
The VLDB Journal
https://doi.org/10.1007/s00778-020-00628-3

SPEC IAL ISSUE PAPER

Interactive checks for coordination avoidance

Michael Whittaker1 · Joseph M. Hellerstein1

Received: 29 January 2020 / Revised: 11 August 2020 / Accepted: 20 August 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Strongly consistent distributed systems are easy to reason about but face fundamental limitations in availability and perfor-
mance. Weakly consistent systems can be implemented with very high performance but place a burden on the application
developer to reason about complex interleavings of execution. Invariant confluence provides a formal framework for under-
standing when we can get the best of both worlds. An invariant confluent object can be efficiently replicated with no
coordination needed to preserve its invariants. However, actually determining whether or not an object is invariant con-
fluent is challenging. In this paper, we establish conditions under which a commonly used sufficient condition for invariant
confluence is both necessary and sufficient, and we use this condition to design (a) a general-purpose interactive invariant
confluence decision procedure and (b) a novel sufficient condition that can be checked automatically. We then take a step
beyond invariant confluence and introduce a generalization of invariant confluence, called segmented invariant confluence,
that allows us to replicate non-invariant confluent objects with a small amount of coordination. We implemented these for-
malisms in a prototype called Lucy and found that our decision procedures efficiently handle common real-world workloads
including foreign keys, rollups, escrow transactions and more. We also found that segmented invariant confluent replication
can deliver up to an order of magnitude more throughput than linearizable replication for low contention workloads and
comparable throughput for medium-to-high contention workloads.

Keywords Consistency · Transactions · Program analysis · Invariants

1 Introduction

When an application designer decides to replicate a piece of
data, they have to make a fundamental choice between weak
and strong consistency. Replicating the data with strong con-
sistency using a technique like distributed transactions (e.g.,
[12,37]) or state machine replication (e.g., [29,34,40,43])
makes the application designer’s life very easy. To the devel-
oper, a strongly consistent system behaves exactly like a
single-threaded system running on a single node, so rea-
soning about the behavior of the system is simple [25].
Unfortunately, strong consistency is at odds with perfor-
mance. The CAP theorem and PACELC theorem tell us
that strongly consistent systems suffer from higher latency
at best and unavailability at worst [1,13,20]. On the other
hand, weak consistency models like eventual consistency

B Michael Whittaker
mjwhittaker@berkeley.edu

Joseph M. Hellerstein
hellerstein@berkeley.edu

1 UC Berkeley, Berkeley, USA

[48], PRAM consistency [33], causal consistency [2] and
others [35,36] allow data to be replicated with high avail-
ability and low latency, but they put a tremendous burden
on the application designer to reason about the complex
interleavings of operations that are allowed by these weak
consistency models. In particular, weak consistency mod-
els strip an application developer of one of the earliest and
most effective tools that is used to reason about the execution
of programs: application invariants [10,26] such as database
integrity constraints [22,23]. Even if every transaction exe-
cuting in a weakly consistent system individually maintains
an application invariant, the system as a whole can produce
invariant-violating states.

Is it possible for us to have our strongly consistent cake and
eat it with high availability too? Can we replicate a piece of
data with weak consistency but still ensure that its invariants
are maintained? Yes... sometimes. Bailis et al. introduced the
notion of invariant confluence as a necessary and sufficient
condition for when invariants can be maintained over repli-
cated data without the need for any coordination [8]. If an
object is invariant confluent with respect to an accompany-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-020-00628-3&domain=pdf

M. Whittaker, J. M. Hellerstein

ing invariant, we can replicate the object and invariant with
the performance benefits of weak consistency and (some of)
the correctness benefits of strong consistency. For example,
a replicated bank account balance (represented as an inte-
ger) is invariant confluent with respect to the invariant of a
non-negative balance, so long as we only allow deposits.

Unfortunately, to date, the task of identifying whether or
not an object actually is invariant confluent has remained
an exercise in human proof generation. Bailis et al. manu-
ally categorized a set of common objects, transactions and
invariants (e.g., foreign key constraints on relations, linear
constraints on integers) as invariant confluent or not. Hand-
written proofs of this sort are unreasonable to expect from
programmers. Ideally we would have a general-purpose pro-
gram that can automatically determine invariant confluence
for us. The first main thrust of this paper is to make invariant
confluence checkable: to design a general-purpose invariant
confluence decision procedure, and implement it in an inter-
active system.

Unfortunately, designing such a general-purpose decision
procedure is impossible because determining the invariant
confluence of an object is undecidable in general. Still, we
can develop a decision procedure that works well in the com-
mon case. For example, many prior efforts have developed
decision procedures for invariant closure, a sufficient (but
not necessary) condition for invariant confluence [31,32].
The existing approaches check whether an object is invariant
closed. If it is, then they conclude that it is also invariant con-
fluent. If it’s not, then the current approaches are unable to
conclude anything aboutwhether or not the object is invariant
confluent.

In this paper, we take a step back and study the underlying
reason why invariant closure is not necessary for invari-
ant confluence. Using this understanding, we construct a
set of modest conditions under which invariant closure and
invariant confluence are in fact equivalent, allowing us to
reduce the problem of determining invariant confluence to
that of determining invariant closure. Then, we use these
conditions to design a general-purpose interactive invariant
confluence decision procedure and a new sufficient condition
for invariant confluence, dubbed merge reducibility. Merge
reducibility covers some cases that are not covered by invari-
ant closure, and it can be checked automatically.

The second main thrust of this paper is to partially avoid
coordination even in programs that require it, by generalizing
invariant confluence to a property called segmented invariant
confluence. While invariant confluence characterizes objects
that can be replicated without any coordination, segmented
invariant confluence allows us to replicate non-invariant con-
fluent objects with only occasional coordination. The main
idea is to divide the set of invariant-satisfying states into
segments, with a restricted set of transactions allowed in
each segment. Within a segment, servers act without any

coordination; they synchronize only to transition across
segment boundaries. This design highlights the trade-off
between application complexity and coordination-freedom;
more complex applications require more segments which
require more coordination and vice-versa.

Finally, we present Lucy: an implementation of our
decision procedures and a system for replicating invariant
confluent and segmented invariant confluent objects. Using
Lucy, we find that our decision procedures can efficiently
handle a wide range of common workloads. For example,
in Sect. 8, we apply Lucy to foreign key constraints, escrow
transactions, an auction application and the TPC-C bench-
mark. Lucy processes these workloads in less than half a
second, and no workload requires more than 66 lines of code
to specify. Moreover, we find that segmented invariant con-
fluent replication can achieve 10× to 100×more throughput
than linearizable replication for low-coordinationworkloads.

In closing, here is a summary of our contributions:

– We propose a novel expression-oriented definition of
invariant confluence that is both formal and simple
(Sect. 2).

– We develop an understanding of why invariant closure is
not necessary for invariant confluence and use this under-
standing to develop conditions under which it is both
necessary and sufficient (Sect. 3).

– We exploit these conditions to design a general-purpose
interactive decision procedure for invariant confluence
(Sect. 4).

– We again exploit these conditions to design a novel non-
trivial sufficient condition for invariant confluence, called
merge reducibility (Sect. 5).

– Wepresent segmented invariant confluence: a generaliza-
tion of invariant confluence that uses a small amount of
coordination to maintain invariants for replicated objects
that are otherwise not invariant confluent (Sect. 6).

2 Invariant confluence

Informally, a replicated object is invariant confluent with
respect to an invariant if every replica of the object is guaran-
teed to satisfy the invariant despite the possibility of different
replicas being concurrently modified or merged together [8].
In this section, we make this informal notion of invariant
confluence precise.

We begin by introducing our system model of replicated
objects in which a distributed object and accompanying
invariant is replicated across a set of servers. Clients send
transactions to servers, and a server executes a transaction
so long as it maintains the invariant. Servers execute trans-
actions without coordination, but to avoid state divergence,
servers periodically gossip with one another and merge their

123

Interactive checks for coordination avoidance

replicas. After we introduce the system model, we present a
formal definition of invariant confluence.

2.1 Systemmodel

A distributed object O = (S,�) consists of a set S of states
and a binary merge operator � : S × S → S that merges
two states into one. A transaction t : S → S is a function
that maps one state to another. An invariant I is a subset of
S. Notationally, we write I (s) to denote that s satisfies the
invariant (i.e., s ∈ I) and ¬I (s) to denote that s does not
satisfy the invariant (i.e., s /∈ I).

Example 1 O = (Z,max) is a distributed object consisting
of integers merged by the max function; t(x) = x + 1 is a
transaction that adds one to a state; and {x ∈ Z | x ≥ 0} is
the invariant that states x are non-negative.

Note that we do not assume any properties of �, like
associativity or commutativity. Also note that by modeling a
transaction t as a function S → S, we focus exclusively on
the effects that a transaction has on the object (i.e., “writes”
to the object). Transactions are also free to read the value
of the object, but these reads are not captured by our model
because, as we’ll see, they do not affect invariant confluence.
For example, we could model any read-only transaction as a
function t where t(s) = s for every s ∈ S.

In our system model, a distributed object O is replicated
across a set p1, . . . , pn of n servers. Each server pi manages
a replica si ∈ S of the replicated object. Every server begins
with a start state s0 ∈ S, a fixed set T of transactions and an
invariant I . Servers repeatedly perform one of two actions.

First, a client can contact a server pi and request that it
executes a transaction t ∈ T . pi speculatively executes t ,
transitioning from state si to state t(si). If t(si) satisfies the
invariant—i.e., I (t(si))—then pi commits the transaction
and remains in state t(si). Otherwise, pi aborts the trans-
action and reverts to state si .

Second, a server pi can send its state si to another server
p j with state s j causing p j to transition from state s j to state
si � s j . Servers periodically merge states with one another
in order to keep their states loosely synchronized.1 Note that
unlikewith transactions, servers cannot abort amerge; server
p j must transition from s j to si � s j whether or not si � s j
satisfies the invariant.

Informally, O is invariant confluent with respect to s0,
T and I , abbreviated (s0, T , I)-confluent, if every replica
s1, . . . , sn is guaranteed to always satisfy the invariant I in
every possible execution of the system.

1 Notably, if O is a CRDT—i.e., O is a semilattice and every transaction
t ∈ T is inflationary—then this periodic merging ensures that O is
strongly eventually consistent [45].

p1

p2

p3

s0 s1 s3 s6

s0 s2 s4

s0 s2 s5 s7

t v

u

u w

(a) System Execution

�
s7

w
s5

�
s6

u
s2

s0

v
s3

t
s1

s0

�
s4

t
s1

s0

u
s2

s0

(b) Expression

Fig. 1 A system execution and corresponding expression

2.2 Expression-based formalism

To define invariant confluence formally, we represent a state
produced by a system execution as a simple expression gen-
erated by the grammar

e :: = s | t(e) | e1 � e2

where s represents a state in S and t represents a transaction in
T . As an example, consider the system execution in Fig. 1a in
which a distributed object is replicated across servers p1, p2
and p3. Server p3 begins with state s0, transitions to state s2
by executing transaction u, transitions to state s5 by executing
transactionw and then transitions to state s7 by merging with
server p1. Similarly, server p1 ends up with state s6 after
executing transactions t and v and merging with server p2.
InFig. 1b,we see the abstract syntax tree of the corresponding
expression for state s7.

We say an expression e is (s0, T , I)-reachable if it corre-
sponds to a valid execution of our system model. Formally,
we define reachable(s0,T ,I)(e) to be the smallest predicate
that satisfies the following equations:

– reachable(s0,T ,I)(s0).
– For all expressions e and for all transactions t in the set T
of transactions, if reachable(s0,T ,I)(e) and I (t(e)), then
reachable(s0,T ,I)(t(e)).

– For all expressions e1 and e2, if reachable(s0,T ,I)(e1) and
reachable(s0,T ,I)(e2), then reachable(s0,T ,I)(e1 � e2).

Similarly, we say a state s ∈ S is (s0, T , I)-reachable if there
exists an (s0, T , I)-reachable expression e that evaluates to s.
Returning to Example 1 with start state s0 = 42, we see that
all integers greater than or equal to 42 (i.e., {x ∈ Z | x ≥ 42})
are (s0, T , I)-reachable, and all other integers are (s0, T , I)-
unreachable.

Finally, we say O is invariant confluent with respect to
s0, T and I , abbreviated (s0, T , I)-confluent, if all reachable
states satisfy the invariant:

{s ∈ S | reachable(s0,T ,I)(s)} ⊆ I

123

M. Whittaker, J. M. Hellerstein

2.3 Equivalence to existing definition

Our definition of invariant confluence is different than the
original definition given in [8], but the difference is merely
cosmetic. We now prove that the two definitions are equiva-
lent.

