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Abstract

With the rapid development of information technologies, various big graphs are prevalent in many real applications (e.g., social
media and knowledge bases). An important component of these graphs is the network community. Essentially, a community
is a group of vertices which are densely connected internally. Community retrieval can be used in many real applications, such
as event organization, friend recommendation, and so on. Consequently, how to efficiently find high-quality communities
from big graphs is an important research topic in the era of big data. Recently, a large group of research works, called
community search, have been proposed. They aim to provide efficient solutions for searching high-quality communities
from large networks in real time. Nevertheless, these works focus on different types of graphs and formulate communities
in different manners, and thus, it is desirable to have a comprehensive review of these works. In this survey, we conduct a
thorough review of existing community search works. Moreover, we analyze and compare the quality of communities under
their models, and the performance of different solutions. Furthermore, we point out new research directions. This survey does
not only help researchers to have better understanding of existing community search solutions, but also provides practitioners
a better judgment on choosing the proper solutions.
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1 Introduction

With the rapid development of information technologies, var-
ious big graphs are prevalent in many real applications (e.g.,
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internally. For example, in Facebook, communities consist of
users that are with strong friendship [3]; on the World Wide
Web, communities contain web sites which share similar top-
ics [22]; in protein—protein interaction networks [151] and
metabolic networks [82], communities correspond to func-
tionality modules. Retrieving communities from a network
is a fundamental problem in network science, and it can be
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— Event organization A social event (e.g., a party or a

conference) often involves a group of users and its orga-
nization can benefit from communities. For example, to
The University of Technology Sydney, Sydney, Australia hold a cocktail part, a user can find his community, i.e.,
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— Friend recommendation Many social media platforms
(e.g., Facebook) often maintain a friendship network. To
suggest candidate friends to a specific user u, intuitively
we can recommend u those who are in u’s community
but are not yet u’s friends.

— Protein complex identification In biology, proteins inter-
act with each other and a gene is often regulated by a set
of proteins. To study a gene, a biologist may focus on a
set of proteins that highly interact with each other, which
is a community of proteins.

— Advertisement in e-commence Users of the same commu-
nity often share similar interests. To push advertisements
for a user u, we may find her community first and then
select advertisements that are checked by members of her
community.

Owing to the importance of communities, how to effec-
tively and efficiently find communities from large graphs is
an important research topic in the era of big data. With a
careful observation on these applications, we identify a list
of factors that the community retrieval solutions should sat-
isfy:

— High efficiency For many real applications (e.g., event
organization), the communities often need to be retrieved
in real time, based on query requests. Thus, the commu-
nity retrieval solutions should be able to respond in real
time.

— High scalability Nowadays, many real networks contain
millions or billions of vertices. As a result, the solutions
should be scalable to real big graphs.

— High personalization In practice, for large networks, peo-
ple usually are interested in communities of some specific
users, rather than all the users. Thus, the solutions should
allow users to specify query vertices. Moreover, some
personalized requirements on structures (and attributes)
could be imposed.

— High quality The vertices in the communities retrieved
should be cohesively linked. Moreover, the communities
should be easy for interpretation.

— Support for dynamic graphs Since real networks often
involve as the time goes on, the solutions should be able
to adapt for the dynamic changes easily.

Toward the goals above, recently a large group of research
works, called community search (CS), have been proposed
[103]. Generally, the goal of CS is to search high-quality
communities in an online manner, based on a query request.
Specifically, given a vertex g of a graph G, it aims to find
a community, or a dense subgraph, which contains ¢ and
satisfies the properties: (1) connectivity, i.e., vertices in the
community are connected; and (2) cohesiveness, i.e., vertices
in the community are intensively linked to each other w.r.t. a
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Fig.1 An example of community search

particular goodness metric [15,45,46,175,175]. The metric is
often defined by using some classical subgraph cohesiveness
metrics such as:

— k-core The k-core [17,170] is the largest subgraph of G,
in which each vertex’s degree is at least k within the
subgraph.

