
The VLDB Journal (2019) 28:793–819
https://doi.org/10.1007/s00778-019-00567-8

REGULAR PAPER

A comparative survey of recent natural language interfaces for
databases

Katrin Affolter1 · Kurt Stockinger1 · Abraham Bernstein2

Received: 18 September 2018 / Revised: 17 July 2019 / Accepted: 17 August 2019 / Published online: 28 August 2019
© The Author(s) 2019

Abstract
Over the last few years, natural language interfaces (NLI) for databases have gained significant traction both in academia and
industry. These systems use very different approaches as described in recent survey papers. However, these systems have not
been systematically compared against a set of benchmark questions in order to rigorously evaluate their functionalities and
expressive power. In this paper, we give an overview over 24 recently developed NLIs for databases. Each of the systems
is evaluated using a curated list of ten sample questions to show their strengths and weaknesses. We categorize the NLIs
into four groups based on the methodology they are using: keyword-, pattern-, parsing- and grammar-based NLI. Overall,
we learned that keyword-based systems are enough to answer simple questions. To solve more complex questions involving
subqueries, the system needs to apply some sort of parsing to identify structural dependencies. Grammar-based systems
are overall the most powerful ones, but are highly dependent on their manually designed rules. In addition to providing a
systematic analysis of the major systems, we derive lessons learned that are vital for designing NLIs that can answer a wide
range of user questions.

Keywords Natural language interfaces · Query processing · Survey

1 Introduction

Living in a digital age, the global amount of data generated
is increasing rapidly. A good part of this data is (semi-
)structured and stored in some kind of database, which is
usually accessed using query languages such as SQL or
SPARQL. Structured query languages, however, are diffi-
cult to understand for non-experts. Even though SQL was
initially developed to be used by business people, reality
shows that even technically skilled users often experience
problems putting together correct queries [8], because the
user is required to know the exact schema of the databases,
the roles of various entities in the query and the precise join
paths to be followed. Non-technical (or casual) users are usu-
ally overwhelmed by the technical hurdles of formal query
languages.

B Kurt Stockinger
Kurt.Stockinger@zhaw.ch

1 Zurich University of Applied Sciences, Winterthur,
Switzerland

2 University of Zurich, Zurich, Switzerland

One often-mentioned approach to facilitate database
querying even for casual users is the use of natural lan-
guage interfaces (NLI) for databases. These allow users to
access information stored in databases by typing questions
expressed in natural language [24]. Some NLIs restrict the
use of the natural language to a sub-language of the domain
or to a natural language restricted (and sometimes controlled)
by grammatical constraints. For example, SODA [6] is based
on English keywords, ATHENA [48] handles full sentences
in English, and Ginseng [5] strictly guides the user to a cor-
rect full sentence in English. If users want to find all movies
with the actor Brad Pitt, for instance, the input question in
the different systems could be as follows:

SODA: movie Brad Pitt
ATHENA: Show me all movies with the
actor Brad Pitt.
Ginseng: What are the movies with the
actor Brad Pitt?

Depending on the database schema, the corresponding SQL
statement might be as follows:

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00567-8&domain=pdf

794 K. Affolter et al.

SELECT m.title FROM Movie m
JOIN Starring s ON s.movieId

= m.id
JOIN Actor a ON a.actorId

= s.actorId
JOIN Person p ON p.id

= a.actorId
WHERE p.FirstName = "Brad"

AND p.LastName = "Pitt"

As we can see in this example, the users of NLIs do not
have to know the underlying structure or query language to
formulate the question in English.

Critiques of NLIs often highlight that natural language is
claimed to be too verbose and too ambiguous. If it were pos-
sible to identify the different types of linguistic problems,
then the system could support the user better, for example,
with a clarification dialog. This would not only help the NLI
to translate the natural language question into a formal query
language, but would also assist the users in formulating cor-
rect queries. For example, if the users ask a question like ‘all
movies from Columbia Pictures or 20th Century Fox,’ the
system should ask for clarification of the ambiguous token
‘Columbia’ which can be either a location or a movie com-
pany (as part of the bi-gram ‘Columbia Pictures’). If the users
choose movie company, then the system could directly sug-
gest that ‘20th Century Fox’ is also a movie company and
not the concept for films from 1900 until 1999.

Additionally, natural language is not only ambiguous on
word level, but there can be also multiple interpretations of
the meaning of a sentence. In the example input question ‘all
cinemas in cities with parking lots’ the constraint ‘with park-
ing lots’ can either refer to the cinemas or to the cities. Both
interpretations are grammatically correct, but probably the
intent is to find cinemas with a parking area. In some cases,
like ‘all cinemas in cities with love seats’ there is only one
interpretation valid on the data set: only cinemas can have a
constraint on ‘love seats,’ even if it would be grammatically
correct for cities. Therefore, anNLI should first check if mul-
tiple interpretations exist. Next, it should verify if they can
be applied on the dataset. If there are still multiple interpre-
tations left, the users should have the possibility to choose
the most relevant one.

The above-mentioned examples are only some of the lin-
guistic problems that NLIs must deal with. Furthermore,
users are not perfect and tend to make mistakes. These range
from spelling errors to the use of colloquial language, which
includes syntactically ill-formed input. These examples do,
however, highlight that precisely understanding the expres-
siveness of questions that an NLI is able to interpret is of
paramount importance both for developers and users ofNLIs.
To address this need, this paper makes the following contri-
butions:

– We provide an overview of recent NLI systems compar-
ing and analyzing them based on their expressive power.

– Existing papers often use different data sets and evalua-
tion metrics based on precision and recall, while others
perform user studies to evaluate the system (see Sect. 5
for details). Given this heterogeneity of evaluations, it
is very hard to directly compare these systems. Hence,
we propose a set of sample questions of increasing com-
plexity as well as an associated domain model aiming at
testing the expressive power of NLIs.

– The paper serves as a guide for researchers and practi-
tioners, who want to give natural language access to their
databases.

To help the reader understand the differences between cur-
rent NLIs, in Sect. 2, we first describe a sample world, which
we use as an example running consistently through the paper,
in order to evaluate and benchmark the systems. This is dif-
ferent to previous surveys on NLIs [20,37,43,44,49], where
the systems are only summarized or categorized. Based on
our sample world, we introduce ten representative sample
questions of increasing expressive complexity and illustrate
their representativeness using question-answering corpora.
These questions are used to compare the NLIs and highlight
the various difficulties the NLIs face. In Sect. 3, we give a
brief overview of the most important technology for natural
language processing and discuss the limitations of our evalu-
ation in Sect. 4. The sample world and the questions are then
used in Sect. 5 to explain the process of translating from nat-
ural language questions to a formal query language for each
NLI surveyed. We provide a systematic analysis of the major
systems used in academia (Sect. 6.1) as well as three major
commercial systems (Sect. 6.2). In Sect. 7, we discuss newer
developments of NLIs based on machine learning. Note that
these systems are not the main focus of the paper but serve
more as a brief insight into new research avenues. Finally,
we derive lessons learned that are vital for designing NLIs
that can answer a wide range of user questions (Sect. 8).

Note that the detailed evaluation of the systems in Sect. 6
omits the approaches based on machine learning. The ratio-
nale for this is twofold. First, the functionality of themachine
learning-based approaches is heavily dependent on the train-
ing data. Most papers present a system trained with some
dataset and then show the capabilities of the system in the
context of that training. We found no exploration of the gen-
eral capabilities or robustness of a given approach when
varying the input data. Hence, but is difficult to say if these
systems could cover all requirements when given suitable
training data or not. Second, little is known how domain-
dependent those systems are on the training data. Usually,
they require a lot of training examplesmaking the comparison
to the other systems—that mainly require some metadata—
difficult. We, hence, concluded that the categorization of the

123

A comparative survey of recent natural language interfaces for databases 795

Fig. 1 Ontology of the sample world ‘movie database’

capability of these systems is an open problem that needs to
be addressed in its own survey.

2 Foundation: a sample world

In this section, we present a small sample world that serves
as the basis for analyzing different NLIs. We first introduce
the database schema (Sect. 2.1) and afterward discuss ten
input questions of increasing complexity that pose differ-
ent challenges to NLIs (Sect. 2.2). Finally, we will perform
an analysis of different question-answering corpora to better
understand what types of questions real users pose and how
we can map them to our ten input questions. Our analysis in
Sect. 2.3 indicates that our ten sample questions represent
a large range of questions typically queried in question-
answering systems.

2.1 Database ontology

The sample world is a small movie database inspired by
IMDB1 and extended with hierarchical relationships and
semantic concepts. Figure 1 visualizes the ontology of the
sample world, which consists of movies, persons and their
relationships employing an entity-relation diagram. A per-
son can be an actor, a writer and/or a director. For movies,
information about starring actors, writers and directors is
stored. Each movie has a title, a release date, a rating (float),
a budget (bigint) and the original language. It can also have

1 https://www.imdb.com/.

Fig. 2 Part of the knowledge graph representing the sample world
‘movie database’

multiple genres and multiple gross profits for different coun-
tries. Furthermore, there are three concepts—bad, good and
great movie—defined, all depending on the rating of the
movies. Elements with solid lines correspond to the schema
of the underlying database. The entries in the database will
be called base data. The concepts and the schema are the
metadata. To improve performance, many NLIs implement
inverted indices over literal values such as strings (both from
the base and metadata). Elements with dotted lines corre-
spond to (possibly derived) concepts, which are only defined
in the ontology.

Another possible representation of the data would be as a
knowledge graph. The core concepts of a knowledge graph
are the entities and their relationships. Figure 2 visualizes a
part of the sample world as a knowledge graph. Concepts can
be directly included in the knowledge graph. For example,
the movie ‘Inglourious Basterds’ has a link to the concept
‘great movie.’

2.2 Input questions

Toexplain the differentNLIs andhighlight their strengths and
weaknesses, input questions are necessary.NLIs are designed
to help non-tech users to formulate formal queries using nat-
ural language. The design of our questions is inspired by
Turing Award Winner Jim Gray who designed 20 challeng-
ing questions of increasing complexity that were used as the
yard stick for evaluating large-scale astrophysics databases
[55]. This methodology of designing questions of increas-
ing complexity also served as the basis for the evaluation of
SODA [6] and the ten sample questions of this paper.

Therefore, we designed nine questions based on the
operators of SQL and SPARQL: Joins, Filters (string,
range,date or negation),Aggregations,Ordering,Union and
Subqueries.

Furthermore, we added a question which is based on a
concept (e.g., ‘great movie’). Concepts are not part of SQL
and SPARQL, but a common addition ofNLIs. Table 1 shows

123

https://www.imdb.com/

796 K. Affolter et al.

Table 1 Ten sample input
questions based on
SQL/SPARQL operators that are
answerable on the sample world.
(Join; Filter (string, range, date
or negation); Aggregation;
Ordering; Union; Subquery;
Concept)

Natural language question Challenges

Q1 Who is the director of ‘Inglourious Basterds’? J, F(s)

Q2 All movies with a rating higher than 9. J, F(r)

Q3 All movies starring Brad Pitt from 2000 until 2010. J, F(d)

Q4 Which movie has grossed most? J, O

Q5 Show me all drama and comedy movies. J, U

Q6 List all great movies. C

Q7 What was the best movie of each genre? J, A

Q8 List all non-Japanese horror movies. J, F(n)

Q9 All movies with rating higher than the rating of ‘Sin City’. J, S

Q10 All movies with the same genres as ‘Sin City’. J, 2xS

those ten full sentence questions in English, which can be
applied on the sample world (ordered roughly by difficulty).

The queries were designed in such a way that they cover
a wide range of SQL functionality (technical challenge) as
well as linguistic variations (semantic challenge). We will
now analyze each of these ten queries in more detail and
describe the major challenges for the underlying system to
solve them.

The first question (Q1) is a join over different tables
(Person, Director, Directing and Movie) with
an ISA-relationship between the tables Person and Di-
rector. Moreover, the query has a filter on the attribute
Movie.Title, which has to be equal to ‘Inglourious Bas-
terds.’ Therefore, the system faces three different challenges:
(a) identify the bridge table Directing to link the tables
Director and Movie, (b) identify the hierarchical struc-
ture (ISA-relationship) between Director and Person
and (c) identify ‘Inglourious Basterds’ as a filter phrase for
Movie.Title.

The second question (Q2) is based on a single table
(Movie) with a range filter. The challenge for the NLIs is to
translate ‘higher than’ into a comparison operator ‘greater
than.’

The third question (Q3) is a join over four tables (Person,
Actor, Starring and Movie) and includes two fil-
ters: (a) a filter on the attribute Person.FirstName and
Person.LastName and (b) a two-sided date range filter
on the attribute Movie.ReleaseDate. The challenge in
this query (compared to the previous ones) is the date range
filter. The system needs to detect that ‘from 2000 until 2010’
refers to a range filter and that the numbers need to be trans-
lated into the dates 2000-01-01 and 2010-12-31.

The fourth question (Q4) is a join over two tables (Movie
and Gross). In addition, an aggregation on the attribute
Gross.Gross and grouping on the attributeMovie.id or
ordering the result based on Gross.Gross is needed. For
both approaches, an aggregation to a single result (indicated
by the keyword ‘most’) is requested.

The fifth question (Q5) is a join over two tables (Movie
and Genre). The query can either be interpreted as ‘movies
that have both genres’ (intersection) or ‘movie with at least
one of those genres’ (union). The expected answer is based
on the union interpretation, which can be solved with two
filters that are concatenated with an OR on the attribute
Genre.Genre.

The sixth question (Q6) needs the definition of concepts.
In the sample world, the concept ‘great movie’ is defined
as a movie with a rating greater or equal 8. If the system is
capable of concepts, then it needs to detect the concept and
translate it accordingly to the definition.

The seventh question (Q7) is a join over two tables
(Movie and Genre) with an aggregation. The challenges
are to (a) identify thegroupingby the attributeGenre.Genre
and (b) translate the token ‘best’ to a maximum aggregation
on the attribute Movie.Rating.

The eighth question (Q8) is a join over two tables
(Movie and Genre) with a negation on the attribute
Movie.OriginalLang and a filter on the attribute
Genre.Genre. The challenge in this question is to identify
the negation ‘non-Japanese.’ Another possible input ques-
tion with a negation over a larger movie database, would be
‘All actors without an Oscar.’ Here again, the challenge is
to identify ‘without’ as a keyword for the negation.

