soccer fans. For another instance, finding the
top-10 best universities is always a yearly topic among grad-
uating students. In these examples, the judgments typically

1 https://translate.google.com/community.
2 https://www.duolingo.com/.
3 https://translate.twitter.com/.
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rely on multi-source data integration and perceptual cog-
nizance, which are more suitable for humans than machines.
The answers to the top-k queries are essentially consensus
rankings that reflect opinions of the crowd, especially those
people with certain level of related knowledge (e.g., bilin-
guals, soccer fans, or graduating students). It is also worth
noticing that the consensus rankings of the crowd are dif-
ferent from those fully statistics-based rankings, such as
WhoScored4 or QS World University Rankings5, etc., thus
having their own values in practice.

To process a crowdsourced top-k query, one needs to send
outmicrotasks into the crowd, asking for judgments between
data items (i.e., opinions on their relative ordering); there are
several types of microtasks that can be designed. A straight-
forward way is to ask human workers to rank all or part
of the items and then return the best k items by aggregat-
ing received rankings [31,35]. These methods need complex
user interface and are inconvenient for the human workers.
Another way is to ask human workers to grade the items
and then return the best k items in terms of their average rat-
ings [31]. However, graded judgments are known to differ in
scale across judges [41]. To make things worse for crowd-
sourcing, the graded judgments are hard to calibrate (e.g., to
normalize the scores of each worker for fairness) as a worker
may grade only a partial set of the items. Therefore, recent
crowdsourced top-k query processing [7,8,17,45] focuses on
pairwise judgments, i.e., comparing two items at a time. In
contrast to other alternatives, pairwise judgments are eas-
ier to answer and less prone to human error, requiring only
relative preference judgments for paired items.

Determining the number of judgments (called workload
hereinafter) needed for a pair of items is a hard problem. Intu-
itively, some comparisons are easy while others are difficult.
A fixed workload could be either unthrifty or insufficient
for many, if not most, of the comparisons. To address this
problem, Busa-Fekete et al. [3] proposed to estimate the
workload from pairwise binary judgments (i.e., yes-or-no
answers). However, their solution demands large workloads
as the confidence intervals6 [20] derived frombinary samples
are in general not tight enough.

In this work, we propose a new judgment model, enti-
tled pairwise preference judgment, to tackle the problem
discussed above. Our model can be viewed as a hybrid of
graded judgments and pairwise binary judgments.

Figure 1 demonstrates an example interface for collect-
ing pairwise preference judgments. A sliding bar is used

4 https://www.whoscored.com/PlayerComparison.
5 https://www.topuniversities.com/university-rankings/world-
university-rankings/2020.
6 The confidence interval of an unobserved variable with confidence
level 1−α means that the variable falls into the interval with probability
1 − α.

Fig. 1 Pairwise preference judgments

Table 1 Features of different judgment models

Model Target Pref. Error Workload per target

Graded Item Absolute High Unknown

Binary Item pair Relative Low Large

Preference Item pair Relative Moderate Small

to weigh the preference for a pair of items. Comparing to
graded or pairwise binary judgments, pairwise preference
judgments can derive tighter confidence intervals such that
fewer workloads are needed to make judgments. Table 1
briefly summarizes the features of the three judgment mod-
els. Note that the relative order is easy to give (similar to
that of the pairwise binary judgment), but the preference
level is more difficult to grade (similar to that of the graded
judgment). Therefore, the error of the pairwise preference
judgment is moderate as compared with other two models.

For ease of discussion, we assume normally distributed
preferences, following many existing solutions [1,5,37,39].
Based on this assumption, we can readily derive the pref-
erence distribution between a pair of items from their
judgments (see Fig. 1). Given a set of judgments and a con-
fidence level 1−α, the confidence interval of the preference
mean can be estimated by statistical tools such as Student’s
t-distribution [20] and Stein’s estimation [38]. To distinguish
a pair, we simply check the lower and the upper bounds of
the interval against a neutral value (e.g., 0). For example, if
the lower bound of the confidence interval with α = 0.05 is
larger than 0, then we are more than 95% confident that the
right-hand-side item is better than the left-hand-side one (see
Fig. 1). In other words, we can stop judging this pair if 95%
confidence is adequate for our application.

Given the confidence-based judgment model, our objec-
tive is to return the top-k items such that the monetary cost
(i.e., the total workload) is minimized. Given N items, the
best knownworkload complexity of finding the top-k items is
O (Nw log k) by heap sort and O (Nw + kw log N ) by tour-
nament tree, where w is the expected workload for a paired
comparison. These approaches overlook a property that the
workload needed for a pair of items should be inversely pro-
portional to their distance in the (unknown) true total order.
As an example, in Fig. 2 the workload needed for (oa, ob) is
likely less than (ob, oc).
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Fig. 2 Select-Partition-Rank (SPR) top-k processing

In an earlier version of this work [23], we proposed a
Select-Partition-Rank (SPR) framework that avoids compar-
ing the items that are close to each other in the underlying
total ordering (e.g., ob and oc in Fig. 2). Specifically, SPR
iteratively (1) selects a representative reference r , (2) parti-
tions items based on their relative ordering with respect to r
to find the candidates of the top-k results, and (3) ranks the
candidates via sorting. In order to minimize the total mon-
etary cost, SPR manages to (1) reduce the total number of
paired comparisons and (2) adaptively determine the num-
ber of judgments for each paired comparison with respect
to some confidence level. Technically, SPR requires that the
users specify a constant budget Bpair for each paired com-
parison. Two items are considered as ties if their relative
ordering cannot be determined with at most Bpair judgments.
The contributions of [23] are the following.

1. We considered the problem of crowdsourced top-k query
processing with pairwise preference judgments. To the
best of our knowledge, no one had ever investigated the
problem before.

2. We proposed a novel pairwise preference judgment
model, which allows the crowd workers to explicitly
express their uncertainty on comparisons. Statistics tools
are used to derive consensus judgments with confidence
guarantees.

3. We developed a novel framework, SPR, to solve the
crowdsourced top-k problem. By carefully choosing a
good reference item r , SPR was able to avoid a large
number of unnecessary comparisons.

4. We experimentally evaluated the performance of SPR on
several real-world datasets. The results showed that SPR,
compared with existing solutions, was very effective.

Having established the framework of SPR, we further
realize that the users may still feel certain difficulties in prac-
tically applying SPR. For example, in order to find out the
top-3 best-performing soccer players, a user has to tell SPR
how much at maximum he is willing to pay for comparing
any two soccer players. This may be difficult because there
is no general instruction on how to choose a proper pairwise
comparison budget Bpair for SPR and also because there is
no trivial connection between Bpair and the total amount of

money that the user eventually pays for the entire top-3 task.
Such difficulties motivate a more user-friendly version of
SPR, which should shift the somewhat technical focus on
Bpair to a more practical consideration of overall budget con-
trol. Therefore, in thiswork,which is an extension of [23], we
consider a different setting of the crowdsourced top-k prob-
lem, where we ask the users to provide a total budget, Btotal.
An improved version of SPR, named SPR+, is designed to
solve this problem. SPR+ allows users just to provide the
total budget and tries the best to address the crowdsourced
top-k query within the total budget, which is easy to use for
general users.

To sum up, in this work, wemake the following additional
contributions.

1. We consider amore practical version of the crowdsourced
top-k problem (Sect. 5). Instead of requiring a fixed bud-
get Bpair for every paired comparison, the new problem
setting requires as input a total budget Btotal for the whole
top-k ranking task. Comparing to the one studied in [23],
the new problem setting is more natural and user-friendly
in practice and thus has a wider range of applications.

2. We propose a more user-friendly version of SPR, named
SPR+, to solve the total-budget version of the crowd-
sourced top-k problem (Sect. 5.3). SPR+ inherits the
Select-Partition-Rank framework of SPR. Yet, the tech-
nical difference between SPR+ and SPR is threefold.
First, we adopt a bootstrapping technique to make deeper
use of the collected individual judgments. Difficult com-
parisons may thus be foreseen and early terminated
without actually spending an unnecessary amount of
budget (Sect. 5.1). Second, we adopt a statistical hypoth-
esis testing technique to implement indirect comparisons
between items. The new technique contributes to the the-
oretical soundness of both SPR (Sect. 4.2.4) and SPR+
(Sect. 5.2).More importantly, the hypothesis testing tech-
nique alsomakes the identificationof the top-k candidates
more effective in SPR+ (Sect. 5.2). Last but not least, we
propose a refinement procedure to fine-tune the top-k
results in SPR+ (Sect. 5.4).

3. We experimentally evaluate SPR+ on real-world datasets
(Sects. 6.4–6.5). The results show that the performance
of SPR+ is close to that of SPR if the same total amount
of money is spent, which outperforms the state-of-the-
art solutions. Given that SPR+ is more natural and user-
friendly, we argue that SPR+ could be more practically
useful.

The rest of the work is organized as follows. Related work
and existing solutions are discussed in Sect. 2. Then, the pair-
wise preference judgment model as well as its superiority is
introduced in Sect. 3. The pairwise-budget and total-budget
versions of the top-k problem and their solutions, SPR and
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Table 2 Notation

Notation Description

oi ∈ O An item in the item set O
o∗
i ∈ O The i-th item in the total order of O

O∗ Top-k item set

s(oi ) Underlying score of item oi

v(oi , o j ) Pairwise preference judgment between oi and o j

Vi, j Bag of preferences {v1(oi , o j ), . . . , vwi, j (oi , o j )}
Comp

(
oi , o j

)
Comparison process based on Vi, j

wi, j Workload of Comp
(
oi , o j

)
(i.e., size of Vi, j )

1 − α Confidence level

Bpair Budget for each pairwise comparison

Btotal Total budget for answering crowdsourced top-k query

SPR+, are elaborated in Sects. 4 and 5, respectively. Exten-
sive experiments and analyses of the results can be found in
Sect. 6. Finally, Sect. 7 concludes the work. Table 2 summa-
rizes the notation used throughout this work for the ease of
further discussions.

2 Related work

2.1 Judgment models

Besides simple strategies such as majority voting or grad-
ing, advanced models were developed to draw a conclusion
frommultiple votes for comparing a pair of data items. Thur-
stone [39] proposed a model in which scores of items were
assumed to be Gaussian random variables with known devi-
ations but unknown means. Given the votes on a pair of
items, Thurstone’s model is able to estimate the mean dif-
ference of their scores, based on which one item can be
inferred superior to the other. Bradley and Terry [2] and Luce
[30] proposed what is now known as the Bradley–Terry–
Luce (BTL) model. The model assumes that item scores are
Gumbel, instead of Gaussian, random variables. Similar to
Thurstone’s model, the BTL model is also able to rank items
based on votes. Busa-Feketes et al. [3] assumed that the judg-
ment of a paired comparison was determined by the mean
of a latent distribution over the items (e.g., the Bernoulli
distribution). Therefore, from the answers of the workers,
they estimated a confidence interval of the mean using the
well-knownHoeffding inequality.A judgment could bemade
based on the relative position of the confidence interval with
reference to a neutral value.

All the above models secure the quality of the answers
but overlook a fact that the monetary cost is a major concern
when processing a crowdsourced query. In this work, we ask

the human workers to express their preferences in pairwise
comparisons, which are much more informative in nature.

