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Abstract
Massive amounts of data that contain spatial, textual, and temporal information are being generated at a rapid pace. With
streams of such data, which includes check-ins and geo-tagged tweets, available, users may be interested in being kept up-
to-date on which terms are popular in the streams in a particular region of space. To enable this functionality, we aim at
efficiently processing two types of general top-k term subscriptions over streams of spatio-temporal documents: region-based
top-k spatial-temporal term (RST) subscriptions and similarity-based top-k spatio-temporal term (SST) subscriptions. RST
subscriptions continuously maintain the top-k most popular trending terms within a user-defined region. SST subscriptions
free users from defining a region and maintain top-k locally popular terms based on a ranking function that combines term
frequency, term recency, and term proximity. To solve the problem, we propose solutions that are capable of supporting real-
life location-based publish/subscribe applications that process large numbers of SST and RST subscriptions over a realistic
stream of spatio-temporal documents. The performance of our proposed solutions is studied in extensive experiments using
two spatio-temporal datasets.
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1 Introduction

Very large volumes of spatio-temporal documents are being
generated at a rapid pace by social media users. For exam-
ple, Twitter has more than 300 million monthly active users
who post 500 million tweets per day [69]. All tweets are
associated with a timestamp that indicates their arrival time,
and many tweets are associated with locations, which may
be either coordinates (latitude and longitude) or seman-
tic locations (e.g., “Chicago, IL, USA”). Beyond Twitter,
location-based social networking services (e.g., Foursquare,
Yelp, Booking.com) allow users to publish check-ins or
reviews that contain text descriptions, geographical infor-
mation and timestamps.

Such spatio-temporal documents that arrive continuously
in data streams often offer first-hand information about local
events of different types and scales [27]. In particular, many
local breaking news stories and other matters of public
interest were first reported through tweets [23,27,30,32].
Additionally, we can get the gist of many other timely and
informative news items and events, such as business promo-
tions, comments and reviews, through tweets [55].

Due to the increasing proliferation of geo-textual streams,
the problem of developing location-based publish/subscribe
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systems that can support large numbers of subscribers, allow-
ing them to continuously receive spatio-temporal documents
relevant to their subscriptions, has received substantial atten-
tion (e.g., [10,11,25,28,33,60,68,70]). The feeding pattern of
these location-based publish/subscribe systems for spatio-
temporal document streams is keyword and location driven
and item-based, meaning that (1) subscribers need to define
both subscription keywords and subscription locations, and
that (2) subscribers continuously receive documents that sat-
isfy their keyword and location subscriptions. This type of
publish/subscribe system is useful and effective when sub-
scribers know exactly what they are looking for and are able
to define their intentions in the form of precise keywords
to obtain targeted results. However, in many situations, sub-
scribers may not have, or may not provide, clear intentions.
As pointed out in the literature [6,65], web users are often
unwilling to spend extra effort on specifying their intentions.
Further, even if they aremotivated to doing so, theymay often
be unsuccessful at doing so [65]. As a result, going beyond
location and keyword search, many users wish to know what
is happening around them by receiving an up-to-date timely
overview that captures local bursty events, trending topics,
public concerns and what occupies the minds of local users.
This can be achieved by finding frequent or bursty terms in
nearby documents (e.g., [3,40,41,56]).

Inspired by this, we take the first step toward devel-
oping a location-aware term publish/subscribe system for
geo-textual data streams. Specifically, the system supports
location-based term subscriptions and continuously main-
tains top-k locally popular terms that occur in a stream of
spatio-temporal documents for each subscription. We take
term frequency, term freshness and the location proximity
between termand subscription into considerationwhenquan-
tifying the popularity of a term.

Delivering terms to subscribers has the following benefits:
First, since the top-k most locally popular terms are inclined
to cover the most significant topics that occupy the minds
of local users, the content of a spatio-temporal documents
published in the region can be expressed in an informative
and concise way by applying visualization techniques (e.g.,
“Word Clouds”). Second, with top-k term search, terms from
near-duplicate documents are likely to be merged. Thus, a
subscriberwill not suffer from receivingmany near-duplicate
messages. Third, top-k term subscriptions free subscribers
from specifying keywords and other difficult-to-set parame-
ters.

In this paper, we develop the location-based term pub-
lish/subscribe system that is able to process a large number
of location-based term subscriptions over a stream of spatio-
temporal documents. We define and study two types of
term subscriptions: Region-based top-k Spatial-Temporal
Term (RST) subscriptions and Similarity-based top-k Spatial-
Temporal Term (SST) subscriptions. Specifically, RST sub-

Fig. 1 Framework for processing SST and RST subscriptions

scriptions continuously maintain the top-k most popular
trending terms within a user-defined region. This kind of
subscription relies on a temporal popularity score that quan-
tifies the popularity of a term by taking the following two
aspects into account: (1) The frequency of the term in docu-
ments published in the subscription region; (2) The recency
of documents that contain the term andwere publishedwithin
the subscription region. The RST subscriptions are useful
when subscribers want to apply a hard spatial constraint
on the input data streams [10,19,33,61,67], For example,
a subscriber living in Chicago may only be interested in
exploring spatio-temporal documents published in the urban
region of Chicago. Unlike RST subscriptions, SST subscrip-
tions free subscribers from specifying a region. In particular,
SST subscriptionsmaintain top-k locally popular terms based
on a spatio-temporal popularity score that combines term
frequency, term recency and term spatial proximity (i.e.,
the aggregated spatial proximities between the subscription
location and the spatio-temporal documents that contain the
term). SST subscriptions are useful when subscribers have
local intent but do not have a hard spatial constraint (see
Sect. 5.4 for use cases of RST and SST subscriptions). We
aim at maintaining the up-to-date top-k terms for a large
number of SST and RST subscriptions over a stream of spatio-
temporal documents with real-life arrival rate.

Framework overview Figure 1 presents the framework for
processing location-based termsubscriptions over a streamof
spatio-temporal documents. The input consists of two parts:
(1) spatio-temporal documents published by location-based
social media; (2) term subscriptions (i.e., SST and RST sub-
scriptions) registered by users. When a new spatio-temporal
document is published, we first decompose the document
into three components: a bag of terms, a location, and a
timestamp. Next, we retrieve the subscriptions whose top-
k term lists must be updated given the new document. This
step is called subscription matching. Finally, we update their
top-k term lists. During the subscription matching, we need
to compute the updated popularity score between each sub-
scription and each term in the new document, which is very
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time-consuming (see Sect. 3.2 for time complexity analy-
sis). Hence, we address the following three challenges in the
subscription matching and result update processes:

– Real-time maintenance of top-k result Unlike the term
frequency, the term popularity score (including both
temporal term popularity and spatio-temporal term pop-
ularity) takes time into consideration, which changes
continuously. Consequently, existing solutions for the
heavy-hitter problem (e.g., SpaceSaving [42] and Lossy-
Counting [39]) cannot be applied to our problem directly.
We need to develop an efficient approach to maintaining
the top-k terms of each subscription given the time-
dependent, continuously changing popularity score in
terms of each subscription and each term.

– Efficient computation of spatio-temporal term popularity
When processing SST subscriptions, as a new document
arrives, we need to update the spatio-temporal term popu-
larity score of eachmatched subscription, which involves
frequent computations of the popularity score of a term
w.r.t. a subscription. This popularity score computation
is expensive because we must take into account the cur-
rent time and all documents containing the term (see
Sect. 3.3 for time complexity analysis). Therefore, we
provide means of lowering the complexity and time cost
of term popularity computations.

– Group filtering of subscription matching Publish/
subscribe settings are characterized by large numbers of
subscriptions. Therefore, when finding the subset of sub-
scriptions that “match”1 a term from a new document,
we would like to consider each subscription individually.
Specifically, we propose to group similar subscriptions
and develop two effective subscription group filtering
mechanisms for processing SST and RST subscriptions
so that unqualified subscriptions can be eliminated at low
cost.

The present paper expands on a previous study [17].
Specifically, we define and study a new category of location-
based term subscription, similarity-based top-k spatial-
temporal term (SST) subscription. Compared with the RST
subscriptions covered in the previous study [17], SST sub-
scriptions free users from specifying query regions by
adopting a general ranking metric, spatio-temporal popular-
ity, that combines term frequency, term recency, and term
proximity. Efficient processing of SST subscriptions incurs
additional challenges: Unlike RST subscriptions that directly
filter spatio-temporal documents located outside their query
regions, SST subscriptions have to regard all spatio-temporal
documents asmatching candidates. To address this challenge,

1We say a subscription matches a term if the term is a top-k result of
the subscription.

wedevelop anewsubscriptionmatching algorithm (Sect. 3.2)
and a new group filtering mechanism (Sect. 3.4). Next, it is
expensive to compute spatio-temporal popularity between
each pair of a subscription and a term. We propose an effi-
cient method to compute tight bounds for spatio-temporal
popularity (Sect. 3.3). Additionally, we conduct extensive
experiments to evaluate the performance of baselines and our
proposal for processing large numbers of SST subscriptions
over streams of spatio-temporal documents (Sect. 5.2).

To address these challenges, we propose an approach that
exploits the following techniques to process RST and SST
subscriptions.

(1) We propose approaches that enable efficient compu-
tation of real-time top-k result updates of SST and
RST subscriptions by avoiding the popularity score re-
computation of each term in a subscription and thus
reduce the time complexity (Sects. 3.2 and 4.3 ).

(2) We propose a novel algorithm to efficiently compute
spatio-temporal term popularity when processing SST
subscriptions (Sect. 3.3).

(3) We develop subscription grouping and filtering tech-
niques that enable effective group pruning of unqualified
subscriptions during subscriptionmatching (Sects. 3.3.2
and 4.4 ).

To sum up, the paper’s contributions are twofold. First,
we define the SST and RST subscriptions and present the first
study on the problem of maintaining the up-to-date terms for
a large number of term subscriptions over a stream of spatio-
temporal documents. Second, we develop efficient solutions
comprising the key techniques mentioned above to process
large numbers of SST and RST subscriptions. Our experi-
mental results suggest that our proposal is able to achieve
reductions in theprocessing timeby70–95%and60–90%for
processing SST subscriptions and RST subscriptions, respec-
tively, when compared with baselines developed based on
existing techniques. Further, the results suggest that our pro-
posal is capable of supporting 2.1 million SST subscriptions
or 1.8 million RST subscriptions over a geo-textual data
stream with a real-life arrival rate [57].

2 Problem statement

We define the notion of a spatio-temporal document and
then define the Similarity-based top-k Spatial-Temporal
Term (SST) subscription and the Region-based top-k Spatial-
Temporal Term (RST) subscription.

Definition 1 (Spatio-temporal document) A spatio-temporal
document is defined as a triple d = 〈ψ, ρ, tc〉, whereψ is a set
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of keywords, ρ is a point locationwith latitude and longitude,
and tc is the document’s creation time.

We consider a stream of spatio-temporal documents. For
example, a stream can be tweets with geographical informa-
tion (i.e., geo-tagged tweets), check-inswith text descriptions
in Foursquare, and web pages with locations.

Note that freshness is important in spatio-temporal
streams. For example, tweets often capture events, the signif-
icance of which decline as time elapses [55]. Next, we define
SST and RST subscriptions.

2.1 SST Subscription

Definition 2 (Similarity-based top-k spatial-temporal term
(SST) subscription) An SST subscription is denoted by s =
〈ρ, k〉, where ρ is a subscription location (i.e., a geographi-
cal point location with latitude and longitude) and k defines
the number of popular terms to be maintained. An SST sub-
scription continuously feeds users with new terms whose
spatio-temporal popularity score is ranked in the top-k.

Specifically, the spatio-temporal popularity of a term w

with regard to an SST subscription s at time t is computed as
follows:

LTP(s, w, t) =
∑

d∈U
SF(s, d, w) · D−(t−d.tc), (1)

where U denotes the document collection (existing spatio-
temporal documents) andSF(s, d, w) canbe any function that
satisfies the following requirements: (1) SF(s, d, w) is mono-
tonically increasing with regard to the frequency of w and
(2) SF(s, d, w) ismonotonically decreasingwith regard to the
spatial proximity between s and d. Expression D−(t−d.tc) is
an exponential decaying function [34] that favors the terms in
more recent documents. Specifically, D is the base that indi-
cates the decaying rate, and the function is monotonically
decreasing with t − d.tc. This function is used widely (e.g.,
[5,9,35,55]) to measure the recency of items in stream data.
Experimental studies suggest that the exponential decaying
function is effective in blending information freshness and
text relevancy [22]. Without loss of generality, we use the
following ranking function to compute the LTP score:

LTP(s, w, t) =
∑

d∈U

F(d, w) · D−(t−d.tc)

α + dist(s, d)
(2)

where F(d, w) is the frequency of termw in document d, t is
the current time, dist(·) denotes Euclidean distance, and α is
a parameter that enables control of the weight of the spatial
proximity. In particular, a larger value of α indicates lower
emphasis on spatial proximity.

