
The VLDB Journal (2020) 29:731–754
https://doi.org/10.1007/s00778-019-00561-0

SPEC IAL ISSUE PAPER

Morton filters: fast, compressed sparse cuckoo filters

Alex D. Breslow1 · Nuwan S. Jayasena1

Received: 1 December 2018 / Revised: 25 July 2019 / Accepted: 29 July 2019 / Published online: 6 August 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Approximate set membership data structures (ASMDSs) are ubiquitous in computing. They trade a tunable, often small, error
rate (ε) for large space savings. The canonical ASMDS is the Bloom filter, which supports lookups and insertions but not
deletions in its simplest form. Cuckoo filters (CFs), a recently proposed class of ASMDSs, add deletion support and often
use fewer bits per item for equal ε. This work introduces the Morton filter (MF), a novel CF variant that introduces several
key improvements to its progenitor. Like CFs, MFs support lookups, insertions, and deletions, and when using an optional
batching interface raise their respective throughputs by up to 2.5×, 20.8×, and 1.3×. MFs achieve these improvements by
(1) introducing a compressed block format that permits storing a logically sparse filter compactly in memory, (2) leveraging
succinct embedded metadata to prune unnecessary memory accesses, and (3) more heavily biasing insertions to use a single
hash function. With these optimizations, lookups, insertions, and deletions often only require accessing a single hardware
cache line from the filter. MFs and CFs are then extended to support self-resizing, a feature of quotient filters (another ASMDS
that uses fingerprints). MFs self-resize up to 13.9× faster than rank-and-select quotient filters (a state-of-the-art self-resizing
filter). These improvements are not at a loss in space efficiency, as MFs typically use comparable to slightly less space than
CFs for equal ε.

Keywords Morton filter · Cuckoo filter · Hardware cache and memory bandwidth optimized data structures and algorithms ·
Approximate set membership data structure · Approximate membership query data structure · Rank-and-select

1 Introduction

As time has progressed, systems have added many more lev-
els to the memory hierarchy. In today’s enterprise servers,
it is not uncommon to have three to four levels of hardware
cache, a vast pool of DRAM, several SSDs, and a pool of
disks.With each successive level of the hierarchy, latency and
bandwidth typically worsen by one or more orders of mag-
nitude. To avoid accessing a slower medium unnecessarily,
many applications make use of approximate set membership
data structures (ASMDSs). An ASMDS like a set data struc-
ture answers set membership queries (i.e., is an item e an
element of the set S?). However, unlike a set, which always
reports with certitude whether e is in S, an ASMDS may
report false positives (i.e., falsely state that e is in S) with a

B Alex D. Breslow
alex.breslow@amd.com

Nuwan S. Jayasena
nuwan.jayasena@amd.com

1 Advanced Micro Devices, Inc., AMD Research, 2485
Augustine Drive, Santa Clara, CA 95054, USA

worst-case expected error rate of 0 ≤ ε ≤ 1. An ASMDS
does not report false negatives [33]: If an ASMDS reports e
not in S, then it certainly is not. A core benefit of an ASMDS
is that its error rate ε is typically independent of the size of the
data items that are encoded, so an ASMDS can often reside
one or two levels higher in the memory hierarchy than the
slow medium to which it filters requests.

The most common ASMDS is the Bloom filter [7],
which in its simplest form supports insertions and a likely_
contains lookup primitive. Deletions and counting occur-
rences of an item are supported via a number of different
Bloom filter variants, albeit with an increase in the storage
cost (where a 2× to 4× increase is not uncommon [10,34]).
Bloom filters have been used in data storage systems such
as Google’s BigTable [18], distributed analytics platforms
like Apache Impala [49], bioinformatics applications like the
counting of k-mers duringDNAsequencing [60], diverse net-
working applications [15], andmore.One of the pitfalls of the
Bloom filter is that its simplest version exhibits poor locality
of reference, and more cache-friendly blocked variants are
typically less space efficient [15].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00561-0&domain=pdf
http://orcid.org/0000-0002-5838-7127

732 A. D. Breslow, N. S. Jayasena

Consequently, a number of other filters have been pro-
posed, of which two of the most practical are the quotient
filter [6,71] and cuckoo filter [33]. Both the quotient filter
and the cuckoo filter differ from the Bloom filter in that they
store fingerprints: short hashes that each typically have a one-
to-one correspondence with an item e that is encoded by the
filter as belonging to a set S. Both cuckoo filters and quotient
filters support deletions and when filled to high load fac-
tors (e.g., a 95% full filter) use less space than an equivalent
Bloom filter when the desired false positive rate is less than
about 1–3%, the usual case for a wide array of applications.

In thiswork,we focus on the cuckoofilter (CF) and present
a novel variant, the Morton filter (MF).1 Versus stock CFs,
MFs particularly excel forworkloads that use large filters that
are too big to fit in the fast private caches. Since the latency
cost of a last level cache (LLC) or memory access is on the
order of tens to hundreds of CPU cycles, MFs use that delay
to execute additional computation that helps to reduce the
required LLC andmemory traffic per operation (e.g., lookup,
insertion, or deletion). Provided that themeanmemory access
time is sufficiently long, that extra computation can be almost
entirely hidden from the critical path by overlapping it with
LLC and memory data transfers.

Like a CF, an MF is logically organized as a linear array
of buckets, with each bucket containing a fixed number of
slots that can each store a single fingerprint. Fingerprints are
mapped to the filter by emplacing the fingerprint in one of two
candidate buckets, whose indexes are independently deter-
mined by two hash functions (H1 and H2) that each operate
on the key and output a different bucket index. Provided that
one candidate bucket has spare capacity, the insertion trivially
succeeds. Conflicts where both candidate buckets are full are
resolved via cuckoo hashing [70], a hashing technique that
triggers a recursive chain of evictions.

Despite these similarities, MFs differ in several key ways.
MFs decouple their logical interpretation from how their data
are stored in memory. They logically underload the filter and
leverage a compressed block format that replaces storage
of space-hungry empty slots with a series of fullness coun-
ters that track the load of each logical bucket. With fullness
counters, reads and updates to an MF happen in situ without
explicit need for materialization of the logical interpretation
of the block. This zero compression makes logically under-
loading the filter (1) space efficient because many mostly
empty buckets can be packed into a single cache block and
(2) high performance because accesses occur directly on the
compressed representation and only on occupied slots.

With logically underloaded buckets, most insertions only
require accessing a single cache line from the MF since H1

most often succeeds in placing the fingerprint. Thus, most
cuckoo hashing is also avoided, and insertion throughput

1 Named after a certain elephant’s half-bird baby [27].

improves by up to 20.8×. Increased biasing in favor of H1

during insertions also improves lookup throughput, as on sub-
sequent retrieval, the fingerprints placed with H1 are found
in the first bucket, and thus, we can skip accessing the hard-
ware cache block containing the second bucket. For negative
lookups (queries to keys that were never inserted into the
MF), the filter employs an Overflow Tracking Array (OTA),
a simple, in-block bit vector that tracks when fingerprints
cannot be placed using H1. By checking the OTA, most neg-
ative lookups only require accessing a single bucket, even
when the filter is heavily loaded. Thus, regardless of the type
of lookup (positive, false positive, or negative), typically only
one bucket needs to be accessed.When buckets are cache line
resident, most often only one unique cache access is needed
per MF probe and at most two, a savings of close to 50%.

Further, an MF typically performs many fewer fingerprint
comparisons than a CF, with fewer than one fingerprint com-
parison per lookup not uncommon, even when the MF is
heavily loaded. Instead, many negative lookups are fully or
partially resolved simply by examining one or two fullness
counters and a bit in the OTA.

Due to this compression, sparsity, biasing, and an inter-
face employing batched lookups and updates, MFs attain
improved throughput, space usage, andflexibility.With fewer
comparisons and a reduced number of cache accesses, MFs
boost lookup, deletion, and insertion throughputs, respec-
tively, by as much as 2.5×, 1.3×, and 20.8× over a stock
CF. Similarly, these traits permit using shorter fingerprints
because false positives are integrally tied to the number of
fingerprint comparisons. Consequently, the space overhead
of the fullness counters and OTA can largely be hidden, and
space per item can often be reduced by approximately 0.5 to
1.0 bits over a CF with the same ε.

MFs further improve space utilization by doing away with
the sizing restrictions of their predecessors. Whereas CFs
historically have required a power of two number of buckets
and quotient filters have used a power of two number of slots,
MFs solely require that the number of buckets be a multiple
of two. This feature yields further space savings, especially in
cases where the number of fingerprints that need to be stored
is just over the threshold that would require a larger filter size.
The enabler of these advancements is even-odd partial key
cuckoo hashing, a novel hashing mechanism that uses bucket
parity and small, localized odd offsets to map fingerprints
between a pair of even and odd buckets. Because offsets are
small, many pairs of candidate buckets appear within the
same page of virtual memory, which means that a single
translation lookaside buffer (TLB) entry can often service
virtual to physical memory translations for both buckets.

Aside from performance and space utilization improve-
ments, MFs extend the feature set of CFs to include the
self-resizing operation from quotient filters (i.e., resize the
filter solely by leveraging its content, not the items that were

123

Morton filters: fast, compressed sparse cuckoo filters 733

used to produce it). MFs’ ability to self-resize extends their
use to dynamic workloads where the required filter size is
not known in advance.

Our contributions are as follows:

1. We present the design of the Morton filter, a novel
ASMDS that uses compression, sparsity, and biasing to
improve throughput without sacrificing on space effi-
ciency or flexibility. MFs improve performance over CFs
by making accesses to fewer cache lines during filter
reads and updates.

2. We conduct a detailed performance evaluation of the MF
on both AMD and Intel server processors.

3. We greatly ameliorate the insertion throughput perfor-
mance collapse problem for fingerprint-based ASMDSs
at high loads (>100× for a CF) by decoupling an MF’s
logical representation from how it is stored.

4. We present a fast algorithm for summing fullness coun-
ters that is key to an MF’s high performance and which
can be applied in other contexts.

5. We develop even-odd partial key cuckoo hashing, a hash-
ing mechanism that does away with requiring the total
buckets be a power of two and reduces TLB misses by
placing many pairs of candidate buckets in the same page
of virtual memory.

6. We open-source our C++ MF library at https://github.
com/AMDComputeLibraries/morton_filter. Our code’s
high-performance interface employs batching. However,
item-at-time processing is also supported via different
APIs.

2 Cuckoo filters

In this section, we describe the cuckoo filter (CF) [33], the
ancestor of the MF.

2.1 Baseline design

CFs are hash sets that store fingerprints, where each finger-
print is computed by using a hash function HF , which takes
as input a key representing an item in the set and maps it to
a fixed-width hash. A CF is structured as a 2D matrix, where
rows correspond to fixed-width associative units known as
buckets and cells within a row to slots, with each slot capa-
ble of storing a fingerprint. Prior work often uses 4-slot
buckets [33].

To map each key’s fingerprint to the filter and to largely
resolve collisions, Fan et al. encode a key’smembership in the
set by storing its fingerprint in one of two candidate buckets.
The key’s two candidate buckets are independently computed
using two hash functions H1 and H2. H1 takes the key as
input and produces the index of one candidate bucket, and

H2 operates on the same key and produces the index of the
other [33].

2.2 Insertions

On insertions, provided that at least one of the slots is empty
across the two candidate buckets, the operation completes
by storing the fingerprint (computed by HF (key)) in one of
the empty locations. If no slot is free, cuckoo hashing [70]
is employed. Cuckoo hashing picks a fingerprint within one
of the two buckets, evicts that fingerprint, and stores the new
fingerprint in the newly vacated slot. The evicted fingerprint
is then rehashed to its alternate bucket using its alternate hash
function. To compute the alternate hash function simply by
using the bucket index and fingerprint as inputs, they define
a new hash function H ′, which takes the fingerprint and its
current bucket as input and returns the other candidate bucket.
So, if the fingerprint is currently found in the first candidate
bucket given by H1(key), H ′ yields the alternate candidate
given by H2(key) and vice versa. If the alternate candidate
has a free slot, the evicted fingerprint is written there. In cases
where the alternate bucket has no free slot, a fingerprint from
that bucket is kicked out, the initial evicted fingerprint takes
its place, and the algorithmproceeds recursively on the newly
evicted fingerprint until all fingerprints have been relocated
or failure is declared.

Two example insertions are shown in Fig. 1. The first is
for key Kx , which succeeds because H2 maps its fingerprint
x to a Bucket 0, which has a vacant slot. The second is for
key Ky , where it initially fails to find a vacant slot in either
candidate bucket (6 and 4), and therefore uses cuckoo hash-
ing to displace a chain of fingerprints beginning with 1011
in Bucket 6 and ending with 1101 in Bucket 2 moving to
one of the free slots in Bucket 1. Note that in practice, the
series of displacements may occur in reverse order in an opti-

Fig. 1 Insertion of two different keys Kx and Ky into the filter by
storing their respective fingerprints x and y. Empty slots are shown in
gray. Kx ’s insertion only involves accessing its two candidate buckets (4
and 0) since 0 has a free slot, but Ky’s candidates (6 and 4) are both full,
so a series of fingerprints are displaced each to their alternate candidate
to make an empty slot for y in Bucket 6. The updated filter is shown in
Fig. 2

123

https://github.com/AMDComputeLibraries/morton_filter
https://github.com/AMDComputeLibraries/morton_filter

734 A. D. Breslow, N. S. Jayasena

Fig. 2 Lookupof twodifferent keys Kx and Ky following the successful
insertion of their respective fingerprints x and y in Fig. 1. For Ky , steps
4 and 5 can optionally be skipped, since y is found in the first candidate
bucket

mized implementation to avoid storing displaced fingerprints
at each step.

2.3 Lookups

On lookups, the algorithm computes H1 and H2 on the key to
compute its candidate buckets and HF to determine its finger-
print. If the fingerprint appears in any of the slots across the
two candidate buckets, the lookup returns LIKELY_IN_SET,
elseNOT_IN_SET. The certitude of LIKELY_IN_SET is sub-
ject to an expected error rate ε that is tunable by assigning
an appropriate bit width to each fingerprint. Increasing the
width of each fingerprint by one bit roughly halves ε. It is
worth noting that the actual incidence of false positives will
interpolate with high probability between 0 (all queries are to
items inserted in the filter) to roughly ε (none of the queried
items were inserted in the filter) subject to whether lookups
are to true members of the encoded set.