— k-truss The k-truss [41,98] is the largest subgraph of G in
which every edge is contained in at least (k — 2) triangles
within the subgraph.

— k-clique A k-clique [2] is a set of k vertices of G such
that each pair of vertices has an edge.

— k-ECC A k-ECC (k-edge-connected component) [76] is
a subgraph of G such that after removing any k — 1 edges,
it is still connected.

Let us illustrate CS by an example. Consider the graph
with ten vertices in Fig. 1, and CS solutions [15,46,175],
which are based on the k-core model. Let ¢ = A. Then, the
induced subgraph of vertices { A, B, C, D} will be returned
as the community. Note that the subgraph forms a k-core with
k = 3, since each vertex’s degree is 3 within the subgraph,
and it is also the core attaining the maximum value of k.

In the literature, there is a highly related group of research
works, called community detection (CD) [44,110,154,156,
158]. Generally, it has similar goals with CS, but there are
three key differences: (1) The problem definitions are dif-
ferent. CS aims to search communities regarding a set of
query vertices and some query parameters, while CD often
detects all communities in the graph. (2) The criteria of defin-
ing communities are different. In CS, the criteria of defining
communities are based on query parameters given by the
users. In other words, communities are retrieved depending
on user-defined parameters. In contrast, CD methods often
use the same global criterion to detect communities by parti-
tioning the entire graph. For example, in Fig. 1,if g = A, CS
solutions [46,175] will find the community {A, B, C, D},
and if ¢ = E, they will find the community {A, B, C, D, E}.
In contrast, if using a CD method (e.g., the spectral clustering
[182]) with setting the number of communities to 3, we will
obtain three communities, each of which forms a connectivity
component, where B and E are in the same community. (3)
The algorithms are different. As shown in existing studies,
CS solutions can search communities efficiently in an online
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manner, while CD solutions are often time-consuming and
unscalable to big graphs. Moreover, CS queries can often
be supported by indexes and handle dynamic graphs easily.
Thus, compared to CD solutions, CS solutions can better
satisfy factors aforementioned.

Although there are many CS solutions, they deal with dif-
ferent types of graphs and formulate communities in different
manners. Meanwhile, there is a lack of systematic survey of
CS solutions. Thus, it is desirable to organize these works
and understand how well they perform in terms of efficiency
and quality. To this end, in this paper we will provide a thor-
ough review of these works. We will also compare different
CS solutions so that readers can better understand the state
of the art and point out directions for future study.

As shown in Table 1, we classify CS solutions into five
categories such that solutions in each category (except the
last category) adopt the same structure cohesiveness metric.
Moreover, for works in each category, we further partition
them into two groups, where the first group focuses on simple
graphs while the second group targets attributed graphs. Note
that the IDs of CS problems are also included in the brackets
of Table 1. For simple graphs, CS solutions search commu-
nities purely based on link information, while for attributed
graphs, CS solutions often consider both links and attributes.
We remark that these cohesiveness metrics are orthogonal to
graph types. This implies that if a metric has not been stud-
ied for a particular type of graphs, then it is a possible future
research direction to study CS by applying the metric on this
type of graphs.

In summary, our main contributions are as follows:

— First, we provide a systematic classification of studies on
CS. Specifically, we classify these studies according to
the community cohesiveness metrics. For each class of
works, we review the representative studies on different
types of graphs.

— Second, we perform a thorough analysis and comparison
of different community cohesiveness metrics. Moreover,
we analyze and compare CS solutions on simple graphs
and attributed graphs.

— Third, we offer insightful suggestions for future study on
CS. This may give researchers new to CS an understand-
ing of the recent development of CS, as well as a good
starting point to work in this field.

The rest of this paper is organized as follows: In Sect. 2,
we introduce and discuss community cohesiveness metrics.
In Sects. 3,4,5,6,and 7, we extensively discuss CS solutions
in each category. We also present two CS systems in Sect. 8.
We review the related work in Sect. 10. Finally, we present
a list of future topics in Sect. 11 and conclude in Sect. 12.