2.2 RST Subscription

Weproceed to define the region-based top-k spatial-temporal
term (RST) subscription. Unlike SST, RST requires a sub-
scriber to define a spatial region rather than a location.

Definition 3 (Rregion-based top-k spatial-temporal term
(RST) subscription) An RST subscription is denoted by s
= 〈r , k〉, where r is a subscription region (i.e., a circle or
a rectangle), and k is the number of frequent terms to be
maintained. A subscription aims to continuously return new
terms whose temporal popularities are ranked within the top-
k based on the spatio-temporal documents published within
a subscription region.

The temporal popularity of a termw with regard to an RST
subscription s is defined as follows:

TP(s, w, t) =
∑

d∈s.r
F(d, w) · D−(t−d.tc) (3)

Based on our publish/subscribe scenario, the arrival rate
of spatio-temporal documents (e.g., tweets) is at the scale of
millions a day [57], while new subscriptions are arriving at
the rate of tens of thousands a day, and we may support and
serve millions of subscriptions. Hence, we aim to develop
a scalable solution to maintain up-to-date results for a large
number of SST and RST subscriptions over a data stream of
spatio-temporal documents.

3 SST Subscription processing

This section presents a baseline and our solution for process-
ing a large number of SST subscriptions over a stream of
spatio-temporal documents.

3.1 Baseline solution

3.1.1 Subscription matching and result update

Wemaintain an exact top-k term list for each SST subscription
s in real-time fashion according to theLTP score.When a new
document d arrives, we re-compute LTP(s, wi , t) for each
term wi ∈ d.ψ and each subscription s in the subscription
pool. Then we update the top-k term list maintained by each
subscription. According to Eq. 2, if an existing document de
does not containwi (i.e., F(de, wi ) = 0) wemay simply skip
de because de does not contribute to LTP(s, wi , t). Hence, to
compute LTP(s, wi , t), we just need to retrieve and evaluate
documents that contain wi . To facilitate the retrieval of doc-
uments containing a particular term, we maintain an inverted
file. To maintain the top-k term list for an SST subscription
s, we adopt a min-heap for s in which term w is represented
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Fig. 2 Subscriptions and a stream of documents

Table 1 Result updates of s1

Document Distance to s1 Ordered result

d0 0.50 w1, w3

d1 0.35 w1, w3, w5

d2 0.30 w3, w1, w5

d3 0.30 w3, w5, w1

d4 0.45 w5, w3, w1

d5 0.20 w3, w2, w5

d6 0.25 w3, w2, w1

d7 0.20 w3, w5, w2

d8 0.30 w3, w5, w2

d9 0.10 w3, w2, w5

d10 0.60 w3, w2, w5

d11 0.15 w3, w2, w5

Fig. 3 Evolving min-heap for s1

by w = 〈id, p, t〉, where id denotes the entry (ID) of term
w, p indicates the LTP score at the time of the last update,
and t denotes the timestamp of the last update. The elements
in a min-heap are sorted by w.p · D−(tcur−w.t), where tcur
denotes the current time. To ensure that elements in a min-
heap are sorted correctly, we need to re-sort the elements
because w.p · D−(tcur−w.t) changes as time passes.

Example 1 Figure 2 presents an example, where red circles
(s1–s3) denote the SST locations of subscriptions and gray
circles are the locations of the documents from the stream
(d0–d11). The document terms and timestamps are listed to
the right. Table 1 presents the updates to the ordered result
list for s1 that occur as documents arrive. The result list is a
min-heap sorted by the LTP score (cf. Fig. 3).

Fig. 4 Document inverted file between timestamps 1015 and 1022

3.1.2 Document and subscription updates

Document insertion When a new document d arrives, we
index d by an inverted file. Figure 4 shows the inverted file
between timestamps 1015 and 1022 based on the document
stream fromFig. 2. Each posting in a posting list (e.g., 〈d3, 2〉
in the posting list for term w3) consists of two elements:
the document id (i.e., d3) and the frequency of the term of
the posting list in the document (i.e., 2 occurrences of w3

in d2). The black components in Fig. 4 were constructed
before timestamp 1015, and the red components are inserted
at timestamp 1022 when d5 arrives.

Document deletion We utilize a lazy removal strategy to
delete outdated documents from the inverted file. Specifi-
cally, we remove as much outdated documents as possible
while guaranteeing that the accuracy of the LTP score is
bounded by an error threshold Θerr. Before presenting our
document deletion scheme, we introduce two concepts:max-
imum error (Lemma 1) and minimum LTP (Lemma 2).

Lemma 1 Given a termw, a timestamp t, and a document d,
for any SST subscription s, themaximumerror of LTP(s, w, t)
incurred by removing the posting of d from the posting list
for w is computed as follows:

Errmax(w, d) = F(d, w) · D−(t−d.tc)

α
(4)

Proof Based on Eq. 2, the actual error of LTP(s, w, t)
incurred by removing the posting of d from the posting list

for w is F(d,w)·D−(t−d.tc)

α+dist(s,d)
. Because α ≤ α + dist(s, di ), it fol-

lows that Errmax(w, d) never underestimates the actual error.
This completes the proof. ��
Lemma 2 Let dmax be the maximum possible distance in the
underlying space. Given a term w, a timestamp t, and a doc-
ument d, for any SST subscription s, the minimum possible
LTP score LTPmin(w, t) is computed as follows:

LTPmin(w, t) =
∑

di∈I Lw

F(di , w) · D−(t−di .tc)

α + dmax
(5)

Here, I Lw denotes the posting list for term w.
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Proof Given a subscription s, the exact LTP score LTP(s,w,t)
is computed by Eq. 2. Because α + dmax ≥ α + dist(s, di ),
we can deduce that LTPmin(w, t) never exceeds LTP(s, w, t).
This completes the proof. ��

After traversing the posting list I Lw during subscription
matching, we remove the top-n oldest document postings
that occur in I Lw. In particular, n is the maximum value
satisfying the following condition:

Erracc(w) · D−(t−tw) + ∑n
i=1 Errmax(w, di )

LTPmin(w, t)
≤ Θerr (6)

Here, Θerr is an error-rate threshold that guarantees that the
error rate of the LTP score incurred by deleting the n old-
est postings does not exceed Θerr, and Erracc(w) denotes the
accumulated error at the timestamp tw of last deletion oper-
ation on I Lw. Each time we perform document deletion, we
update Erracc(w) and tw.

Subscription insertion and deletion The baseline solution
does not have an index structure for SST subscriptions. Each
time a new subscription is registered, we add the subscrip-
tion to the subscription list. Similarly, if a user requests to
de-register a subscription, we simply remove it from the sub-
scription list.

Time complexityRecall that processing of a newdocument
d involves two steps:

(1) Subscription matching We compute the updated LTP
score of each term w.r.t. each subscription and find a
subset of subscriptions that match d. The complexity of
subscription matching is O(|d.ψ | · |I Ld.ψ | · |S| ·CSF ),
where |S| denotes the number of existing SST subscrip-
tions, |I Ld.ψ | is the number of documents (postings) in
the posting lists associated with terms in d (cf. Eq. 7),
and CSF denotes the complexity of computing the SF
score (cf. Eq. 1), which is generally O(1) but depends
on the distance metric we use.2

|I Ld.ψ | =
∑

wi∈d.ψ

|I Lwi |, (7)

where I Lwi denotes the posting list for wi .
(2) Result update After subscription matching, we re-order

the min-heap maintained by each matched subscription,
which has time complexity O(|S| · k · log k), where k
denotes the number of result terms maintained by each
subscription.

2 The complexity is O(1) when the SF score is computed based on
Euclidean distance or network distance with pre-computation of pair
distances.

(3) Document update Each new document d is indexed by
an inverted file. Hence, the time complexity of indexing
d is O(|d.ψ |).

(4) Subscription update The baseline solution does not
index SST subscriptions. Thus, the time complexities of
subscription insertion and deletion are O(1).

3.2 Subscription processing with tailored result
update

3.2.1 Subscription matching

We proceed to introduce a tailored result update method and
corresponding subscription matching algorithm, which are
able to reduce the time complexity of result update to O(|S| ·
log k) while the time complexity of subscription matching
is unchanged. Recall that it is computationally expensive to
re-order the min-heap maintained by each subscription. To
address that problem, we introduce Lemma 3, which lays
foundation for preventing such re-computations.

Lemma 3 Let s be an SST subscription,w andw′ be two dif-
ferent terms. If LTP(s, w, t) > LTP(s, w′, t)andnodocument
contains w or w′ arrives during the time period [t, t + Δt]
(Δt > 0), we have:

LTP(s, w, t + Δt) > LTP(s, w′, t + Δt).

Proof According to Eq. 2, we have:

LTP(s, w, t) > LTP(s, w′, t) ⇐⇒
∑

d∈U

F(d, w) · D−(t−d.tc)

α + dist(s, d)
>

∑

d∈U

F(d, w′) · D−(t−d.tc)

α + dist(s, d)
.

Consequently, we have:

DΔt ·
∑

d∈U

F(d, w) · D−(t+Δt−d.tc)

α + dist(s, d)
>

DΔt ·
∑

d∈U

F(d, w′) · D−(t+Δt−d.tc)

α + dist(s, d)

This completes the proof. ��
Lemma 3 indicates that the LTP score of a term in an SST

subscription has the following property: the relative ranking
of two different terms w.r.t. a subscription is consistent over
time. Hence, the min-heap maintained by each subscription
will remain correct and we do not need to re-evaluate the k
terms in the min-heap for each subscription when each new
document arrives.

When a newdocument dn arrives, for each termwi in dn .ψ
we traverse its posting list in the inverted file and retrieve
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Algorithm 1: TSubMatching
Input: Inverted lists I L , subscription set S, min-heaps H [s] of

each subscription s, new document d
Output: Updated inverted lists I L , updated min-heaps H [s] of

each subscription s
1 for each unique term wi in d do
2 I L[wi ].add(d);
3 for each s in S do
4 Pnew ← 0;
5 for each posting d j in I L[wi ] do
6 Pnew ←

Pnew + F(d, wi ) · D−(t−d j .tc)/(α + dist(s, d j ));
7 wt ← H [s].top();
8 Pe ← wt .p;
9 te ← wt .t ;

10 Pcur ← Pe · D−(tcur−te);
11 if H [s] contains wi then
12 H [s].delete(wi );
13 H [s].push(〈wi , Pnew, tcur〉);
14 else if Pnew > Pcur then
15 H [s].pop();
16 H [s].push(〈wi , Pnew, tcur〉);
17 return;

the documents containing wi to compute LTP(s, wi , tcur).
At the same time, we compare LTP(s, wi , tcur) with the
current LTP score of the top document in the min-heap,
LTP(s, wmin, tcur). The LTP score of the top document stored
in the min-heap was calculated at a previous timestamp te
(i.e., as LTP(s, wmin, te)). So we need to compute the LTP
score as follows:

LTP(s, wmin, tcur) = LTP(s, wmin, te) · D−(tcur−te) (8)

If LTP(s, wi , tcur) > LTP(s, wmin, tcur), we update the min-
heap maintained by s.

Before presenting our algorithmof subscriptionmatching,
we define the concept of partial LTP score, which computes
the portion of an LTP score contributed by a given document.

Definition 4 (Partial LTP score) Given a document d, a term
w, a timestamp t , and an SST subscription s, the partial LTP
score of d with respect to s, denoted by P(s, w, t, d), is
defined as follows:

P(s, w, t, d) = F(d, w) · D−(t−d.tc)

α + dist(s, d)

Algorithm 1 presents the pseudo code of our document
processing algorithm, which includes matching and result
update. The inputs are a new document d, a subscription
set S, a min-heap H [s] maintained for each subscription s
in S, and the document inverted lists I L . The outputs are
updated inverted lists I L and an updated min-heap H [s] of
each subscription s. When a new spatio-temporal document
d arrives, we process each unique term wi in d (Line 1).