Figure 2 follows the insertion of keys Kx and Ky into
the filter in Fig. 1. Even though Ky triggered a series of
displacements, since it is only allowed to insert y in one of
its two candidate buckets, only Buckets 6 and 4 need to be
searched. The same holds for any other queried key: At most,
two buckets need to be probed.

2.4 Modeling the error rate and space use

In this section, we present formulae for calculating the error
rate of a cuckoo filter, its space usage per item, and show
how the insights from this study can be leveraged to design
an MF (see Sect. 3 for a high-level MF description). Table 1
provides a glossary of symbols.

A CF has an error rate ε which reports the expected ratio
of false positives to total likely_contains queries that are
true negatives (i.e., no risk of a false positive on a true pos-
itive). To understand how ε is calculated given a filter, we
first introduce several terms: S the slots per bucket, b the

Table 1 Glossary of symbols

ε—false positive rate

S—slots per bucket

b—buckets searched per negative lookup

α—the load factor

f—fingerprint length in bits

I—bits per item in the filter

expected number of buckets that need to be searched per
negative lookup, α the load factor, and f the bits per finger-
print. When comparing an f -bit fingerprint to a fingerprint
stored in a bucket, the occurrence of aliasing (i.e., falsely
matching on a fingerprint inserted by another key) is 1/2 f

if all fingerprint values are equally probable. There are 2 f

potential values, and only one of those can alias. To compute
the net probability of an alias, prior work by Fan et al. [33]
observes that there are S slots per bucket, b is fixed at 2 (they
always search both buckets), and therefore the rate of alias-
ing is ε = 1 − (1 − 1/2 f)bS , so the necessary f for a target
ε is roughly f = log2(bS/ε), which for their parameters of
S = 4 and b = 2 is f = 3 + log2(1/ε).

However, what this model discounts is the effect of α,
that is, if one is careful and clearly marks empty slots (by
reserving one of the 2 f states to encode an empty slot),
then there is no way that empties can alias when perform-
ing a lookup. Marking empties changes the math slightly, to
ε = 1−(1−1/(2 f −1))αbS , which alters f to approximately

f = log2(αbS/ε) (1)

for typical values of f (i.e., f > 6). For underloaded fil-
ters, it turns out that that extra α term is important because
since 0 ≤ α ≤ 1, its logarithm is less than or equal to
zero. For instance, filling the filter half full (α = 0.5) means
that α in the numerator decreases f ’s required length by
log2(α = 0.5) = 1 bit for a target ε. Further, this effect is
amplified in the savings in bits per item (shown in Eq. 2).
With the additional α and a fixed ε, α = 0.5 would decrease
the required bits per item by log2(0.5)/0.5 = 2 bits over Fan
et al.’s more pessimistic model.

I = f /α = log2(αbS/ε)/α (2)

However, because theα in the denominator ofEq. 2 dwarfs
the impact of the α in the numerator, prior work largely
ignores this space savings opportunity. In particular, α needs
to be close to 1 for a CF to be space competitive with a
Bloom filter [7], which largely negates the positive impact
of the α in the numerator. To obtain a large value of α (e.g.,
> 0.95), there are several options for b and S, but practical
constraints limit the viable options. Forb, a high-performance

123

Morton filters: fast, compressed sparse cuckoo filters 735

implementation is limited to selecting 2. A value of b = 1
cannot yield a sufficiently high α even for large values of
S. b > 2 is also undesirable because it results in additional
memory traffic (e.g., b = 3 triggers an additional memory
request per lookup). For S, larger values improve α but at the
expense of a worsening error rate given a fixed f . With each
additional fingerprint comparison, the likelihood of a false
positive increases. In practice, S = 4 is the minimum value
that permits an α that exceeds 0.95. Larger values of S could
be used at the expense of increased bits per item. As we will
see in the proceeding sections, our work gets around these
limitations. For further analysis of feasible parameters, we
point the reader to Erlingsson et al.’s work on cuckoo hash
tables (an analogous hash table rather than an approximate
hash set) [30], which provides a concise table showing the
trade-offs of b and S.

2.5 Bloom filters and relative optimality

Given b = 2, S = 4, and α = 0.95, we examine a CF’s
relative space and performance optimality. CFs make very
efficient use of space. Whereas a Bloom filter uses approxi-
mately log2(1/ε)/ln(2) ≈ 1.44log2(1/ε) bits per item [15],
these parameters forb, S, andα place the bits per itemat about
3.08 + 1.05log2(1/ε), clearly asymptotically better and not
too far off from the information theoretic limit of log2(1/ε)
(see Carter et al. [16]). Fan et al. show that the leading con-
stant can be further improved via Bonomi et al.’s semi-sort
optimization [11], which sorts fingerprints within a bucket by
a fixed-width prefix and then replaces those prefixes with a
code word. With 4-bit prefixes, four prefixes can be replaced
with a 12-bit code word, a savings of one bit per finger-
print. That reduces the bits per item to 2.03+1.05log2(1/ε),
albeit with a performance hit from sorting, compression, and
decompression (see Sect. 7).

On the performance front, an ideal filter only requires
accessing a single cache line from the filter for each lookup,
insertion, or deletion. CFs by contrast often access con-
siderably more data. With lookups and deletions, there are
two main approaches: (1) access both buckets each time or
(2) skip accessing the second bucket if a matching fingerprint
is found in the first one. Fan et al. implement approach (1) for
lookups and approach (2) for deletions [32]. Since lookups
access both buckets, which with high probability reside in
different hardware cache lines, two unique cache lines are
accessed from the CF: 2×more than an idealized filter. Dele-
tions fare better; since ASMDSs only permit deletions to
items in the filter (otherwise, false negatives are possible),
the expected cost in unique cache lines is typically 1 plus
the fraction of items that are inserted using H2. See Ross
[78] and Breslow et al. [14] for further associated trade-offs
between (1) and (2).

Insertions are often the furthest from optimal. At a high
load factor, it can take many cache accesses to insert a single
item. In the proceeding sections, we will show how to largely
get around these limitations and achieve lookups, insertions,
and deletions that typically only access a single cache line
from the filter. For a comparative analysis of MFs, which
discusses the decoupling of the log2(α) term in the numerator
from the α term in the denominator in Eq. 2, see Sect. 5.

3 Morton filters

This section describes theMF and elaborates on the principal
features that differentiate it from a CF.

3.1 Optimizing for thememory hierarchy

The MF is a reengineered CF that is tuned to make more
efficient use of cache andmemory bandwidth. Today’s mem-
ory systems move data in coarse-grain units known as cache
lines that are typically 64 to 128 bytes. On a load or store
instruction, the entire cache line is fetched and brought up
through the memory hierarchy to the L1 data cache. Subse-
quent accesses to words in the same cache line that occur
in short sequence (known as temporal locality [5,40]) are
cheap because they likely hit in the high-bandwidth, low-
latency L1 data cache. Typical ASMDS workloads are often
cache or memory bound because they employ pseudoran-
dom hash functions to set bits or fingerprints within the
filter, which limits their data reuse and taxes the compara-
tively limited bandwidth of lower-level caches (e.g., L3 or
L4) and bandwidth to off-chip memory. In contrast to a CF,
which optimizes for latency at the expense of performing two
random memory accesses per lookup query, an MF probe
performs a single cache access most of the time and at most
two. In bandwidth-limited scenarios, these efficiency gains
correspond to significant speedups (see Sect. 7). We point
the interested reader to prior work by Ross [78], Polychro-
niou and Ross [73], and Breslow et al. [14] for the related
discussion of latency and bandwidth trade-offs in hash tables.

3.2 Logical interpretation

Like aCF, theMFmaintains a set of buckets and slots, andfin-
gerprints encoding keys are computed using HF and mapped
to one of two candidates using one of H1 or H2. Collisions
are resolved using a variant of cuckoo hashing (see Sect. 4.2
and Fig. 7).

3.3 Compressed structure: the block store

The MF stores its data in parameterizable units known as
blocks. Blocks have a compressed storage format that stores

123

736 A. D. Breslow, N. S. Jayasena

Fig. 3 A sample block in an MF that is performance-optimized for
512-bit cache lines. The block has a 46-slot FSAwith 8-bit fingerprints,
a 64-slot FCAwith 2-bit fullness counters (64 3-slot buckets), and a 16-
bit OTA with a bit per slot

both the fingerprints from a fixed number of buckets and
accompanying metadata that permits recovering the MF’s
logical interpretation while solely performing in situ reads
and updates to the block. Blocks are stored sequentially in a
structure known as the Block Store. Block size within the
Block Store is dictated by the physical block size of the
storage medium for which the MF is optimized. If the filter
resides entirely in cache and systemmemory, then block sizes
that evenly divide a cache line are the natural choice (e.g.,
256- or 512-bit blocks for 512-bit hardware cache lines).
Similarly, block sizes that evenly divide an SSD block are
logical choices when the filter is primarily SSD resident.

3.4 Block components

Each MF block has three principal components (shown in
Fig. 3), which we detail below:

Fingerprint storage array (FSA)—The FSA is the array
that stores the fingerprints from a block. Fingerprints from
consecutive buckets within a block are stored one after
another in compact, sequential order with no gaps. Empty
slots within the FSA are entirely at the end of the buffer. An
FSA typically hasmany fewer slots than the total logical slots
across all buckets that it stores from the logical interpreta-
tion. For instance, in Fig. 3, there are 46 slots for fingerprints
in the FSA but a total of 64 ∗ 3 = 192 slots across the 64
buckets whose fingerprints it stores. Thus, the filter can be
logically highly underloaded while allowing the FSA to be
mostly full and accordingly conserve space.

Fullness counter array (FCA)—TheFCAencodes the log-
ical structure of the block by associating a fullness counter
with each of its buckets that tracks how many slots are occu-
pied by fingerprints. It enables in situ reads and writes to the
serialized buckets in the FSA without the need to material-
ize a full logical view of the associated block by summing
the loads of the buckets prior to the bucket of interest to
determine an offset in the FSA where reading should begin.
Further,with anFCA, vacant slots in the logical interpretation
no longer have to be stored in the FSA, and our implementa-
tion uses the FCA to completely skip comparisons to empty
fingerprint slots.

Overflow tracking array (OTA)—The OTA in its simplest
form is a bit vector that tracks overflows from the block by
setting a bit every time a fingerprint overflows (see Sect. 3.8).

By querying the OTA, queries determine whether accessing
a single bucket is sufficient for correctness or whether both
candidates need to be checked.

3.5 Accessing a bucket

A sample block and its logical representation are shown in
Fig. 4. In the example, the least significant bit of the block
is the farthest to the right. Fullness counters and fingerprints
are labeled with the bucket to which they correspond. To
show how in situ lookups are possible, we consider the case
where we want to examine the contents of Bucket 4. Bucket
4 contains the fingerprints 5, 3, and 6. To determine where
to read in the FSA, we can add the loads of Buckets 0 to 3
to provide an offset. These are 1 + 0 + 2 + 1 or 4, so the first
fingerprint 5 appears at FSA[4]. We know to stop reading
at FSA[6] because FCA[4] = 3, and so we have already
read all three fingerprints. See Sect. 4.1 for a more in-depth
description of the algorithm with an accompanying figure.

Note that in the example, the logical interpretation of the
block has 18 slots of which a mere 8 are occupied. In a CF,
if the block were representative of the average load on the
filter, then the bits per item would be f /(8/18) ≈ 2.25 f .
However, in the MF, 8 of 10 FSA slots are occupied, so the
block’s actual load is much higher, and the actual bits per
item is 1.25 f + FCA bits + OT A bits, clearly asymptot-
ically better. Thus, heavily logically underloaded MFs with
densely filled FSAs conserve space while allowing inex-
pensive lookups and updates that are typically localized to a
single block and thus a single cache line.

3.6 Primacy

In contrast to a CF, we differentiate between the two hash
functions H1 and H2. We call H1 the primary hash function
and for a given key say that a bucket is its primary bucket if its
fingerprintwould be stored there on an insertionusing H1.We
call H2 the secondary hash function and for a given key say
that a bucket is its secondary bucket if its fingerprint would
be stored there on an insertion using H2. When inserting a
fingerprint into an MF, we always first try to place it into its
primary bucket and only fall back to the secondary function
H2 when that fails. By heavily biasing insertions in this way,
most items in the MF can be found by examining a single
bucket, and thus a single hardware cache line.

3.7 Filtering requests to secondary buckets

For negative lookups (i.e., where the queried key never had
its fingerprint inserted into the table), biasing still helps per-
formance. The OTA tracks all overflows from a block. When
H2 gets used to map a key K ’s fingerprint to a bucket, we
set a bit in the OTA corresponding to the block containing

123

Morton filters: fast, compressed sparse cuckoo filters 737

Fig. 4 An MF’s Block Store and a sample block’s compressed format and logical interpretation, with corresponding buckets labeled 0 to 5. The
FCA and FSA state dictates the logical interpretation of the block. Buckets and fingerprints are ordered right to left to be consistent with logical
shift operations

K ’s primary bucket. We select the bit’s index by computing
a hash function HOTA on K . On a subsequent query to a key
K ′ that was never inserted into the filter but whose primary
bucket is in the same block as K ’s, we compute HOTA on K ′.
If we hash to an unset bit in the OTA, then the lookup only
requires a single bucket access. A set bit requires accessing
the other candidate bucket (likely two different cache lines).
Bits in the OTA that are previously set remain set on addi-
tional overflows that hash to the same bit.