The ninth question (Q9) is based on a single table (Movie)
and includes a subquery. The challenge in this question is to
divide it in two steps: first select the rating of the movie
‘Sin City’ and then use this SQL statement as a subquery
to compare with the ranking of every other movie in the
database.

The tenth question (Q10) is a join over two tables (Movie
and Genre). One possible solution would include two not
exist: the first one verifies for each movie that there exist
no other genres as the genres of ‘Sin City.’ The second one
verifies for each movie that it has no genre, which ‘Sin City’
does not have. For example, themovie ‘Sin City’ has the genre
‘Thriller,’ the movie ‘Mission: Impossible’ has the genres

123

A comparative survey of recent natural language interfaces for databases 797

‘Thriller’ and ‘Action.’ The first not exist will check
if ‘Mission: Impossible’ has the genre ‘Thriller’ from ‘Sin
City’ which is true. The second not exist checks if ‘Sin
City’ has the genres ‘Thriller’ and ‘Action’ (from ‘Mission:
Impossible’), which is false.

2.3 Question analysis

In this section, we perform an analysis comparing our ten
sample input questions with the two well-known question-
answering corpora Yahoo! QA Corpus L62 (more than 4
million questionswithin a user community) andGeoData250
[56] (250 questions against a database). We also summa-
rize the findings of Bonifati et al. [7] and compare them
to our input questions. The goal of the analysis is to bet-
ter understand what types of questions users pose and how
representative our sample input questions are (i.e., establish
some external validity of their representativeness).

For the Yahoo! Corpus, we decided to only look into the
labeled subset of movie questions since our sample world is
based on movies. Out of these questions related to movies,
we extracted a random sample set of 100 questions. We used
all the GeoData250 Questions. We labeled each of those 350
questions from both sources with Q1 to Q10 based on what
poses the challenge in answering them.

For example, the GeoData250 question ‘give me the cities
in virginia?’ is labeled with Q1, because the challenge of this
question is to identify the right filter (‘virginia’). Thequestion
‘what is a good movie to go see this weekend?’ includes a time
range and is therefore labeled as Q6. For the Yahoo! Corpus,
we also made some assumptions, for example, the question
‘what is your favorite tom hanks movie?’ is interpreted as
‘give me the best ranked tom hanks movie’ and labeled with
Q4. Furthermore, if a question could have multiple labels,
the label of the more difficult (higher number) question is
chosen. For example, the sample question ‘can anyone tell
a good action movie to watch?’ is labeled with Q6 because
it requires handling of a concept (‘good movie’) and not Q1
because it uses a filter (‘action movie’). If the question cannot
be labeled with one of the input questions, we label it with
x.3 For example, the question ‘i want to make a girl mine
but she is more beautiful than me. what can i do now?’ has
nothing to do with movies.

As shown inFig. 3,more than 40%of theYahoo! questions
are based on filtering only, i.e., corresponding to question
Q1. For example, the question ‘what movie had “wonderful
world” by sam cooke at the beginning?’ has filters for the
song ‘wonderful world’ and a join on movie. About 30% of
the questions are labeled with x which are off-topic ques-

2 https://webscope.sandbox.yahoo.com/catalog.php?datatype=l.
3 This label is only needed for the Yahoo! questions, where the topic is
not about movies, even though they were labeled as ’movie’ by Yahoo!

Fig. 3 Mapping of 100 sample questions of Yahoo! QA Corpus L6
(movie) to our ten sample world questions

Fig. 4 Mapping of the GeoQuery250 questions (in percentage) to our
ten sample world questions

tions. There are no questions labeled with Q2; this means
that there are no questions with a numerical range. This can
be explained by the composition of the corpus itself, which
is a collection of questions from users to users. If users ask
about the ranking of a movie, they ask something like ‘what
is your favorite movie?’ and not something similar to Q2.

In Fig. 4, we can see the distribution of question types
for the GeoData250 corpus. About 88% of the questions are
labeled with Q1 or Q4. There are three concepts (‘population
density,’ ‘major city’ and ‘major river’) used in the corpus
that occur in roughly 8% of the questions, 7% of which are
labeledwithQ6. There are no numerical range questions (Q2)
and no date questions (Q3). The latter can be explained by
the dataset not including any dates. There are also no unions
(Q5) and no questions with multiple subqueries (Q10).

Bonifati et al. [7] investigated a large corpus of query
logs from different SPARQL endpoints. The query log files
are from seven different data sources from various domains.
One part of the analysis was done by counting the SPARQL
keywords used in the queries. Over all domains, 88% of
the queries are Select-queries and 40% have Filter.
Furthermore, they found huge differences between different
domains. For example, the use of Filter ranges from 61%
(LinkedGeoData) to 3% (OpenBioMed) or less. This implies
that the distribution of the usage for the question types is
domain-dependent. Nevertheless, our ten sample questions

123

https://webscope.sandbox.yahoo.com/catalog.php?datatype=l

798 K. Affolter et al.

are fully covered in the query log analyzed by Bonifati et al.
[7].

Our analysis indicates that our ten sample questions repre-
sent a large range of questions typically queried in question-
answering systems. Note that open-ended questions—the
ones we labeled as x in the Yahoo! Corpus—are not cov-
ered by our analysis.

3 Background: natural language processing
technologies

In this section,wewill discuss themost commonly used natu-
ral language processing (NLP) technologies that are relevant
for NLIs to databases. In particular, we give a short overview
on handling of stop words and synonyms, tokenization, part
of speech tagging, stemming, lemmatization and parsing.

3.1 Stop word

The term stop word refers to the most common words in a
language. There is no clear definition or official list of stop
words. Depending on the given purpose, any group of words
can be chosen as stop words. For example, search engines
mostly remove function words, like the, is, at and others.
Punctuation marks like dot, comma and semicolon are often
included in the stop word list. For NLIs, stop words can con-
tain invaluable information about the relationship between
different tokens. For example, in the question ‘What was the
best movie of each genre?’ (Q7) the stop words ‘of each’
imply an aggregation on the successive token ‘genre.’ On
the other hand, stop words should not be used for lookups
in the inverted indexes. In the question ‘Who is the director
of “Inglourious Basterds”?’ (Q1), the stop word ‘of ’ would
return a partial match for a lot of movie titles, which are
not related to the movie ‘Inglourious Basterds.’ Therefore,
the NLIs should identify stop words, but not remove them
because they can be useful for certain computations.

3.2 Synonymy

The difficulty of synonymy is that a simple lookup or match-
ing is not enough. For example, the question ‘All movies
starring Brad Pitt from 2000 until 2010.’ (Q3) could also
be phrased as ‘All movies playing Brad Pitt from 2000
until 2010.’ The answer should be the same, but because in
the sample world no element is named ‘playing,’ a lookup
would not find an answer. Therefore, it is necessary that the
system takes synonyms into account. A possible solution is
the use of a translation dictionary. Usually, such a dictionary
is based on DBpedia [34] and/or WordNet [42].

Fig. 5 PoS tags and dependency tree for the sample question Q1 using
Stanford CoreNLP. PoS tags: WP = wh-pronoun; VBZ = verb, third per-
son singular present; DT = determiner; NN = noun, singular or mass; JJ
= adjective; NNS = noun, plural Dependencies: punct = punctuation;
nsubj = nominal subject; cop = copula; det = determiner; nmod =
nominal modifier; case = case marking; amod = adjectival modifier

3.3 Tokenization

Tokenization is used to split an input question into a list of
tokens. It can be as simple as a separator on whitespace, but
more often it is based on multiple rules (e.g., with regular
expressions) or done with ML algorithms. Simple whites-
pace splitting tokenizers are often not good enough if the
input question includes punctuation marks. For example, all
input questions (Q1-10) end either with a question mark or
a period. If the punctuation mark is not separated from the
last word, the NLI would have to search for a match for the
token ‘Basterds”?’ (Q1) instead of ‘Basterds.’Without other
processing, the NLI will not find any full matches. Depend-
ing on the task to solve, part of the tokenization process can
be splitted on punctuation marks or deleting them. Either
way, there are some scenarios to think about. For example,
decimals should neither be split on the punctuation mark nor
should they be removed. Consider the following example
‘All movies with a rating higher than 7.5’ (similar to Q2).
If you remove the dot between 7 and 5, the result would be
completely different. Also other NLP technologies could be
dependent on punctuation marks, for example, dependency
trees.

3.4 Part of speech tagging

A part of speech (PoS) is a category of words with similar
grammatical properties. Almost all languages have the PoS
tags noun and verb. PoS tagging is the process of annotat-
ing each token in a text with the corresponding PoS tag (see
Fig. 5). The tagging is based both on the token itself and its
context. Therefore, it is necessary to first tokenize the text and
identify end-of-sentence punctuation. More advanced NLP
technologies use the information produced by the PoS tag-
ger. For example, both lemmatization and dependency tree
parsing of Stanford CoreNLP [40] have the requirement for
PoS tagging.

3.5 Stemming/lemmatization

The goal of both stemming and lemmatization is to reduce
inflectional and derivationally related forms of a word to a
common base form.

123

A comparative survey of recent natural language interfaces for databases 799

Stemming reduces related words to the same stem (root
formof theword) by removingdifferent endings of thewords.
To achieve that most stemming algorithms refer to a crude
heuristic process that chops off the ends of words. The most
common algorithm for stemming in English is the Porter’s
algorithm [46]. It is based on simple rules that are applied
to the longest suffix. For example, there is a rule ‘ies →
i’ which means that the suffix ‘ies’ will be reduced to ‘i.’
This is needed for words like ‘ponies’ which are reduced to
‘poni.’ In addition, there is a rule ‘y → i’ which ensures
that ’pony’ is also reduced to ‘poni.’ In the sample world,
stemming can be used to ensure that the words ‘directors,’
‘director,’ ‘directing’ and ‘directed’ can be used to find the
table Director, because they are all reduced to the same
stem ‘direct.’ The disadvantage of stemming is that the gener-
ated stem not only consists of words with a similar meaning.
For example, the adjective ‘direct’ would be reduced to
the same stem as ‘director,’ but the meaning differs. An
example question could be ‘Which movie has a direct inter-
action scene between Brad Pitt and Jessica Alba?,’ where
the word ‘direct’ has nothing to do with the director of the
movie. In general, stemming increases recall but harms pre-
cision.

Lemmatization removes inflectional endings and returns
the lemma, which is either the base form of the word or
the dictionary form. To achieve that lemmatization algo-
rithms usually use a vocabulary and morphological analysis
of the words. For example, ‘directors’ and ‘director’ would
both have the lemma ‘director’ but ‘directing’ and ‘directed’
would lead to the verb ‘(to) direct.’ Lemmatization is nor-
mally used together with PoS tagging, which leads to
the distinction between the verb ‘direct’ and the adjective
‘direct.’ Another example would be the question ‘Who wrote
“Inglourious Basterds”?’ where lemmatization can trans-
late the irregular verb ‘wrote’ into ‘write.’ In contrast to
stemming, lemmatization can be improved by using con-
text.

3.6 Parsing

Parsing is the process of analyzing the grammatical structures
(syntax) of a sentence.Usually, the parser is based on context-
free grammar. There are two main directions of how to look
at the syntax: the first main direction, dependency syntax
(Fig. 5), looks at the syntactic structures as relations between
words. Theothermain direction, constituency syntax (Fig. 6),
analyzes not only the words but also more complex entities
(constituents). The information generated through parsing is
traditionally stored as a syntax tree. NLIs can use the infor-
mation on relations found in the syntax tree to generate more
accurate queries.

Fig. 6 Constituency tree for the sample question Q1 using Stanford
CoreNLP

4 Limitations

This survey’s evaluation focuses on the ten sample questions
introduced in Sect. 2.2. Those sample questions are based
on the operators of the formal query languages SQL and
SPARQL. This leads to the following limitations of the eval-
uation.

Limitation 1—Theoretical Our evaluation is theoretical
and only based on the papers. A few systems have online
demos (e.g., SPARKLIS [19]), but others—especially older
ones—are not available any more. Therefore, to handle all
systems equally, we based our evaluation fully on the papers
of the systems.

Our approach is based on the assumption that the papers
contain enough information in order to reproduce the
reported experimental results. Hence, when analyzing the
papers against our ten queries of increasing complexity, we
explicitly checked if these papers contain hints about being
able to answer these specific queries, if their architecture is in
principle able to answer them or if the papers discuss explicit
constraints about not being able to answer the respective
queries. In short, we performed a very systematic approach
of checking each of the 24 papers based on these ten queries.
One potential limitation of our approach is that the actual
implementation of the paper could differ from the descrip-
tion in the paper, and hence some of the results might be
incorrect.

Limitation 2—Computational performance We com-
pletely ignored the computational performance of the sys-
tems. This limitation is based on the different focuses of the
systems. For example, Walter et al. [58] (BELA) propose an
approach to increase the speed and computational efficiency.
Zheng et al. [69] (NLQ/A) and Zenz et al. [68] (QUICK) pro-

123

800 K. Affolter et al.

pose algorithms to optimize the number of user interactions
for solving ambiguity problems.

Limitation 3—Accuracy In our evaluation, we ignored
the accuracy given in the papers. There are multiple rea-
sons for this decision: (a) Depending on the focus of the
system, not all papers include evaluations based on accu-
racy. (b) Different usages of the same metrics, for example,
Saha et al. [48] (ATHENA) only consider questions where
the system could calculate an answer, but Damljanovic et al.
[12] (FREyA) evaluate the system against the same dataset
but based on needed user interactions. (c) The number of
questions in different datasets can be highly different, for
example, GeoData250 consists of 250 questions, Task 2 of
QALD4-4 only of 25. (d) Even if two systems are using the
same dataset, two system can preform different preprocess-
ing, for example, Kaufmann et al. [31] (QUERIX) reduces
the GeoData880 to syntactic patterns instead of all questions.
All those factors make it impossible to directly compare the
systems based on the given evaluation metrics in the paper.

5 Recently developed NLIs

In this section, we will focus on more recent NLIs start-
ing from 2005. We will not discuss about older systems
like BASEBALL [21], LUNAR [64], RENDEZVOUS [9],
LADDER [47], Chat-80 [61], ASK [57] and JANUS [62],
which are often quoted in the research field of NLIs. We
will systematically analyze 24 recently developed systems
in Sects. 5.1–5.4 based on the sample world introduced in
Sect. 2. The main goal is to highlight strengths and weak-
nesses of the different approaches based on a particular
data model and particular questions to be able to directly
compare the systems. The explanation is based on the infor-
mation describing the systems found in the papers. Finally,
in Sect. 6.1, we will evaluate the systems against the sample
questions and give an overall interpretation of the system.

