
The VLDB Journal (2020) 29:867–892
https://doi.org/10.1007/s00778-019-00586-5

REGULAR PAPER

Cleaning data with Llunatic

Floris Geerts1 · Giansalvatore Mecca2 · Paolo Papotti3 · Donatello Santoro2

Received: 3 June 2018 / Revised: 9 October 2019 / Accepted: 19 October 2019 / Published online: 8 November 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Data cleaning (or data repairing) is considered a crucial problem in many database-related tasks. It consists in making a
database consistent with respect to a given set of constraints. In recent years, repairing methods have been proposed for
several classes of constraints. These methods, however, tend to hard-code the strategy to repair conflicting values and are
specialized toward specific classes of constraints. In this paper, we develop a general chase-based repairing framework,
referred to as Llunatic, in which repairs can be obtained for a large class of constraints and by using different strategies
to select preferred values. The framework is based on an elegant formalization in terms of labeled instances and partially
ordered preference labels. In this context, we revisit concepts such as upgrades, repairs and the chase. In Llunatic, various
repairing strategies can be slotted in, without the need for changing the underlying implementation. Furthermore, Llunatic
is the first data repairing system which is DBMS-based. We report experimental results that confirm its good scalability and
show that various instantiations of the framework result in repairs of good quality.

Keywords Data quality · Data cleaning · Data repairing · Chase · Data repairing system · Constraints · Rules · Repair
algorithm · Cleaning rules · Dependencies · Error detection

1 Introduction

In the constraint-based approach to data quality, a database
is said to be dirty if it contains inconsistencies with respect
to some set of constraints [7,24,37]. The corresponding data
repairing process consists in removing these inconsistencies
in order to clean the database. The modeling and repairing of
dirty data represents a crucial activity in many real-life infor-
mation systems. Indeed, unclean data often incurs economic
loss and erroneous decisions [21,24,37]. For these reasons,
several constraint-based data quality approaches have recent-
ly been put forward in the database community. These can
be distinguished based on the following three facets:

– Facet 1: Data quality constraints A plenitude of lan-
guages has been devised to capture various aspects of
dirty data as inconsistencies of constraints. These con-
straint languages range from standard database depen-

B Paolo Papotti
papotti@eurecom.fr

1 University of Antwerp, Antwerp, Belgium

2 Università della Basilicata, Potenza, Italy

3 Eurecom, Biot, France

dency languages such as functional dependencies, to
conditional functional dependencies [24,25], to editing
rules [29] and fixing rules [52], among others.

– Facet 2: Conflict resolution Repairing strategies for
inconsistencies (violations of constraints) are based on
extra information indicating how tomodify the dirty data.
In most cases, values are changed into “preferred ” val-
ues. Preferred values can be found from, e.g., master data
[43], tuple-certainty and value-accuracy [30], freshness
and currency [28], just to name a few.

– Facet 3: Selecting types of repairs Repairing strategies
also differ in the kind of repairs that they compute. Since
the computation of all possible repairs is infeasible in
practice, conditions are imposed on the computed repairs
to restrict the search space. These conditions include,
e.g., various notions of (cost-based) minimality [9,11]
and certain fixes [29]. Alternatively, sampling techniques
are put in place to randomly select repairs [9].

We refer to [24] and [37] for recent overviews of con-
straint-based approaches to data quality. We note, however,
that there is currently no uniform framework to handle all
of the three facets in a flexible and efficient way. To rem-
edy this situation, in this paper we describe a flexible and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00586-5&domain=pdf
http://orcid.org/0000-0003-0651-4128


868 F. Geerts et al.

efficient repairing system referred to as Llunatic. A sys-
tem overview of Llunatic is shown in Fig. 1. We provide
detailed running examples and descriptions of all ingredients
of the system later in the paper. We here briefly highlight the
key components of Llunatic.

The Llunatic system consists of two core compo-
nents: (i) an initial labeled instance and (ii) a disk-based
chase engine over labeled instances. Furthermore, (iii) the
constraint language is fixed to a generalization of equality-
generating dependencies.
(i) The initial labeled instance is a generalization of a stan-
dard database instance in which additional information is
stored alongside the values in the input dirty instance. This
information is provided by the user at the start of the repair-
ing process. Intuitively, when conflicts need to be resolved
at some point, this information allows inferring the most
preferred way of modifying the data. More precisely, each
location in the database will be adorned with a set of prefer-
ence labels each consisting of a preference level and a value,
where preference levels are elements of a partial order. The
partial order will allow us to define a notion of most pre-
ferred value, which will be used to resolve a conflict. This
value can either be a normal domain value or, when insuf-
ficient information is encoded in the partial order, a special
value which we refer to as a llun (llun stands for the reverse
of null), hence the name Llunatic. The use of partial order
information is what allows users to plug-in any kind of pref-
erence information (cfr. Facet 2) into the repairing process
(e.g., in a conflict, prefer the more recent value). We illus-
trate in the next sections how information from constraints,
master data, user-input, and special attributes (holding pref-
erence information) can be encoded in the partial order and
initial labeled instance.
(ii) The second component is the chase engine. A key insight
underlying Llunatic is that most data repairing methods
behave like the well-known chase procedure [2,4], i.e., as
long as violations (conflicts) of data quality constraints exist,
some data updates are triggered to resolve these violations.

Fig. 1 System overview of Llunatic

Since we use labeled instances, we completely overhaul
the standard chase procedure such that it works on labeled
instances. That is, it uses partial order information to resolve
conflicts. This requires a revision of the formalization of the
chase to ensure that it will generate repairs, whichwe develop
in this paper. Furthermore, we provide a disk-based imple-
mentation of the revised chase procedure,with great attention
for optimizations to ensure scalability. To our knowledge,
Llunatic is the first repairing framework that works with
data residing on disk. We allow a fine-grained control of the
chase by the user by means of a cost manager. This man-
ager allows users to effectively reason about the trade-offs
between performance and accuracy and let the chase only
generate certain kinds of repairs (cfr. Facet 3).
(iii) The use of labeled instances and more specifically the
partial order information on preference levels allows us to
model a variety of constraint formalisms in a uniform way
(cfr. Facet 1). More precisely, Llunatic supports variable
and constant equality-generating dependencies (egds). Con-
stant egds are an extension of classical egds [4] which can
enforce the presence of certain constants. We provide ample
examples of egds and how labeled instances and the chase
interact with those constraints in the next sections. In the
following, it should therefore be understood that when we
mention data quality constraints (or dependencies)we always
mean egds. We further emphasize that we assume that the
edgs are given, either by a domain expert or automatically
discovered from the data (see e.g., [10,26,35,45,46]).

In summary, we propose Llunatic as a data repairing
framework which addresses all three facets in a flexible way.

We remark that this paper is based on our previous work
[31]. Due to the complexity of the formalization used in [31],
we believe that some of the key insights behind our approach
were unclear. We therefore completely changed the under-
lying formalization: Everything is now modeled in terms of
labeled instances. Not only does this result in a more elegant
way of describing how the partial order information is used
to resolve conflicts during the chase, it also provides a more
clear semantics of repairs. Moreover, labeled instances and
the integration of the partial order in the chase process may
be of interest in its own right. The current formalization is
closer to the standard chase, and it is now clearer how our
ideas can be adopted in other contexts as well where now
only the standard chase is available. We only consider vari-
able and constant egds in this paper. In [32], we extended
our approach to more powerful constraints (tuple-generating
dependencies, tgds). The labeled instance formalization can
be extended to this more general setting, but for the sake of
clarity of exposition, we do not consider tgds in this paper.
We remark that we provide many more details compared to
[31,32] and also include a more extensive experimental eval-
uation than in our previous work.

123



Cleaning data with Llunatic 869

Organization of the paper We start with preliminaries in
Sect. 2. Motivation for using labeled instances and the chase
for repairing can be found in Sect. 3. We provide a for-
malization of our approach in Sect. 4. We detail the chase
procedure and how to use Llunatic in Sect. 5. Optimiza-
tions and implementation details are described in Sect. 6. We
discuss how ideas from other approaches can be integrated
in Sect. 7. In Sect. 8, we report our experimental findings.
Finally, related work and future directions of research are
discussed in Sects. 9 and 10, respectively. We conclude the
paper in Sect. 11.

2 Preliminaries

We fix a countably infinite domain of constant values,
denoted by consts, and a countably infinite set of labeled
nulls, denoted bynulls, distinct from consts. Labeled nulls
will be denoted by ⊥0, ⊥1, ⊥2, . . . and are used to denote
different unknown values, i.e., ⊥i is assumed to be different
from ⊥ j , for i �= j . Furthermore, we fix a countably infi-
nite set, Tids, of tuple identifiers distinct from consts and
nulls.

Database instances and cells A schema R is a finite set
{R1, . . . , Rk} of relation symbols. For i ∈ [1, k], the relation
symbol Ri inR has a fixed set of attributes, Tid, A1, . . . , Ani ,
where Tid is a special attribute whose domain is Tids.
All other attributes have consts ∪ nulls as domain. For
i ∈ [1, k], an instance of Ri is a finite subset Ii of Tids ×
(consts∪nulls)ni . A (database) instance I = (I1, . . . , Ik)
of R consists of instances Ii of Ri , for i ∈ [1, k]. A tuple
t in I is an element in one of the instances Ii in I. Let t be
a tuple in Ii and A j an attribute in Ri . We denote by t[A j ]
the value of tuple t in attribute A j . We assume that every
tuple in I has a unique Tid-value. If t is a tuple in I with
t[Tid] = tid, then we also refer to this (unique) tuple by ttid.
Given an instance Ii over Ri , a cell in Ii is a location speci-
fied by a tuple id/attribute pair 〈tid, A j 〉 (or 〈tid, Tid〉), where
tid is an identifier for a tuple in Ii and A j is an attribute in
Ri . The value of a cell 〈tid, A j 〉 in Ii is the value of tuple
ttid in attribute A j , i.e., ttid[A j ]. Similarly, the value of the

cell 〈tid, Tid〉 in Ii is tid. We denote by cells(Ii ) the set of all
cells in Ii . Similarly, for an instance I = (I1, . . . , Ik) of R
we define cells(I) = ⋃{cells(Ii ) | i ∈ [1, k]}.
Example 1 An instance I of relation D(Tid,NPI,Name, Sur-
name, Spec,Hospital) consisting of tuples t1, t2 and t3
(with ids 1, 2 and 3, respectively) containing information
about doctors is shown in Fig. 2. Also depicted is a mas-
ter data instance J , containing correct data, of schema
M(Tid,NPI,Name, Surname, Spec,Hospital) consisting of
a single tuple tm . In instance I we also depict the cells in
cells(I ). For cells corresponding to the Tid-attribute, we sim-
ply denote the cell by cti , where i is the tuple identifier for the
tuple. For example, ct1 = 〈1, Tid〉. For cells corresponding
to other attributes, we represent cells by ci j . For example,
c10 = 〈1,NPI〉, c11 = 〈1,Name〉, and so on. We ignore the
attribute Conf(idence) for the moment. We do not include
cells for the master data instance. We show below that we
can eliminate master data instances using an encoding in
data quality constraints.

Data quality constraints We will use equality-generating
dependencies (or egds for short) to express data quality con-
straints (also called quality rules in the literature). In fact, we
use two types of egds: variable and constant egds. Unlike
the seminal paper [4], our egds need not to be typed and can
contain constants. A variable egd is defined as follows. A
relational atom over R is a formula of the form R(s̄) with
R ∈ R and s̄ is a tuple of (not necessarily distinct) constants
and variables. Then, a variable egd over R is a formula e
of the form ∀x̄ (φ(x̄) → xi = x j ), where φ(x̄) is a con-
junction of relational atoms over R with variables x̄ , and xi
and x j are variables in x̄ . A constant egd e is of the form
∀x̄ (φ(x̄) → x = a) where x is a variable in x̄ and a is a
constant in consts. It is common to write an egd e with-
out writing the universal quantification. So, in what follows
φ(x̄) → xi = x j corresponds to ∀x̄ (φ(x̄) → xi = x j ).
Similarly for constant egds.

To prevent any interaction of the egdswith the tuple identi-
fiers, we assume that: (i) every relational atom R(s̄) in φ(x̄)
carries a variable in its first position, i.e., s1 is a variable,
and this variable does not occur anywhere else in s̄ and also

Fig. 2 Running example: instances and equality-generating dependencies

123



870 F. Geerts et al.

does not occur in any other relational atom in φ(x̄); (ii) if
φ(x̄) → xi = x j or φ(x̄) → x = a, then neither xi , x j
nor x can be a variable that occurs in the first position of a
relational atom in φ(x̄). These conditions basically indicate
that the egds do not pose constraints on the tuple identifiers.

In the constraint-based data quality approach, dependen-
cies are used to assess the cleanliness of data [7,24,37]. More
specifically, an instance I ofR satisfies an egd e, variable or
constant, denoted by I |
 e, if it satisfies e according to satis-
faction of first-order logic with (i) a Herbrand interpretation
of the constants in e, and (ii) the universe of discourse of the
first-order structure being consts∪nulls (and Tids for the
Tid-attributes) [2]. In particular, nulls are interpreted as con-
stants and hence ⊥ = a is false for a ∈ consts. Similarly,
⊥i = ⊥ j is false for two different nulls.

Example 2 Examples of variable egds include functional
and (variable) conditional functional dependencies. Constant
conditional functional dependencies can be expressed as con-
stant egds. In Fig. 2, the variable egds e1–e4 correspond to
the functional dependency expressing that attribute NPI is a
key for relation D. (We again ignore the attribute Conf and
also do not take into account the Tid-attribute.) Furthermore,
the constant egd e5 corresponds to the constant conditional
functional dependency which requires the standardization
of the name “Greg” into “Gregory”. Finally, constant egds
e6–e9 originate from a so-called editing rule, which states
that any tuple s in I which shares the same NPI-value with
a tuple t in the master data J must agree on all common
other attributes with t . Such editing rules are easily seen
to be equivalent to a set of constant egds by introducing
a constant egd for each tuple in the master data and each
attribute (except for the Tid-attribute) in the master data’s
schema. In our example, t3[NPI] = tm[NPI] = 222 and the
editing rule is translated into the four constant egds e6–e9
basically requiring the four remaining attributes of t3 to take
the corresponding values from tm . In this way, master data
and editing rules are represented by constant egds. It is read-
ily verified that I |
 {e2, e7, e8} but I does not satisfy any of
the remaining egds. For example, t1[Name] = Robert and
t2[Name] = Frank should be equal according to the egd e1.
Hence, I is a dirty instance relative to these egds.

The previous example shows that egds are expressive
enough to capture a wide variety of existing data quality
formalisms: Functional dependencies [2], conditional func-
tional dependencies [25], and editing rules [29]. Furthermore,
one can also verify that egds can express fixing rules (with-
out negative patterns) [52], and certain classes of denial
constraints (basically, denial constraints which are logically
equivalent to an egd) [7,24]. Motivated by this, we focus on
egds. Not supported in Llunatic are, for example, match-
ing dependencies [23], metric dependencies [42], differential
dependencies [49], and general denial constraints [7,24]. We

defer to future work to include a larger variety of data quality
constraints in Llunatic.