2.2 Crowdsourced top-k queries

Several studies are directly related to our work. Busa-Feketes
et al. [3] proposed apreference-based racing algorithm topro-
cess the top-k queries, where a crowdsourced microtask was
to ask for a vote between two items. They enumerated all the
possible pairwise comparisons and calculated the confidence
bounds using the Hoeffding inequality. Their objective was
to find an accurate top-k set. Mohajer et al. [33] proposed
an algorithm, combining tournament trees and max-heap, to
solve the top-k problem. The algorithm first distributes the
items into k groups. In each group, the max item is found by
tournament. Themax items are then fed into amax-heap. The
top of the heap is thus the top-1 result. The algorithm then
removes the top-1 item and updates the tournament tree and
max-heap accordingly to find the top-2 item. The other top-k
results are determined by repeating the above process. The
above-mentioned methods are further discussed and evalu-
ated in Sect. 6.

Some other studies are closely related to our work, but the
proposed solutions are not directly comparable to ours due to
technical differences in problem settings. Polychronopoulos
et al. [35] studied the top-k query over a set of data items.
Humanworkers were paid to rank small subsets of items, and
then, these ranked lists were used to determine the global top-
k list via median-rank aggregation [13]. Li et al. [26] also
adopted a similar methodology to obtain the top-k ranked
lists. The crowd workers were asked either to grade an item
or to rank a small set of items. They developed a method to
combine the ratings and rankings of items to generate thefinal
top-k ranking. De Alfaro et al. [9] proposed a recursive algo-
rithm to obtain the top-k list from a given set of items. Human
workers were typically asked to select the max item out of a
small set of items. The above-mentioned studies are different
from ours in that they are not based on pairwise comparisons.
Since there lacks widely accepted conversions between the
costs/benefits of pairwise and non-pairwise comparisons, the
above-mentioned top-k solutions are not directly comparable
to our proposals.

Ciceri et al. [6] studied the top-k query over uncertain
items. Each item was a multi-dimensional feature vector
associated with a potential score, which was a weighted sum
of its features. Due to the uncertainty in feature values or
weights, the scores were uncertain and thus crowd workers
were employed to compare items. By enumerating the pos-
sible orderings of items in a tree, the item pair that most
significantly reduces the uncertainty is outsourced in each
iteration. Their method is not directly comparable to ours
because they require as input a prior estimation of the uncer-
tainty of the item scores. Such estimations, if ever accessible,
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rely on case-by-case analyses of the target applications. Lin
et al. [29] studied the top-k query over probabilistic data (i.e.,
〈item, value, probability〉 triplets). Their goal is to minimize
the expected uncertainty of the final top-k ranking with a
given budget. Lee et al. [25] addressed the crowdsourced
top-k queries under latency constraints. They constructed a
tournament tree of which the leaves contained item sets of
various sizes. They aimed at minimizing both the height of
the tree (i.e., the latency of the entire process) and the num-
ber of pairwise comparisons. Technically, they require a fixed
worker error probability as a known input. Given a predefined
partial order between items (i.e., a DAGof items), Dushkin et
al. [12] aimed at minimizing the number of pairwise compar-
isons for finding the top-k items. Specifically, they proposed
a heap-based solution, where pairwise comparisons between
items were done by expert oracles. A single answer from
an expert oracle sufficed to complete the judgment of two
items. Comparing to our problem settings in this paper, the
above-mentioned studies require as input additional infor-
mation on the items (e.g., value probability, partial order,
etc.). Those solutions are thus not directly applicable to our
problem where their prerequisites are absent.

2.3 Crowdsourcedmax and ranking queries

Venetis et al. [40] studied the max query (i.e., top-1 query)
over a set of items, with concerns on answer quality, mon-
etary budget and time cost (i.e., the number of algorithmic
steps to return the max item). A crowdsourced microtask
was to ask a human worker to identify the best out of sev-
eral items. Strategies for partitioning items and recovering
the max were then analyzed with respect to different human
error models. Guo et al. [18] investigated answering max
queries by hiring human workers for pairwise comparisons.
Given a set of items and a budget, they aimed at discover-
ing the best item with the highest confidence. Answers from
the human workers were collected to form a vote matrix,
and then, the maximum likelihood techniques (e.g., Kemeny
ranking [21]) and graph-based heuristics such as PageRank
[34] were employed to infer the best item. Khan and García-
Molina [22] considered a hybrid method to answer the max
query. They first managed to identify a set of good candidates
by asking the crowd to grade each of the items. Then, they
sorted the candidates, via crowdsourced paired comparisons,
to obtain the max item. Davidson et al. [7,8] also considered
such max queries. Pairwise votes from human workers were
used to construct a tournament tree via a majority voting
mechanism. Data items were randomly permuted as leaves.
The tournament tree was tailored such that the number of
crowdsourced microtasks for a comparison increased as the
level approached the top. Under a proper error model, David-
son et al. showed that their solution might strike a balance
between quality and cost.

Marcus et al. [31] aimed at sorting a given set of data
items. Two types of microtasks were considered: One asked
theworkers to provide rankings of several items, and the other
requested explicit ratings on items along. Ye and Doermann
[44] considered sorting uncertain items, each of which was
associated with an underlying score perturbed by a Gaus-
sian noise. They crowdsourced both pairwise comparison
tasks and rating tasks to maximize the information gain
from a predefined budget. Based on the BTL model, Chen et
al. [4] proposed solutions for aggregating votes on pairwise
comparisons into a global ranking. They took amarginal per-
spective to solve the problem, aiming at finding (i) the best
next pair of items to compare and (ii) the best human worker
to do the comparison. Recently, Matsui et al. [32] considered
worker quality in such sorting problems. They aggregated
crowdsourced partial rankings based on the Spearman’s dis-
tance [10]. Gottlieb et al. [17] crowdsourced random paired
comparisons and inferred an initial order. By excluding the
ties and the easy pairs, another set of random paired compar-
isons were crowdsourced. The global ranking was the one
minimizing the conflicts in the collected judgments. Dong et
al. [11] studied the problem of ranking from crowdsourced
pairwise comparisons, using a smoothed matrix manifold
optimization technique based on the BTL model. Rajpal and
Parameswaran [36] considered the ranking problem without
budget control. They used a maximum likelihood method
to find a globally consistent ranking from pairwise compar-
isons. Recently, Xu et al. [43] aimed at constructing a partial
ranking, instead of a full ranking, from crowdsourced pair-
wise comparisons.

3 Preference judgment model

3.1 Comparison process and workloads

To compare items oi and o j , a human worker provides a
preference v(oi , o j ) ∈ [−1, 1], of which the sign indi-
cates the judgment intention and the absolute value describes
the strength toward that intention. The comparison process
Comp

(
oi , o j

)
for items oi and o j is to draw a conclu-

sion from a bag of wi, j (the workload) preference values
Vi, j = {v1(oi , o j ), . . . , vwi, j (oi , o j )}. Since the unit cost of
collecting a humanpreference is fixed, the goal is tominimize
the workload to save the cost.

We may assume that every data item o j is associated with
a hidden score s(o j ), and a human preference v

(
oi , o j

)
is

in principle monotonically proportional to the difference of
the scores, �si, j = s(oi ) − s(o j ). Although such �si, j is
unknown, we trust the human workers in that their prefer-
ence values truly reflect �si, j . Put in another way, the actual
(unknown) difference of scores, �si, j , determines a Gaus-
sian distribution of human preference values between data
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items oi and o j , i.e., v
(
oi , o j

) ∼ N
(
μi, j , σ

2
i, j

)
, where

μi, j is proportional to �si, j and the variance σ 2
i, j reflects

how difficult it is to choose between oi and o j .
Since themeanμi, j is amonotonically increasing function

of�si, j , to conclude s(oi ) < s(o j ) or s(oi ) > s(o j )we only
need to test μi, j against 0. In particular, during the compar-
ison process we aim at minimizing the number of samples
required and estimating μi, j with a predefined confidence
level of 1 − α. Statistical tools for parameter estimation,
such as Student’s t-distribution estimation [20] and Stein’s
estimation [38], can thus be applied on the bag of samples
Vi, j to find the confidence interval of μi, j with 1 − α con-
fidence. When the interval excludes 0, we are at least 1 − α

confident to make a judgment between two items.
Student’s ttt-distribution estimation [20]. Let n = wi, j

(the number of samples), and v̄n and Sn be the sample mean
and sample standard deviation of Vi, j , respectively, i.e.,

v̄n = 1

n

n∑

�=1

v�

(
oi , o j

)
,

and

Sn =
√√√√ 1

n − 1

n∑

�=1

(
v�

(
oi , o j

) − v̄n
)2

.

Then, a 1 − α confidence interval of μi, j is given by

J (Vi, j ) =
[
v̄n − t α

2 ,n−1Sn√
n

, v̄n + t α
2 ,n−1Sn√

n

]
, (1)

where t α
2 ,n−1 indicates the right-tail probability of size α

2 of
the t-distribution with n − 1 degrees of freedom. Therefore,
if the above interval does not contain 0 (the neutral value)
then some conclusion can be made. For example, if v̄n −
t α
2 ,n−1 · Sn√

n
> 0 then it is safe to conclude that μi, j > 0 and,

as a consequence, oi � o j . As a general trend, with a larger
workload, tighter bounds on μi, j can be obtained.

Algorithm 1 shows the core process of the estimation,
StudentComp. By progressively calling StudentComp,
crowd judgments are collected into V (Lines 1–2). Every
time the set V is augmented, it is used to decide the relative
ordering of oi and o j (Lines 3–5). If no decision can yet be
made, oi and o j are said to be indistinguishable using the
current set V , written as oi ≈V o j (Line 6). Note that it is
also possible that items oi and o j are indistinguishable even
after the consumption of the budget Bpair.

Stein’s estimation [38]. Given a predefined interval width
2L , Stein proposed a method to estimate the number of sam-
ples n needed to conclude μi, j ∈ [v̄n − L, v̄n + L] with
confidence level 1 − α. In its original form, the estimation
takes two stages:

Algorithm 1 StudentComp
(
oi , o j ; V , Bpair

)

Input: oi and o j , two items; V , collected judgments; Bpair, budget
(|V | < Bpair)

Parameter: I , minimum workload (I ≤ Bpair)
1: if V = ∅ then w ← I else w ← 1
2: Fetch w judgment(s) on oi and o j into V
3: Compute the confidence interval J (V ) using Eq.1
4: if sup J (V ) < 0 then return oi ≺ o j
5: if inf J (V ) > 0 then return oi � o j
6: return oi ≈V o j � indistinguishable using V

1. Get y (Gaussian) samples and calculate S2y , the sample
variance. S2y is thus a rough estimation of the true variance
σ 2
i, j ;

2. Set y′ ←
⌈
t21− α

2 ,y−1S
2
y L

−2
⌉
. Then, n = max{y, y′} is

the number of samples necessary to conclude μi, j ∈
[v̄n − L, v̄n + L] with confidence level 1 − α.

Recall that in our problem we simply want to find an interval
[v̄n − L, v̄n + L] that excludes 0 with as few samples as pos-
sible. We may thus transform Stein’s original method into a
progressive estimation on μi, j .

Algorithm 2 SteinComp
(
oi , o j ; V , Bpair

)

Input: oi and o j , two items; V , collected judgments; Bpair, budget
(|V | < Bpair)

Parameter: I , minimumworkload (I ≤ Bpair); ε, a very small positive
real

1: if V = ∅ then w ← I else w ← 1
2: Fetch w judgment(s) on oi and o j into V
3: Compute v̄, S2, and y′ from V , where L ← |v̄| − ε

4: if y′ ≤ |V | and v̄ < 0 then return oi ≺ o j
5: if y′ ≤ |V | and v̄ > 0 then return oi � o j
6: return oi ≈V o j � indistinguishable using V

Algorithm 2 shows the core process of Stein’s estimation.
To compare items oi and o j , we may repeatedly call Stein-
Comp to collect judgments from the crowd. Note that during
the process, we dynamically set L to be slightly smaller than
|v̄| such that the interval [v̄ − L, v̄ + L] is always “adjacent”
to 0.7 With this invariance, the algorithm terminates with a
judgment as soon as the workload is sufficient (Lines 4-5). If
no judgment can yet be made, then oi and o j are tying given
V (Line 6). If oi and o j are still tying after the consumption
of the budget Bpair, they are considered to be a true tie, written
as oi ≈Bpair o j .