We say an expression e recursively satisfies I , denoted
I rec(e), if e and all of e’s children satisfy I . That is,

– I rec(s) if I (s),
– I rec(t(e)) if I rec(e) and I (t(e)), and
– I rec(e1 � e2) if I rec(e1), I rec(e2), and I (e1 � e2).

In [8], Bailis et al. define (s0, T , I)-confluence to mean
that (a) the start state s0 satisfies the invariant and (b) all
(s0, T , I)-reachable expressions recursively satisfying I are
closed under join. That is, O is (s0, T , I)-confluent if I (s0)
and

∀e1, e2 ∈ {e | reachable(s0,T ,I)(e)}.
I rec(e1) ∧ I rec(e2) 	⇒ I (e1 � e2)

Theorem 1 Consider a state-based object O = (S,�), a
start state s0, a set of transactions T and an invariant I . The
following two are equivalent:

1. {s ∈ S | reachable(s0,T ,I)(s)} ⊆ I
2. I (s0) and ∀e1, e2 ∈ {e | reachable(s0,T ,I)(e)}. I rec(e1) ∧

I rec(e2) 	⇒ I (e1 � e2)

Proof First, we show that (1) implies (2). Trivially,
reachable(s0,T ,I)(s0), so by (1), I (s0). Let e1 and e2 be arbi-
trary (s0, T , I)-reachable expressions. Then e1 � e2 is also
reachable, so by (1), I (e1 � e2).

Next, we show that (2) implies (1). We prove by structural
induction that for all e, reachable(s0,T ,I)(e) 	⇒ I rec(e).
From this, (1) is immediate.

– Case s0. I (s0) by (2), so I rec(s0)
– Case t(e). Let t(e) be (s0, T , I)-reachable. Then,
reachable(s0,T ,I)(e) and I (t(e)). By the inductive hypoth-
esis, I rec(e), so by the definition of I rec(·), I rec(t(e)).

– Case e1 � e2. Let e1 � e2 be (s0, T , I)-reachable. Then,
reachable(s0,T ,I)(e1) and reachable(s0,T ,I)(e2). By the
inductive hypothesis, I rec(e1) and I rec(e2). By (2), I (e1�
e2). Thus, by the definition of I rec(·), I rec(e1 � e2).

��

3 Invariant closure

Our ultimate goal is towrite a program that can automatically
decide whether a given distributed object O is (s0, T , I)-
confluent. Such a program has to automatically prove or
disprove that every reachable state satisfies the invariant.
However, automatically reasoning about the possibly infi-
nite set of reachable states is challenging, especially because
transactions and merge functions can be complex and can
be interleaved arbitrarily in an execution. Due to this com-
plexity, existing systems that aim to automatically decide
invariant confluence instead focus on deciding a sufficient
condition for invariant confluence—dubbed invariant clo-
sure—that is simpler to reason about [31,32]. In this section,
we define invariant closure and study why the condition is
sufficient but not necessary. Armed with this understanding,
we present conditions under which it is both sufficient and
necessary.

We say an object O = (S,�) is invariant closed with
respect to an invariant I , abbreviated I -closed, if invariant
satisfying states are closed under merge. That is, for every
state s1, s2 ∈ S, if I (s1) and I (s2), then I (s1 � s2).

Theorem 2 Given an object O = (S,�), a start state s0 ∈ S,
a set of transactions T , and an invariant I , if I (s0) and if O
is I -closed, then O is (s0, T , I)-confluent.

Proof Theorem 2 states that invariant closure is sufficient for
invariant confluence. To prove this informally, recall that our
system model ensures that transaction execution preserves
the invariant, so if merging states also preserves the invariant
and if our start state satisfies the invariant, then inductively
it is impossible for us to reach a state that doesn’t satisfy the
invariant.

More formally, consider an arbitrary state s that is reach-
able via expression e. We prove by structural induction that
for every expression e, if e is (s0, T , I)-reachable then I (e).

– Case s0. s0 is reachable and satisfies the invariant by
assumption.

– Case t(e). If t(e) is reachable, then it satisfies the invari-
ant by definition.

– Case e1 � e2. Let e1 � e2 be (s0, T , I)-reachable. Then,
reachable(s0,T ,I)(e1) and reachable(s0,T ,I)(e2). By the
inductive hypothesis, I (e1) and I (e2). By invariant clo-
sure, I (e1 � e2).

��
Theorem 2 is good news because checking if an object

is invariant closed is more straightforward than checking if
it is invariant confluent. Existing systems typically use an
SMT solver like Z3 to check if an object is invariant closed
[9,17,21]. If it is, then by Theorem 2, it is invariant confluent.

123

Interactive checks for coordination avoidance

x

y

s0

s1

s2

s3

(a) Invariant

x

y

s0

s1

s2

s3

(b) Reachable points

Fig. 2 An illustration of Example 2

Unfortunately, invariant closure is not necessary for invari-
ant confluence, so if an object is not invariant closed, these
systems cannot conclude that the object is not invariant con-
fluent. The reason why invariant closure is not necessary for
invariant confluence is best explained through an example.

Example 2 Let O = (Z × Z,�) consist of pairs (x, y) of
integers where

(x1, y1) � (x2, y2) = (max(x1, x2),max(y1, y2))

Our start state s0 ∈ Z × Z is the point (0, 0). Our set T
of transactions consists of two transactions: tx+1((x, y)) =
(x + 1, y) which increments x and ty−1((x, y)) = (x, y −
1) which decrements y. Our invariant I = {(x, y) ∈ Z ×
Z | xy ≤ 0} consists of all points (x, y) where the product of
x and y is non-positive.

The invariant and the set of reachable states are illustrated
in Fig. 2 in which we draw each state (x, y) as a point in
Z
2. The invariant consists of the second and fourth quadrant,

while the reachable states consist only of the fourth quadrant.
From this, it is immediate that the reachable states are a subset
of the invariant, so O is invariant confluent. However, letting
s1 = (−1, 1) and s2 = (1,−1), we see that O is not invariant
closed. I (s1) and I (s2), but letting s3 = s1 � s2 = (1, 1), we
see ¬I (s3).

In Example 2, s1 and s2 witness the fact that O is not
invariant closed, but s1 is not reachable. This is not particu-
lar to Example 2. In fact, it is fundamentally the reason why
invariant closure is not equivalent to invariant confluence.
Invariant confluence is, at its core, a property of reachable
states, but invariant closure is completely ignorant of reacha-
bility. As a result, invariant-satisfying yet unreachable states
like s1 are the key hurdle preventing invariant closure from
being equivalent to invariant confluence. This is formalized
by Theorem 3.

Theorem 3 Consider an object O = (S,�), a start state
s0 ∈ S, a set of transactions T , and an invariant I . If the

invariant is a subset of the reachable states (i.e., I ⊆ {s ∈
S | reachable(s0,T ,I)(s)}), then

(I (s0) and O is I -closed) ⇐⇒ O is (s0, T , I)-confluent

Proof The forward direction of Theorem 3 follows immedi-
ately fromTheorem 2. The backward direction holds because
any two invariant satisfying states s1 and s2 must be reach-
able (by assumption), so their join s1 � s2 is also reachable.
And because O is (s0, T , I)-confluent, all reachable points,
including s1 � s2, satisfy the invariant. Moreover, s0 is reach-
able, so I (s0) because O is (s0, T , I)-confluent. ��

4 Interactive decision procedure

Theorem 3 tells us that if all invariant satisfying points are
reachable, then invariant closure and invariant confluence are
equivalent. In this section,we present the interactive invariant
confluence decision procedure shown in Algorithm 1, that
takes advantage of this result.

4.1 The decision procedure

A user provides Algorithm 1 with an object O = (S,�), a
start state s0, a set of transactions T , and an invariant I . The
user then interacts with Algorithm 1 to iteratively eliminate
unreachable states from the invariant. Meanwhile, the algo-
rithm leverages an invariant closure decision procedure to
either (a) conclude that O is or is not (s0, T , I)-confluent or
(b) provide counterexamples to the user to help them elim-
inate unreachable states. After all unreachable states have
been eliminated from the invariant, Theorem 3 allows us to
reduce the problem of invariant confluence directly to the
problem of invariant closure, and the algorithm terminates.
We now describe Algorithm 1 in detail. An example of how
to use Algorithm 1 on Example 2 is given in Fig. 3.

IsInvConfluent assumes access to an invariant closure
decision procedure IsIclosed(O, I). The decision proce-
dure IsIclosed(O, I) returns a triple (closed, s1, s2). Closed
is a boolean indicating whether O is I -closed. If closed is
true, then s1 and s2 are null. If closed is false, then s1 and
s2 are a counterexample witnessing the fact that O is not
I -closed. That is, I (s1) and I (s2), but ¬I (s1 � s2) (e.g., s1
and s2 from Example 2). As we mentioned earlier, we can
(and do) implement the invariant closure decision procedure
using an SMT solver like Z3 [17].

IsInvConfluent First checks that s0 satisfies the invari-
ant. s0 is reachable, so if it does not satisfy the invariant, then
O is not (s0, T , I)-confluent and IsInvConfluent returns
false. Otherwise, IsInvConfluent calls a helper function
Helper that—in addition to O , s0, T , and I—takes as argu-
ments a set R of (s0, T , I)-reachable states and a set N R

123

M. Whittaker, J. M. Hellerstein

R NR I − NR

(a) IsInvConfluent determines I(s0) and then
calls Helper with R = {s0}, NR = ∅, and I =
{(x, y) |xy ≤ 0}.

R NR I − NR

(b) Helper determines that O is not (I − NR)-closed with counterex-
ample s1 = (−1, 1) and s2 = (1,−1). Helper randomly generates some
(s0, T, I)-reachable points and adds them to R. Luckily for us, s2 ∈ R,
so Helper knows that it is (s0, T, I)-reachable. Helper is not sure about
s1, so it asks the user. After some thought, the user tells Helper that s1
is (s0, T, I)-unreachable, so Helper adds s1 to NR and then recurses.

R NR I − NR

(c) Helper determines that O is not (I − NR)-
closed with counterexample s1 = (−1, 2) and
s2 = (3,−3). Helper randomly generates some
(s0, T, I)-reachable points and adds them to R.
s1, s2 /∈ R,NR, so Helper ask the user to label
them. The user puts s1 inNR and s2 inR. Then,
Helper recurses.

R NR I − NR

(d) Helper determines that O is not (I − NR)-closed with counterex-
ample s1 = (−2, 1) and s2 = (1,−1). Helper randomly generates some
(s0, T, I)-reachable points and adds them to R. s2 ∈ R but s1 /∈ R,NR,
so Helper asks the user to label s1. The user notices a pattern in R
and NR and after some thought, concludes that every point with nega-
tive x-coordinate is (s0, T, I)-unreachable. They update NR to −Z × Z.
Then, Helper recurses. Helper determines that O is (I − NR)-closed
and returns true!

Fig. 3 An example of a user interactingwith Algorithm 1 on Example 2. Each step of the visualization shows reachable states R (left), non-reachable
states N R (middle), and the refined invariant I − N R (right) as the algorithm executes

Algorithm 1 Interactive invariant confluence decision pro-
cedure
// Return if O is (s0, T , I)-confluent.
function IsInvConfluent(O , s0, T , I)

return I (s0) and Helper(O , s0, T , I , {s0}, ∅)

// R is a set of (s0, T , I)-reachable states.
// N R is a set of (s0, T , I)-unreachable states.
// I (s0) is a precondition.
function Helper(O , s0, T , I , R, N R)

closed, s1, s2 ← IsIclosed(O , I − N R)
if closed then

return true
Augment R, N R with random search and user input
if s1, s2 ∈ R then

return false
return Helper(O , s0, T , I , R, N R)

of (s0, T , I)-unreachable states. Like IsInvConfluent, the
function Helper(O, s0, T , I , R, N R) returns whether O is
(s0, T , I)-confluent (assuming R and N R are correct). As
Algorithm 1 executes, N R is iteratively increased, which
removes unreachable states from I until I is a subset of
{s ∈ S | reachable(s0,T ,I)(s)}.

First, Helper checks to see if O is (I − N R)-closed. If
IsIclosed determines that O is (I − N R)-closed, then by
Theorem 2, O is (s0, T , I − N R)-confluent, so

{s ∈ S | reachable(s0,T ,I−N R)(s)} ⊆ I − N R ⊆ I

In this case, O is (s0, T , I)-confluent because the set of
(s0, T , I)-reachable states is a subset of (s0, T , I − N R)-
reachable states which is in turn a subset of I . We prove that
now.

Proof Weprove, by structural induction, that every (s0, T , I)-
reachable expression e is also (s0, T , I − N R)-reachable.