Table 1 Classification of works of community search (“P.” means Problem)

Attributed graphs

Simple graphs

Metric

Influence (weight) Profile

Temporal

Location

Keyword

[31] (P. 14)

[21,30,126-128,215] (P. 12, 13)

[216] (P. 18)

[60,65,185,221,221] (P.7, 8.,9) [129] (P.10)

[58,61] (P. 6)
[102] (P. 17)

[15,46,66,175] (P. 1, 2,3, 4,5)

[6,98,101] (P.15, 16)

k-core

k-truss

[125] (P. 23)

[45,187,195,205] (P. 19, 20, 21, 22)

[6,98,101] (P.24, 25, 26)

k-clique
k-ECC
Others

Local modularity: [40,136]; query biased density: [190]; PageRank: [9,114] (P. 27); neighbors: [142]
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Fig.2 Illustration of k-core

2 Preliminaries

In this section, we first formally introduce the commonly
used community cohesiveness metrics and then compare
their cohesiveness and computational efficiency.

2.1 Cohesiveness metrics

For ease of exposition, we consider a simple undirected graph
G(V, E), with vertex set V and edge set E. Let n and m be
the corresponding sizes of V and E. The degree of a vertex
v of G is denoted by deg (v).

ek-core. We introduce its formal definition as follows:

Definition 1 (k-core [17,170]) Given an integer k (k > 0),
the k-core of G, denoted by Hy, is the largest subgraph of G,
such that Vv € Hg, deng (v) > k.

We say that Hj has an order of k. Notice that H; may not be
a connected graph [17]. Observe that k-cores are “nested”
[17]: given two positive integers i and j, if i < j, then
H; C H;.

Example 1 In Fig. 2a, the subgraph of {A, B, C, D} is the
3-core. The 1-core has vertices {A, B,C, D, E, F,G, H, I}
and is composed of two connected components: {A, B, C,
D, E, F,G} and {H, I}. The number k in each circle rep-
resents the k-core contained in that ellipse. Clearly, H3 C
H, C H;.

Definition 2 (core number) Given a vertex v € V, its core
number, denoted by coreg[v], is the highest order of a k-core
that contains v.

A list of core numbers and their respective vertices for
Example 1 are shown in Fig. 2b. Equivalently, the k-core is
the induced subgraph of vertices, whose core numbers are at
least k.
ek-truss The k-truss is defined based on triangles. Specifi-
cally, a triangle in G is a cycle of length 3. Let u, v, w € V
be the three vertices on the cycle. Then, we denote this tri-
angle by Ay

Definition 3 (support) Given a graph G(V, E), the support
of an edge (u, v)e E, denoted by sup(e, G), is defined as
HAuyw 1 u, v, w e VY|
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Fig.3 Illustration of k-truss

Definition 4 (k-truss [41,166,212]) Given a graph G, the k-
truss of G, denoted by Jy, is the largest subgraph of G, such
that Ve € Ji, sup(e, Ji) > (k —2).

Example 2 Let us reconsider the graph G in Fig. 2a. The
induced subgraph of G by vertex set {A, B, C, D} is the 4-
truss. The 3-truss has vertices {A, B, C, D, E}. The number
k in each circle represents the k-truss contained in that ellipse.

Definition 5 (zruss number [184]) Given a graph G, the truss
number (trussness) of an edge e € G, denoted by 7 (e), is the
largest k such that there is a k-truss containing e.

A list of truss numbers and their respective edges for
Example 2 are shown in Fig. 3b. Equivalently, the k-truss
is the induced subgraph of edges, whose truss numbers are
at least k. Similar to k-core, a k-truss may contain multiple
connected components.

e k-clique It is defined as follows:

Definition 6 (k-clique [2,151]) A k-clique is a complete
graph with k vertices where there is an edge between every
pair of vertices.

Example 3 In the graph in Fig. 2a, the subgraph of {A, B,
C, D} is a 4-clique and any three vertices of them form a
3-clique (i.e., triangle). The subgraph of {A, B, E} is also a
3-clique. Any edge is a 2-clique.

ok-ECC. We first introduce some related concepts.