3 LLUNATIC: finding repairs using the chase

With the constraint formalism fixed, we next turn to the
repairing or cleaning of the data. Intuitively, repairing a dirty
instance I such that I �|
 Σ for some set Σ of egds means
finding a clean instance J such that J |
 Σ and I and J
are “closely related”. As already mentioned in the Introduc-
tion, in recent years, repairing methods have been proposed
for several classes of constraints. These methods typically
consider only specific types of constraints and different inter-
pretations of “closely related”. Furthermore, each of these
methods differs in how conflicting values (such as Robert
and Frank in the previous example) are resolved. We refer to
the Related Work Sect. 9 for more details.

With Llunatic we aim to provide a single-node scalable
algorithmic framework for finding repairs of instances for a
set of egds, hereby covering different classes of constraints
in a uniform way. Moreover, different conflict resolution
strategies should be easy to incorporate in the framework,
without the need of changing the underlying algorithm (and
thus implementation). To this aim, Llunatic uses a gener-
alization of the standard chase procedure by incorporating
preference information on values in cells and by produc-
ing a chase tree consisting of chase sequences, where each
sequence leads to a repair.

We next recall the standard chase procedure and then iden-
tify why it needs to be revised in order to become a true
workhorse for repairing. In particular, we argue the need for
better conflict resolution (Sect. 3.2), support for constant egds
(Sect. 3.3), backward repairs (Sect. 3.4) and user provided
repairs (Sect. 3.5).With the help of amotivating example, we
informally introduce the main concepts used in Llunatic

to address these issues. A formal account will be given in
Sects. 4 and 5.

3.1 The standard chase

When Σ consists of variable egds only, the chase procedure
(or, simply the chase) provides an elegant repairing method
[4]. It works as follows. Consider a dirty instance I �|
 Σ and
variable egd e : φ(x̄) → xi = x j in Σ . A homomorphism h
from φ(x̄) to I = (I1, . . . , Ik) is a mapping which assigns to
every variable x in x̄ a value in consts ∪ nulls (and Tids

for the variables in Tid-attributes) such that every relational
atom Ri (s̄) in φ(x̄) maps onto a tuple h(s̄) ∈ Ii , where h is
the identity on consts. When h(xi ) �= h(x j ), we say that
e can be applied to I with homomorphism h. The result of
applying e on I with h is defined as follows: If h(xi ) and
h(x j ) are two different constants in consts, then the result

123



Cleaning data with Llunatic 871

of applying e on I with h is “failure”, and we write I
e,h→ �.

Otherwise, the result is a new instance I′, defined as follows.
When h(xi ) ∈ consts and h(x j ) ∈ nulls, the null value
h(x j ) is replaced everywhere in I by the constant value h(xi ),
resulting in I′. When h(xi ) and h(x j ) are both null values,
then one is replaced everywhere by the other, resulting in

I′ 1. In both cases, we write I
e,h→ I′. Then, for a set Σ of

variable egds, a chase sequence of I with Σ is a sequence of

the form Ii
ei ,hi→ Ii+1 with i = 0, 1, . . ., I0 = I, ei ∈ Σ and

hi a homomorphism from ei to Ii . A finite chase of I with Σ

is a finite chase sequence Ii
ei ,hi→ Ii+1, i ∈ [0,m − 1], such

that either Im = � or no egd e exists in Σ for which there is
a homomorphism h such that e can be applied to Im with h.
We call Im the result of such a finite chase and when Im �= �,
the instance Im is called the result of a successful chase. It
is known that if Im is the result of a successful chase of I
with Σ , then Im |
 Σ and Im is thus clean [4]. The repair
Im has many other nice theoretical properties (universality,
independence of the order in which egds are applied,…), see
e.g., [22]. Our revised chase does not inherit these properties.
Our primary goal, however, is using the chase as a practical
way of generating repairs.

3.2 Avoiding failure by conflict resolution

Clearly, when repairing data, the standard chase will often
be unsuccessful because different constants may need to be
equated. This is not surprising. After all, the chase was origi-
nally designed to reason about dependencies, where the input
instance does not contain constants and not for repairing data
[4]. As an example, we chase our running example with vari-
able egds.

Example 3 Consider the variable egds e1, e2, e3 and e4 in
Fig. 2. Since I |
 e2, only e1, e3 and e4 are applicable. It is
readily verified that there is a homomorphism h for e4 such

that I
e4,h→ I ′ with I ′ obtained from I by replacing the null

value ⊥1 in t2[Hospital] and t3[Hospital] by PPTH, i.e., the
value from t1[Hospital]. However, chasing I ′ further with e1
and e3 results in a failure. Indeed, e1 requires t1[Name] =
Robert to be equal to t2[Name] = Frank which are two
different constants. Similarly, e3 requires t1[Spec] = surg
to be equal to t2[Spec] = urol.

Instead of simply returning failure (�), it is desirable,
from a data repairing perspective, for the chase to (i) either
report the reasons for failure, or (ii) resolve conflicts between
constant values based on some additional information. In

1 Typically, to make this step deterministic, an ordering on null values
is assumed and the smaller null value is replaced by the larger one. We
assume that ⊥0 < ⊥1 < ⊥2 < ⊥3 < · · · .

Llunatic this is achieved as follows. Let I be a database
instance.

– The initial step consists of adorning the cells in I with
preference levels froma partially ordered set (P,�P) and
combining these with values of the cells in I. As a result,
each cell initially contains a preference label of the form
〈p, v〉where p ∈ P and v is the value in the cell, resulting
in the initial labeled instance I◦. Looking ahead, the ini-
tial labeled instance will be changed during the (revised)
chase process into a labeled instance in which cells may
have multiple preference labels. Preference labels allow
comparing values based on their preference levels and the
order between these levels according to �P. We use this
information to resolve conflicts, when cells havemultiple
preference labels after chasing, by taking the most pre-
ferred value, i.e., the value with the highest preference
level. The partial order (P,�P) is fixed at the beginning
of the repairing process. For preference levels p and p′,
we denote by p ≺P p′, if p �P p′ and p′ ��P p.

Example 4 In Fig. 3a, we show an initial labeled instance I ◦
obtained from I (cfr. Fig. 2) by putting in each cell of I a
single preference level together with the value of that cell.
From here on, we do not depict the attribute Tid since it is
only used for identifying tuples and the tuple identifiers do
not interact with the egds. In I ◦, we find preference levels
p⊥1 and p⊥2 assigned to null values ⊥1 and ⊥2 in cells
c25, c35 and c31, respectively. We also find preference levels
p0.1, p0.9 and p1, associated with urol, surg and diag, in
cells c23, c13 and c33, respectively. These preference levels
encode the confidence of these values according to the Conf
attribute. By imposing p0.1 ≺P p0.9 ≺P p1, we encode that
the higher the confidence is, the more preferred the value
associated with these levels in the preference labels is. This
is an important example showing how external information
(in this case confidence) can be encoded in preference levels
and labels. We generalize the use of attributes that encode
some ordering (such as Conf) to assign preference levels to
values in another attribute (such as Spec) later in Sect. 4.5 in
the form of a partial order specification. All other preference
levels in I ◦ are chosen arbitrarily, except that we impose that
p⊥1 ≺P p15. This is to indicate that when the value in the
preference labels of cells c25 and c35 (i.e., the value ⊥1)
needs to be equated later on with the value in the label of c15
(i.e., PPTH) due to egd e4, that PPTH is preferred over ⊥1.
We here capture the semantics that constants are preferred to
null values, just as in the standard chase. From the labeled
instance I ◦, we can obtain a normal instance inst(I ◦) simply
by picking the values in the preference labels in each cell
with the highest preference value (Fig. 3b). In I ◦, each cell
carries a single preference label holding the original value of
that cell in the instance I given in Fig. 2. Hence, inst(I ◦) = I

123



872 F. Geerts et al.

(a) (b)

(c) (d)

(f)(e)

(g) (h)

(i) (j)

Fig. 3 Running example: labeled instances and their corresponding (standard) instances at different times during the Llunaticchase process

123



Cleaning data with Llunatic 873

Fig. 4 Partial order �P on preference levels used in our running exam-
ple. Arrows between preference levels denote ≺P (strictly less). No
arrowmeans incomparable. Arrows between dotted boxes mean that all
levels in one box are strictly less preferred than those in the other box

in this case. The partial order �P used is shown in Fig. 4 and
comes into play when chasing I ◦. In this partial order, we
more generally assume that p⊥i ≺P p for any preference
level p⊥i associated with null value ⊥i and any preference
value p associated with a constant in I ◦. Furthermore, we
also assume that p⊥0 ≺P p⊥1 ≺P p⊥2 in accordance with
the ordering on null values (see earlier footnote).

As previously mentioned, when chasing an initial labeled
instance I◦ we will obtain labeled instances I� in which each
cell is assigned a set of preference labels.

– More precisely, in Llunatic we use a modified chase
procedure which works on labeled instances. Intuitively,
whenever a variable egd e : φ(x̄) → xi = x j applies
with a homomorphism h, the set of preference labels cor-
responding to the cells in h(xi ) and h(xk) are merged.
This merging represents that these cells must carry the
same value (according to e) and that the choice of value
should take into account preference level information
present in the set of preference labels of all cells involved.
If a unique preferred value, i.e., a value with maximal
preference level exists, that value will be used for repair-
ing and find its way to the standard instance inst(I�)

corresponding to I�.
– Moreover, when a set of preference labels of a cell does
contain different preferred values (distinct maximal pref-
erence levels), this implies that not enough information
is present to resolve the conflict. Instead of returning fail-
ure, wemark such cells in inst(I�)with a special constant
which we refer to as a llun.

Example 5 We chase the initial labeled instance I ◦ by our
revised chase procedure. The resulting labeled instance I �

1
of this chase, using the variable egds in Σ , is shown in
Fig. 3c. As an example, t1[Spec] = surg and t2[Spec] = urol

need to be equated, due to egd e3. The chase will con-
sider the preference labels in I ◦ of the cells c13 and c23
and merge these, resulting in the set of preference labels
{〈p0.1, urol〉, 〈p0.9, surg〉}. To resolve the conflict between
t1[Spec] = surg and t2[Spec] = urol, one finds that “surg”
has a higher preference level (p0.9) than “urol” (p0.1) accord-
ing to�P. This implies that when turning the labeled instance
I �
1 back into a normal instance inst(I �

1 ), the cells c12 and c23
will carry value “surg”, as shown in Fig. 3d.

We next focus on preference level p15 in 〈p15,PPTH〉
in cell c15. In the standard chase, PPTH will replace both
occurrences of ⊥1 in I , in cells c25 and c35. To satisfy e4, the
revised chase will again merge preference labels in I ◦ for the
cells c15, c25 and c35 resulting in {〈p15,PPTH〉, 〈p⊥1 ,⊥1〉}
as shown in Fig. 3c. Since in our partial order (Fig. 4) p⊥1 ≺P

p15, in instance inst(I �
1 )we pick PPTH as the most preferred

value for c15, c25 and c35 as shown in Fig. 3d. So indeed,
nulls are less preferred than constants when they need to be
equated, just as in the standard chase.

To illustrate the use of lluns, we consider the set of pref-
erence labels {〈p11,Robert〉, 〈p21,Frank〉} in I �

1 obtained by
merging the preference labels of cells c11 and c21 to satisfy
e1. Here, we do not have a most preferred value as �P does
not have information about how the preference levels p11
and p21 compare (cfr. Fig. 4). In this case, in inst(I �

1 ), these
cells are populated by a fresh llun value �0 to indicate that
there is a conflict as shown in Fig. 3d. It is easily verified that
inst(I �

1 ) satisfies the variable egds in Σ .

3.3 Supporting constant egds

The next issue is that the standard chase does not support
constant egds. These are, however, crucial to model popu-
lar data quality constraint formalisms such as conditional
functional dependencies and editing rules. In Llunatic, we
benefit from the use of labeled instances to revise the chase
so that it works with constant egds, as follows:

– We reserve a special authoritative preference level, pau,
to indicate authoritative values. Authoritative values
originate fromuser-defined constant egds and should thus
be enforced by the chase, whenever possible. We there-
fore impose that pau is more preferred according to �P

than most other preference levels (except for the invalid
and user preference level to be introduced below). Hence,
whenever a preference label 〈pau, v〉 is present in a set of
preference labels, the authoritative value v will be picked.

– In the revised chase, when a constant egd e : φ(x̄) →
x = a can be appliedwith a homomorphism h, we simply
put 〈pau, a〉 in the preference labels of all cells related
to h(x). This is how authoritative preference labels are
assigned to cells and authoritative values find their way
into repairs.

123



874 F. Geerts et al.

This oncemore shows the usefulness ofworkingwith labeled
instances and the partial order �P.

Example 6 The labeled instance I �
2 shown in Fig. 3e reflects

the situation after chasing the labeled instance I �
1 from the

previous example with the constant egds in Σ . For exam-
ple, the cell c31 now holds preference labels {〈p⊥2 ,⊥2〉,
〈pau,Gregory〉, 〈pau,Greg〉} due to the application of the
constant egds e5 and e6. In other words, we simply mark that
these values come from user-defined constraints and should
have high preference. Since these constant egds are inconsis-
tent with each other, i.e., they require to apply inconsistent
changes, we find two values (Gregory and Greg) both with
the authoritative preference level pau.Whenmoving from the
labeled instance I �

2 to the normal instance inst(I �
2 ) shown in

Fig. 3f, we end up in a situation in which no single most pre-
ferred value exists (both Greg and Gregory are candidates)
and hence c31 obtains a llun value �1. This illustrates that
Llunatic will still generate a repair even when the egds are
in conflict with each other. Suppose that only e5 would be
present in Σ then c31 would have ended up with preference
labels {〈p⊥2 ,⊥2〉, 〈pau,Gregory〉} and the value Gregory
would be picked in inst(I �

2 ). In Fig. 4, we show how pau
relates to other preference levels in (P,�P).

3.4 Backward repairing

So far, when chasing with egds we always enforced that
the antecedent of an egd was satisfied. Another way is to
invalidate the premise of an egd, i.e., performing a so-called
backward repair. Again, labeled instances and preference
levels make it easy to incorporate such backward repairs.

– In the revised chase, whenever an egd e : φ(x̄) → xi =
x j or e : φ(x̄) → x = a applies with a homomorphism
h, we perform a backward repair by introducing a special
invalid preference label, 〈p×,×〉, into the set of prefer-
ence labels of cells on which relation atoms in φ(x̄) are
mapped into by h. We refer to p× as the invalid prefer-
ence level and to× as an invalid value (we assume that×
is in consts). Intuitively, we mark cells as invalid if they
are changed in order to prevent an egd to be applicable,
but we do not know to which value they are changed. By
positioning p× in�P such that it is incomparable to most
other preference levels, we can force cells to take a llun
value in the corresponding instance, indicating that the
original value was incorrect.

Example 7 Consider the labeled instance I �
3 shown in Fig. 3g.