– Case s0. s0 is (s0, T , I − N R)-reachable by definition.
– Case t(e). e is (s0, T , I)-reachable, so by the inductive
hypothesis, it is also (s0, T , I − N R)-reachable. More-
over, t(e) ∈ I and t(e) /∈ N R (by assumption), so
t(e) ∈ I − N R. Thus, t(e) is (s0, T , I − N R)-reachable.

– Case e1 � e2. By the inductive hypothesis, e1 and e2
are both (s0, T , I − N R)-reachable, so e1 � e2 is also
(s0, T , I − N R)-reachable.

��
If IsIclosed determines that O is not (I − N R)-closed,

then we have a counterexample s1, s2. That is, s1, s2 ∈ I −
N R, but s1 � s2 /∈ I − N R. We want to determine whether
s1 and s2 are (s0, T , I)-reachable or unreachable. We can
do so in two ways. First, we can randomly generate a set of
reachable states and add them to R. If s1 or s2 is in R, then
we know they are reachable. Second, we can prompt the user
to tell us directly whether or not the states are reachable or
unreachable.

123

Interactive checks for coordination avoidance

In addition to labelling s1 and s2 as reachable or unreach-
able, the user can also refine I by augmenting R and N R
arbitrarily (see Fig. 3 for an example). In this step, we also
make sure that s0 /∈ N R since we know that s0 is reachable.

After s1 and s2 have been labelled as (s0, T , I)-reachable
or not, we continue. If both s1 and s2 are (s0, T , I)-reachable,
then so is s1�s2, but¬I (s1�s2) (because s1�s2 /∈ I −N R).
Thus, O is not (s0, T , I)-confluent, so Helper returns false.
Otherwise, one of s1 and s2 is (s0, T , I)-unreachable, so we
recurse.

Helper recurses only when one of s1 or s2 is unreachable,
so N R grows after every recursive invocation of Helper.
Similarly, R continues to grow asHelper randomly explores
the set of reachable states. As the user sees more and
more examples of unreachable and reachable states, it often
becomes easier and easier for them to recognize patterns that
define which states are reachable and which are not. As a
result, it becomes easier for a user to augment N R and elim-
inate a large number of unreachable states from the invariant.
Once N R has been sufficiently augmented to the point that
I − N R is a subset of the reachable states, Theorem 3 guar-
antees that the algorithm will terminate after one more call
to IsIclosed.

4.2 Limitations

Our interactive invariant confluence decision procedure has
two limitations. First, Algorithm 1 requires an invariant clo-
sure decision procedure, but determining invariant closure is
undecidable in general. For example, let Op = (S,�) where
S is the set of all programs and s1 � s2 = p for some fixed
program p. Letting I be the set of all programs that terminate,
determining if Op is I -closed is tantamount to determining
if p terminates. In practice, we can implement an invariant
closure decision procedure using an SMT solver like Z3 that
works well on simple objects, invariants and merge oper-
ators (e.g., integers, tuples, infinite sets, bit vectors, linear
constraints, basic arithmetic, tuple projection, basic set oper-
ations, bit arithmetic). But, SMT solvers are mostly unable
to analyze more complex constructs (e.g., finite lists [28],
graphs, recursive algebraic data types, nonlinear constraints,
merge operators that contain loops or recursion).

Second, Algorithm 1 relies on a user to identify unreach-
able states. As we saw in Fig. 3, the set of unreachable states
can sometimes be clear, especially if there’s a noticeable
pattern in the set of reachable states. However, if the set of
transactions is large or complex or if the merge operator is
complex, then reasoning about unreachable states can be dif-
ficult. Unlike with reachable states—where verifying that a
state is reachable only requires thinking of a single way to
reach the state—verifying that a state is unreachable requires
a programmer to reason about a large number of system exe-
cutions and conclude that none of them can lead to the state.

In the future, we plan on exploring ways to help a user rea-
son about unreachable states and ways to discover sets of
unreachable states automatically.

4.3 Tolerating user error

Algorithm 1 is an interactive decision procedure. It requires
that a user classify states as reachable or unreachable. To err
is human, so what happens when a user incorrectly classifies
a state? There are two possible errors that can be made, and
Algorithm 1 can be made robust to both.

A user can label an unreachable state as reachable. In
this case, Helper might erroneously find s1 and s2 ∈ R and
return false, concluding that O is not (s0, T , I)-confluent
even when it is. This is inconvenient, but not catastrophic.
We can modify Algorithm 1 so that Helper requires that
whenever a user labels a state s as (s0, T , I)-reachable, they
must also provide an (s0, T , I)-reachable expression e that
evaluates to s. Here, e acts a proof that certifies that s is
indeed reachable. This increases the burden on the user but
completely eliminates this type of user error.

A user can label a reachable state as unreachable. In this
case, IsIclosed(O, I − N R) might return true, even though
O is not (s0, T , I)-confluent. Thus, a user might falsely
believe their distributed object to be (s0, T , I)-confluent even
though it isn’t, and eventually one replica of their distributed
object might enter a state that violates the invariant. We can
mitigate this in two ways. First, we can aggressively expand
R automatically. If a user ever labels a state s as unreach-
able, but s ∈ R, we can notify the user of their mistake.
Second,Helper returns true when O is (I −N R)-closed for
some N R, so O is (s0, T , I −N R)-confluent (even though it
might not be (s0, T , I)-confluent). Thus, when a user repli-
cates their distributed object across a set of servers, they can
deploy with the invariant I − N R instead of I . If N R is
correct and only contains unreachable states, then deploying
with I − N R is equivalent to deploying with I . If N R is
incorrect and contains some (s0, T , I)-reachable states, then
some of these states are artificially made unreachable, but
the system is still guaranteed to never produce a state that
violates I .

5 Merge reduction

In Sect. 3, we discussed how invariant confluence is fun-
damentally a property of reachability and that invariant
closure is sufficient but not necessary for invariant conflu-
ence because it fails to incorporate any notion of reachability.
Using this intuition, we established Theorem 3 and then
exploited the theorem in Algorithm 1. In this section, we
again take advantage of this intuition to develop a new suffi-
cient condition for invariant confluence that can be checked

123

M. Whittaker, J. M. Hellerstein

without user interaction and that covers some cases not cov-
ered by invariant closure.

An expression e = t1(t2(. . . (tn(s)) . . .)) is merge-free
if it does not contain any merges (i.e., it is generated by
the grammar e :: = s | t(e)). An object O = (S,�) is
merge-reducible with respect to a start state s0 ∈ S, a set
of transactions T , and an invariant I , abbreviated (s0, T , I)-
merge reducible, if for every pair e1 and e2 of merge-free
(s0, T , I)-reachable expressions, there exists some merge-
free (s0, T , I)-reachable expression e3 that evaluates to the
same state as e1 � e2. Intuitively, if O is merge-reducible, we
can replace e1 � e2 (which has one merge) with e3 (which
has no merges) to obtain an equivalent expression with fewer
merges.

Example 3 Consider the distributed object O = (Z,max)
consisting of integers merged by the max function. Our start
state s0 = 0 and our invariant I = {x ∈ Z | x ≥ 0}. Our set
T of transactions is the infinite set T = {ty | y ∈ Z} where
ty(x) = x + y is a transaction that adds y to the state. For
example, t2 is a transaction that adds 2 to the state, and t−3

is a transaction which subtracts 3 from the state.
O is (s0, T , I)-merge reducible. Consider twomerge-free

(s0, T , I)-reachable expressions e1 and e2 that evaluate to
states x1 and x2. Without loss of generality, assume x1 ≥ x2.
Then, we can replace e1 � e2 (which evaluates to x1) with e1.
We can also replace it with tx1(0).

Example 4 Consider the distributed object O = ({X ⊆
Z},�) in which each state is a set of integers and where
X1 � X2 = {y} where y = ∑

x∈X1
x + ∑

x∈X2
x . Our start

state s0 = ∅ and our invariant I = {X | ∀x ∈ X . x is even}.
Our set T of transactions is the set T = {t0, t2, t4} where
ti (X) = X ∪ {i} is a transaction that adds i to the state.
For example, t2({0}) = {0, 2}. O is not (s0, T , I)-merge
reducible. Consider the two merge-free (s0, T , I)-reachable
expressions e1 = t2(∅) and e2 = t4(∅). e1 � e2 evaluates
to {6}, but there does not exist a merge-free expression that
evaluates to {6}.
Theorem 4 Given an object O = (S,�), a start state s0 ∈ S,
a set of transactions T , and an invariant I , if I (s0) and if O
is (s0, T , I)-merge reducible, then O is (s0, T , I)-confluent.

Proof Intuitively, the proof of Theorem 4 is a straightforward
induction. We begin with an (s0, T , I)-reachable expres-
sion e and repeatedly replace any subexpression that merges
two merge-free subexpressions with an equivalent merge-
free reachable subexpression (which we can do because O
is merge-reducible). We repeat this process until e has been
completely replacedwith an equivalent merge-free reachable
expression e′. Because I (s0) and because our system model
only executes transactions that preserve the invariant, e′ (and
hence e) is guaranteed to satisfy the invariant. Thus, all reach-

able states satisfy the invariant, so O is invariant confluent.
An illustration of this idea is given in Fig. 4.

More formally, we prove by structural induction on e,
that for all (s0, T , I)-reachable expressions e, there exists
a merge-free (s0, T , I)-reachable expression e′ such that
eval(e) = eval(e′).

– Case 1: e = s0. Trivially, e′ = s0.
– Case 2: e = t(e1). e1 is (s0, T , I)-reachable, so by the
inductive hypothesis, there exists amerge-free (s0, T , I)-
reachable expression e′

1 such that eval(e1) = eval(e′
1).

t(e1) is (s0, T , I)-reachable, so I (t(e1)). Because eval(e1) =
eval(e′

1), we know also that I (t(e′
1)). Thus, t(e

′
1) is

(s0, T , I)-reachable (and join free), so we can let e′ =
t(e′

1).
– Case 3: e = e1 � e2. e1 and e2 are (s0, T , I)-reachable,
so by the inductive hypothesis, there exists equivalent
merge-free (s0, T , I)-reachable expressions e′

1 and e′
2.

O is (s0, T , I)-merge reducible, so there exists an equiv-
alent merge-free (s0, T , I)-reachable expression e′.

Consider an arbitrary (s0, T , I)-reachable expression e
and it’s equivalent merge-free (s0, T , I)-reachable counter-
part e′. e′ is either s0 or t(e′′). In either case, it satisfies the
invariant, so O is (s0, T , I)-confluent. ��

Note thatwhilemerge-reducibility is a sufficient condition
for invariant confluence, it is not necessary. The object in
Example 4 is invariant confluent but not merge-reducible.

Merge-reducibility is a sufficient condition for invari-
ant confluence, but unlike with invariant closure, it is not
straightforward to automatically determine if an object is
merge-reducible. In Theorem 5, we outline a sufficient
condition for merge-reducibility that is straightforward to
determine automatically.

Theorem 5 Given an object O = (S,�), a start state s0 ∈ S,
a set of transactions T , and an invariant I , if the following
criteria are met, then O is (s0, T , I)-merge reducible (and
therefore (s0, T , I)-confluent).

1. O is a join-semilattice. That is, � is associative ((x �
y) � z = x � (y � z)), commutative (x � y = y � x) and
idempotent (x � x = x).

2. For every t ∈ T , there exists some st ∈ S such that for
all s ∈ S, t(s) = s � st . That is, every transaction t is of
the form t(s) = s � st for some constant st .

3. For every pair of transactions t1, t2 ∈ T and for all states
s ∈ S, if I (s), I (t1(s)) and I (t2(s)), then I (t1(s)� t2(s)).

4. I (s0).

Proof Let

e1 = tn(tn−1(. . . (t1(s0)) . . .))

123

Interactive checks for coordination avoidance

�
s7

�
s3

�
s6

t
s1

u
s2

v
s4

w
s5

s0 s0 s0 s0

�
s7

p
s3

�
s6

v
s4

w
s5

s0

s0 s0

�
s7

p
s3

q
s6

s0 s0

r
s7

s0

Fig. 4 An illustration of the proof of Theorem 4.We beginwith a reach-
able expression and convert it into a merge-free reachable expression
by repeatedly replacing the merge of two merge-free reachable subex-

pressions with an equivalent merge-free reachable expression. In this
example, we first replace t(s0) � u(s0) with p(s0). We then replace
v(s0) � w(s0) with q(s0). Finally, we replace p(s0) � q(s0) with r(s0)

and

e2 = um(um−1(. . . (u1(s0)) . . .))

be two arbitrarymerge-free (s0, T , I)-reachable expressions.
For ease of notation, let

ti = ti (. . . (t1(s0)) . . .) and u j = u j (. . . (u1(s0)) . . .)