3.8 Types of overflows

At the time of filter initialization, all OTAs across all blocks
begin zeroed out. When fingerprints are first inserted, they
are inserted exclusively using H1 and accordingly into their
primary buckets. It is only after some time that one of two
events will trigger the setting of a bit in the OTA. The first
event is a bucket overflow. Bucket overflows occur when a
key’s fingerprint maps to a bucket for which there is no spare
logical capacity, that is, when its associated counter in the
FCA has already hit its maximum value. The second event
is a block overflow, which occurs when a key’s fingerprint is
mapped to a bucket where its block has no spare FSA slots.
In both cases, one fingerprint needs to be remapped from
the block to make room for the new fingerprint. A bucket
overflow requires the evicted fingerprint to come from the
new fingerprint’s candidate bucket; however, when a block
overflow occurs that is not also a bucket overflow, any fin-
gerprint within the block’s FSA may be evicted. As it turns
out, for most parameter values for the slots per bucket, the
vast majority of overflows are purely block overflows. With
common fingerprint sizes of several to a few tens of bits, this
affords tens of potential fingerprints to evict on any overflow
andmakes the filter particularly robust during insertions. See
Sect. 4.2 for further detail.

3.9 Interplay between buckets and blocks

The addition of the block abstraction is one of the defining
features of theMF. By aggregating the loads across the many
underloadedbuckets that they store, blocks improve the space
efficiency of the filter while permitting smaller, less heavily
loaded buckets (e.g., a 3-slot bucket with fewer than 1 occu-
pied slot). With small buckets that are mostly empty, most

lookups require fewer loads and comparisons and are thus
cheaper. For example, an MF that employs the block param-
eters in Fig. 3 requires fewer than 0.8 fingerprint comparisons
per negative likely_contains query even when 95% of the
FSA slots are full, an improvement of more than 10× over a
stock CF that checks 8 slots.

Further, small, underloaded buckets afford greater oppor-
tunity to batch work from multiple lookups and insertions of
multiple items into a shared set of SIMD instructions [36]
(see Sect. 4.1 for further discussion).

The large block size greatly benefits insertions. Because
the logical interpretation of the filter is sparsely filled, bucket
overflows are infrequent because most fullness counters
never max out. As such, provided the block has at least one
free slot, most insertions are likely to succeed on the first
attempt. Thus, overwhelmingly most items are hashed with
H1 (>95% for the parameters in Fig. 3 for FSA occupancies
less than or equal to 0.95), so most insertions, deletions, and
lookups only access a single cache line from the MF.

3.10 Even-odd partial key cuckoo hashing

The MF employs a different method for calculating H ′ and
H2 than a stock CF that reduces TLBmisses and page faults.
We show H2 and H ′ below, where K is an arbitrary key, B
is the buckets per block, β is the bucket index where K ’s fin-
gerprint is placed, n is the total buckets, H is a hash function
like MurmurHash [3], map(x, n) maps a value x between 0
and n − 1 inclusive, and HF (K) is K ’s fingerprint:

H1(K) = map(H(K), n)

H2(K) = map(H1(K) + (−1)H1(K)&1 ∗ offset(HF (K)), n)

H ′(β, HF (K)) = map(β + (−1)β&1 ∗ offset(HF (K)), n)

offset(Fx) = [B + (Fx%OFF_RANGE)] | 1

This formulation logically partitions the filter into two
halves: the even buckets and odd buckets. If a bucket is even,
then we add an offset to the primary bucket. If it is odd, then
we subtract that offset. Offsets are always odd (the |1 term) to
enforce switching between partitions. By partitioning in this
way, it makes it possible to compute H ′(K) and remap K ’s
fingerprint without knowing K itself. This property is also
true of Fan et al.’s original scheme, which XORs H1(HF (x))

123

738 A. D. Breslow, N. S. Jayasena

with the fingerprint’s current bucket to determine its alternate
candidate. However, their approach requires the number of
buckets in the filter to be a power of two, which in the worst
case increases memory use by almost 2×. Our approach does
not make this assumption. Rather, we only mandate that the
number of buckets be amultiple of two so thatH ′ is invertible.

Our offset calculation has several nice properties. By
adding B to the offset, it guarantees that for any key, its
two candidate buckets fall in different blocks. This prop-
erty ensures that rehashing a fingerprint always removes
load from the originating block, which is crucial dur-
ing block overflows. Further, the offset is at most ±(B+
OFF_RANGE). Thus, by tuning this value so that it is much
less than the number of buckets in a physical memory page,
we ensure that most pairs of candidate buckets fall within
the same page of memory. This optimization improves both
TLB and DRAM row buffer hit ratios, which are crucial
for maximizing performance [8,47]. Further, we select an
OFF_RANGE that is a power of two so that modulo opera-
tions can be done with a single logical AND. Themap(x, n)

primitive is implemented two different ways that both get
around performing an integer division. The first method [54]
is given by map(x, n) = (x ∗ n) >> k, where x is a k-bit
integer that is uniformly random between 0 and 2k − 1. For
the second method, because the offset is bounded, provided
that it is smaller than the total buckets in the MF, we do the
following:

i f x ≥ 0 && x ≤ n − 1, then map(x, n) = x

else i f x < 0, then map(x, n) = x + n

else, then map(x, n) = x − n

4 Algorithms

In this section, we describe the MF’s core algorithms.

4.1 Lookups

This section describes how to determine the presence of a
key Kx ’s fingerprint Fx in an MF. A simplified algorithm is
presented in Algorithm 1. We first compute the primary hash
function H1 on Kx to determine the global bucket index for
its primary bucket (call it glbi1) for Fx . Dividing glbi1 by
the buckets per block B yields the block index. Comput-
ing mod(glbi1, B) produces the block-local bucket index
lbi1. From here, we check for the presence of x in its bucket
using table_read_and_compare, which performs an in situ
check for Fx on Kx ’s block. No materialization to a logical
representation of the block is necessary.

Figure 5 shows table_read_and_compare in action.
1 We first compute Kx ’s bucket’s offset in fingerprints from

Algorithm 1 Algorithm for LIKELY_CONTAINS function
1: function likely_contains(MF, Kx)
2: Fx = HF (Kx)

3: glbi1 = H1(Kx)

4: block1 = MF .BlockStore[glbi1/B]
5: lbi1 = mod(glbi1, B)

6: match = table_read_and_cmp(block1, lbi1, Fx)
7: if (match or OT A_bit_is_unset(block1, lbi1)) then
8: return match
9: else
10: glbi2 = H2(Kx)

11: block2 = MF .BlockStore[glbi2/B]
12: lbi2 = mod(glbi2, B)

13: return table_read_and_cmp(block2, lbi2, Fx)

Fig. 5 An example of checking for the presence of fingerprint Fx once
the logical bucket index lbi within the block is known

the start of its primary block. In the example, Kx ’s lbi is 4,
so we sum the loads of all buckets that appear before Bucket
4 (0 through 3 inclusive), which yields an offset (of f) of 5
fingerprints. 2 Since we use zero indexing, that indicates
that Bucket 4’s first fingerprint appears at index 5. Since the
FCA[lbi] = 2, that means that Bucket 4 has 2 fingerprints.
Therefore, since we begin reading at index 5, we stop reading
prior to index of f + FCA[lbi] = 5 + 2 = 7 (index 6). If
any of the fingerprints in the queried range (i.e., 19 or 48)
match Fx , then we return true, else false.

Having returned to Algorithm 1, we then check whether
a match was successful or if lbi1 maps to an unset bit in
the OTA. If either hold, then we return the result. Other-
wise, we probe the bucket in the second block and return the
result.

To achieve high performancewith this algorithm,wemod-
ify it slightly to perform multiple lookups in a flight. All
lookups first compute prior to the if statement, and we gather
those lookups for which the statement evaluated to false,
and then perform the else statement for the subset where
accessing the secondary bucket is necessary. This batching
improves performance by permitting improved SIMD vec-
torization of the code and by reducing the number of branch
mispredictions [84]. Batching is akin to the vectorized query
processing employed in columnar databases [9] and loop
tiling [57,69,94] in high-performance computing.

4.2 Insertions

Algorithm 2 shows the high-level algorithm for insertions.
We first attempt to insert into the first candidate bucket at

123

Morton filters: fast, compressed sparse cuckoo filters 739

Algorithm 2 Algorithm for INSERT function
1: function insert(MF, Kx)
2: Fx = HF (Kx)

3: glbi1 = H1(Kx)

4: block1 = MF .BlockStore[glbi1/B]
5: lbi1 = mod(glbi1, B)

6: success = table_simple_store(block1, lbi1, Fx)
7: if (success) then
8: return success
9: else
10: set_OT A(block1, lbi1)
11: glbi2 = H2(Kx)

12: block2 = MF .BlockStore[glbi2/B]
13: lbi2 = mod(glbi2, B)

14: success = table_simple_store(block2, lbi2, Fx)
15: if (success) then
16: return success
17: return res_con f lict(MF, block1, block2, lbi1, lbi2, Fx)

Fig. 6 An example of inserting a fingerprint Fy into its logical bucket
at index lbi within the block. The updated block is shown below. We
leave out the OTA for clarity

glbi1 (lines 2 through 6). The function table_simple_store
succeeds if both the candidate bucket and its block’s FSA
have spare capacity (i.e., no block nor bucket overflow). If
table_simple_store fails, then the algorithmproceeds to the
second candidate bucket (lines 10 through 14). Provided the
block and candidate have sufficient capacity, the insertion
succeeds. Otherwise, we proceed to the conflict resolution
stage (line 17). In this stage, a series of cuckoo hashing dis-
placements are made.

Figure 6 shows the block-local updates that occur dur-
ing an insertion of a key Ky’s fingerprint Fy (the bulk of
table_simple_store). 1 We begin by computing the bucket
offset within the FSA. In this case, Ky’s block-local bucket
index lbi is 3, so we sum all fullness counters before index
3, which correspond to the loads in fingerprints of the 0th,
1st, and 2nd buckets in the block. 2 Next, we shift all fin-
gerprints to the left of the end of the bucket (at an offset of
of f + FCA[lbi]) to the left by one slot to vacate a slot for
Fy . These operations are inexpensive becausemany elements
are shifted via a single low-latency logical shift instruction,
and because Block Store blocks are sized to evenly divide
a cache line, only one cache line from the Block Store is
accessed per block-level read or update. 3 Fy is then stored
at FSA[of f + FCA[lbi]]. 4 The final step is to increment
the fullness counter at the bucket’s logical index.

Fig. 7 Insertion of a key Kx into an MF (visualized as the logical
interpretation). This insertion is atypical as it requires two levels of
evictions to resolve the conflict. In contrast, most insertions only need
to update a single block and no cuckoo hashing is necessary, even when
blocks are heavily loaded

Figure 7 shows the core functionality of the function
res_con f lict , with the series of displacements that occur
when inserting a sample key Kx ’s fingerprint x into its pri-
mary bucket. 1 In the example, Kx maps to a bucket that is
full (a bucket overflow)within a block that has spare capacity.
Cuckoo hashing evicts one of the fingerprints in Kx ’s candi-
date (F0). 2 F0 is remapped to its other candidate bucket,
which is found in block Bj , and 3 the OTA in block Bi
is updated by setting the bit that HOT A specifies to 1. In
the example, blocks have capacity for 10 fingerprints, so Bj

is already full even though F0’s other candidate has spare
capacity. In this case, Bj experiences a block overflow. In a
block overflowwithout a bucket overflow, any of the existing
fingerprints can be evicted to make space for F0. 4 In the
example, F1 is evicted from the bucket proceeding F0’s other
candidate. F1 remaps to its alternate candidate, a bucket in
Bk , and because Bk is under capacity and F1’s new bucket
has a spare slot, the displacement completes. 5 The OTA in
Bj is then updated by setting a bit to record F1’s eviction.

We stress that these complex chains of displacements are
infrequent in an MF, contrary to a CF, even at high load
factors (e.g., 0.95). With the proper choice of parameters
(see Sect. 5), over 95% of items are trivially inserted in their
first or second buckets without triggering evictions.

4.3 Deletions

Deletions proceed similarly to lookups. Our example pro-
ceeds by deleting the fingerprint Fy that we inserted in Fig. 6.
We first compute H1 on the key (call it Ky) to determine the
primary bucket and HF (Ky) to calculate Fy . From there, we
compute the block index and block-local bucket index. The
next step is to search the key’s primary bucket and delete

123

740 A. D. Breslow, N. S. Jayasena

Fig. 8 An example of checking for the presence of fingerprint Fy once
the logical bucket index lbi within the block is known and deleting it
on a match. The updated block is shown below. We leave out the OTA
for clarity

its fingerprint provided there is a match. Figure 8 shows the
block-local operations. 1 We first sum the fullness counters
from index 0 to lbi − 1 inclusive, which gives us the offset
of the primary bucket’s fingerprints within the FSA. 2 We
then perform a comparison between Fy and all the finger-
prints in the primary bucket. 3 On a match, we right shift all
fingerprints to the left of the matching fingerprint, which has
the effect of deleting the fingerprint. If there are two or more
matching fingerprints, we select one and delete it. 4 Finally,
we update the FCA to reflect the primary bucket’s new load
by decrementing its fullness counter (at index lbi in the FCA)
and return.

When thefingerprint is not found in the primarybucket,we
calculate H2(Kx) to produce the secondary bucket’s global
logical index and proceed as before by computing the block
ID and block-local bucket index. We then repeat the process
in Fig. 8 and delete a single fingerprint on a match. Note that
contrary to lookups, we did not need to check the OTA before
proceeding to the secondary bucket. Because ASMDSs only
permit deletions to items that have actually been stored in
the filter (otherwise false negatives are possible), a failure
to match in the primary bucket means the fingerprint must
be in the alternate candidate and that the secondary deletion
attempt will succeed [33].

Note, our implementation does not clear OTA bits. Repeat
insertions and deletions will lead to a growing number of set
bits.We combat this effect by biasing block overflows so that
they overwhelmingly set the same bits in the OTA by biasing
evictions on block overflows from lower order buckets.Given
that typically only several percent of fingerprints overflow at
load factors at or below 0.95 (less than 5% for the design in
Fig. 4), cotuning the OTA’s length and the MF’s load factor
is sufficient for many applications.