There are different ways to classify NLIs. In this survey,
we divide the NLIs into four main groups based on the tech-
nical approach they use:

1. Keyword-based systems
The core of these systems is the lookup step, where
the systems try to match the given keywords against
an inverted index of the base and metadata. These sys-
tems cannot answer aggregation queries like question
Q7 ‘What was the best movie of each genre?’ The main
advantage of this approach is the simplicity and adapt-
ability.

2. Pattern-based systems
These systems extend the keyword-based systems with

4 http://qald.aksw.org/.

NLP technologies to handle more than keywords and
also add natural language patterns. The patterns can be
domain-independent or domain-dependent. An example
for a domain-independent pattern would be allowing
aggregations with the words ‘by’ or ‘how many.’ A
domain-dependent pattern could for example be a con-
cept like ‘great movie.’

3. Parsing-based systems
These systems parse the input question and use the gen-
erated information about the structure of the question
to understand the grammatical structure. The parse tree
contains a lot of information about single tokens, but
also about how tokens can be grouped together to form
phrases. The main advantage of this approach is that the
semantic meaning can be mapped to certain production
rules (query generation).

4. Grammar-based systems
The core of these systems is a set of rules (grammar) that
define the questions a user can ask the system. The main
advantage of this approach is that the system can give
users natural language suggestions during typing their
questions. Each question that is formalized this way can
be answered by the system.

Table 2 gives an overview of the most representative NLIs
of these four categories that we will discuss in Sects. 5.1–
5.4. The table also shows which kind of query languages the
systems support (e.g., SQL) as well as which NLP technolo-
gies are used. In summary, our approach of systematically
evaluating these systems on a sample world with queries of
increasing complexity enables a better comparison of the dif-
ferent approaches.

In the next subsections, wewill systematically analyze the
systems in more detail.

5.1 Keyword-based systems

The core of keyword-based NLIs is their lookup step. In this
step, the system tries to match the given keywords against
an inverted index of the base and metadata. To identify key-
words in the input question, some systems are using stop
word removal (e.g., NLP-Reduce [32]), others are expecting
only keywords from the users as input (e.g., SODA [6]).

Most questions are easily formulated with keywords.
However, there are some cases where keywords are not
enough to express the intention of the users. For example,
for the question ‘What was the best movie of each genre?’
(Q7), the ‘keyword-only version’ would be something like
‘best movie genre,’ which is more likely to be interpreted as
‘the genre of the best movie.’ If the users would write the
question like ‘best movie by genre,’ a keyword-based NLI
would try to lookup the token ‘by’ in the base and metadata
or classify ‘by’ as a stop word and ignore it.

123

http://qald.aksw.org/

A comparative survey of recent natural language interfaces for databases 801

Table 2 Categorization of the NLIs and the used NLP technologies

✓, using; ▲, partly using; ✗, not using; ?, not documented

In the following, we will summarize seven keyword-
based NLI. We decided to describe SODA [6]—as the first
system—in depth, because it can solve the most of our sam-
ple input questions in this category (see Sect. 2.2). SODA
is an NLI that expects only keywords from the user and can
handle aggregations by using specific non-natural language
templates. Afterward, the other systems are summarized, and
we highlight the difference between them to SODA and each
other.

5.1.1 SODA (Search Over DAta warehouse)

SODA [6] is a system that provides a keyword-based NLI
for relational databases with some extensions in the direc-
tion of a pattern-based system. The base data consists of
the relational database. The metadata can include multiple
ontologies, which are handled like natural language patterns.
For example, domain-specific ontologies with concepts (like
the concept ‘great movie’ in the sample world) or DBpe-
dia to identify homonyms and synonyms. SODA uses both
inverted indexes (base and metadata) as the basis for find-
ing query matches in the data. The key innovation of SODA
is that it provides the possibility to define metadata patterns

which specify conceptual models. The concept ‘good movie’
could depend on various variables not only on the rating, but
for example, also on the number of ratings. The users can
then apply this concept to their input questions, for example,
they could search for ‘all great movie’ (Q6) without having
to specify what a great movie is.

Assuming the userswant to know the director of themovie
‘Inglourious Basterds’ (Q1), the input question for SODA
could be: ‘director Inglourious Basterds.’

SODAusesfive steps to translate this keyword-based input
question into a SQL query. The first step is the lookup: it
checks the keywords against the inverted indexes over the
database and provides all the nodes in the metadata graph
where these keywords are found. For the input question
Q1, this means that the keyword ‘director’ can be found
in the inverted index of the meta data, either the table name
Director or to the attribute name
Director.directorId andDirecting.director-
Id (Fig. 7: red). The keyword ‘Inglourious Basterds’ is
only found in the inverted index of the base data as
a value of the attribute Movie.Title (Fig. 7: green).
This leads to three different solution sets for the next
steps: {Directing.directorId, Movie.Title},

123

802 K. Affolter et al.

Fig. 7 Nodes in the metadata graph corresponding to the keywords
‘director’ (red) and ‘Inglourious Basterds’ (green) found during the
lookup step of SODA (color figure online)

{Director.directorId, Movie.Title} and
{Director, Movie.Title}.

The second step is to assign a score to each solu-
tion of the lookup step. SODA uses a simple heuristic
method, for example, in-domain solutions receive a higher
score. For the input question, the solution {Director,
Movie.Title} receives the highest score, because the
table name Director is a full match and not only a fuzzy
match like indirectorId. Afterward, only the best n solu-
tions are provided to the next step.

The third step identifies which tables are used for each of
the solutions provided by the previous step. Also, the rela-
tionships and inheritance structures between those tables are
discovered in this step. For the best solution of the input
question, the tables Director and Movie correspond to
the different entry points. An entry point is a node in the
metadata graph. The table Director is a child of the table
Person (ISA-relationship). Therefore, SODA includes the
table Per-son in the solution. To link the table Movie to
the other two tables, it is necessary to add more tables to the
solution. The closest link is through the table Directing
(see Fig. 7), and therefore this table is included.

The fourth step collects the filters. There are two types
of filters which are collected. The first one are filters in the
input question like ‘Inglourious Basterds.’ The second one
are filter conditions that occur during traversing the metadata
graph like the concept ‘great movie.’

The fifth and last step generates a reasonable and exe-
cutable SQL query from the information collected in the
previous steps. A reasonable SQL query is a query which
considers foreignkeys and inheritancepatterns in the schema.
An executable SQL query is a query that can be executed on
the underlying database.

The strengths of SODA are the use of metadata patterns
and domain ontologies, which allow one to define concepts
and include domain-specific knowledge. In addition, the
inclusion of external sources like DBpedia for homonyms
and synonyms is beneficial for finding meaningful results.
Furthermore, SODA is designed to evolve and thus improve
over time based on user feedback.

The weaknesses of SODA are that it uses simple word
recognition for comparison operators. For example, to
retrieve all movies with a rating greater than 9, the input
question needs to bewritten like ‘rating> 9’ (Q2).Moreover,
SODAuses a very strict syntax for aggregation operators. For
example, to retrieve the number of movies per year, the input
question needs to be written like ‘select count (movie) group

by (year).’ These patterns are useful, but are not in natural
language. Furthermore, there is no lemmatization, stemming
or any other preprocessing of the input question which can
lead to a problem with words that are used in plural. For
example the input question ‘all movies’ would not detect the
tableMovie but the input question ’all movie’ would display
the expected result.

Blunschi et al. [6] suggest extending SODA to handle
temporal aspects of the data warehouse (e.g., bi-temporal
historization). They also pointed out that the GUI of SODA
should be improved so that the users are engaged in selecting
and ranking the different results. Furthermore, the user feed-
back provided by SODA is currently very basic and needs to
be improved.

5.1.2 NLP-reduce

NLP-Reduce [32] uses a few simple NLP technologies to
‘reduce’ the input tokens before the lookup in the Knowl-
edge Base (KB) based on RDF. The system takes the input
question, reduces it to keywords, translates it into SPARQL
to query the KB and then returns the result to the user.

In contrast to SODA, NLP-Reduce uses not only syn-
onyms but also two other NLP technologies: (a) stop words
and punctuation marks removal and (b) stemming. With the
removal of stop words and punctuation marks, NLP-Reduce
is able to answer some fragment and full sentence questions.
NLP-Reduce still cannot answer questions with aggregations
like ‘What was the best movie of each genre?’ (Q7), because
it will remove the token ‘of each’ as a stop word. Further-
more, stemminghelps the user to formulate questions like ‘all
movies’ which is more natural than ‘all movie’ for SODA.

After reducing the input question, NLP-Reduce has sim-
ilar steps to SODA: (1) search for triples in the RDF graph
(similar to base andmetadata), where at least one of the ques-
tion tokens occurs and rank the found triples, (2) search for
properties that can be joined with the triples found in the pre-
vious step by the remaining question tokens, (3) search for
datatype property values that match the remaining question
tokens and (4) generate corresponding SPARQL query.

Compared to SODA, the strength of NLP-Reduce is the
reduction in the input question such that non-keyword input
questions can be answered. Besides the overall weakness
of keyword-based NLIs, NLP-Reduce is not able to answer
comparison questions like Q2.

5.1.3 Précis

Précis [51] is a keyword-based NLI for relational databases,
which supports multiple terms combined through the opera-
tors AND, OR and NOT. For example, input question ‘Show
me all drama and comedy movies.’ (Q5) would be formulated
as ‘“drama” OR “comedy”.’ The answer is an entire multi-

123

A comparative survey of recent natural language interfaces for databases 803

relation database, which is a logical subset of the original
database.

First, Précis transforms the input question into disjunct
normal form (DNF). Afterward, each term in the DNF is
looked up in the inverted index of the base data. This is differ-
ent to SODA,where the inverted index includes themetadata.
If a term cannot be found, the next steps are not executed.
The third step creates the schema of the logical database sub-
set, which represents the answer of the input question. This
includes the identification of the necessary join paths.

The strength of Précis is the ability to use brackets, AND,
OR and NOT to define the input question. However, the
weaknesses are that this again composes a logical query lan-
guage, although a simpler one. Furthermore, it can only solve
Boolean questions, and the input question can only consist of
terms which are located in the base data and not in the meta-
data. For example, the input question ‘Who is the director
of “Inglourious Basterds”?’ (Q1) cannot directly be solved
because ‘director’ is the name of a table and therefore part
of the metadata. There is a mechanism included that adds
more information to the answer (e.g., the actors, directors
etc., to a movie), but then the user would have to search for
the director in the answer.

5.1.4 QUICK (QUery Intent Constructor for Keywords)

QUICK [68] is anNLI that adds the expressiveness of seman-
tic queries to the convenience of keyword-based search. To
achieve this, the users start with a keyword question and then
are guided through the process of incremental refinement
steps to select the question’s intention. The system provides
the user with an interface that shows the semantic queries as
graphs as well as textual form.

In a first step, QUICK takes the keywords of the input
question and compares them against the KB. Each possible
interpretation corresponds to a semantic query. For example,
the input question ‘Brad Pitt’ can either mean ‘movies where
Brad Pitt played in,’ ‘movies directed by Brad Pitt’ or ‘movies
written by Brad Pitt’ (see Fig. 1). In the next step, the system
provides the users with the information in such a way that
they can select the semantic query which will answer their
question. To do so, QUICK provides the users with possible
interpretations of each keyword to select from. This is done
with a graph as well as a textual form of the semantic query.
The textual form is a translation of the SQLquery into natural
language based on templates. Furthermore, the system orders
the keywords in such a way that the user interactions are as
few as possible. When the users select the desired semantic
query, QUICK executes it and displays the results in the user
interface.

The strength of QUICK is the user interaction interface
with the optimization for minimal user interaction during the

semantic query selection. The weakness of QUICK is that it
is limited to acyclic conjunctions of triple patterns.

5.1.5 QUEST (QUEry generator for STructured sources)

QUEST [4] is a keyword-based NLI to translate input ques-
tions into SQL. It combines semantic and statistical ML
techniques for the translation.

The first step is to determine how the keywords in the input
question correspond to elements of the database (lookup). In
contrast to SODA, QUEST uses two Hidden Markov Mod-
els (HMM) to choose the relevant elements (ranking). The
first HMM is a set of heuristic rules. The second HMM is
trained with user feedback. The next step is to identify the
possible join paths to connect all the relevant elements from
the previous step. QUEST selects the most informative join
paths (similar to SODA’s step 4). The most informative join
paths are those that contain tuples in the database. In the third
step, QUEST decides which combination of keyword map-
ping and join path most likely represents the semantics the
users had in mind when formulating the keyword question.

The strength of QUEST is the combination of user feed-
back and a set of heuristic rules during the ranking. This
allows the system to learn from the users over time. A weak-
ness of QUEST is that it is not able to handle concepts such
as ‘good movie.’

5.1.6 SINA

SINA [50] is a keyword-based NLI that transforms natural
language input questions into conjunctive SPARQL queries.
It uses aHidden Markov Model to determine themost suitable
resource for a given input question from different datasets.

In the first step, SINA reduces the input question to
keywords (similar to NLP-Reduce), by using tokenization,
lemmatization and stop word removal. In the next step, the
keywords are grouped into segments, with respect to the
available resources. For example, the keywords ‘Inglourious’
and ‘Basterds’ would be grouped into one segment based on
the match for ‘Inglorious Basterds.’ In the third step, the
relevant resources are retrieved based on string matching
between the segments and the RDF label of the resource. In
the following step, the best subset of resources for the given
input question is determined (ranking). The fifth step, SINA
constructs the SPARQL query using the graph-structure of
the database. Finally, the results, retrieved by evaluating the
generated SPARQL query, are shown to the users.

The biggest weakness of SINA is that it can only translate
into conjunctive SPARQL queries, which reduce the number
of answerable questions.

123

804 K. Affolter et al.

5.1.7 Aqqu

Aqqu [2] is an NLI which uses templates to identify possible
relations between keywords. At the end of the translation
process, ML is used to rank the possible solutions.

To translate the input question into SPARQL, first the enti-
ties from the KB that match (possibly overlapping) parts of
the input question are identified. The possible parts are iden-
tified by using PoS tags. For example, single token parts
must be a noun (NN) and proper nouns (NNP) are not allowed
to be split (e.g., ‘Brad Pitt’). In the next step, Aqqu uses
three different templates which define the general relation-
ship between the keywords. Afterward, Aqqu tries to identify
the corresponding relationship. This can either be done with
the help of the input question (verbs and adjectives), or with
the help of ML which for example can identify abstract rela-
tionship like ‘born → birth date.’ The last step is the ranking
which is solvedwithML. The best result is achieved by using
a binary random forest classifier.