3.2 Why preference judgment?

To demonstrate the effect of different judgment models,
we empirically studied the number of microtasks needed to

7 A small ε > 0 guarantees that the interval excludes 0.
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Table 3 Accuracy and workload of different judgment models

Model Est. by 435 Confidence level, 1 − α

Pairs 0.95 0.98 0.99

Binary Hoeffding Work. 6029.7 8713.8 10,847.1

Acc. 0.989 0.990 0.990

Preference Student Work. 639.2 1510.6 1987.0

Acc. 0.992 0.996 0.998

Stein Work. 557.4 1250.6 2029.8

Acc. 0.992 0.996 0.998

Model – 30 Workload per item

items 100 1000 10,000

Graded – Acc. 0.965 0.991 0.998

∗Work. and Acc. are the average workload (number of microtasks) and
the average accuracy of comparisons

achieve certain confidence levels. Generally speaking, the
confidence level can be achieved by fewer microtasks if the
judgment model is more informative.

Our experiments were on an IMDb dataset, in which there
were movies and users’ ratings (1∼10) on movies. Detailed
information of this dataset can be found in Sect. 6.1. We
randomly picked 30 popular movies (with at least 100,000
ratings) from the dataset. The ground truth total order of
the movies, �, was decided based on their mean ratings. To
simulate a pairwise preference judgment between movies oi
and o j , we sampled the ratings s(oi ) and s(o j ) from the
corresponding histograms of ratings and set v(oi , o j ) =
1
10

(
s(oi ) − s(o j )

)
, as detailed in Sect. 6.1. To simulate

a pairwise binary judgment, we set v(oi , o j ) = 1 when
s(oi ) − s(o j ) > 0 and v(oi , o j ) = −1 otherwise. (Non-
informative cases of s(oi ) = s(o j ) were ignored.)

Given the bag Vi, j = {v1(oi , o j ), . . . , vn(oi , o j )} and a
confidence level 1−α, we evaluated different Comp

(
oi , o j

)

processes. Each Comp
(
oi , o j

)
stopped when the estimated

confidence reached 1 − α. We ran each comparison process
100 times (setting Bpair = ∞ and I = 30) and recorded the
average workload for each of the 435 paired comparisons.
We also calculated the accuracy of each comparison model,
which was the ratio of correctly compared pairs (i.e., com-
parison results that were consistent with �) among all the
435 pairs.

Table 3 shows our findings. We first compare the pref-
erence judgment process to the binary judgment considered
in [3]. To achieve the same confidence level, the workload
needed for the preference judgment is 5.34 to 10.81 times
lower than that of the binary judgment since more infor-
mation leads to tighter confidence interval estimations. This
indicates that the preference model is a better model to return
the high-quality ranking results with relatively lowmonetary
cost. The performance of the Student’s t-distribution estima-
tion and the Stein’s estimation is very similar so that any of

themcan be used to processComp
(
oi , o j

)
for the bag of pref-

erences Vi, j . A more theoretical analysis of this advantage
can be found in Appendix D of [23].

We also evaluated the performance of the graded judg-
ment. For each of the 30 items, we sampled Bpair ratings
from its corresponding histogram and then used the average
rating as the score of the item. Then, judgment was made by
comparing the scores of items. The accuracy of such a com-
parison process is also reported in Table 3, with Bpair varying
from 100 to 10,000.

The unit monetary cost of these judgments was more or
less the same according to our empirical study on a real
crowdsourcing platform Figure Eight (cf. Appendix B of
[23]). Therefore, we conclude this section by arguing that
the preference judgment model is potentially more effective
and useful than the other models.

4 Answering crowdsourced top-k queries

Given a set of N items O = {o1, o2, . . . , oN }, we want to
find the k best items O∗ = {

o∗
1, o

∗
2, . . . , o

∗
k

} ⊂ O via pair-
wise comparisons, where o∗

i is the i th best item. Assuming a
unified cost per human worker per microtask, the total mon-
etary cost (TMC) for finding the top-k itemsO∗ depends on
(i) the set of pairs to compare, C, and (ii) the workload for
each paired comparison in C:

TMC =
∑

(oi ,o j)∈C
wi, j .

Our goal is tominimize TMCwhilemaintaining a good qual-
ity of O∗. We carry out two objectives to that goal:

1. Microtask-level cost minimization, in which we man-
age to determine the workload wi, j of each comparison
Comp

(
oi , o j

)
subject to a confidence guarantee, and

2. Query-level cost minimization, in which we target
toward minimizing the number of paired comparisons
for finding O∗.

We achieve the first objective via statistical estimations
discussed in Sect. 3.1. As a matter of fact, the strength of a
preference and the confidence level 1 − α suggest the diffi-
culty in distinguishing items oi and o j , and, intuitively, the
workload needed should be proportional to the underlying
difficulty of the corresponding comparison. The variance of
effort in distinguishing different pairs of itemsmakes the sec-
ond objective hard to achieve. Traditional top-k algorithms
assume that the comparison process Comp

(
oi , o j

)
has uni-

fied cost in any pair of items, but this assumption is no longer
held in crowdsourced top-k queries. Thus, simply minimiz-
ing thenumber of comparisons does not necessarilyminimize
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Fig. 3 Infimum cost

the TMC. Note that, we assume that the answers from the
same worker are independent over different comparisons.
The dependency may exist in practice since a high-quality
worker should have a consistent personal standard. However,
this information is not considered in this work for simplicity.

4.1 An ideal solution

Before we propose our solution to the above crowdsourced
top-k problem, we consider an interesting question: What is
the infimum cost (i.e., the minimum possible cost) to answer
a crowdsourced top-k query?

Let wrk(oi , o j ) be the expected workload to judge
between data items oi and o j , satisfying

wrk(oi , o j ) ∝ 1

|s(oi ) − s(o j )| .

The above question is answered by the following lemma.

Lemma 1 [Infimum cost] Given a set of N itemsO, the infi-
mum cost to find the top-k list is

TMCinf =
k−1∑

j=1

wrk(o∗
j , o

∗
j+1) +

N∑

j=k+1

wrk(o∗
j , o

∗
k ).

Proof To find the top-k list, it is sufficient and necessary to
confirm (i) o∗

1 � o∗
2 � · · · � o∗

k and (ii) o
∗
k � o∗

j for any j >

k. In the best case, the former costs
∑k−1

j=1 wrk(o
∗
j , o

∗
j+1),

comparing adjacent top-k items. To establish the latter, note
that every o∗

j ( j > k) must be compared to at least one item
o ∈ O in order to be excluded from the top-k list. The lemma
is trivially true when every o∗

j is directly compared to o = o∗
k .

We argue that comparing o∗
j with o �= o∗

k is either wasteful
or more expensive. Indeed, comparing o∗

j to some o � o∗
k

does not exclude o∗
j from the top-k list, and comparing o∗

j to
some o between o∗

k and o∗
j costs wrk(o

∗
j , o) ≥ wrk(o∗

j , o
∗
k )

due to the fact that |s(o∗
j ) − s(o∗

k )| ≥ |s(o∗
j ) − s(o)|.

Figure 3 illustrates the query processing with the infimum
cost. Note that the infimum cost in Lemma 1 is theoretically
achievable:We could be lucky to pick the right reference item
o∗
k , thus after N − k comparisons we prune N − k non-result
items. Then, when sorting the remaining k items, we may
find that the items are already sorted.

Fig. 4 Framework of SPR

4.2 Select-Partition-Rank (SPR)

Inspired by the discussion in Sect. 4.1, toward an efficient
algorithm, anynon-result itemo ∈ O\O∗ should be excluded
as early as possible by comparingowitho∗

k .Without anyprior
knowledge on o∗

k , this is, of course, only if we are very lucky
to pick o∗

k by a wild guess. Fortunately, as will be shown later
in Sect. 4.2.2, items succeeding but not far away from o∗

k may
also have strong pruning power. We define the sweet spot as

the set of items
{
o∗
k , o

∗
k+1, · · · , o∗�ck�

}
, where c > 1 controls

the size of the sweet spot (ck � N ).

Algorithm 3 SPR
(
O, k; Bpair

)

Input: O, a set of items; k, query parameter; Bpair, budget for a paired
comparison
� Select a reference (Section 4.2.1)

1: r ← SelectReference(O; Bpair)
� Partition O into winners, ties, and losers, using r
(Sections 4.2.2 & 4.2.4)

2: (W, T ,L) ← Partition
(
O, k, r; Bpair

)

� Sort (Section 4.2.3)
3: if |W| < k and |W ∪ T | ≥ k then
4: R ← W ∪ {random k − |W| items of T }
5: return O∗ ← Sort(R)

6: if |W ∪ T | < k then
7: R ← W ∪ T ∪ SPR

(
L, k − |W| − |T | ; Bpair

)

8: return O∗ ← Sort(R)

9: return O∗ ← top-k items of Sort(W) � |W| ≥ k

We develop a randomized algorithm, SPR, to solve the
crowdsourced top-k problem. Figure 4 and Algorithm 3
sketch the general idea of SPR. SPR first manages to iden-
tify a good reference item within the sweet spot with large
probability via sampling (Fig. 4:1; Line 1). SPR then com-
pares all the other items against the reference item and prunes
non-result ones. After the comparison processes, we get three
distinct groups:winners, ties, and losers, holding those items
that are superior to, indistinguishable from, and inferior to
the reference, respectively (Figure 4:2; Line 2). SPR then
efficiently finds the top-k results by sorting certain part of
the partition (Figure 4:3; Lines 3-9).
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4.2.1 Selecting a reference

Given a set of N items, by a wild guess we have j
N chance

to hit an item r in the top- j set. When r is the max item in a
set X ⊂ O of x independent random samples (with putting
back), the probability becomes

p j (x)
def= Pr

{
r � o∗

j

∣∣∣ x
}

= 1 −
(
1 − j

N

)x

.

Note that this probability is monotonically increasing with
respect to the choice of x . Our goal is to find a reference
within the sweet spot. In other words, we want to find an
item that can beat any item worse than o∗

ck but, meanwhile, is
itself no better than o∗

k . To that end, we consider the following
(m, x)-sampling procedure.

(m, x)-sampling. The (m, x)-sampling procedure takes

m batches of independent samples fromO, with putting back,
each containing x samples. Let ri be the max item of the i th
batch Xi (i = 1, 2, · · · ,m). The sampling procedure returns
r , the median item of r1, r2, · · · , rm , as the final output. It
can be shown that the (m, x)-sampling can find a reference
r in the sweet spot with high probability.

Lemma 2 Consider a top-k query over N items. Let p be the
ratio k

N .

If c is chosen such that c > 1
p

(
1 − 2

1�log1−p 2�
)

≥
1, then there must exist an integer x within the range(− log1−cp 2,− log1−p 2

]
such that limm→∞ Pr

{
o∗
k �

r � o∗
ck

∣∣m, x
} = 1, where r is the reference determined by

(m, x)-sampling. (Note that there is always a trivial bound
of c ≤ 1

p due to ck ≤ N.)

Proof Define q j (m, x)
def= Pr

{
r � o∗

j

∣∣∣m, x
}
, which is the

probability of at least
⌈m
2

⌉
ri ’s being ranked before o∗

j ( j =
1, 2, · · · , N ). Then,

q j (m, x) =
�m

2 �∑

i=0

(
m

i

)
pm−i
j (x)

(
1 − p j (x)

)i
.