It is obtained by enforcing the constant egds, as before, and by
invalidating the value 111 in cell c20 by inserting 〈p×,×〉 into
its set of preference labels. We now check how this prevents
any variable egd to be applicable. Assuming that p× and

p20 are incomparable, in inst(I �
3 ) the cell c20 will obtain

a llun value �2 since no single most preferred value exists
in {〈p20, 111〉, 〈p×,×〉}. Clearly, inst(I �

3 ) satisfies all egds
in Σ , and this is because we marked one single cell with
an invalid preference label. We also note that although the
constant egd e9 only applies to tuple t3, when the cell c35
obtains preference label 〈pau,PPTH〉, also c25 obtains this
preference labels. This is in accordancewith how the standard
chase replaces all occurrences of the same null value with the
same constant. How p× relates to other preference levels is
shown in Fig. 4.

3.5 User repairs

A final important aspect is the incorporation of user knowl-
edge in the repairing process. In Llunatic we allow users
to change the value of sets of preference labels and solve any
incompleteness or conflict marked by lluns, as follows.

– We reserve a special user preference level, p�, such that
when 〈p�, v〉 is present in a set of preference labels then
this implies that the user specified the “correct” value v.
User interaction gracefully embeds in our revised chase
as it suffices to add the user provided label 〈p�, v〉 to the
preference labels of relevant cells. The preference level
p� will be the maximal level in our partial order.

Example 8 Consider labeled instance I �
4 shown in Fig. 3i

which is obtained from I �
3 by injecting two pieces of infor-

mation from a user: t2[NPI] should be 112 and t3[Name]
should be Gregory. This is represented in I �

4 by inserting
〈p�, 112〉 in the preference labels of cell c20 and inserting
〈p�,Gregory〉 in the preference labels of c31. Since p� is
the most preferred preference level, inst(I �

4 ) will carry value
112 (instead �2 in inst(I �

3 )) and Gregory (instead of �1 in
inst(I �

3 )) in the corresponding cells. How p� relates to other
preference levels is shown in Fig. 4.

In summary, by using labeled instances, preference lev-
els and labels, and revising the chase, we obtain a flexible
mechanism of repairing data for sets of egds.

4 The formalization underlying LLUNATIC

Having informally described the main concepts underlying
Llunatic in the previous section, we next formalize labeled
instances and how to go from a standard instance to a labeled
instance and back (Sect. 4.1), what it means for an egd to be
satisfied on a labeled instance (Sect. 4.2) as this is needed
to understand the semantics, introduce user-input functions
(Sect. 4.3) and finally define when a labeled instance is an
upgrade of another labeled instance (Sect. 4.4) as this will

123



Cleaning data with Llunatic 875

enable us to link repairs obtained from our revised chase
procedure to the original dirty instance.

4.1 Labeled instances

Given an instance I, a labeled instance assigns a set of pref-
erence labels to each cell in I. Preference labels consist
of values taken from consts or nulls (and Tids for the
Tid-attributes), together with preference levels. We model
preference levels by values taken from a partially ordered,
countable set P. The partial order on P is denoted by �P and
reflects how different preference levels compare with each
other. For two preference levels p and p′ in P, we denote by
p ≺P p′ if p �P p′ and p′ ��P p.

Definition 1 A preference label overP is a pair 〈p, v〉, where
p is a preference level in P, and v is a value from consts ∪
nulls (and Tids for the Tid-attributes). A labeled instance
I� over P of instance I is a mapping that associates a non-
empty finite set of preference labels over P with each cell c
in I, denoted by I�(c).

Intuitively, in a labeled instance I� all cells in I come equip-
ped with a set of preference labels indicating possible values
that can be put in the cells. Instances I ◦, I �

1 , I
�
2 , I

�
3 and I �

4
in Fig. 3 are examples of labeled instances over P, shown in
Fig. 4, of instance I given in Fig. 2. As an example, I �

1 (c21) =
{〈p11,Robert〉, 〈p21,Frank〉}.

In the Llunatic framework, everything starts by inspect-
ing the dirty instance I and (i) extracting preference levels pc
for the values in all cells c in I; (ii) extracting partial order
information about these preference levels, to form (P,�P);
and (iii) creating an initial labeled instance based on this
information. In Example 4, we have put arbitrary preference
levels p10, p11, p12, p14, p15, p20, p21, p22, p24, p30, p32,
p34 in cells for which we have no further information, p⊥1

and p⊥2 for cells containing null values, and p0.1, p0.9, p1
for cells for which confidence information was available. For
cells cti = 〈i, Tid〉, we always assign preference label 〈pid , i〉
for some arbitrary fixed preference level pid .

These preference levels relate to each other by �P as
shown in Fig. 4.We come back to this important initialization
phase in more detail in Sect. 4.5. For now, we assume that
(P,�P) is given and assume that for each cell c of I we have
a preference level pc ∈ P associated with it. Given this, we
can easily associate a labeled instance to a normal instance.

Definition 2 The initial labeled instance I◦ over P of I is
defined as the labeled instance in which each cell c =
〈tid, Ai 〉 of I is assigned 〈pc, v〉 where v = ttid[Ai ], that
is, I◦(c) = {〈pc, v〉}.
The labeled instance I ◦ depicted in Fig. 3a is obtained from
the instance I and (P,�P) shown in Fig. 4.

We also associate a unique (standard) instance to a labeled
instance by leveraging the partial order information in the
preference labels. More specifically, we associate with a set
of preference labels a unique value. Intuitively, this value
is the value associated with the “highest” preference level
among all preference labels. When no such unique value
exists, we assign it a special constant value, which we refer to
as a llun. More specifically, we denote by lluns = {�0, �1,
�2, . . .}, an infinite set of constants, disjoint from consts,
Tids and nulls. These constants are used to solve conflicts.
That is, when the correct value of a cell is currently unknown,
we mark it by a llun so that it might be resolved later on into
a constant, e.g., by asking for user input. Lluns allow us to
always infer a unique value for a set of preference labels.

Definition 3 Given a set of preference labelsL = {〈p1, v1〉,
. . . , 〈pk, vk〉} over P, the preferred value of L , denoted
by pval(L ), is obtained as follows. Consider the set M of
maximal elements in L according to �P, i.e., the set of all
〈p, v〉 ∈ L such that there exists no 〈p′, v′〉 ∈ L for which
p ≺P p′ holds. Then:

1. if all preference labels in M have exactly the same value
v, then pval(L ) = v;

2. otherwise pval(L ) is a fresh llun value in lluns.

For example, for L = {〈p0.1, urol〉, 〈p0.9, surg〉} in I �
1 we

have that pval(L ) = surg because p0.1 ≺P p0.9. By contrast,
for L = {〈p11,Robert〉, 〈p21,Frank〉} in I �

1 , we have that
pval(L ) = �1 ∈ lluns because p11 and p21 are incompa-
rable according to�P. Moreover, pval({〈pid , i〉}) is always i
for cells 〈i, Tid〉.With this notion in place, we can now assign
a unique standard instance to a labeled instance.

Definition 4 Given a labeled instance I� overP of I,wedefine
the instance associated with I� as the standard instance,
denoted by inst(I�), obtained by assigning each cell c in I the
value pval(I�(c)). We note that inst(I�) consists of relations
taking values from consts ∪ nulls ∪ lluns (and Tids for
the Tid-attributes).

In Fig. 3, we have shown various labeled instances and
their associated instances. As a sanity check, we observe that
inst(I◦) = I. That is, the standard instance associated with
the initial labeled instance of I is I itself. This holds because
in I◦, every cell is associated with a single preference label
and pval{〈p, v〉} = v with v the value of the cell in I.

4.2 Satisfaction of egds for labeled instances

We next define what it means for a labeled instance to satisfy
an egd. We distinguish between variable and constant egds.
For variable egds, we simply use the standard notion of sat-

123



876 F. Geerts et al.

isfaction of first-order logic 2 on the instance associated with
a labeled instance.

Definition 5 Given a variable egd e : φ(x) → xi = x j , an
instance I and a labeled instance I� over P of I, we say that
I� satisfies e, denoted I� |
� e, if inst(I�) |
 e.

The motivation behind this definition is as follow. Let I� =
(I �

1 , . . . , I �
k ) be a labeled instance of I = (I1, . . . , Ik), e be a

variable egd φ(x̄) → xi = x j , and let inst(I�) = (inst(I �
1 ),

. . . , inst(I �
k )) be the instance associated with I�. We next

associate cells with homomorphisms and variables of φ(x̄).

Definition 6 Let h be a homomorphism fromφ(x̄) to inst(I�)

and let x be a variable in φ(x̄). The set of cells associated
with x and h, denoted by cellsh(x), is the smallest subset of
cells in cells(I) such that for every atom Ri (s̄) in φ(x), if
x occurs at position j in s̄, then cellsh(x) contains 〈tid, A j 〉
where tid is the tuple identifier of the tuple h(s̄) ∈ inst(I �

i )

and A j is the attribute corresponding to position j in Ri .

If inst(I�) |
 e for a variable egd e, then h(xi ) = h(x j )
for any homomorphism h from φ(x̄) to inst(I�). This in turn
implies that for any pair of cells c and c′ in cellsh(xi ) and
cellsh(x j ), the preferred values of I�(c) and I�(c′) agree,
which is preciselywhat e demands. It is easily verified that the
labeled instances I �

2 , I
�
3 , I

∗
4 in Fig. 3 satisfy all variable egds

inΣ because their associated instances inst(I �
2 ), inst(I �

3 ) and
inst(I �

4 ) do so.
Satisfaction of constant egds is defined differently. Con-

sider a constant egd e : φ(x̄) → x = a. If, as in the variable
egd case, inst(I�) |
 e then we also say that I� satisfies e,
denoted by I� |
� e. We also consider another way for a
constant egd to be satisfied, as is explained next. Consider
the set of cells cellsh(x). We want to ensure that the set of
preference labels in I� associated with cells in cellsh(x) carry
information that the constant a is preferred as described by
the constant egd. As previously explained, to this aim we
introduce a special authoritative preference level pau in P
and preference label 〈pau, a〉 where a is the constant in the
constant egd e.

Definition 7 Given a constant egd e : φ(x) → x = a, an
instance I and a labeled instance I� over P of I, we say that
I� satisfies e, denoted I� |
� e, if either inst(I�) |
 e, or for
every homomorphism h from φ(x) to inst(I�), for every cell
c ∈ cellsh(x), I�(c) contains 〈pau, a〉.

By positioning pau in the partial order �P, the preference
of pau comparedwith other preference levels can be adjusted.
See, for example �P in Fig. 4. In this way, when I� |
� e

2 Of course, here the universe of discourse of the first-order structure
being consts∪ nulls∪ lluns (and Tids for the Tid-attributes). Sim-
ilarly to constants and nulls, lluns are treated as constants.

holds, the preferred values used to obtain inst(I�) took into
account that a constant egd required certain cells to have a
specific constant value, despite that the preferred value of the
cell’s preference labelsmay not agreewith constants required
by the constant egd.

In Fig. 3, the labeled instance I �
2 satisfies the constant egds

e7–e9 because inst(I �
2 ) does so. Furthermore, e5 and e6 are

satisfied by I �
2 because I �

2 (c31) = {〈p⊥2 ,⊥2〉, 〈pau,Greg〉,
〈pau,Gregory〉} and hence I �

2 has encoded that e5 tells that
the value should be “Greg” and e6 tells that the value should
be “Gregory”.Note, however, that inst(I �

2 ) does not satisfy e5
and e6 since the conflicting information is resolved by a llun
value �1. Similarly, the labeled instances I �

3 and I �
4 satisfies

all constant egds in Σ . We note that the labeled instance I �
1

does not satisfy e5.
Given a set Σ of egds, a labeled instance I� over P of I

satisfies Σ , denoted I� |
� Σ , if I� |
� e for all e ∈ Σ .

Definition 8 A labeled instance I� overP of I is clean relative
to a setΣ of egds when I� |
� Σ . It is called dirty, otherwise.

From our earlier observations it now follows that I �
2 , I

�
3 and

I �
4 in Fig. 3 are all clean, and I ◦ and I �

1 are dirty.

4.3 User functions

Labeled instances provide an elegant formalism for dealing
with user corrections. In Llunatic, we abstract user inputs
by seeing the user as an oracle over sets of preference labels.
Such an oracle represents the ultimate way to change the
preferred value for a cell with a given set of labels.

Definition 9 We call a user-input function a (computable)
partial function User that takes as input any set of prefer-
ence labels,L , and returns a value v ∈ consts, denoted by
User(L ), to indicate that the clean value of any cell anno-
tated withL is v.

Note that User is by definition a partial function, and it may
thus beundefined for some sets of labels.User-specified clean
values will be encoded by means of special user preference
label 〈p�, v〉 and we require, when User(L ) = v is defined,
that L is always extended with 〈p�, v〉.
Definition 10 A labeled instance I∗ over P of I is said to
be user-corrected according to User if there exists no cell
c ∈ cells(I) such that for some v ∈ consts,User(I�(c)) = v

but 〈p�, v〉 /∈ I�(c).

Similarly to the level pau, we can adjust the preference of p�
compared with other preference values in P by positioning
p� in the partial order�P ofP. See, for example�P in Fig. 4.
It is now easy to see that the labeled instance I �

4 in Fig. 3
is user-corrected according to the user-input function given
by User({〈p20, 111〉, 〈p×,×〉}) = 112, User({〈p⊥2 ,⊥2〉,
〈pau,Greg〉, 〈pau,Gregory〉}) = Gregory.

123



Cleaning data with Llunatic 877

4.4 Upgrades and repairs

Given a dirty instance I, a set Σ of egds and a user-input
function User, we will consider labeled instances I∗ that are
(i) clean relative to Σ ; and (ii) user-corrected according to
User. What is missing from the picture is how such labeled
instances I∗ are related to I. We formalize this using the
notion of upgrade.

We start from I, consider the initial labeled instance I◦ and
now want to assess whether a labeled instance I� of I is of
better “quality” than I◦. More generally, we want to compare
two labeled instances in terms of the information stored in
their preference labels. Intuitively, a set of preference labels
is of higher quality than another set of preference labels when
it contains at least the same preference labels. This lifts to
labeled instances in a natural way.

Definition 11 Given labeled instances I�
1 and I�

2 over P of I,
we say that I�

1 upgrades I�
2, denoted by I�

2 � I�
1, if for each

cell c of I, it is the case that the set of labels of cell c in I�
1

contains the set of labels of c in I�
2, i.e., I

�
2(c) ⊆ I�

1(c). We say
that I�

1 strictly upgrades I�
2, denoted by I�

2 ≺ I�
2, if I�

2 � I�
1

and I�
1 �� I�

2.

Indeed, upgrades capture our intended semantics in that
values are replaced by more preferred values. Intuitively,
whenever instance I�

1 upgrades I�
2, then, for each cell c of

I, it must be the case that the value assigned to c in inst(I�
1)

is more (or equally) preferred over the corresponding value
assigned in inst(I�

2).

