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Abstract

Many modern applications produce massive streams of data series that need to be analyzed, requiring efficient similarity search
operations. However, the state-of-the-art data series indexes that are used for this purpose do not scale well for massive datasets
in terms of performance, or storage costs. We pinpoint the problem to the fact that existing summarizations of data series used
for indexing cannot be sorted while keeping similar data series close to each other in the sorted order. To address this problem,
we present Coconut, the first data series index based on sortable summarizations and the first efficient solution for indexing
and querying streaming series. The first innovation in Coconut is an inverted, sortable data series summarization that organizes
data series based on a z-order curve, keeping similar series close to each other in the sorted order. As a result, Coconut is
able to use bulk loading and updating techniques that rely on sorting to quickly build and maintain a contiguous index using
large sequential disk I/Os. We then explore prefix-based and median-based splitting policies for bottom-up bulk loading,
showing that median-based splitting outperforms the state of the art, ensuring that all nodes are densely populated. Finally,
we explore the impact of sortable summarizations on variable-sized window queries, showing that they can be supported in
the presence of updates through efficient merging of temporal partitions. Overall, we show analytically and empirically that
Coconut dominates the state-of-the-art data series indexes in terms of construction speed, query speed, and storage costs.
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1 Introduction

Many scientific and business applications today produce
massive collections and streams of data series! and need to
analyze them, requiring the efficient execution of similar-
ity search, or nearest neighbor operations, over either the
entire dataset or variable-sized windows of the incoming
data. Example applications range across the domains of audio
[21], images [73], finance [64], telecommunications [40,50],
environmental monitoring [62], scientific data [1,18,38], and
others.

As the price of digital storage continues to plummet, the
volume of data series collections grows, driving the need for
the development of efficient sequence management systems
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[46,48,78]. For the specific problem of sequence similarity
search, searching for a nearest neighbor by traversing the
entire dataset for every query quickly becomes intractable as
the dataset size increases. Consequently, multiple data series
indexing techniques have been proposed over the past decade
to organize data series based on similarity [13,47]. The state-
of-the-art approach is to index data series based on smaller
summarizations that approximate the distances among data
series. This enables pruning large parts of the dataset that are
guaranteed to not contain the nearest neighbor, and thereby
these indexes significantly improve query speed.

Large data series collections and indexes that span hun-
dreds of gigabytes to terabytes [1,51,67] must reside in slow
secondary storage devices for cost-effectiveness. This poses
a set of challenges for data series indexes. (1) They must
support construction, updates, and queries using I/O efficient
access patterns. (2) They must take up as little storage space
as possible to be cost-effective and to minimize the physical
space that queries traverse. (3) They must utilize the limited
I/0 bandwidth effectively by narrowing a query’s search not
only spatially but also temporally to the window size that is
most appropriate for a given application.

Unsortable Summarizations In this paper, we show that the
state-of-the-art data series indexes are designed in a manner
that prevents them from meeting the above challenges. We
pinpoint the problem to the fact that the summarizations,
used as keys by data series indexes, are unsortable. Existing
summarizations [9,34] partition and tokenize data series into
multiple (independent) segments that are laid out in the sum-
marized representation based on their original order within
the data series; thus, sorting based on these summarizations
would place together data series that are similar in terms of
their beginning, i.e., the first segment, yet arbitrarily far in
terms of the rest of the segments.” Hence, existing summa-
rizations cannot be sorted while keeping similar data series
next to each other in the sorted order. This leads to the fol-
lowing two problems.

Problem 1: Top-Down Insertions The first problem is that
traditional algorithms for efficiently bulk loading and updat-
ing a database index cannot be used because they rely on
being able to sort the data. Instead, state-of-the-art data series
indexes perform bulk loading and update using top-down in-
place insertions and splitting nodes as they fill up [8,47,76].
This approach leads to many small random I/Os to secondary
storage that slow down both construction speed and updating
during runtime. Moreover, the resulting nodes (after many
splits) are non-contiguous in storage, meaning that querying
also involves many slow random I/Os.

Relying on top-down insertions also prevents data-series
indexes from being able to temporally partition the data to

2 This is analogous to sorting points in a multi-dimensional space based
on one dimension.
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enable efficient queries over variable-sized windows. The
reason is that batched updates are periodically applied to
the complete data structure through in-place split opera-
tions. While this choice facilitates queries that touch the
entire history of the data, the absence of temporal parti-
tioning penalizes queries that need to touch smaller parts
of the history. Moreover, no matter the window size, pend-
ing updates are always applied in an inefficient manner, as
existing indexes do not support merge-sort operations. While
various solutions [7,8] have been proposed to partition pend-
ing updates to touch independent subsets of the index, still
all temporal partitions are merged using top-down insertions,
which are prohibitively expensive.

Problem 2: Prefix-Based Node-Splitting The second prob-
lem is that it is not possible to sort and thereby split data
series evenly across nodes (i.e., using the median value as a
splitting point). Instead, state-of-the-art data series indexes
divide data series across nodes based on common prefixes
across all segments. As a result, it is impossible for entries
that do not share a common prefix in one or more of the seg-
ments to reside in the same node. We show that this leads
to most nodes being nearly empty (i.e., their fill factor is
low, which translates to an increased number of leaves). This
slows down query speed and amplifies storage costs.

Our Solution: Sortable Summarizations and Coconut To
address these problems, we show how to transform exist-
ing data series summarizations into sortable summarizations.
The core idea is interweaving the bits that represent the dif-
ferent segments, such that the more significant bits across
all segments precede all less significant bits. As a result, we
describe the first technique for sorting data series based on
their summarizations: The series are positioned on a z-order
curve [41], in a way that similar data series are close to each
other.

Moreover, we show that indexing based on sortable sum-
marizations has the same ability as existing summarizations
to prune parts of the index that do not contain the near-
est neighbor, while it offers three additional benefits: It
enables (i) efficiently bulk loading and updating the index,
(i) packing data series more densely into nodes, and (iii) effi-
cient merging of temporal partitions to allow variable-sized
window queries. Furthermore, we show that using sortable
summarizations enables data series indexes to leverage a
wide range of indexing infrastructure.

We further introduce the Compact and Contiguous Seque-
nce Infrastructure (Coconut). Coconut is a novel data series
indexing infrastructure that organizes data series based on
sortable summarizations. It supports bulk loading techniques
and log-structured updates to enable maintaining a contigu-
ous index. This eliminates random I/O during construction,
updating and querying. Furthermore, Coconut is able to split
data series across nodes by sorting them and using the median
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value as a splitting point, leading to data series being packed
more densely into leaf nodes (i.e., at least half full).

In order to study the design space and isolate the impact
of the different design decisions, we first introduce two vari-
ants: Coconut-Trie and Coconut-Tree, which split data series
across nodes based on common prefixes and median values,
respectively. We show that Coconut-Trie dominates the state
of the art in terms of query speed because it creates contigu-
ous leaves. We further show that Coconut-Tree dominates
Coconut-Trie and the state of the art in terms of construc-
tion speed, query speed, and storage overheads because it
creates a contiguous, balanced index that is also densely pop-
ulated. We then introduce Coconut-LSM to support efficient
log-structured updates and variable-size window queries over
different windows of the data based on recency. Overall, we
show across a wide range of workloads and datasets that
Coconut-Tree improves both construction speed and storage
overheads by one order of magnitude and query speed by two
orders of magnitude relative to the state of the art. We further
show that Coconut-LSM supports updates without degrad-
ing query throughput and that it is able to narrow the search
scope temporally. This improves query throughput by a fur-
ther 2-3 orders of magnitudes in our experiments for queries
over recent data.

Our contributions are summarized as follows.

We show that existing data series summarizations can-
not be sorted in a straightforward way. Consequently,
state-of-the-art data series indexes cannot efficiently bulk
load and pack data densely into nodes, leading to large
storage overheads and performance bottlenecks for both
index construction and query answering, when dealing
with very large data series collections.

— We introduce a sortable data series summarization that
keeps similar data series close to each other in the sorted
order, and preserves the same pruning power as existing
summarizations. We show how sortability enables new
design choices for data series indexes, thereby opening
up infrastructure possibilities that were not possible in
the past.

— We introduce Coconut-Trie that exploits sortable summa-
rizations for prefix-based bulk loading of existing state-
of-the-art indexes, leading to improvements at querying
time performance.

— We present Coconut-Tree, which employs median-based
bulk loading to quickly build the index and to restrict
space amplification, by enabling entries that do not share
a common prefix to be in the same node.

— We introduce Coconut-LSM to enable efficient similarity
search over variable-sized windows in the presence of
updates.

— Our experimental evaluation with a variety of synthetic

and real datasets demonstrates that Coconut-Tree and

Coconut-LSM strictly dominate existing state-of-the-art
indexes in terms of both construction speed and storage
overheads by one order of magnitude, and query speed by
two orders of magnitude. We further show that Coconut-
LSM dominates the state of the art by orders of magnitude
in the presence of insertions for queries over recent data.

A preliminary version of this paper has appeared in VLDB
[28]. This version extends the previous one by introducing
Coconut-LSM for efficient similarity search in the pres-
ence of updates, and presents the first efficient solution for
indexing and querying streaming sets, along with the corre-
sponding experiments. We have also developed a system that
implements the ideas described in this paper [29].

2 Preliminaries and related work

Data Series Measuring data that fluctuate over a dimension
is a very frequent scenario in a large variety of domains
and applications. Such data are commonly called data series
or sequences. The dimension over which they fluctuate can
range from time, angle or position to any other dimension.
They can be measured at either fixed or variable intervals.