In particular, we first add d (i.e., the posting of d) to the
inverted list of term wi (Line 2). Next, we evaluate each SST
subscription s (Lines 3–16). Here, we compute the LTP score
of wi in terms of s (Lines 5–9) and check whether wi is a
top-k result of s (Lines 10–16). Specifically, we first initialize
the LTP score of wi in terms of s (i.e., Pnew) to 0 (Line 4).
Then we traverse the postings list of term wi (i.e., I L[wi ])
(Lines 5–6). For each posting d j in I L[wi ], we calculate its
partial LTP score contributed by Pnew (i.e., F(d,wi )·D−(t−d j .tc)

(α+dist(s,d j ))
)

and sum them up based on Eq. 2 (Line 6). Having computed
Pnew, we visit the min-heap for s and retrieve its top element
wt (Line 7). Here, Pe denotes the LTP score ofwt at the time
of the last update, and te denotes the timestamp of last update
(Lines 8–9). Next, we compute the LTP score of wt at the
current timestamp (Pcur) using Eq. 8 (Line 10). Note that if
wi exists in min-heap H [s], we need to update wi to reflect
the new LTP score (Lines 11–13). If the current LTP score of
wi exceeds that of wt , we pop wt and push wi onto the min-
heap (Lines 14–16). This completes the update of the top-k
result of s, which is maintained by the min-heap. Theorem 1
characterizes the time complexity of TSubMatching.

Theorem 1 Given a new spatio-temporal document d, a set
of existing documents organized by inverted file I L, a set of
existing SST subscriptions S, and a result cardinality k, the
time complexity of TSubMatching is O(|S| · |d.ψ | · |I Ld.ψ | ·
CSF + |S| · log k), where |I Ld.ψ | is defined by Eq. 7.

Proof TSubMatching evaluates each unique term in d.ψ . For
each such term, its inverted list is traversed to calculate the
LTP score for the term and every SST subscription in S. If the
term is a top-k result of a subscription, we need to update its
min-heap, which requires O(log k). ��

3.2.2 Document and subscription updates

Like the baseline solution, subscription processing with tai-
lored result update does not require a dedicated indexing
structure for SST subscriptions. So the time complexity for
subscription insertion and deletion is O(1). The document
insertion and deletion operations are the same as baseline.
So the complexity of document update is O(|d.ψ |).

3.3 Fast LTP score computation

According to Theorem 1, the complexity of Algorithm 1 is
O(|d.ψ | · |I Ld.ψ | · |S| + |S| · log k). Here, |I Ld.ψ | can be
very large, and it is time-consuming to compute theLTP score
for each posting (document) in the inverted file. To address
this problem, we develop an online partitioning method that
groups documents in posting lists. Based on the partitioning
result, we compute the aggregate partial LTP score of a term
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w in an SST subscription s contributed by a document set
(group) in the posting list.

Definition 5 (Aggregated partial LTP score) Given a group
of documents G associated with a postings list of term w

and an SST subscription s, the aggregate partial LTP score,
denoted by APG(s, w, t), is defined as follows:

APG(s, w, t) =
∑

d∈G

F(d, w) · D−(t−d.tc)

α + dist(s, d)
(9)

TheLTP score can be computed by summing the aggregate
partial LTP score of each group:

LTP(s, w, t) =
∑

G∈G
APG(s, w, t), (10)

where G denotes the group set associated with term w. Here,
the challenge is that without evaluating each document in G,
we cannot compute an exact value ofAPG(s, w, t). Instead, it
is possible to derive an upper bound on APG(s, w, t), which
are presented in Eq. 11.

APG(s, w, t).ub =
∑

d∈G F(d, w) · D−(t−d.tc)

α + min dist(s,G)
(11)

Above, minDist(s,G) denotes the minimum Euclidean dis-
tance between s and spatio-temporal documents in G.
The following two challenges exist when computing APG
(s, w, t).ub:

(1) Efficiency Based on Eq. 11, we still need to calculate
F(d, w) · D−(t−d.tc) for each document in G, which has
complexity O (|G|). To avoid such one-by-one calcu-
lation, we aim to compute

∑
d∈G F(d, w) · D−(t−d.tc)

with complexity O (1) (cf. Sect. 3.3.1).
(2) Effectiveness To generate a tighter bound, we need

to compute a more accurate value of minDist(s,G).
We propose an approach to grouping documents in
an inverted list based on online clustering. With this
grouping approach, the value of minDist(s,G) can be
computed effectively (cf. Sect. 3.3.2).

3.3.1 Aggregate partial LTP score computation

According to Eq. 11, D−(t−d.tc) is different for each docu-
ment. To enable group computation, we unify the value of
D−(t−d.tc) in each group. Specifically, for each group G we
store the aggregate popularity score (cf. Eq. 12) of the group
at timestamp G.tmin, which denotes the creation time of the
first document in G.

Apop(G) =
∑

d∈G
F(d, w) · D−(G.tmin−d.tc) (12)

Fig. 5 Demonstration of minDist(s,G)

Note that the value ofApop(G) stays constant as time elapses.
We can easily calculate APG(s, w, t).ub based on Apop(G)

by Eq. 13.

APG(s, w, t).ub = Apop(G) · D−(t−G.tmin)

α + minDist(s,G)
(13)

Thus, the time complexity of computing APG(s, w, t).ub is
reduced from O (|G|) to O (1).

3.3.2 Cluster-based document grouping

To improve the pruning power, we derive tighter lower and
upper bounds on APG(s, w, t). Recall that Apop(G) is an
exact result. Based on Eq. 13, minDist(s,G) is the only vari-
able that influences the accuracy of APG(s, w, t).lb (resp.
APG(s, w, t).ub). Thus, we propose to increase the accuracy
of minDist(s,G).

Figure 5 illustrates the values of maxDist(s,G) and
minDist(s,G). Here, we adopt a minimum bounding rect-
angle (MBR) to represent the locations of spatio-temporal
documents (red nodes) in groupG. Let diag(G) be the diago-
nal length ofG’sMBR.According to the triangle inequity, for
any document d in G we have: dist(s, d)−minDist(s,G) ≤
diag(G). As a result, diag(G) can be regarded as the
maximum possible discrepancy between minDist(s,G) and
dist(s, d). To increase the accuracy of minDist(s,G), we
constrain the value of diag(G) for each group. For this pur-
pose, we develop a Group-Constrained Online Clustering
(GCOC) algorithm for clustering (grouping) documents in
an inverted list such that the MBR of documents in each
cluster (group) G satisfies diag(G) ≤ Tdist, where Tdist is a
pre-defined distance threshold. The high-level idea of GCOC
algorithm is explained by Example 2.

Example 2 Figure 6 depicts the spatio-temporal documents
in the inverted list for w3, and Table 2 presents the grouping
result when each new document (Column 1) arrives. Assume
that document ID is assigned in chronological order. Each
color of a document denotes a group. At first, d0 arrives and
forms a group (i.e.,G0). Next, d1 arrives, andwe compute the
diagonal length of the MBR that contains d0 and d1, which
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Fig. 6 Example of the GCOC algorithm

Table 2 Group updates

G0 G1 G2 G3 G4

d0 d0

d1 d0 d1

d2 d0 d1, d2
d3 d0 d1, d2, d3
d4 d0 d1, d2, d3
d5 d0 d1, d2, d3, d5
d6 d0 d1, d2, d3, d5 d6

d7 d0 d1, d2, d3, d5 d6 d7

d8 d0 d1, d2, d3, d5 d6 d7, d8
d9 d0 d1, d2, d3, d5 d6 d7, d8, d9
d10 d0 d1, d2, d3, d5 d6 d7, d8, d9 d10

is equivalent to the distance between d0 and d1. Because
dist(d0, d1) > Tdist, we assign d1 to a new group G1. Note
that if we assign d0 and d1 to the same group, the diagonal
length of the MBR containing d0 and d1 will exceed Tdist.
When d2 arrives, we compute dist(d2, d0) and dist(d2, d1).
Since dist(d2, d1) < dist(d2, d0) and dist(d2, d1) ≤ Tdist,
we assign d2 to the group of d1. We skip the processing of
d3–d8.3 When d9 arrives, we compute the diagonal lengths of
the MBRs for existing group (i.e., G0–G4) with d9 included.
We find that G3 has the shortest diagonal length. So we
further check if G3 ∪ {d9}’s MBR satisfies the Tdist con-
straint. Because the constraint holds, we assign d9 to G3.
We proceed to consider d10. Group G1 has the shortest
diagonal length when including d9. However, we find that
Diag(G1 ∪ {d10}) > Tdist, so we assign d10 to a new group
(i.e., G4).

Algorithm 2 presents the pseudo code of the GCOC algo-
rithm. It takes the document partitioning listG as input.When

3We do not index d4 because it does not contain w3.

Algorithm 2: GCOC
Input: Document partitioning list G, New document d, Distance

threshold Tdist
Output: Updated document partitioning G

1 for each wi in d.ψ do
2 Initialize Gmin;
3 diagmin ← +∞;
4 for each group G in G[wi ] do
5 G ′ ← G ∪ {d};
6 if diag(G ′) < diagmin then
7 diagmin ← diag(G ′);
8 Gmin ← G;
9 if diagmin ≤ Tdist then

10 Gmin.add(d);
11 Update Gmin in G[wi ];
12 else
13 Gnew ← {d};
14 G[wi ].add(Gnew);
15 return;

a new document d arrives, we perform online grouping on
the partitioning associated with each term wi (i.e., G[wi ])
(cf. Fig. 6). In particular, we assign d to the group with MBR
that has the shortest diagonal length. We first initialize Gmin

and diagmin, which denote the current group with the short-
est diagonal length and the corresponding diagonal length,
respectively (Lines 2–3). Next, for each groupG in partition-
ing G[wi ] we add d to G, which is denoted by G ′ (Line 5).
We find the group Gmin that has the minimum MBR diago-
nal length (Lines 6–8). If the corresponding diagonal length
does not exceed the distance threshold Tdist, we assign d to
Gmin and update partitioning G[wi ] (Lines 9–11); otherwise,
we create a new group Gnew with the single document d and
add Gnew to G[wi ] (Lines 12–14).

Spatio-temporal popularity using network distance Bey-
ond Euclidean distance, the fast LTP score computation
scheme is applicable to network distance. In particular, the
network distance between two geographical points pi and
p j is the minimum length of any sequence of road network
edges that connect pi and p j . Theorem 2 corroborates that
the upper bound of the aggregated partial LTP score remains
valid when using network distance.

Theorem 2 Given a subscription s, a term w, a timestamp
t, a document group G, and a new document d, the upper
bound of APG(s, w, t) (i.e., APG(s, w, t).ub) remains valid
when SF(s, d, w) is computed based on network distance.

Proof Recall that minDist(s,G) in Eq. 11 denotes the mini-
mum Euclidean distance between s and G. Let sd(s, di ) be
the network distance between s and di . We have: ∀(di ∈
G) (minDist(s,G) ≤ sd(s, di )). Based on Eq. 11, we have:

∑

di∈G

F(di , w) · D−(t−di .tc)

α + sd(s, di )
≤ APG(s, w, t).ub
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Using network distance, the left part of the above inequity is
equal to APG(s, w, t) (cf. Eq. 9). This completes the proof.

��

3.3.3 Document and subscription updates

Document update The document insertion scheme for sub-
scription processing with the fast LTP score computation
method is presented in Algorithm 2. To enable document
group deletion, we evaluate the latest timestamp of each
document group during subscription matching and remove
outdated document groups from the inverted file. In par-
ticular, we remove as many outdated document groups as
possible while guaranteeing that the accuracy of the LTP
score is bounded by an error threshold Θerr.

The detailed document group deletion scheme works as
follows.After traversing posting list I Lw during subscription
matching, we select the n document groups whosemaximum
possible errors of removal are the smallest. Here, n is the
maximum value satisfying the following inequity:

Erracc(w) · D−(t−tw) + ∑n
i=1 Errmax(w,Gi )

LTPmin(w, t)
≤ Θerr (14)

Here, Errmax(w,Gi ) denotes the maximum possible error
incurred by deleting all documents in Gi , which is computed
according to Eq. 15, Θerr is an error-rate threshold that guar-
antees that the error rate of LTP score incurred by deleting
the n oldest postings does not exceed Θerr, and Erracc(w)

denotes the accumulated error at the timestamp tw of the
last deletion operation on I Lw. Each time we perform the
document deletion operation, we update Erracc(w) and tw.