Definition 7 (edge connectivity [76,95]) Given a graph
G(V, E) and two vertices u, v € V, the connectivity A(u, v)
between u and v is the minimum number of edges whose
removal disconnects u and v.

Definition 8 (graph connectivity [76,95]) Given a graph
G(V,E), the connectivity of the graph G, A(G) =
miny ,ev A(u, v), is the minimum connectivity between any
two distinct vertices in G, i.e., the minimum number of edges
whose removal disconnects G.

Definition 9 (k-ECC[76,95]) Givenagraph G(V, E),asub-
graph G’ of G is a k-edge-connected component, or k-ECC,
if A(G") > k and the connectivity of any super-graph of G’
in G is less than k.
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Example 4 In the graph in Fig. 2a, the subgraph of {A, B,
C, D} is the 3-ECC, because for any pair of vertices in it,
to disconnect them, we need to remove at least 3 edges. The
2-ECC has vertices {A, B, C, D, E}. There are two 1-ECCs,
which contain vertices {H, [} and {A, ..., G}, respectively.

2.2 Cohesiveness and computational efficiency

Generally, in terms of structure cohesiveness, k-clique is the
most cohesive one, since each vertex of a k-clique is linked to
all the other (k—1) vertices. For each connected component of
the k-truss, it is more cohesive than a k-ECC. This is because
k-truss is more restrictive as it is defined based on triangle,
which is a local concept, whereas k-ECC is more global [7].

Obviously, the k-truss is more cohesive than the k-core,
since in a k-truss, each pair of vertices within an edge must
have (k — 2) common neighbors, while in a k-core, any pair
of vertices within an edge may have no common neighbors.
Also, the k-ECC is more cohesive than k-core, since it is a
connected subgraph and requires that each vertex has at least
k neighbors, while a k-core may contain multiple connected
components. We further analyze their inclusion ship as fol-
lows: Let G(V, E) be a graph and k be an integer (k > 0).
We have:

1. a k-clique must be a subgraph of the k-truss;

2. each connected component of the k-truss must be a sub-
graph of a particular k-ECC;

3. the k-truss must be a subgraph of the (k — 1)-core;

4. a k-ECC must be a subgraph of the k-core.

In summary, in terms of structure cohesiveness, the four
metrics above can be roughly ranked as: k-core < k-ECC <
k-truss < k-clique.

Next, we discuss their computational efficiency.! Note that
for each metric, there may exist multiple algorithms for enu-
merating its subgraphs, but here we only discuss complexities
of the most efficient ones.

n [17], a linear k-core decomposition algorithm, which
computes all the k-cores in the graph G, takes O(m + n)
time and O (m + n) space. In [26], Chang et al. proposed an
algorithm, which computes all the k-ECCs for a specific &,
and ittakes O (h-I-m) time and O (m+n) space, where h and /
are usually bounded by smaller constants for real graphs [26].
In [184], an efficient algorithm for computing the k-truss, for
all k > 3, takes O (m!-) time and O (m+n) space. In [47], an
algorithm, which enumerates all the k-cliques for a specific k,
completes in O (c(G) - Z‘ Nl +k-N*) time and O (m +n)
space, where c(G) denotes the maximum core number of
vertices in G and N’ is the number of /-cliques. Notice that

! Here, we only consider algorithms that assume the graph can be kept
in the memory of a single machine.

Cohesiveness:

k-c(;re k-EbC k-trhss k-cl{que

Efficiency: . ! !
high | | | ! low

Fig.4 Comparison of cohesiveness models

Table 2 Efficiency comparison for different metrics

Datasets k-core (s) k-ECC (s) k-truss k-clique
Email-Enron 0.2 0.8 5 201 s
Google 8.9 40.8 65 >24h
Livejournal 85 854 1726 >24h
Wise 553s 5764 32,221 >24h

N' could be exponentially large. As a result, considering
their computational efficiency, we can rank these metrics as:
k-core > k-ECC > k-truss > k-clique.