For supporting many repeat deletions while sustain-
ing near-maximal load factors (e.g., ≥ 0.95), one robust
approach is to prepend each fingerprint with a bit that spec-
ifies whether the fingerprint is in its primary (or secondary)
bucket and force all overflows from a block that map to the
same OTA bit to remap to the same alternate block (but very
likely different buckets). On deletions of a secondary item x ,

it is then possible to clear x’s corresponding bit in its primary
block’s OTA if no other fingerprints in its secondary block
are simultaneously secondary, would map back to x’s orig-
inating block, and would hash to the same bit that x would
have set in the OTAwhen it overflowed. A probabilistic vari-
ant that saves space by forgoing tagging fingerprints at the
expense of not being able to as aggressively clear OTA bits
is possible future work.

4.4 Fast reductions for determining bucket
boundaries in the FSA

Oneof the keys to a high-throughputMF is implementing fast
reductions on the FCA. Specifically, determining the start of
each bucket in the block requires summing all the counts of
all fingerprints in buckets that precede it within its block’s
FSA. A core challenge is that buckets at different indexes
require summing differing numbers of fullness counters in
the FCA. A naive implementation that issues a variable num-
ber of instructions will lead to poor performance. Instead,
a branchless algorithm with a fixed instruction sequence is
necessary. At first, we considered doing a full exclusive scan
(i.e., for every bucket computing the number of fingerprints
that precede it). Efficient branchless parallel algorithms like
Kogge–Stone [48] exist that require O(log(n)) time andmap
well to the SIMD instruction sets of modern processors (e.g.,
SSE [76] and AVX [56]).

However, it turns out that a class of more efficient algo-
rithms is possible that consists entirely of simple logic
operations (e.g., NOT, AND, and OR), logical shifts, and
the population count primitive (popcount for short). Pop-
count is a native instruction on almost every major processor
and is a high-throughput, low-latency primitive [65]. Fur-
ther, high-performance SIMD implementations of popcounts
exist that use a combination of lookup tables and permute
operations, so even if there is no native popcount instruc-
tion, performance-competitiveworkarounds likeMuła et al.’s
algorithm and AVX2 implementation are possible [65]. Pop-
count takes as input a multibyte integer and returns the
number of bits that are set to 1. González et al. [39] leverage
popcount as part of a high-performance rank-and-select algo-
rithm. Our algorithm generalizes these primitives to arrays
of fixed-width counters.

Our approach is shown in Algorithm 3 which, given a
bucket at bucket index lbi within the block, computes and
returns the number of fingerprints that precede the bucket’s
fingerprints in the block’s FSA.

We first perform a masked copy of the FCA where all
counters that appear at lbi or greater are cleared (lines 2-3).
Thismasking ensures thatwe only count fingerprints that pre-
cede the bucket at lbi . In our implementation, this operation
alsomasks out fingerprints that are packed into the sameword
as the fullness counter array. We next call getPopCount-

123

Morton filters: fast, compressed sparse cuckoo filters 741

Algorithm 3 This algorithm takes as input a block’s fullness
counter array FCA, a bucket index lbi within the block, the
width of each counter in bits w, and then returns the index
of the bucket’s initial element in the FSA.
1: function exclusiveRedViaPopCount(FCA, lbi, w)
2: f ullnessCounter ArrayMask = (1 << (w ∗ lbi)) − 1
3: mFCA = FCA& f ullnessCounter ArrayMask
4: pcMask = getPopCountMask(w)

5: sum = 0
6: for (bit Pos = 0; bit Pos < w; bit Pos + +) do
7: sum += popCnt(mFCA&pcMask) << bit Pos
8: pcMask <<= 1

return sum

Mask (line 4), which for w-bit fullness counters, returns a
mask where the LSB and every wth bit thereafter are set to
1 and the remaining bits to 0. This mask when anded with
the masked fullness counter array mFCA selects out all bits
that occur in the zeroth position of each of the counters and
zeroes out the other digits. For instance, with 4-bit counters,
four buckets per block, and hence a 16-bit fullness counter
array, the mask pcMask would be 0b0001000100010001 or
equivalently 0x1111. For any value of bit Pos between 0 and
w − 1 inclusive, shifting the pcMask to the left by bit Pos
selects out the bit Posth least significant digit of each w-bit
counter (line 8).

The next phase incrementally counts each fingerprint that
appears prior to the bucket digit by digit across all remain-
ing counters in the masked copy. We initialize the sum to
zero (line 5). During the bit Posth pass of the algorithm
(line 7), we count the bit Posth least significant bit of each
counter. That sum is then shifted left by the exponent of the
power of two to which the digit corresponds (bit Pos) before
applying it to the growing partial sum sum, which we ulti-
mately return once all passes are complete. Note that loop
unrolling will eliminate the branch on line 6.

4.5 Block full array

The Block Full Array (BFA) is an optional bit vector that
can be paired with an MF to improve insertion throughput at
high load factors (e.g., 0.95). A BFA’s i th bit is asserted if the
i th block in the Block Store’s FSA is full. For 64-byte cache
lines, the BFA’s added storage cost is 0.2%, and thus, it is
often small enough to reside in private caches. The BFA is
bypassed on lookups. It is queried during insertions to avoid
accessing blocks that are full. Insertions and deletions may
each trigger updates to the BFA when the FSA goes from
being partly full to full and vice versa.

Where the BFA shows the most benefit is during a block
overflow. During block overflows, any one of the tens of fin-
gerprints in the FSA can be evicted. TheBFA enables quickly
selecting a fingerprint whose alternate bucket’s block has a
spare FSA slot. We thus avoid accessing blocks that would

require further subsequent evictions. This optimization sig-
nificantly reduces unnecessary off-chip data accesses for
large filters and accordingly improves throughput by about
30% at a load factor of 0.95 (see Sect. 7.9). The main trade-
offs of using the BFA are that it (1) creates added pressure on
the hardware caches, (2) makes deletions more expensive by
requiring additional accesses to clear BFA bits when block
FSAs transition from full to partially empty, and (3) delivers
limited benefit for load factors under 0.95.

4.6 Resizing anMFwithout the source data

In this section, we present an algorithm for self-resizingMFs,
which we also backport to CFs (see Sect. 4.8). An MF like
a quotient filter supports the ability to resize by a power of
two without accessing the source data. This feature is key
for applications where there is significant cost to accessing
the original data or where it is infeasible because the data
no longer exist or their precise location is unknown. In these
situations, having a self-resizing filter is useful for adapting
to unexpected load or skew. It permits the filter to be sized
optimistically to accommodate the common case rather than
a seldom-observed, pessimistic tail case that may require sig-
nificantly oversizing the filter. Small filters take up less space,
so operations on them are typically faster because they are
often easier to cache closer to the CPU.

When formulating our MF resizing algorithm, our initial
inclination was to use the quotienting from quotient filters
(QFs). To encode a key’s presence into a QF, a hash known
as a signature2 is computed where the least significant bits
are the fingerprint and the most significant bits specify its
preferred index for emplacement. Resizing by factors of two
is then trivial by shifting the division between the index and
the fingerprint within the signature. For example, with a 28-
bit signature (e.g., 0xfe82cd3) with 16 bits of index (i.e.,
0xfe82) and a 12-bit fingerprint (i.e., 0xcd3), calculating the
new index for the fingerprint within a filter with 16× the
capacity simply requires taking the log2(16) = 4 upper bits
of the fingerprint (i.e., 0xc) and repurposing them as the four
lower bits of the new index (i.e., 0xfe82c).

While the approach works well for QFs, MFs have the
following additional challenges:

1. A fingerprint’s value does not indicate whether it is in its
primary or secondary bucket. This information would be
necessary to reconstruct the full signature.

2 Bender et al. [6] use the termfingerprint tomean a signature.However,
its meaning is different from what a fingerprint is in a CF or MF, as it
encompasses both the index and tag, whereas a fingerprint in a CF or
MF is just a short hash or tag. We thus use the term signature to avoid
confusion.

123

742 A. D. Breslow, N. S. Jayasena

2. We want to preserve an MF’s support for non-power of
two numbers of buckets. Prior versions of quotienting
assume a power of two number of buckets to make the
shifting trick work.

3. Preserving the block-level structures like the FCA, FSA,
and OTA is non-trivial with resizing.

Our approach handles these hurdles by adding a small
amount of state and resizing at block-level boundaries. It
maintains a counter R that stores how many times the filter’s
Block Store’s capacity has been doubled. R = 0 means the
filter’s capacity is at its original size. R = 3 means that the
filter has 8× more buckets than were originally allocated.
We leverage R to scale global bucket indexes back and forth
between their values in the original and resized Block Stores.
See Sect. 4.7 for the precise mechanics.

Like quotienting, R contiguous bits of the original finger-
print are used to direct the computation of the bucket index
in the resized filter. These bits could be optionally shifted
off to save space or left unmodified when the fingerprint is
stored in the new filter. We opt for the latter approach since
it allows child blocks to maintain the same format as their
parent. Further, our implementation uses C++ templating to
enhance compile-time optimization and specialization. The
latter approach thus also saves us from needing to instruct
the compiler to generate a slew of different code variants for
every conceivable set of block layouts that could arise during
execution as a result of resizing.

When doubling the capacity, each block in the old Block
Store is the sole parent of two child blocks in the new Block
Store (i.e., the parent block’s fingerprints are split among its
two children). The algorithm has several important proper-
ties: (1) a fingerprint’s block-local bucket indices (one for
each candidate bucket) never change on a resizing, (2) an
OTA is replicated but never split, and (3) both child blocks
are adjacent in the new Block Store, which improves locality
(e.g., old block 5 is the parent of new blocks 10 and 11).

Algorithm 4 presents the more general case for increas-
ing an MF’s capacity by a nonnegative integral power of two
resize factor r , and Fig. 9 shows an example of quadrupling
the capacity of a filter whose capacity has already doubled
(i.e., going from R = 1 to R = 3). Algorithm 4 begins
by allocating a new Block Store with r times more capac-
ity (line 3). It then proceeds to loop over the blocks in the
Block Store (line 4) and for every block to copy each of its
fingerprints to one of its r child blocks in the new block store
(lines 7 to 17). As the algorithm copies the fingerprints to
their child blocks, it tracks the number of fingerprints each
child block has received up to that point (line 6) and for
each fingerprint increments positional pointers in the source
block (line 11) and destination child block (line 16). The
destination child block is computed by multiplying the par-
ent block ID by r and then adding the child’s identifier (the

f − R − log2(r)− 1 to f − R − 1 least significant bits from
the fingerprint F (lines 13–14), with the R correcting for
past resizing operations). For each fingerprint that a child
block inherits, we increment its bucket’s fullness counter
in the child block’s FCA (line 15). Since a child’s block-
local bucket index is the same as its parent’s, no additional
index computation or scaling is necessary. Once a block’s
fingerprints have been relocated, the OTA is replicated in
bulk to each of the child blocks (lines 18–20). Our remap-
pingmechanism guarantees that no complexOTA splitting or
scaling is required. Lastly, we deallocate the old Block Store,
update the Block Store pointer to point to the new one, and
update R.

Algorithm 4 This algorithm takes as input an MF MF ,
increases its Block Store’s capacity by r times, and relo-
cates MF’s fingerprints to their new buckets in the resized
MF. Note that r must be a power of two.
1: function increaseCapacity(MF, r)
2: oldBS = MF .BlockStore // pointer
3: newBS = malloc(r ∗ MF .BlockStore.si ze)
4: for (bI D = 0; bI D < MF .total Blocks; bI D + +) do
5: f sa Idx = 0 //Tracks reading in parent FSA
6: f saPtrs[r]{} //Tracks wri ting in r child FSAs
7: for (lbi = 0; lbi < B; lbi + +) do
8: f ull Slots = MF .BlockStore[bI D].FCA[lbi]
9: for (s I D = 0; s I D < f ull Slots; s I D + +) do
10: F = oldBS[bI D].FSA[f sa Idx]
11: f sa Idx + +
12: lsbM = r − 1 //For mod r
13: child = (F >> (f − R − log2(r)))&lsbM
14: childB I D = r ∗ bI D + child
15: newBS[childB I D].FSA[f saPtrs[child]] = F
16: f saPtrs[child] + +
17: newBS[childB I D].FCA[lbi] + +
18: for (child = 0; child < r; child + +) do
19: childB I D = r ∗ bI D + child
20: newBS[childB I D].OT A = oldBS[bI D].OT A
21: R+ = log2(r)
22: MF .BlockStore = newBS
23: dealloc(oldBS)

4.7 Modifications necessary for supporting resizing

For resizing to properly work, computation of a key’s two
candidate buckets must factor in the number of times (R)
that the MF’s capacity has been doubled. For that to work,
the offset computation for computing the alternate bucket
must be scaled when remapping a fingerprint in a filter that
has already been resized. Further, regardless of when a key
K ’s fingerprint x is inserted into theMF (e.g., before or after a
resizing), x needs to appear in the correct bucket and block in
the current filter. Call x’s current bucket glbi , which suffices
for computing its block indexbi = �glbi/B� andblock-local
bucket index lbi = glbi%B.

123

Morton filters: fast, compressed sparse cuckoo filters 743

Fig. 9 An example of quadrupling the capacity of an MF whose capacity has already been doubled. A sample block Bi and its child blocks in the
new Block Store are shown

To simplify this process, we observe that if we compute
what the candidate buckets and blocks would have been in
the original Block Store prior to resizing (i.e., when R = 0),
thenwe can then subsequently scale them to their correct val-
ues in the new Block Store. When calculating the alternate
candidate bucket in a filter whose capacity has been dou-
bled R times, we begin by right shifting the bucket’s existing
block index bi by R. That computation yields the finger-
print’s block index were it to be placed in the original filter.
Note, in actuality the fingerprint x could have been emplaced
after one or more resizings, but bi0 provides a common point
of reference. We then compute the alternate bucket for x
in the original filter by plugging in the bucket index in the
original filter glbi0 = bi0 ∗ B + lbi in for β and x for finger-
print term (HF (K) = x) in the original H ′. That produces
the alternate bucket for when R = 0. To scale the value in
the new filter, lbi is subtracted off and the result is multi-
plied by 2R (equivalent to left shifting by R). That yields the
global bucket index for the zeroth descendant block’s zeroth
bucket. To that, we add back in lbi and B times the R most
significant bits of x , which places x in the correct bucket of
the (x >> (f − R))&((1 << R) − 1)th descendant. The
complete set of steps are shown in Eq. 3.