Errmax(w,G) = F(w,G) · D−(t−G.tmax)

α
, (15)

where F(w,G) indicates the sum of frequencies of w in G
(i.e.,

∑
d∈G F(w, d)), and G.tmax denotes the latest times-

tamp of documents in G. Each time we complete traversing
I Lw, we update F(w,G), G.tmax, Erracc(w), and tw.

Subscription updates Since we have no index structure
for SST subscriptions, each time when a new subscription is
registered, we simply add the subscription to the subscription
list. Similarly, if a user requests to de-register a subscription,
we simply remove it from the subscription list.

3.4 SST Subscription filtering based on hierarchical
summarization

In our publish/subscribe setting, the number of SST subscrip-
tions can be very large, making it very time-consuming to
evaluate SST subscriptions one by one. So we propose to
evaluate groups of spatially similar subscriptions simulta-

neously. Specifically, we summarize SST subscriptions by
recursively subdividing the underlying space into four quad-
rants (cells) [45] until the number of subscriptions in each
cell is atmostM , whereM is a systemparameter that controls
the cell granularity. Each cell maintains a summary label for
the SST subscriptions in the cell, which is the min-heap ele-
ment of the subscriptions in the cell that has the lowest w.p
value. The summary label is used for generating cell filtering
conditions to filter “unqualified” subscriptions.

Figure 7 illustrates the subscription filtering framework.
The left figure presents the underlying space and existing SST
subscriptions. Let M = 2. The underlying space is recur-
sively divided into four equal-sized cells. Each cell contains
at most 2 subscriptions.4 After partitioning the space and
subscriptions, we generate the summary label for each cell
in a bottom-up fashion. Starting from the leaf cells, we select
the top element of the min-heap for the subscription with the
minimum current LTP score in a cell as its summary label.
Assume that the current LTP score of the top element in H [s5]
is less than that in H [s6] and H [s7] (i.e., p5 · D−(tcur−t5) <

p6 · D−(tcur−t6) and p5 · D−(tcur−t5) < p7 · D−(tcur−t7)). Let
us consider cell c10 as an example. Two subscriptions, s5
and s6, fall into c10. Let 〈w5, p5, t5〉 and 〈w6, p6, t6〉 be the
top elements of H [s5] and H [s6], respectively. We select the
one having the minimum current LTP score (〈w5, p5, t5〉) as
the summary label of c10, which is denoted by �m(c10). Cell
c11 contains only s7, so we directly select 〈w7, p7, t7〉 as its
summary label.Next,we generate the summary label for their
parent cell c7 that has four child cells in total, but where c9
and c12 are empty. Because p5 ·D−(tcur−t5) < p7·D−(tcur−t7)),
we pick 〈w5, p5, t5〉 as the summary label of c7. We continue
the summary label generation until the root cell c0 is reached.

3.4.1 Subscription matching

Having the summary label, we are able to calculate the max-
imum LTP score between term w and subscriptions in cell
c, which is denoted by LTPmax(c, w, t) and is computed as
follows:

LTPmax(c, w, t) =
∑

d∈U

F(d, w) · D−(t−d.tc)

α + minDist(c, d)
(16)

where minDist(c, d) represents the minimum distance
between c and d. Note that LTPmax(c, w, t) can be computed
efficiently by using Eqs. 11 and 13.

Theorem 3 Given a term w and a cell c, w can be filtered by
all SST subscriptions in cell c if:

LTPmax(c, w, tcur) ≤ �m(c).p · D−(tcur−�m (c).t)

4 Parameter M is set to 16–128 in experiments (cf. Sect. 5).
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Fig. 7 SST subscription partitioning

Algorithm 3: HSMatching
Input: Root Cell croot , new document d, inverted lists I L
Output: Updated inverted lists I L , updated min-heaps H [s] of

each subscription s
1 for each unique term wi in d do
2 I L[wi ].add(d);
3 CellVisit(croot , d, wi );
4 return;

Proof The inequality suggests that ∀si ∈ c (LTP(si , w, t)) ≤
�m(c).p ·D−(tcur−�m (c).t)). Since �m(c) has the lowest current
LTP score among all subscriptions in c, according to Algo-
rithm 1, Lines 7–8, we have that ∀si ∈ c (LTP(si , w, t) ≤
H [si ].top().p). This completes the proof. ��

Theorem 3 provides a subscription filtering condition that
enables us to prune a set of unqualified SST subscription
candidates that cannot include a termw froma newdocument
as a top-k result. Next, we introduce the advanced matching
algorithm that uses subscription filtering.

Algorithm 3 presents the pseudo code of our subscription
matching algorithm. We take the root cell croot, new docu-
ment d, and inverted lists as input. For each unique term wi

in d, we first add its posting into I L[wi ] (Line 2). Next, we
call recursive function CellVisit (cf. Algorithm 4) to evaluate
each descendant cell (Line 3). Specifically, at first we check
if subscriptions located cell c can be filtered based on The-
orem 3. If so, we skip all subscriptions in c; Otherwise, we
proceed to check c’s four child cells (Lines 2–3). In partic-
ular, if c is a leaf cell we need to evaluate each subscription
in c individually, which is the same as Algorithm 1, Lines
4–16. Finally, we update �m(c) from the leaf cell to the root
cell (Lines 19–23).

Space complexityThe space complexity of the index struc-
tures used for processing SST subscriptions is O(ψavg · |D|+
(k + 1) · |S|), where ψavg denotes the average number of
terms per document, D denotes the document collection, and
S denotes the SST subscriptions.

Algorithm 4: CellVisit (Cell c, Document d, Term w)
Input: Cell c, summary label list �m , min-heaps H [s] of each

subscription s, new document d
Output: Updated inverted lists I L , updated min-heaps H [s] of

each subscription s
1 if LTPmax(c, w, tcur) > �m(c).p · D−(tcur−�m (c).t) then
2 for each child ci of c do
3 CellVisit(ci ,d,w);
4 if c is a leaf cell then
5 for each s ∈ c do
6 Pnew ← 0;
7 for each posting d j in I L[wi ] do
8 Pnew ←

Pnew + F(d, wi ) · D−(t−d j .tc)/(α + dist(s, d j ));
9 wt ← H [s].top();

10 Pe ← wt .p;
11 te ← wt .t ;
12 Pcur ← Pe · D−(tcur−te);
13 if H [s] contains wi then
14 H [s].delete(wi );
15 H [s].push(〈wi , Pnew, tcur〉);
16 else if Pnew > Pcur then
17 H [s].pop();
18 H [s].push(〈wi , Pnew, tcur〉);
19 while �m(c) is changed do
20 Update �m(c);
21 if c is the root cell then
22 return;
23 c ← c.parent ;
24 return;

3.4.2 Document and subscription updates

Document update Our hierarchical summarization structure
is designed to index subscriptions. It does not affect docu-
ment insertion or deletion.

Subscription updateWhen a user registers a new SST sub-
scription s, we apply Algorithm 5. Starting from the root cell,
we traverse the cell that covers s in a top-downmanner.When
the number of subscriptions indexed by the cell exceeds M
after indexing s (Line 2), we split the cell and index the sub-
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Algorithm 5: SubInsert
Input: Root Cell croot , new subscription s, Cell capacity

threshold M
Output: Updated hierarchical summarization structure

1 ccur ← croot;
2 while |ccur| ≥ M do
3 Split ccur;
4 ccur ← ccur’s child cell that covers s;
5 Insert H [s] to ccur and update summary label;
6 return;

Algorithm 6: SubDelete
Input: Root Cell croot , subscription s to be deleted, Cell capacity

threshold M
Output: Updated hierarchical summarization structure

1 ccur ← the cell that indexes s;
2 Remove H [s] and update summary label;
3 ccur ← ccur’s parent cell;
4 while |ccur| ≤ M do
5 Merge the child cells of ccur;
6 ccur ← ccur’s parent cell;
7 return;

scriptions by its four child cells (Lines 3–4). After finding
an appropriate cell to index s, we insert the min-heap of s
(H [s]) into the cell and update its summary label (Line 5).

When a user de-registers an existing subscription s, we
apply Algorithm 6. First, we locate the cell that indexes s
(Line 1) and remove the min-heap of s (H [s]) from the
cell (Line 2). Next, we repeatedly check whether the par-
ent cell’s child cells can be merged until we reach the root
cell. In particular, if the number of subscriptions indexed by
the descendants of a parent does not exceed M , we merge
descendants (Lines 3–6).

4 RST Subscription processing

This section presents baseline and our solution of processing
a large number of RST subscriptions over a stream of spatio-
temporal documents.

4.1 Baseline for processing RST subscriptions

The high-level idea of a straightforward method works as
follows: For each termw in a new spatio-temporal document
d, we compute and update its popularity score in each RST
subscription s; if it is greater than the popularity score of the
current k-th term in s, w is regarded as a new result term
and is used to update the current top-k term list for s. Note
that the popularity score of each term in the top-k term list
of s declines over time so we are required to re-compute
them each time when a term from a new document arrives.
The straightforward method is computationally prohibitive

Fig. 8 RST subscriptions and documents

when the number of subscriptions is very large or the spatio-
temporal documents arrive at a high rate. As a result, we
need to develop a more efficient method to handling RST
subscription over a stream of spatio-temporal documents.

It comes to our attention that an underlying idea of many
publish/subscribe solutions (e.g., [4,55,63]) is to let similar
subscription be organized together and evaluate them simul-
taneously, thus enhancing the performance of subscription
processing. Nevertheless, it is challenging to achieve sim-
ilar optimization goal for processing RST subscriptions. In
order to avoid the re-evaluations of top-k term list maintained
by each subscription and enable the computation sharing of
similar subscriptions, we propose an approach including the
following techniques to representing, indexing, and grouping
RST subscriptions.

To maintain an exact top-k term list for each subscrip-
tion in a real-time fashion, the straightforward method is
to maintain a temporal popularity table (TP table) for each
subscription s, which is basically a hashmap where the key
is a term w from the documents falling in the subscription
region (s.r ), and the value is the current temporal popular-
ity score (TP(s, w, tcur)). The high-level idea of document
processing is as follows. When a new document dn is pub-
lished, we first retrieve the RST subscriptions whose regions
cover the location of dn . After the pre-processing of dn (i.e.,
de-composing the document into terms and removing stop
words), for each retrieved subscription s we update its TP
table. Finally, we update the top-k terms for each retrieved
subscription. The time complexity for this result update algo-
rithm is O(k log(k)) for each matching between a term and
a subscription.

To facilitate the retrieval of RST subscriptions that cover a
document, we can use grid indexing structure that partitions
the spatial area into m × n congruent cells to index the spa-
tial ranges of RST subscriptions, which is shown in Fig. 8.
For each cell, we store the id of the subscriptions of which
spatial ranges overlaps with the cell. For instance, we store
subscriptions s1, s2, and s4 under cell c10 because the spa-
tial regions of s1, s2, and s4 overlap with c10. When a new
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document dn arrives, subscriptions covering dn are retrieved
in a filtering-and-refinement fashion. For example, when d4
arrives, subscriptions stored in c10 (i.e., s1, s2, and s4) are
retrieved because c10 covers d4. Next, we proceed to check
whether the subscriptions stored in c10 exactly cover d4. As
a result, s1 and s2 cover d4 while s4 does not cover d4.

After finding out the subscriptions ofwhich regions cover-
ing dn , we need to update the TP table and the top-k term list
for each relevant subscription. Specifically, it works as fol-
lows: for each subscription, we maintain a hashmap to store
the frequencies of all terms of documents falling in the sub-
scription range, and we additionally keep a min-heap array
of size k to record the TP scores of the top-k terms for each
subscription.