Wewant to show that there exists somemerge-free (s0, T , I)-
reachable expression that is equivalent to e1 � e2.

To do so, we prove by strong induction on k ∈ N that if
k = i + j where 0 ≤ i ≤ n and 0 ≤ j ≤ m, ti (u j (s0))
is (s0, T , I)-reachable and eval(ti (u j (s0))) = eval(ti (s0) �
u j (s0)).

– Case k = 0. i = j = 0, so t0(u0(s0)) = s0 which is
trivially (s0, T , I)-reachable and equivalent to t0(s0) �
u0(s0) = s0 � s0 which evaluates to s0 (because � is
idempotent).

– Case k = 1. Without loss of generality, assume i = 1
and j = 0. Then, t1(u0(s0)) = t1(s0)which is (s0, T , I)-
reachable because it is a subexpression of tn which is
(s0, T , I)-reachable.Moreover, it is equivalent to t1(s0)�
u0(s0) = t1(s0) � s0 which evaluates to st1 � s0 � s0 =
st1 � s0 = t1(s0) for some st1 ∈ S.

– Case k ≥ 2. If i = 0, then j = k and uk(s0) is (s0, T , I)-
reachable because it is a subexpression of um(s0). Also, it
is equivalent to t0(s0)�uk(s0)which evaluates to uk(s0).
The symmetric result holds if j = 0.
Otherwise, i, j > 1. Let

ei−1, j−1 = ti−1(u j−1(s0))

ei, j−1 = ti (u j−1(s0))

ei−1, j = ti−1(u j (s0))

By the inductive hypothesis, ei−1, j−1, ei, j−1 and ei−1, j

are all (s0, T , I)-reachable. By condition 3 (with s =
eval(ei−1, j−1), t1 = ti , and t2 = u j), I (ei, j−1 � ei−1, j).
ei, j−1 � ei−1, j = ti (ei−1, j) = u j (ei, j−1) = ti (u j (s0)),

Invariant Confluent

Invariant Closed

Criteria (1) – (4)
Merge Reducible

Fig. 5 The relationship between invariant closure, merge reducibility,
criteria (1)–(4) from Theorem 5, and invariant confluence

so I (ti (u j (s0))). Therefore, ti (u j (s0)) is (s0, T , I)-
reachable.

��
An illustration of this proof is given in Fig. 6. We arrange

the expressions e1 and e2 as the left and top edges of a square
grid. Each point in the grid represents a state (with s0 in
the top left corner), and each edge represents the application
of a transaction. A state is circled if we know it satisfies
the invariant. Conditions (1) and (2) tell us that the order
in which we apply transactions are immaterial. Thus, if we
begin at the top left of the square and walk to any other point
in the square, applying transactions along the way, it does not
matter which pathwe take. They are all equivalent. Condition
(4) tells us that the top-left corner satisfies the invariant. We
induct to repeatedly apply condition (3) to “fill in” the square,
one block at a time. In iteration k, we discover that all points
with aManhattan distance of k from the top left corner satisfy
the invariant. Ultimately, we conclude that the bottom right
corner (i.e., e1 � e2) satisfies the invariant and is equivalent
to tn(um(s0)).

Theorem 2 states that invariant closure is a sufficient con-
dition for invariant confluence, and Theorem 5 states that
criteria (1)–(4) are sufficient conditions for invariant con-
fluence. How do these sufficient conditions relate to one
another? Clearly, not all invariant closed objects are semi-
lattices, so invariant closure does not imply criteria (1)–(4).
Conversely, there are some objects that satisfy criteria (1)–(4)
that are not invariant closed. Here’s one example.

123

M. Whittaker, J. M. Hellerstein

u1 u2 u3

t1

t2

t3

(a) k = 0

u1 u2 u3

t1

t2

t3

(b) k = 1

u1 u2 u3

t1

t2

t3

u1
t1

(c) k = 2

u1 u2 u3

t1

t2

t3

u1
t1

u1
t2

u2
t1

(d) k = 3
u1 u2 u3

t1

t2

t3

u1
t1

u1
t2

u2
t1

u1
t3

u2
t2

u3
t1

(e) k = 4

u1 u2 u3

t1

t2

t3

u1
t1

u1
t2

u2
t1

u1
t3

u2
t2

u3
t1

u2
t3

u3
t2

(f) k = 5

u1 u2 u3

t1

t2

t3

u1
t1

u1
t2

u2
t1

u1
t3

u2
t2

u3
t1

u2
t3

u3
t2

u3
t3

(g) k = 6

Fig. 6 Illustration of the proof of Theorem 5 for n = m = 3

Example 5 Let O = (P(N),∪) where P(N) is the power set
of the natural numbers. Our start state s0 = {0} is the set of
0. Let tY (X) = X ∪ Y be the transaction that unions Y with
its argument X . Our set T = {tY | Y ⊆ N} of transactions
consists of all possible tY . Our invariant I consists of all non-
empty sets X that contain only even or only odd elements.
That is, I = {X ⊆ 2N | X �= ∅} ∪ {X ⊆ 2N + 1 | X �= ∅}.

Criteria (1), (2), (3) and (4) are all satisfied. However, O
is not I -closed. Let s1 = {0} and s2 = {1}. Then, I (s1) and
I (s2), but letting s3 = s1 ∪ s2 = {0, 1}, ¬I (s3).

Here’swhy criterion (3) is satisfied. If s is an arbitrary state
that satisfies I , then it is non-empty and contains, without
loss of generality, only even integers. If t1 and t2 are arbi-
trary transactions such that I (t1(s)) and I (t2(s)), then t1(s)
and t2(s) are also non-empty and contain only even integers.
Thus, t1(s) ∪ t2(s) is clearly non-empty and contains only
even integers, so I (t1(s) � t2(s)).

Invariant closure is not necessary for invariant confluence
because it fails to incorporate any notion of reachability.
Criteria (1)–(4) are also unnecessary, but they can be used
to prove that some non-invariant closed objects are invari-
ant confluent because the criteria do incorporate notions of
reachability. In particular, criterion (3) is a slight variant of
invariant closure; it also states that invariant satisfying states
should be closed under merge. The fundamental difference
is that criterion (3) restricts its attention to the merge of two
states that are reachable from a common ancestor state.

In Example 5, we saw this fundamental difference rear
its head. O is not I -closed because the union of an odd-

only set with an even-only set is a set with both odd and
even integers. However, if we begin in an invariant satisfying
state, we cannot reach both an odd-only and even-only set.
Criterion (3) is able to recognize this fact and conclude that
O is invariant confluent despite it not being invariant closed.

The relationship between invariant confluence, invariant
closure, merge-reducibility and criteria (1)-(4) is illustrated
in Fig. 5.

6 Segmented invariant confluence

If a distributed object is invariant confluent, then the object
can be replicated without the need for any form of coor-
dination to maintain the object’s invariant. But what if the
object is not invariant confluent? In this section, we present
a generalization of invariant confluence called segmented
invariant confluence that can be used to maintain the invari-
ants of non-invariant confluent objects, requiring only a small
amount of coordination. In Sect. 8, we see that replicating a
non-invariant confluent object with segmented invariant con-
fluence can achieve between 10× and 100×more throughput
than linearizable replication for certain workloads.

The main idea behind segmented invariant confluence is
to segment the state space into a number of segments and
restrict the set of allowable transactions within each segment
in such a way that the object is invariant confluent within
each segment (even though it may not be globally invariant
confluent). Then, servers can run coordination-free within a

123

Interactive checks for coordination avoidance

segment and need only coordinate when transitioning from
one segment to another.We now formalize segmented invari-
ant confluence, describe the systemmodel we use to replicate
segmented invariant confluent objects, and introduce a seg-
mented invariant confluence decision procedure.

6.1 Formalism

Consider a distributed object O = (S,�), a start state s0 ∈ S,
a set of transitions T , and an invariant I . A segmentation
Σ = (I1, T1), . . . , (In, Tn) is a sequence (not a set) of n
segments (Ii , Ti) where every Ti is a subset of T and every
Ii ⊆ S is an invariant. O is segmented invariant confluent
with respect to s0, T , I and Σ , abbreviated (s0, T , I ,Σ)-
confluent, if the following conditions hold:

– The start state satisfies the invariant (i.e., I (s0)).
– I is covered by the invariants in Σ (i.e., I = ∪n

i=1 Ii).
Note that invariants in Σ do not have to be disjoint. That
is, they do not have to partition I ; they just have to cover
I .

– O is invariant confluent within each segment. That is,
for every (Ii , Ti) ∈ Σ and for every state s ∈ Ii , O is
(s, Ti , Ii)-confluent.

Example 6 Consider again the object O = (Z × Z,�),
the set of transactions T = {tx+1, ty−1}, and the invariant
I = {(x, y) | xy ≤ 0} from Example 2, but now let the start
state s0 be (−42, 42). O is not (s0, T , I)-confluent because
the points (0, 42) and (42, 0) are reachable, and merging
these points yields (42, 42) which violates the invariant.
However, O is (s0, T , I ,Σ)-confluent for Σ = (I1, T1),
(I2, T2), (I3, T3), (I4, T4) where

I1 = {(x, y) | x < 0, y > 0} T1 = {tx+1, ty−1}
I2 = {(x, y) | x ≥ 0, y ≤ 0} T2 = {tx+1, ty−1}
I3 = {(x, y) | x = 0} T3 = {ty−1}
I4 = {(x, y) | y = 0} T4 = {tx+1}

Σ is illustrated in Fig. 7. Clearly, s0 satisfies the invariant,
and I1, I2, I3, I4 cover I . Moreover, for every (Ii , Ti) ∈ Σ ,
we see that O is Ii -closed, so O is (s, Ti , II)-confluent for
every s ∈ Ii . Thus, O is (s0, T , I ,Σ)-confluent.

6.2 Systemmodel

Now, we describe the system model used to replicate a seg-
mented invariant confluent object without any coordination
within a segment and with only a small amount of coordi-
nation when transitioning between segments. As before, we
replicate an object O across a set p1, . . . , pn of n servers

(a) (I1, T1). (b) (I2, T2).

(c) (I3, T3). (d) (I4, T4).

Fig. 7 An illustration of Example 6

each of which manages a replica si ∈ S of the object. Every
server begins with s0, T , I , and Σ . Moreover, at any given
point in time, a server designates one of the segments in Σ

as its active segment. Initially, every server selects its active
segment to be the first segment (Ii , Ti) ∈ Σ such that Ii (s0).
We’ll seemomentarily the significance of the active segment.

As before, servers repeatedly perform one of two actions:
execute a transaction or merge states with another server.
Merging states in the segmented invariant confluence system
model is identical to merging states in the invariant conflu-
ence system model. A server pi sends its state si to another
server p j which must merge si into its state s j . Transaction
execution in the new system model, on the other hand, is a
bit more involved. Consider a server pi with active segment
(Ii , Ti). A client can request that pi execute a transaction
t ∈ T . We consider what happens when t ∈ Ti and t /∈ Ti
separately.

If t /∈ Ti , then pi initiates a round of global coordina-
tion to execute t . During global coordination, every server
temporarily stops processing transactions and transitions to
state s = s1 � . . . � sn , the join of every server’s state. Then,
every server speculatively executes t transitioning to state
t(s). If t(s) violates the invariant (i.e., ¬I (t(s))), then every
server aborts t and reverts to state s. Then, pi replies to the
client. If t(s) satisfies the invariant (i.e., I (t(s))), then every
server commits t and remains in state t(s). Every server then
chooses the first segment (Ii , Ti) ∈ Σ such that Ii (t(s))
to be the new active segment. Note that such a segment is
guaranteed to exist because the segment invariants cover I .
Moreover, Σ is ordered, so every server will deterministi-
cally pick the same active segment. In fact, an invariant of
the system model is that at any given point of normal pro-
cessing, every server has the same active segment.

Otherwise, if t ∈ Ti , then pi executes t immediately and
without coordination. If t(si) satisfies the active invariant

123

M. Whittaker, J. M. Hellerstein

Algorithm 2 Transaction execution in the segmented invari-
ant confluence system model
if t /∈ Ti then

Execute t with global coordination
else

if Ii (t(si)) then
Commit t

else if ¬I (t(si)) then
Abort t

else
Execute t with global coordination

(i.e., Ii (t(si))), then pi commits t , stays in state t(si), and
replies to the client. If t(si) violates the global invariant (i.e.,
¬I (t(si))), then pi aborts t , reverts to state si , and replies to
the client. If t(si) satisfies the global invariant but violates the
active invariant (i.e., I (t(si)) but ¬Ii (t(si))), then pi reverts
to state si and initiates a round of global coordination to
execute t , as described in the previous paragraph. Transaction
execution is summarized in Algorithm 2.