In summary, there is a trade-off between the structure
cohesiveness and computational efficiency, as shown in
Fig. 4. That is, a more cohesive metric often takes more
computational cost. In addition, we have performed a com-
parison study of the efficiency for these metrics on four
real graphs,2 namely Email-Enron (|V| = 36.7K, |E| =
183.8K), Google (|V| = 876K, |E| = 5.1 M), Livejour-
nal (|V| = 4.8M, |E| = 69M), and Wise (|V| = 58.6 M,
|E| = 265.1M), where K= 10° and M= 10°. Clearly,
as shown in Table 2, the efficiency results well confirm the
analysis above.

Based on the comparison analysis above, we would like
to make some suggestions: (1) For small or moderate-size
graphs, k-clique and k-truss not only achieve higher cohe-
siveness but also reasonable efficiency. (2) For large graphs,
k-core and k-ECC should be better choices since they can
be computed more efficiently. (3) For graphs with higher
clustering coefficient which can be decomposed into more
triangles, k-truss is preferable. (4) For some special graphs
(e.g., bipartite graphs), there may not exist any triangles and
thus, the k-truss model may not work.

3 K-core-based community search

In this section, we review CS works that use the k-core
as structure cohesiveness metric. We classify these works
into several groups according to the types of graphs, namely
undirected graphs, directed graphs, and attributed graphs,
including keyword-based, location-based, temporal, influ-
ence value-based, and profile-based graphs, and then discuss
them, respectively.

2 Email-Enron, Google, Livejournal are downloaded from https://snap.
stanford.edu/data/index.html, and Wise is downloaded from http:/
www.wise2012.cs.ucy.ac.cy/challenge.html.
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3.1 Undirected graphs

An undirected graph, denoted by G(V, E), contains a set V
of vertices and a set E of edges. Existing CS works on simple
undirected graphs can be classified as size-unbounded and
size-bounded CS, where the former one has no constraint
on the size of the community and the latter one imposes
constraint on the community size.

3.1.1 Size-unbounded community search

In [175], Sozio et al. proposed and studied the problem of
community search, defined as follows:

Problem 1 Given an undirected simple graph G(V, E), a set
of query vertices Q C V, and a goodness function f, return
a subgraph H(Vy, Ep) of G, such that

1. Vg contains Q;
2. H is connected;
3. f(H) is maximized among all feasible choices for H.

Here, f(H) is a general goodness function for measur-
ing cohesiveness of the community H. Intuitively, the value
of f(H) should be larger, if H is densely connected. There
are many possible choices for f, and an outstanding one
is defined based on the minimum degree, ie., f(H) =
minvye g degy (v). The reasons why the minimum degree is
a good metric for the community are threefold: First, mini-
mum degree is one of the most fundamental characteristics of
a graph. For instance, it is adopted for describing the evolu-
tion of random graphs and graph visualization [46]. Second,
it is often used to measure the cohesiveness of user groups
in social media. In [170], Seidman et al. compared the mini-
mum degree with many other metrics of cohesiveness (e.g.,
connectedness and diameter) and found that the minimum
degree is indeed a good metric for social network analysis.
Third, for community search tasks, Sozio et al. [175] also
showed that it is better than some other metrics, including
the average degree and density. In the following, we assume
that the minimum degree metric is adopted in f.

To solve Problem 1, there are two online algorithms, which
are based on global and local search [46,175], respectively,
and one index-based algorithm [15].

e A global search algorithm Sozio et al. [175] proposed
a greedy algorithm, which follows the peeling framework
[27] of computing the densest subgraphs [78] and removes
vertices iteratively. Specifically, let Go = G and G; be the
graph in #-th iteration (1 < r < n). Atthe t-th (1 <t < n)
step, it removes the vertex which has the minimum degree in
G;_1 and obtain an updated graph G,. The above operation
iterates and stops at the T'-th step, if either (1) at least one of
the query vertices Q has minimum degree in the graph G7_1,

@ Springer

or (2) the query vertices Q are no longer connected. Let G
be the connected component containing Q in G;. Then, the
subgraph G ¢ = argmax{ f(G})} satisfies all the constraints
in Problem 1.