Algorithm 7: ResultUpdate (Subscription Index SI ,
Document d)
1 c ← the cell in SI that covers d.ρ;
2 for each si stored in c do
3 if si .r covers d.ρ then
4 M ← the HashMap of si ;
5 H ← the min-Heap of si ;
6 for each term w j in d do
7 Compute and update TP(si , w j , tcur) in M
8 if key w j exists in H then
9 for each term wk in H do

10 Update TP(si , wk , tcur) in H ;
11 MakeHeap(H );
12 else
13 H .push(w j );
14 for each term wk in H do

15 Update TP(si , wk , tcur) in H ;
16 MakeHeap(H );
17 H .pop();

The pseudocode of updating the top-k terms maintained
by each subscription is shown in Algorithm 7. The inputs
are the subscription index SI and new document d. Initially,
we initiate c to be the cell in SI covering the location of d,
respectively (line 1). Next, for each subscription si of which
region covers the location of d we need to update the top-k
results for si indexed under c (lines 2–3). Note that M and H
denote the hashmap and min-heap of si , respectively (lines
4–5). For each term w j in d, we firstly compute and update
TP(si , w j , tcur) in M (line 7). Secondly, we need to update
H . In particular, if w j exists in H , we re-construct H by
re-computing TP(si , wk, tcur) for each wk in H (lines 8–11).
Else we insert w j into H , re-construct H , and remove the
top element in H (lines 12–17).

Subscription update The subscription insertion and dele-
tion operations of the baseline method are straightforward.
Specifically, when a user registers an RST subscription s, we
locate the cells that overlap with s.r and store s in these cells.

Similarly, when a user de-registers s, we remove s from the
cells that overlap with s.r .

4.2 Overview of technical problems

Three limitations exist for the baseline algorithm. First, new
documents are arriving in a streaming fashion and the tem-
poral popularity score TP(s, w, tcur) of each term w in each
subscription s is changing continuously as time elapses.
Thus, for each subscription we need to re-construct its top-k
term list (min-heap) when a new document arrives. Second,
based on the publish/subscribe scenario, the number of RST
subscriptions can be very large (i.e., 10M subscriptions is
common for publish/subscribe systems). Hence, when a new
spatio-temporal document dn arrives we need to find the sub-
set of RST subscriptions of which regions cover the location
of dn . Third, it is computationally expensive to maintain and
continuously update a TP table for each subscription. We
need to seek computation sharing solutions to enhance the
efficiency of RST subscriptions processing when a new doc-
ument arrives.

We proceed to present how to address the three technical
problems, respectively, in detail. An underlying idea of many
publish/subscribe solutions (e.g., [11,20,55]) is to group sub-
scriptions such that they can be evaluated simultaneously for
a new published item. Motivated by these systems, we also
expect to design an approach to grouping RST subscriptions
and their top-k term lists such that subscriptions in one group
can be evaluated simultaneously, thus reducing the compu-
tation of subscription processing. Specifically, we define the
concepts of temporal popularity score index and subscription
group, which are used for filtering out the term from a new
document that cannot be the top-k result for an individual
RST subscription and a group of RST subscriptions, respec-
tively. Based on the concepts, we group and index the RST
subscriptions by a set of non-overlapping cells from spatial
index. Our framework of processing RST subscriptions con-
sists of the following techniques.

(1) Temporal popularity score index, which is proposed
for manipulating the temporal component of the TP
score. Based on the temporal popularity score index,
we develop an efficient algorithm for updating the top-k
term list of each subscription. In particular, our algorithm
is able to reduce the time complexity of updating the top-
k result given a new term and a subscription from O(k
log(k)) to O(log(k)). This technique will be presented
in Sect. 4.3.

(2) Subscription grouping technique, which is used for: (1)
sharing computations of updating TP scores of a term
from different RST subscriptions; (2) checking whether
a term from a new document can be a result of some

123



1114 L. Chen et al.

Fig. 9 Architecture for processing documents over RST subscriptions

subscription in a subscription group based on the group
filtering condition. We define subscription group to help
generate the group filtering condition for each set of sub-
scriptions. Then we develop an efficient threshold-based
online algorithm to generate the subscription groups.
With the generated subscription groups, we develop
an approach to handling RST subscriptions in a group
simultaneously for a term from a new document. This
technique will be presented in Sect. 4.4.

Figure 9 illustrates our proposed architecture for process-
ing RST subscriptions. Blue arrows denote the process of a
subscription and green arrows denote the process of spatio-
temporal documents. A user may both issue a subscription
and generate a document.

When the system receives an RST subscription, the sub-
scription is firstly initialized by traversing the document
index, which is optional, then it is inserted into a subscription
group that is most “similar” to the subscription. Subscription
groups are indexed by a subscription index. For each sub-
scription group, we maintain some summary information for
enabling computation sharing when a new document arrives.

When a newdocumentdn arrives,we store it in a document
index that indexes the spatial, text, and temporal information
of each newly arrived document. Next, we consider each term
wi of dn to be a “query” and we traverse the subscription
index to retrieve the summary of each relevant subscription
group. Then we evaluate whether the group can filter wi . If a
group cannot filterwi , we proceed to evaluate each subscrip-
tion s in the group to determine whether s can include wi as
their new top-k term.

4.3 Processing of a single RST subscription

In this section, we discuss the problem of how to monitor
the updates of the top-k term list in an RST subscription that

might be triggered by elapse of time and arrivals of new
documents, respectively.

Lemma 4 Let s be a RST subscription, wi and w j be two
different terms. If TP(s, wi , t) > TP(s, w j , t) and there is no
document falling in s.r during the time period [t, t + Δt]
(Δt > 0), we have TP(s, wi , t + Δt) > TP(s, w j , t + Δt).

Proof According to Eq. 3, if TP(s, wi , t) > TP(s, w j , t), we
have:

∑

d∈s.r
F(d, wi ) · D−(t−d.tc) >

∑

d∈s.r
F(d, w j ) · D−(t−d.tc).

So we have:

∑

d∈s.r
F(d, wi )·D−(t+Δt−d.tc) >

∑

d∈s.r
F(d,w j )·D−(t+Δt−d.tc).

As a result, we get TP(s, wi , t+Δt) > TP(s, w j , t+Δt).
��

Lemma 4 indicates that the temporal popularity of a term
in a subscription has the following property: the relative rank-
ing of two different terms w.r.t. a subscription is consistent
over time. Hence, we do not need to update the top-k term list
for each subscription over time. However, the difficulty here
is that the absolute value of TP scoreswill decrease over time,
whichmay affect the evaluation ofwhether a term from a new
document can update the top-k term list in a subscription.

4.3.1 Top-k temporal popularity score index

To manipulate the update of time-varying TP scores, we
develop a top-k temporal popularity score index (TP index) to
store andmaintain the top-k list, which consists of a hashtable
for storing each term-score pair and its update timestamp,
and a min-heap for indexing the current top-k terms with the
highest TP scores.

Example 3 Figure 10 shows the TP index of RST subscription
s. The TP index consists of two components: hashmap and
min-heap. The key of the hashmap is the term (e.g.,w0) that is
contained in the documents falling in the subscription region
(s.r ). The corresponding value in the hashmap is the TP score
of w0 at timestamp tu(w0). In particular, tu(w0) denotes the
timewhen the TP score ofw0 in s was updated. Themin-heap
maintains top-k terms with the highest TP score. Assume
that k = 3 and TP(s, w9, tu(w9)) > TP(s, w5, tu(w5)) and
TP(s, w5, tu(w5)) > TP(s, w3, tu(w3)), the top element in
the heap is term w3 because w3 has the minimum TP score
among the scores of the three terms.
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Fig. 10 TP index for subscription s

4.3.2 Update of TP index

Recall that when a new document dn arrives, we firstly need
to decompose the spatio-temporal document into terms and
remove stop words. Next we retrieve the RST subscriptions
of which regions can cover the location of the new document.
In the remaining parts of this paper, we use expression “doc-
ument dn matches subscription s” to denote that the location
of a new spatio-temporal document dn falls in the spatial
region of s. For each subscription that matches dn we need
to update its TP index to maintain the up-to-date top-k term
list.

In this section, we present the problem given a new spatio-
temporal document dn that matches a subscription s, how to
update the TP index maintained by s. The high-level idea is
as follows. For each term wi in dn , we firstly retrieve the TP
score of wi in s from the hashmap and update it based on
Lemma 5. Next, we update the min-heap. Specifically, if the
TP score of wi is grater than the TP score of the top element
(term) in the Min-heap, we replace the top term with wi .

Lemma 5 Given TP(s, wi , tu(wi )) and tu(wi ), when a new
document dn containingwi matches subscription s at current
time tcur, we have:

TP(s, wi , tcur)

= TP(s, wi , tu(wi )) · D−(tcur−tu(wi )) + F(dn, wi ),
(17)

where ε is an arbitrarily small value.

Proof Let d1, d2, d3, …, dn be n documents ranked by their
creation times (d.tc). Assume that all of these n documents
can match s. When dn−1 arrives, the TP score of wi at the
time of its arrival is:

n−1∑

j=1

F(d j , w) · D−(dn−1.tc−d j .tc) = TP(s, wi , dn−1.tc).

When dn arrives, the TP score of wi at the time of its arrival
is:

n∑

i= j

F(d j , w) · D−(dn .tc−d j .tc) = TP(s, wi , dn .tc).

When dn arrives, dn−1.tc is the time when the TP score of wi

in s was updated (i.e., tu(wi )), and dn .tc is the current time
tcur. So we complete the proof. ��

Note that the terms in min-heap are ranked based on the
their current TP scores, which are computed by:

TP(s, wi , tcur) = TP(s, wi , tu(wi )) · D−(tcur−tu(wi )), (18)

where TP(s, wi , tu(wi )) and tu(wi ) can be acquired from the
hashmap.

Algorithm 8: TPUpdate (Subscription s, Term w)
1 M ← the HashMap of s;
2 H ← the min-Heap of s;
3 val ← empty;
4 if key w exists in M then
5 val ← M .get(w);
6 Update val.T P based on Equation 17;
7 val.tu ← currentT ime;
8 Update val in M ;
9 else

10 val.T P ← F(d, w);
11 val.tu ← currentT ime;
12 Insert w–val pair into M ;
13 if key w exists in H then
14 Update H ;
15 else
16 wt ← H .top();
17 if TP score of wt < TP score of w then
18 Replace wt with w in H ;
19 Update H ;

The pseudocode of TP index update is shown in Algo-
rithm8.The inputs are subscription s and a termw fromanew
document. Initially, we initiate M and H to be the hashmap
and min-heap of s, respectively (lines 1–2). We retrieve its
corresponding value in the hashmap M . Specifically, if M
has keyw, we get its values val.T P and val.tu , which repre-
sent TP(s, wi , tu(w)) and tu(w), respectively (line 5). Next,
we update the hashmap M by updating val.T P based on
Eq. 17 and setting val.tu to be the current time (lines 6–8).
If M does not have key w, we add a new w–val pair into
M , where val.T P is initialized as the frequency of w in d
and val.tu is initialized as the current time (lines 9–12). After
updatingM , we need to update themin-heap H . Specifically,
if w is in H , we update H based on the new TP score of w

computed by Eq. 18 (lines 13–14). Else we retrieve the top
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element (term) wt in H and compare the current TP scores
between wt and w (lines 16–17). In particular, if the current
TP score of wt is smaller than that of w, we replace wt with
w in H and update H (lines 18–19).

4.4 Representing and grouping RST subscriptions

We propose an effective approach to representing and group-
ing RST subscriptions such that each group of subscriptions
can be processed simultaneously for a term from a new
spatio-temporal document. We first introduce the concept of
RST subscription group (SG for short) to represent a group
of similar RST subscriptions (Sect. 4.4.1). Based on the con-
cept of SG, we present how to derive a common TP index
for an SG and show how to utilize the common TP index to
share the computation of maintaining the top-k term result of
each subscription (Sect. 4.4.2). Subsequently, we present our
threshold-based online group generation (TOG) algorithm
(Sect. 4.4.3)

4.4.1 RST subscription group

We propose the concept of RST subscription group (SG) to
represent a group of RST subscriptions whose regions are
spatially similar to each other. These subscriptions may have
a much higher probability to share a common temporal top-k
term list, which can substantially reduce the term subscrip-
tion matching cost when a new document arrives.

Definition 6 (RST Subscription group (SG)) Denoted by SG
an RST subscription group is a set of RST subscriptions
{s0, s1, s2, . . . , sn} where for any si , s j ∈ SG, si .r ∩ s j .r �=
∅.

Based on Definition 6, there must exist a region that is
shared by all RST subscriptions in a subscription group SG.
Such region is defined as Intersection region of SG (i.e.,
I (SG)).

Definition 7 (Intersection region)Given a subscriptiongroup
SG = {s1, s2 · · · sp}, it contains p subscriptions from s1 to
sp. The intersection region for SG, denoted as I (SG), is the
largest region r satisfying the condition that for each si ∈ SG,
si .r ∩ r = r .