Definition 1 Formally, a data series s = {ry,...,r,} is
defined as an ordered set of recordings, where each r; =<
pi, v; > describes a value v; corresponding to a position p;.

Nearest Neighbor Search Analysts perform a wide range
of data mining tasks on data series including clustering
[27,33,56,63], classification and deviation detection [11,65],
frequent pattern mining [16,43], and more. Existing algo-
rithms for executing these tasks rely on performing fast
similarity search across the different data series. Thus, effi-
ciently processing nearest neighbor (NN) queries are crucial
for speeding up the aforementioned tasks. NN queries are
formally defined as follows.

Definition 2 Given a set of data series S C S, where S is the
set of all possible data series, a query data series s, € S and
a distance function d(e, ®) : S X S — R, a nearest neighbor
query is defined as:

nnge,e)(Sq,S) =s; €8 :d(s;,sq) <d(sj,sq)Vsj #s; €8S.

Common distance metrics for comparing data series
include Euclidean Distance (ED) and dynamic time warping
(DTW). While DTW is better for most data mining tasks,
the error rate using ED converges to that of DTW as the
dataset size grows [60,66,70]. Therefore, data series indexes
for massive datasets use ED as a distance metric [65,66,74—
76], though simple modifications can be applied to make
them compatible with DTW [23,66]. Euclidean distance is
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computed as the sum of distances between pairs of aligned
points in sequences of the same length, where normalizing
the sequences for alignment and length is a pre-processing
step [65,66,74-76]. In all cases, data are z-normalized by
subtracting the mean and dividing by the standard deviation
(note that minimizing ED on z-normalized data is equivalent
to maximizing their Pearson’s correlation coefficient [44]).
Brute-Force Search The brute-force approach for evaluat-
ing nearest neighbor queries is by performing a sequential
pass over the complete dataset.> However, as data series
collections grow to terabytes [1,51,67], scanning the com-
plete dataset becomes performance bottleneck taking hours
or more to complete. This is especially problematic in
exploratory search scenarios, where batch execution of
queries is impossible because the next query depends on the
results of previous queries.

Data Series Summarizations To mitigate this problem, vari-
ous dimensionality reduction techniques have been proposed
to transform data series into summarizations that enable
approximating and lower bounding the distance between
any two data series. Examples include generic Discrete
Fourier transforms (DFT) [3,14,53,54], piecewise linear
approximation (PLA) [25], singular value decomposition
(SVD) [30,61], discrete Haar wavelet transforms (DHWT)
[10,22], PCA), and adaptive piecewise consant approxima-
tion (APCA) [9], as well as data series specific techniques
such as piecewise aggregate approximation (PAA) [26], sym-
bolic aggregate approximation (SAX) [35] and the indexable
symbolic aggregate approximation (iSAX) [7,66]. These
smaller summarizations can be scanned and filtered [22,32],
or indexed and pruned [5,17,36,37,52,65,66,69,71,72,74—
76] to avoid accessing parts of the data that do not contain
the nearest neighbor.

Clustering Approaches Various clustering algorithms have
been proposed for data series [24,33], and such approaches
can be used to facilitate nearest neighbor search. The gen-
eral approach involves adapting distance measure between
data series and using a clustering algorithm on top (e.g., K-
means [39], K-shape [49], agglomerative [24], etc.). Such
algorithms require multiple passes over the data to build
(e.g., to measure distances between all pairs of points as
in agglomerative clustering, or to iteratively refine clusters
with K-means). As a result, construction can take a very long
time. In contrast, we focus on approaches based on indexable
summarizations that are designed to lead to fast index con-
struction, and thereby shorten the indexing-to-query time.

3 Note that recent state-of-the-art serial scan algorithms [42,55] are
only efficient for scenarios that involve nearest neighbor operations
of a short query subsequence against a very long data series. On the
contrary, in this work, we are interested in finding similarities in very
large collections of short sequences.
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Fig.1 Example PAA and SAX summarizations

Data Series Indexing with SAX We now discuss the state
of the art in data series indexing. We concentrate on SAX
summarizations [35,66], which have been shown to outper-
form other summarizations in terms of pruning power using
the same amount of bytes [77]. We illustrate the construction
of a SAX summarization in Fig. 1.

SAX first partitions the data series in equal-sized seg-
ments, and for each segment, it computes its average value.
This is essentially a PAA summarization and can be seen in
Fig. I(middle). In a second step, it discretizes the value space
by partitioning it in regions, whose size follows the normal
distribution. As aresult, we have more regions corresponding
to values close to 0 and less regions for the more extreme val-
ues (this leads to an approximately equal distribution of the
raw data series values across the regions, since extreme val-
ues are less frequent than values close to 0 for z-normalized
series). A bit code (or a symbol) is then assigned to every
region. The data series is then summarized by the sequence
of symbols of the regions in which each PAA value falls.

In the example in Fig. 1, the data series S; becomes “fcfd.”
This lossy representation requires much less space (typically
in the order of 1%) and reduces the number of dimensions
from the number of points in the original series to the number
of segments in the summarization (four in Fig. 1).

Data series indexes based on SAX rely on a multi-
resolution indexable SAX representation (iSAX) [65,66]
whereby every node corresponds to a common SAX prefix
from across all segments. When a node fills up, the seg-
ment whose next unprefixed digit divides the resident data
series most is selected for splitting the data series across two
new nodes. iSAX 2.0 [7] and iSAX 2+ [8] are variants that
improve construction speed by storing all internal nodes in
main memory and buffering access to leaf nodes. ADS [74—
76] represents the state-of-the-art method and builds on these
ideas by constructing an index based on the summarizations;
the method then incorporates the raw data series into the
index adaptively during query processing.

These indexes all share the following four performance
problems. (1) If main memory is small relative to the raw data
size, they incur many random I/Os due to swapping and early
flushing of buffers. This significantly elongates construction
time and updates for massive datasets. (2) The resulting leaf
nodes after many splits are non-contiguous in secondary stor-
age and therefore require many slow random I/Os to query.
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Fig.2 Sorting iSAX summarizations

(3) Temporal partitioning to enable window queries over
recent data cannot be performed efficiently, because different
temporal partitions cannot be easily merged. This operation
requires top-down entry-by-entry insertions, which lead to
many small random I/Os. (4) Data series that do not share
common prefixes cannot reside in the same node, and so the
leaf nodes in these indexes are in practice sparsely populated.
This leads to significant storage overheads and slows down
queries as they must traverse a greater physical area to access
the same data.

Our work follows the same high-level idea of index-
ing the data series based on a smaller summarization to
enable pruning, though our work is the first to use sortable
summarizations to speed up index construction, updating,
and querying and to restrict storage space. In all previous
work, the index is constructed and maintained through top-
down insertions that lead to many slow random I/Os and
to a sparsely populated, non-contiguous and unbalanced
index. Our work is the first to use fast bottom-up bulk
loading, log-structured updates, and median-based splitting
to efficiently build and maintain a contiguous, balanced,
and densely populated index. Note that our infrastructure
can be used in conjunction with any summarization that
represents a sequence as a multi-dimensional point, and
so it is compatible with all main-stream summarizations
[3,7,9,10,14,22,25,30,53,54,61,66].

3 Problem: unsortable summarizations

In this section, we describe why existing data series summa-
rizations are not sortable, and we discuss the implications on
index design, performance, and storage overheads.

Sorting summarizations Figure 2 gives an example of sort-
ing data series based on SAX summarizations. There are four
different data series with corresponding 2-character SAX
words*: S1 =ec, S =ee, S3 = fc,and S4 = ge. Observe
that S; is most similar to S3, while S, is most similar to
S4 (apart from small differences in the first segments). Sort-
ing these summarizations lexicographically gives the order
S1, 82, 83, S4: The data series that are most similar to each

4 Note that SAX words are typically longer to enable more precision;
we use 2-character SAX words in this example for ease of exposition.

other are not placed next to each other in the sorted order.
The reason is that existing summarizations lay out the seg-
ment representations sequentially, one by one. Sorting based
on such a representation would place next to each other data
series that are similar in terms of their first segment, yet arbi-
trarily dissimilar in terms of the rest of the segments. As a
result, an index that is built by sorting data series based on
existing summarizations would degenerate to scanning the
full dataset for each query and would defeat the point of
having an index.

It is important to note that even though we use SAX, the
same observations hold for all other main-stream summariza-
tions (discussed in Sect. 2). This is because they all represent
data series as multi-dimensional points. As a result, they still
suffer from the problem of poor lexicographical ordering,
where sorting is based on arbitrarily ordering dimensions.
SAX was chosen in our work, since it has been shown to out-
perform other approaches in terms of quality [77] and index
performance [7,8,74].

We next discuss how existing data series indexes over-
come the inability to sort summarizations, and we analyze
the impact on performance and storage overheads.

3.1 Top-down insertions

The standard approach for bulk loading a database index
(e.g., a B-Tree) relies on external sorting. This approach
cannot be used with existing data series summarizations,
because they are not sortable. Instead, state-of-the-art data
series indexes perform top-down insertions [8,69,76]. Here
we analyze and compare their implications on performance
and storage overheads. We analyze them in the disk access
model [2], which measures the runtime of an algorithm in
terms of disk blocks transferred between main memory and
secondary storage. The terms we use are in Table 1.