This system model guarantees that all replicas of a seg-
mented invariant confluent object always satisfy the invari-
ant. All servers begin in the same initial state and with the
same active segment. Thus, because O is invariant confluent
with respect to every segment, servers can execute transac-
tions within the active segment without any coordination and
guarantee that the invariant is never violated. Any operation
thatwould violate the assumptions of the invariant confluence
systemmodel (e.g., executing a transaction that’s not permit-
ted in the active segment or executing a permitted transaction
that leads to a state outside the active segment) triggers a
global coordination. Globally coordinated transactions are
only executed if they maintain the invariant. Moreover, if a
globally coordinated transaction leads to another segment,
the coordination ensures that all servers begin in the same
start state and with the same active segment, reestablishing
the assumptions of the invariant confluence system model.

6.3 Interactive decision procedure

In order for us to determine whether or not an object O is
(s0, T , I ,Σ)-confluent, we have to determine whether or not
O is invariant confluent within each segment (Ii , Ti) ∈ Σ .
That is, we have determine if O is (s, Ti , Ii)-confluent con-
fluent for every state s ∈ Ii . Ideally, we could leverage
Algorithm 1, invoking it once per segment. Unfortunately,
Algorithm 1 can only be used to determine whether O is
(s, Ti , Ii)-confluent for a particular state s ∈ Ii , not for every
state s ∈ Ii . Thus, we would have to invoke Algorithm 1 |Ii |
times for every segment (Ii , Ti), which is clearly infeasible
given that Ii can be large or even infinite.

Instead, we develop a new decision procedure that can be
used to determine whether an object is (s, T , I)-confluent

for every state s ∈ I . To do so, we need to extend the notion
of reachability to a notion of coreachability and then gen-
eralize Theorem 3. Two states s1, s2 ∈ I are coreachable
with respect to T and I , abbreviated (T , I)-coreachable, if
there exists some state s0 ∈ I such that s1 and s2 are both
(s0, T , I)-reachable.

Example 7 Consider the object O = (N,max) consisting of
natural numbers merged by the max function. Let I = N. Let
T = {t2×, t+10} where t2×(x) = 2x and t+10(x) = x + 10.
The states 3 and 16 are (T , I)-coreachable because both are
(s, T , I)-reachable from s = 3 (16 = 2×3+10). The states
3 and 5, however, are not (T , I)-coreachable. The only state
in which 3 is reachable is 3, but from this state, the smallest
reachable number larger than 3 is 6.

Theorem 6 Consider an object O = (S,�), a set of trans-
actions T and an invariant I . If every pair of states in the
invariant are (T , I)-coreachable, then

O is I -closed ⇐⇒ ∀s ∈ I . O is (s, T , I)-confluent

Proof The proof of the forward direction is exactly the same
as the proof of Theorem 2. Transactions always maintain the
invariant, so if merge does as well, then every reachable state
must satisfy the invariant.

For the reverse direction, consider two arbitrary states
s1, s2 ∈ I . By assumption, the two points are (T , I)-
coreachable, so there exists some state s0 fromwhich they can
be reached. O is (s0, T , I)-confluent and s1�s2 is (s0, T , I)-
reachable, so it satisfies the invariant. ��

Using Theorem 6, we develop Algorithm 3: a natural gen-
eralization of Algorithm 1. Algorithm 1 iteratively refines the
set of reachable stateswhereasAlgorithm3 iteratively refines
the set of coreachable states, but otherwise, the core of the
two algorithms is the same.2 Now, a segmented invariant con-
fluence decision procedure can simply invoke Algorithm 3
once on each segment.

Example 8 Let O = (Z3 × Z
3,�) be an object that sep-

arately keeps positive and negative integer counts (dubbed
a PN-Counter [44]), replicated on three machines. Every
state s = (p1, p2, p3), (n1, n2, n3) represents the integer
(p1 + p2 + p3)− (n1 +n2 +n3). To increment or decrement
the counter, the i th server increments pi or ni , respectively,
and � computes an element-wise maximum. Our start state
s0 = (0, 0, 0), (0, 0, 0); our set T of transactions consists

2 Another small difference is that IsIclosed behaves differently in
Algorithm 1 and Algorithm 3. In Algorithm 3, IsIclosed returns a
triple (closed, s1, s2). If closed is false, then s1, s2 ∈ I are two states
not in N R such that I (s1) and I (s2) but ¬I (s1 � s2). If no such states
exist, then closed is true, and s1 and s2 are null.

123

Interactive checks for coordination avoidance

Algorithm 3 Interactive invariant confluence decision pro-
cedure for arbitrary start state s ∈ I
// Return if O is (s, T , I)-confluent for every s ∈ I .
function IsInvConfluent(O , T , I)

return Helper(O , T , I , ∅, ∅)

// R is a set of (T , I)-coreachable states.
// N R is a set of (T , I)-counreachable states.
function Helper(O , T , I , R, N R)

closed, s1, s2 ← IsIclosed(O , I , N R)
if closed then return true
Augment R, N R with random search and user input
if (s1, s2) ∈ R then return false
return Helper(O , T , I , R, N R)

of increment and decrement; and our invariant I is that the
value of s is non-negative.

Applying Algorithm 1, IsIclosed returns false with the
states s1 = (1, 0, 0), (0, 1, 0) and s2 = (1, 0, 0), (0, 0, 1).
Both are reachable, soO is not (s0, T , I)-confluent andAlgo-
rithm 1 returns false. O is not (s0, T , I)-confluent because of
concurrent decrements.Wecan forbid concurrent decrements
using a simple one-segment segmentation Σ = (I , T+)

where T+ consists only of increment transactions. Apply-
ing Algorithm 3, IsIclosed again returns false with the
same states s1 and s2. This time, however, the user recog-
nizes that the two states are not (T+, I)-coreachable (all
modifications of (n1, n2, n3) require global coordination,
so it is impossible for s1 and s2 to differ on these values).
The user refines N R with the observation that two states
are coreachable if and only if they have the same values
of n1, n2, n3. After this, IsIclosed and Algorithm 3 return
true.

6.4 Discussion and limitations

There are a few things worth noting about segmented
invariant confluence, its system model, and its decision
procedure. First, invariant confluence is a very coarse-
grained property. If an object is invariant confluent, then
we can replicate it with no coordination. If it is not invari-
ant confluent, then we have no guarantees. There’s no
in-between. Segmented invariant confluence, on the other
hand, is a much more fine-grained property that can be
applied to applications with varying degrees of complex-
ity. Segmented invariant confluence provides guarantees to
complex applications that require a large number of seg-
ments and to simple applications with a smaller number of
segments, whereas invariant confluence only provides guar-
antees to applications that can be segmented into a single
segment.

Second, while our segmented invariant confluence deci-
sion procedure can help decide whether or not an object
is segmented invariant confluent, it cannot currently help

construct a segmentation. It is the responsibility of the pro-
grammer to think of a segmentation that is amenable to
segmented invariant confluence. This can be an onerous pro-
cess. In the future, we plan to explore ways by which we
can automatically suggest segmentations to the application
designer to ease this process.

Third, segmented invariant confluence naturally subsumes
a distributed locking approach to replicating non-invariant
confluent objects. This approach first recognizeswhich trans-
actions cannot be safely executed concurrently and then
requires them to acquire a distributed lock before execut-
ing [9,21]. For example, in a banking application with the
invariant that all balances remain non-negative, concurrent
deposits are permitted, but concurrent withdrawals can lead
to invariant violations. Thus, we require that withdrawals
acquire a distributed lock before executing. This example is
exactly the same as Example 8 which we handled by simply
removing withdrawal transactions from our segmentation’s
set of transactions.

Fourth, we can integrate a couple of optimizations into
our system model to further reduce the amount of coordina-
tion it requires. To begin, if a server with state si and active
segment (Ii , Ti) receives a transaction t ∈ Ti to execute, and
t(si) violates the active invariant but not the global invariant,
instead of initiating a round of global coordination, pi can
simply buffer t for re-execution at a later time. While this
increases the latency required to execute t , it’s possible that
after other transactions are executed, re-executing t may lead
to a state that either satisfies the active invariant or violates
the global invariant. In either case, a round of global coordi-
nation is avoided. Later, in Example 13, we’ll see a concrete
example of this optimization. Similarly, servers can buffer
transactions that require global coordination, executing an
entire batch of these transactions during a single round of
global coordination.

Fifth, a segmented invariant confluence decision proce-
dure can also leverage Theorem 5 in addition to Algorithm 3.
If an object O meets criteria (1)–(3), then it is (s, T , I)-
confluent for every state s ∈ I .

Sixth, a naive implementation of our segmented invari-
ant confluence system model is not fault tolerant. A round
of global coordination requires that every server be non-
faulty. If even a single server fails, then every round of global
coordination will fail to complete. Fortunately, we can lever-
age well-established means of ensuring fault tolerance. For
example, we can replicate every server using a state machine
replication protocol like MultiPaxos [29,30] or Raft [40].
Doing so will introduce a constant slowdown for each (now
replicated) server, but servers remain independent and scal-
able.

123

M. Whittaker, J. M. Hellerstein

7 Operation-based invariant confluence

In the system model we described, a server pi periodically
sends its state si to some other server p j for merging. In
this “state-based” model, states are sent between replicas but
transactions are not. Borrowing a trick from CRDTs [44,45],
we can define an alternate, but equivalent, “operation-based”
systemmodel inwhich transactions are sent between replicas
but states are not. Though the two models are equivalent, the
operation-based approach is sometimes more natural. For
example, with the operation-based approach, we can replace
the PN-counter from Example 8 with a simple integer.

7.1 Systemmodel

A distributed operation-based object is a set O = S of
states. Note that we do not have a merge function like we did
with state-based objects. An operation-based transaction
t : S → (S → S) is a function that maps a state s to a
shadow transaction t(s) : S → S [31]. Note that shadow
transactions are curried functions and, aswewill seemomen-
tarily, can be partially applied. The definition of an invariant
is the same in the state-based and operation-based models.

Example 9 N is a distributed operation-based object. t : N →
(N → N) is an operation-based transaction where t(x)(y) =
x + y. That is, given a state x , t(x) is the function fx where
fx (y) = x + y.

In our operation-based system model, a distributed object
O is replicated across a set p1, . . . , pn of n servers. Each
server pi manages a replica si ∈ O of the replicated object.
Every server begins with a start state s0 ∈ S, a fixed set T of
transactions, and an invariant I . Servers repeatedly perform
one of two actions.

First, a client can contact a server pi and request that it
executes a transaction t ∈ T . pi speculatively executes t(si),
transitioning from state si to state t(si)(si). If t(si)(si) does
not satisfy the invariant, then pi aborts the transaction and
reverts to state si . Otherwise, pi commits the transaction
and remains in state t(si)(si). It also broadcasts the shadow
transaction t(si) in an exactly-once manner to the rest of the
servers.

Second, p j can receive a shadow transaction t(si) from
some other server pi . When p j receives t(si), it transitions
from its state s j to state t(si)(s j).When p j receives a shadow
transaction, it must execute it, even if ¬I (t(si)(s j)).

Informally, O is invariant confluent with respect to s0, T ,
and I if every replica s1, . . . , sn is guaranteed to always sat-
isfy the invariant I in every possible execution of the system.

p3

p2

p1

s0 s1 s3 s6

s0 s2 s4 s7

s0 s2 s5 s8

t(s0)

u(s0)

v(s2)

u(s0) v(s2)

t(s0) v(s2)

u(s0) t(s2)

(a) System Execution

v
s7

u
s2

t
s4

s0

s0

s0 u
s2

s0 s0

(b) Expression

Fig. 8 Anoperation-based systemexecution and corresponding expres-
sion

7.2 Expression-based formalism

To define operation-based invariant confluence formally, we
represent a state produced by an operation-based system exe-
cution as a simple expression generated by the grammar

e :: = s | t(e1)(e2)

where s represents a state in S and t represents a transaction
in T . As an example, consider the system execution in Fig. 8a
in which a distributed object is replicated across servers p1,
p2 and p3. Server p3 begins with state s0, receives transac-
tion t , transitions to state s1 by executing shadow transaction
t(s0), transitions to state s3 by executing shadow transaction
u(s0) and then transitions to state s7 by executing shadow
transaction v(s2). In Fig. 8b, we see the abstract syntax tree
of the corresponding expression for state s7.

We say an expression e is (s0, T , I)-reachable if it corre-
sponds to a valid execution of our system model. Formally,
we define reachable(s0,T ,I)(e) to be the smallest predicate
that satisfies the following equations:

– reachable(s0,T ,I)(s0).
– For all expressions e1, e2 and for all transactions t

in T , if reachable(s0,T ,I)(e1), reachable(s0,T ,I)(e2), and
I (t(e1)(e1)), then reachable(s0,T ,I)(t(e1)(e2)).