The strength of Aqqu is the identification of abstract rela-
tionships. The weakness is the limitation of a keyword-based
NLI.

5.2 Pattern-based systems

Pattern-based NLIs are an extension of keyword-based sys-
tems with natural language patterns to answer more complex
questions like concepts (Q6) or aggregations (Q7). For exam-
ple, the question ‘What was the best movie of each genre?’
(Q7) cannot be formulated with keywords only. It needs at
least some linking phrase between ‘best movie’ and ‘genre,’
which indicates the aggregation. This could be done with the
non-keyword token (trigger word) ‘by’ for the aggregation,
which will indicate that the right side includes the keywords
for the group by-clause and the left side the keywords for
the select-clause. The difficulty with trigger words is to
find every possible synonym allowed by natural language.
For example, an aggregation could be implied with the word
‘by’ but also ‘of each’ (compare Q7).

In the following, we summarize two pattern-based NLIs.
We decided to describe NLQ/A [69] in depth, because it is
based on the idea that the errors made by NLP technologies
are not worth the gain of information. Instead, the system
is highly dependent on the users’ input to solve ambiguity
problems, and therefore it focuses on the optimization of the
user interaction.

5.2.1 NLQ/A

NLQ/A [69] is an NLI to query a knowledge graph. The sys-
tem is based on a new approach without NLP technologies
like parsers or PoS taggers. The idea being that the errors
made by these technologies are not worth the gain of infor-

mation. For example, a parse tree helps for certain questions
like subqueries (e.g., Q9), but if the parse tree is wrong, the
system will fail to translate even simpler questions. Instead,
NLQ/A lets the users resolve all ambiguity problems, also
those which could be solved with PoS tagging or parse trees.
To avoid needing too many interaction steps, NLQ/A pro-
vides an efficient greedy approach for the interaction process.

Assuming the userswant to know the director of themovie
‘Inglourious Basterds’ (Q1), the input question could be:
‘Who is the director of “Inglourious Basterds”?.’

NLQ/A use four steps to answer the input question. The
first step is to detect the phrases of the input question. In
general, the phrases can be categorized into two types: inde-
pendent and dependent phrases. Independent phrases are
identified with a phrase dictionary. The dictionary consists
of variables, aggregations, operators,modifiers andquantifier
phrases. To detect dependent phrases, most stop words are
removed (simplified input question). Some types of words
like prepositions are still needed and therefore kept. Next
1:n-grams are generated. Phrases starting with prepositions
are discarded. After stop word removal, the input question
Q1 would become ‘director of Inglourious Basterds.’ If n is
set to 2, the extracted phrases would be: {‘director,’ ‘direc-
tor of,’ ‘Inglourious,’ ‘Inglourious Basterds,’ ‘Basterds.’}
Next, the phrases are extended according to a synonym dic-
tionary. For example if there is a phrase ‘starring,’ it would be
extended with the phrase ‘playing.’ Those extended phrases
are mapped to the knowledge graph based on the string sim-
ilarity (edit distance). For one extended phrase, there can be
multiple candidate mappings.

The next step takes the candidate mappings and tries to
find the true meaning of the input question with the help
of the users. To reduce the amount of interactions for the
user, a phrase dependency graph (PDG) is proposed. The
PDG consists of two parts: (PDG1) a graph where each node
represents a phrase, two phrases are connected if they share
at least one common token and (PDG2) a subgraph of the
knowledge graph consisting of the candidates where each
node represents a candidate, two nodes are connected if they
are adjacent in the knowledge graph. The two parts are con-
nectedwith edges, representing themappingbetweenphrases
and candidates (see Fig. 8).

In the third step, the users get involved to solve the ambi-
guity given in the PDG. In order to reduce the necessary user
interactions, the NLI tries to find those edges which resolve
the most ambiguities (similar to the idea of QUICK).

The last step takes the selected candidates and tries to con-
nect them into one graph. The connected graph will include
the answer to the question. Groups of already connected can-
didates in the PDG2 are called query fragments. In Fig. 8,
the candidates ‘director-Of ’ and ‘Inglourious Basterds’ are
one query fragment. For each query fragment, the system
tries to find the path with the highest similarity to the sim-

123

A comparative survey of recent natural language interfaces for databases 805

Fig. 8 Phrase dependency graph (PDG) for the input question ‘Who
is the director of “Inglourious Basterds”?.’ (PDG1: input question;
PDG2: knowledge graph)

Fig. 9 Answer graph generated for the input question ‘Who is the direc-
tor of “Inglourious Basterds”?’ based on the selected candidates (blue)
(color figure online)

plified input question. For the input question Q1, if the users
select ‘Director’ as candidate in step 3, the system would
find the path as shown in Fig. 9. ‘Inglourious Basterds’ is
also a candidate, but not selected by the users because there
is no ambiguity to solve.

The strengths of this NLI are the simplicity and the effi-
cient user interaction process. The simplicity allows easy
adaption on newknowledge graphs and togetherwith the user
interaction process it overcomes the difficulties of ambiguity.

The weakness of this system is that usually more than
one user interaction is needed to resolve ambiguities, in the
experiments the average number of interactions was three
[69].

5.2.2 QuestIO (QUESTion-based Interface to Ontologies)

QuestIO [11] is an NLI to query ontologies using uncon-
strained natural language. It automatically extracts human-
understandable lexicalization from the ontology. Therefore,
the quality of the semantic information in the ontology has to
be very high to contain enough human-understandable labels
and/or descriptions. For example, the attribute
Movie.Release-Date would be extracted as ‘Release
Date,’ which is a human-understandable label. In con-
trast, the attribute Movie.OriginalLang would result
in ‘Original Lang,’ where the token ‘Lang’ is a shortened
version for ‘Language’ and is not human-understandable.

QuestIO translates the input question with three steps: In
the first step, the key concept identification tool identifies all
tokens which refer to mentions of ontology resources such
as instances, classes, properties or property values. This is
similar to the dependent phrases of NLQ/A. In the next step,

the context collector identifies patterns (e.g., key phrases like
‘how many’) in the remaining tokens that help the system
to understand the query (similar to independent phrases of
NLQ/A). The last step identifies relationships between the
ontology resources collected during the previous steps and
formulates the corresponding formal query. After executing
the query, it will be sent to the result formatter to display the
result in an user-friendly manner.

The automatic extraction of semantic information out of
the ontology is both a strength and a weakness of Ques-
tIO. It is highly dependent on the development of the
human-understandable labels and descriptions, without them
QuestIO will not be able to match the input questions to the
automatic extracted information.

5.3 Parsing-based systems

Parsing-based NLIs are going a step further than previously
discussed systems: they parse the input question and use
the information generated about the structure of the ques-
tion to understand the grammatical structure. For example,
the grammatical structure can be used to identify the depen-
dencies given by the trigger word ‘by’ in a question. This
is needed for long-range dependencies which cannot be
caught with simple natural language patterns. Furthermore,
the dependency parser can help to handle the difficulty of ver-
boseness. For example, the nominal modifier (nmod) could
be used to identify aggregations.

In the following, we summarize eight parsing-basedNLIs.
We decided to describe ATHENA [48] in depth, because it
can answer the most of the sample input questions. Fur-
thermore, ATHENA uses the most NLP technologies, and
the authors describe all the steps in depth. Afterward, the
other systems are summarized, and we highlight the delta to
ATHENA and previous systems.

5.3.1 ATHENA

ATHENA [48] is an ontology-driven NLI for relational
databases, which handles full sentences in English as the
input question. For ATHENA, ontology-driven means that it
is based on the information of a given ontology and needs
mapping between an ontology and a relational database. A
set of synonyms can be associated with each ontology ele-
ment. During the translation of an input question into a SQL
query, ATHENA uses an intermediate query language before
subsequently translating it into SQL.

Assuming the userswant to know the director of themovie
‘Inglourious Basterds’ (Q1), the input question for ATHENA
could be: ‘Who is the director of “Inglourious Basterds”?.’

ATHENA uses four steps to translate a full sentence input
question into a SQL query. In the first step, the ontology

123

806 K. Affolter et al.

Fig. 10 Matches found by ATHENA with the ontology evidence
annotator for the input question ‘Who is the director of “Inglourious
Basterds”?’ (color figure online)

evidence annotator is used, which maps the input to a set of
ontology elements. There are five types of possible matches:

a. metadata: Finding a match in the inverted index for the
metadata (and the associated set of synonyms). Longer
matches over the input question are preferred if there are
multiple matches.

b. translation index: The translation index is an exten-
sion of the inverted index over the base data, which is
enriched with variations for person and company names.
For example, for the person name ‘Brad Pitt,’ therewould
also be an entry ‘B. Pitt.’

c. time range expressions: Finding all time ranges like ‘from
2000 until 2010’ (Q5) with the TIMEX annotator. Those
time ranges are then matched to the ontology properties
with the corresponding data type.

d. numeric expressions: Finding all tokens that include
numeric quantities with the Stanford Numeric Expres-
sions annotator. The numeric quantities can be either in
the form of numbers (e.g., 9) or in text form (e.g., nine).
Those numeric expressions are thenmatched to the ontol-
ogy properties with the corresponding datatype.

e. dependencies: Annotating dependencies between tokens
in the input question. For example, in the input question
Q1, there is a dependency between the tokens ‘director’
and ‘Inglourious Basterds’ indicated by the token ‘of.’

For the input question Q1, the metadata annotation will
detect three different matches for ‘director,’ namely the table
name Director and the attribute name
Director.directorId andDirecting.director-
Id (Fig. 10: red). The translation index will find a match
for the bi-gram ‘Inglourious Basterds,’ corresponding to the
attribute Movie.Title (Fig. 10: green).

The next step generates a ranked list of interpreta-
tions. An interpretation is a set of ontology elements
provided by the previous step. If n ontology elements
exist for one token, there will also be n different inter-
pretations, one for each ontology element. For the given
input question, there are three different interpretations
possible: {Directing.directorId,Movie.Title},
{Director.directorId, Movie.Title} and
{Director, Movie.Title}. Each interpretation is rep-
resented by a set of interpretation trees.An interpretation tree
(iTree) is a subtree of the ontology. Each iTree must satisfy:

a. evidence cover: All tokens, which were annotated in the
previous step, need to be covered.

b. weak connectedness: All concepts need to be at least
weakly connected through an undirected path and each
property must be connected to its corresponding concept.
For the first interpretation this means that Director
and Movie need to be connected, for example, via the
relation Directing. The attribute Title needs to be
connected with the corresponding concept (in this case
the table) Movie.

c. inheritance constraint: No ontology element is allowed
to inherit from its child concepts. For example, the ontol-
ogy element Person is not allowed to inherit Role of
Actor. The other direction is allowed, such that Actor
inherits FirstName and LastName from Person.

d. relationship constraint: All relationships given in the
input question are included, not depending on the
direction of the path. For example, the tree tokens
‘movies,’ ‘starring’ and ‘Brad Pitt’ (Q5) imply a relation-
ship constraint between the ontology element Movie,
Starring and Person. Those three ontology ele-
ments need to be connected. Accordingly, in this exam-
ple, the ontology element Actor needs to be included.

For the purpose of ranking the different interpretations,
ATHENA generates one single iTree. It can consist of
a union of multiple iTrees or a single iTree. Figure 11
shows a possible iTree for the interpretation {Director,
Movie.Title}, which is extended with the ontology ele-
ment Directing and Movie. After this step, for each
interpretation only one iTree is left.

The third step uses the ranked list of interpretations to
generate an intermediate query in the Ontology Query Lan-
guage (OQL). OQLwas specifically developed forATHENA
to be an intermediate language between the input question
and SQL and is able to express queries that include aggrega-
tions, unions and single nested subqueries. The structure of
an OQL query is similar to SQL and is generated as follows:

a. from clause: Specifies all concepts found in the ontology
alongwith their aliases. The aliases are needed, for exam-
ple, if a concept occurs multiple times. For example, the
input question ‘Show me all drama and comedy movies.’
(Q4) would point to Genre in the ontology twice: once
for the token ‘drama’ and once for ‘comedy.’ Therefore,
two aliases are needed to distinguish between them.

b. group by clause: The group by clause is triggered
by the word ‘by’ and only tokens annotated with meta-
data in step 1.a are considered. For example, the input
question ‘What was the best movie by genre?’ (modified
Q7). To identify thedependencies betweendependent and
dependee (illustrated by the ‘by’), the Stanford Depen-
dency Parser is used.

123

A comparative survey of recent natural language interfaces for databases 807

Fig. 11 Possible interpretation tree (black) for the input question ‘Who
is the director of “Inglourious Basterds”?’ (Q1)

c. select clause: There are two possible types: aggrega-
tion and display properties. The aggregation properties
depend on the group by clause. The default aggrega-
tion function is sum. For the (modified) input question
Q7, ATHENAwould detect a group by clause because
the ‘by genre’ needs an aggregation function. Assum-
ing ATHENA can translate ‘best movie’ to mean ‘best
ranked movie,’ it would apply the aggregation function
max on Movie.Rating. If there are no aggregations,
ATHENA uses the tokens annotated with metadata as
display properties, which are shown to the user.

d. order by clause: Properties used in the order by
clause are indicated by tokens like ‘least,’ ‘most,’
‘ordered by,’ ‘top’ and others. For example, the input
question ‘Which movie has grossed most?’ (Q3) would
trigger anorder by clause forMovie.Grossbecause
of the trigger word ‘most.’

e. where clause: Tokens annotated with the translation
index, time range or numerical expression are used in the
where clause to filter the result (e.g., the tokens ‘Inglou-
rious Basterds’). If the filter is applied on an aggregation,
a having clause is generated instead of the where
clause.

The final step translates the OQL query into a SQL query,
where each attribute and join condition is either concrete or
virtual.Concretemeans that a direct mapping between ontol-
ogy and the database (e.g., ‘director’) exist. Virtual implies
that a (complex) relationship between the ontology elements

and the database (e.g., ‘great movie’) exists. Furthermore, the
result of the best ranked interpretation is directly displayed,
but the users will see the other interpretations as well. All the
top n interpretations that ATHENA has found are translated
back into full sentences in English for the users, so that the
users can choose the best fitting one.

The strengths of ATHENA are the ontology as an abstrac-
tion of the relational database and the natural language
explanation for each interpretation of the input question.
The translation index contains not only synonyms but also
semantic variants for certain types of values like persons and
company names. Furthermore, ATHENA can handle single-
level nesting in the input question.An example input question
could be ‘All movies with rating higher than the rating of “Sin
City”.’ (Q9).