The Current Approach: Top-Down Insertions Data series
indexes are built and maintained using top-down insertions:
Each data series is inserted through the root node and trickles
down to the appropriate leaf node [65,66]. Since the internal
nodes are maintained in memory [7,8], every top-down inser-
tion involves at most three I/Os: one to read the appropriate
leaf node, one to update it, and one to create a new leaf node
in case the first one splits. The cost per insertion is therefore
at most 0(1) I/0, and so the cost of index construction is at
most O(N) I/0s. As new leaf nodes are allocated wherever
there is space on disk, adjacent nodes in the logical space are
not necessarily continuous in storage.

State-of-the-art data series indexes strive to reduce con-
struction cost by buffering insertions in main memory before
flushing them to storage. This process is illustrated in Fig. 3
for the iSAX 2.0 index. The new series to be inserted, S;,
is translated to the iSAX word (10 10 11). At the first level
of the tree, data are split based on the first bit at each of the
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Table 1 Table of terms

Term Definition
N Total number of data series
B Number of data series that fit into one disk block
M Number of data series that fit into main memory
Si= '
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Fig.3 Indexing using iSAX 2.0

segments. As a result, S; is buffered as a part of the (1 1 1)
subtree. In our example, all the buffers are full and so the
new insertion causes them to flush and get consolidated with
corresponding leafs in storage. During this operation, when
a leaf node runs out of capacity, it creates two new children
by increasing the number of bits used to represent one of
the segments and divides the data series between them (we
discuss this process in detail in Sect. 3.2). The right side of
Fig. 3 shows an example where node (0 0 0) splits into two
new nodes, (0 00 0) and (0 01 0). The new leafs are allo-
cated with free space to be able to absorb new insertions.
With ample spatial locality in the insertion pattern, multiple
entries in the buffer map onto a small set of % leaf nodes.
Since the buffer flushes & times during index construction,
the best-case construction cost with buffering is - % € 0(%)
I/0. With little spatial locality, however, each entry from the
buffer maps onto a different leaf node, thereby leading to a
cost of M - % € O(N) /O, the same as without buffering.
Hence, buffering cannot in general alleviate the high index
construction cost of top-down insertions, and it also cannot
ensure that adjacent logical nodes are contiguous in storage.
The Elusive Alternative: Bottom-up Insertions Building
an index on a batch of N application insertions through exter-
nal sorting comprises two phases: partitioning and merging.
The partitioning phase involves scanning the raw file in
chunks that fit in main memory, sorting each chunk in main
memory, and flushing it to secondary storage as a sorted par-
tition. This amounts to two passes over the data. The merging
phase involves merge-sorting all the different partitions into
one contiguous sorted order, using one input buffer for each
partition and one output buffer for the resulting sorted order.
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Once the data are ordered, we build the index bottom-up.
Thus, the merging phase amounts to two additional passes
over the data, and so external sorting involves overall four
passes over the data. This amounts to O(N/B) I/Os with a
cost per insertion of O(1/B) I/O (the reason being that each
I/O handles B entries).

Implications for Index Construction The analysis in the
disk access model above shows that external sorting dom-
inates top-down insertions in terms of worst-case index
construction cost because we only need to do a few passes
amounting to O (N /B) 1/Os rather than O (N) random I/Os.
Since a disk block B is typically large relative to data ele-
ments, this amounts to a 1-2 order of magnitude difference
in construction speed.

Implications for Dynamic Insertions In a dynamic set-
ting with ongoing insertions during runtime, every top-down
insertion that takes place requires reading a target block from
storage and rewriting it at a cost of O (1) I/O per insertion.
The inability to sort the data means that data structures with
better performance properties for ingesting insertions during
runtime cannot be leveraged. For example, many modern
write-optimized data structures buffer insertions and later
sort-merge them multiple times while amortizing the over-
heads of sorting through large sort-merge operations. For
example, the log-structured merge tree (LSM-tree) has an
I/O cost per insertion of 0(@) as it merges each entry a
logarithmic number of times, but the sort-merge operations
allow us to divide this cost by the block size B. A (traditional)
data-series index, however, cannot sort-merge the data and
so it would have to rely on top-down insertions to merge the
runs thereby blowing up the insertion cost to O (log(N)) and
making the scheme impractical. Thus, write-optimized data
structures are currently inapplicable for data series indexing.
Implications for Window Queries Performing window
queries requires creating temporal partitions of the data so
that a query can skip partitions with older data that are not
needed by the application. Existing data series indexes do not
perform temporal partitioning, and so the cost for a window
query over the last X insertions only requires searching the
whole index at a cost of 0(%) I/0. On the other hand, the
log-structured merge tree, for instance, creates a logarithmic
number of partitions of exponentially increasing sizes, and
so performing a query with a selectivity of s over data within
the most recent window of X insertions requires perform-
ing O(%) 1/0, where r is the size ratio across the different
runs of LSM-tree [4]. The problem, as we just saw, is that
using LSM-tree is that it blows up the cost of insertions by
a logarithmic factor since the sort-merge operations cannot
be performed efficiently. For this reason, such data structures

5 In fact, this condition only holds as long as M > +/N [57]. Since main
memory is approximately two orders of magnitude more expensive than
secondary storage, this condition holds in practice for massive datasets.
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that naturally temporally partition the data and offer support
for window queries cannot be used, and as a result, window
queries cannot be supported efficiently.

Implications for General Query Processing Performing
bulk loading and insertions through external sorting has two
performance advantages for subsequent query processing.
Firstly, the sorted order can be written contiguously in sec-
ondary storage, meaning that queries can traverse leaves
using large sequential I/Os rather than small random I/Os.
Secondly, it is possible to pack data series as compactly as
possible in nodes rather than leaving free space for future
insertions. Immediately after bulk loading, this saves storage
costs and speeds up queries by reducing the physical space
that a query must traverse by a factor of 2.

Summary Overall, external sorting dominates top-down
insertions in terms of both construction and query speed.
The problem is that existing data series indexes cannot use
external sorting as they cannot sort the data based on existing
data series summarizations.

3.2 Splitting nodes

Database indexes such as B-trees split nodes when they run
out of capacity using the median value as a splitting point,
whereas data series indexes use prefix-based splitting. We
now describe these methods in detail and analyze their impli-
cations on performance and storage overheads. We again use
the disk access model [2] to quantify storage overheads in
terms of disk blocks.

Prefix-Based Splitting In state-of-the-art data series indexes,
every node is uniquely identified by one prefix for every seg-
ment of the SAX representation, and all elements in the node
or its subtrees have matching prefixes for all segments. When
a leaf node runs out of capacity, we scan the summarizations
and identify the segment whose next unprefixed bit divides
the elements most. We create two new children nodes and
divide the elements among them based on the value of this bit.
The problem is that data are not guaranteed to be unevenly
distributed across the nodes. In the worst case, every node
split divides the entries such that one moves to one of the
new nodes and the rest move to the other, meaning that the
index is unbalanced, most nodes contain only 1 entry, and so
storage consumption is O (N) disk blocks.

Median-Based Splitting Splitting a node using the median
value involves sorting the data elements to identify the
median, moving all elements to the right of this midpoint into
a new node, and adding a pointer from the parent to the new
node to ensure the index remains balanced. This approach
ensures that every node is at least half full. As a result, the
amount of storage space needed is at most double the size of
the actual data. This amounts to O (N /B) blocks.
Comparison Prefix-based splitting results in an unbalanced
index amplifies worst-case storage overheads relative to

median-based splitting by a factor of B. Since exact query
answering time is proportional to the number of leaf nodes
in the index, it amplifies it by the same factor. Overall,
median-based splitting dominates prefix-based splitting, but
we cannot use it in the context of data series indexing because
existing summarizations are not sortable.

4 Coconut

In this section, we present Coconut in detail. Coconut is a
novel data series indexing infrastructure that organizes data
series based on sortable summarizations. As aresult, Coconut
indexes are able to use bulk loading techniques based on sort-
ing to efficiently build a contiguous index. Furthermore, they
are able to divide data series among nodes based on median
values to ensure that the index is balanced and that all nodes
are densely populated. Finally, Coconut indexes are able to
leverage different data structures during runtime to support
different read/write cost trade-offs, and they can optimize
particularly well for streaming applications that require dif-
ferent temporal views over the data.

In Sect. 4.1, we show how to make existing summariza-
tions sortable using a simple algorithm that interleaves the
bits in a summarization such that all more significant bits
from across all segments precede all less significant bits. In
Sects. 4.2 and 4.3, we introduce Coconut-Trie and Coconut-
Tree, respectively. These data structures allow us to isolate
and study the impact of the properties of contiguity and com-
pactness on query and storage overheads. In Sect. 4.4, we
introduce Coconut-LLSM, the first data series index that sup-
ports efficient, log-structured insertions during runtime.

4.1 Sortable summarizations

Each data series summarization can be viewed as a point in
multi-dimensional space, where each segment in the sum-
marization represents a dimension. The question is how to
place points that are similar across all dimensions as close
to each other as possible in storage so as to minimize disk
access during similarity search.

A well-known technique is to use a space-filling curve,
which linearizes multi-dimensional data on storage while
preserving locality. We illustrate an example in Fig. 2 with a
z-order curve [41], which linearizes data by using recursive Z
shapes which allow proximal points to remain close to each
other in the linearized order.