Finally, we say O is invariant confluent with respect to s0,
T , and I , abbreviated (s0, T , I)-confluent, if all reachable
states satisfy the invariant:

{s ∈ S | reachable(s0,T ,I)(s)} ⊆ I

123

Interactive checks for coordination avoidance

8 Evaluation

In this section, we describe and evaluate Lucy: a prototype
implementation of our decision procedures and systemmod-
els. All code and all the specifications described below are
available online: https://github.com/mwhittaker/enforced_
invariant_confluence. The repository also contains a couple
more example specifications.

8.1 Implementation

Lucy includes an implementation of the interactive deci-
sion procedure described in Algorithm 1, an implementation
of a decision procedure that checks criteria (1) - (4) from
Theorem 5, and an implementation of the decision proce-
dure described in Algorithm 3. The decision procedures are
implemented in roughly 2,500 lines of Python. Program-
mers specify objects, transactions and invariants in a small
Python DSL and interact with the interactive decision proce-
dures using an interactive Python console. The Python DSL
includes a library of CRDTs including integers, booleans,
tuples, sets, option types and maps. It supports invariants
involving equalities, inequalities, arithmetic, boolean logic,
and basic set operations (e.g., union, intersection). Note that
a programmer only has to run the decision procedures offline
a single time to check the invariant confluence of their dis-
tributed object. The decision procedures do not have to be
run online when transactions are being processed.

We use Z3 [17] to implement our invariant closure deci-
sion procedure, compiling an object and invariant into a
formula that is satisfiable if and only if the object is not
invariant closed. If the object is invariant closed, then Z3
concludes that the formula is unsatisfiable. Otherwise, if the
object is not invariant closed, then Z3 produces a counterex-
ample witnessing the satisfiability of the formula.

Lucy also includes an implementation of the invariant
confluence and segmented invariant confluence systemmod-
els in roughly 3,500 lines of C++. Users specify objects,
transactions, invariants and segmentations in C++. Lucy
then replicates the objects using segmented invariant con-
fluence. Clients send every transaction request to a randomly
selected server. When a server receives a transaction request,
it executes Algorithm 2 to attempt to execute the transaction
locally. If the transaction requires global coordination, then
the server forwards the transaction request to a predetermined
leader. When the leader receives a transaction request, it
broadcasts a coordination request to the other servers. When
a server receives a coordination request from the leader, it
stops processing transactions and sends the leader its state.
All in-flight transactions are deferred until the global com-
munication is complete. When the leader receives the states
of all other servers, it executes the transaction, and then sends
its state to the other servers. When a server receives a new

Table 1 Examples 10 to 14 summary

Example Run time (s) Lines of code

10 0.09 7

11 (all transactions) 0.06 8

11 (limited transactions) 0.09 10

12 0.04 21

13 0.09 49

14 (Invariant 1) 0.46 66

14 (Invariant 2) 0.44 33

For every example, we list the time required (in seconds) to run our
decision procedures to completion (excluding human input time) as
well as the number of lines of code to specify the example

state, it adopts the state, computes its new active segment, and
resumes normal processing.After every 100 transactions pro-
cessed, a server sends a merge request to a randomly selected
server.

Lucy can also replicate an object with eventual consis-
tency and with linearizability. With eventual consistency,
clients send every transaction request to a randomly selected
server. The server executes the transaction locally and returns
immediately to the client, sending merge requests after every
100 transactions. With linearizability, clients send every
transaction request to a predetermined leader. The leader
relays the transaction request to all other servers, and when
the leader receives replies from them, it executes the trans-
action and replies to the client. This communication pattern
mimics the “normal operation” of state machine replication
protocols [29,34].

Because fault-tolerance is largely an orthogonal concern
to invariant confluence, Lucy is implemented without fault-
tolerance. It would be straightforward to add fault-tolerance
to Lucy, but it would not affect our discussions or evaluation,
so we leave it for future work.

8.2 Decision procedures

We now evaluate the practicality and efficiency of our deci-
sion procedure prototypes. We begin by demonstrating the
decision procedure on a handful of simple, yet practical
examples. We then discuss how our tool can be used to ana-
lyze the TPC-C benchmark. All decision procedures were
run on a MacBook Pro laptop with a 3.5 GHz Intel Core i7
processor and 16 GB of RAM. A summary of these results
is given in Table 1.

Example 10 (Z2) We begin with a minimal working exam-
ple. Consider again our recurring example of Z

2 from
Example 2. The Python code used to describe the object,
transactions and invariant is given in Fig. 9. When we call
checker.check(), the interactive decision procedure
produces a counterexample s1 = (0, 1), s2 = (1, 0) in less

123

https://github.com/mwhittaker/enforced_invariant_confluence
https://github.com/mwhittaker/enforced_invariant_confluence

M. Whittaker, J. M. Hellerstein

Fig. 9 Example 10 specification

than a tenth of a second and automatically recognizes that
s2 is reachable. After we label s1 as unreachable and refine
the invariant with y ≤ 0, the interactive decision procedure
determines that the object is invariant confluent, again, in less
than a tenth of a second. Note that the object is invariant con-
fluent but not invariant closed, so prior work [10,21,31,32]
that relies on invariant closure—or another equivalent suf-
ficient condition—to determine invariant confluence would
not be able to identify this example as invariant confluent.

Example 11 (Foreign Keys) A 2P-Set X = (AX , RX) is a
set CRDT composed of a set of additions AX and a set of
removals RX [44]. We view the state of the set X as the
difference AX − RX of the addition and removal sets. To
add an element x to the set, we add x to AX . Similarly, to
remove x from the set, we add it to RX . The merge of two
2P-sets is a pairwise union (i.e., (AX , RX) � (AY , RY) =
(AX ∪ AY , RX ∪ RY)).

We can use 2P-sets to model a simple relational database
with foreign key constraints. Let object O = (X ,Y) =
((AX , RX), (AY , RY)) consist of a pair of two 2P-Sets X and
Y , which we view as relations. Our invariant X ⊆ Y (i.e.,
(AX − RX) ⊆ (AY − RY)) models a foreign key constraint
from X toY .We ranour decision procedure on the objectwith
initial state ((∅,∅), (∅,∅)) and with transactions that allow
arbitrary insertions and deletions into X and Y . After less
than a tenth of a second, the decision procedure produced a
reachable counterexample witnessing the fact that the object
is not invariant confluent. A concurrent insertion into X and
deletion from Y can lead to a state that violates the invari-
ant. This object is not invariant confluent and therefore not
invariant closed. Thus, previous tools depending on invariant
closure as a sufficient condition would be unable to conclude
definitively that the object is not invariant confluent.

We also reran the decision procedure, but this time with
insertions into X and deletions from Y disallowed. In less
than a tenth of a second, the decision procedure correctly
deduced that the object is now invariant confluent. These
results were manually proven in [8], but our tool was able to
confirm them automatically in a negligible amount of time.

Example 12 (Auction) We now consider a simple auction
system introduced in [21]. Our object consists of a set B
of integer-valued bids and an optional winning bid w. Ini-
tially, B = ∅ and w = ⊥ (indicating that there is no winning
bid yet) and we merge states by taking the union of B and
the maximum of w (where ⊥ < n for all integers n). One

transaction tb places a bid b by inserting it into B. Another
transaction tclose closes the auction and sets w equal to the
largest bid in B. Our invariant is that if the auction is closed
(i.e.,w �= ⊥), thenw = max(B). We ran our decision proce-
dure on this example and in a third of a second, it produced a
reachable counterexample witnessing the fact that the object
is not invariant confluent. If we concurrently close the auc-
tion and place a large bid, then we can end up in a state in
which the auction is closed, but there is a bid in B larger than
w.

We then segmented our object as follows. The first seg-
ment ({(B, w) | w = ⊥}, {tb | b ∈ Z}) allows bidding so
long as the bid is open. The second segment ({B, w | w �=
⊥}∩ I ,∅) includes all auctions that have already been closed
and forbids all transactions. This segmentation captures the
intuition that bids should be permitted only when the auction
is open. We ran our segmented invariant confluence decision
procedure on this example, and it was able to deduce with-
out any human interaction that the example was segmented
invariant confluent in less than a tenth of a second.

Example 13 (Escrow Transactions) Escrow transactions are
a concurrency control technique that allows a database to
execute transactions that increment and decrement numeric
valueswithmore concurrency than is otherwise possiblewith
general-purpose techniques like two-phase locking [39]. The
main idea is that a portion of the numeric value is put in
escrow, after which a transaction can freely decrement the
value so long as it is not decremented by more than the
amount that has been escrowed. We show how segmented
invariant confluence can be used to implement escrow trans-
actions.

Consider again, from Example 8, the PN-Counter s =
(p1, p2, p3), (n1, n2, n3) replicated on three servers with
transactions to increment and decrement the PN-Counter.
In Example 8, we found that concurrent decrements violate
invariant confluence which led us to a segmentation which
prohibited concurrent decrements. We now propose a new
segmentation with escrow amount k that will allow us to per-
form concurrent decrements that respect the escrowed value.
The first segment is (Ik, T) where

Ik={(p1, p2, p3), (n1, n2, n3) | n1, n2, n3≤k ≤ p1, p2, p3}

This segment allows for concurrent increments and decre-
ments so long as every pi ≥ k and every ni ≤ k. Intuitively,
this segment represents the situation in which every server
has escrowed a value of k. They can decrement freely, so long
as they don’t exceed their escrow budget of k. The second
segment is the one presented in Example 8 which prohibits
concurrent decrements.

For example, assume that k = 3 and that the three
states are s1 = s2 = s3 = (p1, p2, p3), (n1, n2, n3) =

123

Interactive checks for coordination avoidance

(3, 3, 3), (3, 2, 1). Here, the value of the PN-counter is
(3 + 3 + 3) − (3 + 2 + 1) = 3, which is non-negative as
expected. If server 1 receives a decrement request, it cannot
execute the decrement without global coordination because
doing so would cause n1 to exceed the escrow threshold
k = 3. Naively, it seems safe. Server 1 would transition to
state (3, 3, 3), (4, 2, 1)whichhas non-negative value 2.How-
ever, if servers 2 and 3 concurrently perform decrements of
their own, the three servers’ states would merge to a negative
value. Thus, the decrement requires global coordination to
rule out the possibility of concurrent decrements.

On the other hand, if server 2 receives a decrement
request, it can safely execute it locally and transition to state
(3, 3, 3), (3, 3, 1). This is safe because server 2 knows that
every server i maintains pi ≥ ni . Thus, after merging, the
value of the PN-counter is

∑
i pi − ∑

i ni = ∑
i (pi − ni)

which is the sum of non-negative terms. Intuitively, if every
server agrees to never go in debt, then the PN-counter in
aggregate never goes in debt.

We ran our decision procedure on this example and it con-
cluded that it was segmented invariant confluent in less than
a tenth of a second and without any human interaction.

In Sect. 6.4, we discussed an optimization in which a
server receives a transaction t and concludes that the trans-
action requires global coordination. The server can defer the
execution of t , executing other transactions in the mean time.
When the server tries to execute t a second time, the trans-
action may no longer require global coordination.

Escrow transactions are a good example where this opti-
mization works particularly well. Assume that instead of
using PN-counters, we implement a replicated bank account
balance as a tuple of timestamped integers (x1, x2, . . . , xn),
with the value of the bank account being the sum of the
integers, with merging done element-wise, and with higher
timestamps overriding lower timestamps [49]. Every time a
sever si increments or decrements its integer xi , it increases
the integer’s timestamp. We consider the segmentation in
which decrements do not require global coordination so long
as every individual integer remains non-negative.

If a server’s integer is zero, it cannot process a decrement
transaction locally, it must execute it with global coordina-
tion. However, if the server instead defers the execution of
the decrement transaction and happens to receive a number
of increment transactions, then it can execute the decrement
locally, without the need for global coordination.

Example 14 (TPC-C) TPC-C is a ubiquitous OLTP bench-
mark with a workload that models a simple warehousing
application [19]. The TPC-C specification outlines twelve
“consistency requirements” (read invariants) that govern the
warehousing application. In [8], Bailis et al. categorize the
invariants into one of three types:

Three of the twelve invariants involve foreign key con-
straints.As discussed inExample 11, our decision procedures
can automatically verify conditions under which foreign key
constraints are invariant confluent.

Seven of the twelve invariants involve maintaining arith-
metic relationships between relations. Our decision proce-
dures can correctly identify these as invariant confluent.
Consider, for example, invariant 1 which dictates that a ware-
house’s year to date balance W_YTD is equal to the sum of the
district year to date balances D_YTD of the twenty districts
that are associatedwith thewarehouse. The payment transac-
tion randomly selects a district and increments W_YTD and
D_YTD by a randomly generated amount. We model this
workload with a PN-Counter for W_YTD and twenty PN-
Counters for the twenty instances of D_YTD. We applied
Lucy to this workload, and it determined that the workload
was invariant confluent in less than a second.