Definition 12 A labeled instance I� over P of I is said to
upgrade instance I if it upgrades the initial labeled instance
I◦ of I, i.e., I◦ � I�. Similarly, if I◦ ≺ I� holds, then the
labeled instance I� is said to be a strict upgrade of I.

In Fig. 3, we see by simply checking containment of the
sets of preference labels in cells that I ◦ ≺ I �

1 ≺ I �
2 and I ◦ ≺

I �
3 ≺ I �

4 . We note, however, that I �
1 and I �

3 are incomparable.
We are now finally ready to define what we mean by a repair.

Definition 13 A repair I� of I is a labeled instance overP of I
which is (i) clean relative to Σ ; (ii) user-corrected according
toUser; and (iii) is an upgrade of I. Moreover, I� is a minimal
repair if any other repair K� of I satisfies I� � K�.

In Fig. 3, only the labeled instance I �
4 is a repair of I for

the egds in Σ and user-input function User given earlier.
The computational challenge is now to compute such

repairs. We do this by means of a revised chase procedure on
labeled instances. Before explaining theLlunatic chase, we
provide some more information on how to extract the initial
labeled instance from a dirty instance, as this initial labeled
instance is the starting point of the chase.

4.5 Partial order specification

From the discussion so far, it should be clear that the prefer-
ence levels andpreference labels in the initial labeled instance
are fixed up front and are used later on to select the preferred
value from a set of preference labels. Although any partially
ordered set (P,�P) could be used (as long as it supports p×,
pau and p�), in practical settings we assume that (P,�P) is
structured as in Fig. 4. More precisely, we assume that P:

– Contains a null preference level p⊥i for each null value
⊥i in nulls, such that p⊥0 ≺P p⊥1 ≺P p⊥2 ≺P · · · ,
and furthermore p⊥i ≺P p for any other p ∈ P \ {p×};

– Is such that for any p ∈ P \ {pau, p�}, p ≺P pau, i.e.,
the authoritative preference level is higher than any other
preference level, except for the user preference level p�;

– For any p ∈ P \ {pau, p�}, p is incomparable with the
invalid preference level p×; and

– for any p ∈ P \ {p�}, p ≺P p�, i.e., the user preference
level trumps any other preference level.

This ensures that the preference levels p⊥i , p×, pau and p�
have the desired effect when present in a set of preference
labels. We also assume p⊥i only to be present in the prefer-
ence label 〈p⊥i ,⊥i 〉 and p× in 〈p×,×〉.

We next describe how a user can create the initial labeled
instance. More precisely, in the initial labeled instance I◦
over P of I, one initalizes

– For any cell c = 〈tid, Ai 〉 in I such that ttid[Ai ] = ⊥ j :

I◦(c) := {〈p⊥ j ,⊥ j 〉},

– And for all other cells c = 〈tid, Ai 〉 in I such that
ttid[Ai ] = v ∈ consts:

I◦(c) := {〈pc, v〉},

where pc ∈ P \ {p⊥i , p×, pau, p�}. Further inspection
of the data is needed to select these preference levels pc
and fixing their relationship in the partial order.

To better understand what we mean here, just recall how
cells c13 and c23 in I in our running example were labeled in
I ◦ by preference labels 〈p0.9, surg〉 and 〈p0.1, urol〉, respec-
tively, such that p0.1 ≺P p0.9, based on the confidence
information stored in theConf attribute. Hence,when later on
a conflict between “surg” and “urol” needed to be resolved,
“surg” will be themost preferred value and be used to resolve
the conflict. In principle there is no restriction on how the
preference levels pc relate to each other; however, we next
describe a practical way of extracting partial order infor-

123



878 F. Geerts et al.

mation on preference levels pc associated with the constant
values in cells in I.

We propose the use of ordering attributes. An ordering
attribute A inR is such that tuples t in instances I ofR have
values t[A] coming from a domain equipped with a natu-
ral partial order. For example, Conf is an ordering attribute
over the rational numbers. Other examples are timestamp
attributes, or other numerical attributes. We then define a
partial order specification as a partial function Π from the
set of attributes inR to the set of ordering attributes inR. For
example, in our running example Π maps attribute Spec to
Conf in relation D. Although Spec by itself is not an ordering
attribute, the partial order specification Π can now be used
to extract partial order information on preference levels in P
for cells related to Spec.

In general, consider an instance I of R and cells c1 =
〈tid1, A〉 and c2 = 〈tid2, A〉 in I. Let pc1 and pc2 be two
new preference levels in P used to create the initial instance
I◦. That is, in the initial labeled instance I◦ we have that
I◦(c1) = {〈pc1, ttid1[A]〉} and I◦(c2) = {〈pc2 , ttid2 [A]〉}. We
then define

pc1 �P pc2 if and only if ttid1 [Π(A)] ≤ ttid2 [Π(A)].

That is, we order pc1 and pc2 in �P in accordance to the
(ordered) attribute values ttid1 [Π(A)] and ttid2 [Π(A)] (recall
that c1 and c2 are cells in the A attribute in I.)

In this way, we can use temporal information (e.g., time-
stamps) to give certain cell values higher preference in I◦
based on their date of creation. We can also add an ordering
attribute as part of a preprocessing step which records the
frequency of values in another attribute. In I◦ we then give
more preference to frequent values. We tie the use of partial
order specifications to other repairing methods in Sect. 7.
We emphasize that this is only one of the possible ways of
specifying the desired partial order, and by no means it is
the most general. Yet, we believe that it represents a good
compromise between simplicity and expressiveness.

5 The LLUNATIC chase

As anticipated, we now revise the standard chase procedure
such that it works on labeled instances and generates repairs
according to Definition 13. Intuitively, starting from the ini-
tial labeled instance I◦ over P of I, in each step of the chase
we generate an upgrade by either merging sets of preference
labels or extending sets of preference labels. By contrast to
the standard chase, the revised chase produces a chase tree,
i.e., a tree in which each branch corresponds to a different
chase sequence. To guarantee that the chase ends after a finite
number of steps, we do impose a restriction on the labeled
instances (upgrades) that can be generated by the chase.More

precisely, for a given setL of preference labels, the set of all
cells having L as their set of preference labels in a labeled
instance I�, is referred to as the cell group of L in I�. We
will change all cells in the same cell group in the same way.
For example, in an initial labeled instance I◦ all cells having
〈p⊥i ,⊥i 〉 as their preference label will be in the same cell
group. We have remarked earlier that these should indeed be
changed in the same way, in accordance with the standard
chase. As another example, when the chase merges two sets
of preference labels, for example in cells c11 and c12 in I �

1 in
Fig. 3, this implies that these two cells should carry the same
preferred value. By putting these cells in the same cell group,
we guarantee that this is preserved during further chase steps.
Typically, cells will belong to the same cell group if a previ-
ous application of an egd required the two cells to carry the
same information. We next detail the chase steps (Sect. 5.1)
and then describe the result of chase and some of its prop-
erties (Sect. 5.2). How a user interacts with the chase (and
Llunatic in general) is explained in Sect. 5.3.

5.1 Chase steps

Let I� be a labeled instance over P of I and consider the cor-
responding instance inst(I�). Let e : φ(x̄) → xi = x j or
e : φ(x̄) → x = a be a variable or constant egd, respec-
tively. Let h be a homomorphism from φ(x̄) to inst(I�). We
associate, similar to Definition 6, cells with variables and
constants in φ(x̄). A more fine-grained association is needed
for the backward chase step (see below) since we have to be
able to distinguish between cells corresponding to different
occurrences of the same variable in φ(x̄) and also need to
identify cells corresponding to constants in φ(x̄).

Definition 14 Consider a homomorphism h from φ(x̄) to
inst(I�) = (inst(I �

1 ), . . . , inst(I �
k )). Let F = Ri (s̄) =

Ri (tid, s1, . . . , sni ) be an atom inφ(x̄) and let j ∈ [1, ni+1].
We define the cell associated with h, atom F and position j ,
denoted by cellh(F, j), as the (single) cell 〈tid, A j 〉, where
tid is the tuple identifier of the tuple h(s̄) ∈ inst(I �

i ) and A j

is the attribute name of position j in Ri .

We remark that cellsh(x) (cfr. Definition 6) is just the union
of cellh(F, j) where F and j range over all atoms F in φ(x)
containing x at a position j . We further expand cellh(F, j)
by the cells in its cell group, i.e., we define

cellh(F, j) := {c′ ∈ cells(inst(I�)) | I�(c′) = I�(cellh(F, j))}.

Intuitively, cellh(F, j) contains all cells that need to be chan-
ged in the same way as cellh(F, j) during the chase, as
remarked earlier. The value to which all cells in cellh(F, j)
need to be changed is determined by I�(cellh(F, j)).

We can lift these definitions to variables x in φ(x) in a
natural way. More precisely, cellsh(x) is the union of all

123



Cleaning data with Llunatic 879

cellh(F, j) where, as before, F and j range over all atoms
F in φ(x) containing x at position j . The value to which all
cells in cellsh(x) need to be changed is determined by the
union of the set of preference labels associated to cells in
cellsh(x). We denote this union byLh(x)which is the union
of I�(cellh(F, j)) where F and j range over all atoms F in
φ(x) containing x at position j .

Then,when e is a variable egd,we say that e can be applied
to I� with homomorphism h when h(xi ) �= h(x j ). When e
is a constant egd, we say that e can be applied to I� with
homomorphism h when either h(x) �= a or when 〈pau, a〉 is
not part ofLh(x). These conditions basically check whether
I� �|
� e (cfr. Sect. 4.2). We now define the result of applying
e on I� with homomorphism h as a new labeled instance J�

over P of I defined as follows.

Forward chase step variable egd In this case, I� and J� agree
on all cells in I except for those corresponding to cellsh(xi )
and cellsh(x j ). More precisely, for all cells c ∈ cellsh(xi ) ∪
cellsh(x j ) we define

J�(c) := Lh(xi ) ∪ Lh(x j ).

In other words, we merge all sets of preference labels of cells
related to h(xi ) and h(x j ).

Forward chase step constant egd In this case, I� and J� agree
on all cells in I except for those corresponding to cellsh(x).
More precisely, for all cells c ∈ cellsh(x) we define

J�(c) := Lh(x) ∪ {〈pau, a〉}.

In both cases, we write I� e,h→ J�. It is readily verified that

there exist homomorphisms h1, h2, h3 such that I ◦ e1,h1→
J �
1

e3,h2→ J �
2

e4,h3→ I �
1 for the labeled instances I ◦ and I �

1 and
variable egds in Σ given in Fig. 3. Furthermore, there exist

homomorphisms h4 and h5 such that I �
1

e5,h4→ J �
3

e6,h5→ I �
2 for

I �
2 and constant egds in Σ in Fig. 3.

Backward chase step egdWewant to create a labeled instance
J� over P of I such that, when e is applicable to I� with
a homomorphism h from φ(x̄) to inst(I�), then h is not a
homomorphism anymore from φ(x̄) to inst(J�).

We distinguish between the following two cases, depend-
ingonwhetherwe“disable” a constant or an equality between
variables in φ(x̄). Let F = Ri (s̄) = Ri (tid, s1, . . . , sni )
be an atom in φ(x). Suppose that j ∈ [1, ni ] is such that
s j ∈ consts. Then, we first check whether I�(c) does con-
tain authoritative preference labels for c ∈ cellh(F, j). If so,
we do not perform a backward chase step since we do not
want to invalidate such information. Otherwise, we ensure
that J�(c), for all c ∈ cellh(F, j), contains the invalid
preference label 〈p×,×〉. In other words, for such cells c,
inst(J�) will not hold constant value s j anymore, ensuring

that h(s̄) /∈ inst(J�). More precisely, we create a new labeled
instance J� over P of I which agrees with I� on all cells in I
except for those in cellh(F, j). For cells c in cellh(F, j) we
define

J�(c) := I�(c) ∪ {〈p×,×〉},

as just explained.
For the second case, let x be a variable in φ(x) that occurs

multiple times in φ(x̄). If no such variable exists, then this
case does not apply. Consider relational atoms F = Ri (s̄)
and F ′ = R j (s̄′) inφ(x̄) and assume that s� = x and s′

�′ = x .
When F = F ′, then we must have that � �= �′.

Let h be a homomorphism from φ(x̄) to inst(I�) and
consider c = cellh(F, �) and c′ = cellh(F ′, �). We only
backward chase when pval(I�(c)) = pval(I�(c′)) is a
constant, I �(c) �= I �(c′) and, as above, no authoritative pref-
erence labels are present in I �(c) and I �(c′). Here, the second
condition implies that cellh(F, �) and cellh(F ′, �′) are dis-
joint. We then create a new labeled instance J� over P of
I which agrees with I� on all cells in I except for those in
either cellh(F, �) or cellh(F ′, �′). In one of those sets of cells,
we will add to all cells the invalid preference label 〈p×,×〉
to their set of preference labels. As a consequence, the two
variable occurrences will be mapped to different values in
inst(J�) hereby disabling the application of e.

More precisely, say that we pick cellh(F, �). Then for all
c ∈ cellh(F, �) we define

J�(c) = I�(c) ∪ {〈p×,×〉}.

The reason to restrict the application of backward chase steps
when pval(I�(c)) = pval(I�(c′)) is a constant is that we feel
that invalidating a null or a llun does not make sense seman-
tically. (Of course, in general one may allow this.)

In both cases (disable constant, disable equality), wewrite

I� e,h,F,�−→ J� indicating which atom (F) and position ( j) in
φ(x̄) we invalidate.

As an example, consider variable egd e1 : D(tid, npi, nm,

sur, spec, hosp) ∧ D(tid′, npi, nm′, sur′, spec′, hosp′) →
nm = nm′. Both these atoms, let us denote them by F and
F ′, have variable npi at position 2. It is now readily verified
that there exist homomorphisms h1, h2, h3 and h4 such that

I ◦ e1,h1,F,2−→ J �
1

e5,h2→ J �
2

e6,h3→ J �
3

e9,h4→ I �
3 for I �

3 and egds in
Σ in Fig. 3.

User chase stepWhen a user-input functionUser is given, we
say that this function is applicable on I� when there are cells
c such thatUser(I�(c)) = v is defined. In this case, we create
a new labeled instance J� over P of I which agrees with I�

on all cells in I except for those cells c in which User(I�(c))
is defined. More precisely, for all such cells c we define

123



880 F. Geerts et al.

J�(c) := I�(c) ∪ {〈p�,User(I�(c))〉}.

In other words, we add User(I�(c)) = v together with the
user preference level p� to the set of preference labels.
Note that this step changes all cells in the same cell group
in the same way. Indeed, cells in a cell group have the

same set of preference labels. We write I� User,L−→ J� where
L = I�(c) for which this chase step is applied. As an

example, we have that I �
3

User,L1−→ J �
1

User,L2−→ I �
4 for I �

4
shown in Fig. 3, where L1 = {〈p20, 111〉, 〈p×,×〉}, L2 =
{〈p⊥2 ,⊥2〉, 〈pau,Greg〉, 〈pau,Gregory〉}, and User is the
user-input function given earlier.