The standard technique for projecting entries into a Z-
order is to (1) interleave the bit representation of all segments
of an entry, and then (2) sorting the entries based on the
inverted bit representation [6,58]. The intuition is that each
dimension is represented as a bit string, whereon more signif-
icant bits carry more information, while smaller bits increase
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Fig.4 Z-ordered SAX summarization

precision. Conceptually, sorting data is an operation that
involves recursively dividing data entries based on the most
significant bit into a hierarchy of sets, and then laying out the
elements in the hierarchy in a depth-first order. Sorting the
inverted summarizations therefore places more importance
on co-locating entries that are similar across their most sig-
nificant bits, and a decreasing amount of importance on being
closer in terms of each segment’s lesser significant bits. An
implementation of this technique for data series is shown in
Algorithm 1, transforming existing summarization schemes
into sortable ones. To the best of our knowledge, we are the
first to apply this into data series summarizations.

Figure 4 shows how to transform the four summariza-
tions in Fig. 2 into sortable Z-ordered summarizations in two
dimensions (for ease of illustration). The technique applies
to data with any number of segments/dimensions. The figure
also shows their linearized order along the z-ordered curve.
As shown, the data series that are most similar to each other
are indeed placed closest to each other (which is not the case
when sorting them based on the original representation).

Note that a sortable summarization contains the same
amount of information as the original summarization, the
only difference being that the bits are ordered differently.
Hence, it is easy and efficient to switch back and forth
between sortable summarizations and the original form, and
we therefore do not lose anything in terms of the ability to
prune the index during querying.

New Infrastructure Opportunities The ability to sort data
series summarizations enables a plethora of new indexing
infrastructure possibilities for data series indexes, ranging
from read-optimized B-trees [59] to write-optimized LSM-
trees [45] to adaptive structures that change performance
characteristics based on workload [12,19]. Coconut-Trie,
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Algorithm 1 Sortable Summarization

1: procedure INVERTSUM(Sum)
2:  for each bit i of a segment in Sum do

return SSum
: end procedure

3: for each segment j do

4: Add the i bit of segment j to SSum
5: end for

6:  end for

7

8

Coconut-Tree, and Coconut-LSM represent three points in
this space that push upon the current state of the art, though
we expect that many more opportunities for specialization
based on hardware and workload are possible.

4.2 Coconut-Trie

We now present Coconut-Trie, a data series index that uses
sortable summarizations to construct a contiguous index
using bulk loading. Similarly to the state-of-the-art index-
ing schemes, Coconut-Trie divides data entries among nodes
based on the greatest common prefix among all segments.
The advantage relative to the state of the art is that the result-
ing index is contiguous, meaning that queries do not issue
random I/Os, but a large sequential I/O.

Construction The construction algorithm is shown in Algo-
rithm 2. The algorithm initially constructs the sortable
summarizations of all data series and sorts them using exter-
nal sort. Then, it constructs in a bottom-up fashion a detailed
iSAXindex. Finally, this index is compacted by pushing more
data series in the leaf nodes.

The input of the algorithm is a raw file, which contains all
data series. The process starts with a full scan of the raw data
file in order to create the sortable summarizations for all data
series (lines 4-6). For data series, we also record their offset
in the raw file, so future queries can easily retrieve the raw
values. All sortable summarizations and offsets are stored in
an FBL buffer (First Buffer Layer). As soon as the buffer is
full, it is sorted in the main memory and the sorted pairs are
written to disk.

The process continues until we reach the end of the raw
file.

If there are more than one sorted runs on disk, we sort
them using external sort, and the final sorted file is written to
disk.

Having the sortable summarizations sorted, all records that
belong to a specific subtree are grouped together. As such we
exploit them in order to build a minimal tree in a bottom-up
fashion, i.e., a tree that does not contain any raw data series
(lines 22—24). The main idea of the corresponding algorithm,
i.e., the insertBottopUp procedure, is that initially a new node
is created for each different SAX representation. Then, the
algorithm replaces in iterations the least significant bits of the
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Algorithm 2 Coconut-Trie: bottom-up bulk loading of an
prefix split based tree

1: procedure COCONUT- TRIE(rawFile)
2: while not reached end of file do

3: position = current file position;

4: dataSeries= read data series of size n from rawFile;
5: SAX = convert dataSeries to SAX;

6: invSAX = invertSum(SAX);

7: Move file pointer n points;

8: Add the (invSAX, position) pair to the buffer;

9: if the main memory is full then

10: Sort buffer according to invSAX

11: Flush sorted buffer to the disk

12: end if

13:  end while
14:  Sort flushed runs using external sort
15:  while not reached end of sorted file do

16: Read the next (invSAX, position) in the buffer
17: if the main memory is full then

18: for every different subtree in buffer do

19: /IMove data from the buffer

20: [to leaf buffer

21: /land construct bottom-up the index

22: for every (invSAX, position) in buffer do
23: insertBottopUp(invSAX, position);
24: end for

25: /lmerge leaf nodes as much as possible
26: CompactSubtree(root)

27: /[Flush all Leaf Buffers containing

28: /l(Sax, position) pairs to the disk

29: for every leaf in subtree do do

30: Flush the leaf to the disk;

31: end for

32: end for

33: end if

34:  end while
35: end procedure

SAX representations with star marks until a common SAX
prefix is identified to be placed in the parent node. Then this
idea is applied at the parent level and so on, until we reach
the root (the corresponding algorithm is omitted due to lack
of space).

The next phase is to compact this subtree, i.e., to push as
many records in the leaf nodes as possible. This is performed
using the CompactSubtree procedure (line 26). To do that,
the algorithm iteratively checks whether the records of two
sequential sibling nodes can fit together in a parent node.
If they do, the algorithm merges them and continues till all
leaf nodes are visited. Then the algorithm iterates again over
the all leaves, until no more leaves are merged. Finally, each
compacted subtree is flushed back to disk (lines 29-31).

The above algorithm is used to create a secondary index
over the original raw file, keeping only the offsets in the leaf
nodes. The algorithm performs the following passes over the
data: (i) Read the raw data series and compute the sortable
summarizations; (ii) flush the sorted partitions of the sum-
marizations to disk (along with their offsets); (iii) merge-sort
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Fig. 5 Constructing bottom-up a Coconut-Trie index—before calling
the compactSubtree procedure

them; and (iv) build the index. This process involves O (N /B)
1/Os, but usually all the summarizations and their offsets fit
in main memory, eliminating the need for passes (ii) and (iii).

A slight variation of the aforementioned algorithm could
be used to create a fully materialized iISAX index as well.®
We call this variation Coconut-Trie-Full. This would require
the raw data series to be sorted alongside their sortable sum-
marizations in the sort-merge phase and then flushed to disk.
Although the complexity of the algorithm would be the same,
it would require additional passes in the sort-merge phase,
and an additional pass over the raw data, in order to flush
them to the leaf nodes.

Example 1 Figure 5 illustrates an example of creating a
Coconut-Trie index using the bottom-up Algorithm 2. As
shown in the figure, we initially construct the summariza-
tions (SAX) for all data series, as well as their sortable
summarizations (invSAX). Then, we sort them using their
invSAX value, and we construct the corresponding Coconut-
Trie index using the InsertBottomUp algorithm. Following
this algorithm, initially, the first data series is placed in a new
node. The second data series is placed in yet a new node,
since it has a different SAX representation than the first one.
Then, the createUptree procedure is called to link the new
node with the previous node. As such, the four least signifi-
cant bits are replaced with stars, until the algorithm identifies
a common prefix that could be used as the mask of the parent
node (0 * O % 1 * 1x). The parent is generated and linked
to the root node. The third data series is then inserted to the

% In a materialized index, the raw data series are stored alongside their
summarizations within the index, whereas in a non-materialized one
the index contains pointers to the raw data series that are stored in a
different file.
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tree, and a new node is generated. This node should be linked
to the already existing tree: The createUptree procedure is
called again, using as input the SAX representations of the
second and third data series. The least significant bits are
again replaced by a star, one by one until we identify the
parent that should be generated linking the third node to the
tree. The resulting Coconut-Trie tree (refer to Fig. 5) demon-
strates the state of the tree before calling the CompactSubtree
procedure, which will follow in order to compact the entire
tree. Assuming that a leaf node can hold two data series, the
corresponding algorithm will identify that the first two time
series have the same parent and they fit together. As such
they can be placed directly in their parent node, removing
the child nodes.

Queries Since the constructed index is essentially no differ-
ent than an iSAX index, we use the traditional approximate
and exact search algorithms in order to perform query-
ing. Approximate search works by visiting the single most
promising leaf, and calculating the minimum distance to the
raw data series contained in it. It provides answers of good
quality (returns a top 100 answer for the nearest neighbor
search in 91.5% of the cases for iSAX with extremely fast
response times [66]). On the other hand, exact search guaran-
tees that we get the exact answer, but with potentially much
higher execution time. For exact search, we employ the SIMS
algorithm, implementing a skip sequential scan algorithm,
shown to outperform traditional exact search algorithms [76].

4.3 Coconut-Tree

Although Coconut-Trie achieves contiguity, i.e., adjacent
leaf nodes are placed next to each other in storage, a lot
of disk space is wasted in those leafs: Many of them are half
full or less, due to the way the index is constructed (i.e., com-
pacting child nodes to a parent one). In addition, since the
constructed tree in both Coconut-Trie and in the current state
of the art is unbalanced trees, they offer no guarantees for the
query answering time.

We now present Coconut-Tree, a data series index that
organizes data series based on sortable summarizations and
improves upon Coconut-Trie by eliminating the constraint
that a node can only contain elements with a common prefix.
This leads to a balanced index that can densely pack datain its
leaf nodes (at a fill factor that can be controlled by the user).
The corresponding algorithm completes index construction
again in O (N/B) time.