According to Definition 7, the intersection region is the
largest common region among all the regions associated with
each subscription si . Thus, each subscription s satisfies that
s.r fully covers I (SG). Similarly, we define the union bound-
ing region in as follows.

Definition 8 (Union bounding region) Given a subscription
group SG = {s1, s2 . . . sp}, it contains p subscriptions from
s1 to sp. The union bounding region for SG, denoted as
U (SG), is the smallest rectangular region r satisfying the
condition that for each si ∈ SG, si .r ∩ r = si .

According to Definition 8, the union region is the small-
est region that contains all the subscription regions. Thus
for each subscription si , U (SG) will contain si .r . With
the definition of intersection region and union region, we
define the compactness of a group, denoted as C(SG), as
C(SG) = I (SG)/U (SG).C(SG) evaluate the percentage of
common regions as I (SG) compared with the whole region,
as U (SG).

4.4.2 Common TP index and subscription group
representation

To enable the computation sharing among the subscriptions
in group SG, we build a common TP index for storing the
TP score of terms from documents falling in the intersec-
tion region of SG (i.e., I (SG)). In particular, the structure
of common TP index is the same as the structure of TP
index introduced in Sect. 4.3.1 except that the common TP
index does not have min-heap. Note that when a term from
a new document falling in I (SG) arrives, we just update
the hashmap in the common TP index. The hashmaps in TP
indices maintained by each si ∈ SG are not required to be
updated. However, we may still need to update the top-k
term list (min-heap) in each si ∈ SG. Recall that the terms
in the min-heap maintained by TP index of subscription s
are ranked based on Eq. 18, where the essential component
(i.e., TP(s, wi , tu(wi )) and tu(wi )) can be acquired from the
hashmap maintained by s. However, when we use common
TP index to separately store the TP score of terms from docu-
ments falling in I (SG), ranking the terms in min-heap based
on Eq. 18 is no longer valid because the TP score maintained
by the hashmap of each si ∈ SG only takes into account the
documents published in the region s.r\I (SG).

Wepropose the aggregatedmin-heap tomaintain the top-k
terms for each si ∈ SG. Different from the originalmin-heap.
The aggregated min-heap ranks its elements by aggregating
(summing up) theTP scoresmaintained by hashmaps in com-
mon TP index and TP index of si , respectively.

Recall thatwhen a termw fromanewdocumentdn arrives,
for each subscription s of which region covers dn .ρ we need
to retrieve the top element (term) wt in the corresponding
min-heap and compare the current TP scores between wt

and w (Algorithm 8). As shown in Fig. 11, to enable group
filtering wemaintain two variables: (1)minTop that indicates
theminimumvalue of TP scores; (2) updateTime that denotes
the timestamp of the last update of minTop. In addition, we
maintain a max-hashmap for SG where the key is term w

and the value is the subscription s such that the TP score
of w in s is the largest among all subscriptions in SG. We
use TP(SG, w, t) to denote the TP score of w maintained by
the common TP index of SG, use smax(w, SG) to denote the
subscription such that the TP score of w in s is the largest
amongall subscriptions in SG, anduse SG.currentMinT op
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Fig. 11 Representation of subscription group

to denote the value of minTop at current time, which can be
derived by aggregating minTop and updateT ime based on
Eq. 18. Then we have Theorem 4, which is regarded as the
group filtering condition.

Theorem 4 Let SG = {s0, s1, . . . sp−1} be a subscription
group with p RST subscriptions, w be a term from a new
document dn and I (SG) covers dn .ρ. w cannot be a top-k
result of any si ∈ G if the following condition is satisfied:

TP(SG, w, tcur) + TP(smax(w, SG), w, tcur)

≤ SG.currentMinT op
(19)

Proof LetTP−(si , w, tcur)be the currentTP scoremaintained
by si and si ∈ SG. If the top-k term list of si can be updated
by w, then we have:

TP(SG, w, tcur) + TP−(si , w, tcur)>SG.currentMinT op.

(20)

Because TP(smax(w, SG), w, tcur) ≥ TP−(si , w, tcur), we
complete the proof. ��

Example 4 Let SG be a subscription group containing RST
subscriptions s1, s2, and s3. The spatial regions of s1, s2,
and s3 (i.e., s1.r , s2.r , and s3.r , respectively) are depicted
by dark solid rectangles in Fig. 12. The intersection region
(I (SG)) and the union bounding region (U (SG)) of SG are
depicted by the red dash rectangle and blue dash rectangle,
respectively. When a new document d1 arrives, we find that
d1.ρ falls in I (SG). In this case, we only need to update the
hashmap in the common TP index. When another document
d2 arrives, we find that d2.ρ falls outside I (SG) but it falls

Fig. 12 Subscription group SG

in s1.r and s2.r . Here we need to update the hashmaps in the
TP indices maintained by s1 and s2 separately.

Space complexity The space complexity of the subscrip-
tion group index is O((Tavg + Gavg + k) · |S|), where Tavg
denotes the average number of terms for documents located
in an RST subscription, Gavg denotes the average number of
grid cells for indexing each subscription, and |S| is the num-
ber of subscriptions.

4.4.3 Online generation of subscription groups

We proceed to present our algorithm for generating sub-
scription groups over the RST subscriptions. Based on the
publish/subscribe scenario, the arrival rate of subscriptions
is much lower than the arrival rate of published items. Nev-
ertheless, we still need to regard the RST subscriptions as a
data stream rather than a static dataset. As a consequence, we
proposed a threshold-based online algorithm for generating
subscription groups over a stream of RST subscriptions. In
particular,we focus on the problem that given a new subscrip-
tion s and a set of subscription groups, how to assign a group
that is most “similar” to s for enhancing the computation
sharing in processing documents over a set of subscriptions.

Algorithm 9 presents the pseudo code of our threshold-
based online group generation (TOG) algorithm. S include
all the existing subscriptions and has formed all the existing
groups SG1, SG2 . . .. s is the new subscription. create keeps
whether s can be inserted into the existing group and is set
to be true initially (line 1). MinChange keeps the changes
after inserting s into the group and set to be ∞ (line 2). Then
for each existing group SGi ∈ G, a new group SG ′ will
be constructed by inserting s into SGi (line 4). After that,
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Algorithm 9: TOG (Subscription s, GroupSet G,
Threshold θ )
1: create ← true;
2: MinChange ← ∞;
3: for each group SGi ∈ G do
4: SG ′ = s ∪ SGi ;
5: if s.r ∩ I (SGi ) �= ∅ and C(SG ′) > θ then
6: create ← false;
7: if MinChange > C(SG ′) − C(SGi ) then
8: MinChange ← C(SG ′) − C(SGi );
9: insert ← i ;
10: end if
11: end if
12: end for
13: if create = true then
14: create a new group SG including s;
15: insert SG into G;
16: else
17: insert s into the group SG insert ;
18: end if

the intersection regions between s.r and I (SGi ) as well as
C(SG ′) will be computed because a subscription s can be
inserted into SGi only if s.r ∩ I (SGi ) �= ∅ and the com-
pactness for the new group SG ′ is larger than the threshold θ

(line 5). If the condition is satisfied, the subscription s can be
inserted into at least one existing group, thus create will be
set as false (line 6). In the next steps, the algorithm will keep
the information for the inserted group. TheMinChangewill
keep the minimum value among all the valid inserted groups.
IfMinChange > C(SG ′)−C(SGi ) (line 7), it indicates that
inserting s into SGi will make the minimum change smaller,
thenMinChangewill be updated asC(SG ′)−C(SGi ) (line
8) and insert will store the number of the group as i (line 9).
After checking all the groups, if create is true, then we can-
not insert s into any existing groups. In this scenario, a new
group SG that contains a single element s will be generated
(line 14) and inserted into G (line 15). Otherwise, we insert
s into the existing group SG insert (line 17).

Subscription update When a user registers a new RST
subscription s, we apply Algorithm 9 to insert s into an
appropriate group. When a user de-registers s, we mark s
as “de-registered” while leaving it in its group. We remove
a group SG if all subscriptions in the group are marked as
“de-registered.”

4.5 Associating subscription group with spatial
index

Recall that each RST subscription s needs to be associated
with a set of non-overlapping spatial cells that can cover the
whole area of s.r (Sect. 4.1). Likewise, we need to associate
each subscription group SG with cells of a spatial index.
To choose such a set of cells for a better performance, we

propose an effective method to associate SG onto a set of
Quad-tree cells.

Admittedly, we may use other spatial indices (e.g., Grid
index, R-tree-based indices) for the purpose. Specifically, R-
tree-based spatial index is applicable for our problem, but it
is a less suitable structure in comparison with the Quad-tree.
The reason is that the structure of the R-tree will be greatly
dependent on the distribution of subscription locations. Itwill
incur much additional cost for maintaining the MBRs (i.e.,
split and merge operations) when new queries arrive. Such
shortcoming also exists for the R+-tree and the R*-tree. As
for the grid index, we have to determine the granularity of the
grid. Because that different subscriptionsmay have diverging
spatial regions, it is difficult to determine a unified granularity
that is suitable for all subscriptions. As a consequence, we
choose the Quad-tree-based indexing structure to index RST
subscription groups.

Given an RST subscription group SG, when a new spatio-
temporal document dn arrives, ifU (SG) does not cover dn .ρ
then we do not need to evaluate any si ∈ SG. Hence, we use
U (SG) to represent the spatial region of SG.

We propose a heuristic method for associating a subscrip-
tion group onto the Quad-tree cells:

Step 1: Starting from the root cell cr of the Quad-tree, we
check the number of cr’s children that covers U (SG). If it
equals to 1, we invoke Step 2 with the cr’s child who covers
U (SG) as the input; Else we return cr.

Step 2: Given an input cell c, we check the number of c’s
children that coversU (SG). If it equals to 1, we invoke Step
2 with the c’s child who coversU (SG) as the input; Else we
return c.

Such recursive procedure terminates when there is no sin-
gle cell that can cover the whole region of U (SG).

4.6 Algorithm for RST subscriptionmatching

Now we are ready to present the algorithm for processing a
new document over a set of subscription groups. Recall that
the RST subscriptions are grouped based on TOG algorithm
(Sect. 4.4.3) and each subscription group SG is associated
with a set of non-overlapping cells that coverU (SG). Hence,
when a new spatio-temporal document dn arrives, we only
traverse the subscription groups in the cells that cover dn .ρ.

Algorithm 10 presents the pseudo code of the algorithm
for processing a new document over a set of subscription
groups. The input of this algorithm is the new document
d and the existing groups of subscription indexed by the
Quad-tree SI . At the beginning, we set c as the root node
of SI (line 1). We traverse the Quad-tree cells that cover
the location of d in a depth-first manner (line 2). Next, we
evaluate each subscription group SG stored under c (line 3).
In particular, if U (SG) covers the location of d, it means
that there may exist a subscription in SG such that the sub-
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Algorithm 10: DocumentProcess(Document d, Index SI )

1 c ← SI .root ;
2 while cell c is not empty do
3 for each subscription group SG in c do
4 if U (SG) covers d.ρ then
5 if I (SG) covers d.ρ then
6 for each term wi ∈ d.ψ do
7 Update common TP index of SG;
8 if SG cannot filter out wi based on Theorem 1

then
9 for each s j ∈ SG do

10 TPUpdate(s j , wi );
11 Update max-hashmap, minTop, and

updateT ime;
12 else
13 for each s j ∈ SG do
14 if d.ρ covers s j .r then
15 for each term wi ∈ d.ψ do
16 TPUpdate(s j , wi );
17 Update maxhashmap, minTop, and

updateT ime;
18 c ← c’s child node that contains d.ρ;

scription region can cover the location of d (line 4). Then
we proceed to check whether I (SG) covers the location of
d (line 5). If so, we firstly update the common TP index, and
then for each term wi in d we check whether the subscrip-
tions in SG can filter out wi on the basis of Theorem 4. If
not, we need to check each si in SG separately. In partic-
ular, we call algorithm TPUpate. After that, we update the
summary information maintained by SG (lines 8–11). If the
location of d does not fall in I (SG), we also need to eval-
uate each si in SG separately. Specifically, we firstly check
whether the location of d falls in the region of si . Next we
call algorithm TPUpate for each term in d. After that, we
update the summary information maintained by SG (lines
13–17).