We denote the algorithm above by Global, as it finds
the community in a global manner. By using some special
optimization techniques [27,175], G1obal is able to achieve
linear time and space complexities, i.e., O (n +m). Note that
the function f(H) above can be generalized to any monotone
function, and the corresponding problem can also be solved
by Global [175].

It is easy to observe that since GLobal peels all the ver-
tices with low degrees, the subgraph returned is the largest
connected subgraph, in which each vertex has at least k neigh-
bors. As a result, the returned subgraph is a connected k-core
containing Q, where k equals the minimum core number of
vertices in Q.

e A local search algorithm According to Problem 1, there
may exist some subgraphs of G o, which satisfy all the con-
straints and achieve the same value on the function f, but
have smaller sizes. Thus, they can be considered the com-
munities as well.

Example 5 Let the graph be the one in Fig. 2a, Q0 = {E}.
Global willreturn the subgraph of vertices {A, B, C, D, E}
as the community, and the value of function f is 2. How-
ever, there are other three subgraphs, whose vertex sets are
{A,B,C,E},{A, B, D, E}, and {A, B, E}, which also sat-
isfy the constraints of Problem 1, and their values on f are
2. Thus, they can be considered as communities.

In [46], Cui et al. proposed a local CS method, denoted
by Local, which works in a local expansion manner and
finds a community that may have smaller size than that of
Global. Specifically, it assumes that there is only one query
vertex g (i.e., O = {q}). Local consists of three steps: First,
it expands the search space from ¢g. Second, it generates a
candidate vertex set C in the search space. Third, it finds the
community from C.

The key step is the second step, which works in an iterative
manner. In each iteration, it selects the vertex that is the local
optimal and adds it into the candidate set C. To decide the
local optimal vertex, some heuristic criteria are adopted. One
typical criterion is to select the vertex that leads to the largest
increment of the function f; another one is to select the ver-
tex which has the largest number of connections to vertices
of the candidate set. The iterations stop when the candidate
set C theoretically guarantees that it contains a community
satisfying the constraints of Problem 1.

Let H and H’ denote the communities returned by
Global and Local, respectively. Then, we have f(H') =
f(H) and H' C H. Besides, since in the worst case the
candidate set C could be the same as vertex set V, the time
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complexity of Local is the same as that of Global, but in
practice for large graphs, the candidate set is often much
smaller than the entire graph, and thus, Local achieves
higher efficiency.

¢ Anindex-based algorithm In [15], Barbieri et al. proposed
an index structure, called ShellStruct, which organizes
all the connected k-cores in an offline manner. Based on
ShellStruct, Problem I can be answered in optimal time
cost, i.e., O(|Hy|), where Hy is the set of vertices in the
returned community and it is the same as that of Global.
The index is built based on the key observation that cores
are nested. That is, for any integer 0 < k < knax, the k-core
is contained by the (k — 1)-core, where kpyax is the maximum
core number. ShellStruct is a tree-like structure with
kmax levels. The root of the tree corresponds to the 1-core,
and the k-th level keeps track of the information about the
k-th core. In k-th level, each tree node, py, corresponds to a
connected component Cy of the k-core, and it keeps:

1. the set of “children” nodes, each of which corresponds
to a connected component that is in the (k 4 1)-core and
contained by Cy;

2. the set of vertices in C but not in (k + 1)-core.

It is easy to observe that in ShellStruct, all the con-
nected k-cores are well organized. The space cost is exactly
O (n) because each vertex appears only once. To build the
index, Barbieri et al. proposed an index construction algo-
rithm, which builds the tree level by level, starting from the
root level. As a result, its time complexity is O (- kpax +m).
We remark that a more efficient algorithm for building the
same index is proposed in [61], which takes O(m - a(n))
time, where «(n) is the inverse Ackermann function and it is
less than 5 for all remotely practical values of n.