One of the weaknesses of ATHENA is that neither nega-
tion (Q8) nor multiple elements in the group by clause
(e.g., ‘What was the best movie by year and genre?’) are
supported.

Saha et al. [48] suggest extending ATHENA to handle
more than single-level nesting. Furthermore, they suggest
enabling a possibility to answer follow-up questions using
the context of the previous questions.

5.3.2 Querix

Querix5 [31] allows users to enter questions in natural lan-
guage to query an ontology. If the system identifies any
ambiguities in the input question, it asks the user for clar-
ification in a dialog. Querix uses a syntax tree to extract the
sequence of words from the main word categories: noun (N),
verb (V), preposition (P), wh-pronoun (Q, e.g., what, where,
when, etc.,) and conjunction (C). This sequence is called
query skeleton. The query skeleton is used to enrich nouns
and verbs and to identify subject-property-object
patterns in the query.

In contrast to ATHENA, which uses a lot of different tools
and technologies, Querix only uses the information of the
query skeleton (parse tree) and the synonyms (for both the
input question and the ontology) to translate the input ques-
tion into SPARQL. For translating into SPARQL, Querix
uses three components: query analyzer, matching center and
query generator. The query analyzer handles two tasks: (1) It
applies the Stanford Parser on the input question to generate
a syntax tree, fromwhich Querix extracts the query skeleton.
For example, the query skeleton ‘Q-V-N-P-N’ is extracted
from the input question (Q1) as ‘Who (Q) is (V) the director
(N) of (P) “Inglourious Basterds” (N) ?’. (2) It enriches all
nouns and verbs with synonyms provided by WordNet.

5 The name is based on the druid Getafix who is consulted by Asterix
(in the same named comic) whenever anything strange occurs.

123

808 K. Affolter et al.

The matching center is the core component of Querix:
(1) It tries to match the query skeleton with a small set of
heuristic patterns. Those patterns are used to basically iden-
tify subject-property-object patterns in the input
question. (2) It searches for matches between nouns and
verbs of the input question with the resources in the ontol-
ogy (including synonyms). (3) It tries to match the results of
the two previous steps. The query generator then composes
SPARQL queries from the joined triplets delivered by the
last step of the matching center. If there are several different
solutions with the highest cost score, Querix will consult the
user by showing a menu from which the user can choose the
intended meaning.

The simplicity ofQuerix is both a strength and aweakness:
it is simple to use and completely portable, but this simplicity
also reduces the number of questions that can be answered
since they have to adhere to a predefined syntax.

5.3.3 FREyA (Feedback, Refinement and Extended
vocabularY Aggregation)

FREyA [12] is based on QuestIO. It allows users to enter
queries in any form in English. It generates a syntactic
parse tree in order to identify the answer type. The trans-
lation process starts with a lookup, annotating query terms
with ontology concepts by using heuristic rules. If there are
ambiguous annotations, the user will be engaged in a clarifi-
cation dialogue. The user’s selections are saved and used for
training the system in order to improve its performance over
time. In the end, the system generates a SPARQL query.

The strength of this system is the user interaction, which
not only supports the users to find the right answer, but also
improves FREyA over time. Furthermore, FREyA performs
an answer type identification, which leads to more precise
answers. The weakness is that only a few of the questions
could be answered without any clarification dialogs. Further-
more, the system cannot answer negations.

5.3.4 BELA

BELA [58] is an NLI with a layered approach. This means,
that at each layer the best hypothesis is determined. If the con-
fidence for a particular interpretation is 1 and the SPARQL
query generated by it produces an answer with at least one
result, the translation process is stopped and the answer is
returned to the user. Only for ASK-questions (which have
yes/no answers), the process continues until the confidence
of the interpretations start to differ, then a threshold of 0.9
is applied and an empty result (which equals a no-answer) is
also accepted.

Similar to Querix, BELA parses the input question and
produces a set of query templates, which mirror the semantic
structure. The next step is a lookup in the index, includ-

ing Wikipedia redirects (this corresponds to the translation
index of ATHENA). The first lookup is without fuzzy match-
ing, if no result can be found, a threshold of 0.95 is applied
for a matching with normalized Levenshtein distance. The
third lookup enables the usage of synonyms, hypernyms
and hyponyms from WordNet. The last lookup (and step)
uses Explicit Semantic Analysis, which can be used to relate
expressions like ‘playing’ to concepts like ‘actor.’

Compared to other systems, BELA not only focuses on
solving the translation task, but also reduces the computation
time, which increases the user-friendliness.

5.3.5 USI Answers

USI Answers [59] is an NLI for semi-structured industry
data. It offers natural language access to the large bodies of
data that are used in the planning and delivery of services by
SiemensEnergy. The database consists ofmultiple databases,
for example domain-specific ontologies, different relational
databases and SPARQL endpoints. These can be either inter-
nal or external knowledge (e.g., DBpedia). Furthermore, the
users demanded to be able to use not only natural language
questions and formal query language constructs but also key-
word questions or a mixture of these.

In contrast to the previous parsing-based NLIs, USI
Answers cannot rely on the parse tree, because of the differ-
ent types of possible input (e.g., keyword questions). Still,
the first step includes various NLP technologies, such as
lemmatization, PoS tagging, named entity recognition and
dependency parsing. To handle domain-specific input terms,
there is a list of syntax rules to revalidate the entity informa-
tion after the NLP technologies were applied. Furthermore,
the question focus (i.e., referenced entity object) is identified
by applying 12 syntactic rules. Enriched with this informa-
tion, the next step aims to identify and resolve the different
concepts that may be in the input question (lookup). Next,
USI Answers detects and prevalidates the different rela-
tions and objects found in the previous step. The fourth step
generates different question interpretations, including how
concepts and instances are connected to each other. After-
ward, the different interpretations are validated and ranked.
This is done with a learned model, based on user-defined
views. The last step constructs the final query in the repre-
sentative query language.

One strength of USI Answers is the ability to query dif-
ferent database resources. Furthermore, the users are free to
choose their preferred type of input questions.

5.3.6 NaLIX (Natural Language Interface to XML)

NaLIX [38] is an interactive NLI for querying an XML
database with XQuery. The interaction is based on guid-
ing the users to pose questions that the system can handle

123

A comparative survey of recent natural language interfaces for databases 809

by providing meaningful feedback and helpful rephrasing
suggestions. Furthermore, NaLIX provides templates and
question history to the users. It preserves the users prior
search efforts and provides the users with a quick starting
point when they create new questions.

Similar to Querix, NaLIX mostly uses the parse tree for
the translation of an input question into XQuery. After Mini-
Par6 is used to parse the input question, NaLIX identifies
the phrases in the parse tree of the input question that can
be mapped to XQuery components and classifies them. In
the next step, NaLIX validates the classified parse tree from
the previous step: it checks if it knows how to translate the
classified parse tree into XQuery and if all attribute names
and values can be found in the database. The last step trans-
lates the classified parse tree into an appropriate XQuery
expression if possible. During both the classification and
the validation of the parse tree, information about errors
(e.g., unknown phrases and invalid parse trees) is collected
to report to the users for clarification.

The strength of NaLIX is the ability to solve difficult ques-
tions, which can include subqueries, by using and adjusting
the parse tree. On the other hand, the reliance on a parse
tree is also a weakness, because the system can only answer
questions that are parseable.

5.3.7 NaLIR (Natural Language Interface for Relational
databases)

NaLIR [35,36] is a further development of NaLIX. Instead
of translating into XQuery to query XML databases, NaLIR
translates the input question into SQL and queries relational
databases. NaLIR returns not only the result to the user, but
also a rephrased version of the input question based on the
translation.

The basic idea remains the same: parse the input ques-
tion using the Stanford Parser and map the parse tree to
SQL (instead of XQuery). The steps are similar with some
modifications: In the step of mapping phrases of the input
question parse tree to SQL components, the users are asked
for clarification if there are ambiguities. The next step is not
a validation anymore, but an adjustment of the parse tree
in such a way that it is valid. The candidate interpretations
produced by this adjusted and valid parse tree are delivered
to the users to select the correct interpretation. The last step
translates the adjusted and valid parse tree which the user has
selected into SQL.

The strength of NaLIR is the interaction with the user,
which improved further compared to NaLIX. The weakness
remains: it is highly dependent on the parse tree.

6 https://gate.ac.uk/releases/gate-7.0-build4195-ALL/doc/tao/
splitch17.html.

5.3.8 BioSmart

BioSmart [27] uses a syntactic classification of the input
question to translate the natural language question into a
declarative language such as SQL. The system divides the
input questions into three query types (iterative, conditional
or imperative) using the parse tree of the input question and
compare it to parse tree templates for each query type. For
example, a imperative query consists of a verb (VB) followed
by a object (NP). A more expressive and therefore complex
input question can be built by nesting simple query types
arbitrarily.

Similar to Querix, BioSmart uses the Stanford parser to
parse the input question. The system then tries to map the
resulting parse tree to predefined questions or to one of the
query templates (query type identification). As mentioned, it
is possible that a question consists of several of these tem-
plates to capture themeaning of the question. Then, the tables
and possible joins that are needed to compute the query are
identified. Afterward, the templates are transformed into a
logical query using the information about the tables and joins.

Compared to other NLI, the strength of BioSmart is the
possibility to query arbitrary databases. The weakness of
BioSmart is the mapping to the three query types: if the sys-
tem cannot match the input question to those query types, it
is not able to answer the question.

5.4 Grammar-based systems

Grammar-based NLIs use a different approach. The core of
these systems is a set of rules (grammar) that define the ques-
tions that can be understood and answered by the system.
Using those rules, the system is able to give the users sug-
gestions on how to complete their questions during typing.
This supports the users towrite understandable questions and
gives the users insight into the type of questions that can be
asked. The disadvantage of these systems is that they are
highly domain-dependent: the rules need to be written by
hand.

In the following, we summarize seven grammar-based
NLIs. We decided to describe TR Discover [52] in depth,
because it is well-described in the paper such that we can
provide examples for the whole process, including the gram-
mar rules. Furthermore, it uses the rules to guide and help
the users during formulating their questions.Afterward, other
grammar-based systems are summarized, andwedescribe the
delta to TRDiscover. The differences can be quite significant,
however, they all have the same core: a set of rules.

5.4.1 TR Discover

TR Discover [52] is a system providing an NLI which trans-
lates the input question in form of an English sentence (or

123

https://gate.ac.uk/releases/gate-7.0-build4195-ALL/doc/tao/splitch17.html
https://gate.ac.uk/releases/gate-7.0-build4195-ALL/doc/tao/splitch17.html

810 K. Affolter et al.

sentence fragment) into SQL or SPARQL. It is either used
for relational databases or ontologies, but does not need an
ontology to work for relational databases. During the trans-
lation steps, TR Discover uses a First Order Logic (FOL)
representation as an intermediate language. Furthermore, it
provides auto-suggestions based on the user input. There are
two types of suggestions: auto-completion and prediction.

TR Discover helps the users in formulating the question
through an auto-suggestion feature. For example, assuming
the users want to know the director of the movie ‘Inglourious
Basterds’ (Q1). When the users start typing ‘p,’ TR Discover
will not only suggest ‘person’ but also longer phrases like
‘person directing’ (autocomplete).After ‘person directing’ is
selected (or typed), TR Discover will again suggest phrases,
like ‘movies’ or even specific movies like ‘Inglourious Bas-
terds’ (prediction). For input question Q1, the input could be
‘person directing Inglourious Basterds.’

The suggestions are based upon the relationships and enti-
ties in the dataset and use the linguistic constraints encoded
in a feature-based context-free grammar (FCFG). The gram-
mar consists of grammar rules (G1-3) and lexical entries
(L1-2). For the sample world (and the input question Q1),
the following rules could be defined:

G1: NP → N
G2: NP → NP VP
G3: VP → V NP
L1: N[TYPE=person, NUM=sg, SEM=

<x.person(x)>] → person
L2: V[TYPE=[person,movie,title],

SEM=<X x.X(y.directMovie(y,x)>
, TNS=presp] → directing

The suggestions are computed based on the idea of left-
corner parsing: given a query segment, it finds all grammar
rules whose left corner on the right side matches the left side
of the lexical entry of the query segment. Then, all leaf nodes
(lexical entries) in the grammar that can be reached by using
the adjacent element are found. For example, while typing
‘person’ (Q1), the lexical entries L1 and L2 are found and
provided to the user.

TR Discover uses three steps to translate the English sen-
tence or fragment of a sentence into a SQLor SPARQLquery.
The first step parses the input question into a FOL represen-
tation. The query parsing uses the FCFG. For the example
input, the token ‘person’ will be parsed by the lexical entry
L1 and the token ‘directing’ will be parsed with the lexical
entry L2. This leads to the FOL representation:
x.person(x) → directMovie(y,x)&
type(y,Movie) & label(y, ‘Inglourious
Basterds’)

How exactly the phrase ‘Inglourious Basterds’ is matched
to the base data and therefore can be used as part of the lexical

Fig. 12 Parse tree for the FOL representation of the input question
‘person directing Inglourious Basterds’

entry L2 and how it is resolved is not explained by Song et
al. [52]. If there are multiple possibilities to parse the input
question, the first one is chosen.

The next step is to translate the generated FOL into a
parse tree. The FOL parser takes a grammar and the FOL
representation from the previous step, and generates a parse
tree (Fig. 12) using ANTLER for implementation.

In the third step, an in-order traversal of the parse tree
(provided by the previous step) is performed to translate it
into an executable SQL or SPARQL query. While traversing
the parse tree, the atomic logical conditions and connectors
are put on a stack.After traversing, the constraints are popped
from the stack to build the correct query constraints. The
predicates are mapped to their corresponding attribute names
(SQL) or ontology properties (SPARQL).

The strengths of TR Discover are the auto-suggestion and
the possibility to translate natural language into different
query languages such as SQL and SPARQL, because FOL is
used as an intermediate language.

The weaknesses of TR Discover are that quantifiers (e.g.,
Q3: ‘grossed most’) cannot be used, synonyms are not prop-
erly handled, and negations only work for SPARQL.

Song et al. [52] suggest extending TR Discover with a
ranking system for multiple parses in the first step and to
improve the synonym handling. Furthermore, they pointed
out the possibility of applying user query logs to improve
auto-suggestions.