Index construction, shown in Algorithm 3, receives the
raw data file as input. A buffer is initialized, and while the
buffer is not full, the next data series is loaded from the raw
file, and the sortable summarization is calculated and stored
along with the position of this data series in the raw data file
(lines 2—-8). Whenever the buffer fills up, it gets sorted and
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Algorithm 3 Coconut-Tree: Bottom-up bulk loading of a
balanced tree

1: procedure COCONUT- TREE(rawFile)
2: while not reached end of file do

3: position = current file position;

4: dataSeries = read n data series from rawFile;
5: iSAX = convert dataSeries to iSAX;

6: invSAX = invertSum(iSAX);

7: Move file pointer n points;

8: Add the (invSAX, position) pair in the buffer;
9: if the main memory is full then

10: Sort buffer according to invSAX

11: Flush sorted buffer to the disk

12: end if

13:  end while

14:  Merge-sort all flushed runs

15:  Build internal nodes on top of sorted file
16: end procedure

flushed to storage as an independent sorted partition (line 9—
13). Ultimately, all sorted partitions get sort-merged into a
single sorted partition (line 14). Some padding may be left
in each storage block as space for future insertions. Internal
nodes are then built on top of this sorted partition to construct
a B-tree (line 15).

Algorithm 3 builds a secondary index with only offsets
in the lead nodes, but it can be used to construct a fully
materialized index as well, where all data reside in the leaf
nodes. We call the materialized version of the algorithm
Coconut-Tree-Full. We expect that index construction time of
Coconut-Tree-Full will be significantly larger. Nevertheless,
we also expect that query execution time would be better,
since it will not perform additional I/Os to go to the raw data
file for accessing each required data series record.

Example 2 Figure 6 illustrates the construction of a Coconut-
Tree index. Initially, we construct for all data series their
SAX and their invSAX representations. We then sort them
using their invSAX value, and we construct the Coconut-Tree
index in a bottom-up fashion (exploiting the bulk -loading
algorithm for UB-Trees [57]). Note that the constructed index
in this case is balanced.

Querying For approximate search, when a query arrives (in
the form of a data series), it is first converted to its sortable
summarization. Then the Coconut-Tree index is traversed
searching for this sortable summarization similar the approx-
imate search in iSAX trees. The idea is to search for the leaf,
where the query series would reside if it was part of the
indexed data set. If such a record exists, it is retrieved from
the disk and returned to the user. On the other hand, if such a
record does not exist, all data series in a specific radius from
this specific point are retrieved from the disk (usually a disk
page), and their real distances from the query are calculated.
The data series with the minimum distance found among the
data series in that radius is used as the approximate answer.
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Fig.6 Constructing a Coconut-Tree index

Algorithm 4 Approximate search for the Coconut-Tree

1: procedure APPROXSEARCHCOCONUTTREE(dataSeries, invSAX,
index, radius)

2:  targetPoint = point where invSAX should be inserted

3 /ICalculate the real leaf distance between

4:  [/lthe dataSeries and the raw data series

5. /lin a radius around the place that the

6.

7

8:

/ldataSeries should reside if existed
: bsf = caclRadLeafDist(targetPoint, dataSeries, radius);
end procedure

Thus, in terms of execution cost, the algorithm visits as many
nodes as the depth of the tree, and any additional leaf nodes
within the selected radius.

Note that in a Coconut-Tree index, we have pointers
between neighboring leaves, which are allocated sequentially
on disk. This allowed us to experiment with the radius size,
optimizing the trade-off between the quality of the answer
and the execution time of the approximate search.

For implementing exact search for Coconut-Tree, we
implement a skip sequential scan algorithm (refer to Algo-
rithm 5) similar to SIMS [76]. Our algorithm employs
approximate search as a first step in order to prune the search
space. It then accesses the data in a sequential manner and
finally produces an exact, correct answer. We call this algo-
rithm Coconut-Tree Scan of In-Memory Summarizations
(CoconutTreeSIMS). The main intuition is that while the raw
data do not fit in main memory, their summarized representa-
tions (which are orders of magnitude smaller) will fit in main
memory (remember that the SAX summaries of 1 billion data
series occupy merely 16 GB in main memory). By keeping
these data in-memory and scanning them, we can estimate a
bound for every data series in the data set.

The algorithm differs from the original SIMS algorithm
in that it searches over the sorted invSAX representations for
the initial pruning, and it then uses the Coconut-Tree index
to get the raw data series instead of accessing the original
file with the raw data series. As such, Algorithm 5 starts
by checking whether the sortable summarization data are in

Algorithm 5 Coconut-Tree Scan of In-Memory summariza-
tions
1: procedure COCONUTTREESIMS (dataSeries, invSAX, index, radius)
2:  /lif SAX sums are not in memory, load them

if invSums = 0 then

invSums = loadinvSaxFromDisk();

end if

llperform an approximate search

bst = approxSearchCoconutTree(dataSeries, invSAX, index,
radius);
8:  //Compute minimum distances for all summaries
9:  Initialize mindists[] array;
10:  /luse multiple threads & compute bounds in parallel
11:  parallelMinDists(mindists, invSums, dataSeries);
12:  /IRead raw data for unprunable recorde
13:  recordPosition = 0;
14:  for every mindist in mindists do

A A

15: if mindist < bsf then

16: rawData = read raw data series from index;
17: realDist = Dist(rawData, dataSeries);

18: if realDist < bsf then

19: bsf = realDist;

20: end if

21: end if

22: recordPosition++;

23:  end for

24: end procedure

memory (lines 3—4), and if not, it loads them in order to
avoid recalculating them for each query. It then creates an
initial best-so-far (bsf) answer (line 7), using the approxi-
mate search algorithm described previously (Algorithm 4).
A minimum distance estimation is calculated between the
query and each in-memory sortable summarization (line 11)
using multiple parallel threads, operating on different data
subsets. For each lower bound distance estimation, if this is
smaller than the real distance to the bsf, we fetch the com-
plete data series from the Coconut-Tree index and calculate
the real distance (lines 15-22). If the real distance is smaller
than the bsf, we update the bsf value (lines 19-21). Since
the summaries array is aligned to the data on disk, what we
essentially do is a synchronized skip sequential scan of the
raw data and the in-memory mindists array. This property
allows us to prune a large amount of data, while ensuring that
the executed operations are very efficient: We do sequential
reads in both main memory and on disk, and we use modern
multi-core CPUs to operate in parallel on the data stored in
main memory. At the end, the algorithm returns the final bsf
to the user, which is the exact query answer.

4.4 Coconut-LSM

While Coconut-Tree creates a compact and contiguous index
that can be constructed and queried efficiently, it does not
perform well in the presence of random insertions (i.e., that
are uniformly distributed across the key space). The rea-
son is that when insertions are randomly distributed, each
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Algorithm 6 Coconut-LSM: Bottom-up bulk-loading of an
LSM-tree

1: procedure COCONUT- LSM(rawFile)
2: while not reached end of file do

3: position = current file position;

4: dataSeries = read n data series from rawFile;
5: iSAX = convert dataSeries to iSAX;

6: invSAX = invertSum(iSAX);

7: Move file pointer n points;

8: Add the (invSAX, position) pair in the buffer;
9: if the main memory is full then

10: Sort buffer according to invSAX

11: Flush sorted buffer to the disk

12: end if

13:  end while

14:  Sort flushed runs using external sort

15:  Use LSM-Tree bulk-loading algorithm to build a tree on top of
the sorted file and record the individual flushes on disk

16: end procedure

of them requires O (1) I/O to process (i.e., one I/O to read
the corresponding node and another I/O to rewrite it). For
insertion-heavy workloads, this can harm throughput. To
mitigate this problem, we introduce Coconut-LSM, a new
write-optimized data series index based on sortable summa-
rization.

Coconut-LSM organizes the data series summarizations
as an LSM-tree [12,45]. The core idea is to buffer incoming
insertions in memory, to flush the buffer to storage as an inde-
pendent sorted run every time that it fills up, and to bound the
overall number of runs in storage by gradually sort-merging
them to restrict read cost (i.e., the number of runs a read
has to search). LSM-tree sort-merges runs of similar sizes,
and it organizes them into levels of exponentially increasing
capacities. We use a variation of LSM-tree with a size ratio
of 2 between the capacities of every pair of adjacent levels.
As a result, there are at most O(log,(N)) runs in the system.
Since every insertion gets merged across each level, and since
every I/O during sort-merge copies B entries, the amortized
cost per insertion is 0(%) I/0. Since the storage block
size B islarge, the insertion cost for Coconut-LSM gets amor-
tized and is therefore significantly lower than for any existing
data series index. Thus, Coconut-LSM enables more efficient
insertions at the expense of slightly more expensive queries.

The construction algorithm is similar to the one for
Coconut-Tree, performing a two-pass external sort of the data
in O(N/B) /O, and is shown in Algorithm 6. The resulting
sorted file, also called a run, becomes the largest level of
the LSM-tree. Similarly to Coconut-Tree, we also consider a
materialized variant of Coconut-LSM called Coconut-LSM-
Full, which stores raw data series within the LSM-tree, and
which we evaluate later.