Based on ShellStruct, aquery algorithm is proposed.
Specifically, it starts from the /-th level where [ is the maxi-
mum core number of vertices in Q and checks its upper levels,
until there is a connected component containing all the query
vertices. By using the lowest-common-ancestor (LCA) data
structure [72], the time cost of the query algorithm can be
reduced to O (|Hy|).

In Problem 1, the cohesiveness function is required to be
maximized. However, for some applications, such as infec-
tious disease control discussed in Sect. 1, this constraint may
need to be relaxed so that vertices which have less connec-
tions with the query vertices can also be involved. Motivated
by this, a variant of Problem 1 is also studied in the litera-
ture [46]:

Problem 2 Given an undirected simple graph G(V, E), a
query vertex g € V, and a nonnegative integer k, return a
subgraph H(Vy, Eg) of G, such that

1. Vy contains g;
2. H is connected;
3. for each vertex v € H, degy (v) > k.

In Fig. 2a, let ¢ = A and k = 2. Then, the subgraph
of {A, B, C, D, E} satisfies all the constraints, and thus is
a community for Problem 2. Note that if we maximize the
minimum degree as required by Problem 1, we will return
a smaller subgraph, i.e., {A, B, C, D}, since the minimum
degree is 3. The algorithms Global and Local can be
easily adapted for answering the query of Problem 2. For
details, please refer to [46].

3.1.2 Size-bounded community search

One drawback of Problem 1 is that the returned subgraph
may contain a large number of vertices. Notice that although
Local may find communities which are smaller than those
of Global, it does not have any guarantee on the sizes of
the returned communities, which implies that the returned
communities may still have very large sizes.

For many real applications, such as holding a cocktail
part, they often require the size of the output community is
less than a pre-specified upper bound. Thus, it is desirable
to search communities with bounded size. By imposing the
size constraint, we obtain another problem:

Problem 3 Given an undirected simple graph G(V, E), a set
of query vertices Q C V, a size constraint k, and a goodness
function f, return a subgraph H (Vy, Eg) of G, such that

. Vg contains Q;

. H is connected;

. |Vu| < k (H has at most k vertices);

. f(H) is maximized among all feasible choices for H.

R R S

Unfortunately, due to the size constraint, Problem 3 is NP-
hard [175]. This implies that an exact algorithm for solving
Problem 3 will take exponential time cost, and thus, it is
impractical for large graphs. To alleviate the computational
issue, some heuristic algorithms are developed [175], and
they are able to achieve reasonable efficiency, although they
do not have any provable quality guarantee.

To further reduce the size of the returned community, Bar-
bieri et al. [15] proposed the minimum community search
problem, which aims to find a community that satisfies all
the constraints of Problem 1 and has the minimum number
of vertices.

Problem 4 Given an undirected simple graph G(V, E), a set
of query vertices Q € V, and aminimum degree-based func-
tion f, let H* be the subgraph returned by Global. Find a
subgraph H of G, such that
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1. Vg contains Q;
2. H is connected;
3. f(H) = f(H");

4. the size of H is the smallest.

Similar to Problem 3, Problem 4 is also NP-hard. It can
be proved by a reduction from the STEINER TREE prob-
lem: Given a graph G(V, E) and a set of terminal vertices
T C V, find a connected subgraph G’ of G such that it
contains all the terminal vertices and has the minimum num-
ber of edges. Note that the most efficient algorithm [115]
of STEINER TREE problem achieves an approximation ratio
of (2-2/|Q]) and takes linear time cost by the Mehlhorn’s
implementation [143].

To answer the query in Problem 4, Barbieri et al. [15]
proposed an algorithm, and it consists of two steps: First, it
reduces the size of H* as much as possible using some local
greedy search. Note that after the reduction, the subgraph
H* is still a qualified community of Problem 1, but may
have much smaller size. Second, it finds a subgraph from
H* by adopting the above approximation algorithm for the
STEINER TREE problem.