5.2 The LLUNATIC chase and its properties

Given a set Σ of egds, constant or variable, a user-input
function User and a labeled instance I� over P of I, a chase
sequence of I� with Σ and User is a sequence of labeled
instances I�

i with i = 0, 1, . . ., such that I�
0 = I� and for

every i , either I�
i

e,h→ I�
i+1 (forward step), I�

i
e,h,F, j−→ I�

i+1

(backward step), or I�
i

User,Li−→ I�
i+1 (user step). The chase

tree I� with Σ and User, denoted by chaseΣ,User(I∗), is a
tree whose root is I∗ and all branches correspond to finite
chase sequences of I� with Σ and User such that no further
chase steps can be applied to the last labeled instance in the
sequence. We note that our chase steps never return failure
�.

We next show that every branch in the chase is a finite
chase sequence and that the leaves of the chase are repairs.

Theorem 1 Given a labeled instance I� over P of I, a set
Σ of egds and user-input function User. Then, every chase
sequence in chaseΣ,User(I∗) is finite and furthermore, every
labeled instance in a leaf of chaseΣ,User(I∗) is a repair of I�.

Proof To show that every chase sequence in chaseΣ,User(I∗)
is finite, it suffices to observe that every chase step, whether
it is a forward, a backward or a user chase step, either strictly
increases the size of cell groups (cells that carry the same set
of preference labels), or strictly increases the size of sets of
preference labels. There is clearly an upper bound on how
many times cell groups can be expanded as in the worst case
all cells in an instance belong to the same cell group. Simi-
larly, since Σ contains a finite number of constant egds, the
number of times the corresponding authoritative preference
level can be added is bounded. The same holds for the invalid
preference level and user preference level. Hence every chase
sequence is bounded in length. From the definition of chase
steps, it is clear that when no further chase steps can be exe-
cuted on a labeled instance, it satisfies all egds in Σ and is
user-corrected according toUser. Furthermore, by definition,
a chase step from a labeled instance I�

i to a labeled instance

I�
i+1 ensures that I�

i+1 is an upgrade of I�
i . Hence, every leaf

in chaseΣ,User(I∗) is a repair of I�. ��

In Llunatic, we will of course apply the chase on the
initial labeled instance I◦ of a dirty instance I. As an example,
I �
4 in Fig. 3 is a repair generated by chaseΣ,User(I ◦). We
return both I �

4 and its corresponding instance inst(I �
4 ) to the

user.
Furthermore, some properties of the standard chase carry

over to our revised chase.

Theorem 2 Given an initial labeled instance I◦ over P of I,
a set Σ of egds and user-input function User, we have that:

– The number of repairs (leaves) in chaseΣ,User(I◦) is at
most exponential in the size |I| of I; and

– every chase sequence in chaseΣ,User(I◦) is of length poly-
nomial in the size |I| of I,

where |I| is the number of tuples in I and where, as usual,
we consider the schema, the set of constraints and user-input
function to be fixed (data complexity).

Proof Repairs are obtained from I◦ by expanding the set of
preference labels associated with cells in I. For each cell, the
possible set of preference labels is bounded by the constants
appearing in I and preference levels in I◦ (together with the
special levels p×, pau and p�). Hence, there are most 2O(|I|)
different sets of preference labels and since the number of
cells is bounded by O(|I|) (recall the schema is fixed), we
have at most 2O(|I|) possible labeled instances over P of I
which upgrade I◦. Consequently, there are at most an expo-
nential number (in |I|) leaves in chaseΣ,User(I◦).

To see that every chase sequence in chaseΣ,User(I◦) is of
length polynomial in the size |I|of I,wehave seen in the proof
of the previous theorem that each step either strictly increases
the size of cell groups (cells that carry the same set of prefer-
ence labels), or strictly increases the size of sets of preference
labels. One can now associate an integer-valued function f
to labeled instances based on the size of cell groups and sizes
of sets of preference labels such that f (J1) < f (J2)when J2
is the result of a chase step on J1. It suffices now to observe
that f is bounded by O(|I|) on every upgrade generated in
a chase sequence in chaseΣ,User(I◦). Hence, such a chase
sequence must of length bounded by O(|I|). ��

We conclude this section by observing that the Llunatic
chase can be seen as a conservative extension of the standard
chase. Indeed, we instantiate P by preference levels for nulls
and assign a unique preference level for each cell carrying
a constant value in I. We relate these to the null preference
levels as before. By redefining pval(L ) such that it returns
� (instead of a llun) when no single preferred value can be

123



Cleaning data with Llunatic 881

obtained from L , then it is readily verified that the Llu-

natic chase on I◦ coincides with the standard chase when
no backward chase steps are performed.

5.3 LLUNATIC in action

We next illustrate how a user would interact with the chase
while repairing data with our Llunatic open-source data
repairing system.3 Llunatic has been developed in Java on
top of PostgreSQL asDBMSand itsGUI is depicted in Fig. 5.
First of all, the data can browsed to inspect the data, as illus-
trated in frame (1) for an example database exposed as a
standard instance. A partial order specificationΠ can then be
specified by simply selecting columns as shown in frame (2).
In that frame,Πmaps attributephone to an attribute cfphone
holding confidence information and attribute salary to an
attributedate holding timestamps. The constraints (egds) can
either be declaratively specified, but the system also provides
a graphical user interface for this task, as reported in frame
(3). The example shows a functional dependency (“fd3”) that
enforces equality on attribute cc. In addition, users may spec-
ify configuration options, such as the cost manager which we
introduce later in the paper (Sect. 6.2).

Then, Llunatic has all information to create the initial
labeled instance and compute a set of repairs. To do this,
it generates a chase tree, reported in frame (4). Leaves in
the chase tree are repairs that can be inspected by users to
analyze the modifications to the original instance, as shown
in frame (5). In the figure, we highlight the intermediate node
(labeled “I”) after chasing with “fd3” in a branch of the tree;
the following chase steps enforce other possible egds. In the
corresponding upgrade, credit card (cc) values “781-658”
and “784-659” have been updatedwith a llun to satisfy “fd3”.

As Llunatic models upgrades by means of labeled
instances and changes cells in cell groups in the same way,
it is possible to retrieve cell groups and their labels, as illus-
trated in frame (6). In the example, we see how, as attribute
cc has no ordering attribute associated, Llunatic does not
make an arbitrary choice and rather marks the conflict with a
llun. In general, a user can analyze the cell group and labels
associated to a llun and the dependency at hand to manually
intervene and provide values with the user preference level.
In the example, we show the details for the cell group of
the chase step involving constraint “fd3” with the resulting
llun “L202”. We pick up the corresponding node in the chase
tree (frame (4)), consult its history in terms of changes to
the original database, as described by the labels, inspect the
lluns that have been introduced (frame (5)), and analyze the
associated cell groups and labels (frame (6)). Based on this,
we can now take an informed decision in order to update the
llun with the appropriate constant (provided by the user) or

3 https://github.com/donatellosantoro/Llunatic.

discard unwanted repairs. If we make a change, i.e., if a user
chase step is applied, we are updating the preference level for
the labeled instance. We then rerun the chase for the branch
at hand, this time with the user-input function, and we will
get a different repair.

In another frame, which is not reported in the figure, we
allow users to rank the alternative repairs according to the
number of lluns contained in the final instance. We argue
that the chase tree, lluns, and cell groups and their labels
provide an effective source of information to support users
in exploring and refining alternative repairs.

6 Implementing the chase

The computation of the chase tree of all chase sequences of I◦
withΣ andUser, i.e., chaseΣ,User(I◦), is the core algorithmic
component in Llunatic. In this section, we describe some
underlying internal optimizations and an external mecha-
nism, called the cost manager, to control the chase in a
fine-grained manner.

To accommodate for large datasets, Llunatic is built
around a disk-based chase engine. The chase logic is con-
trolled by a Java program that handles the heuristic decisions
we describe next, such as when to go forward or backward,
the computation of value similarity, and caching strategies.
Disk support, essential for scalability, is provided by exploit-
ing a DBMS for data access. This is a natural choice for our
setting, as a DBMS is faster and exposes data operations
closer to our needs than the OS file system.

6.1 Chasing on top of a DBMS

Due to space limitations, we only provide a high-level
description of some internal implementation choices.

Storing the delta’s It is clearly infeasible to materialize the
entire chase tree since each of its nodes corresponds to an
upgrade, i.e., a labeled instance obtained by a chase step,
and we may have exponentially many repairs. In Llunatic,
we therefore only store the changes (the “delta’s”) made after
each chase step, i.e., how the preference labels in a labeled
instance are changed in each step. We use a relational repre-
sentation in which changes to the labeled instance made in
one chase step are grouped together by means of the same
value for a special StepId-attribute.We store strings in StepId
which uniquely identify nodes in the chase tree and such that
ancestor nodes are identified by prefixes of those strings. By
means of SQL queries we can check easily for violations of
the egds and user-input function, and for each set of violating
tuples (i.e., for homomorphisms that make egds applicable),

123

https://github.com/donatellosantoro/Llunatic


882 F. Geerts et al.

Fig. 5 Llunatic GUI

we add the changes as determined by the chase steps to the
preference labels of the cells involved.

Caching of cell groups In Sect. 5, we explained how the chase
changes together all cells in the same cell group. Speeding up
the identification andmanagement of the cell groups involved
at each step is crucial for performance. We therefore intro-
duce three caching strategies for cell groups: (i) the lazy
strategy, in which a cell group is first searched in the cache;
in case it is missing, it is loaded from the database and stored
in the cache; (ii) the greedy strategy in which the first time
a cell group for a chase step s is requested, we load into the
cache all cell groups involved in step s with a SQL query;
and (iii) the single-step strategy, that caches cell groups for a
single step at a time. Similarly to greedy, we keep cell groups
for chase step s in the cache, but, whenever a cell group for
a different step s′ is requested, we clean the cache and load
all cell groups for s′. We will show in our experiments that
the last strategy performs best, as the first two tend to keep
in memory cell groups that are not immediately reused.

Equivalence class-based chaseWe limit the number of nodes
(upgrades) generated by grouping together different homo-
morphisms h that make an egd e : φ(x̄) → xi = x j (or
e : ϕ(x̄) → x = a) applicable, as follows. Let I�

s be the
labeled instance obtained in step s of the chase. Let h and h′
be two different homomorphisms of φ(x̄) into inst(I�

s ) such
that e is applicable to I�

s with h and h′. We then say that h
and h′ are compatible if h and h′ agree on all occurrences

of variables x that occur more than once in φ(x). Intuitively,
this implies that the chase steps for h and h′ can be combined.
The compatibility relation induces an equivalence relation of
homomorphisms and we perform a single chase step for each
equivalence class of homomorphisms.

Example 9 Consider the schema R(Tid, A, B,C) and the fol-
lowing labeled instance I� over (P,�P):

Tid A B C

{〈pid , 1〉} {〈p11, 1〉} {〈p0.1, 1〉} {〈p13, 1〉}
{〈pid , 2〉} {〈p21, 1〉} {〈p0.2, 2〉} {〈p23, 2〉}
{〈pid , 3〉} {〈p31, 1〉} {〈p0.3, 3〉} {〈p33, 3〉}

such that p0.1 ≺P p0.2 ≺P p0.3 and all other prefer-
ence levels are incomparable. Consider the variable egd
e : R(tid, x, y, z) ∧ R(tid′, x, y′, z′) → y = y′ (express-
ing the functional dependency A → B) and homomor-
phisms h1, h2 and h3 such that h1(R(tid, x, y, z)) =
t1, h1(R(tid′, x, y′, z′)) = t2, h2(R(tid, x, y, z)) = t1,
h2(R(tid′, x, y′, z′)) = t3, h3(R(tid, x, y, z)) = t2 and
h3(R(tid′, x, y′, z′)) = t3. In e, only variable x has mul-
tiple occurrences and all three homomorphisms map these
occurrences to the same value “1”. They are then regarded
as compatible and the equivalence-based chase will apply
the three corresponding forward chase steps simultaneously.
The result is the labeled instance in which the cells corre-

123



Cleaning data with Llunatic 883

sponding to attribute B in all tuples are assigned preference
labels {〈p0.1, 1〉, 〈p0.2, 2〉, 〈p0.3, 3〉}; the preference labels of
all other cells remain the same.

We note that a similar equivalence class-based repairing
strategy is used in [11,24]. One can verify that the equi-
valence-based chase still returns repairs. Of course, some
repairs may be missed out because of the coarser granularity
with which is chased. Nevertheless, the equivalence-based
chase enables some additional ways of guiding the chase
when combined with the cost manager, which we describe
next.

6.2 Cost manager

We have shown before that all leaves in chaseΣ,User(I◦) are
repairs. Instead of computing all repairs, in practice, one
wants to impose further conditions on these repairs, by, e.g.,
limiting the number of repairs, disallowing backward chase
steps, or by disallowing changes to very reliable attributes.
In Llunatic we allow the user to control the behavior of
the chase by incorporating pruning strategies. To this aim,
we complement the chase procedure in Llunaticwith a cost
manager. During the chase, only the nodes (i.e., intermediate
results—upgrades—of chase steps) that are accepted by the
cost manager are generated.

Definition 15 A cost manager for a labeled instance I◦ over
P of I, Σ and User is a predicate cm over nodes in the chase
tree chaseΣ,User(I◦). For each node n in this tree, it may
either accept (cm(n) = true) or refuse it (cm(n) = false).

The standard cost manager is the one that accepts all chase
nodes.Wenote thatwhen the costmanager is too restrictive, it
is possible that no repairs are found. Indeed, simply consider
the cost manager that rejects all nodes. More practical cost
managers are motivated by approaches taken in related work,
as follows:

– The maximum size cost manager (sN): it accepts new
nodes as long as the number of leaves in the chase tree
(i.e., the repairs produced so far) are less than N ; as soon
as the size of the chase tree exceeds N , it accepts only
one child of each node, and rejects the rest; as a specific
case, the s1 cost manager only generates one path in the
chase tree, and ignores other branches;

– The forward-only cost manager (FO): It accepts forward
nodes (i.e., nodes representing the result of a forward
chase step) and rejects backward nodes (i.e., nodes rep-
resenting the result of a backward chase step);

– The sampling cost manager (SPLk): It randomly accepts
nodes, until K repairs have been generated (see also [9]);

– The certain-region cost manager (CTN): It incorporates
the notion of a certain region [29], i.e., a set of attributes

that are considered “fixed”. Values in these attributes are
reliable and cannot be changed. Nodes corresponding to
results of chase steps that change these reliable attributes
are rejected; all others are accepted.

– The frequency cost manager (FR) (or similarity to most
frequent): It is inspired by the heuristics originally pro-
posed in [11] and modeled in our semantics as discussed
in Sect. 7. We resort to this manager when preference
levels for the cells in a violation for dependency e are
incomparable with other partial orders. The idea is to
make local decisions for which cells to change by ana-
lyzing the violations in one equivalence class for e. For
a given equivalence class of homomorphisms, the cost
manager computes the frequency of values appearing in
conclusion cells and a similarity measure across their
values (based on the Levenshtein distance for strings).
Based on this information, it makes decisions in terms of
the next chase step. The manager rejects repair strategies
that backward chase cells with the most frequent conclu-
sion value. The intuition is that these cells are likely to
be correct. For every other conclusion cell, if its value
is similar (distance below a fixed threshold) to the most
frequent one, the cell is forward-chased (i.e., it is likely
to be a typo); otherwise, it is backward chased.