Example 3 Figure 7 illustrates the construction of a Coconut-
LSM index. Initially, we construct for all data series their
invSAX representations. We then sort them using their
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invSAX value, and we construct the Coconut-LSM index in
a bottom-up fashion (exploiting the bulk loading algorithm
for LSM-Trees). The bulk loading algorithm buffers incom-
ing insertions in memory and flushes the buffer to storage
as it fill up, creating multiple Coconut indexes. As multiple
indexes are constructed in the incoming buffer (also referred
to as level 0), they are asynchronously merged to form larger
indexes in level 1. The same applies for level 1 indexes that are
asynchronously merged to formulate larger, level 2 indexes.

Querying For approximate search, Algorithm 4 for Coconut-
Tree is applied to each individual run of Coconut-LSM. The
data series with the minimum distance found across the runs
of Coconut-LSM is used as the approximate answer. Note
that approximate search in Coconut-LSM is more expensive
in terms of I/Os than Coconut-Tree, as multiple runs need to
be searched. In this way, Coconut-LSM trades approximate
query performance for insertion performance.

For implementing exact search for Coconut-LSM, we
revisit the corresponding algorithm for Coconut-Tree. The
new algorithm is shown in Algorithm 7. In the first step, the
algorithm employs approximate search in order to prune the
search space. It then accesses the subtrees in a sequential
manner and finally produces an exact, correct answer. We
call this algorithm Coconut-LSM Scan of In-Memory Sum-
marizations (Coconut-LSM-SIMS).

The main intuition for this algorithm is that we would like
to search sequentially all subtrees of the LSM-tree in order
to optimize read, still however performing a skip sequential
scan. As such, we use the snapshot of the available summa-
rizations produced in indexing phase. By keeping these data
in-memory and scanning them, we can estimate a bound for
every data series in the data set.

5 Sliding windows

Up until now, we focused on nearest neighbor search across
an entire dataset. In many modern applications, however,
queries have temporal constraints: They must find the nearest
neighbor from within the most recent data (e.g., in infrastruc-
ture monitoring or geo-temporal applications). The size of the
temporal window of interest often varies across and within
applications to enable different granularities of analysis (e.g.,
data from the past week, month, year, etc.). Therefore, a data
series index needs to flexibly support variable-sized win-
dow queries. Ideally, it should save on storage bandwidth
by avoiding access to data that is older than a specified query
window.

In this section, we describe three approaches for sup-
porting window queries. The first two approaches, post-
processing and temporal partitioning, only support efficient
long or short window queries, respectively, but neither sup-
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Fig.7 Constructing a Coconut-LSM index

ports both. These two approaches represent the best we can
do with existing data series indexes as well as with Coconut-
Trie and Coconut-Tree. We then show how Coconut-LSM
enable a third approach that supports window queries of any
size efficiently. We coin it bounded temporal partitioning
(BTP). For all three approaches, we attach a timestamp to
each entry. We experimentally compare them in Sect. 6.

5.1 Approach 1: Post-processing (PP)

Post-processing relies on examining the timestamp of every
entry as it is encountered during query processing and dis-
carding it if the timestamp does not fit within the window
specified by the query. Exact queries take place as before,
with the difference that they now also check every entry’s
timestamp. Approximate queries, however, may need to
broaden the scope of their search if the first node that is
encountered only contains entries that are outside of the spec-
ified window. Hence, we adapt them to incrementally expand
their search across adjacent leaf nodes until an entry within
the specified window is found.

While post-processing is the simplest approach to imple-
ment, it is inefficient for exact queries if the specified time
window encompasses a small proportion of the data. The
reason is that it does not allow to save storage bandwidth by
avoiding access to older entries. Hence, an exact query to the
most recent data consumes as much storage bandwidth as a
query over the entire data. For approximate queries, search
may also take significantly longer to execute as potentially
many nodes need to be searched until an entry within the
window is found.

5.2 Approach 2: Temporal partitioning (TP)

With temporal partitioning, we create a new index partition
based on the in-memory buffer’s contents every time that the
buffer fills up. In this way, the system gathers more and more
temporal partitions over time, and it organizes them based on
their creation time. This allows both approximate and exact
queries to access only indexes whose creation timestamp falls
within or intersects with a specified query window.
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Algorithm 7 Coconut-LSM Scan of In-Memory summariza-
tions
1: procedure COCONUT- LSM- SIMS(dataSeries, invSAX, index,
radius)

/1if SAX sums are not in memory, load them

if invSums = 0 then

invSums = loadinvSaxFromDisk();

end if

/Iperform an approximate search

bsf = approxSearchCoconutTree(dataSeries, invSAX, index,
radius);
8:  for every subtree of the LSM structure do

AN A o o

9: /ICompute minimum distances for all summaries
10: Initialize mindists[] array;

11: /luse multiple threads & compute bounds in parallel
12: paralleIMinDists(mindists, invSums, dataSeries);
13: /IRead raw data for unprunable recorde

14: recordPosition = 0;

15: for every mindist in mindists do

16: if mindist < bsf then

17: rawData = read raw data series from index;
18: realDist = Dist(rawData, dataSeries);

19: if realDist < bsf then

20: bsf = realDist;

21: end if

22: end if

23: recordPosition++;

24: end for

25:  end for

26: end procedure

TP works well for short window queries as it allows them
to skip access to most of the data in storage. On the other
hand, it performs poorly for windows that span a significant
proportion of the data. For exact queries, the reason is that
they must begin the search from scratch for every partition,
and so they cannot leverage the lower bounding property of
invSAX as effectively to spatially prune within each partition.
For approximate queries, the reason is that they need to issue
one I/O to every qualifying partition (potentially hundreds
for large data sizes).

5.3 Approach 3: Bounded temporal partitioning
(BTP)

While neither the first nor the second approach supports both
long and short window queries efficiently, many applications
need to be able to use both short and long window sizes, while
maintaining good performance in all cases. Our insight is that
Coconut-LSM enables a new approach that combines the best
of these two approaches. By design, Coconut-LSM creates
a new temporal partition every time the buffer flushes (as
with TP), and it sort-merges temporal partitions of similar
sizes. In this way, newer data reside in smaller partitions,
while older data gradually move to larger contiguous parti-
tions. This allows queries over short windows to save storage
bandwidth by skipping larger partitions. At the same time, it
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allows exact queries over long windows to spatially prune
a greater proportion of the data by leveraging the lower
bounding property of invSAX more effectively, and it allows
approximate queries over long windows to issue fewer 1/0s
by bounding the overall number of partitions that need to be
accessed.

We refer to this windowing approach as bounded temporal
partitioning (BTP). We implement BTP on top of Coconut-
LSM by modifying it to take a window size as a query
parameter, and to skip accessing larger partitions that fall out-
side of a specified window size. We demonstrate the benefits
of BTP for both small and large window queries in Sect. 6.

Note that with unsortable summarizations (as is the case
with the traditional state-of-the-art data series indexes), the
BTP approach would have been inviable, as it would have to
rely on expensive in-place insertions for merging partitions.
We therefore observe here, too, that the ability to sort the
summarizations opens up new opportunities for optimization
that would have been impossible otherwise.

Example 4 Figure 8 illustrates schematically the three app-
roaches. In the first case, PP, a full index is constructed that
covers the entire dataset. For TP, multiple indexes are con-
structed, each one for a different window partition of the
data. Finally, in the BTP approach, the index is constructed
containing all entries, however creating a temporal partition
each time the buffer is flushed to disk. Therefore, it guaran-
tees optimal access to window queries, but it also enables
querying records that reside on other sliding window sizes.

6 Experimental evaluation

In this section, we present our experimental evaluation. We
demonstrate the benefits of sortability, enabling a variety of
new choices for data structures to be used for better space
efficiency and for more efficiently bulk loading, querying,
and updating the data.

Algorithms We benchmark all indexing methods presented
in this paper against the state-of-the-art data series indexing
techniques. More specifically, we compare our material-
ized methods with R-tree [17], vertical [22], DSTree [69],
and ADS-Full [76], and our non-materialized methods with
ADS+ [76] and a non-materialized version we implemented
over R-tree, the R-tree+.

The vertical approach generates an index using data series
features, obtained by a multi-resolution discrete wavelet
transform, in a stepwise sequential scan manner, one level of
resolution at a time. DSTree is a data adaptive and dynamic
segmentation tree index that provides tight upper and lower
bounds on distances between time series. ADS-Full is an
algorithm that constructs an iSAX clustered index by per-
forming two passes over the raw data series file. ADS+ is an
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adaptive data structure, which starts by building a minimal
secondary index. Leaf sizes are refined during query answer-
ing, and leaves are materialized on-the-fly. As such, query
answering has the additional overhead of the refinement of
the leafs. The R-tree index is built on the raw data series by
indexing their PAA summarizations. The raw data series are
stored in the leaves of the tree. Our R-tree implementation
uses the Sort-Tail-Recursive bulk loading algorithm [31]. R-
tree+ is the non-materialized version of the R-tree, using file
pointers in the leaves instead of the original time series. In
our experiments, we used the same leaf size (2000 records)
for all indexing structures.

In the experiments on index construction and querying,
we do not include Coconut-LSM. The reason is that in the
absence of insertions, Coconut-LSM after bulk loading con-
tains all of its data in one level, and a one-level LSM-tree is
structurally equivalent to a B-tree [45]. We therefore include
Coconut-LSM in the experiments when we also introduce
insertions into the workloads.

Infrastructure All algorithms are compiled with GCC 4.6.3
under Ubuntu Linux 12.04 LTS. We used an Intel Xeon
machine with 5x2TB SATA 7.2 RPM hard drives in RAID
0. The memory made available for each algorithm was con-
trolled according to the experiment.