For any fixed j and x , the Central Limit Theorem asserts that

lim
m→+∞ q j (m, x) =

{
0, ifp j (x) < 1

2 ,

1, ifp j (x) > 1
2 .

Considering the fact that Pr
{
o∗
k � r � o∗

ck

∣∣m, x
} =

qck(m, x) − qk−1(m, x), it suffices to have some c and x
such that pk−1(x) < pk(x) ≤ 1

2 < pck(x). By solving this
inequality, we obtain the range of c and x as specified in the
lemma.

Balancing quality and cost. In practice, as one may
imagine, there should be a balance between the quality of the
reference and the cost of sampling. In general, we would like
to restrict the cost such that it does not dominate the cost of the
entire SPR algorithm. The sampling process takes m(x − 1)
comparisons to find r1, r2, · · · , rm , and then, any sorting or
selection algorithm can be applied to find themedian r . Since
it takes N comparisons to partition the set of items (Line 2 of
Algorithm 3), we solve an optimization problem for a good
choice of integers m and x :

max
m,x

Pr
{
o∗
k � r � o∗

ck

∣∣m, x
}

s.t. m(x − 1) + C(A,m) ≤ N ,

1

p

(
1 − 2

1�log1−p 2�
)

< c ≤ 1

p
,

− log1−cp 2 < x ≤ − log1−p 2, (2)

where C(A,m) is an upper bound of the number of compar-
isons if algorithmA is used to find the median ofm numbers.
For example,Amay refer to the bubble sort algorithm, which
iteratively compares items with their predecessors in the
current ranking. After the i th iteration, top-i items are guar-
anteed to be sorted at the leftmost (or rightmost, depending
on the implementation) part of the array. This means that
the median can be found in �m

2 � iterations. Therefore, when
m > 1,

C(A,m) =
�m
2 �∑

i=1

(m − i) ≤ 3

8
(m2 − 1).

Similar analysis can be done for other choices of the algo-
rithm A.

Algorithm 4 summarizes the above discussions. Let w be

Algorithm 4 SelectReference
(
O; Bpair

)

Input: O, a set of items; Bpair, paired comparison budget
1: R ← ∅
2: Solve Problem (2) for x and m
3: for i ∈ {1, 2, · · · ,m} do
4: Generate Xi , a set of x random items
5: Insert the max item of Xi into R � via comparisons

6: return r , the median of R � via comparisons

the expected workload to judge between two items. It takes
O(Nw) microtasks to find a good reference.

4.2.2 Partitioning

With a proper reference r , SPR sequentially compares r with
every other item. As a result, items O \ {r} are divided into
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three groups: winners W , ties T , and losers L, consisting
of the items that are superior to, indistinguishable from, and
inferior to r , respectively. Ties are mainly due to practical
considerations: Two items are considered tying if their rela-
tive ordering cannot yet be determined.

In Lemma 1, we have established that if r = o∗
k then the

cost for finding the top-k set (i.e.,W ∪ {o∗
k }) is minimal. Let

us suspend the discussion on ties for the moment, assuming
that every pair of items oi and o j can be eventually separated
via a workload of wrk(oi , o j ). We now show that, when r
is in the sweet spot, it is still efficient in pruning non-result
items.

Lemma 3 If the setO of N items are to be partitioned using
r = o∗

� (� > k), then finding the top-k list requires an infimum
cost of

TMCinf(o
∗
�) =

k−1∑

j=1

wrk(o∗
j , o

∗
j+1) +

�∑

j=k+1

wrk(o∗
j , o

∗
k )

+
N∑

j=�+1

wrk(o∗
j , o

∗
�).

Specifically, TMCinf(o∗
k ) = TMCinf as in Lemma 1.

Proof When using o∗
� as the reference, to find the top-k list, it

is sufficient and necessary to confirm (i) o∗
1 � o∗

2 � · · · � o∗
k ,

(ii) o∗
k � o∗

j for k < j ≤ �, and (iii) o∗
� � o∗

j for j > �.
TMCinf(o∗

�) is then the sum of the minimal cost of each of
the three confirmations.

Lemma 4 When k < � � N, TMCinf(o∗
�) is monotonically

increasing with respect to �.

Proof For any �′ such that � < �′ � N , from Lemma 3 it is
easy to infer that

TMCinf(o
∗
�) − TMCinf(o

∗
�′)

=
N∑

j=�′+1

(
wrk(o∗

j , o
∗
�) − wrk(o∗

j , o
∗
�′)

)
(≤ 0)

+
�′∑

j=�+1

(
wrk(o∗

j , o
∗
�) − wrk(o∗

j , o
∗
k )

)
. (≥ 0)

Since � < �′ � N , the non-positive term clearly dominates
the other, hence TMCinf(o∗

�) ≤ TMCinf(o∗
�′).

Lemmata 3 and 4 imply that a reference closer to o∗
k is

preferable. Given a reference r , Algorithm 5 follows this
implication to efficiently prune non-result items. We take an
incremental approach to split O into three sets W , T , and
L. At the beginning, every pair of items (o, r) for o �= r
is considered a tie, as no comparison is ever made (Line

Algorithm 5 Partition
(
O, k, r; Bpair

)

Input: O, a set of items; k, query parameter; r ∈ O, reference; Bpair,
paired comparison budget

1: W ← ∅, T ← O, L ← ∅
2: while ∃o ∈ T \ {r} : |Vo,r | < Bpair do
3: for each item o ∈ T \ {r} with |Vo,r | < Bpair do
4: Call SteinComp(o, r; Vo,r , Bpair) � Sect. 3.1
5: if o � r or o ≺ r then
6: Move o from T to W or L, accordingly
7: return (W, T ,L)

1). Then, for every item in T \ {r}, we ask the crowd to
provide one more preference feedback (if the budget still
allows) and see whether any judgment can be made (Line 4).
As the iteration proceeds, the confirmed winners and losers
go to W and L, respectively, leaving T being the set of true
ties (Lines 5–6). With a good reference, which is guaranteed
by SelectReference (Sect. 4.2.1), it is expected that the
top-k items are all in W after the partitioning.

Complexity analysis. The partitioning step compares the
reference r with all the other items and thus costs O(Nw),
where w is the expected workload to judge between two
items.

4.2.3 Sorting

Given a small set of top-k candidates, a sorting procedure
can find the top-k list. The key observation here is that, based
on their pairwise comparisons with the reference r , we may
obtain a good initial ordering of those top-k candidates, and
hence, any best-case linear sorting algorithm can find the
top-k list efficiently.

In fact, for two items oi and o j , we know that

oi � o j ⇔ s(oi ) > s(o j )

⇔ ∀r : s(oi ) − s(r) > s(o j ) − s(r).

Recall that, when comparing two items o and o′, workers’
feedbacks can be viewed as random samples drawn from a
distribution, of which themeanμo,o′ is proportional to s(o)−
s(o′) and the standard deviation σo,o′ reflects the difficulty of
the comparison. Hence, for any reference r ,

s(oi )>s(o j ) ⇔ s(oi )−s(r)>s(o j )−s(r) ⇔ μi,r >μ j,r .

While μi,r and μ j,r are unknown, they can be estimated
using Vi,r and Vj,r , the bags of preference values collected
from the workers. Specifically, given Vi,r and Vj,r , we can
define a heuristic ranking, �H , between the items, such that
oi �H o j if and only if μ̂i,r > μ̂ j,r .

The ranking �H is heuristic because oi �H o j does not
necessarily imply oi � o j to a confidence level of 1 − α.
Nonetheless, the ranking �H may provide a good jump-
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start to a best-case linear sorting algorithm, such that the
confidence-aware ranking � can be obtained with relatively
small effort. It is worth mentioning that most divide-and-
conquer methods such as quicksort and mergesort are not
good for this task, since they do not take any advantage of
the fact that the input is almost sorted. In contrast, bubble
sort could be a good choice. Given an almost sorted input,
bubble sort takes near-linear time to adjust the ordering. In
crowdsourcing scenarios, all human preference feedback can
be stored and the results of comparisons are always reusable.
Hence, although a pair of items could be compared multiple
times during the execution of bubble sort, it is not a perfor-
mance bottleneck when the goal is to save as much monetary
cost as possible.

Complexity analysis. Since r is in the sweet spot with
high probability, the number of items to sort is fewer than
ck. If we use a best-case linear sorting algorithm (say, bub-
ble sort), the monetary cost of sorting is O(c2k2w) in the
average case, but O(ckw) if W is almost sorted. Therefore,
the guaranteed overall cost of SPR is O(

(
N + c2k2

) ·w) but,
in practice, it is often more close to O((N + ck) · w).

4.2.4 Changing the reference

Algorithm 5 views W and T as sets. In fact, it may further
benefit from the heuristic ranking �H since there might be
opportunities to change for a better reference.

Consider two items, oi and o j , and a reference r . Suppose
that, from the bags of comparisons Vi,r and Vj,r , we know
oi �H o j . We want to confirm whether oi � o j with a con-
fidence level of 1 − α. To do this, we run further statistical
tests on Vi,r and Vj,r . Recall that Vi,r and Vj,r are sam-

ples from distributions N
(
μi,r , σ

2
i,r

)
and N

(
μ j,r , σ

2
j,r

)
,

respectively, where σi,r �= σ j,r in general. Let the null
hypothesis be

H0 : μi,r ≤ μ j,r , i.e., oi ! o j .

Rejecting H0 implies the acceptance of the alternative
hypothesis

H1 : μi,r > μ j,r , i.e., oi � o j .

We use the one-sided t-test. Let ni,r = ∣∣Vi,r
∣∣ and n j,r =

∣
∣Vj,r

∣
∣, and let

(
x̄i,r , S2i,r

)
and

(
x̄ j,r , S2j,r

)
be the sample

mean and sample variance of Vi,r and Vj,r , respectively.
Then, the t-value is

t = x̄i,r − x̄ j,r√
S2i,r
ni,r

+ S2j,r
n j,r

,

and the degree of freedom, d, is

d =

(
S2i,r
ni,r

+ S2j,r
n j,r

)2

1
ni,r−1

(
S2i,r
ni,r

)2

+ 1
n j,r−1

(
S2j,r
n j,r

)2 .

We reject the null hypothesis H0 if t ≥ tα,d . That is, when
t ≥ tα,d , we have 1−α confidence to conclude that oi � o j .
The opposite judgment of oi ≺ o j can also be established
analogously, by rejecting the null hypothesis H0 of oi � o j

when t ≤ −tα,d .
Algorithm 6 shows the details of the hypothesis testing

(HT) procedure. It is worth mentioning that the process of
HT- Update is completely free of monetary cost, as it does
not involve human workers.

HT allows indirect comparisons between items, which
offers opportunities of changing for better references during
partitioning. Indeed, Partition (Algorithm 5) may employ
HT- Update as an optional sub-procedure whenever the size
ofW exceeds k during the process. In fact, we can try to use
HT to find the kth best item r ′ inW , without any extra com-
parison between items in W . Whenever such an r ′ can be
found, it satisfies o∗

k � r ′ � r . According to Lemma 4, r ′ is
a better reference than r . With the new reference r ′ and the
updated partition (W, T ,L), Partition continues until the
final partition, with respect to r ′, is obtained.