5 Experimental study

We report on experiments with real data that offer insight
into important properties of the developed algorithms. Four
methods are evaluated in our experiments:

(1) Baseline Baseline algorithm for processing SST sub-
scriptions, presented in Sect. 3.1;

(2) TS Subscription matching with tailored result update,
introduced in Sect. 3.2;

(3) FTS TS optimized by fast computation of the LTP score,
presented in Sect. 3.3;

(4) HSFTS FTS optimized by hierarchical summarization-
based subscription filtering, covered in Sect. 3.4.

5.1 Datasets and subscription generation

Our experiments are conducted on two datasets: FSD and
TWD.5 FSD is a real-life dataset collected from Foursquare,
which contains worldwide POIs with geographical informa-
tion. The dataset TWD is a larger dataset that comprises
geo-tagged tweets with locations. After pre-processing, the
average numbers of terms per item are 5.6 and 9.3 for FSD
and TWD, respectively, and the total sizes of FSD and TWD
are 83 MB and 3.2 GB, respectively.

SST subscription generation To generate SST subscrip-
tions from FSD, we randomly select 1 million POIs. The
selected POI locations are regarded as subscription locations
(i.e., s.ρ in Definition 2). The number of results k is set to
be 10 as default. We also conduct an experiment that studies
the effect of varying parameter k. Similarly, we randomly
select a particular number of tweet locations as subscription
locations for TWD.

RST subscription generation The RST subscriptions are
generated as follows. For FSD, the location of each POI is
used as the center of an RST subscription region, and we gen-
erate a rectangular or circular region of a pre-defined area
with that center. The resulting region is used as the region of
an RST subscription. For TWD, we randomly select a partic-
ular number of tweets, and the center of each subscription
region is the same as the location of each tweet. The shape
of a region r is determined as follows: Let the area of the
region r be a. The probability that r is a rectangle equals
50%, and the probability that r is a circle equals 50%, too.
If r is a rectangle, the longer side of r is parallel to the x-
axis (50% probability) or the y-axis (50% probability). The
length/width ratio is uniformly distributed from in the range
from 1 to 2.

Additionally, for experiments on FSD, we regard each
tweet in TWD as a spatio-temporal document, and we regard
each region generated from the POIs as the region of an RST
subscription. For experiments on TWD, each tweet in TWD
is considered to be a spatio-temporal document on TWD.
Each region generated from the randomly selected tweets is
considered to be the region of an RST subscription.

5.2 Experimental results for SST subscriptions

We present the experiment settings and results related to
the processing of SST subscriptions. Parameter ranges and
default values are presented in Table 3.

Four methods are implemented in Java: Baseline,6 TS,
FTS, and HSFTS. Experiments in Euclidean space are con-

5 http://lisi.io.
6 The performance discrepancy between baseline and TS is negligible
when k is small. Thus,we only report the result of baselinewhen varying
k.
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Table 3 Parameter ranges and default values

FSD TWD

Number of result terms (k) 1–30 default: 10 1–500 default: 10

Preference parameter (α) dmax × 10−6 – dmax × 10−2 default: dmax × 10−4 dmax × 10−5 – dmax × 10−1 default: dmax × 10−3

Distance threshold (Tdist) 100–500km default: 300km 50–200km default: 100km

Decaying scale 0.1–0.9 default: 0.5 0.1–0.9 default: 0.5

Granularity parameter (M) 16–128 default: 32 16–128 default: 32

Number of subscriptions 1M 10–40M default:10M

ducted on server with an Intel Xeon(R) Gold 5120 CPU
@2.20GHz and 64GB RAM. Experiments in network space
are conducted on a server with an Intel Xeon(R) Gold 5120
CPU @2.20GHz and 256GB RAM.

5.2.1 Time effect

In this set of experiments, each method is run for 6000s
(which is called the simulation duration, denoted by Δtsim)
on both FSD and TWD. We set the decaying scale D−Δtsim

to 0.5. The default values of other parameters are presented
in Table 2. For each method, we continuously publish spatio-
temporal documents (e.g., geo-tagged tweets). To enable the
least efficientmethod to be able to process the data stream,we
publish 2 spatio-temporal documents per second on FSD and
3 spatio-temporal documents every 10s onTWD. In addition,
we register a new SST subscription and de-register an existing
subscription in the subscription pool every 5 s. Each method
is initialized with 1M and 10M SST subscriptions, for FSD
and TWD, respectively, and we warm up each method with
30,000 spatio-temporal documents.

We report the average runtime for processing a document
(i.e., the sum of the runtimes for processing each term in the
document, including subscription matching, result update,
and document group update) and the average runtime for
inserting a subscription during each period of 1000s. Fig-
ure 13 shows that HSFTS exhibits the best performance on
both datasets and that FTS substantially outperforms TS in
document processing. In particular, fromFig. 13awefind that
the performance of TS decreases as time elapses. In contrast,
for FTS and TSFTS the performance remains consistent. The
reason is that TS computes an LTP score by visiting every
posting (document) in an inverted list and that the lengths
of inverted lists grow as time elapses. However, FTS and
HSFTS compute LTP scores by means of document groups.
The number of document groups is much smaller than the
number of postings. Figure 13b does not show a similar trend
because the document arrival rate for TWD is much lower
than that for FSD. We also find that HSFTS performs signif-
icantly better than FTS, which confirms the effectiveness of
our subscription filtering technique.

Fig. 13 Effect of elapsed time regarding document processing

(a) (b)

Fig. 14 Effect of elapsed time regarding subscription update

Figure 14 shows the performance of SST subscription
update (i.e., insertion and deletion) for each method. TS
and FTS perform better than HSFTS. The reason is that
HSFTS requires each new subscription to be indexed for gen-
erating a hierarchical summarization. However, in general
publish/subscribe scenarios, the frequency of subscription
update is normally much lower than that of item arrivals, and
thus the subscription update cost will be substantially smaller
than that of document processing. Furthermore, when con-
sidering Figs. 13 and 14 together, we find that on dataset
FSD, HSFTS exhibits similar runtimes in terms of document
processing and subscription update (∼6ms). In contrast,
for FTS and TS, the runtimes of document processing are
∼20 and ∼70ms, respectively, which are much larger than
the subscription update time of HSFTS. As a result, when
accounting for both document processing and subscription
update, HSFTS still performs much better than TS and FTS.
In the rest of experiments, we focus on evaluating document
processing.

123



Top-k term publish/subscribe for geo-textual data streams 1121

(a) (b)

Fig. 15 Effect of the number of results, k

Fig. 16 Effect of distance preference parameter, α

5.2.2 Effect of k

This experiment evaluates the performance of the four algo-
rithms when varying the number of result terms maintained
by each subscription. As shown in Figs. 15, the docu-
ment processing runtime of baseline exhibits a conspicuous
increasing trend when we increase the value of k. In con-
trast, the other three algorithms (TS, FTS, and HSFTS) show
smaller runtime increases. The reason is that baseline needs
to re-order the min-heap maintained by each updated SST
subscription after processing each document. In contrast, the
other three algorithms adopt the tailored result update tech-
nique, which reduces the time complexity of result updates
from O(|S| · k · log k) to O(|S| · log k).

5.2.3 Effect of distance preference parameter

We proceed to evaluate the effect of distance preference
parameter α. Specifically, we vary α from dmax × 10−6 to
dmax × 10−2 and from dmax × 10−5 to dmax × 10−1 on FSD
and TWD, respectively, where dmax indicates the maximum
distance in the underlying space. Note that a lower value of
α denotes higher weight of the spatial proximity. Figure 16
shows that the performance of TS is relatively unaffected by
α. In contrast, both FTS and HSFTS exhibit improved effi-
ciency when we decrease the value of α. This result can
be explained by the fact that the LTP score computation
and subscription filtering techniques are based on the spa-
tial attribute of documents and subscriptions, respectively.
Hence, increasing the weight of the spatial proximity in the
LTP score can enhance the grouping and filtering effects.

(a) (b)

Fig. 17 Effect of distance threshold, Tdist

(a) (b)

Fig. 18 Effect of decaying scale

5.2.4 Effect of distance threshold

This experiment evaluates the effect of distance threshold
Tdist. From Fig. 17, we learn that FTS and HSFTS both pro-
duce the best performance when we set Tdist to 300 km and
100 km on FSD and TWD, respectively. In particular, when
Tdist is small, the number of groups associated with each
inverted list can be very large, which increases the cost of
computing the LTP score. On the other hand, if we increase
the value of Tdist, we will have fewer document groups. Nev-
ertheless, the average MBR diagonal length of each group is
increased, which may loosen the bound on the LTP score.

5.2.5 Effect of decaying Scale

From Fig. 18, we can see that the runtime for document pro-
cessing decreases as we increase the decaying scale. The
reason is that a higher decaying scale value decreases the
number of matched subscriptions. In particular, the runtime
of TS only decreases slightly as we increase the decaying
scale. Further, the runtimes of FTS and HSFTS exhibit mod-
erate decreasing trendswhenwe increase decaying scale. The
reason is that fewermatched subscriptions result inmore sub-
scriptions being filtered in advance.

5.2.6 Effect of granularity parameter

This experiment evaluates the performance when varying the
maximum number of subscriptions in a leaf cell (M). As
indicated in Fig. 19, HSFTS achieves the best performance
when M is set at 32.
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Fig. 19 Granularity

5.2.7 Scalability

Finally, we evaluate the scalability aspect in terms of docu-
ment processing efficiency and memory cost. From Fig. 20a,
we can see thatwhen the number of subscriptions is increased
to 40million, HSFTS remains capable of processing a spatio-
temporal document within 160ms, which is much more than
an order of magnitude faster than TS. From Fig. 20d, we
observe that thememory cost ofHSFTS is just slightly higher
than that of TS (10–15%). Figure 20b reports the maximum
stream arrival rate that can be sustained by eachmethodwhen
the number of subscriptions varies from 10 to 40M. Given
10M subscriptions, HSFTS can support a data stream with
an arrival rate of 630 docs/min. In contrast, TS and FTS
can only sustain streams with rates of 22 docs/min and 43
docs/min, respectively.Whenwe increase the number of sub-
scriptions to 40M, HSFTS can still sustain a stream with a
rate of 380 docs/min, which is 35× and 18× better than for
TS and FTS, respectively. Figure 20b reports the maximum
number of subscriptions that can be handled by each method
when the stream rate varies from 1400 to 5600 docs/min. In
the real-world scenario, the average arrival rate of geo-tagged
tweets is∼2800 docs/min [57]. Additionally, Fig. 20c reports
that HSFTS is able to handle 2.1 million SST subscriptions
over geo-textual data streams with a real-world arrival rate.
In contrast, FTS and TS can only support 0.202 million and
0.116 million subscriptions, respectively.

5.2.8 Time effect of road networks

This set of experiments evaluates the efficiency of document
matching on road networks. Specifically, wemap locations to
a US road network graph,7 which consists of 175,812 nodes
and 179,179 edges. The distance between a subscription s
and a document d (i.e., dist(s, d) in Eq. 2) is the shortest
network distance between s and d.

7 http://www.cs.utah.edu/~lifeifei/research/tpq/.

We pre-compute the all-pair shortest path distances using
Dijkstra’s algorithm [21],which has complexityO(|V |·|E |+
|V |2 · log |V |), where |V | and |E | denote the total numbers of
nodes and edges, respectively, andwe store the pre-computed
results in memory (126.5 GB).

For eachmethod,wecontinuously publish spatio-temporal
documents (e.g., geo-tagged tweets). Similarly, to enable the
least efficient method to be able to process the data stream,
we publish 3 spatio-temporal documents every 2 s in the case
of FSD and 2 spatio-temporal documents every 10s in the
case of TWD.

FSD and TWD are initialized with 1M and 10M SST
subscriptions, respectively, and we warm up each method
with 30,000 spatio-temporal documents. Figure 21 shows
that when we use network distance, the time costs for all
methods are slightly higher than the corresponding time costs
when using Euclidean distance (cf. Fig. 13). The results show
that the fast LTP score computation method remains capable
of computing a good approximation of the exact LTP scores
when we use network distance.