Two of the twelve invariants involve generating sequen-
tial and unique identifiers. Consider, for example, invariant 2
which dictates that a district’s next order ID D_NEXT_O_ID
is equal to the maximum order id O_ID of orders within
the district. The New Order transaction places an order with
O_ID equal to the current value of D_NEXT_O_ID and then
increments D_NEXT_O_ID. We model this workload with
an integer for D_NEXT_O_ID and amap for O_ID thatmaps
order IDs to order.

We applied Lucy to this workload and in less than a sec-
ond, it produced a counterexample that—when labelled as
reachable—confirms Bailis et al.’s finding that the workload
is not invariant confluent [8]. Thus, the TPC-C benchmark
requires some form of coordination to ensure unique and
sequential IDs. Alternatively, as Bailis et al. describe in [8],
the workload can be run coordination free if we drop the
requirement that IDs are assigned sequentially.

8.3 Segmented invariant confluence

Now, we evaluate the performance of replicating an object
with segmented invariant confluence as compared to the
performance of replicating it with eventual consistency or
linearizability. There are two hypotheses about the perfor-
mance of segmented invariant confluent replication that we
aim to confirm. First, segmented invariant confluent repli-
cation provides higher throughput and better scalability
than linearizable replication for workloads that require lit-
tle coordination (i.e., low-coordination workloads). Second,
the throughput and scalability of segmented invariant con-
fluent replication decreases as we increase the fraction of
transactions that require coordination.

These hypotheses state that segmented invariant confluent
replication is more performant than linearizable replication
for low-coordination workloads. But by how much? We also

123

M. Whittaker, J. M. Hellerstein

Fig. 10 Segmented invariant confluent replication throughput versus
coordination induced by executing disallowed decrement transactions

aim tomeasure the absolute performance and scalability ben-
efits of segmented invariant confluent replication and how
they vary aswe vary the coordination required by aworkload.
We perform two controlled microbenchmarks to confirm our
hypotheses and discover the absolute performance benefits.
The workloads themselves are trivial but are not the focus
of our experiments. Our objective is to obtain a controlled
measure of throughput and scalability as we vary workload
contention.

Benchmark 1 Consider again the PN-Counter from Exam-
ple 8 and the corresponding transactions, invariants and
single-segment segmentation that forbids concurrent decre-
ments. We replicate this object on 16 servers deployed on 16
m5.xlarge EC2 instances within the same availability zone.
Each server has three colocated clients that issue increment
and decrement transactions. We replicate the object with
eventual consistency, segmented invariant confluence and
linearizability and measure the system’s total throughput as
we vary the fraction of client requests that are decrements.
The results are shown in Fig. 10.

Both eventually consistent replication and linearizable
replication are unaffectedby theworkload, achieving roughly
375,000 and 12,000 transactions per second, respectively.
Segmented invariant confluent replication performs well for
low-decrement (i.e., low-coordination) workloads and per-
forms increasingly poorly as we increase the fraction of
decrement transactions, eventually performing worse than
linearizable replication. For example, with 5% decrement
transactions, segmented invariant confluent replication per-
forms over an order of magnitude better than linearizable
replication; with 50% decrements, it performs as well; and
with 100% decrements, it performs two times worse.

These results offer two insights. First, the relation-
ship between segmented invariant confluent and lineariz-
able replication is analogous to the relationship between
optimistic and pessimistic concurrency control protocols.
Linearizable replication pessimistically assumes that con-
currently executing any pair of transactions will lead to an
invariant violation. Thus, clients send transactions directly

Fig. 11 Throughput of eventually consistent, segmented invariant con-
fluent and linearizable replication measured against the number of
nodes for workloads with varying fractions of decrement transactions.
For example, the “segmented (0.2)” line measures the performance of
segmented invariant confluent replication with 20% decrement transac-
tions. Eventually consistent replication and linearizable replication are
not affected by workload

to a leader to be linearized. Conversely, segmented invari-
ant confluent replication optimistically attempts to perform
every transaction locally and without coordination. A server
only initiates a round of coordination if it is found to be
necessary. As a consequence, segmented invariant conflu-
ent replication can offer substantial performance benefits
over linearizable replication for low-coordinationworkloads.
However, it is inferior for medium to high contention work-
loads because the majority of transactions that are sent to
a server are eventually aborted and relayed to the leader.
This additional latency is avoided by linearizable replication
which sends transactions directly to the leader.

Second, throughput does not decrease linearly with the
amount of coordination. Even infrequent coordination can
drastically decrease throughput. Increasing the fraction of
decrements from 0% to 1% decreases throughput by a fac-
tor of 2. Increasing again to 3%, the throughput decreases
by another factor of 2. With 90% coordination-free transac-
tions (i.e., 10% decrements), we achieve only 10% of the
throughput of eventually consistent replication.

Benchmark 2 In this benchmark,wemeasure the scale-out of
segmented invariant confluent replication. We repeat Bench-
mark 1 while we vary the number of servers that we use to
replicate our object. When we replicate with n servers, we
use 3n clients (the 3 colocated clients on each server) as part
of the workload. The results are shown in Fig. 11.

Eventually consistent replication scales perfectly with the
number of nodes, confirming the results in [8]. Linearizable
replication, on the other hand, scales up to about 3 servers
before performance begins to decrease. Segmented invari-
ant confluent replication scales well for low-coordination
workloads and poorly for high-coordination workloads. For

123

Interactive checks for coordination avoidance

1%, 5%, 20%, and 50% decrement transactions, segmented
invariant confluent replication scales up to 24, 12, 4 and 1
server, respectively.

These results echo the results of Benchmark 1. For
low-coordination workloads, segmented invariant confluent
replication can offer almost an order ofmagnitude better scal-
ability compared to linearizable replication, but coordination
decreases scalability superlinearly. Even infrequent coordi-
nation can drastically reduce the scalability of segmented
invariant confluent replication with segmented invariant con-
fluent replication ultimately scaling worse than linearizable
replication for high-coordination workloads.

9 Related work

RedBlue consistency is a consistencymodel that sits between
causal consistency and linearizability [32]. With RedBlue
consistency, every operation is manually labelled as either
red or blue. All operations are executed with causal consis-
tency, but with the added restrictions that red operations are
executed in a single total order embedded within the causal
ordering. In [32], Li et al. introduce invariant safety as a
sufficient (but not necessary) condition for RedBlue consis-
tent objects to be invariant confluent. Invariant safety is an
analog of invariant closure. In [31], Li et al. develop sophis-
ticated techniques for deciding invariant safety that involves
calculating weakest preconditions. These techniques are
complementary to our work and can be used to improve the
invariant closure subroutine used by our decision procedures.
In contrast with these techniques, our invariant confluence
decision procedures can determine the invariant confluence
of objects that are not invariant safe.

The Demarcation and Homeostasis Protocols. The home-
ostasis protocol [42], a generalization of the demarcation
protocol [11], uses program analysis to avoid unnecessary
coordination between servers in a shared database (whereas
invariant confluence targets replicated databases). The pro-
tocol guarantees that transactions are executed with observa-
tional equivalence with respect to some serial execution of
the transactions. This means that intermediate states may be
inconsistent, but externally observable side effects and the
final database state are consistent. The observational equiva-
lence guaranteed by the homeostasis protocol is stronger than
the guarantees of invariant confluence. As a result, there are
invariants andworkloads that the homeostasis protocolwould
execute with more coordination than a segmented invariant
confluent execution. Moreover, the homeostasis and demar-
cationprotocols’mechanismof establishingglobal invariants
and operating without coordination so long as the invariants
are maintained is very similar to our design of segmented
invariant confluence.

Explicit consistency. Explicit consistency [10] is a consis-
tency model that combines invariant confluence and causal
consistency, similar to RedBlue consistency with invariant
safety. To determine if a workload is amenable to explicitly
consistent replication, Balegas et al. determine if all pairs of
transactions can be concurrently executed on the same start
state without violating the invariant [10]. Balegas et al. argue
that this is a sufficient condition for explicit consistency. It
is similar to criterion (3) in Theorem 5. In our work, we take
a step further and explore sufficient and necessary condi-
tions for invariant confluence. Balegas et al. also describe a
variety of techniques—like conflict resolution, locking and
escrow transactions [39]—that can be used to replicate work-
loads that do not meet their sufficient conditions. Segmented
invariant confluence is a general-purpose formalism that can
be used to model simple forms of these techniques.

Token-based invariant confluence. In [21], Gotsman et al.
discuss a hybrid token-based consistency model that gen-
eralizes a family of consistency models including causal
consistency, sequential consistency and RedBlue consis-
tency. An application designer defines a set of tokens and
specifies which pairs of tokens conflict, and transactions
acquire some subset of the tokens when they execute. This
allows the application designer to specify which transactions
conflict with one another. Gotsman et al. develop sufficient
conditions to determine whether a given token scheme is suf-
ficient to guarantee that a global invariant is never broken.
The token-based approach allows users to specify certain
conflicts that are not possible with segmented invariant con-
fluence because a segmentation only allows transactions
within a segment to acquire a single self-conflicting lock.
However, segmented invariant confluence also introduces the
notion of invariant segmentation, which cannot be emulated
with the token-based approach. For example, it is difficult to
emulate escrow transactions with the token-based approach.

Serializable distributed databases. In Sect. 8, we saw that
segmented invariant confluent replication vastly outperforms
linearizable replication for low coordination workloads, and
it performs comparably or worse for medium and high coor-
dination workloads. Distributed databases like Calvin [47],
Janus [38] andTAPIR [51] employ algorithmic optimizations
to implement serializable transactions with high throughput
and low latency. While segmented invariant confluent repli-
cation will likely always outperform serializable replication
for low coordination workloads, these databases make seri-
alizable replication the most performant option for executing
workloads that require a modest amount of coordination.

Branchandmerge.Bayou [46],Dynamo [18] andTARDiS
[16] all take a branch andmerge approach tomaintaining dis-
tributed invariants without coordination. With this approach,
servers execute transactions without any coordination but
keep track of the causal dependencies between transactions.
Periodically, two servers merge states and invoke a user-

123

M. Whittaker, J. M. Hellerstein

defined merge function to reconcile the divergent states.
This approach does not provide any formal guarantees that
invariants are maintained. Its correctness depends on the
correctness of the potentially complex user-defined merge
functions.

CRDTs. CRDTs [44,45] are distributed semilattices with
inflationary update methods. Due to their algebraic proper-
ties, CRDTs can be replicated with strong eventual consis-
tency without the need for any coordination. Our definition
of distributed objects and our invariant confluence system
model are inspired directly by the corresponding definitions
and system models in [45]. CRDTs are eventually consistent
but may not preserve invariants. Conversely, invariant con-
fluent objects preserve invariants but may not be eventually
consistent. Thus, it is natural (though not necessary) to use
CRDTs as distributed objects. If a CRDT is determined to be
invariant confluent with respect to a particular invariant and
set of transactions, then it achieves a combination of strong
eventual consistency and invariant preservation. Any CRDT
(e.g., counters, sets, graphs, sequences) can be used for this
purpose. Finally, our criteria in Theorem 5 also borrow ideas
from CRDTs, exploiting the algebraic properties of semilat-
tices.

Mergeable Replicated Data Types.Mergeable Replicated
Data Types (MRDTs) [27], like CRDTs, are eventually
consistent replicated objects. CRDTs get their eventual
consistency by merging two CRDT replicas using a commu-
tative, associative and idempotent merge function. MRDTs
instead merge two divergent replicas along with their least
common ancestor. MRDTs rely on an abstraction function α

and concretization function γ to map abstract data types to
the domain of relations. Given these two functions, one can
derive an appropriate merge function.

Like CRDTs, MRDTs are eventually consistent but may
not preserve invariants, while invariant confluent objects pre-
serve invariants but may not be eventually consistent. An
interesting direction for future work would be to generalize
invariant confluence’s use of binary merge operators to use
the ternary merge operators used by MRDTs.

CALM Theorem. Bloom [4,5,15] and its formalism,
Dedalus [3,6], are declarative Datalog-based programming
languages that are designed to program distributed systems.
The accompanying CALM theorem [7,24] states that if and
only if a program can be written in the monotone fragment of
these languages, then there exists a consistent, coordination-
free implementation of the program. The CALM theorem
provides guarantees about the consistency of program out-
puts. It does not directly capture our notions of transactions or
invariant maintenance during program execution. Moreover,
Bloom and Dedalus are general-purpose programming lan-
guages that can be used to implement a variety of distributed
systems that are outside of the scope of invariant confluence.