5.4.2 Ginseng (Guided Input Natural language Search
ENGine)

Ginseng [5] is a guided input NLI for ontologies. The system
is based on a grammar that describes both the parse rules
of the input questions and the query composition elements
for the RDF Data Query Language (RDQL) queries. The
grammar is used to guide the users in formulating questions
in English.

In contrast to TR Discover, Ginseng does not use an
intermediate representation and therefore the parsing process

123

A comparative survey of recent natural language interfaces for databases 811

translates directly intoRDQL.The grammar rules are divided
in two categories: dynamic and static grammar rules. The
dynamic grammar rules are generated from the OWL ontolo-
gies. They include rules for each class, instance, objects
property, data type property and synonyms. The static gram-
mar rules consist of about 120mostly empirically constructed
domain-independent rules, which provide the basic sentence
structures and phrases for input questions. The naming con-
ventions used by Ginseng differ slightly from these used by
TRDiscover.Ginseng’s dynamic rules correspond toTRDis-
cover’s lexical rules andGinseng’s static rules consist of both
grammar and lexical rules in TR Discover.

The strength of Ginseng are the dynamic rules which
are generated from the ontology. This, together with the
domain-independent static rules, leads to an easier adaptabil-
ity compared to systems like TRDiscover. The weakness lies
in the grammar rules: they need to cover all possible types of
questions the users want to ask.

5.4.3 SQUALL (Semantic Query and Update High-Level
Language)

SQUALL [17,18] is an NLI for searching and updating
an RDF store. It uses the style of Montague grammars
(context-free generative grammar) as an intermediate lan-
guage (similar to TRDiscover) to split the translation process
in two parts: translating the natural language input question
into a logical language and translating the logical language
into a query language. Because of that the second part is
getting easier: the logical language and the query language
share the same semantics and level of detail. The grammar of
SQUALL consists of about 120 domain-independent rules.

The translation into the logical form is done in three steps.
In the first step, the keywords are recognized (lookup step).
The second step is a syntactic analysis based on a descending
parser, which is fed with the grammar rules. Afterward, the
next step can generate the logical language based on the def-
inition in the grammar. After the translation into the logical
language, the translation in to the chosen formal language
can be done.

The strength of SQUALL is that it is able to translate any
type of input question, including aggregations, negations and
subqueries. The weakness of SQUALL is that the users have
to know the RDF vocabulary (e.g., classes and properties).
For example, the input question Q1 needs to be formulated
as ‘Who is the director of Inglourious_Basterds?’

5.4.4 MEANS (MEdical question ANSwering)

MEANS [3] is an NLI that uses a hybrid approach of patterns
and ML to identify semantic relations. It is highly domain-
dependent and focuses on factual questions expressed by
wh-pronouns and Boolean questions in a medical subfield

targeting the seven medical categories: problem, treatment,
test, sign/symptom, drug, food and patient.

To translate the input question into SPARQL, MEANS
first classifies the input question into one of ten categories
(e.g., factoid, list, definition, etc.). If the question is catego-
rized as a wh-question, the Expected Answer Type (EAT) is
identified and replaced with ‘ANSWER’ as a simplified form
for the next step. For example, the EAT of the input question
Q1 would be ‘director.’ In the next step, MEANS identifies
medical entities using a Conditional Random Field (CRF)
classifier and rules to map noun phrases to concepts. The
next step is used to identify seven predefined semantic rela-
tions. The annotator is a hybrid approach based on a set of
manually constructed patterns and a Support Vector Machine
(SVM) classifier.

The strength of MEANS is that it can handle different
types of questions, including questions with more than one
expected answer type andmore than one focus.As formost of
the grammar-based NLIs, MEANS suffers from the restric-
tion based on the handcrafted rules. The inclusion of ML
reduces this problem, but ML itself needs huge training
corpus to be usable. Furthermore, comparison (and also nega-
tion) is not taken into account.

5.4.5 AskNow

AskNow [14] uses a novel query characterization structure
that is resilient to paraphrasing, called Normalized Query
Structure (NQS),which is less sensitive to structural variation
in the input question. The identification of the elements in the
NQS is highly dependent on POS tags. For example, the input
questionQ1 ‘Who is the director of “Inglourious Basterds”?’
would be matched to the NQS template:
[Wh][R1][D][R2][I], where [Wh] is the question
word ‘Who,’ [R1] is the auxiliary relation ‘is,’ [D] is the
query desire class ‘director,’ [R2] the relation ‘of ’ and [I]
is the query input class ‘Inglourious Basterds.’

To translate the input question into SPARQL, AskNow
first identifies the substructures using a POS tagger and
named entity recognition. Then, it fits the substructures into
their corresponding cells within the generic NQS templates.
Afterward, the query type (set, boolean, ranking, count or
property value) is identified based on desire and wh-type. In
the next step, the query desire, query input and their relations
will be matched to the KB. As an example, Spotlight can be
used for the matching to DBpedia. During the matching pro-
cess, AskNow uses WordNet synonyms and a BOA pattern
library (bootstrapping).

The strength of AskNow, compared to the previous
grammar-based systems is that the users are free to formu-
late their questions without restrictions. In addition, the NQS
templates allow complex questions which, for example, can
include subqueries.Oneweakness ofAskNow is that it highly

123

812 K. Affolter et al.

depends on the right PoS tags and restricts the types of ques-
tions that can be asked.

5.4.6 SPARKLIS

SPARKLIS [19] is a guided query builder for SPARQL
using natural language for better understanding. It guides
the users during their query phrasing by giving the possi-
bilities to search through concepts, entities and modifiers
in natural language. It relies on the rules of SPARQL to
ensure syntactically correct SPARQL queries all the time
during the process. The interaction with the system makes
the question formulation more constrained, slower and less
spontaneous, but it provides guidance and safenesswith inter-
mediate answers and suggestions at each step. The translation
process for SPARKLIS is reversed: it translates possible
SPARQL queries into natural language such that the users
can understand their choices.

The auto-completion is different from the previous sys-
tems (e.g., TR Discover and Ginseng): the interface displays
three lists where the users can search for concepts, entities
or modifiers. To ensure completeness relative to user input,
SPARKLIS uses a cascade of three stages. The first stage is
on client side,where a partial list of suggestion is filtered. The
second stage is executed if the filtered list gets empty, then
the suggestions is recomputed by sending the query, includ-
ing the users filter, to the SPARQL endpoint. The last stage is
triggered if the list is still empty, then, new queries are again
sent to the SPARQL endpoint, using the full SPARQL query
instead of partial results. Only a limited number of sugges-
tions are computed and no ranking is applied, because of
scalability issues.

The strength of SPARKLIS is also its weakness: the
restricted guidance of the users during the query formulation
process allows only syntactically correct questions, but at
the same time, the users’ freedom is reduced. Furthermore,
the limited number of suggestions has the negative conse-
quence that they may be incomplete and therefore making
some queries unreachable.

5.4.7 GFMed

GFMed [41] is an NLI for biomedical linked data. It applies
grammars manually built with Grammatical Framework7

(GF). GF grammars are divided into abstract and con-
crete grammars. The abstract grammar defines the semantic
model of the input language, and for GFMed, this is based
on the biomedical domain. The concrete grammars define
the syntax of the input language, which is English and
SPARQL. Furthermore, GF supports multilingual applica-

7 https://www.grammaticalframework.org/.

tions and because of that Romanian is included as a second
natural language in GFMed.

To translate the controlled natural language input into
SPARQL, GFMed relies in a first step on the libraries of
GF for syntax, morphological paradigms and coordination.
GFMed covers basic elements of SPARQL to support term
constraints, aggregates and negations. There is no support for
property paths of length different from 1, optional graph pat-
tern or assignment. Furthermore, only equality and regular
expression operators are included.

The strength of GFMed is that it covers the basic elements
of SPARQL. Furthermore, it introduces a second natural lan-
guage besides of English for the users to ask questions. The
weakness are the GF grammars which are domain-dependent
and restrict the number of questions that can be asked by the
users.

6 Evaluation

In this section, we first evaluate the 24 recently developed
NLIswhichwere summarized before and systematically ana-
lyze if they are able to handle the ten sample questions of
increasing complexity. This approach enables us to directly
compare these systems which was previously not possible
due to different datasets or evaluation measures used in the
original papers. Afterward, we evaluate three commercial
systems by asking them the same sample questions and ana-
lyzing their responses.

6.1 Evaluation of 24 recently developed NLIs

In this section, we provide a systematic analysis of the
major NLIs. We categorized and analyzed the translation
process of the 24 recently developed systems highlighted
in Sect. 5 based on ten sample world questions with increas-
ing complexity. Each system category, based on its technical
approach, has its own strengths and weaknesses. There are
also different aspects onwhich a system can focus (e.g., num-
ber of user interaction, ambiguity, efficiency, etc.,), which we
do not take into account in this paper.

We evaluate the systems based on what is reported in the
papers. If there is either an example of a similar question (e.g.,
’Who is the president of the united states?’ (Q1) or a clear
statement written in the paper (e.g., ’we can identify aggre-
gations’ (Q7), we label those questions for the system with a
checkmark (✓) in Table 3. If the question needs to be asked
in a strict syntactical way (e.g., SODA needs the symbol ’>’
instead of ’higher than’) or the answer is partially correct
(e.g., Q4 returns a ordered list of movies instead of only one),
it is labeled with a triangle (▲). If there is a clear statement
that something is not implemented (e.g., ATHENA does not
support negations), we label it with ✗. If we were not able to

123

https://www.grammaticalframework.org/

A comparative survey of recent natural language interfaces for databases 813

Table 3 Analysis of recently developed NLIs based on ten sample input questions

✓, can answer; ▲, strict syntax or partly answerable; ✗, cannot answer; ?, not documented

conclude, if a system can or cannot answer a question based
on the paper, we labeled it with a question mark in Table 3.

In general, as shown in Table 3, we can say that keyword-
based NLIs are the least powerful and can only answer
simple questions like string filters (Q1). This limitation is
based on the approach of these keyword-based systems: they
expect just keywords (which are mostly filters) and the sys-
tems identify relationships between them. Therefore, they
do not expect any complex questions like Q4 or Q7. Pattern-
based NLIs are an extension of keyword-based systems in
such a way that they have a dictionary with trigger words
to answer more complex questions like aggregations (Q7).
However, they cannot answer questions of higher difficulties,
including subqueries (Q9/Q10). For example, the difficulty
with questions including subqueries is to identify which part
of the input question belongs to which subquery. Trigger
words are not sufficient to identify the range of each sub-
query.

Parsing-based NLIs are able to answer these questions by
using dependency or constituency trees (e.g., NaLIR). This
helps to identify and group the input question in such a way
that the different parts of the subqueries can be identified.
Still, some of those systems struggle with the same problem

as pattern-based NLIs: the systems are using trigger word
dictionaries to identify certain types of questions like aggre-
gations (e.g., ATHENA), which is not a general solution of
the problem.

Grammar-based systems offer the possibility to guide the
users during the formulation of their questions. Dynamically
applying the rules during typing allows the systems to ensure
that the input question is always translatable into formal lan-
guage. The huge disadvantage of grammar-based systems
is that they need handcrafted rules. There are NLIs which
use a set of general rules and domain-specific rules (e.g.,
SQUALL). The general rules can be used for other domains
and therefore increase the adaptability of the system. Other
systems try to extract the rules directly from the ontology
and thereby reduce the number of handcrafted rules (e.g.,
Ginseng).

We will now analyze how well the different systems can
handle the ten sample questions. The first question is a basic
filter question and can be solved by allNLIs as shown inTable
3. The last three questions are the most difficult ones and can
only be answered by a few systems (completely bySQUALL,
SPARKLISandpartially byothers).Complexquestions (e.g.,
aggregations) cannot be phrased with keywords only. There-

123

814 K. Affolter et al.

fore, the more complicated the users questions are, the more
they will phrase them in grammatically correct sentences.
In contrast, simple questions (e.g., string filters like Q1) can
be easily asked with keywords. Both, Waltinger et al. [59]
(USI Answer) and Lawrence and Riezler [33] (NLmaps) are
describing this phenomenon and that the users prefer to ask
questions with keywords if possible. They adapted their sys-
tems so that they can handle different forms of user input.
Because of that Waltinger et al. [59] (USI Answer) point out
that parse trees should only be usedwith caution. This is simi-
lar to the approach of Zheng et al. [69] (NLQ/A), who remark
that NLP technologies are not worth the risk, because wrong
interpretations in the processing leads to errors. Walter et al.
[58] (BELA)propose a newapproach of applying certain pro-
cessing steps only if the question cannot be answeredbyusing
simpler mechanisms. This approach can be used to answer
questions formulated as keywords or as complete sentences.
Nevertheless, parse trees are useful to identify subqueries, but
only in grammatically correct sentences (e.g., NaLIR). The
identification of possible subqueries is necessary to answer
questions like Q9 and Q10.

Based on the sample questions, SQUALL, SPARKLIS,
NaLIR and ATHENA are the systems that perform best (i.e.,
they can handle most of the question types). However, these
systems still have some drawbacks. SQUALL requires that
the user has knowledge of the RDF vocabulary. For exam-
ple, if the users ask about all movies starring Brad Pitt,
the question needs to be similar to ‘All movies starring
Brad_Pitt.’ SPARKLIS can answer all questions (if con-
cepts are defined) but is based on a strict user interface where
the users have to ‘click their questions together’ and can-
not ‘write freely.’ In contrast to those two systems, NaLIR
and ATHENA are systems where the user can write with-
out restrictions during the process of phrasing the questions.
However, NaLIR cannot handle concepts. Finally, ATHENA
solves aggregations with trigger words which the users need
to know. Moreover, ATHENA cannot solve multiple sub-
queries.

6.2 Evaluation of commercial systems

Increasingly, natural language interfaces are deployed for
commercial usage. We decided to ask the ten sample ques-
tions to three commercial systems: Google,8 Siri9 and
Internet Movie Database (IMDb).10

Based on the sample questions, Google is the best system
in this category.An answer is assumed to be correct, ifGoogle
displays the answer in the featured snippet at the top of the
results or in the knowledge panel on the side. For example,Q1

8 https://www.google.com/.
9 https://www.apple.com/siri/.
10 https://www.imdb.com.

is answered in the featured snippet. In contrast, for question
Q2 the featured snippet on top shows the top 250 drama
movies, but the first result site contains the correct answer.

Siri can only answer simple select and filter ques-
tions and has some troubles to handle the year without a
specific date in Q3. What is different to other systems is that
if it cannot answer a question, Siri gives feedback to the user
and tries to explain which type of questions can be answered.
For most of the sample questions, we got the answer ‘Sorry,
I can’t search what something is about. But I can search by
title, actors or directors and categories like horror or action.’