Notice that combinations of cost managers are possible, e.g.,
one can have a FO- s5 or a SPL50- FO cost manager. The
FO- s5 strategy, for example, discards backward changes
and, in addition, it considers five different ways of chasing in
a forward way. We believe that cost managers are an elegant
way of controlling the chase.

7 Comparison to other semantics

We further illustrate how partial order specifications and ini-
tial label instances can be used such that the Llunatic chase
mimics repair semantics used in other work. In particular, we
show how:

– Frequency information can be used to resolve conflicts.
This is motivated by the Minimum Cost repair method
for functional and conditional functional dependencies
introduced in [11,18]. Here, when conflicts need to be
resolved, equivalence classes are formed of cells that
need to get the same value. The actual values for such
classes are determined at the end and are selected based
on a cost function [11]. We focus on the heuristic in
which themost frequent value in each equivalence class is
selected in an attempt tominimize the number of changes
made.

– Random conflict resolution can be incorporated. This is
motivated by the Sampling repair method for functional

123



884 F. Geerts et al.

(a) (b)

Fig. 6 Extended running example with extra ordered attributes Freq (frequency) and Rnd (random)

dependencies [9]. Here, conflicts of functional depen-
dencies are randomly resolved (forward or backward)
and special variables or values are randomly selected to
repair conflicts.

Example 10 Consider the initial labeled instance I ◦ shown
in Fig. 6. Compared to our running example, we added
one more tuple and expanded the schema with two order-
ing attributes: Freq, which is to hold the frequency of values
appearing in the Name-attribute, and Rnd, which holds ran-
dom values. The partial order specification Π maps Name
to Freq, and Surname to Rnd. The attribute Spec is still
mapped to Conf, just as before. This implies, e.g., that
p11 ≺P p21 =P p31, p33 ≺P p23 ≺P p13 ≺P p43, and
p25 =P p35 ≺P p15 ≺P p45. Here, x =P y denotes that
x �P y and y �P x hold. In addition, we still have the
standard partial order information related to nulls, invalid,
authoritative and user preference levels as in Fig. 4. Suppose
that we chase I ◦ in a forward way with the variable egds
e1–e4 in Σ , stating that attribute NPI is a key of the relation.
Then it should be clear that the Llunatic chase resolves
conflicts of Name-values based on frequency. We also recall
that the chase changes cells belonging to the same cell group
in the same way. Intuitively, cell groups can be seen to cor-
respond to the equivalence classes used in [11,18]. Hence,
the chase behaves like the minimum cost repairing method
for theName attribute. Similarly, the chase resolves conflicts
of Surname-values in a random way. When complemented
with a sampling of the chase steps at random (sampling cost
manager, Sect. 6.2), we obtain a repairing method similar to
the Sampling method [9]. The instance inst(I ◦) obtained by
chasing I ◦ with the variable egds is shown in Fig. 6 (we omit-
ted the ordering attributes). We also remark that although we
explicitly added ordering attributes to the schema, one can
of course regard these as virtual attributes and compute fre-
quencies or random values on the fly, when needed.

We want to stress that these are just two examples. By
addingordering attributes related to string similarity, distance
functions, timestamps, and others, one can encode complex
relationships between preference levels by using appropriate
partial order specifications. These in turn affect how conflicts

are resolved during the chase and what kind of repairs one
obtains.

8 Experiments

This section reports our experimental results with Llunatic.
We consider several cleaning scenarios of different nature
and sizes and study both the quality of the upgrades computed
by our system and the scalability of the chase algorithm. We
show that our algorithm produces upgrades of better quality
with respect to other systems in the literature, and at the same
timescales to large databases.We ran all tests on a server with
40 physical Xeon v4 cores running at 2.4GHz and a 512GB
SSD under Ubuntu v16. All the tools are Java-based, use
PostgreSQL as DBMS, and have been executed on a JVM
with 16GB of RAM.

The section is organized as follows. We start by introduc-
ing the datasets and the cleaning scenarios. We describe the
way errors are introduced in the datasets and how repairs are
evaluated with several metrics. We then introduce alterna-
tive algorithms to obtain repairs and compare them against
Llunatic.

Datasets and cleaning scenarios We selected five datasets:
(a) Hospital is based on real data from the US Department
of Health & Human Services.4 It contains a single table with
100K tuples and 17 attributes, over which we specified 7
functional dependencies. To test the scalability of the sys-
tems, we generated instances of size up to 1M tuples by
replicating the original data several times. We call this vari-
ant Hospital-Synth.
(b) Bus, is a real-world scenario [19] composed by a sin-
gle table containing 284K tuples with 25 attributes, and 9
functional dependencies.
(c) IMDB, it contains real data about movies, directors and
actors obtained by joining data provided by Internet Movie
Database (IMDB).5 The resulting single table is composed

4 http://www.medicare.gov/hospitalcompare/.
5 https://datasets.imdbws.com/.

123

http://www.medicare.gov/hospitalcompare/
https://datasets.imdbws.com/


Cleaning data with Llunatic 885

by8 attributes and contains 20million of tuples.We identified
4 functional dependencies for this dataset.
(d) Tax, is a synthetic scenario [25] with a single table with
15 attributes and 4 functional dependencies.
(e) Doctors, corresponds to our running example introduced
in Sect. 3. The target database schemas contain 2 tables, plus
1 master data table. We considered 3 editing rules, 4 CFDs
and 3 FDs. We synthetically generated up to 1M tuples with
a proportion of 40% in the Doctors table, and 60% in a Treat-
ments table; the master data table contains a few hundreds of
the tuples present in Doctors. We consider master data tuples
outside the total, as they cannot be modified. Moreover, the
master data and editing rules are compiled into constant egds.

These scenarios represent a spectrum of data repairing
problems. The first four scenarios contain functional depen-
dencies only, and therefore are quite standard in terms of
constraints.Hospital can be considered a worst-case in terms
of scalability, since all data are stored as a single, non-nor-
malized table, with many attributes and lots of redundancy;
over this single table, the dependencies interact in various
ways, and there is no partial order information to ameliorate
the cleaning process. The Doctors scenario contains a com-
plex mix of dependencies; this increased complexity of the
constraints is compensated by the fact that data are stored as
normalized tables, with no redundancy, and a partial order
specification is provided for some of the attributes.

Errors and metrics To test our algorithms with different
levels of noise, we introduced errors by using BART, an error-
generation tool [3]. Differently from ad-hoc strategies, BART
allows researchers to inject errors into data in a principled
and controlled way. More specifically:

– It guarantees that all errors are detectable using the
given constraints, i.e., it does not generate errors that are
“impossible” to identify using a constraint-based tool;

– It controls the degree of repairability of errors; intuitively,
this is a measure of the “difficulty” of repairing errors;

– Finally, it represents a platform for researchers to share
their datasets and error-generation configurations, in
order to foster repeatability.

We introduced 5% of errors, all detectable by the constraints.
To test the impact of the errors on the final quality of the
process, we used different level of repairability, that we call
High Rep, Med Rep and Low Rep. Datasets, constraints,
and BART configurations are available through the project
web site (http://db.unibas.it/projects/llunatic/).

For all scenarios, we measure running times and size of
the chase trees. Wemeasure quality as precision and recall in
terms of dirty cells that have been restored to the original val-
ues. More specifically, for each clean database, we generated

the set Cp of perturbed cells. Then, we run each algorithm to
generate a set of repaired cells, Cr , and computed precision
(P), recall (R), and F-measure (F = 2× (P × R)/(P + R))
of Cr wrt Cp. Since several of the algorithms may introduce
variables to repair the database—like our lluns—we calcu-
lated two different metrics.
- Metric 0.5. This is the metrics adopted in [9]: (i) for each
cell c ∈ Cr repaired to the original value in Cp, the score
was 1; (ii) for each cell c ∈ Cr changed into a value different
from the one in Cp, the score was 0; (iii) for each cell c ∈ Cr

repaired to a variable value, if the cell was also in Cp, the
score was 0.5. In essence, a llun or a variable is counted as a
partially correct change. This gives an estimate of precision
and recall when variables are considered as a partial match.
- Metric 1.0. Since our scenarios may require a consistent
number of variables, due to the need for backward updates,
and this metric disfavors variables, we also adopt a different
metric, which counts all correctly identified cells to repair.
In this metric, called Metric 1.0, item (iii) above becomes:
for each cell c ∈ Cr repaired to a variable value, if the cell
was also in Cp, the score was 1.

Algorithms We ran Llunatic with several cost managers
and several caching strategies, as discussed in Sect. 6. We
chose variants of the Llunatic- FR- sN cost manager—the
frequency cost manager that generates up to N repairs—with
N = 1, 10, 50, and the Llunatic- FR- s1- FO, the forward-
only variant of Llunatic- FR- s1. We do not report results
obtained by the standard cost manager, as it only can be used
with small instances due to its high computing times.

In order to compare our system to previous single-node
approaches, we tested the several repairing algorithms from
the literature, implemented as separate systems: (a) Holis-

tic [16]; (b) Min. Cost [11]; (c) Vertex Cover [41];
(d) Sampling [9]; for this, we took 500 samples for each
experiment, as done in the original paper. All of these sys-
tems support a smaller class of constraints wrt to the ones
expressible in our framework, and cannot handle all of the
constraints in the Doctors experiment. Therefore, only vari-
ants of Llunatic were used for the latter.

Results Each experiment was run 5 times, and the results
for the best execution are reported, both in terms of quality
and execution times. We pick the best result, instead of the
average, in order to favor Sampling, which is based on a
sampling of the possible repairs and has no guarantee that
the best repair is computed first.

For theLlunatic variants that returnmore than one repair
for a database, we calculated quality metrics for each repair;
in the graphs, we report the maximum, minimum, and aver-
age values for Llunatic- FR- s10. We do not report quality
values for the Llunatic- FR- s50 cost manager, since they

123

http://db.unibas.it/projects/llunatic/


886 F. Geerts et al.

Table 1 Repairability levels for the datasets in Fig. 7a–h

Hospital 20k Bus 20k Tax 20k

High Rep 0.89 0.85 0.89

Med Rep 0.59 0.51 0.74

Low Rep 0.12 0.33 0.49

differ for less than one percentage point from those of
Llunatic- FR- s10.

The quality experimentWe first investigate the quality of the
repairing algorithms by using three datasets: Hospital, Bus
and Tax. For each of them, we made three noisy versions
introducing 5% errors with different repairability levels. In
Table 1,we report the average repairability of errors.Ahigher
repairability configuration involves mostly constraints with
master data and CFDs (if any) and contains errors for right-
hand sides of FDs, while a low repairability one mostly
involves left-hand side errors.We do not report quality results
for Doctors and IMDB since Llunatic is the only system
capable of handling these scenarios, either due to the variety
of dependencies or to the size of data. Results obtained by
Llunatic in these scenarios are in line with those discussed
below.

We begin with comparing the quality obtained by the dif-
ferent Llunatic cost managers (Fig.7a, e). For this task, we
choose theHospital scenario since it contains highly interact-
ing dependencies. As expected the Llunatic- FR- s10 cost
manager shows better result wrt Llunatic- FR- s1, espe-
cially for the Low Rep variant. The Llunatic- FR- s1- FO
cost manager shows good results only whenever the repair-
ing task is easy, while in harder cases the choice of repairing
always in a forward way is not appropriate.

In Fig. 7b–d, f–h, we compare Llunatic- FR- s1 to the
other systems. We notice that Llunatic produces repairs of
significantly higher quality with respect to those produced
by previous algorithms. Quality results for algorithms Min.

Cost, Sampling, and Vertex Cover are consistent with
those reported in [9], which also conducted a comparison
of these three algorithms on scenarios in which forward and
backward repairs were necessary.

It is not surprising that the F-measure for the Low Rep

variants are quite low. Consider, in fact, a relation R(A, B)

with FD A → B and a tuple R(a, 1); suppose the first cell
is changed to introduce an error, so that the tuple becomes
R(x, 1). There are many cases in which this error is not fixed
by repairing algorithms, since they choose to repair it for-
ward, thus missing the correct repair. In addition, even when
a backward repair is correctly identified, algorithms have no
clue about the right value for the A attribute and may do little
more than introducing a variable—a llun in our case—to fix

the violation. All of these cases contribute to lower precision
and recall.

The superior quality achieved by Llunatic variants can
be explained by first noticing that algorithms capable of
repairing both forward and backward obtained better results
than those that only perform forward repairs. Besides Llu-
natic, the other algorithms capable of backward repairs are
Holistic and Sampling. In particular, Llunatic’s chase algo-
rithm explores the space of repairs in a more systematic way,
and this explains its improvements in quality, especially in
harder scenarios. In light of this, the superior quality achieved
by the Llunatic variants, which clearly outperformed the
competitors, is a significant improvement.

The scalability experiment The second set of experiments
is aimed at testing scalability. In Fig. 7i–p, we compare
execution times (in seconds) for the various algorithms on
databases with different sizes. We started with a small sce-
nario, Hospital, with data that vary from 20k to 100k tuples,
to end up with a very large scenario, IMDB, with 20 million
tuples (note the logarithmic scale).

To begin, recall that Llunatic is the first disk-based
implementation of a data repairing algorithm. Therefore,
our implementation is a bit disfavored in the comparison
of execution times wrt to main memory tools. More specifi-
cally, when producing repairs, mainmemory algorithmsmay
aggressively use hash-based data structures to speed-up the
computation of repairs, at the cost of using more memory.
On the contrary, our algorithm uses SQL for accessing and
repairing data: updating a single cell (a very quick operation,
when it is performed in main memory) using the DBMS
requires to perform an UPDATE, and therefore, a SELECT
to locate the right tuple. This difference drastically affects the
execution time of a repair. Nevertheless, the Llunatic- FR-
s1 cost manager scales nicely and has better performance
than some of the main memory implementations, and in gen-
eral has execution times close to the faster main-memory
system, Holistic.

In Fig. 7j, the other three cost managers of Llunatic

are compared to each other. We noticed that the Llunatic-
FR- s1- SO variant has almost the same performance as the
Llunatic- FR- s1 variant (Fig. 7i) but, as discussed, it gives
in general worse quality results. In addition the system scales
almost linearly with respect to the different number of per-
mutations tested.