Program Analysis in Database Systems. Using program
analysis to improve the performance of database systems is
not new. For example, it has been used to improve the perfor-
mance of database-backed web applications [14,41,50] and
used to improve the performance of optimistic concurrency
control on multi-core machines [50]. Our work on invariant
confluence continues the theme of using program analysis
to reap the performance benefits gained from understanding
program semantics.

10 Conclusion

This paper revolved around two major contributions. First,
we developed a deeper understanding of invariant closure
and invariant confluence by looking at the two criteria with
reachability in mind. We found that invariant closure fails
to incorporate a notion of reachability, and using this intu-
ition, we developed conditions under which invariant closure
and invariant confluence are equivalent.We implemented this
insight in an interactive invariant confluence decision proce-
dure that automatically checks whether an object is invariant
confluent, with the assistance of a programmer.

Second, we proposed a new consistency model and
generalization of invariant confluence, segmented invariant
confluence, that can be used to replicate non-invariant con-
fluent objects with a small amount of coordination while still
preserving their invariants. We found that segmented invari-
ant confluence naturally subsumes existing techniques for
maintaining invariants of replicated objects (e.g., locking and
escrow transactions), and we developed an interactive deci-
sion procedure for segmented invariant confluence.

Through our evaluation, we found that our decision proce-
dures could analyze a number of realistic workloads, each in
less than a second. We also showed that segmented invariant
confluence can significantly outperform linearizable replica-
tion for low-coordination workloads.

Acknowledgements The authors would like to thank Alan Fekete,
Alexandra Meliou, Alvin Cheung, Anthony Tan, Cristina Teodoropol,
Peter Alvaro and Peter Bailis, for fruitful discussion and feedback.
This research is supported in part by DHS Award HSHQDC-16-3-
00083, NSF CISE Expeditions Award CCF-1139158 and gifts from
Alibaba, Amazon Web Services, Ant Financial, CapitalOne, Ericsson,
GE, Google, Huawei, Intel, IBM, Microsoft, Scotiabank, Splunk and
VMware.

References

1. Abadi, D.: Consistency tradeoffs in modern distributed database
system design: cap is only part of the story. Computer 45(2), 37–
42 (2012)

123

Interactive checks for coordination avoidance

2. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal
memory: definitions, implementation, and programming. Distrib.
Comput. 9(1), 37–49 (1995)

3. Alvaro, P., Ameloot, T.J., Hellerstein, J.M., Marczak, W., Van den
Bussche, J.: A declarative semantics for dedalus. Technical Report
UCB/EECS-2011-120, EECS Department, University of Califor-
nia, Berkeley (2011)

4. Alvaro, P., Condie, T., Conway, N., Elmeleegy, K., Hellerstein,
J.M., Sears, R.: Boom analytics: exploring data-centric, declarative
programming for the cloud. In: Proceedings of the 5th European
Conference on Computer systems, pp. 223–236. ACM (2010)

5. Alvaro, P., Conway, N., Hellerstein, J.M., Marczak, W.R.: Consis-
tency analysis in bloom: a calm and collected approach. In: CIDR,
pp. 249–260 (2011)

6. Alvaro, P., Marczak, W.R., Conway, N., Hellerstein, J.M., Maier,
D., Sears, R.: Dedalus: Datalog in time and space. In: Datalog
Reloaded, pp. 262–281. Springer (2011)

7. Ameloot, T.J., Neven, F., Van den Bussche, J.: Relational transduc-
ers for declarative networking. J. ACM (JACM) 60(2), 15 (2013)

8. Bailis, P., Fekete, A., Franklin, M.J., Ghodsi, A., Hellerstein, J.M.,
Stoica, I.: Coordination avoidance in database systems. PVLDB
8(3), 185–196 (2014)

9. Balegas, V., Duarte, S., Ferreira, C., Rodrigues, R., Preguiça, N.,
Najafzadeh, M., Shapiro, M.: Putting consistency back into even-
tual consistency. In: Proceedings of theTenthEuropeanConference
on Computer Systems. ACM (2015)

10. Balegas, V., Duarte, S., Ferreira, C., Rodrigues, R., Preguiça, N.,
Najafzadeh, M., Shapiro, M.: Towards fast invariant preservation
in geo-replicated systems. ACM SIGOPS Oper. Syst. Rev. 49(1),
121–125 (2015)

11. Barbará-Millá, D., Garcia-Molina, H.: The demarcation protocol:
a technique for maintaining constraints in distributed database sys-
tems. VLDB J. 3(3), 325–353 (1994)

12. Bernstein, P.A., Goodman, N.: Concurrency control in distributed
database systems. ACM Comput. Surv. (CSUR) 13(2), 185–221
(1981)

13. Brewer, E.: Cap twelve years later: how the “rules” have changed.
Computer 45(2), 23–29 (2012)

14. Cheung, A., Madden, S., Solar-Lezama, A., Arden, O., Myers,
A.C.: Using program analysis to improve database applications.
IEEE Data Eng. Bull. 37(1), 48–59 (2014)

15. Conway, N., Marczak, W., Alvaro, P., Hellerstein, J.M., Maier, D.:
Logic and lattices for distributed programming. Technical Report
UCB/EECS-2012-167, EECS Department, University of Califor-
nia, Berkeley (2012)

16. Crooks, N., Pu, Y., Estrada, N., Gupta, T., Alvisi, L., Clement,
A.: Tardis: A branch-and-merge approach to weak consistency. In:
Proceedings of the 2016 International Conference onManagement
of Data, pp. 1615–1628. ACM (2016)

17. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Inter-
national conference on Tools and Algorithms for the Construction
and Analysis of Systems, pp. 337–340. Springer (2008)

18. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lak-
shman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels,
W.: Dynamo: amazon’s highly available key-value store. In: ACM
SIGOPS Operating Systems Review, vol. 41, pp. 205–220. ACM
(2007)

19. Difallah, D.E., Pavlo, A., Curino, C., Cudre-Mauroux, P.: OLTP-
bench: an extensible testbed for benchmarking relational databases.
PVLDB 7(4), 277–288 (2013)

20. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. ACM
SIGACT News 33(2), 51–59 (2002)

21. Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., Shapiro, M.:
’cause i’m strong enough: reasoning about consistency choices

in distributed systems. ACM SIGPLAN Notices 51(1), 371–384
(2016)

22. Grefen, P.W., Apers, P.M.: Integrity control in relational database
systems—an overview. Data Knowl. Eng. 10(2), 187–223 (1993)

23. Gupta, A., Widom, J.: Local verification of global integrity con-
straints in distributed databases. ACMSIGMODRec. 22(2), 49–58
(1993)

24. Hellerstein, J.M.: The declarative imperative: experiences and con-
jectures in distributed logic. ACM SIGMOD Rec. 39(1), 5–19
(2010)

25. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condi-
tion for concurrent objects. ACM Trans. Program. Lang. Syst.
(TOPLAS) 12(3), 463–492 (1990)

26. Hoare, C.A.R.: An axiomatic basis for computer programming.
Commun. ACM 12(10), 576–580 (1969)

27. Kaki, G., Priya, S., Sivaramakrishnan, K., Jagannathan, S.:
Mergeable replicated data types. Proc. ACM Program. Lang.
3(OOPSLA), 1–29 (2019)

28. Kröning, D., Rümmer, P., Weissenbacher, G.: A proposal for a
theory of finite sets, lists, and maps for the SMT-LIB standard. In:
Informal Proceedings, 7th InternationalWorkshop on Satisfiability
Modulo Theories at CADE, vol. 22 (2009)

29. Lamport, L.: The part-time parliament. ACMTrans. Comput. Syst.
16(2), 133–169 (1998)

30. Lamport, L., et al.: Paxos made simple. ACM Sigact News 32(4),
18–25 (2001)

31. Li, C., Leitão, J., Clement, A., Preguiça, N., Rodrigues, R.,
Vafeiadis, V.: Automating the choice of consistency levels in repli-
cated systems. In: 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pp. 281–292 (2014)

32. Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N., Rodrigues,
R.:Makinggeo-replicated systems fast as possible, consistentwhen
necessary. In: Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12), pp.
265–278 (2012)

33. Lipton, R.J., Sandberg, J.S.: Pram: A scalable shared mem-
ory. Technical Report TR-180-88, Computer Science Department,
Princeton University (1988)

34. Liskov, B., Cowling, J.: Viewstamped replication revisited. Tech-
nical Report MIT-CSAIL-TR-2012-021, CSAIL, Massachusetts
Institute of Technology (2012)

35. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t
settle for eventual: scalable causal consistency for wide-area
storage with cops. In: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, pp. 401–416. ACM
(2011)

36. Mehdi, S.A., Littley, C., Crooks, N., Alvisi, L., Bronson, N., Lloyd,
W.: I can’t believe it’s not causal! scalable causal consistency with
no slowdown cascades. In: NSDI, pp. 453–468 (2017)

37. Mohan, C., Lindsay, B., Obermarck, R.: Transaction management
in the r* distributed database management system. ACM Trans.
Database Syst. (TODS) 11(4), 378–396 (1986)

38. Mu, S., Nelson, L., Lloyd, W., Li, J.: Consolidating concurrency
control and consensus for commits under conflicts. In: OSDI, pp.
517–532 (2016)

39. O’Neil, P.E.: The escrow transactional method. ACM Trans.
Database Syst. (TODS) 11(4), 405–430 (1986)

40. Ongaro, D., Ousterhout, J.K.: In search of an understandable con-
sensus algorithm. In: USENIX Annual Technical Conference, pp.
305–319 (2014)

41. Ramachandra, K., Guravannavar, R., Sudarshan, S.: Program anal-
ysis and transformation for holistic optimization of database
applications. In: Proceedings of the ACM SIGPLAN International
Workshop on State of the Art in Java Program analysis, pp. 39–44.
ACM (2012)

123

M. Whittaker, J. M. Hellerstein

42. Roy, S., Kot, L., Bender, G., Ding, B., Hojjat, H., Koch, C., Fos-
ter, N., Gehrke, J.: The homeostasis protocol: avoiding transaction
coordination through programanalysis. In: Proceedings of the 2015
ACMSIGMOD International Conference onManagement of Data,
pp. 1311–1326. ACM (2015)

43. Schneider, F.B.: Implementing fault-tolerant services using the
state machine approach: a tutorial. ACM Comput. Surv. (CSUR)
22(4), 299–319 (1990)

44. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A compre-
hensive study of convergent and commutative replicated data types.
Ph.D. thesis, Inria–Centre Paris-Rocquencourt; INRIA (2011)

45. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free
replicated data types. In: Symposium on Self-Stabilizing Systems,
pp. 386–400. Springer (2011)

46. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer,
M.J., Hauser, C.H.:ManagingUpdateConflicts inBayou, aWeakly
Connected Replicated Storage System, vol. 29. ACM, New York
(1995)

47. Thomson, A., Diamond, T., Weng, S.-C., Ren, K., Shao, P., Abadi,
D.J.: Calvin: fast distributed transactions for partitioned database
systems. In: Proceedings of the 2012 ACMSIGMOD International
Conference on Management of Data, pp. 1–12. ACM (2012)

48. Vogels, W.: Eventually consistent. Commun. ACM 52(1), 40–44
(2009)

49. Wu, C., Faleiro, J., Lin, Y., Hellerstein, J.: Anna: A KVS for any
scale. IEEE Trans. Knowl. Data Eng. (2019)

50. Wu, Y., Chan, C.-Y., Tan, K.-L.: Transaction healing: Scaling opti-
mistic concurrency control on multicores. In: Proceedings of the
2016 International Conference onManagement of Data, pp. 1689–
1704. ACM (2016)

51. Zhang, I., Sharma, N.K., Szekeres, A., Krishnamurthy, A., Ports,
D.R.: Building consistent transactions with inconsistent replica-
tion. In: Proceedings of the 25th Symposium onOperating Systems
Principles, pp. 263–278. ACM (2015)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Interactive checks for coordination avoidance
	Abstract
	1 Introduction
	2 Invariant confluence
	2.1 System model
	2.2 Expression-based formalism
	2.3 Equivalence to existing definition

	3 Invariant closure
	4 Interactive decision procedure
	4.1 The decision procedure
	4.2 Limitations
	4.3 Tolerating user error

	5 Merge reduction
	6 Segmented invariant confluence
	6.1 Formalism
	6.2 System model
	6.3 Interactive decision procedure
	6.4 Discussion and limitations

	7 Operation-based invariant confluence
	7.1 System model
	7.2 Expression-based formalism

	8 Evaluation
	8.1 Implementation
	8.2 Decision procedures
	8.3 Segmented invariant confluence

	9 Related work
	10 Conclusion
	Acknowledgements
	References