IMDb is a keyword-based system with the option of
advanced searches11 which are form-based. This system is
not able to provide precise answers toselect questions like
Q1 about the director of a given movie. However, the users
can find the correct results by browsing the movie page.

7 Machine learning approaches for NLIs

In current research, more and more systems include machine
learning (ML) in their translation process (e.g., MEANS) or
ranking (e.g., Aqqu).

KBQA [10] learns templates as a kind of question rep-
resentation. It supports binary factoid questions as well as
complex questions which are composed of binary factoid
questions.OQA [16] approaches to leverage both curated and
extractedKBs, byminingmillions of rules from an unlabeled
question corpus and across multiple KBs.

AMUSE [22] uses ML to determine the most probable
meaning of a question and can handle different languages
at the same time. Xser [65] divides the translation task
into a KB-independent and a KB-related task. In the KB-
independent task, they are developing a Directed Acyclic
Graph parser to capture the structure of the query intentions
and trained it on human-labeled data.

Anewpromising avenueof research is to use deep learning
techniques as the foundation for NLIDBs. The basic idea is
to formulate the translation of natural language (NL) to SQL
as an end-to-end machine translation problem [13,28,54].
The approach is often called neural semantic parsing [60]. In
other words, translating from NL to SQL can be formulated
as a supervised machine learning problem on pairs of natural
language and SQL queries. In particular, machine translation
can be modeled as a sequence-to-sequence problem where
the input sequence is represented by the words (tokens) of
the NL and the output sequence by the tokens of SQL. The
main goal is given an input sequence of tokens, predict the
output sequence based on observed patterns in the past.

Themain advantageofmachine learning-based approaches
over traditional NLIDBs is that they support a richer lin-

11 e.g., advanced title search https://www.imdb.com/search/title.

123

https://www.google.com/
https://www.apple.com/siri/
https://www.imdb.com
https://www.imdb.com/search/title

A comparative survey of recent natural language interfaces for databases 815

guistic variability in query expressions, and thus users can
formulate querieswith greater flexibility.However, one of the
major challenges of supervisedmachine learning approaches
is that they require a large training data set in order to achieve
good accuracy on the translation task (see further details
below).

The most commonly used approach for sequence-to-
sequence modeling is based on recurrent neural networks
(RNNs, [15]) with an input encoder and an output decoder.
The encoder and decoder are implemented as bi-directional
LSTMs (Long Short Term Memory) by Hochreiter and
Schmidhuber [25]. However, before an NL can be encoded,
the tokens need to be represented as a vector that in turn can
be processed by the neural network. A widely used approach
is to use word embeddings where the vocabulary of the NL
is mapped to a high-dimensional vector [45]. In order to
improve the accuracy of the translation, attention models are
often applied [39].

One of the currently most advanced neural machine trans-
lation systems was introduced by Iyer et al. [26]. Their
approach uses an encoder–decoder model with global atten-
tion similar to Luong et al. [39] and a bi-directional LSTM
network to encode the input tokens. In order to improve the
translation accuracy fromNL to SQL compared to traditional
machine translation approaches, the database schema is taken
into account. Moreover, external paraphrases are used to
increase the linguistic variance of the training data. In the first
step of training the neural machine translation system, the
process of generating training data is bootstrapped by manu-
ally handcrafted templates for the NL and SQL query pairs.
In the next phase, the training set is extended by adding lin-
guistic variations of the input questions and parts to the query
are replaced with synonyms or paraphrases of the query. The
advantage of this approach is that it is query language inde-
pendent and could in principle also be used to translate from
NL to SPARQL. However, the disadvantage is that a large,
manually handcrafted a training set is necessary. The authors
reported their results using twodifferent data setswith a train-
ing data size of 600 and 4,473 utterances, respectively.

Zhong et al. [70] introduce a system called Seq2SQL.
Their approach uses a deep neural network architecture
with reinforcement learning to translate from NL to SQL.
The authors released WikiSQL—a new data set based on
Wikipedia consisting of 24,241 tables and 80,654 hand-
annotated NL-SQL-pairs. However, their approach was only
demonstrated to work on simple single-table queries with-
out joins. SQLNet by Xu et al. [66] uses a more traditional
machine translation approach without reinforcement learn-
ing. However, even though SQLNet shows better accuracy
than Seq2SQL, the experiments are also based on the Wik-
iSQL data set and it is not clear how this approach would
handle join queries against more realistic database settings
with multiple tables. Finally, Yavuz et al. [67] show further

improvements over SQLNet by incorporating both the infor-
mation about the database schema as well as the base data.
The paper in particular focuses on the generation ofWHERE-
clauses, which the authors identified as major problem of the
relative low accuracy of SQL queries generated by Seq2SQL
and SQLNet.

DBPal by Basik et al. [1] overcomes shortcomings of
manually labeling large training data sets by synthetically
generating a training set that only requires minimal anno-
tations in the database. Similar to Iyer et al. [26], DBPal
uses the database schema and query templates to describe
NL/SQL-pairs. Moreover, inspired by Wang et al. [60],
DBPal augments an initial set of NL queries using a para-
phrasing approach based on a paraphrase dictionary. The
results show that on a single-table data set DPal performs
better than the semantic parsing approach of Iyer et al. [26].
However, for a multi-table data set with join queries, DBPal
performs worse. The reason is that the limited training set
of 600 examples does not seem to generalize well for join
queries. The authors attributed the good performance of the
system introduced by Iyer et al. [26] to overfitting.

Soru et al. [53] use neural machine translation approach
similar to Iyer et al. [26]. However, the major difference is
that they translate natural language to SPARQL rather than to
SQL. Moreover, they do not apply an attention mechanism.
In a subsequent white paper, Hartmann et al. [23] present
an approach to automatically generate a large set of training
data consisting of 894,499 training examples based on set of
5000 natural language queries. The approach is very similar
to the approach used by DBPal.

In general, these new approaches show promising results,
but they have either only been demonstrated to work for
single-table data sets or require large amounts training data.
Hence, the practical usage in realistic database settings still
needs to be shown.

Another interesting new trend is in the area of conversa-
tional systems such asWilliams et al. [63], John et al. [29] that
often apply neural machine translation techniques. However,
a detailed discussion on these systems is beyond the scope
of this paper.

8 Conclusions

In this paper, we summarized 24 recently developed natural
language interfaces for databases. Each of them was evalu-
ated using ten sample questions to show their strengths and
weaknesses. Based on this evaluation, we identified the fol-
lowing lessons learned that are relevant for the development
of NLIs.

Lesson 1—Use distinct mechanisms for handling sim-
ple versus complex questions Users like to pose questions
differently depending on the complexity of the question.

123

816 K. Affolter et al.

Simple questions will often be asked with keywords, while
complex questions are posed in grammatically correct sen-
tences. For example, if users search for information about
Brad Pitt, it is more likely that the users ask ‘Brad Pitt’ as
an input question and not ‘Give me information about Brad
Pitt.’ This lesson is highlighted in the paper by Waltinger et
al. [59] (USI Answer) and related to the finding that casual
users are more at ease at posing complex questions in natural
language than in other formats [30]. Generally, pattern-based
systems are solving this problem, but are often limited in the
understanding of complex questions (i.e., subqueries). Wal-
ter et al. [58] (BELA) propose a layered system which could
also be used to solve this problem of distinction. Grammar-
based systems could be taught to support such non-natural
language question patterns when included in the grammar.
To the best of our knowledge, none of the systems we looked
at supports this feature.

Lesson 2—Identifying subqueries still is a significant
challenge for NLIs The identification of subqueries seems
to be one of the most difficult problems for NLIs. The sample
input questions Q9 and Q10 are two examples for questions
composed of one and multiple subqueries, respectively. The
most commonNLP technology that is able to solve this prob-
lem is a parse tree. This can either be a general dependency or
constituency parse tree provided, for example, by the Stan-
ford Parser (e.g., NaLIR), or a parse tree self-learnedwith the
rules of a grammar-based NLI (e.g., SQUALL). An alterna-
tive is the use of templates (e.g., AskNow). Li and Jagadish
[35] (NaLIR) mention that the identification alone is not
enough: after the identification of the subqueries, the nec-
essary information needs to be propagated to each part of the
subquery.

Lesson 3—Optimize the number of user interactions
Natural language is ambiguous and even in a human-
to-human conversation ambiguities occur, which are then
clarified with questions. The same applies to NLIs: when an
ambiguity occurs, the system needs to clarify with the user.
This interaction should be optimized in such a way that the
number of needed user interactions is minimized. To address
this issue, Zenz et al. [68] (QUICK) and Zheng et al. [69]
(NLQ/A) developed a minimization algorithm. The idea is
to identify the ambiguity which has the most impact on the
other ambiguities and clarify it first.

Lesson 4—Use grammar for guidance The biggest
advantage of grammar-based NLIs is that they can use their
grammar rules to guide the users while they are typing their
questions. This improves the interaction between system and
users in twoways: first, the systemwill understand each ques-
tion the users ask; second, the users will learn how certain
questions have to be asked to receive a good result. For the
second part, Li et al. [38] (NaLIX) propose a solution by
using a question historization and templates. This also helps

the users understand what type of questions the system can
understand and how the users need to ask.

Lesson 5—Use hybrid approach of traditional NLI sys-
tems and neural machine translation

New NLIs based on neural machine translation show
promising results. However, the practical usage in realistic
database settings still needs to be shown. Using a hybrid
approach of traditional NLIs that are enhanced by neu-
ral machine translation might be a good approach for the
future. Traditional approaches would guarantee better accu-
racy while neural machine translation approaches would
increase the robustness to language variability.

In summary, our evaluation of various systems against
ten sample questions shows that NLIs have made signifi-
cant progress over the last decade. However, our lessons also
show thatmore research is required to increase the expressive
power of NLIs. This paper gives a guide for researchers and
practitioners highlighting the strengths and weaknesses of
current approaches as well as helps them design and imple-
ment NLIs that are not only of theoretical value but have
impact in industry.

Acknowledgements The work was supported by Hasler Foundation
under Grant Number 17040.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

A SQL Representation

Q1:

SELECT DISTINCT p.*
FROM movie m, person p,
directing d

WHERE m.id = d.movieId
AND person.id = d.directorId
AND m.title = ’Inglourious

 Basterds ’

Q2:

SELECT * FROM movie m WHERE
m.rating > 9

Q3:

SELECT DISTINCT m.*
FROM movie m, starring s,
person p
WHERE m.id = s.movieId

AND s.actorId = p.id

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

A comparative survey of recent natural language interfaces for databases 817

AND p.name = ’Brad Pitt’
AND m.releaseDate >=

’2000 -01 -01’
AND m.releaseDate <=

’2010 -12 -31’

Q4:

SELECT DISTINCT m.*
FROM movie m, gross g
WHERE m.id = g.movieId

AND g.gross = (
SELECT MAX(gross) FROM gross

)

Q5:

SELECT DISTINCT m.*
FROM movie m, genre g
WHERE m.id = g.movieId

AND (
g.genre = ’drama’
OR g.genre = ’comedy ’

)

Q6:

SELECT * FROM movie m WHERE
m.rating >= 8

Q7:

SELECT DISTINCT m.*
FROM movie m, genre g, (

SELECT g.genre , max(m.rating)
as maxRating

FROM movie m, genre g
WHERE m.id = g.moveId
GROUP BY g.genre

) as maxMovie
WHERE m.id = g.movieId

AND m.rating = maxMovie.
maxRating

AND g.genre = maxMovie.genre

Q8:

SELECT DISTINCT m.*
FROM movie m, genre g
WHERE m.id = g.movieId

AND originalLang != ’jp’
AND g.genre = ’horror ’

Q9:

SELECT *
FROM movie m1
WHERE m1.rating > (

SELECT m2.rating

FROM movie m2
WHERE m2.title = ’Sin City’

)

Q10:

SELECT DISTINCT m1.*
FROM genre g1 , movie m1
WHERE m1.id = g1.movieId

AND NOT EXISTS (
SELECT ’’
FROM movie m2
WHERE m2.title = ’Sin City’

AND NOT EXISTS (
SELECT ’’
FROM genre g2
WHERE g2.movieId = m1.id

AND g2.id = g1.id
)

)

References

1. Basik, F., Hättasch, B., Ilkhechi, A., Usta, A., Ramaswamy, S.,
Utama, P., Weir, N., Binnig, C., Cetintemel, U.: DBPal: A learned
NL-interface for databases. In: Proceedings of the 2018 Interna-
tional Conference on Management of Data, pp. 1765–1768. ACM
(2018)

2. Bast, H., Haussmann, E.: More accurate question answering on
freebase. In: Proceedings of 24thACMInternationalConference on
Information and Knowledge Management—CIKM ’15, pp. 1431–
1440 (2015)

3. Ben Abacha, A., Zweigenbaum, P.: MEANS: a medical question-
answering system combining NLP techniques and semantic Web
technologies. Inf. Process. Manag. 51(5), 570–594 (2015)

4. Bergamaschi, S., Guerra, F., Interlandi, M., Trillo-Lado, R., Vele-
grakis, Y.: Combining user and database perspective for solving
keyword queries over relational databases. Inf. Syst. 55, 1–19
(2016)

5. Bernstein, A., Kaufmann, E., Kaiser, C.: Querying the semantic
web with ginseng: a guided input natural language search engine.
In: 15thWork Information Technology System, Las Vegas, NV, pp.
112–126 (2005)

6. Blunschi, L., Jossen, C., Kossmann, D., Mori, M., Stockinger, K.:
SODA: Generating SQL for Business Users. Proc VLDB Endow
5(10), 932–943 (2012)

7. Bonifati, A., Martens, W., Timm, T.: An analytical study of large
SPARQL query logs. Proc. VLDB Endow. 11(2), 149–161 (2017).
arXiv:1708.00363

8. Bowen, P., Chang, C., Rohde, F.: Non-length based query chal-
lenges: an initial taxonomy. In: 14th Annual Workshop on Infor-
mation Technology and Systems, WITS, pp. 74–79 (2004)

9. Codd, E.F.: Seven steps to rendezvous with the casual user. In: IFIP
Working Conference Database Management, pp. 179–200 (1974)

10. Cui, W., Xiao, Y., Wang, H., Song, Y., Sw, Hwang, Wang, W.:
KBQA: learning question answering over QA corpora and knowl-
edge bases. Proc. VLDB Endow. 10(5), 565–576 (2017)