Algorithm 6 HT- Update
(
W, T ,L, r , r ′)

Input: (W, T ,L), the current partition; r , the current reference; r ′, a
new reference

1: Move all the items into T
2: Move r to W (or L) if r � r ′ (or r ≺ r ′)
3: for each item o ∈ T \ {r} do
4: Do HT with Vo,r and Vr ′,r
5: Move o into W (or L) if HT rejects o ! r ′ (or o � r ′)
6: r ← r ′
7: return (W, T ,L, r)

4.2.5 Latency analysis

The actual execution time of a crowdsourcing process
dependsonmany factors such as the jobpublication/validation
mechanisms of the platform, the availability of crowd work-
ers, the difficulty of tasks, etc., which are not fully determined
by the algorithm. Nonetheless, in this paper, we consider
using latency as a metric for algorithms. To be precise, we
consider the roundmodel of latency [27]. That is, wemeasure
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the latency by the total number of task-publication rounds,
assuming sufficient workers for parallel task processing in
each round.

SPR is parallelism-friendly. The comparisons of different
item pairs can be crowdsourced in parallel if they are inde-
pendent, following the typical idea adopted in distributed
algorithms. Specifically, the (m, x)-sampling procedure for
finding a reference can be done in parallel since the micro-
tasks are independent (see Sect. 4.2.1). Then, log x rounds
are required to find the m max items, and another logm
rounds are to sort the m candidates for selecting the median.
The latency for selecting the reference is thus log x + logm.
During partitioning, the reference can be compared with all
the other items simultaneously, thus the latency is constant.
Finally, all the items inW are sorted. The latency for sorting
depends on the sorting algorithm. Recall that we use the bub-
ble sort, a best-case linear sorting algorithm, to reduce the
monetary cost (see Sect. 4.2.3). We may use the odd-even
transportation sort algorithm, which can be regarded as a
parallel version of bubble sort, to further reduce the latency.
The total number of rounds for sorting is thus |W| = O(ck)
in the worst case and 2 = O(1) in the best case (i.e., W
is already sorted). To sum up, the overall latency of SPR is
O

(
Bpair · (log x + logm + ck)

)
but, in practice, often close

to O
(
Bpair · (log x + logm)

)
.

Microtask-level batch processing. To compare a pair
of items, there is often latency between the distribution of
microtasks and the collection of user feedbacks. At one
extreme, every time only onemicrotask is sent into the crowd.
Assume that w microtasks are sufficient and necessary to
make a judgment. In this way, the monetary cost is w, which
is minimized, but there is also a latency of w, which is often
undesirable. At the other extreme, we can simply send Bpair

microtasks into the crowd at once, minimizing the latency to
1 but increasing the monetary cost to Bpair, which is often
wasteful. To strike a balance between the monetary cost and
the latency, we distribute microtasks in batches. Specifically,
if we distribute η microtasks at one time, then we reduce the
latency to �w/η�, with an overhead cost of at most η.

5 SPR+: a budget-boundedmethod

One problem with SPR is that it requires as input a bud-
get Bpair for each paired comparison. Although this is
also required by a wide range of existing studies (e.g.,
[4,6,8,22,32]), it is a bit difficult for a user to specify such
a pairwise budget in practice. A more natural and practical
scenario is that the user provides a total budget for the top-k
query and relies on the platform/algorithm to make wise use
of the budget.

In this section, we propose a budget-bounded version of
the SPR algorithm, named SPR+, which takes as input a total
budget Btotal and adaptively distributes Btotal into pairwise
comparisons such that the entire process is transparent to the
user. The main idea here is also two-layered.8

1. Query-level cost adaptation. Since some of the paired
comparisons are easy and some are difficult, the budget
for a paired comparison should not be fixed but continu-
ously changing as the process goes, such that eventually
more budget could be assigned to more difficult compar-
isons.

2. Microtask-level cost adaptation. When comparing two
items, the difficulty of the comparison could be esti-
mated based on the judgments collected so far. Intuitively,
judgments of an easier comparison tend to have a more
consistent inner structure (i.e., different subsets of the
judgments lead to similar conclusions).

Based on the above idea, the budget-bounded SPR+ algo-
rithm keeps the main framework of SPR and improves the
pairwise comparison module (Sect. 5.1) and the partition
module (Sect. 5.2).

5.1 Early termination of tied comparisons

The key idea of early termination is to “foresee” the tied com-
parisons before actually exhausting the budgets. Using the
Stein’s estimation, the number of samples needed to compare
a pair of items (i.e., to estimate the mean μ of some normal
distribution N (μ, σ 2)) can be evaluated as n = max{y, y′},
where y is the number of samples in the first stage and

y′ =
⌈
t21− α

2 ,y−1S
2
y L

−2
⌉
(see Sect. 3.1). It has been shown

that the exact distribution of n is [15]:

Pr {n = y} = Pr

{
χ2
y−1 ≤ (y − 1)y

Cy

}
,

and, for any integer z > y,

Pr {n= z}=Pr

{
(y − 1)(z − 1)

Cy
< χ2

y−1 ≤ (y − 1)z

Cy

}
,

where χ2
y−1 is the χ2-distribution with y−1 degrees of free-

dom and Cy = t21− α
2 ,y−1σ

2L−2 is the optimal fixed-sample

size required for the comparison, if the variance σ 2 were
known. Given the budget Bpair for a paired comparison, our

8 Note that this adaptive budget allocation does not affect the unit price
of one single judgment from the crowd, which is assumed to be fixed
regardless the difficulty of the paired comparison.
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idea of difficult comparison detection is to calculate the prob-
ability

Pr
{
n > Bpair

} = 1 − Pr {n = y} −
Bpair∑

z=y+1

Pr {n = z}

= 1 − Pr

{
χ2
y−1 ≤ (y − 1)Bpair

Cy

}
. (3)

Since the varianceσ 2 is unknown,we cannot directly com-
pute Cy . One may think of bounding σ 2 using the sample
variance S2y to some confidence level, so that there can be
some estimations of Pr

{
n > Bpair

}
. Unfortunately, viewed

as a function of σ 2, Pr
{
n > Bpair

}
could be very sensitive to

the disturbance of σ 2. Hence, even if the estimation of σ 2 is
accurate with respect to some confidence level, the estimated
range of σ 2 could still be too large to be practically useful.

To tackle the above difficulty, our idea is to view
Pr

{
n > Bpair

}
as a statistic of the distributionN (μ, σ 2), i.e.,

the distribution fromwhich the samplesV = {v1, v2, · · · , vy}
are drawn. The bootstrapping technique [14] can be used to
accurately estimate Pr

{
n > Bpair

}
by repeatedly resampling

from the existing samples V = {v1, v2, · · · , vy}. The details
of the bootstrapping technique are shown in Algorithm 7.

Algorithm 7 LikelyTie(V )

Input: V = {v1, v2 . . . , vy}, collected judgments
Parameter: R, num. of bootstrapping rounds; θ , threshold
1: for i ← 1, 2, · · · , R do
2: Vi ← y random samples from V (with replacement)
3: S2i ← Sample variance of Vi
4: pi ← Evaluate Equation 3 using S2i
5: return true if 1

R

∑R
i=1 pi > θ , or false otherwise

The bootstrapping technique takes R resampling rounds.
In each round, it takes a set Vi of y samples (with replace-
ment) from V (Line 2). Then, it evaluates Equation 3 using
the sample variance of Vi (Lines 3-4). After R rounds, the
average probability p̄ = 1

R

∑R
i=1 pi is considered as the final

estimation of Pr{n > Bpair}. The process then compares p̄
against a threshold θ to determine whether or not (oi , o j ) is
a difficult pair (Line 5).

Integrating the bootstrapping technique into SteinComp
(Sect. 3.1), we may save cost via early termination of the
difficult comparisons. The integrated comparison process,
called BootstrapComp, is shown in Algorithm 8.

Like SteinComp, repeatedly calling BootstrapComp
will progressively consume the budget Bpair, during which
process the items oi and o j might be distinguished by the
crowd judgments (Line 4-5). BootstrapComp only differs
SteinComp in Lines 6-7, where the probability Pr{n > Bpair}
is estimated without actually consuming Bpair. If (oi , o j ) is

Algorithm 8 BootstrapComp
(
oi , o j ; V , Bpair

)

Input: oi and o j , two items; V , collected judgments; Bpair, budget
(|V | < Bpair)

Parameter: I , minimumworkload (I ≤ Bpair); ε, a very small positive
real

1: if V = ∅ then w ← I else w ← 1
2: Fetch w judgment(s) on oi and o j into V
3: Compute v̄, S2, and y′ from V , where L ← |v̄| − ε

4: if y′ ≤ |V | and v̄ < 0 then return oi ≺ o j
5: if y′ ≤ |V | and v̄ > 0 then return oi � o j
6: if y′ > |V | and LikelyTie(V ) then
7: return oi ≈Bpair o j � indistinguishable under Bpair

8: return oi ≈V o j � indistinguishable using V

likely to be a tie under Bpair, then the comparison process
may terminate early with a judgment that oi ≈Bpair o j .

5.2 More effective partitioning

We can use BootstrapComp to develop a more effective
partitioning procedure, which we call Partition+, as shown
in Algorithm 9. Partition+ preserves the basic methodol-
ogy of Partition (Sect. 4.2.2), aiming at partitioning the
item set O into three distinct sets of winners (W), ties (T ),
and losers (L). Comparing to Partition of SPR, the advan-
tages of Partition+ are threefold.

Algorithm 9 Partition+(O, k, r; Btotal,C)

Input: O, a set of items; k, query parameter; r ∈ O, reference; Btotal,
total budget; C , estimated remaining number of paired comparisons

1: W ← ∅, T ← O,L ← ∅
2: while Btotal > 0 and |T | > 1 do
3: Bpair ← Btotal/C
4: for each item o ∈ T \ {r} do
5: Call BootstrapComp

(
o, r; Vo,r , Bpair

)

6: Move o to W (or L) if o � r (or o ≺ r )
7: (Btotal,C) ← (Btotal − comparison cost,C − 1)
8: Try to find the kth best item r ′ in W
9: if r ′ found then HT- Update

(
W, T ,L, r , r ′)

10: if |W ∪ T | < k then
11: Try to find the kth best item r ′ in W ∪ T ∪ L
12: if r ′ found then HT- Update

(
W, T ,L, r , r ′)

13: if T unchanged and ∀o ∈ T : o ≈Bpair r then break

14: return (W, T ,L) and (Btotal,C)

First, Partition+ implements a global budget control by
accepting as input an available total budget Btotal for the entire
partitioning process. The budget for each paired comparison
is adaptively calculated from (i) the remaining total bud-
get and (ii) the estimated number of remaining comparisons
(Lines 3 and 7). This strategy, although simple, is very effec-
tive in terms of budget allocation. In the beginning, when
there are a large number of undistinguished items, the cal-
culated budget for each paired comparison, Bpair, is small.
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With such a small budget Bpair, the easiest pairs of items
might be distinguished. Then, as the confirmed winners and
losers move from T to W and L (Line 6), more budget is
allocated to the comparisons that are more difficult.

Second, Partition+ uses BootstrapComp, instead of
SteinComp, for paired comparisons (Line 5).As discussed in
Sect. 5.1, with a small number of samples,BootstrapComp
is able to detect those very difficult comparisons and, thereby,
terminate the comparison at an early stage. Note that the
budget for a comparison is dynamically changing. Thus, even
if the comparison between oi and o j is early terminated due
to insufficient budget Bpair (i.e., oi ≈Bpair o j ), the comparison
may continue if there is a larger budget B ′

pair later on.
Finally, Partition+ makes more use of the hypothesis

testing technique (Lines 8–9 and 10–12) as discussed in
Sect. 4.2.4. In particular, in order to handle the rare case
of having chosen a very bad reference r (i.e., r is confirmed
to be better than o∗

k due to |W∪T | < k), Partition+ imme-
diately searches the entire set of items for a better reference
r ′ (Lines 10–12). Like the case for |W| ≥ k (Lines 8-9),
here, as long as there exists such an r ′, it is guaranteed that
o∗
k � r ′, thus r ′ is a better reference than r . Note again that
this process of changing the reference is free of monetary
cost.