Comparing both quality and scalability results, we may
say that Llunatic- FR- S1 represents the best trade-off in
terms of quality and scalability for all the considered scenar-
ios. The same trend is also confirmed in the Hospital-Synth
and Tax experiments. Other algorithms do not allow to fine
tune this trade-off. To see an example, consider theSampling
algorithm: we noticed that taking 1000 samples instead of

123



Cleaning data with Llunatic 887

II. Quality (Metric 1)

IV. Cache Managers VI. User Inputs

0,0

0,2

0,4

0,6

0,8

1,0

High Rep Med Rep Low Rep

F
-M

ea
su

re

(b) Hospital 20K

0,0

0,2

0,4

0,6

0,8

1,0

High Rep Med Rep Low Rep

F-
M

ea
su

re

(a) Hospital 20K
M

in
M
ax

A
vg

M
in M
ax

A
vg

M
in

M
ax

A
vg

0,0

0,2

0,4

0,6

0,8

1,0

High Rep Med Rep Low Rep

F
-M

ea
su

re

(c) Bus 20K

0,0

0,2

0,4

0,6

0,8

1,0

High Rep Med Rep Low Rep

F
-M

ea
su

re

(d) Tax 20K

0

20

40

60

80

100

120

140

High Rep Med Rep Low Rep

# 
of

 n
od

es

(s) Hospital 20K

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10

# 
of

 n
od

es

(t) Hospital 20K High Rep

V. Chase Tree Size

III. Scalability (Execution times in sec)

0

5000

10000

15000

20000

100 400 700 1000

(m) Tax

0

5000

10000

15000

20000

100 400 700 1000

(n) Tax

0

500

1000

1500

2000

20 40 60 80 100

(j) Hospital

0

500

1000

1500

2000

20 40 60 80 100

(i) Hospital

0

3000

6000

9000

100 400 700 1000

(l) Hospital Synth

0

3000

6000

9000

100 400 700 1000

(k) Hospital Synth

0

2000

4000

6000

100 400 700 1000

(o) Doctors

10

100

1000

10000

100000

100 K

(p) IMDB

Llun-FR-s1

Holistic Min. Cost Sampling 500 Vertex Cover

Llun-FR-s10 Llun-FR-s50 Llun-FR-s1-FO

0

1000

2000

3000

4000

100 400 700 1000

(q) Hospital - Greedy Cache

0

3000

6000

9000

12000

15000

20 40 60 80 100

(r) Hospital - Lazy Cache

0,0

0,2

0,4

0,6

0,8

1,0

High Rep Med Rep Low Rep

F
-M

ea
su

re
(f) Hospital 20K

0,0

0,2

0,4

0,6

0,8

1,0

High Rep Med Rep Low Rep

F-
M

ea
su

re

(e) Hospital 20K

M
in

M
ax

A
vg M

in M
ax

A
vg

M
in

M
ax

A
vg

0,0

0,2

0,4

0,6

0,8

1,0

High Rep Med Rep Low Rep

F
-M

ea
su

re

(g) Bus 20K

0,0

0,2

0,4

0,6

0,8

1,0

High Rep Med Rep Low Rep

F
-M

ea
su

re

(h) Tax 20K

I. Quality (Metric 0.5)

10M 20M1M
(log scale)

(l
og

 s
ca

le
)

K K K K K K K K K K K K K K K K K K

K K K K

K K K K

K K K K K K K K

K K K KK

Fig. 7 Experimental results

500 doubles execution times, but it does not produce signif-
icant improvements in quality.

Even in scenarios with more complex dependencies like
Doctors, our system gives excellent results (Fig. 7o). Other
systems are not reported here since they were not able to
handle the kind of constraints used in this scenario.

Finally, in Fig. 7p we show the clear benefits that come
with a DBMS implementation wrt main memory ones, na-

mely the possibility of scaling up to large databases. While
previous works have reported results up to a few thousand
tuples, we were able to investigate the performance of the
system on databases of up to 20million tuples. In these cases,
execution times in the order of an hour can be considered as
a remarkable result, since no single-node system had been
able to achieve them before on problems of such exponential
complexity. None of the main memory systems was able to

123



888 F. Geerts et al.

Table 2 HoloClean F-Measure results with Metric-1

Hospital 20k Bus 20k Tax 20k

High Rep 0.95 0.86 0.76

Med Rep 0.83 0.62 0.71

Low Rep 0.79 0.38 0.64

execute scenarios with more than 1M tuples. Note that these
results about Llunatic were confirmed in a recent study
about the scalability of chase engines [5].

Comparison with ML cleaning We report the results for
HoloClean [47], a data cleaning system that takes as input
constraints together with other probabilistic signals, such
as cell co-occurrence, provenance information, and external
lookup dictionaries. To combine such information, it adopts
a probabilistic semantics to estimate the value of every noisy
cell in the dataset, together with a probability for the given
value of being correct.HoloClean does not compute repairs
according to our definition: Input constraints are not satis-
fied by the produced instances. However, it does improve the
quality of the instances and it is worth comparing its output
to Llunatic’s results.

In terms of Metric-1 results, Table 2 shows that Holo-
Clean is comparable to Llunatic in most cases. Notable
exceptions are Hospital in the Low Rep configuration,
where HoloCleacompiled into constantn does bet-
ter, and Bus scenarios, where Llunatic has better results.
To obtain the results of HoloClean, we manually tuned
its configuration parameters. More specifically, we used the
lowest not-failing value for “PruningTopK” on our 16GB
machine. Notice that our noisy instances are the expected
input for HoloClean as all errors are detectable. In terms
of execution times,HoloClean is amainmemory algorithm
and could not scale to large input instanceswith our scenarios
and machine configuration: Hospital failed with 60k and Tax
with 100k. For the 20k instances reported above, execution
times varied between 480 (Hospital–Low Rep) and 1055
seconds (Bus–High Rep).

The cache manager experiment In this experiment, we inves-
tigate the impact of our optimizations on the scalability of the
chase (Sect. 6). While in all previous experiments, we used
the single-step caching strategy, we report in Fig. 7q, r execu-
tion times for the Hospital dataset with the other two caching
strategies, the greedy and the lazy cache manager, respec-
tively. The charts show that the single-step cache represents
the best choice in terms of performance. This is explained
by the high degree of locality in our chase algorithm. When
chasing node s in the tree to generate its children, only cell
groups for step s are needed. Then, after we move from s
to its first child, s′, cell groups of s will not be needed for a
while.

The chase tree size and user input experiments Execution
times achieved by the algorithm can be considered as remark-
able for problems of this complexity. They are even more
surprising if we consider the size of the chase trees that our
algorithm computes, which may reach several hundreds of
nodes as reported in Fig. 7s. Consider also that each node in
the tree is a copy of the entire database.We notice that storing
chase trees as delta databases is crucial in order to achieve
scalability.Without such a representation system timeswould
be orders of magnitude higher.

We finish by mentioning Fig. 7t, in which we study the
impact of user inputs on the chase.We run the experiment for
20K tuples interactively and provided random user inputs by
alternating the change of a llun value with the rejection of a
leaf. It can be seen that small quantities of inputs from the
user may significantly prune the size of the chase tree and
therefore speed-up the computation of repairs.

9 Related work

There has been a host of work on data quality (see [37,48]
for recent surveys). It has been shown experimentally with
real datasets that methods inspired by different ideas must
all be used together in practice to achieve high quality [1].
Among methods based on statistical analysis, such as outlier
detection [15], and methods that rely on look up of external
dictionaries, such as knowledge bases [17], it stands out that
constraint-based methods are a necessary ingredient.

Several classes of constraints have been proposed to char-
acterize and improve the quality of data. Most relevant to
our work are the automated repairing algorithms for these
constraints. The methods differ in the constraints that they
admit, e.g., FDs [9], CFDs [18,41], inclusion dependencies
[11], editing rules [29], and in the underlying techniques
used to improve their effectiveness and efficiency, e.g., sta-
tistical inference [18], reliability of the data [29], and user
interaction [18,33,55]. Furthermore, update-based database
repairing has been considered in [53].

All of these methods work for a specific class of con-
straints only, with the exception of [30,34]. A flexible data
quality system was recently proposed [19] to allow user-
defined procedural code for detection and cleaning. The
work on active integrity constraints (see e.g., [13]) pro-
vides an alternative way of incorporating repair decisions in
constraints. They require, however, to explicitly state repair
actions. In our setting, these are implicit in the combination
of constraints and the preference labels. Including preference
labels in active integrity constraints may be feasible. More-
over, some form of active constraints may be included in our
framework (e.g., by encoding actions as preferred labels).

123



Cleaning data with Llunatic 889

Even more importantly, our system is the first disk-based
scalable and efficient repair-based method. While some of
the algorithms above have been rewritten to be executed in
a multi-node distributed environment, they are still bounded
by the memory size. For example, the holistic cleaning algo-
rithm [16] has been adapted to be executed on top of Spark
[39] in order to benefit from the bigger memory in the cluster.
Interestingly, our system can handle their cleaning scenarios
in a single-node setting. Table 3 summarizes the features of
Llunatic w.r.t. some earlier approaches to data repairing.
We leave out related data cleaning systems that do not com-
pute repairs [17,47,54].

Our scenarios are inspired by features fromother repairing
approaches: repairing based on both premise and conclusion
of constraints [9,18,41], cells [9,11,41], groups of cells [11],
partial orders [28] and its incorporation in the chase [8]. We
discuss these aspects in detail next.

With regards to forward and backward chasing, [9,18,41]
resolve violations by changing values for attributes in both
the premise and conclusion of constraints. They do, however,
only support a limited class of constraints. Previous works
[9,41] have used variables in order to repair the left-hand
side of dependencies. Our special llun values play a similar
role. Moreover, lluns together with labeled instances can be
seen as a kind of representation system [38] for repairs, that
stands in between the naive tables of data exchange and the
more expressive c-tables, trying to strike a balance between
complexity and expressibility.

An approach similar to ours has been proposed in [8], with
respect to a different cleaning problem. The authors concen-
trate on scenarios with matching dependencies and matching
functions, where the main goal is to merge together values
based on attribute similarities, and develop a chase-based
algorithm.They show that, under proper assumptions,match-
ing functions provide a partial order over database values and
that the partial order can be lifted to database instances and
repairs. A key component of their approach is the availabil-
ity of matching functions that are essentially total, i.e., they
are able to merge any two comparable values. In fact, the
problem they deal with can be seen as an instance of the
entity resolution problem. Further extensions of egds with,
e.g., built-in predicates and matching functions, are needed
to encode matching dependencies in our system, we leave
this to future work.

Finally, in this work we discussed how our system can
compute repairs with a smaller number of chase steps by
exploiting user interaction, a popular way to involve the
domain experts in improving data repairing [18,33,55].

Ta
bl
e
3

Fe
at
ur
e
co
m
pa
ri
so
n
fo
r
da
ta
re
pa
ir
in
g
sy
st
em

s

Sy
st
em

D
ep
en
de
nc
y
la
ng

ua
ge

R
ep
ai
r
st
ra
te
gy

V
al
ue

pr
ef
er
en
ce

So
lu
tio

n
se
le
ct
io
n

FD
s

C
FD

s
E
R
s

D
C
s

R
H
S

L
H
S

C
on
fid

.
C
ur
re
nc
y

M
as
te
r

C
os
t

C
er
ta
in

C
ar
d.

M
in

Sa
m
pl
in
g

[1
1]

√
√

√
√

√
[1
8]

√
√

√
√

√
√

√
[4
1]

√
√

√
√

√
[2
9]

√
√

√
√

[9
]

√
√

√
√

√
√

[1
9]

√
√

√
√

√
√

√
√

[1
6]

√
√

√
√

√
√

√
√

√
√

T
hi
s
ar
tic

le
√

√
√

√
(e
q.

on
ly
)

√
√

√
√

√
√

√
√

√
E
qu

al
ity

-g
en
er
at
in
g
de
pe
nd

en
ci
es

C
ha
se

Pa
rt
ia
lo

rd
er

C
os
tm

an
ag
er

123



890 F. Geerts et al.

10 Future directions of research

The framework developed in this paper has been used as a
basis for a number of extensions in data repairing. The seman-
tics has been extended to an end-to-end solution to deal with
schema-mapping problems in the presence of inconsisten-
cies [32]. It has also been used as a baseline for developing
an interactive approach to data repairing [33]. In this respect,
we believe that this work may provide the basis for further
investigation on data cleaning. In this section, we discuss
three directions of research, starting from our framework,
that we believe can lead to promising new insights.

10.1 Merge in entity resolution

Let us consider the merge problem in the context of entity
resolution [6] where data conflicts must be handled. It is for-
mulated as follows: we are given a set of records (tuples) Ie,
within the same schema, that correspond to a description of a
single real-world entity e. These recordsmayhave conflicting
values and the goal is to derive a single entity tuple te, with
the most accurate values for all attributes [12]. Master data
tuples may be used during the process. In entity resolution,
this task is also called the golden record problem [20].

We focus our discussion on a paper that tries to come up
with the golden record assuming the presence of a partial
order defined by accuracy rules [12]. While their algorithms
do not aim at repairing an arbitrary database instance that
is dirty w.r.t. a set of constraints, there are several points in
common with our approach. The authors develop a language
and algorithms with two goals in mind. First, their rules can
be used to declaratively specify a partial order among val-
ues. They can express that the value of cell 〈tid, A〉 is more
accurate than the value of a cell 〈tid′, B〉; this may happen,
for example, because they know that more recent values are
higher. Similarly to our ordering attributes, accuracy rules
can be used to infer accuracy relationships among attributes,
such as the value for attribute B is more accurate in those
tuples that have amore accurate attribute A. Second, the rules
can be used to update the entity tuple te based on master data
tuples, similarly to editing rules.

The authors develop algorithms to dynamically handle the
construction of the entity tuple while at the same time deriv-
ing the partial order of accuracy among attribute values. The
main concern here is about the termination and confluence
of the process, i.e., whether the algorithm terminates, and
whether it returns the same identical tuple regardless of the
order in which accuracy rules are fired. This cannot be guar-
anteed in all cases. While this is not a general-purpose data
repairing algorithm and it makes the strong assumption that
all tuples represent a single entity, we believe our notion of
partial order can be useful in such a “merge” setting.

The main benefit is that in our approach the partial order
is immune from termination problems as it never changes
during the chase. Our modeling clearly separates the defini-
tion of the partial order for preference levels and the creation
of the initial labeled instance, that is done once and for all
before the repair process starts. This separation, along with
the monotonicity property of cell groups, guarantees that our
chase procedure for cleaning scenarios always terminates.

Accuracy rules are a promising tool to tackle the merge
step.Despite the fact that our partial order is static, we believe
it would be useful to extend our solution to these scenarios
as our semantics guarantees the benefits of accuracy rules,
without the associated shortcomings.

10.2 Prioritized repairs

There have been proposals on how to choose among alterna-
tive repairs based on a notion of prioritized repairs [40,50] in
a context different from ours. While we focus on materializ-
ing one ormore preferred repairs bymeans of a general chase
procedure on a noisy database, their focus is on consistent
query answering over an inconsistent database. In this set-
ting, a consistent answer is the one obtained in every repair.
They introduce a priority relation between conflicting tuples
so that they can identify a set of preferred repairs. A pri-
oritized repair exploits user provided preferences on how
to solve conflicts (e.g., “remove the tuples with the smaller
salary”), similarly to what we allow with our partial order.