5.3 Experimental results for processing RST
subscriptions

We implemented the following three methods in Java on a
PC with Intel(R) Core(TM) i7-3770 @3.40GHz and 16GB
RAM (Table 4). Note that experiments on scalability are con-
ducted on server with an Intel Xeon(R) Gold 5120 CPU
@2.20GHz and 64GB RAM. (1) DS—Direct processing
of RST subscriptions (Sect. 4.1); (2) TP—Processing sub-
scriptions with TP index (Sect. 4.3.1); (3) TPG—Processing
subscriptionswithTP index and subscription groupingmech-
anism (Sect. 4.6);

5.3.1 Time effect

In this set of experiments, eachmethod runs for 3000s (which
is simulation duration, denoted by Δtsim) on both FSD and
TWD. We set the decaying scale D−Δtsim at 0.5. For each
method,we continuously publish spatio-temporal documents
(i.e., geo-tagged tweets). We publish the i+1-st document as
soon as the processing of the i-th document is completed. In
addition, during each second we register a new RST subscrip-
tion and de-register an existing subscription each second. At
the beginning, FSD and TWD are initialized with 1M and
10M RST subscriptions, respectively, and we warm up each
method with 10,000 spatio-temporal documents. In other
words, we start issuing RST subscription and reporting the
runtime performance when the processing of the 10,001-st
document begins.

We report the average runtime for processing a docu-
ment (i.e., the sum of runtime for processing each term in
the document) and the average runtime for inserting a sub-
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(a) (b) (c) (d)

Fig. 20 Scalability

(a) (b)

Fig. 21 Effect of elapsed time regarding document processing on road
networks

scription during each period of 500s. Figure 22 shows that
TPG exhibits the best performance. In particular, TPG sub-
stantially outperforms TP and greatly outperforms DS in
document processing. TP performs much better than DS.
TPG is able to improve the runtime performance of DS by
approximately an order of magnitude on both datasets. The
reasons could be explained as follows.

For DS, we need to re-construct the min-heap main-
tained by each subscription of which region covers a new
document, which is very time-consuming.While for TP,min-
heap re-construction can be avoided because of its TP index
maintained by each subscription. Consequently, TP performs
substantially better than DS. However, compared with TPG,
TP does not group the similar subscriptions, and thus it is
impossible to let spatially similar subscriptions share compu-
tations in document processing.On the contrary,TPGenables
group evaluation and group filtering while updating the top-k
term list of each subscription, which make a big contribution
to improving the efficiency.

Figure 23 shows the performance of subscription inser-
tion for each method. Since TPG triggers TOG algorithm
(Sect. 4.4.3) when a new subscription arrives, we need to
evaluate the “similarity” between the region of the new sub-
scription and each subscription group. Therefore, the runtime
costs of subscription insertion for TPG are higher than TP
and DS. In particular, DS performs slightly better than TP in
terms of subscription insertion. This can be explained by the
additional cost for initializing TP index. However, the time
cost of subscription insertion is greatly lower than the time
cost of document processing by comparing the runtime in
Fig. 22. Hence, by accounting for both document processing
and subscription insertion, TPG still reduces the runtime of
DS by ∼90%.

5.3.2 Size of subscription region

We proceed to evaluate the effect of the region size of
each RST subscription. Figure 24 shows that all the meth-
ods present an increasing trend for the runtime of object
processing as we increase the area of subscription region.
This is because the average area of subscription region is
proportional to the average number of subscriptions stored
under each spatial cell, which will lead to an increase in the
number of subscriptions that we need to evaluate when a
new document arrives. We also observe that TPG is able to
improve on the runtime of DS by an order of magnitude. Fig-
ure 25 demonstrates the runtime of subscription insertion as
we vary the subscription region area. Similar to Fig. 24, all
the methods present an increasing trend for the runtime of
subscription insertion as we increase the region area.

Table 4 Parameter ranges and default values

FSD TWD

RST subscription region size 1km2–10,000km2 default: 100km2 1km2–10,000km2 default: 100km2

Number of result terms (k) 1–30 default: 10 1–30 default: 10

Group generation parameter (θ) 0.1–0.9 default: 0.5 0.1–0.9 default: 0.5

Decaying scale 0.1–0.9 default: 0.5 0.1–0.9 default: 0.5

Number of subscriptions 1M 10M–40M default: 10M
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(a) (b)

Fig. 22 Effect of time for document processing

(a) (b)

Fig. 23 Effect of time for subscription insertion

(a) (b)

Fig. 24 Effect of subscription region size for document processing

5.3.3 Number of result terms

This experiment evaluates the performance w.r.t. parameter
“k”. Figures 26 show that for TPG and TP the runtime for
document processing slightly increases as we increase the
result cardinality k. The reason is that higher value of k is
likely to induce the lower TP score of the top element (term)
in the min-heap maintained by each subscription. Thus, the
average number of subscriptions that have their min-heap
updated will increase, which may lower the performance of
document processing. In addition, we find that the increas-
ing trend of DS is much more significant than that of TPG
and TP. Such contrast can be explained by the min-heap re-
construction of DS while evaluating each subscription.

5.3.4 Effect of�

In this experiment, we investigate the effect of the group
generation parameter θ . We observe similar trends on both
datasets. In particular, θ = 0.5 yields the best performance. If
θ increases, it ismore likely for a newsubscription to generate

(a) (b)

Fig. 25 Effect of subscription region size for subscription insertion

(a) (b)

Fig. 26 Effect of result cardinality (k)

(a) (b)

Fig. 27 Effect of group generation parameter (θ)

a new group. Thus, the number of subscription groups will
mount up. Let us consider an extreme case where θ = 1. In
this case, each group contains one subscription, whichwill be
degenerated tomethodTP.On the other hand, if θ is too small,
the spatial similarity between subscriptions within a group
will decrease, which may harm the efficiency of document
processing (Fig. 27).

5.3.5 Grid granularity

Finally, we evaluate the effect of grid granularity for meth-
ods using grid index to store RST subscriptions. Figure 28
demonstrates the document processing performances of DS
and TP when we vary the grid cell size from 1km×1km to
50km×50km. We observe that the grid granularity has little
effect on the document processing performances of DS and
TP.

5.3.6 Scalability

We evaluate the scalability of each method regarding the
efficiency and the memory cost.
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Fig. 28 Grid size

Figure 29a and d shows that the runtime for document pro-
cessing and thememory cost increase linearly for allmethods
as we increase the number of subscriptions. Further, Fig. 29c
shows that TPG can support 1.83 million RST subscriptions
over geo-textual data streams with real-world arrival rate
(i.e., 2800 docs/min). In contrast, TP and DS can support
481 thousand and 192 thousand subscriptions, respectively.
In addition, based on Fig. 29d we can see that the memory
cost of TPG is only slightly higher than that of DS, which
underlines that the TP index and the subscription groups are
not space consuming.

5.4 Case study

To exemplify the subscription results, we grab the real-
time top-30 most popular terms returned by SST subscription
s1, and RST subscriptions s2 and s3. Specifically, the location
of s1 (the red dot) is the center of Chicago, IL, and the regions
of s2 (the purple rectangle) and s3 (the green circle) cover the
urban area of Chicago. The top-30 result terms are visualized
byWord Clouds, where the font size of a term is proportional
to its popularity score. Both result sets contain terms related
to trending news or topics around Chicago (e.g., drug, park).
On the other hand, we observe that the result terms returned
by s2 are inclined to be more “localized” compared with
the result returned by s1. As indicated by s2, terms wrigley
(a chewing gum company based in Chicago) and notre (a
Chicago shop selling sneakers and apparel) are regarded as

Fig. 30 Result snapshots for SST and RST subscriptions

popular terms inChicago,while neither of these two terms are
returned by s1. As for the result of s1, we can see more terms
regarding general trending topics (e.g., NFL, football, elec-
tion). Such difference in results can be explained by the fact
that an RST subscription exclusively considers documents
located in its subscription region and that it filters out any
other documents located outside the region. In contrast, an
SST subscription takes all documents from data streams as
its input while still favoring the terms from documents near
its subscription location (Fig. 30).

6 Related work

6.1 Location-based publish/subscribe

A number of publish/subscribe systems are developed for
spatio-temporal documents. Given a new spatio-temporal
document d, the spatial matching condition for subscriptions
proposed in some literature [10,61,67] is that d falls in the
subscription region (if d is a point) or d overlaps the query
region (if d is a region) [33,67]. While for others, a score
that measures the spatial proximity between the subscription

(a) (b) (c) (d)

Fig. 29 Scalability
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location and the location of a new spatio-temporal document
d [11,12,28,29], or a score that measures the spatial overlap
between a subscription and a region of spatio-temporal doc-
uments [13,18,68], is computed. Recently, Mahmood et al.
[38] target the problem of indexing continuous spatio-textual
queries by capturing the variations in the frequencies of key-
words across different spatial regions, which significantly
enhance the efficiency of processing spatio-textual queries.

However, the published items defined in these location-
based publish/subscribe systems are spatio-temporal doc-
uments, which cannot be applied to our publish/subscribe
systems where the published items are terms.

6.2 Content-based top-k publish/subscribe

Top-k publish/subscribe scores new messages for each sub-
scription and delivers new messages that rank among the
top-k published messages for the subscription.

The problem of top-k publish/subscribe has been exten-
sively studied in previous literature, where inverted file is
used as the subscription index and the classic information
retrieval methods are adapted for the ranking. Specifically,
the subscriptions studied by some proposals (e.g., [7,26,44])
maintain the messages that are ranked among the k most
relevant ones published within a time period defined by a
sliding window. When a relevant message of a subscription
expires, it is replaced by the most relevant message in the
sliding window through a re-evaluation algorithm. To avoid
re-evaluation, Shraer et al. [55] integrate a decaying fac-
tor into the ranking score, which gradually decays as time
elapses. Because the decaying rate is the same for all pub-
lished messages, it is guaranteed that older messages retire
from the top-k set of a subscription only when newmessages
with higher scores arrive.

6.3 Spatio-temporal search

Several studies focus on finding top-k most frequent terms
over static or dynamic sets of spatio-temporal documents.
Mokbel et al. [43] and Magdy et al. [36] offer a comprehen-
sive tutorial and survey, respectively, on this topic.Given a set
of spatio-temporal documents, In particular, Skovsgaard et
al. [56], Ahmed et al. [3], and Hong et al. [58] offer means of
finding top-k most frequent terms in documents that belong
to a specified region and timespan. Magdy et al. [37] propose
a scalable and efficient query system, GeoTrend, that, given a
stream of spatio-temporal documents, is able to find the top-k
most frequent terms in documents that belong to an arbitrary
spatial region and the timespan from the current time and T
timeunits into thepast.GeoTrend is arguably the state-of-the-

art system for processing trending one-time spatio-temporal
term queries. It is capable of sustaining high-data arrival
rates while maintaining a low query latency. Jonathan et
al. [31] study the problem of finding top-k trending terms
within an arbitrary subset of documents selected based on
their attributes. Additionally, Abdelhaq et al. [1,2] focus on
extracting local keywords from a Twitter stream by iden-
tifying local keywords and estimating the central location
of each keyword. Wang et al. [59] identify local top-k maxi-
mal frequent keyword co-occurrence patterns over streams of
geo-tagged tweets. Other studies on spatio-temporal search
include counting-based termqueries [16,64], spatial keyword
search over geo-textual data streams [15,66], route planning
[8,14,24,47,52–54,62], and trajectory search [46,48–51,71].

Themajor difference between our proposal and these stud-
ies is that we process a large number of continuous queries,
i.e., we keep the results of a large population of “standing”
queries up-to-date with respect to incoming data from when
the queries are registered until when they are de-registered; in
contrast, the other studies concern the efficient processing of
“one-time” queries, i.e., standard queries that are processed
once as they arrive.

7 Conclusion and future work

We study the problem of maintaining the up-to-date locally
trending terms for a large number of term subscriptions over a
stream of spatio-temporal documents. Specifically, we define
two types of term-based subscriptions: SST subscription and
RST subscription. Term frequency, spatial proximity, and
term freshness are taken into consideration for publishing
and subscribing. We develop efficient solutions to maintain
real-time results for a large number of SST and RST subscrip-
tions. Our experimental results suggest that our proposal is
able to achieve reductions in the processing time by 70–95%
and 60– 90% for processing SST subscriptions and RST sub-
scriptions, respectively, compared with baselines developed
based on existing techniques.

However, this study develops two separate index struc-
tures to process SST and RST subscriptions, respectively. We
also observe that existing proposals on location-based term
publish/subscribe either focus on region-based subscriptions
or focus on rank-order subscriptions. In the future, we pro-
pose to develop a generic publish/subscribe framework for
processing both region-based subscriptions (e.g., RST) and
rank-order subscriptions (e.g., SST) in an efficient manner.
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