5.3 The SPR+ algorithm

Weconclude the discussions so far by presenting an enhanced
version of SPR, named SPR+, as shown in Algorithm 10.
As can be seen, SPR+ inherits the main framework of SPR,
consisting of threemajor sub-procedures: Selecting the refer-
ence (Lines 1–4), Partitioning (Line 5), and Ranking (Lines
6–12). The major difference of SPR+ from SPR is that the
former takes as input a total budget Btotal for the whole pro-
cess instead of a budget Bpair for every paired comparison.

SPR+ dynamically distributes the total budget Btotal into
the three sub-procedures (i.e., into the paired comparisons)
by estimating the number of comparisons needed in the first
two sub-procedures (Lines 1-2 of Algorithm 10 & Line 3
of Algorithm 9). In particular, it takes O(N ) paired com-
parisons to determine the reference using (m, x)-sampling
(Sect. 4.2.1). The partitioning process takes alsoO(N )paired
comparisons using Algorithm 9. Generating the top-k list
via ranking takes O(|W|2) = O(c2k2) paired compar-
isons in the worst case if the odd-even transportation sort
algorithm [24] is used. Therefore, the total estimated num-
ber of comparisons is C = O(N ) + O(N ) + O(c2k2) =
O(N + c2k2), which is in the same asymptotic order with
SPR (see Sect. 4.2.3). Since the initial estimation, the num-
ber C always decreases as SPR+ proceeds. As mentioned in
Sect. 5.2, such a strategy adaptively assigns more budget to
more difficult comparisons and is thus very effective in terms
of budget allocation.

Algorithm 10 SPR+ (O, k; Btotal)

Input: O, a set of items; k, query parameter; Btotal, total budget
� Selecting a reference

1: Estimate C , the total num. of paired comparisons
2: Bpair ← Btotal/C
3: r ← SelectReference(O; Bpair)
4: Update Btotal and C

� Partitioning
5: (W, T ,L; Btotal,C) ← Partition+ (O, k, r; Btotal,C)

� Ranking
6: if |W| < k and |W ∪ T | ≥ k then
7: R ← W ∪ {random k − |W| items of T }
8: return O∗ ← Sort(R) with budget Btotal
9: if |W ∪ T | < k then
10: R ← W ∪ T ∪ SPR+ (L, k − |W| − |T | ; Btotal)
11: return O∗ ← Sort(R) with budget Btotal
12: return O∗ ← top-k items of Sort(W)

Letw+ be the expected number of microtasks for a paired
comparison using BootstrapComp. Then, the overall cost
of SPR+ is O

((
N + c2k2

) · w+)
. Note that w+ is differ-

ent from w, the expected number of microtasks for a paired
comparison in SPR (using SteinComp).

5.4 Further improving the Top-k List

Since the total budget Btotal is dynamically allocated to each
paired comparison, after selecting the reference, partitioning
and ranking, there could still be budget remaining unspent,
which could be used to further improve the top-k list.

Specifically, after the ranking procedure, we obtain a top-k
list

o1 " o2 " o3 " · · · " ok,

where the relation " is either superior-to (�) or indisting
uishable-from (≈). Since the top-k list is generated by a
sorting procedure (Lines 6–12 of Algorithm 10), any two
neighboring itemsmust have been directly compared. All the
� relations are established with 1 − α confidence, whereas
≈ indicates that the two items cannot be distinguished with
1 − α confidence.

To further improve the ranking of o1, o2, · · · , ok , one sim-
ple solution is to invest moremoney in comparing those pairs
of items (oi , oi+1) where oi ≈ oi+1. However, the compar-
ison between oi and oi+1 could be very difficult, given the
fact that no judgment can ever be made so far. Therefore, we
consider making use of the transitivity of �. In particular, if
we observe a sequence of length �,

oi � oi+1 � oi+2 � · · · � oi+�−2 ≈ oi+�−1,
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and discover that oi+�−1 � oi by comparing oi and oi+�−1,
a local refinement can change the original ranking into

oi+�−1 � oi � oi+1 � oi+2 � · · · � oi+�−2,

eliminating the ≈ relation between oi+�−2 and oi+�−1. To
understand the effect of the local refinement, we may think
of item oi+�−1 in the original ranking as being undervalued.
Hence, by putting the undervalued item in a higher position
in the list, the local refinement contributes to a better ranking.

In practice, we take a backward view to implement the
above idea. Starting from a tie oi ≈ oi+1, we scan backwards
for the longest sequence (assuming a length of �) of the form

oi−�+2 � oi−�+3 � · · · � oi−1 � oi ≈ oi+1.

Then, we compare oi+1 with oi−1, oi−2, · · · , oi−�+2, in
order, to determine the correct position of oi+1. The pro-
cess is exactly the same as the insertion sort. Notice that the
comparisons between items can either be done directly, by
collecting more judgments from the crowd, or indirectly, by
trying the HT technique (Sect. 4.2.4). The locally refined
sequence is then placed back as a whole at its original posi-
tion in the ranking, with possible new ties at its front and
back ends. Then, a new round may start over to handle the
rest of the ties in the ranking until all of them are eliminated
or the budget is used up.

Given any top-k list o1"o2"o3"· · ·"ok withmultiple ties,
it remains to decidewhich tie to handle next, regardingwhich
here are two considerations: On the one hand, priority should
be given to the more uncertain ties. Unlike the � relations
which are all at least 1 − α confident, the ties are associated
with different levels of confidence. Consider a tie oi ≈ o j

and the bag of judgments Vi, j for comparing oi and o j . By
solving the Stein’s equation with respect to the confidence,

y′ =
⌈
t21− x

2 ,y−1S
2
y L

−2
⌉

,

we obtain a solution x = α′ with fixed y = y′ = |Vi, j |. Let
conf(oi , o j )

def= 1−α′. Then, the less conf(oi , o j ) is, themore
uncertain the tie oi ≈ o j is. On the other hand, priority should
also be given to the higher positions in the ranking since they
are oftenmore important.Wemay use a hyperbolic discount-
ing scheme (e.g., imp(t)

def= 1
1+t ), to describe the importance

of the t th position. Eventually, combining the confidence of
the tie, conf(oi , o j ), and the position importance of the tie,
imp(t), there can actually be an ranking among the ties. Then,
the next tie to be handled is therefore the first one in such a
ranking.

6 Experiments

6.1 Datasets

Weuse four datasets in our experiments: IMDb, Book, Jester,
and Photo. All the four datasets are from real-world appli-
cations. The first three are simulated, in the sense that the
pairwise judgments between items are reasonably generated
from the data (e.g., from users’ ratings on items). In con-
trast, the pairwise judgments in Photo are collected from an
actual crowdsourcing platform. All the simulated and col-
lected datasets are publicly available online.9

6.1.1 IMDb

The original dataset is collected from IMDb, containing
642,775 movies.10 IMDb allows its users to rate movies on
a scale of 1 to 10. Each movie in the dataset is associated
with its rating information. Specifically, for each movie oi ,
the dataset provides (i) the total number of ratings casted by
the users, ni , (ii) a coded 10-bin histogram of the ratings,
and (iii) a weighted rank. A coded 10-bin histogram is a
sequence of 10 digits, c1c2 · · · c10, where the code c j means
that 10c j ∼ (10c j + 9)% of the ratings to this movie are j
( j = 1, 2, · · · , 10). The weighted rank of the movie oi is
defined as

WeightedRank(oi ) = μi · ni + 172500

ni + 25000
,

where μi is the mean rating of oi .

Preprocessing. Weselectmovieswithmore than 100,000
ratings from the original IMDb dataset. For each movie oi ,
we calculate the mean rating μi from the total number of
ratings, ni , and theweighted rank value. After preprocessing,
we obtain a dataset of 1225 movies, each associated with a
mean rating and a coded 10-bin histogram of all its ratings.
A total order of the movies is then determined by their mean
ratings.

Simulating a comparison. To simulate a paired com-
parison from the IMDb dataset, we first transform the
coded histogram c1c2 · · · c10 into an ordinary histogram
p1 p2 · · · p10 by setting p j = (10c j + 5)%, i.e., we use
a single value p j to replace the code c j , which represents
a range of values from 10c j% to (10c j + 9)%. To com-
pare two movies oi and o j , we sample two ratings, si and
s j , from the corresponding transformed histograms. Then,
v(oi , o j ) = 1

10

(
s(oi ) − s(o j )

)
can be regarded as the pref-

erence value of a human worker.

9 https://github.com/yanl2031/Pairwise-Preference-Judgment-
Datasets.
10 https://www.imdb.com/interfaces/.
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6.1.2 Book and Jester

The rest two datasets, Book and Jester, are both about users’
ratings on items (books or jokes).

The Book dataset [46] is collected from Book Crossing, a
free online book club. The original dataset contains 340,556
books and 65,534 user ratings to the books. The ratings are
at a scale of 1–10. In order to get statistically meaningful
distributions of ratings, we filter out those books with less
than 50 ratings. The remaining dataset contains 537 books
and 50,192 ratings. A total order of the books can then be
determined by the mean ratings of the books. For each book,
we also have a 10-bin histogram of its ratings. Therefore,
similar to what we do to IMDb, when comparing two books
oi and o j , we simulate the judgment based on the histograms
of their ratings. Specifically, after sampling si and s j from
the rating histograms, we use v(oi , o j ) = 1

10

(
s(oi ) − s(o j )

)

as the preference value of a human worker.
The Jester dataset [16] is collected from the Jester online

joke recommender system developed by UC Berkeley. The
original dataset contains 100 jokes rated by 24,983 users
where each user rated at least 36 jokes. The ratings are at a
scale of− 10 to 10. In order to simulate comparisons between
jokes,we consider only the 7200users in the datasetwhohave
rated all the jokes. Each joke then has a mean rating of the
7200 ratings, based on which a total order of the jokes can
be determined. We simulate a judgment between two jokes,
oi and o j , by picking a random user out of the 7200 users
and using v(oi , o j ) = 1

20

(
s(oi ) − s(o j )

)
as a preference

judgment, where s(oi ) and s(o j ) are the ratings given by the
picked user.

6.1.3 Photo

This dataset is collected from a real crowdsourcing system,
Figure Eight11. We first collected a set of 200 photographs
of university campuses (one photograph per university) from
Google Images. Then, we collected 339,193 pairwise pref-
erence judgments from Figure Eight, at a rate of 0.1 US cent
per judgment. The decision of which pairs of photographs to
compare was basically uniformly random, but we managed
to guarantee that each of the 19,900 possible pairs received
at least ten judgments. For each paired comparison, we asked
the workers to decide which university is more popular (in
terms of comprehensive factors such as educational strength,
academic support, cultural environment, scholarships, etc.).
To do the comparison, a worker is expected to first recog-
nize the universities from the photos and then provide his
personal opinion. The available choices were at an eight-
point Likert scale: “A(B) is definitely better,” “A(B) is much
better,” “A(B) is better,” and “A(B) is slightly better.” We

11 https://www.figure-eight.com/.

converted these choices to 0.875(−0.875), 0.625(−0.625),
0.375(−0.375), and 0.125(−0.125), respectively. Different
from the other three datasets, we do not have a ground-truth
total order in the Photo dataset. Indeed, although there are
various university rankings such as the Academic Ranking
of World Universities (ARWU)12, the QS World University
Rankings13, and the Times Higher Education World Univer-
sity Rankings14, etc., the consensus rankings of our interest
are different from the above fully statistics-based ones.

6.2 Baselines, metrics, and default settings

Wemainly compared our solutions, SPR and SPR+, with the
following baseline methods.