H ′
R(glbi, x) = ((H ′(glbi0, x) − lbi) << R)

+ B ∗ ((x >> (f − R))&((1 << R) − 1)) + lbi where

bi = �glbi/B� //Current Block Index

bi0 = bi >> R //Block Index in Original MF

glbi0 = bi0 ∗ B + lbi //Bucket I ndex in Orig. MF
(3)

Equation 4 similarly shows how to compute the new ver-
sion of H1 (called H1R) for an MF whose Block Store has
2R times the initial capacity.

H1R(K) = ((H1(K) − lbi) << R)

+ B ∗ ((x >> (f − R))&((1 << R) − 1)) + lbi
(4)

Applying H ′
R to H1R yields the new H2 called H2R (i.e.,

H2R(K) = H ′
R(H1R(K), x)).

4.8 Extending self-resizability to cuckoo filters

We backport a variant of the MF’s self-resizing algorithm
to work with CFs. Since CFs are not typically blocked, we
simplify the bucket index computation logic. Unlike an MF,
which splits each bucket’s fingerprints across two adjacent
blocks when doubling capacity, our CF algorithm instead
maps a parent’s fingerprints to two adjacent child buckets in
the new filter. Thus, a fingerprint’s child bucket is computed
by multiplying its parent bucket’s global index by two and
adding the value of the Rth most significant bit of the finger-
print. For example, a bucket with index 5 (0b101) in the old
filter and fingerprints 0b101011, 0b011100, and 0b010101
with R = 0 wouldmap fingerprints 0b011100 and 0b010101
to a child bucket at index 10 (0b1010) and 0b101011 to a child
bucket at index 11 (0b1011). As withMFs, we architect vari-
ants of H1R , H2R , and H ′

R that scale the initial outputs of H1,
H2, and H ′ to their correct values. A performance compari-
son with MFs and quotient filters appears in Sect. 7.11. An
exhaustive treatment of resizable CFs is the focus of ongoing
work.

123

744 A. D. Breslow, N. S. Jayasena

Table 2 MF glossary of symbols

B—buckets per block

C—the multiplicative slot compression ratio, where

C = 0.25 corresponds to four slots in the logical

interpretation for each physical slot in the FSAs

S—logical slots per bucket

αL—logical load factor (e.g., αL = 0.5 for 4-slot

buckets where on average two slots are full)

αC—block load factor (e.g., αC = 0.8 for blocks with

40-slot FSAs where on average 35 slots are occupied)

O—number of bits in the OTA of each block

m—expected number of items that overflow a block

b—expected buckets accessed per negative lookup

M—total fingerprints (net total occupied FSA slots)

R—number of times the MF’s capacity is doubled

5 Modeling

In this section, we describe a set of models that are used to
select the parameters for a filter given a set of constraints.
Table 2 lists the parameters that we use in our models.

5.1 False positives and storage costs

The false positive rate ε for an MF is given by Eq. 5.

ε = 1 −
(
1 − 1/2 f −R

)αLbS
(5)

FromEq. 5,we deriveEq. 6: the formula for the fingerprint
length f in bits for a target ε.

f ≈ log2((αLbS)/ε) + R = log2((αCbCS)/ε) + R (6)

The bits per item is given by Eq. 7, with the transformed
expression obtained by substituting αCC in for αL .

I = OT A bits/i tem + FCA bits/i tem + FSA bits/i tem

= O

αL BS
+ log2(S + 1)

αL S
+ C f

αL

= O/(BCS) + log2(S + 1)/(CS) + log2((αCbCS)/ε) + R

αC
(7)

The OTA bits per item is O divided by the expected occupied
fingerprint slots in an FSA (αL BS). The log2(S + 1)/(αL S)

term counts the bits per FCA counter per item in the fil-
ter, and the (C f)/αL scales the fingerprint length f by
the block load factor αC as (C f)/αL = f /αC . For the
FSA bits per item term (f /αC), the αL in the numerator (i.e.,
f = log2((αLbS)/ε) + R) works to reduce f by typically
being a small value such that log2(αL) shortens f by 1 to

Fig. 10 AnMF for some values ofC and S uses fewer bits per item than
a CF, a CF with semi-sorting (ss-CF), and a rank-and-select quotient
filter (RSQF). αC = 0.95 for the MFs and α = 0.95 for the RSQF, ss-
CF, and CF. For the MFs, we set the block size at 512 bits, and O = 16
and f = 8

3 bits while the αC in f /αC ’s denominator can be tuned to
be close to 1 if the MF’s workload is known a priori. These
gains are primarily from the FCA and FSA working in con-
cert, which allows us to select αL to be small (e.g., 0.2) and
to shrink S from 4 to 3 or less, all while using comparable
or slightly less space than a CF. Further, the OTA helps by
reducing b from 2 to close to 1, enough to hide the OTA’s
space cost while also permitting some space savings.

If we fix all parameters except ε, I becomes I = K1 +
K2log2(1/ε), where K1 and K2 are constants. Figure 10
shows how K1 varies with the compression ratio C and slots
per bucket S for a fixed block load factor αC of 0.95. We
coplot the associated K1 constants for a S = 4 b = 2 cuckoo
filter (CF), a rank-and-select quotient filter, and a S = 4
b = 2 cuckoo filter with semi-sort compression (ss-CF) all
at a load factor of 0.95. At this design point, K2log2(1/ε)
is the same for all filters. The figure demonstrates several
key points: (1) MFs use a comparable amount of storage to
other filters, (2) there is a fair amount of flexibility when
choosing the compression ratio without adversely affecting
space usagewhen the slots per bucket is small, (3) optimizing
for space as buckets scale in size requires reducing C , and
(4) large buckets may be used with MFs with an additional
storage overhead of 1 or 2 bits. This latter point contrasts with
CFs, which use an extra bit for each power of two increase
in S.

5.2 Lookup costs

An important parameter when modeling the expected cost
of each lookup in total buckets is m, the number of items
expected to overflow an MF block. Equation 8 presents an
approximation for m, which models both block and bucket
overflows, as well as their intersection (i.e., an overflow that
is both a block and bucket overflow). We ignore cascading
evictions due to cuckoo hashing since they are not prevalent
(e.g., <1%) for typical parameter values. In our approxi-

123

Morton filters: fast, compressed sparse cuckoo filters 745

mation, we model bucket and block overflows using models
derived from the Poisson distribution. For S ≥ 2, block over-
flows typically overwhelmingly dominate.

m ≈ bucket over f lows + block over f lows

− bucket and block over f lows

≈ αL BS∗
[ΣM

x=S+1(x − S)Pr(αL S, x)

αL S

+ ΣM
x=CBS+1(x − CBS)Pr(αL BS, x)

αL BS

− 1

αL BS

M∑
x=CBS+1

(x − CBS)Pr(αL BS, x)

∗
x∑

y=S+1

(y − S)Pr(x/B, y)

x/B

]

where Pr(λ, x) = λxe−λ

x !

(8)

For lookups that are correctly characterized as
negatives (excluding false positives), the cost of each such
lookup is b. b is one plus the fraction of OTA bits that are set
on average for each block. For instance, with a 12-bit OTA
per block, if the mean bits that are set is 2, then b would be
1 + 2/12 (i.e., ≈ 1.167 buckets expected to be accessed per
lookup query that returns false).

The number of set bits is dependent on the mean finger-
prints per block that overflow. These overflows occur both
when a bucket does not have sufficient capacity (i.e., when
its fullness counter maxes out) and when the block becomes
full. Assuming m overflows per block, then Eq. 9 gives the
expected negative lookup cost in buckets.

negative lookup cost = b = 1 + 1 −
(
1 − 1

O

)m

= 2 −
(
O − 1

O

)m

(9)

The final term is the expected fraction of OTA bits that are
unset. It is also the probability that a single bit within the
OTA is unset. We derive the model by using a balls-into-bins
model (see Mitzenmacher and Upfal [64]) where each of the
O bits in the OTA is bins and balls are the m overflow items.
With m balls thrown uniformly randomly into O bins, the
likelihood that an unset bit remains unset after one ball is
thrown is O−1

O , and we exponentiate by m because the m
balls are thrown independently of one another.

For positive lookups (excluding false positives), the
lookup cost is shown in Eq. 10 and is approximately one
plus the expected fraction of items that overflow a block.

posi tive lookup cost = 1 +
(
1 − 1

2 f

)αL S ∗ m

αL BS
(10)

αL BS is the mean occupied fingerprint slots in the FSA per
block. The first term in the product corrects for an alias
that occurs on the primary bucket when the item’s actual
fingerprint is in the secondary bucket. Equation 10 is also
the expected cost of a deletion since well-formed deletions
always succeed (otherwise, false negatives are possible).

The lookup cost for false positives is shown in Eq. 11,
which interpolates between 1.5 (the cost of a false positive
with a completely full OTA) and 1.0 (the cost of a false pos-
itive with an empty OTA). For example, if zeros constitute
three quarters of the OTA’s bits, then we expect 1.5 − 0.5 *
(0.75) = 1.125 buckets to need to be checked.

f alse posi tive lookup cost = 1.5−0.5∗
(
1− 1

O

)m
(11)

Given P , a ratio of true positives to total lookups, we can
compute the expected lookup cost of Eq. 12, the weighted
average of the individual lookup costs.

expected lookup cost = P ∗ posi tive lookup cost

+ (1 − P)(1 − ε) ∗ negative lookup cost

+ (1 − P)(ε) ∗ f alse posi tive lookup cost

(12)

6 Experimental methodology

We conduct our experiments on an AMD RyzenTM

ThreadripperTM 1950X processor, which is composed of two
8-core dies for a total of 16 cores, each with 2-way simul-
taneous multithreading [90,91]. Each core has a 32 KB L1
data cache, a 64 KB L1 instruction cache, a 512 KB L2, and
a group of four cores (called a CCX) shares 8 MB of L3
cache (32 MB of L3 in total). We fix the CPU’s frequency
at 3400 Mhz. Each 8-core die has two memory channels for
a total of four [20,83]. The machine has 128 GB of RAM
that is clocked at 2133 MHz, and it runs Ubuntu 16.04.4
LTS (Linux 4.11.0). We also perform secondary evaluation
on an Intel Skylake-X system.

We compare the MF’s throughput to three other fil-
ters and implementations from prior work. These are Fan
et al.’s cuckoo filter (CF) [32,33], Fan et al.’s CF with
semi-sorting (ss-CF) [11,32,33], and Pandey et al.’s rank-
and-select quotient filter (RSQF) [71,72]. Fan et al. [33]
already demonstrated the CF to be faster than Bloom filters
[7], blocked Bloom filters [74],3 and d-left counting Bloom
filters [10,11], so we do not evaluate these designs.

Unless stated otherwise,we run experiments onfilterswith
128 * 1024 * 1024 slots. We configure the MF to use 8-bit
fingerprints and to have a 46-slot FSA, a 128-bit FCA (64 ×
3 Since publishing our VLDB’18 paper [13], Lang et al. showed that
blocked Bloom filters can be faster than CFs [53].

123

746 A. D. Breslow, N. S. Jayasena

Fig. 11 The MF implementation’s false positive rate closely matches
Eq. 5. All MFs have a block load factor of 0.95. The MF with 3-slot
buckets uses 128 bits for its FCA versus the 7- and 15-slot that use 63
and 64 bits, respectively

2-bit counters), and a 16-bit OTA, for a total of 512 bits per
block. It thus contains 64 buckets (each with three logical
slots) and has a slot compression ratio (C) of about 0.24.
The configuration is the same as the one in Fig. 3 and at
a load factor of αC = 0.95 produces an MF that uses 512
/ (46 * 0.95) = 11.71 bits per item. We thus compare our
implementation to a CF that uses 12-bit fingerprints since
Fan et al.’s code does not support 11-bit fingerprints [32,33].
Both filters have roughly equivalent error rates for similar
load factors (αC in the case of the MF).

The 7-slot and 15-slot configurations used in Figs. 11 and
23 also use 8-bit fingerprints. The 7-slot configuration has a
54-slot FSA, a 63-bit FCA (21× 3-bit counters), and a 17-bit
OTA. The 15-slot configuration has a 54-slot FSA, a 64-bit
FCA (16 × 4-bit counters), and a 16-bit OTA. MF batch size
is 128.

We generate 64-bit random integers using C++’s standard
library and benchmark the performance of each filter by run-
ning separate trials where we fill the filter up to a load factor
that is a multiple of 0.05 and then proceed to insert, delete,
or look up a number of fingerprints equal to 0.1% of the total
slots in the filter. Both the generation of large filters that do
not fit into cache and of uniformly random fingerprints are
consistent with the evaluations of Fan et al. [33] and Pandey
et al. [71]. We rebuild filters after each trial with a new set of
random fingerprints to reduce noise. Results are the average
of 5 trials. Filters are compiled using g++ (version 5.4.0-6)
with the -Ofast -march=native flags, as they yield the best
performance. We plot throughput in millions of operations
per second (MOPS).

Fan et al.’s implementation packs four 12-bit fingerprints
into every 64-bit word and pads the remaining 16 bits. Thus,
their CF uses 8 bytes for every 4 fingerprint slots [33].
The MF uses 64 bytes for every 46 fingerprint slots. Thus,
the MF is about 186.7 MB in size, whereas the CF is 256
MB (192 MB if it did not pad). The MF also uses a 0.36 MB
BFA (Sect. 4.5), which ups its net memory to about 187MB.

In Sects. 7.3 and 7.6, we present results on the number
of buckets accessed per insertion. We attain these results by
instrumenting both the MF and CF implementations with
access counting that can be enabled at compile time. The
counting methodology may double count some accesses if

they appear in a cyclic chain of displacements. The counts
for MFs are from a revised version of Fan et al.’s random
kickout insertion algorithm [33] that has different behaviors
depending on the type of overflow (block or bucket).