11. Damljanovic, D., Tablan, V., Bontcheva, K., Court, R., Street, P.: A
text-based query interface to OWL ontologies. In: Proceedings of

123

http://arxiv.org/abs/1708.00363

818 K. Affolter et al.

International Conference on Language Resources and Evaluation
(LREC 2008), pp. 205–212 (2008)

12. Damljanovic, D., Agatonovic, M., Cunningham, H.: Natural Lan-
guage Interfaces to Ontologies: Combining Syntactic Analysis and
Ontology-Based Lookup Through the User Interaction. Springer,
Berlin (2010)

13. Dong, L., Lapata, M.: Language to logical form with neural atten-
tion. arXiv preprint arXiv:1601.01280

14. Dubey, M., Dasgupta, S., Sharma, A., Höffner, K., Lehmann, J.:
AskNow: a framework for natural language query formalization in
SPARQL. In: International Semantic Web Conference, vol. 9678,
pp. 300–316. Springer (2016)

15. Elman, J.L.: Finding structure in time. Cognit. Sci. 14(2), 179–211
(1990)

16. Fader, A., Zettlemoyer, L., Etzioni, O.: Open question answering
over curated and extracted knowledge bases. In: Proceedings of
20th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining—KDD ’14, pp. 1156–1165 (2014)

17. Ferré, S.: SQUALL: a High-Level Language for Querying and
Updating the Semantic Web. Technical report (2011)

18. Ferré, S.: SQUALL: the expressiveness of SPARQL 1.1 made
available as a controlled natural language. Data Knowl. Eng. 94,
163–188 (2014)

19. Ferré, S.: SPARKLIS: an expressive query builder for SPARQL
endpoints with guidance in natural language. Open J Semant Web,
Res Online Publ 0 (2017)

20. Gautam, A., Kumar, S., Mittal, S.: Survey on natural language
database interfaces. Int. J. Adv. Res. Comput. Sci. 8(5), 469–473
(2017)

21. Green, B., Wolf, A., Chomsky, C., Laughery, K.: Baseball: an
automatic question answerer. In: Proceedings of Western Joint
Computer Conference, pp. 219–224 (1961). arXiv:1011.1669v3

22. Hakimov, S., Jebbara, S., Cimiano, P.: AMUSE: multilingual
semantic parsing for question answering over linked data. In: Pro-
ceedings of 16th International Semantic Web Conference (ISWC
2017), pp. 1–16 (2017)

23. Hartmann, A.K., Tommaso, Marx E., Moussallem, D., Publio, G.,
Valdestilhas, A., Esteves, D., Neto, C.B.: Generating a large dataset
for neural question answering over the dbpedia knowledge base.
ResearchGate (2018)

24. Hendrix, G.G., Sacerdoti, E.D., Sagalowicz, D., Slocum, J.: Devel-
oping a natural language interface to complex data. ACM Trans.
Database Syst. (TODS) 3(2), 105–147 (1978)

25. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
Comput. 9(8), 1735–1780 (1997)

26. Iyer, S., Konstas, I., Cheung, A., Krishnamurthy, J., Zettlemoyer,
L.: Learning a neural semantic parser from user feedback. In: 55th
Annual Meeting of the Association for Computational Linguistics
(2017)

27. Jamil, H.M.: Knowledge Rich natural language queries over
structured biological databases. In: Proceedings of 8th ACM Inter-
national Conference on Bioinformatics, Computational Biology,
and Health Informatics, pp. 352–361 (2017). arXiv:1703.10692v1

28. Jia, R., Liang, P.: Data recombination for neural semantic parsing
(2016). arXiv preprint arXiv:1606.03622

29. John, R.J.L., Potti, N., Patel, J.M.: Ava: From data to insights
through conversations. In: CIDR (2017)

30. Kaufmann, E., Bernstein, A.: Evaluating the usability of natural
language query languages and interfaces to Semantic Web knowl-
edge bases. J. Web Semant. 8(4), 377–393 (2010)

31. Kaufmann, E., Bernstein, A., Zumstein, R.: Querix: a natural lan-
guage interface to query ontologies based on clarification dialogs.
In: ISWC (November), pp. 980–981 (2006)

32. Kaufmann, E., Bernstein, A., Fischer, L.: NLP-reduce: a naive
but domain independent natural language interface for querying

ontologies. In: 4th European Semantic Web Conference ESWC,
pp. 1–2 (2007)

33. Lawrence, C., Riezler, S.: NLmaps: a natural language interface to
query OpenStreetMap. In: COLING (Demos), pp. 6–10 (2016)

34. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D.,
Mendes, P.N., Hellmann, S., Morsey, M., Van Kleef, P., Auer, S.,
Bizer, C.: DBpedia—a large-scale, multilingual knowledge base
extracted from wikipedia. Semant. Web 1, 1–5 (2012)

35. Li, F., Jagadish, H.V.: Constructing an interactive natural language
interface for relational databases. Proc. VLDB Endow. 8(1), 73–84
(2014)

36. Li, F., Jagadish, H.V.: NaLIR: an interactive natural language
interface for querying relational databases. In: Proc 2014 ACM
SIGMOD International Conference on Management of Data, pp.
709–712 (2014)

37. Li, Y., Rafiei, D.: Natural language data management and inter-
faces. In: Proceedings of the 2017 ACM International Conference
on Management of Data—SIGMOD ’17, pp. 1765–1770. ACM
(2017)

38. Li, Y., Yang, H., Jagadish, H.: Nalix: a generic natural language
search environment for XML data. ACM Trans. Database Syst.
(TODS) 32(4), 30 (2007)

39. Luong, T., Pham, H., Manning, C.D.: Effective approaches to
attention-based neural machine translation. In: Proceedings of the
2015 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 1412–1421 (2015)

40. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.,
McClosky, D.: The Stanford CoreNLP natural language processing
toolkit. In: Proceedings of 52ndAnnualMeeting of theAssociation
for Computational Linguistics: System Demonstrations, pp. 55–60
(2014). arXiv:1011.1669v3

41. Marginean, A.: Question answering over biomedical linked data
with Grammatical Framework. Semant.Web 8(4), 565–580 (2017)

42. Miller, G.A.: WordNet: a lexical database for English. Commun.
ACM 38(11), 39–41 (1995)

43. Mishra, A., Jain, S.K.: A survey on question answering systems
with classification. J. King Saud Univ. Inf. Sci. 28(3), 345–361
(2016)

44. Nihalani, N., Silakari, S., Motwani, M.: Natural language interface
for database: a brief review. IJCSI Int. J. Comput. Sci. Issues 8(2),
600–608 (2011)

45. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors
for word representation. In: Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP),
pp. 1532–1543 (2014)

46. Porter, M.F.: An algorithm for suffix stripping. Program 14(3),
130–137 (1980)

47. Sacerdoti, E.D.: Language access to distributed data with error
recovery. In: Proceedings of IJCAI-77, pp. 196–202 (1977)

48. Saha, D., Floratou, A., Sankaranarayanan, K., Farooq Minhas, U.,
Mittal, A.R., Ozcan, F.: ATHENA: an ontology-driven system for
natural language querying over relational data stores. Proc. VLDB
Endow. 9(12), 1209–1220 (2016)

49. Shafique, U., Qaiser, H.: A comprehensive study of natural lan-
guage interface to database. Int. J. Innov. Sci. Res. 9(2), 297–306
(2014)

50. Shekarpour, S., Marx, E., Ngonga Ngomo, A.C., Auer, S.: SINA:
semantic interpretation of user queries for question answering on
interlinked data. Web Semant. Sci. Serv. Agents World Wide Web
30, 39–51 (2015)

51. Simitsis, A., Koutrika, G., Ioannidis, Y.: Précis: from unstructured
keywords as queries to structured databases as answers. VLDB J.
17(1), 117–149 (2008)

52. Song, D., Schilder, F., Smiley, C., Brew, C., Zielund, T., Bretz,
H., Martin, R., Dale, C., Duprey, J., Miller, T., Harrison, J.: TR
discover: a natural language interface for querying and analyz-

123

http://arxiv.org/abs/1601.01280
http://arxiv.org/abs/1011.1669v3
http://arxiv.org/abs/1703.10692v1
http://arxiv.org/abs/1606.03622
http://arxiv.org/abs/1011.1669v3

A comparative survey of recent natural language interfaces for databases 819

ing interlinked datasets. In: Semantic Web-ISWC 2015, pp. 21–37
(2015)

53. Soru, T., Marx, E., Moussallem, D., Publio, G., Valdestilhas, A.,
Esteves, D., Neto, C.B.: Sparql as a foreign language. In: 13th
International Conference on Semantic Systems (2017)

54. Sutskever, I., Vinyals, O., Le, Q.: Sequence to sequence learning
with neural networks. Adv. Neural Inf. Process. Syst. 27, 3104–
3112 (2014)

55. Szalay, A.S., Gray, J., Thakar, A.R., Kunszt, P.Z., Malik, T., Rad-
dick, J., Stoughton, C., vandenBerg, J.: The SDSS skyserver: public
access to the sloan digital sky server data. In: SIGMOD 202 (2002)

56. Tang, L., Mooney, R.: Using multiple clause constructors in induc-
tive logic programming for semantic parsing. In:MachineLearning
ECML 2001(September), pp. 466–477 (2001)

57. Thompson, B., Thompson, F.: Introducing ASK, a simple knowl-
edgeable system. In: Proceedings of first Conference on Applied
Natural Language Process, pp. 17–24 (1983)

58. Walter, S., Unger, C., Cimiano, P., Bär, D.: Evaluation of a layered
approach to question answering over linked data. In: Semant Web-
ISWC 2012, pp. 362–374 (2012)

59. Waltinger, U., Tecuci, D., Olteanu, M.: USI answers: natural lan-
guage question answering over (semi-) structured industry data.
In: Association for the Advancement of Artificial Intelligence, pp.
1471–1478 (2013)

60. Wang, Y., Berant, J., Liang, P.: Building a semantic parser
overnight. In: Proceedings of the 53rdAnnualMeeting of theAsso-
ciation for Computational Linguistics and the 7th International
JointConference onNatural LanguageProcessing (Volume1:Long
Papers), vol. 1, pp. 1332–1342 (2015)

61. Warren, D.H., Pereira, F.C.: An efficient for interpreting easily
adaptable system natural language queries. Am. J. Comput. Lin-
guist. 8(3–4), 110–122 (1982)

62. Weischedel, R.: A hybrid approach to representation in the JANUS
natural language processor. In: Proceedings of 27th Annual Meet-
ing of the Association for Computational Linguistics, pp. 193–202
(1989)

63. Williams, J.D., Kamal, E., Ashour, M., Amr, H., Miller, J., Zweig,
G.: Fast and easy language understanding for dialog systems with
microsoft language understanding intelligent service (LUIS). In:
Proceedings of the 16th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pp. 159–161 (2015)

64. Woods, W.A.: Progress in natural language understanding: an
application to lunar geology. In: Proceedings of National Com-
puter Conference and Exposition. AFIPS ’73, pp. 441–450 (1973)

65. Xu, K., Zhang, S., Feng, Y., Zhao, D.: Answering natural language
questions via phrasal semantic parsing. In: Zong,C.,Nie, JY., Zhao,
D., Feng, Y. (eds.) Natural Language Processing andChinese Com-
puting. Communications in Computer and Information Science,
vol, 496, pp. 333–344. Springer, Berlin, Heidelberg (2014)

66. Xu, X., Liu, C., Song, D.: SQLNet: Generating structured queries
from natural language without reinforcement learning (2017).
arXiv preprint arXiv:1711.04436

67. Yavuz, S., Gur, I., Su, Y., Yan, X.: What it takes to achieve 100%
condition accuracy on wikisql. In: Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, pp.
1702–1711 (2018)

68. Zenz, G., Zhou, X., Minack, E., Siberski, W., Nejdl, W.: From
keywords to semantic queries-Incremental query construction on
the semantic web. J. Web Semant. 7(3), 166–176 (2009)

69. Zheng,W., Cheng,H., Zou, L.,Yu, J.X., Zhao,K.:Natural language
question/answering: let users talk with the knowledge graph. In:
Proceedings of 2017 ACMConference on Information and Knowl-
edge Management, pp. 217–226. ACM (2017)

70. Zhong, V., Xiong, C., Socher, R.: Seq2SQL: Generating structured
queries fromnatural language using reinforcement learning (2017).
arXiv preprint arXiv:1709.00103

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1711.04436
http://arxiv.org/abs/1709.00103

	A comparative survey of recent natural language interfaces for databases
	Abstract
	1 Introduction
	2 Foundation: a sample world
	2.1 Database ontology
	2.2 Input questions
	2.3 Question analysis

	3 Background: natural language processing technologies
	3.1 Stop word
	3.2 Synonymy
	3.3 Tokenization
	3.4 Part of speech tagging
	3.5 Stemming/lemmatization
	3.6 Parsing

	4 Limitations
	5 Recently developed NLIs
	5.1 Keyword-based systems
	5.1.1 SODA (Search Over DAta warehouse)
	5.1.2 NLP-reduce
	5.1.3 Précis
	5.1.4 QUICK (QUery Intent Constructor for Keywords)
	5.1.5 QUEST (QUEry generator for STructured sources)
	5.1.6 SINA
	5.1.7 Aqqu

	5.2 Pattern-based systems
	5.2.1 NLQ/A
	5.2.2 QuestIO (QUESTion-based Interface to Ontologies)

	5.3 Parsing-based systems
	5.3.1 ATHENA
	5.3.2 Querix
	5.3.3 FREyA (Feedback, Refinement and Extended vocabularY Aggregation)
	5.3.4 BELA
	5.3.5 USI Answers
	5.3.6 NaLIX (Natural Language Interface to XML)
	5.3.7 NaLIR (Natural Language Interface for Relational databases)
	5.3.8 BioSmart

	5.4 Grammar-based systems
	5.4.1 TR Discover
	5.4.2 Ginseng (Guided Input Natural language Search ENGine)
	5.4.3 SQUALL (Semantic Query and Update High-Level Language)
	5.4.4 MEANS (MEdical question ANSwering)
	5.4.5 AskNow
	5.4.6 SPARKLIS
	5.4.7 GFMed

	6 Evaluation
	6.1 Evaluation of 24 recently developed NLIs
	6.2 Evaluation of commercial systems

	7 Machine learning approaches for NLIs
	8 Conclusions
	Acknowledgements
	A SQL Representation
	References