Infimum cost. Infimum cost is an ideal solution to find
the top-k ranking (see Sect. 4.1). It is based on the following
oracular assumptions:

1. It has luckily, but unknowingly, chosen the actual kth best
item o∗

k as the reference;
2. It compares (o∗

1, o
∗
2), (o

∗
2, o

∗
3), . . . , (o

∗
k−1, o

∗
k ) to confirm

the top-k ranking; and
3. It compares (o∗

k , o
∗
j ) for any j > k to exclude o∗

j from
the top-k results.

It is proved that InfimumCost requires theminimumpossible
TMC to answer the top-k query.

Tournament tree. Tournament trees are widely adopted
in crowdsourced top-k query processing [7,8]. Tournament
tree first randomly groups items into pairs. Winners of paired
comparisons are promoted to upper levels of the tournament
tree, until the best item reaches the root. The second best
item can be identified by building a tournament tree over the
items that ever directly lost to the best item. All k items can
be found in a similar way progressively.

Heap sort. Heap sort is also a common technique to find
top-k results. It first initializes a min-heap with k random
items (i.e., top-k candidates) and then sequentially tests every
other item against the top of the heap. Whenever an item is
found better than the worst candidate in the heap, it expels
the worst candidate from the heap and becomes a new top-k
candidate.

Quick selection. Quick selection is a classic average-case
linear recursive algorithm to find the kth best item (a.k.a. the
kth order statistic) from a set of items. The algorithm finds

12 http://www.shanghairanking.com/.
13 https://www.topuniversities.com/university-rankings/world-
university-rankings/2020.
14 https://www.timeshighereducation.com/world-university-rankings.
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the top-k items by partitioning the item set using the kth best
item.

PBR. Proposed by Busa-Fekete et al. [3], the preference-
based racing (PBR) algorithm compares all the pairs of items
in an incremental manner. Specifically, in each iteration of
PBR, each pair of items receives one more judgment and
confidence intervals are updated. The algorithm terminates
when the top-k items can be determined from the confidence
intervals.

HBA. Proposed by Mohajer et al. [33], the heap-based
algorithm (HBA) is a hybrid of tournament tree and heap sort.
First, the entire set of items is divided into k groups. In each
group, a tournament tree is built to find the best item within
the group. A max-heap of the k best items is then built; the
top of heap is thus the top-1 item. HBA repeats this process
to find the other top-k results.

We use the following three metrics to evaluate the perfor-
mance of the algorithms:

– TMC, which is the total monetary cost needed by an algo-
rithm for answering the top-k query (i.e., generating a
top-k ranked list).

– Latency, which is the number of iterations an algorithm
needs for answering a top-k query. Note that within one
iteration, multiple microtasks could be published and
handled in parallel.

– NDCG (normalized discounted cumulative gain), which
is a widely used metric for measuring the quality of the
top-k result of an algorithm with respect to a known
ground-truth ranking.

It is worthmentioning that the calculation of NDCG relies on
precise ground-truth rankings. In our experiments, we have
such ground-truth rankings for IMDb, Book, and Jester but
not Photo (see Sect. 6.1). Since the ground truth is almost
always unknown in practice, the logic of our experiments is
that, if SPR/SPR+ can achieve good NDCGs with less costs
on IMDb, Book, and Jester, then it is reasonable to trust their
accuracy and economic efficiency on Photo as well as other
data from practical applications.

Investigated parameters and their evaluated ranges are
listed in Table 4. Unless otherwise specified, in each exper-
iment we vary one parameter and set the remaining ones to
their defaults (shown in bold).

6.3 Effectiveness of SPR

We first conducted a set of experiments on different datasets
to compare the cost (i.e., TMC and latency) of SPR and
the above-mentioned algorithms. The ideal infimum solution
was also used as a reference. The experimentswere donewith
default parameters, i.e., with query parameter k = 10, confi-

Table 4 Experiment parameters

Parameter Values

Number of items, N 25, 50, 100, 200, 400, 800, All

Query parameter, k 1, 5, 10, 15, 20

Confidence level, 1 − α 0.8, 0.85, 0.9, 0.95, 0.98

Pairwise comparison budget, Bpair 100, 200, 500,

1000, 2000, 4000

Bootstrapping rounds, R 100, 200, 500, 1000

Bootstrapping threshold, θ 0.90, 0.92, 0.95, 0.97, 0.99

(a) IMDb (b) Book

(c) Jester (d) Photo

Fig. 5 TMC and latency of SPR and the baselines

dence level 1 − α = 0.98, and budget Bpair = 1000 on each
dataset.

The results are shown in Fig. 5. The x- and y-axes are
TMC and latency, respectively. There is one figure for every
dataset. (Note that the x-axis of Fig. 5a is in the logarithmic
scale of base 2.) As can be seen, SPR is consistently the
closest to the ideal infimum solution in all the cases.

All the other solutions are times or even magnitudes more
expensive than SPR, in terms of either TMC (e.g., quick
selection and PBR) or latency (e.g., heap sort and HBA).
Indeed, although quick selection is known as an average-
linear algorithm for finding the kth best item, it is also known
that the practical cost, in terms of number of comparisons,
is usually high [19]. PBR maintains the confidence intervals
based on the Hoeffding inequality [3]. Although the Hoeffd-
ing inequality empowers PBR with the ability of handling
general, unknown distributions, it does not make much use
of the model assumption on how comparisons were actually
made and therefore typically requires much more answers
from the crowd to make a confident judgment. For latency,
we notice that it is difficult for heap sort to run in paral-
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lel. It can be shown that the overall latency heap sort is
O

(
BpairN log k

)
, which is asymptoticallymuchmore expen-

sive than O
(
Bpair log N

)
of tournament tree. HBA is a hybrid

of tournament tree and heap sort and thus has an overall
latency in between (with the heap sort steps being an obvi-
ous latency bottleneck). Such high TMC or latency costs
make those baseline methods less competitive in practice.
More experimental evaluations between SPR and the base-
line methods can be found in the earlier version of this work
[23].

6.4 Effectiveness of SPR+

6.4.1 Effectiveness on simulated datasets

The next set of experiments is to evaluate the effectiveness
of the budget control method SPR+. To do this, we first ran
SPR and recorded its TMC. Then,we used the recordedTMC
of SPR as the input budget Btotal of SPR+. We compared
the costs of SPR+ and SPR (i.e., TMC and latency) and the
qualities of their outcomes (i.e., NDCGof top-k ranked lists).
The purpose was to demonstrate that, with approximately
the same cost, SPR+ achieved similar or even better top-
k ranking results. We conducted the experiments on the
simulated datasets (IMDb, Book, and Jester) under various
parameter settings.

Figure 6 shows the trend of TMC and query latency by
varying the query parameter k. The cost of the ideal infimum
solution is also shown as a reference. Figure 6a, c shows
that SPR+ consumed similar or less cost. Indeed, the bud-
get offered to SPR+, Btotal, was exactly the TMC of SPR.
By design, SPR+ will use up the budget Btotal to maximize
the quality of the final top-k ranking. In particular, if there is
remaining budget after the reference selection, partitioning
and ranking phases, the budget will be used to refine the top-
k ranking (Sect. 5.4). Therefore, SPR+ and SPR typically
have very close TMCs under our experiment setting, except
for the simple cases where no much refinement is neces-
sary (for example, when k is as small as 1 or 5 in the IMDb
dataset). The refinement process might be at the expense of
latency. As SPR+ allocates the total budget Btotal adaptively
into its entire running process, the amount of budget left for
final refinement depends on how much has been spent dur-
ing the previous three procedures, which in turn depends on
the difficulties of comparisons therein. Therefore, the rela-
tive latency overhead of SPR+ over SPR is data-related and
could be affected by query parameters. It can be seen that
SPR+ typically has a latency smaller than that of SPR, espe-
cially when k ≥ 15 on IMDb and Book datasets, but there
are still cases where SPR+ requires more rounds to complete
(e.g., k = 5 on Book and k ≤ 15 on Jester). This could be
because SPR+ publishes less microtasks due to the use of
bootstrapping and hypothesis testing techniques in the previ-

(a) TMC (IMDb) (b) Latency (IMDb)

(c) TMC (Book) (d) Latency (Book)

(e) TMC (Jester) (f) Latency (Jester)

Fig. 6 Cost of SPR and SPR+ under varying k

ous Select-Partition-Rank procedures. Since in all the cases
SPR+, given a budget of the TMC of SPR, costs no more
than SPR does, a natural question is whether SPR+ can also
generate top-k rankings of the same or even better quality.
Figure 7 shows the NDCG of the top-k results produced by
SPR and SPR+ on IMDb, Book, and Jester. As can be seen,
SPR+ achieves a visible improvement over SPR in most of
the cases. Relating Fig. 7 with Fig. 6, it is clear that, com-
paring to SPR, SPR+ produces better top-k results with the
same or fewer amount of TMC.

We also experimentally evaluated the impact of the total
number of items, N , and the confidence level, 1− α, as they
also affect the results of SPR+. Although different datasets
were already of different sizes (i.e., different N ), we fur-
ther investigated the effectiveness of SPR+ under varying N
in each dataset. Specifically, for each choice of N of each
dataset, we kept the actual top-N items of that dataset and
ran the algorithms on these N items. Figure 8 shows the TMC
and query latency by varying N on IMDb, Book, and Jester,
respectively. In all the cases, SPR+ has nearly the same TMC
with SPR, as expected. The pairwise comparisons in Book
and Jester are in general more difficult than those in Movie
data. Therefore, the refinement process may generate a bit
larger latency than SPR does, but still, the latency values of
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(a) NDCG (IMDb) (b) NDCG (Book)

(c) NDCG (Jester)

Fig. 7 NDCG of SPR and SPR+ under varying k

(a) TMC (IMDb) (b) Latency (IMDb)

(c) TMC (Book) (d) Latency (Book)

(e) TMC (Jester) (f) Latency (Jester)

Fig. 8 Cost of SPR and SPR+ under varying N

SPR and SPR+ are at the same level. In Fig. 9, it can be seen
that theNDCGperformance of SPR+ is also at the same level
of SPR, with clear dominance in the Book data.

Similar results can be found when we vary the confidence
level 1 − α, as shown in Figs. 10 and 11.

(a) NDCG (IMDb) (b) NDCG (Book)

(c) NDCG (Jester)

Fig. 9 NDCG of SPR and SPR+ under varying N

(a) TMC (IMDb) (b) Latency (IMDb)

(c) TMC (Book) (d) Latency (Book)

(e) TMC (Jester) (f) Latency (Jester)

Fig. 10 Cost of SPR and SPR+ under varying confidence

6.4.2 Effectiveness on real crowdsourced data

We also tested the proposed SPR and SPR+ methods on the
Photo dataset, of which the item comparisons were collected
from a real crowdsourcing platform. Note that, since there is
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(a) NDCG (IMDb) (b) NDCG (Book)

(c) NDCG (Jester)

Fig. 11 NDCG of SPR and SPR+ under varying confidence

(a) TMC (varying k) (b) Latency (varying k)

(c) TMC (varying N) (d) Latency (varying N)

(e) TMC (varying α) (f) Latency (varying α)

Fig. 12 Cost of SPR and SPR+ on Photo

no ground-truth total order in the Photo dataset, the experi-
ments mainly focused on TMC and latency.

Figure 12 shows the results. Comparing to the results on
Movie, Book, and Jester datasets (Figs. 6, 8 and 10), we
observe a clear gap between the TMCs of SPR and SPR+.