Datasets For our experiments, we used both synthetic and
real datasets. Synthetic datasets were generated using a ran-
dom walk data series generator: A random number is drawn
from a Gaussian distribution (0,1); then, at each time point a
new number is drawn from this distribution and added to the
value of the last number. This kind of data has been exten-
sively used in the past (see [77] for a list of references) and
has been shown to effectively simulate real-world financial
data [14].

The real datasets we used in our experiments are seis-
mic and astronomy data. We used the IRIS Seismic Data
Access repository [20] to gather data series representing seis-
mic waves from various locations. We obtained 100 million
data series by extracting one sample per second from the
original data series, and then partitioning them into smaller

Randomwalk

Astronomy

0.04-
0.03-
0.02-
0.01-
0.00-,

Probability

Seismology
\I\l

v I‘h‘, ; .\l\ll‘l || hl
Q % O () Q

o

. .\‘ : ||“|7In ‘‘‘‘‘‘‘

Value
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series of 256 samples each by sliding every 4 samples over
the original series. The complete dataset size was 100 GB.
For the second real dataset, we used astronomy data series
representing celestial objects [68]. The dataset comprised of
270 million data series, obtained by partitioning the original
series into smaller series of 256 samples each using a sliding
step of one sample. The total dataset size was 277 GB.

All our datasets have been z-normalized by subtracting
the mean and dividing by the standard deviation. This is a
requirement by many applications that need to measure sim-
ilarity irrespective of translation and scaling of the data series
[15]. Moreover, it allows us to compute correlations based
on the Euclidean distance values [44].

In Fig. 9, we show the distributions of the values for

all datasets. The distributions of the synthetic and seismol-
ogy data are very similar, while astronomy data are slightly
skewed.
Query Workloads Each query is given in the form of a ran-
domly selected data series ¢ and having the index try to locate
whether this data series or a similar one exists in the database.
For querying the real datasets, we obtained additional data
series from the raw datasets using the same technique for
collecting the datasets to be used in the query workload.

Configuring number of segments As a first step, before
comparing with other approaches, we studied the effect of
the number of segments of the generated summaries on per-
formance. The idea was to evaluate the trade-off between
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number of segments, space overhead introduced by the index-
ing structure over the raw data, and indexing and querying
execution time. We used a synthetic data series collection of
100 GB data series and 100 exact queries, using limited mem-
ory (100K data series) for both indexing and querying. The
accumulative execution time for both querying and indexing
is shown in Fig. 10, where we can also see the index space
overhead in each case (thin gray line). As shown, the larger
the number of segments, the larger the indexing time for
both materialized (CTreeFull) and non-materialized (CTree)
approaches. In addition, the benefit in indexing has an impact
on querying, as smaller summaries cannot prune effectively
the search space when performing exact queries. On the other
hand, going beyond 16 number of segments almost doubles

o

the additional space introduced by our indexing structures.
Therefore, we selected 16 as the number of segments. Unless
mentioned otherwise, in the rest of the experimental evalu-
ation, the summarizations use 16 SAX words, the size of
data series was of 256 points, and each point has a floating
precision of 4 bytes.

6.1 Indexing

In our first set of experiments, we evaluate index construction
speed. The results for the materialized algorithms are shown
in Fig. 11a as we vary the memory budget for each method
to control the amount of buffering and caching they are able
to leverage. We observe that Coconut-Tree-Full (CTreeFull)
exhibits the best construction speed in all cases it is able to
externally sort the raw data file. As memory becomes limited,
external sorting degrades gracefully in terms of performance.
The construction time of Coconut-Trie-Full (CTrieFull) on
the other hand significantly increases as we constrain the
memory (and the corresponding buffering), due to the exten-
sive I/Os spent on the last pass of the data, for loading the
unsorted raw data to the sorted leaves. Moreover, we observe
that vertical is slower in all cases, while R-tree performs
rather poorly. The STR algorithm [31] that R-tree uses first
sorts based on the first dimension into N b slabs (where N
is the number of points in a D-dimensional space), and then
recursively repeats the process within each slab with one less
dimension. As a result, runtime is the product of the num-
ber of elements and the number of dimensions: O(N - D)
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I/Os. In contrast, our implementation uses sortable summa-
rizations to sort based on all dimensions with just one pass,
amounting to O (N) I/Os. Finally, DSTree requires more than
24 h to finish in most of the cases, as it inserts all data series
in the index one by one, in a top-down fashion. This requires
multiple iterations to be performed over the raw data dur-
ing splits in order to create more detailed summarizations,
leading to a high I/O overhead.

In the non-materialized versions of the algorithms, shown
in Fig. 11b, ADS+ is slightly better than Coconut-Tree (6.3
vs. 7.8 min), when given ample memory. However when we
restrict the available main memory, Coconut-Tree becomes
faster than ADS+ (8.2 vs. 13.4 min). This is due to the fact
that as the leaves in ADS+ split, they cause random disk I/Os.
This slows down index construction, since buffering is lim-
ited when the main memory is limited. On the other hand,
Coconut-Trie (CTrie) spends a significant time in compacting
its nodes, which significantly slows down index construc-
tion. The performance of R-tree+ matches the behavior of
the materialized R-tree, requiring much more execution time
than the leading approaches.

Finally, we observe that non-materialized versions out-

perform the materialized ones, since they do not store the
entire dataset, but only the summarizations and pointers
to the raw data file. Moreover, we note that sorting in the
non-materialized versions is really fast, since only the sum-
marizations need to be sorted, and so far less data have to be
moved and reshuffled.
Space Since storage space becomes a critical cost for many
applications as the data grows, we next examine the space
overhead imposed by the various indexing schemes. The
results are shown in Fig. 11c, where we report the space
required for 10 GB of raw data.

For the materialized indexes, we observe that Coconut-
Tree-Full and DSTree have a smaller space overhead.
Median-based solutions, such as Coconut-Tree-Full, gener-
ate indexes with the leaf nodes as full as possible, whereas in
prefix-based solutions there is a lot of empty space in the leaf
nodes: Leaves are on average 10% full in prefix-based solu-
tions, whereas for the median-based ones utilization reaches
97%. Note that in the case of Coconut-Trie-Full more space is
wasted, since more leaf nodes are produced, and we cannot
further compact the leaf nodes due to the specific prefix-
based scheme that is used (there are 55K leaf nodes for the
Coconut-Trie-Full, and 54K leaf nodes for the ADS-Full).
For the Coconut-Tree-Full, we can effectively control the
number of leaf nodes produced, resulting in 6 K leaf nodes
with a 75% fill rate.

For the non-materialized indexes, we can again observe
the superiority of our median-based solution, requiring
almost half the space required by other solutions.
Scalability with Data Growth Have identified the Coconut-
Tree methods as the quickest to build data series indexes
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and the ADS methods as the closest contenders, we now
proceed to evaluate how construction speed scales for these
methods as the data size increases. We will return to the other
methods when we evaluate query performance. In this set of
experiments, we fix the amount of main memory to that of a
common desktop workstation (8 GB), and gradually increase
the number of data series to be indexed. The results are shown
in Fig. 11d, e. We observe that when the amount of data is
relatively small with respect to the available main memory,
Coconut-Tree-Full and Coconut-Tree require similar times
to ADS-Full and ADS+, respectively. However, as the data
size increases, the random I/Os of ADS-Full and ADS+ incur
a significant overhead on the overall time to construct the
index, and the Coconut-Tree algorithms become faster. This
effectis especially pronounced for the materialized indexes in
Fig. 11d. In addition, the experiments show that in Coconut-
Tree-Full most of the time is spent on sorting the raw data,
whereas in the case of CTree only the summarizations are
sorted, and as such, the external sort overhead is really small
when compared to the cost of I/Os and CPU.

Variable Data series and Summary Length Next, we
evaluate construction speed for the Coconut-Tree and ADS
methods, as we vary the lengths of the individual data series
that need to be indexed, and the number of segments that are
used in the summarizations. We use a data series collections
of 100 GB, using limited memory (100 K data series) for both
experiments. The results for variable lengths of data series
are shown in Fig. 11f, and the results for the variable number
of segments are shown in Fig. 12. When looking at Fig. 11f,
we observe that in all cases the Coconut-Tree variations sur-
pass the ADS ones, demonstrating once again the superiority
of Coconut-Tree in terms of construction speed. Regarding
the variable number of segments, as we observe in Fig. 12,
the indexing process becomes slower when we increase the
number of segments, as more segments need to be written
to disk. We note that the ADS family does not scale beyond
16 segments as the corresponding indexing algorithms need
to construct 2#5€8ments o0t nodes in each case, and as such
they have a limitation that the Coconut family has not.
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Fig. 13 Querying

6.2 Querying

Exact Query Performance Next we evaluate the various
schemes in terms of exact query performance. To do this,
we measure execution time across 100 random exact queries
as we vary the index sizes. As shown in Fig. 13a, CTree
and CTreeFull are faster across the board. The reason is that
Coconut-Tree indexes are contiguous and compact, and so
fewer I/Os are needed to traverse them.

Interestingly, the non-materialized R-tree in 40GB is
faster than the materialized R-tree. This happens since R-
tree+ needs only the summarizations in memory to perform
query answering, whereas the materialized version needs
large parts of data series, which leads to memory swapping
to disk.