They give several notions of improvement that character-
ize when one repair is preferred to another. In one notion,
given two repairs, the first is preferred if every tuple exclu-
sively contained by the first repair is preferable to all those
exclusively contained by the second repair. If this is the
case, there is a global optimality. As this does not happen
in most cases, they relax the notion to other definitions, such
as the Pareto optimality: The first repair exclusively contains
a tuple that is better than all tuples exclusively contained in
the second repair according to the Pareto semantics. Other
variations have also been introduced. In general, they check
whether a repair can be improved by replacing a set of tuples
in the repairwith alternative preferred tuples from theoriginal
(inconsistent) instance, but the notions differ in the definition
of preference. In all these semantics, an optimal repair is a
repair that cannot be improved.

Our partial order has points of contact with their notions
of preference and is worth studying how our proposal can be
extended to these notions. Prioritized repairs rely on prefer-
ence orders that are specified over tuples and lift them to sets
of tuples. On the contrary, we specify preference orders over
preference levels and lift them to sets of preference labels and
upgrades. This finer granularity of our approach makes our
notion of an upgrade different from their notions of prefer-
able repairs. However, merging these two approaches is not

123



Cleaning data with Llunatic 891

trivial. Prioritized repairs consider subset repairs (i.e., tuple
deletions only) and are formalized with denial constraints
with no constants. While our egds can be extended to capture
arbitrary denial constraints, the update primitives treated in
prioritized repairs are considerably different from the ones
we use (cell updates, and no deletions). These differences
are such that there is the need for more studies to bridge our
approach and prioritized repairs.

10.3 Distributed and interactive chase

In order to scale to large datasets, memory-based algorithms
for some data repairing systems have been extended to a
distributed platform [39]. While our system is able to exe-
cute such scenarios on a single node, the execution times
are slower compared to a distributed system and it makes
sense to extend our solution to such setting to improve effi-
ciency. Unfortunately, while there are several chase engines
available [5], there are no distributed implementations. To
design such a distributed implementation is challenging.
Indeed, dependencies may interact with each other and a par-
allel/distributed chase needs to ensure that these interactions
are all taken into account. Furthermore, to ensure correctness
of the chase while minimizing communication cost among
the different nodes is an open problem. It is even a hard prob-
lem for error detection [27], let alone for repairing. We leave
the development of such a distributed chase algorithm as an
interesting direction for future research.

An orthogonal direction in terms of chase implementation
is to push our repair/chase algorithm directly into the DBMS.
Executing the chase by means of SQL scripts only has been
done for source to target egds [44]. However, because of egd
interactions and the cumulative effects of their enforcement,
the logic to enforce chase steps is not modeled naturally with
database primitives. As discussed in a recent experimental
comparison of existing chase engines [5], our implementa-
tion is the first disk-based solution and can be seen as a first
step toward in-DB approach for chasing.

Another direction for future work is to improve the user
involvement. An iterative cleaning repair process leads to a
better understanding of the dataset at hand for the user. It is
natural to expect the original dependencies to change over
time while examining the errors. Existing proposals studied
how to decide between repairing data or constraints when
users do data changes [14,36,51], but our system has specific
opportunities that can be exploited. Specifically, new depen-
dencies can trigger the reuse of previous user interactions,
such as resolution of llun values, and the backtracking of
previous (heuristic) decisions taken in the chase tree. New
algorithms are needed to optimize this iterative loop.

A final direction to improve the system is to support pro-
cedural rules, possibly expressed as user-defined functions
(UDFs). Support for UDF-based decisions could in principle

be encoded by means of an abstract function, similar to our
User function, that takes a set of preference labels as input
and returns the output value of the UDF. In terms of chase,
this would require a new kind of chase step.

11 Conclusions

In this paper, we develop a DBMS-based, single-node, flex-
ible repairing framework called Llunatic. Underlying the
framework are: (i) labeled instances, encoding values and
preference information; (ii) a revision of the notions of repair
and the chase on such labeled instances, where the preference
information is used to resolve conflicts; and (iii) the use of
a large class of constraints, i.e., constant and variable egds,
which capture a variety of commonly used data quality con-
straint formalisms. In addition, we provide support for user
interaction and various fine-grained ways of controlling the
chase process by means of a cost manager. We developed a
number of optimization techniques allowing us to implement
the computation of repairs within a disk-based scalable chase
engine. To our knowledge, Llunatic is the only framework
able to scale data repairing over millions of tuples in a single-
node environment.

Funding PaoloPapotti has beenpartially supportedbyAgenceNationale
de la Recherche (Grant No. ANR-18-CE23-0019).

References

1. Abedjan, Z., Chu, X., Deng, D., Fernandez, R.C., Ilyas, I.F., Ouz-
zani, M., Papotti, P., Stonebraker, M., Tang, N.: Detecting data
errors: Where are we and what needs to be done? PVLDB 9(12),
993–1004 (2016)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases.
Addison-Wesley, Boston (1995)

3. Arocena, P.C., Glavic, B., Mecca, G., Miller, R.J., Papotti, P., San-
toro, D.: Messing up with BART: error generation for evaluating
data-cleaning algorithms. PVLDB 9(2), 36–47 (2015)

4. Beeri, C., Vardi, M.: A proof procedure for data dependencies. J.
ACM 31(4), 718–741 (1984)

5. Benedikt, M., Konstantinidis, G., Mecca, G., Motik, B., Papotti,
P., Santoro, D., Tsamoura, E.: Benchmarking the chase. In: PODS,
pp. 37–52 (2017)

6. Benjelloun, O., Garcia-Molina, H.,Menestrina, D., Su, Q.,Whang,
S.E., Widom, J.: Swoosh: a generic approach to entity resolution.
VLDB J. 18(1), 255–276 (2009)

7. Bertossi, L.: Database Repairing and Consistent QueryAnswering.
Morgan & Claypool, San Rafael (2011)

8. Bertossi, L., Kolahi, S., Lakshmanan, L.: Data cleaning and query
answering with matching dependencies and matching functions.
In: ICDT, pp. 268–279 (2011)

9. Beskales, G., Ilyas, I.F., Golab, L.: Sampling the repairs of func-
tional dependency violations under hard constraints. PVLDB 3,
197–207 (2010)

10. Bleifuß, T., Kruse, S., Naumann, F.: Efficient denial constraint dis-
covery with Hydra. Proc. VLDB Endow. 11(3), 311–323 (2017)

123



892 F. Geerts et al.

11. Bohannon, P., Flaster,M., Fan,W., Rastogi, R.: A cost-basedmodel
and effective heuristic for repairing constraints by value modifica-
tion. In: SIGMOD, pp. 143–154 (2005)

12. Cao, Y., Fan, W., Yu, W.: Determining the relative accuracy of
attributes. In: SIGMOD, pp. 565–576 (2013)

13. Caroprese, L., Greco, S., Zumpano, E.: Active integrity constraints
for database consistency maintenance. IEEE Trans. Knowl. Data
Eng. 21(7), 1042–1058 (2009)

14. Chiang, F., Miller, R.J.: A unified model for data and constraint
repair. In: ICDE (2011)

15. Chu,X., Ilyas, I.F.,Krishnan, S.,Wang, J.:Data cleaning:Overview
and emerging challenges. In: SIGMOD, pp. 2201–2206 (2016)

16. Chu, X., Ilyas, I.F., Papotti, P.: Holistic data cleaning: putting vio-
lations into context. In: ICDE, pp. 458–469 (2013)

17. Chu, X., Morcos, J., Ilyas, I.F., Ouzzani, M., Papotti, P., Tang, N.,
Ye, Y.: KATARA: A data cleaning system powered by knowledge
bases and crowdsourcing. In: SIGMOD, pp. 1247–1261 (2015)

18. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data qual-
ity: consistency and accuracy. In: VLDB, pp. 315–326 (2007)

19. Dallachiesa,M., Ebaid,A., Eldawy,A., Elmagarmid,A.K., Ilyas, I.,
Ouzzani,M., Tang, N.: Nadeef: a commodity data cleaning system.
In: SIGMOD, pp. 541–552 (2013)

20. Deng, D., Tao, W., Abedjan, Z., Elmagarmid, A.K., Ilyas, I.F.,
Madden, S., Ouzzani, M., Stonebraker, M., Tang, N.: Entity con-
solidation: the golden record problem. CoRR arXiv:1709.10436
(2017)

21. Experian: White paper: The data quality benchmark report (2015)
22. Fagin, R., Kolaitis, P., Miller, R., Popa, L.: Data exchange: seman-

tics and query answering. TCS 336(1), 89–124 (2005)
23. Fan, W., Gao, H., Jia, X., Li, J., Ma, S.: Dynamic constraints for

record matching. VLDB J. 20(4), 495–520 (2011)
24. Fan, W., Geerts, F.: Foundations of Data Quality Management.

Morgan & Claypool, San Rafael (2012)
25. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional

functional dependencies for capturing data inconsistencies. ACM
TODS 33, 6 (2008)

26. Fan, W., Geerts, F., Li, J., Xiong, M.: Discovering conditional
functional dependencies. IEEE Trans. Knowl. Data Eng. 23(5),
683–698 (2011)

27. Fan, W., Geerts, F., Ma, S., Müller, H.: Detecting inconsistencies
in distributed data. In: Proceedings of the 26th International Con-
ference on Data Engineering, ICDE, pp. 64–75 (2010)

28. Fan, W., Geerts, F., Wijsen, J.: Determining the currency of data.
In: PODS, pp. 71–82 (2011)

29. Fan, W., Li, J., Ma, S., Tang, N., Yu, W.: Towards certain fixes with
editing rules and master data. PVLDB 3(1), 173–184 (2010)

30. Fan,W., Li, J., Ma, S., Tang, N., Yu,W.: Interaction between record
matching and data repairing. In: SIGMOD, pp. 469–480 (2011)

31. Geerts, F., Mecca, G., Papotti, P., Santoro, D.: The llunatic data-
cleaning framework. PVLDB 6(9), 625–636 (2013)

32. Geerts, F., Mecca, G., Papotti, P., Santoro, D.: Mapping and clean-
ing. In: ICDE, pp. 232–243 (2014)

33. He, J., Veltri, E., Santoro, D., Li, G., Mecca, G., Papotti, P., Tang,
N.: Interactive and deterministic data cleaning. In: SIGMOD, pp.
893–907 (2016)

34. Hernández, M., Koutrika, G., Krishnamurthy, R., Popa, L., Wis-
nesky, R.: Hil: a high-level scripting language for entity integration.
In: EDBT, pp. 549–560 (2013)

35. Huhtala, Y., Kärkkäinen, J., Pasi Porkka, P., Toivonen, H.: TANE:
an efficient algorithm for discovering functional and approximate
dependencies. Comput. J. 42(2), 100–111 (1999)

36. Ilyas, I.F.: Effective data cleaningwith continuous evaluation. IEEE
Data Eng. Bull. 39(2), 38–46 (2016)

37. Ilyas, I.F., Chu, X.: Trends in cleaning relational data: consistency
and deduplication. Found. Trends Databases 5(4), 281–393 (2015)

38. Imieliński, T., Lipski, W.: Incomplete information in relational
databases. J. ACM 31(4), 761–791 (1984)

39. Khayyat, Z., Ilyas, I.F., Jindal, A., Madden, S., Ouzzani, M.,
Papotti, P., Quiané-Ruiz, J., Tang, N., Yin, S.: Bigdansing: a system
for big data cleansing. In: SIGMOD, pp. 1215–1230 (2015)

40. Kimelfeld, B., Livshits, E., Peterfreund, L.: Detecting ambiguity
in prioritized database repairing. In: ICDT, pp. 17:1–17:20 (2017)

41. Kolahi, S., Lakshmanan, L.V.S.: On approximating optimum
repairs for functional dependency violations. In: ICDT, pp. 53–62
(2009)

42. Koudas,N., Saha,A., Srivastava,D.,Venkatasubramanian, S.:Met-
ric functional dependencies. In: ICDE, pp. 1275–1278 (2009)

43. Loshin, D.: Master Data Management. Knowl. Integrity, Inc.,
Washington, DC (2009)

44. Marnette, B., Mecca, G., Papotti, P., Raunich, S., Santoro, D.:
++Spicy: an opensource tool for second-generation schema map-
ping and data exchange. PVLDB 4(12), 1438–1441 (2011)

45. Papenbrock, T., Naumann, F.: A hybrid approach to functional
dependency discovery. In: SIGMOD, pp. 821–833 (2016)

46. Rammelaere, J., Geerts, F.: Revisiting conditional functional
dependency discovery: splitting the “c” from the “fd”. In:
ECML/PKDD, pp. 552–568 (2018)

47. Rekatsinas, T., Chu, X., Ilyas, I.F., Ré, C.: Holoclean: holistic data
repairs with probabilistic inference. PVLDB 10(11), 1190–1201
(2017)

48. Saha, B., Srivastava, D.: Data quality: the other face of big data.
In: ICDE, pp. 1294–1297 (2014)

49. Song, S., Chen, L.: Differential dependencies: reasoning and dis-
covery. ACM Trans. Database Syst. 36(3), 16 (2011)

50. Staworko, S., Chomicki, J., Marcinkowski, J.: Prioritized repairing
and consistent query answering in relational databases. Ann.Math.
Artif. Intell. 64(2–3), 209–246 (2012)

51. Volkovs, M., Chiang, F., Szlichta, J., Miller, R.J.: Continuous data
cleaning. In: ICDE (2014)

52. Wang, J., Tang, N.: Towards dependable data repairing with fixing
rules. In: SIGMOD (2014)

53. Wijsen, J.:Database repairing using updates.ACMTrans.Database
Syst. 30(3), 722–768 (2005)

54. Yakout, M., Berti-Équille, L., Elmagarmid, A.K.: Don’t be scared:
use scalable automatic repairing with maximal likelihood and
bounded changes. In: SIGMOD, pp. 553–564 (2013)

55. Yakout, M., Elmagarmid, A.K., Neville, J., Ouzzani, M., Ilyas, I.F.:
Guided data repair. PVLDB 4(5), 279–289 (2011)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1709.10436

	Cleaning data with Llunatic
	Abstract
	1 Introduction
	2 Preliminaries
	3 Llunatic: finding repairs using the chase
	3.1 The standard chase
	3.2 Avoiding failure by conflict resolution
	3.3 Supporting constant egds
	3.4 Backward repairing
	3.5 User repairs

	4 The formalization underlying Llunatic
	4.1 Labeled instances
	4.2 Satisfaction of egds for labeled instances
	4.3 User functions
	4.4 Upgrades and repairs
	4.5 Partial order specification

	5 The Llunatic chase
	5.1 Chase steps
	5.2 The Llunatic chase and its properties
	5.3 Llunatic in action

	6 Implementing the chase
	6.1 Chasing on top of a DBMS
	6.2 Cost manager

	7 Comparison to other semantics
	8 Experiments
	9 Related work
	10 Future directions of research
	10.1 Merge in entity resolution
	10.2 Prioritized repairs
	10.3 Distributed and interactive chase

	11 Conclusions
	References