7 Evaluation

In this section, we present our results, which show our MF
implementation to sustain higher throughput than a CF for
lookups, insertions, and deletions.

7.1 False positive rate

Figure 11 shows that the false positive rate of MFs closely
matches what our models project. The 3-slot design point
has a much lower error rate than the 7- and 15-slot variants
largely because it allocates more bits per item in the form
of metadata (e.g., FCAs). This increased metadata permits
the 3-slot design to need fewer fingerprint comparisons per
lookup than the 7- and 15-slot designs, which decreases the
false positive rate (see Eq. 5). The 7- and 15-slot designs
could also be tuned to have lower false positive rates by either
using longer fingerprints or by using a logically sparser block
design (smaller FSA and larger FCA).

7.2 Lookup throughput

Figure 12 presents the throughput of the MF when 100% of
the lookups are true positives. In this configuration, at a load
factor of 0.95, a mere 1.05 cache lines from the filter are
accessed per query, a reduction of close to 50% over a CF.
We observe that at low load factors, the MF is over 2× faster
than a CF and upwards of 1.6× at high loads.

Figure 13 presents the throughput of the MF when 100%
of the lookups are true negatives (a mix of negatives and
false positives). The filter achieves a throughput that is 1.3×
to 2.5× faster. At a load factor of 0.95, the 16-bit OTA has
about 11% to 12% of its bits set to 1, so lookups require
accessing about 1.11 cache lines (approximately twice as
many secondary lookups are required as the positive lookup

Fig. 12 An MF’s positive lookup throughput is about 1.6× to 2.4×
higher than a CF’s

123

Morton filters: fast, compressed sparse cuckoo filters 747

Fig. 13 An MF’s negative lookup throughput is about 1.3× to 2.5×
higher than a CF’s

case). This difference explains why positive lookups sustain
higher throughput than negative lookups at heavy loads. To
counter this drop in throughput and approximately match the
performance of positive lookups, we could double the length
of the OTA or reduce the load factor to 0.9.

On an idealized machine and implementation, perfor-
mance would only drop by about 5% to 11% (i.e., in line
with additional data movement). However, it is difficult to
achieve that performance in practice due to microarchitec-
tural limitations (e.g., branch mispredictions) and practical
trade-offs in software engineering (e.g., trading off between
writing code quickly that is cross-platform versus hand-
tuning code for a specific processor). Since approximately
90% or more of the lookups never have to perform a sec-
ondary access, we focused our efforts on making that fast.
An industrial implementation with hand-tuned assembly or
vector intrinsics is likely to achieve speedups at high load
that aremuch closer to the reductions in pseudorandom cache
accesses.

7.3 Insertion throughput

Like lookups,MF insertion throughput realizes large improve-
ments over CFs formost load factors. Figure 14 demonstrates
that anMF is able to sustain high throughput for much longer
than a CF. At high loads (e.g., a load factor of 0.75 or higher),
theMF is approximately 3× to 20× faster than a comparable
CF. This difference matches the simple intuition that buckets
with empty slots are easier to insert into than those that are
full. Imagine an MF with blocks with 48-slot FSAs and a

Fig. 14 An MF’s insertion throughput is 0.94× to 20.8× that of a CF

Fig. 15 The number of buckets accessed per insertion for the CF and
MF. An MF makes far fewer bucket accesses than a CF (less than one
tenth as many at heavy loads)

sample block in which only a single FSA slot is free. Even in
this extreme case, provided αL is low, it is very likely that the
block can receive another fingerprint (i.e., very few, if any,
of the buckets are likely full). However, if we arrange those
same 48 slots into 12 4-slot CF buckets, the probability that
we map to a bucket with a free slot is 1/12. Thus, whereas the
MF very likely only needs to access one cache line from the
filter’s storage, the CF is expected to access two or more for
11 out of every 12 insertions, as it needs to access at least one
secondary bucket. This disparity is shown quantitatively in
Fig. 15, which plots the average number of bucket accesses
required per insertion for both CFs and MFs, respectively, as
the load factor is varied. At heavy loads, the MF makes sev-
eral to many times fewer bucket accesses than a comparable
MF. We additionally measure the mean bucket accesses to
fill an MF and CF from empty to a load factor of 0.95. The
MF’s reduction in accesses is the key to improving through-
put, as cache andmemory bandwidth (the typical bottlenecks
for an ASMDS) are much more efficiently used. For further
validation, see Sect. 7.12.

7.4 Deletion throughput

MF deletion throughput is about 1.1× to 1.3× higher than
a CF’s (Fig. 16). Like lookups and insertions, the improve-
ment is driven by reducing cache and memory traffic per
operation. With the MF parameters of Fig. 3, over 95% of
deletions never access more than one MF cache line (even
for αC=0.95).

Fig. 16 An MF’s deletion throughput is 1.1× to 1.3× higher than that
of a CF

123

748 A. D. Breslow, N. S. Jayasena

(a) (b)

Fig. 17 Acomparison ofCF andMF lookup throughput as the filter size
is varied. MFs surpass CF throughput for filters at 8 * 1024 * 1024 (223)
slots

7.5 Sweet spot for Morton filters

Prior sections showed MFs are often considerably faster for
large filter sizes. In this section, we quantify the precise point
at which MFs outperform CFs. Figure 17a, b presents the
comparative lookup throughputs of MFs and CFs as the filter
size is varied. CFs are faster at small sizes, but MFs become
faster for filters with greater than 223 slots, when the CF is 16
MB in size. Insertions and deletions show similar trends. 16
MB is twice the size of the 8MB of L3 per CCX (see Sect. 6),
or when at most 50% of the CF fits in a CCX’s chunk of L3.
Future work may explore selectively enabling or disabling
MFoptimizations subject to the filter size. Smaller filters typ-
ically have a lower mean memory access time, which means
optimizations to reduce data movement need to execute in
fewer instructions and thus be simpler.

7.6 Throughput impact of optimizations

This section explores the vital role that batching and branch-
less popcount-accelerated reduction optimizations collec-
tively play in yielding a high-performance MF implemen-
tation. See Sects. 7.7 and 7.8 for further evaluation of each
optimization in isolation. Figure 18 presents the results.
Adding batching improves throughput by roughly 2× (except
for insertions). Replacing the naive accumulator loop with
Algorithm 3 yields another 2× to 3× improvement. Inser-
tion results are the net throughput from filling an MF from
empty to a block load factor αC of 0.95. All other results are
the throughput at αC = 0.95.

Fig. 18 MF throughput surges with the cumulative addition of opti-
mizations (αC = 0.95)

(a) (b)

Fig. 19 MF throughput as the batch size is varied. A batch size of
128 (27) is the smallest that yields peak throughput

The optimized MF fills to a load factor of 0.95 about
3× faster than the CF. This speedup principally comes from
reducing the mean number of buckets accessed per insertion
during construction from 2.08 to 1.08, respectively, for the
CF andMF. Part of that 3× increase also comes from improv-
ing the tail, which is also critical to performance since tail
events canbedisproportionatelymore expensive, particularly
since they are likely to cause branch mispredictions. While
2.08/1.08 represents a roughly 2× improvement, the worst-
case number of buckets accessed on an insertion reduces from
around 370 (CF) to 32 (MF). That more than 90% reduction
in bucket accesses is indicative of similar reductions through-
out the tail.

7.7 Tuning the batch size

Figure 19a, b shows the throughput of MF operations as the
batch size is varied, respectively, for load factors of 0.05 and
0.95. Results for load factors between 0.05 and 0.95 exhibit
trends that interpolate between Fig. 19a and b. Deletions and
insertions achieve near-peak throughput at a batch size of 16
and then plateau. However, for lookups, a larger batch size
of 128 is required to maximize throughput. For high load
factors (e.g., 0.95), insertion throughput is not particularly
sensitive to the batch size because execution time is domi-
nated by insertion conflict resolution routines (i.e., Fig. 7),
which use item-at-a-time processing. Batching this part of
the insertion implementation would likely raise throughput
and batch size sensitivity.

7.8 Reductionmethod evaluation

Summing fullness counters to determine offsets into the FSA
is a compute-intensive component of each MF operation.
In this section, we show that our popcount-based method
often yields substantial throughput improvements over both
a naive accumulator loop and a tree-based SIMD-within-a-
register [35] reduction. Figure 20a–c shows the through-
put of the different operations at a load factor (αC) of 0.05
for the 3-, 7-, and 15-slot MF designs, and Fig. 20d–f for

123

Morton filters: fast, compressed sparse cuckoo filters 749

(a) (b) (c) (d) (e) (f)

Fig. 20 MF throughput as the summation method that is applied
to fullness counters is varied between a naive accumulator
loop (Naive), a SIMD-within-a-register [35] implementation of a
tree-based reduction (SWARTree), and our popcount-accelerated algo-
rithm (Popcount). Our algorithm delivers higher throughput than the

other two methods. Subfigures (a), (b), and (c) have a load factor of
αC = 0.05. Subfigures (d), (e), and (f) have a load factor of αC = 0.95.
Pos., Neg., Ins., and Del. correspond to positive lookup, negative
lookup, insertion, and deletion throughputs, respectively

αC = 0.95. 3-slot MFs see the largest throughput benefit
from our algorithm, followed by the 7-slot design, and then
the 15-slot design. Insertions and deletions realize the great-
est benefit, with up to more than a 3× insertion throughput
uplift for the 3-slot design.

With our algorithm, the 3-slot design only loops over each
counter twice (w = 2), once per digit. By contrast, the clas-
sical tree-based SIMD-within-a-register algorithm requires
a number of passes that scales with the log of the number of
counters being accumulated (e.g., log2(32) = 5 per 64-bit
word of the FCA when S = 3). Thus, it performs com-
paratively better with larger bucket sizes (bigger w values)
because there are fewer fullness counters per FCA to accu-
mulate (e.g., a mere 16 buckets in the 15-slot design versus
the 64 and 21 buckets, respectively, found in the 3-slot and
7-slot configurations).

7.9 Block full array throughput impact

Figure 21 plots an MF’s insertion and deletion throughputs
with and without the BFA enabled. Load factors above 0.95
see a large throughput improvement from the BFA. Insertion
throughput improves by 1.3× and 2.3× for load factors of
0.95 and 0.99, respectively. However, deletion throughput
is reduced by around 10% at low loads and around 20% at
heavy loads (e.g., 0.95).

(a) (b)

Fig. 21 MF insertion and deletion throughput with and without the
BFA enabled. b zooms in on the lower right corner of (a)

7.10 Flexibility

Figure 22 plots lookup, insertion, and deletion throughput
when varying fingerprint length. Despite the wide range in
fingerprint lengths, throughput is relatively constant. Fig-
ure 23 shows how throughput changes per operation as the

(a) (b)

Fig. 22 An MF sustains high throughput for a range of fingerprint
lengths (C ≈ 0.24, S = 3, O ≥ 16)

(a) (b) (c) (d)

Fig. 23 MF throughput in MOPS for positive lookups (a), negative
lookups (b), insertions (c), and deletions (d), respectively, as we covary
slots per bucket (S) and block load factor (αC). High throughput is
achieved even for large S

123

750 A. D. Breslow, N. S. Jayasena

Fig. 24 AnMF supports fast resizing. Throughput is inmillions of relo-
cated fingerprints per second and includes the cost ofmemory allocation
and deallocation. The CF employs the algorithm from Sect. 4.8

slots per bucket is varied. As an MF logically underloads
its buckets, the expected number of slots that require checks
remains small, and throughput is only modestly affected.

7.11 Resizability

Figure 24 shows that resizing is a comparatively fast oper-
ation, even when the MF’s capacity is increased by 4× or
8×. For the MFs, resizing is the fastest for the 7-slot con-
figuration. In contrast to the other operations, resizing scans
over the Block Store sequentially and therefore exhibits bet-
ter spatial locality versus lookups, insertions, and deletions
that are forced to make many pseudorandom accesses. This
speed differential is despite the resizing operation needing to
allocate new memory, zero it, and deallocate the old mem-
ory. When comparing MF resizing throughput to a backport
of the algorithm to CFs (CF in Fig. 24), theMF is a bit slower
because it has less predictable branching and does additional
work when initializing the OTA and FCA. Compared to the
RSQF, MFs achieve approximately 4.2× to 13.9× higher
throughput.

Since resizing requires additional computation, we mea-
sure its impact on throughput. Enabling resizing for MFs
reduces the throughput of each operation by less than 3%
for the 3-slot and 15-slot designs. There is minimal impact
to throughput since computing scaled block IDs and offsets
is comparatively cheaper than the other costs (e.g., random
memory accesses and summing counters). Enabling resiz-
ing for the 7-slot design is more costly, with throughput
overheads of up to 15% for lookups, insertions, and dele-
tions, despite having the highest throughput for the resizing
operation.

7.12 Low-level performancemetrics

To confirm our intuition that MFs reduce data TLB misses
and cache misses per operation (e.g., a lookup), we mea-
sure these valueswith LIKWID [89] a hardware performance
counter reading tool and report results in Fig. 25 normal-
ized to a CF’s values for positive lookups. Our results
show that at a load factor of 0.95, MFs reduce L2 data
TLB misses (Fig. 25a) and L3 cache misses per opera-
tion (Fig. 25b) by about 50% for both lookups and deletions.

(a) (b)

Fig. 25 An MF’s L2 data TLB misses and L3 cache misses are lower
than a CF’s. Results are normalized to a CF executing positive lookups.
Lower values are almost always better

During insertions, the MF reduces L2 DTLB and L3 cache
misses, respectively, by more than 92% and 89%. These fig-
ures are consistent with the order of magnitude improvement
in insertion throughput (Fig. 14) and reduction in bucket
accesses (Fig. 15).

7.13 Cross-platform performance portability

In this section, we show the MF’s strong performance porta-
bility across different CPU designs by benchmarking on a
server with an Intel Skylake-X CPU (hereafter referred to as
the Skylake-X server). Since the MF and CF were also the
fastest on this platform, we leave out the RSQF and ss-CF, as
their throughput as compared to the CF’s and MF’s did not
appreciably change.