Approximate Query Performance We now evaluate the
performance of the different indexes in terms of approxi-
mate query answering. To do so, we measure execution time
across 100 random approximate queries as we vary the size of
the dataset. We focus on the indexes that were deemed most
promising by the last experiment. The results are shown in
Fig. 13b. We observe that CTree and CTreeFull are always
faster than the other methods as there are fewer nodes to
traverse before reaching the target leaf node. In addition, the
materialized versions of the indexes are faster than their non-
materialized counterparts, since the records are materialized
in the leaf nodes and can be directly accessed instead of issu-
ing additional accesses to the raw data file.

Approximate Query Quality versus Performance In the
next series of experiments, we explore whether it is possi-
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(e) Exact query answering.

(f) Visited records in exact query an-
swering.

ble to strike different trade-offs between performance and
accuracy for approximate queries. The idea is that by search-
ing slightly more nodes during an approximate query and
thereby sacrificing some performance, we may be able to
improve accuracy by finding a better candidate. To run this
experiment, we consider three variants of our approximate
query algorithm that differ in terms of the number of nodes
that get searched: half a node, a whole node, or ten adjacent
nodes. Figure 13c demonstrates that approximate query exe-
cution time increases in proportion to the number of nodes
we search. In Fig. 13d, we measure the corresponding accu-
racy in terms of Euclidean distance between the search target
to the closest data series we found in the searched nodes. We
indeed observe in these experiments that CTree(1) (which
checks one node) is more accurate than the ADS family for
69% of the queries, while CTree(10) is more accurate for 94%
of the queries. However, we observe that we quickly hit the
point of diminishing marginal returns in terms of accuracy
as we search more nodes.

Since the first step of the exact search is the execution
of an approximate query, we might expect that a better
initial approximate result would lead to more pruning and
thus improved performance for exact queries. Figure 13f
indeed shows that the ADS family on average visits more
than 80 K records during exact query answering, whereas the
Coconut family visits fewer than 59 K records in all cases. In
Fig. 13e, however, we observe that all the Coconut variants
perform approximately the same. This implies that the perfor-
mance improvement that we observe for the Coconut family
compared with the ADS family mostly arises due to the com-



Coconut: sortable summarizations for scalable indexes over static and streaming data series 865

S5 O ®©
o O O
o O O

I

=

E

[

£

=

- 200

8

= 0

S 53 46 933 4833 69
3 U-LEDELLLEQELLLEDE
8 8 § <0 8 % <G 8 § < O
Q2 < E < = < =

a o o o

£

S 10% 1% 0.1%

o Ratio of data/memory

More than 24 hours M Index Construction [ Querying

(a) Astronomy - complete workload.

Fig. 14 Complete workloads

pactness and contiguity of the Coconut indexes, which allow
us to issue fewer I/Os during exact queries.

6.3 Complete workloads on real datasets

We now compare Coconut to the state of the art, simulat-
ing the complete process of index construction and query
answering. The results are shown in Fig. 14a for the astron-
omy dataset and in Fig. 14b for the Seismic dataset.

The index sizes for the astronomy dataset were as follows:
ADS-Full: 311GB, ADS+: 19GB, CTree: 10GB, CTree-
Full: 298 GB; and for the seismic dataset: ADS-Full: 111 GB,
ADS+: 6 GB, CTree: 4GB, CTreeFull: 108 GB.

We measure the time to construct first the correspond-
ing indexes and then to answer 100 exact queries over the
constructed index, using various memory configurations. As
shown, when we constrain the available memory, Coconut-
Tree becomes better in all cases, for both the materialized
and non-materialized approaches, corroborating the exper-
imental results with the synthetic datasets. An interesting
observation here is that the queries are harder on these
datasets for all indexes, because the datasets were denser
(for a detailed discussion on hardness see [77]). As a result,
pruning was not as efficient as with the random walk data.
Therefore, even though Coconut was faster than all compet-
ing methods, it still had to scan a considerable amount of data
in order to answer the exact queries.

6.4 Insertions

Next, we evaluate the different indexes in the presence of
insertions of new data series. We focus on the ADS and
Coconut-Tree families as they were shown to perform best
for index construction. This time, we also include Coconut-
LSM in the experiment (i.e., as the structural difference
between Coconut-LSM and Coconut-Tree only manifest
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themselves in the presence of insertions). In particular, we
use C-LSM and C-LSM-Full as non-materialized and mate-
rialized instances of Coconut-LSM, respectively. We use a
synthetic workload consisting of 100 random exact queries,
where every two queries are interleaved by a batch of inser-
tions. We control the experiment by ensuring that the final
data size after all insertions at the end of each of the experi-
ments is 100 GB, while the initial data size and the insertion
batch size vary. In addition, we limit the available memory
to 0.01% of the data size. The results in Fig. 15 shows that
in the presence of insertions, C-LSM performs at least twice
as fast as the other approaches. The reasons are that (1) the
LSM-tree on top of which C-LSM is built optimizes heavily
for insertion workloads by buffering and later sort-merging
data and thereby using only sequential rather than random
writes, and (2) C-LSM is non-materialized and so only new
incoming summarizations get indexed while the bulk of the
data (i.e., the data series) are appended to the raw file. We
further observe that in the absence of insertions (the final
set of bars), C-LSM and CTree perform similarly because in
this case both consist of one contiguous and compact level
of summarizations. We attribute the performance difference
in this case to implementation differences between Berke-
leyDB and RocksDB, on top of which they are implemented.
C-LSM-Full does not perform as well as CTree due to the
overheads of continually sort-merging the whole data rather
than just the summarizations. Overall, we observe here again
that being able to sort the data allows us to optimize for dif-
ferent workload characteristics (in this case for insertions), as
well as to introduce Coconut-LSM as the first highly write-
optimized data series index.

6.5 Sliding windows

Finally, we show that sortable data series summarizations
further allow to process efficient sliding window queries
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for streaming applications. To recap from Sect. 5, the base-
line approaches for processing sliding window queries with
unsortable summarizations are post-processing (PP) and
temporal partitioning (TP). Post-processing (PP) performs
a regular exact query over the whole index and discards
data series based on their creation timestamp after they are
retrieved from storage. Temporal partitioning (TP), on the
other hand, creates a separate temporal partition for every
new batch of insertions, thereby allowing queries to ignore
partitions with older data than the specified window. Our
proposed approach, bounded temporal partitioning (BTP),
creates temporal partitions as with TP, but it also sort-
merges partitions as they grow older. This allows to restrict
the overall number of partitions. We implemented the first
two approaches for Coconut-Tree-Full and ADS-Full, and
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we call them CTreeFullPP, CTreeFullTP, ADS-FullPP, and
ADS-FullTP. We implemented the BTP approach on top
of Coconut-LSM-Full, and we refer to this algorithm as
CLSMFullBTP. We conduct the experiment as in Sect. 6.4
by interleaving batches of insertions with exact queries, but
now each of the queries is an exact sliding window query
over the most recent one million data series. The final data
size after all insertions is 100 GB, and the memory we use is
0.1% of the final data size.

Figures 16 and 18 show the experimental results for the
materialized and non-materialized indexes, respectively. The
PP approach is slowest because it accesses the most data.
We stopped the execution of all the PP methods after 24 h.
The TP approach performs better than PP because it allows
to restrict the search to the most recent temporal partitions.
However, the high number of partitions leads to random I/O
across partitions. Furthermore, TP does not enable effective
pruning within each of the partitions because the search starts
from scratch for each partition, and so it cannot leverage the
lower bounding property of invSAX as effectively to spatially
prune within each of the partition. BTP, on the other hand,
performs best in all cases because it further sort-merges par-
titions to restrict their number and to create large, compact
and contiguous partitions for older data. Thus, this approach
allows us to prune more at older partitions, and it makes the
access patterns to disk less random and more skip sequential
(Figs. 17, 18).

Figures 17 and 19 repeat the experiments as we vary
the sliding window size for the materialized and non-
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Fig. 16 Sliding window experiments with fixed length window (materialized methods)
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Fig. 17 Sliding window experiments with variable length
(materialized methods)

window

materialized indexes, respectively. For this experiment, we
start with 10 GB of data and each insertion batch is 1.4 GB.
We observe that querying takes longer with larger window
sizes as a larger fraction of the data has to be accessed.
In all cases, however, BTP continues to dominate the other
approaches. Overall, this demonstrates that sortable summa-
rizations provide us with more scalable means of analyzing
data at different temporal granularities, an important property
for modern data-heavy streaming applications.

7 Conclusions and future work

In this paper, we show that state-of-the-art data series indexes
do not scale well for massive data sizes in terms of perfor-

(non-materialized methods)

mance for index construction, updating and querying. We
show that the reason is that existing data series summariza-
tions, on top of which these indexes are built, are unsortable.
As aresult, such indexes are constructed and updated through
expensive top-down insertions that create a non-contiguous
index that is expensive to query. To alleviate this problem,
we propose the first sortable data series summarizations,
showing that indexing based on sortable summarizations
optimizes both indexing and querying. We start by creating
and exploring a prefix-based bottom-up indexing algorithm,
which merely solve the problem of data contiguity. We pro-
ceed by exploring median-based split trees, and showing that
this approach outperforms the state of the art for both index
construction and querying time. Among the benefits of the
approach is that the resulting index structure is balanced, pro-
viding guarantees on query execution time. Moreover, we
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Fig. 18 Sliding window experiments with fixed length window (non-materialized methods)
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design the first write-optimized data series index by using
log-structured updates, a technique that is enabled by hav-
ing sortable data series summarizations. Finally, we explore
three approaches for query answering over streaming sets and
we provide an efficient solution in this direction. As future
work, we intend to explore how Coconut can be parallelized,
by exploring parallel UB-Tree index building algorithms.
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