(a) IMDb (1,225 items) (b) Book (537 items)

(c) Jester (100 items)

Fig. 13 Ineffectiveness of SPR in budget control

This indicates that the tasks of comparing universities are
generally easy for human workers (i.e., there is clear con-
sensus on which university should be more popular), so that
SPR+ does not have to consume all the budget Btotal to gen-
erate a top-k ranking with confidence guarantees. Indeed,
we observe that the variance of the collected judgments for
Photo is typically lower than the variance of the simulated
judgments on the other datasets.

6.4.3 Budget control as a feature of SPR+

We conducted another set of experiments to demonstrate the
feature of budget control of SPR+. We first ran SPR by vary-
ing Bpair, the budget for each paired comparison, from 100 to
4000. Then, we used the TMC cost of SPR at Bpair = 4000
as the total budget Btotal of SPR+. In particular, we fed SPR+
with γ Btotal, where γ is a discount ratio. Thus, by varying γ ,
we aimed to observe the performance of SPR+ with respect
to the change of the total budget.

Figure 13 shows the results of SPR with varying Bpair. It
is clear that, given the same fixed Bpair, the TMCs of SPR
on different datasets are significantly different. For example,
with Bpair = 500, the TMCs on IMDb, Book, and Jester
are 83,199.30, 62,095.42, and 23,877.58, respectively. Even
considering the different sizes of the datasets (IMDb 1225,
Book 537, and Jester 100), there is no systematic way to
control the TMC using Bpair.

In this sense, we argue that SPR+ is more natural and user-
friendly by directly requesting a total budget Btotal instead of
a pairwise comparison budget Bpair. In comparison, we set
Btotal = 109778.24 for IMDb, Btotal = 143262.11 for Book
and Btotal = 86346.32 for Jester, which are the actual TMCs
of SPR at Bpair = 4000 on these datasets. Figure 14 shows
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(a) IMDb (b) Book

(c) Jester

Fig. 14 Effectiveness of SPR+ in budget control

how SPR+ performs with respect to the change of its total
budget (i.e., with respect to varying γ ). Specifically, on Book
and Jester, γ varies from 25 to 100%. The range on IMBb
is a bit different, from 65 to 100, as 65% of Btotal is merely
71,355.86, which is already slightly less than 72,128.93, the
actual TMC of SPR with Bpair = 100. There can hardly be
any meaningful result with an even less total budget. The
performance of SPR is also plotted as a reference in Fig. 14.
We observe that, on all the datasets, the quality of SPR+ and
SPR results are very close when the same amount of TMC is
consumed. This indicates that SPR+ is as effective as SPR,
while SPR+ has a more natural and systematic way in budget
control.

6.4.4 The role of bootstrapping

An important component of SPR+ is BootstrapComp
(Sect. 5.1). This comparison model can be seen as an
improvement over SteinComp (Sect. 3.1), which is capa-
ble of predictingwhether two items are distinguishable under
somebudget,without actually spendingup the budget. There-
fore, an interesting and important question here is: Whether
the predictions made by BootstrapComp are accurate.

To investigate the above question, given a dataset of N
items, one way is to compare all the N (N−1)

2 pairs of items
using both SteinComp and BootstrapComp. Here, the
Stein’s comparison process SteinComp is used as a refer-
ence. We label a pair of items as “Difficult,” if the items are
indistinguishable by SteinComp, and “Easy” otherwise. The
effectiveness of BootstrapComp can then measured by the
precision of its predictions on “Difficult” and “Easy,” i.e., the
percentage of pairs of items, among all the N (N−1)

2 , whose
labels are correctly predicted.

Table 5 Precision of BootstrapComp on IMDb

Bpair Esy.-Esy. Esy.-Diff. Diff.-Esy. Diff.-Diff. Precision

100 1.00 0.00 0.29 0.71 0.95

200 0.28 0.72 0.97

500 0.26 0.74 0.98

1000 0.24 0.76 0.99

2000 0.23 0.77 0.99

4000 0.30 0.70 0.95

Table 6 Precision of BootstrapComp on book

Bpair Esy.-Esy. Esy.-Diff. Diff.-Esy. Diff.-Diff. Precision

100 1.00 0.00 0.28 0.72 0.87

200 0.27 0.73 0.91

500 0.26 0.74 0.95

1000 0.24 0.76 0.97

2000 0.22 0.78 0.98

4000 0.21 0.79 0.99

Table 7 Precision of BootstrapComp on Jester

Bpair Esy.-Esy. Esy.-Diff. Diff.-Esy. Diff.-Diff. Precision

100 1.00 0.00 0.29 0.71 0.88

200 0.28 0.72 0.92

500 0.26 0.74 0.96

1000 0.25 0.75 0.97

2000 0.21 0.79 0.98

4000 0.24 0.76 0.99

We ran the above-designed experiments on each of the
datasets under varying pairwise comparison budget Bpair.
Tables 5, 6, 7 and 8 show the precision of BootstrapComp
under each choice of Bpair in each dataset. In addition to
overall precision values, in each of the tables there are four
columns of the form “X-Y,” meaning that the item pairs with
a true label of “X” being predicted as “Y.” As can be seen in
Tables 5-8, in all the cases, easy pairs were correctly identi-
fied as “Easy.” Most (≥ 70%) of the difficult pairs were also
correctly detected as “Difficult.”When the pairwise compari-
son budget Bpair increases, the overall precisionwas typically
≥ 95%. Considering the fact that SPR+ already has amecha-
nism to avoid difficult comparisons, the results here confirm
that BootstrapComp can precisely predict difficult pairs
and thus may save the monetary cost by early terminating
such comparisons.

We have also conducted experiments to investigate the
sensitivity of SPR+ to the changes of bootstrapping param-
eters, i.e., the number of bootstrapping rounds R and the
threshold θ (see Algorithm 7).
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Table 8 Precision of BootstrapComp on Photo

Bpair Esy.-Esy. Esy.-Diff. Diff.-Esy. Diff.-Diff. Precision

100 1.00 0.00 0.29 0.71 0.93

200 0.28 0.72 0.96

500 0.26 0.74 0.98

1000 0.24 0.76 0.98

2000 0.20 0.80 0.99

4000 0.18 0.82 0.99

(a) NDCG (IMDb) (b) NDCG (Book)

(c) NDCG (Jester)

Fig. 15 Sensitivity of SPR+ to the change of R

Sensitivity to the change of R. Figure 15 shows the
NDCG of SPR+ on IMDb, Book, and Jester, respectively,
when varying the number of bootstrapping rounds R. As can
be seen, there is no significant difference in NDCG when R
goes from 100 to 1,000. This indicates that SPR+ is insensi-
tive to the changes of R.

Sensitivity to the change of θ . Figure 16 shows the
NDCG of SPR+ on IMDb, Book, and Jester, respectively,
when varying the variance threshold θ . As can be seen,
when θ goes from 0.90 to 0.99, there is no significant dif-
ference in the NDCG performance. Therefore, we argue that
SPR+ is also insensitive to the change of the bootstrapping
threshold θ .

To sum up, we conclude from this set of experiments that
bootstrapping is useful and easy to use. The bootstrapping-
based early termination recognizes easy and difficult compar-
isons with good precision (Tables 5–8) and is insensitive to
its parameters (Figs. 15, 16). Therefore, in practice, we may
simply set a sufficiently large R (e.g., R = 200) to secure
the statistical meaningfulness of the bootstrapping process.

(a) NDCG (IMDb) (b) NDCG (Book)

(c) NDCG (Jester)

Fig. 16 Sensitivity of SPR+ to the change of θ

6.5 Comparisons to other budget-boundedmethods

In this set of experiments, we compare SPR+ with a
recent budget-bounded learning-to-rank method, margin-
based maximum likelihood estimate (MLE), proposed by Xu
et al. [43]. Strictly speaking, MLE is not a top-k solution
in the sense that it generates not merely a top-k ranked list
but also a partial order between all the items. Still, we are
interested in this method because

1. MLE is budget-bounded, taking as input a total budget
for the ranking task;

2. MLE aggregates pairwise judgments to form a partial
order between items; and

3. MLE achieves good performance comparing to the other
well applied learning-to-rank methods.

Given a total budget Btotal, MLE selects a set of item pairs
and send them into the crowd for comparisons. For each
paired comparison, the BTL model [2,30] is used to produce
the aggregated judgment from the feedback of the crowd. A
maximum likelihood estimation process is then adopted to
calculate the most likely underlying ordering of all the items
that might generate the observed pairwise judgments.

We offered the same total budget Btotal to both SPR+
and MLE and compared the quality of their top-k results on
IMDb, Book, and Jester datasets. Figure 17 shows the results.
Specifically, we varied the total budget Btotal from 10,000 to
80,000 on each dataset. ForMLE, we first calculated a partial
order�MLE with the total budget Btotal. Then, from the partial
order�MLE, we induced the minimum setWMLE that guaran-
teed to include the top-k itemsunder any total order consistent
with �MLE. Finally, we broke the ties in WMLE, if any, using
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(a) IMDb (N = 25) (b) IMDb (N = 100)

(c) Book (N = 25) (d) Book (N = 100)

(e) Jester (N = 25) (f) Jester (N = 100)

Fig. 17 Performance of SPR+ and MLE

the ground-truth total order of the dataset to obtain a final
top-k ranked list. As can be seen in Fig. 17, when the total
budget increases, the performance SPR+ first increases and
then becomes stable at a high level. In contrast, the NDCG
results of MLE are consistently low. Indeed, MLE aims at
optimizing the global partial order instead of the top-k rank-
ing. A large portion of the budget is thus used to compare the
non-top-k items. In fact, the top-k ranked lists we obtained
were already of low quality as sets. Indeed, we measured the
precision of the top-k ranked lists, which was defined as the
ratio of the true top-k results in a top-k list. When N = 25,

the precision was 0.334∼ 0.518 on IMDb, 0.267∼ 0.466 on
Book, and 0.328∼ 0.512 on Jester. The precision was even
lower when N = 100, as less budget was dedicated to the
comparisons with/among real top-k items.

6.6 Prototype system

Wehave implemented a prototype system of SPR [28], which
can also be upgraded to support SPR+. Figure 18 shows the
architecture of the prototype system. At the core, there is
the algorithm logic of SPR/SPR+, which interacts with the
crowdsourcing platform to publish microtasks and collect
answers. The system manager monitors the entire running
process of SPR/SPR+ and presents the system status (e.g.,
progress, budget consumption status, exceptions, etc.) on a
monitor interface (see Fig. 19).

7 Conclusion

In this work, we first discuss how the pairwise preference
judgment helps to reduce the monetary cost of the compari-
son processes in crowdsourcing. According to our empirical
studies, the pairwise preference judgmentmodel outperforms
the other two popular judgment models (i.e., the graded
model and the pairwise binary model) as it achieves simi-
lar accuracy of comparisons via less number of microtasks.
We propose novel frameworks, SPR and SPR+, to address
the crowdsourced top-k queries. Both SPR and SPR+ are
budget-aware and confidence-aware. SPR requires as input a
budget for each paired comparisons, whereas SPR+ requires
only a total budget for the whole top-k task. Extensive exper-
iments show that both SPR and SPR+ outperform the other
competitors in terms of the total monetary cost, the latency
of query processing as well as the quality of the final top-k
results.

In the future, we plan to further exploit the crowdsourced
top-k queries by introducing other settings and optimization
techniques. For instance, given some partial knowledge of

Fig. 18 Crowdsourced top-k processing toolkit architecture
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Fig. 19 Monitor panel. The user specifies the total budget ($16) and the
confidence level (90%). The pie chart shows the progress of the top-k
processing as well as the costs incurred and estimated costs

the items [6], SPR and SPR+ could select a reference more
effectively so that the overall cost can be further reduced.
We will also explore the statistical tools to enhance the per-
formance of other crowdsourced queries (e.g., ranking, join,
skyline, etc.).
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