For the Skylake-X server, we perform no additional tun-
ing of our MF implementation, yet despite that, it is still in
many cases significantly faster than the CF; the MF’s disci-
plined conservation of cache and memory bandwidth gives it
the edge. Given that the CF was developed and performance
tuned on an Intel processor like the Skylake-X CPU, it is
logical that its performance relative to an MF improves. For
lookups (Fig. 26a), the MF attains throughput that matches
or exceeds the CF even though it uses fewer bits per item for
the same ε. MF and CF deletion throughput is roughly equal
(Fig. 26b), and MF insertion throughput (Fig. 26b) is higher
for load factors at or exceeding 0.5 (up to 4.8× better).

8 Related work

There continues to be significant interest in the design and
application of ASMDSs. Bloom first proposed his epony-
mous filter in 1970 [7]. Since then, it has been used in many
different contexts and has evolved into many different vari-
ants [1,21,25,34,79,96]. Broder and Mitzenmacher provide
a survey of some variants and their applications in computer
networking [15]. Fan et al. propose the counting Bloom filter
(CBF) for use in SummaryCache [34]. Cohen et al. develop
the spectral Bloom filter [21], which like the CBF provides
deletions and counting but is more resistant to skew.

123

Morton filters: fast, compressed sparse cuckoo filters 751

(a)

(b)

Fig. 26 On a Skylake-X server, MF lookup throughput is on par with to
nearly 1.8× higher than a CF’s. MF deletion throughput is about 0.90×
to 1.1× a CF’s. MF insertion throughput is 0.82× to 4.8× that of a CF.
Results are normalized to a CF’s lookup throughput on a Skylake-X
CPU

ASMDS use in databases and data stores—In the database
domain, Bloom filters have seen widespread use in accel-
erating hashed semi-joins (e.g., the Bloomjoin [12,59]).
PostgreSQL [85] supports using a Bloom filter as an index,
and it is visible as an SQL extension [82].

RocksDB employs Bloom filters and partitioned Bloom
filters to speed querying of large data blocks [26].OceanStore
uses amultilayer attenuated Bloomfilter [50]. Similar hierar-
chies of Bloom filters are commonly found in log-structured
merge trees [68,80]. LSM trees are employed in a number of
data stores such as RocksDB [26], BigTable [18], LevelDB
[24], HBase [38], and Cassandra [52].
Fingerprint-based ASMDSs—A number of filters exist that
use fingerprints in lieu of setting individual bits. Cuckoo
filters [33], d-left counting Bloom filters [10], quotient fil-
ters [6,71], and TinySet [28] are some examples. TinySet
truncates fingerprints to avert overflows that would reduce
locality. As such, repeat deletions increase its error rate.
d-left counting Bloom filters leverage the improved load dis-
tribution properties of d-left hashing [92] to improve space
utilization approximately 2× over a counting Bloom filter.
Compression for sparsematrices—The compressionmethod
used by MFs shares similarities with sparse matrix formats
like compressed sparse rows (CSR) [41,88] and compressed
sparse columns (CSC) [88] but requires less metadata
because positional informationwithin a row (such as in CSR)
or within a column (such as in CSC) does not need to be
encoded.
Sparse and succinct data structures—Prior works present
methods for storing sparse data structures [37,45,67,75,87].

Many use clever hashing or bit vectors with rank and
select (see Jacobson [45] and Navarro [66]). Common appli-
cations are compressing sparse trees [45,97] or tables [67,87].
Compressed bitmap indices—An MF’s compression differs
from the typical compressed bitmap algorithms like BBC [2]
and theWAH variants which primarily use run length encod-
ing [17,22,44,93,95]. Since fingerprints are about uniformly
random, the main compression opportunity is to eliminate
storing empty slots, which our simpler approach already does
well.
Compression in prior ASMDSs—Other ASMDSs have used
compression in the past. Semi-sorting, a form of compres-
sion where a portion of each fingerprint is compressed, has
been proposed in the context of d-left counting Bloom fil-
ters [10,11] and cuckoo filters [33]. Semi-sorting could be
added to an MF to save additional space. We chose not to
use semi-sorting because the gains in space come at signifi-
cant cost to performance. Further, our implementation would
have required additional complexity sincewewould have had
to support encoding and decoding for differing numbers of
occupied slots per bucket since empty slots are not explicitly
stored. Mitzenmacher provides detailed analysis of design
trade-offs when compressing Bloom filters and discusses its
applicability to web caching [61].
Cuckoo hash tables—A CF is highly related to cuckoo hash
tables (CHTs) [70] and variants [14,78,86]. Rather than stor-
ing fingerprints, a CHT stores key-value pairs. Like CFs,
CHTs typically have two candidate buckets with four or eight
slots [14,30,31,55,78,98]. A commonality of a baseline CF
and CHT is that as the load on the table increases, insertion
throughput decreases due to a rapid increase in the prevalence
and mean length of cuckoo evictions. Prior work addresses
this reduction in throughput in several ways. Li et al. employ
a breadth-first search (BFS) to reduce the maximum chain
length to one that is logarithmic in the maximum number of
slots that are checked before declaring failure [55]. Their con-
current CHT outperforms MemC3’s [31] that uses 2-choice
hashing [4,62] with the random kickout algorithm employed
in Fan et al.’s CF [33]. A concurrent MF would likely sim-
ilarly benefit from using BFS. Sun et al. [86] add metadata
that explicitly tracks the graph-theoretic state of the table to
prune the search space for cuckoo hashing. Our design avoids
this complexity by using blocks that support storing tens of
fingerprints. Horton tables [14] convert the final slot of buck-
ets that overflow into a remap entry array (REA) that enables
lookups that access close to a single bucket, provides many
bucket candidates (e.g., 8), and keeps a worst-case lookup
cost of two buckets. We implement the OTA as a bit vector
rather than an REA for simplicity.
Cuckoo filter adoption and variants—CFs have seen adop-
tion in the areas of key-value stores [77], networking [42,51],
and security applications [23,46]. In addition toMFs, a grow-
ing body ofwork proposes design variants and enhancements

123

752 A. D. Breslow, N. S. Jayasena

to CFs [13,19,58,63,77]. Adaptive cuckoo filters [63] employ
multiple tables, each with a different fingerprint length and
a backing hash table. For items for which there are fre-
quent false positives, the hash table is used to create a
longer fingerprint that is inserted into another table. It shares
structural similarities with TAGE branch predictors [81]. An
adaptive MF could also be created. Dynamic cuckoo filters
[19] (inspired by dynamic Bloom filters [43]) chain several
cuckoo filters together. When the current CF reaches capac-
ity, another CF is appended to the chain. While this approach
allows increasing the capacity, it often requires examining
multiple filters during lookups and deletions. Our resizing
operation by contrast requires no changes to the lookup algo-
rithm, which typically accesses one bucket and at most two.
Position-aware cuckoo filters [51] add a counter per bucket
that tracks the number of fingerprints that are hashed by H1.
For eachbucket, it first stores all thefingerprints hashedby H1

and then those hashed there by H2, which reduces the error
rate on lookups.MFs can attain similar false positive rates for
the same number of bits and also examine fewer fingerprints
and buckets. 2–3 cuckoo filters [29] place two fingerprints in
two of three candidate buckets, and in doing so often require
more unique cache accesses per lookup than a baseline CF
or MF. Lang et al. present techniques to optimize Bloom fil-
ter and CF lookup throughput on modern CPUs using SIMD
instructions and provide guidance on when each should be
used [53].

9 Conclusion

We have presented a high-throughput filter that supports
improved throughput for lookups, insertions, and deletions
without increasing memory usage. Perhaps most notable is
that an MF’s insertion throughput is about 3× to 20× higher
than a comparable CF for load factors at or above 0.75. Fur-
ther, lookup and deletion throughput are up to 2.5× and 1.3×
faster, respectively. These properties are achieved while also
using comparable or fewer bits per item than a CF for a target
false positive rate. Key to these advances is the block abstrac-
tion and its compressed format, which allows for hiding the
storage cost of additional metadata structures by logically
underloading the filter and using smaller buckets. The OTA
further decreases these costs by reducing aliasing that would
require increasing the length of fingerprints by filtering out
unnecessary accesses to secondary buckets. With the OTA
and a reduction in bucket overflows due to packing many
underloaded buckets into a single cache line, lookups most
often only have to access a single bucket (one hardware cache
line) even when the filter is heavily loaded. We look for-
ward to applying the MF in a variety of contexts due to its
memory friendliness. Further, the innovations of this work
like the compression and performance optimizations can be

applied to a broad range of other data structures such as hash
tables (e.g., a cuckoo hash table), various fingerprint-based
filters, and algorithms that employ reductions or scans on
fixed-width narrow fields or counters.

Acknowledgements We thank the VLDB reviewers and our kind col-
leagues Shaizeen Aga, Joseph L. Greathouse, Mike Ignatowski, and
Gabriel Loh for their time and superb feedback which substantially
improved the paper’s clarity and quality. We also thank John Kalama-
tianos and Jagadish Kotra for giving us access to the Skylake-X server
and Karen Prairie for her edits. We finally thank the AMDOpen Source
ReviewBoard,AlanLee,ChipFreitag,MikeChu, and the dozens of oth-
ers who were involved in the auditing and open-sourcing of our Morton
filter implementation. AMD is a trademark ofAdvancedMicroDevices,
Inc. Other product names used in this publication are for identification
purposes only and may be trademarks of their respective companies.

References

1. Almeida, P.S., Baquero, C., Preguiça, N.M., Hutchison, D.: Scal-
able Bloom filters. Inf. Process. Lett. 101(6), 255–261 (2007)

2. Antoshenkov, G.: Byte-aligned bitmap compression. In DCC, pp.
476 (1995)

3. Appleby, A.: MurmurHash. https://sites.google.com/site/
murmurhash (2008). Accessed 2 May 2018

4. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced alloca-
tions. SIAM J. Comput. 29(1), 180–200 (1999)

5. Belady, L.A.: A study of replacement algorithms for a virtual-
storage computer. IBM Syst. J. 5(2), 78–101 (1966)

6. Bender, M.A., Farach-Colton, M., Johnson, R., Kraner, R., Kusz-
maul, B.C., Medjedovic, D., Montes, P., Shetty, P., Spillane, R.P.,
Zadok, E.: Don’t thrash: how to cache your hash on flash. PVLDB
5(11), 1627–1637 (2012)

7. Bloom, B.H.: Space/time trade-offs in hash coding with allowable
errors. CACM 13(7), 422–426 (1970)

8. Boncz, P.A., Manegold, S., Kersten, M.L.: Database architecture
optimized for the new bottleneck: memory access. In VLDB, pp.
54–65 (1999)

9. Boncz, P.A., Zukowski, M., Nes, N.: MonetDB/X100: hyper-
pipelining query execution. In CIDR, pp. 225–237 (2005)

10. Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., Varghese,
G.: An improved construction for counting Bloom filters. ESA 6,
684–695 (2006)

11. Bonomi, F., Mitzenmacher, M., Panigraphy, R., Singh, S., Vargh-
ese, G.: Bloom filters via d-left hashing and dynamic bit reassign-
ment extended abstract. In Allerton, pp. 877–883 (2006)

12. Bratbergsengen, K.: Hashing methods and relational algebra oper-
ations. In VLDB, pp. 323–333 (1984)

13. Breslow, A., Jayasena, N.: Morton filters: faster, space-efficient
cuckoofilters via biasing, compression, and decoupled logical spar-
sity. PVLDB 11(9), 1041–1055 (2018)

14. Breslow, A.D., Zhang, D.P., Greathouse, J.L., Jayasena, N.,
Tullsen, D.M.: Horton tables: fast hash tables for in-memory data-
intensive computing. In USENIX ATC, pp. 281–294 (2016)

15. Broder, A.Z., Mitzenmacher, M.: Network applications of Bloom
filters: a survey. Internet Math. 1(4), 485–509 (2003)

16. Carter, L., Floyd, R., Gill, J., Markowsky, G., Wegman, M.: Exact
and approximate membership testers. In STOC, pp. 59–65, New
York, NY (1978)

17. Chambi, S., Lemire, D., Kaser, O., Godin, R.: Better bitmap per-
formance with Roaring bitmaps. Softw. Pract. Exp. 46(5), 709–719
(2016)

123

https://sites.google.com/site/murmurhash
https://sites.google.com/site/murmurhash

Morton filters: fast, compressed sparse cuckoo filters 753

18. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A.,
Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: BigTable: a dis-
tributed storage system for structured data. TOCS 26(2), 4 (2008)

19. Chen, H., Liao, L., Jin, H., Wu, J.: The dynamic cuckoo filter. In
ICNP, pp. 1–10 (2017)

20. Clark, M.: A new x86 core architecture for the next generation of
computing. In Hot Chips, pp. 1–19 (2016)

21. Cohen, S., Matias, Y.: Spectral Bloom filters. In SIGMOD, pp.
241–252 (2003)

22. Colantonio, A., Pietro, R.D.: Concise: compressed ’n’ composable
integer set. Inf. Process. Lett. 110(16), 644–650 (2010)

23. Cui, J., Zhang, J., Zhong, H., Xu, Y.: SPACF: a secure privacy-
preserving authentication scheme for VANET with cuckoo filter.
IEEE Trans. Veh. Technol. 66(11), 10283–10295 (2017)

24. Dean, J., Ghemawat, S.: LevelDB: a fast persistent key-
value store. https://opensource.googleblog.com/2011/07/leveldb-
fast-persistent-key-value-store.html, July 27, 2011. Accessed 25
Jan 2017

25. Deng, F., Rafiei, D.: Approximately detecting duplicates for
streaming data using Stable Bloom filters. In SIGMOD, pp. 25–
36 (2006)

26. Dong, S., Callaghan, M., Galanis, L., Borthakur, D., Savor, T.,
Strum, M.: Optimizing space amplification in RocksDB. In CIDR
(2017)

27. Dr. Seuss. Horton Hatches the Egg. Random House (1940)
28. Einziger, G., Friedman, R.: TinySet - an access efficient self adjust-

ing Bloom filter construction. TON 25(4), 2295–2307 (2017)
29. Eppstein, D., Goodrich, M.T., Mitzenmacher, M., Torres, M.R.: 2-

3 cuckoo filters for faster triangle listing and set intersection. In
PODS, pp. 247–260 (2017)

30. Erlingsson, U., Manasse, M., McSherry, F.: A cool and practical
alternative to traditional hash tables. In WDAS (2006)

31. Fan, B., Andersen, D.G., Kaminsky, M.: MemC3: compact and
concurrent memcache with dumber caching and smarter hashing.
In NSDI, pp. 371–384 (2013)

32. Fan, B., Andersen, D.G., Kaminsky, M.: Cuckoo filter. https://
github.com/efficient/cuckoofilter, (2017). Accessed 19 Nov 2017

33. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.:
Cuckoo filter: practically better than Bloom. In CoNEXT, pp. 75–
88 (2014)

34. Fan, L., Cao, P., Almeida, J.M., Broder, A.Z.: Summary Cache: a
scalablewide-areaweb cache sharing protocol. TON 8(3), 281–293
(2000)

35. Fisher, R.J., Dietz, H.G.: Compiling for SIMD within a register. In
LCPC, pp. 290–304 (1998)

36. Flynn, M.J.: Some computer organizations and their effectiveness.
TOC 21(9):948–960 (1972)

37. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table
with 0(1) worst case access time. J. ACM 31(3), 538–544 (1984)

38. HBase, L George: The Definitive Guide: Random Access to Your
Planet-size Data. O’Reilly Media, Inc., New York (2011)

39. González, R., Grabowski, S., Mäkinen, V., Navarro, G.: Practical
implementation of rank and select queries. In WEA, pp. 27–38
(2005)

40. Goodman, J.R.: Using cache memory to reduce processor-memory
traffic. In ISCA, pp. 124–131 (1983)

41. Greathouse, J.L., Daga,M.: Efficient sparsematrix-vectormultipli-
cation on GPUs using the CSR storage format. In SC, pp. 769–780
(2014)

42. Grissa, M., Yavuz, A.A., Hamdaoui, B.: Cuckoo filter-based
location-privacy preservation in database-driven cognitive radio
networks. In WSCNIS, pp. 1–7 (2015)

43. Guo, D., Wu, J., Chen, H., Yuan, Y., Luo, X.: The dynamic Bloom
filters. TKDE 22(1), 120–133 (2010)

44. Guzun, G., Canahuate, G., Chiu, D., Sawin, J.: A tunable compres-
sion framework for bitmap indices. In ICDE, pp. 484–495 (2014)

45. Jacobson, G.: Space-efficient static trees and graphs. In FOCS, pp.
549–554 (1989)

46. Kales, D., Rechberger, C., Schneider, T., Senker, M., Weinert, C.:
Mobile private contact discovery at scale. In USENIX Security
(2019)

47. Kandemir,M., Zhao,H., Tang,X., Karakoy,M.:Memory row reuse
distance and its role in optimizing application performance. In SIG-
METRICS, pp. 137–149 (2015)

48. Kogge, P.M., Stone, H.S.: A parallel algorithm for the efficient
solution of a general class of recurrence equations. TOC 100(8),
786–793 (1973)

49. Kornacker, M., Behm, A., Bittorf, V., Bobrovytsky, T., Ching, C.,
Choi, A., Erickson, J., Grund, M., Hecht, D., Jacobs, M., Joshi,
I., Kuff, L., Kumar, D., Leblang, A., Li, N., Pandis, I., Robinson,
H., Rorke, D., Rus, S., Russell, J., Tsirogiannis, D., Wanderman-
Milne, S., Yoder, M.: Impala: a modern, open-source SQL engine
for Hadoop. In CIDR, (2015)

50. Kubiatowicz, J., Bindel,D., Chen,Y.,Czerwinski, S.E., Eaton, P.R.,
Geels, D., Gummadi, R., Rhea, S.C., Weatherspoon, H., Weimer,
W., Wells, C., Zhao, B.Y.: . OceanStore: an architecture for global-
scale persistent storage. In ASPLOS, pp. 190–201 (2000)

51. Kwon,M., Shankar,V.,Reviriego, P.: Position-aware cuckoofilters.
In ANCS, pp. 151–153 (2018)

52. Lakshman, A., Malik, P.: Cassandra: a decentralized structured
storage system. OSR 44(2), 35–40 (2010)

53. lang, H., Neumann, T., Kemper, A., Boncz, P.: Performance-
optimal filtering: Bloom overtakes cuckoo at high throughput.
PVLDB 12, 502–515 (2019)

54. Lemire, D.: A fast alternative to the modulo reduction. https://
lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-
reduction/, June 27, (2016). Accessed 07 Jan 2017

55. Li, X., Andersen, D.G., Kaminsky, M., Freedman, M.J.: Algorith-
mic improvements for fast concurrent cuckoo hashing. In EuroSys,
vol 27, pp. 1–27:14 (2014)

56. Lomont, C.: Introduction to Intel advanced vector extensions. Intel
White Paper, pp. 1–21 (2011)

57. Loveman, D.B.: Program improvement by source-to-source trans-
formation. J. ACM 24(1), 121–145 (1977)

58. Luo, L., Guo, D., Rottenstreich, O., Ma, R.T., Luo, X., Ren, B.:
The consistent cuckoo filter. In Infocom, (2019)

59. Mackert, L.F., Lohman, G.M.: R* optimizer validation and perfor-
mance evaluation for distributed queries. In VLDB, pp. 149–159
(1986)

60. Melsted, P., Pritchard, J.K.: Efficient counting of k-mers in DNA
sequences using a Bloom filter. BMC Bioinformatics 12, 333
(2011)

61. Mitzenmacher, M.: Compressed Bloom filters. In PODC, pp. 144–
150 (2001)

62. Mitzenmacher, M.: The power of two choices in randomized load
balancing. TPDPS 12(10), 1094–1104 (2001)

63. Mitzenmacher, M., Pontarelli, S., Reviriego, P.: Adaptive cuckoo
filters. In ALENEX, pp 36–47

64. Mitzenmacher, M., Upfal, E.: Probability and Computing: Ran-
domization and Probabilistic Techniques in Algorithms and Data
Analysis. Cambridge University Press, Cambridge (2017)

65. Mula, W., Kurz, N., Lemire, D.: Faster population counts using
AVX2 instructions. Comput. J. 61(1), 111–120 (2018)

66. Navarro, G.: Compact Data Structures: A Practical Approach.
Cambridge University Press, Cambridge (2016)

67. Okanohara, D., Sadakane, K.: Practical entropy-compressed
rank/select dictionary. In Meeting on Algorithm Engineering &
Expermiments, pp 60–70, (2007)

68. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The Log-
Structured Merge-tree (LSM-tree). Acta Inform. 33(4), 351–385
(1996)

123

https://opensource.googleblog.com/2011/07/leveldb-fast-persistent-key-value-store.html
https://opensource.googleblog.com/2011/07/leveldb-fast-persistent-key-value-store.html
https://github.com/efficient/cuckoofilter
https://github.com/efficient/cuckoofilter
https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/

754 A. D. Breslow, N. S. Jayasena

69. Padua, D.A., Wolfe, M.J.: Advanced compiler optimizations for
supercomputers. CACM 29(12), 1184–1201 (1986)

70. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–
144 (2004)

71. Pandey, P., Bender,M.A., Johnson,R., Patro, R.:A general-purpose
counting filter: making every bit count. In SIGMOD, pp. 775–787
(2017)

72. Pandey, P., Johnson,R.:Ageneral-purpose countingfilter: counting
quotient filter. https://github.com/splatlab/cqf, (2017). Accessed
11 Sep 2017

73. Polychroniou, O., Raghavan, A., Ross, K.A.: Rethinking SIMD
vectorization for in-memory databases. In SIGMOD, pp. 1493–
1508 (2015)

74. Putze, F., Sanders, P., Singler, J.: Cache-, hash-, and space-efficient
Bloom filters. JEA, 14 (2009)

75. Raman, R. Raman, V., Rao, S.S.: Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets. In SODA,
pp. 233–242 (2002)

76. Raman, S.K., Pentkovski, V., Keshava, J.: Implementing streaming
SIMD extensions on the Pentium III Processor. IEEEMicro 20(4),
47–57 (2000)

77. Ren, K., Zheng, Q., Arulraj, J., Gibson, G.: SlimDB: a space-
efficient key-value storage engine for semi-sorted data. PVLDB
10(13), 2037–2048 (2017)

78. Ross, K.A.: Efficient hash probes on modern processors. In
Chirkova, R., Dogac, A., Özsu, M.T., Sellis, T.K. (eds), ICDE,
pp.1297–1301 (2007)

79. Rottenstreich, O., Kanizo, Y., Keslassy, I.: The variable-increment
counting Bloom filter. TON 22(4), 1092–1105 (2014)

80. Sears, R., Ramakrishnan, R.: bLSM: a general purpose Log Struc-
tured Merge tree. In SIGMOD, pp. 217–228 (2012)

81. Seznec, A.: A new case for the TAGE branch predictor. InMICRO,
pp. 117–127 (2011)

82. Sigaev, T., Korotkov, A., Bartunov, O.: PostgreSQL 10 docu-
mentation: F.5. bloom. https://www.postgresql.org/docs/10/static/
bloom.html (2017). Accessed 25 Jan 2018

83. Singh, T., Rangarajan, S., John, D., Henrion, C., Southard, S.,
McIntyre, H., Novak, A., Kosonocky, S., Jotwani, R., Schaefer,
A., Chang, E., Bell, J., Zen, M. Co.: a next-generation high-
performance x86 core. ISSCC, pp. 52–53 (2017)

84. Smith, J.E.: A study of branch prediction strategies. In ISCA, pp.
135–148 (1981)

85. Stonebraker, M., Rowe, L.A., Hirohama, M.: The implementation
of POSTGRES. TKDE 2(1), 125–142 (1990)

86. Sun, Y., Hua, Y., Jiang, S., Li, Q., Cao, S., Zuo, P.: SmartCuckoo:
a fast and cost-efficient hashing index scheme for cloud storage
systems. In USENIX ATC, pp. 553–565 (2017)

87. Tarjan, R.E., Yao, A.C.: Storing a sparse table. CACM 22(11),
606–611 (1979)

88. Tinney, W.F., Walker, J.W.: Direct solutions of sparse network
equations by optimally ordered triangular factorization. Proc. IEEE
55(11), 1801–1809 (1967)

89. Treibig, J., Hager, G., Wellein, G.: LIKWID: a lightweight
performance-oriented tool suite for x86 multicore environments.
In ICPPW, pp. 207–216 (2010)

90. Tullsen, D.M., Eggers, S.J., Emer, J.S., Levy, H.M., Lo, J.L.,
Stamm, R.L. : Exploiting choice: instruction fetch and issue on an
implementable simultaneous multithreading processor. In ISCA,
pp. 191–202 (1996)

91. Tullsen,D.M., Eggers, S.J., Levy,H.M.: Simultaneousmultithread-
ing: maximizing on-chip parallelism. In ISCA, pp. 392–403 (1995)

92. Vöcking, B. How asymmetry helps load balancing. In FOCS, pp.
131–141 (1999)

93. Wang, J., Lin, C., Papakonstantinou, Y., Swanson, S.: An experi-
mental study of bitmap compression vs. inverted list compression.
In SIGMOD, pp. 993–1008 (2017)

94. Wolfe, M. More iteration space tiling. In SC, pp. 655–664 (1989)
95. Wu, K., Otoo, E.J., Shoshani, A.: Optimizing bitmap indices with

efficient compression. TODS 31(1), 1–38 (2006)
96. Yoon, M.: Aging Bloom filter with two active buffers for dynamic

sets. TKDE 22(1), 134–138 (2010)
97. Zhang, H., Lim, H., Leis, V., Andersen, D.G., Kaminsky, M., Kee-

ton, K., Pavlo, A.: SuRF: practical range query filtering with fast
succinct tries. In SIGMOD (2018)

98. Zhang, K., Wang, K., Yuan, Y., Guo, L., Lee, R., Zhang, X.: Mega-
KV: a case for GPUs to maximize the throughput of in-memory
key-value stores. PVLDB 8(11), 1226–1237 (2015)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://github.com/splatlab/cqf
https://www.postgresql.org/docs/10/static/bloom.html
https://www.postgresql.org/docs/10/static/bloom.html

	Morton filters: fast, compressed sparse cuckoo filters
	Abstract
	1 Introduction
	2 Cuckoo filters
	2.1 Baseline design
	2.2 Insertions
	2.3 Lookups
	2.4 Modeling the error rate and space use
	2.5 Bloom filters and relative optimality

	3 Morton filters
	3.1 Optimizing for the memory hierarchy
	3.2 Logical interpretation
	3.3 Compressed structure: the block store
	3.4 Block components
	3.5 Accessing a bucket
	3.6 Primacy
	3.7 Filtering requests to secondary buckets
	3.8 Types of overflows
	3.9 Interplay between buckets and blocks
	3.10 Even-odd partial key cuckoo hashing

	4 Algorithms
	4.1 Lookups
	4.2 Insertions
	4.3 Deletions
	4.4 Fast reductions for determining bucket boundaries in the FSA
	4.5 Block full array
	4.6 Resizing an MF without the source data
	4.7 Modifications necessary for supporting resizing
	4.8 Extending self-resizability to cuckoo filters

	5 Modeling
	5.1 False positives and storage costs
	5.2 Lookup costs

	6 Experimental methodology
	7 Evaluation
	7.1 False positive rate
	7.2 Lookup throughput
	7.3 Insertion throughput
	7.4 Deletion throughput
	7.5 Sweet spot for Morton filters
	7.6 Throughput impact of optimizations
	7.7 Tuning the batch size
	7.8 Reduction method evaluation
	7.9 Block full array throughput impact
	7.10 Flexibility
	7.11 Resizability
	7.12 Low-level performance metrics
	7.13 Cross-platform performance portability

	8 Related work
	9 Conclusion
	Acknowledgements
	References