Remark Some other factors, such as distances among ver-
tices [175] and local distance dynamics [24,144], have also
been considered for CS on simple graphs. Due to the space
limitation, we skip the details.

3.2 Directed graphs

A directed graph is a graph G(V, E), which contains a
set of vertices V and a set of directed edges E. The in-
degree and out-degree of a vertex v in G, denoted by
degiG“(v) and degX"(v), are the number of its in-neighbors
and out-neighbors, respectively. The minimum in-degree and
out-degree of the graph G are denoted by §ip (G) and §ou (G),
respectively. Figure 5a depicts a directed graph with nine
users.

A straightforward method of performing CS on directed
graph is to ignore the directions and then use the method
Global in Sect. 3.1.1 to find the community. In Fig. 5a,
if we let ¢ = Jack, then we will find a community with
members {Jack, Jeff, Bob, Tom, Tim, Jim}. However,
Tim has no in-neighbors and Jim has no out-neighbors in
the community, which implies their interactions with other
members are quite weak.

In [66], Fang et al. extended the minimum degree measure
for directed graphs, and studied the problem of community
search on directed graph (or CSD problem), based on the
D-core, also called (k, [)-core [75].

Definition 10 ((k, [)-core [75]) Given a directed graph
G(V, E) and two nonnegative integers k and [, the (k,[)-
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a) a directed graph
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(b)illustrating D-cores

Fig.5 Two directed graphs [66]

core is the maximum subgraph C of G such that §;,(C) > k
and o (C) > 1.

Problem 5 (CSD) Given adirected graph G(V, E), two pos-
itive integers k and /, and a query vertex ¢, return a connected
subgraph G, C G, such that it contains ¢ and Yv € Gy,
5in(Gq) > k and aout(Gq) > 1.

Figure 5b shows a directed graph with its D-cores. Let
q = B,k =2,and [ = 2. Then, the subgraph of {A, B, C}
is the returned community for B.

Similar to Global, a simple solution to the CSD prob-
lem is to peel vertices iteratively until each remaining vertex
satisfies the in-degree and out-degree constraints. As a result,
its time complexity is O (m + n), which may be inefficient
for large graphs. To improve efficiency, Fang et al. [66] pro-
posed an index-based method. Specifically, it first performs
D-core decomposition (i.e., computing all the (k, [)-cores),
then organizes these cores in an index with a two-dimensional
table, and finally answers queries using the index.

To keep all D-cores, a simple method takes O (n%) space
since k, I < n — 1 and each D-core takes O(n) space. To
alleviate this issue, three methods are proposed. For ease of
exposition, let V; ; denote the set of vertices in (i, j)-core.
The first one exploits the nested property of D-cores, i.e.,
for any [ > 0, we have (k, [ 4+ 1)-core C (k, [)-core, so if
(k, I + 1)-core has been kept, we only need to keep vertices
Vi.1\ Vi 1—1 for the (k, [)-core. As a result, for any k, it takes
O (n) space to keep all (k, [)-cores (0 < [ < n), so the overall
space cost is O (m).

The second method relies on a key observation that for
any k,/ > 0, we have both (k + 1, [)-core C (k, [)-core and
(k, I+ 1)-core C (k, [)-core. After keeping (k, /4 1)-core and
(k+1,1)-core, for (k, [)-core, if | Vit1.1| > |Vk.1+1], we only
keep Vk./\Vi+1.1; otherwise, we keep Vi /\ Vi i+1. Thus, it
takes less space than the first method. For the third method,
after keeping (k, [ + 1)-core and (k + 1, [)-core, it only keeps
vertices Vi ;\(Vi+1.1 U Vk.141) for the (k, [)-core and takes
the least space cost.

In addition, although the community G, of a CSD query
is a connected subgraph, it may not be a strongly connected
component (SCC) [92] (i.e., each vertex of the SCC is reach-
able from each other vertex). To tackle this issue, a variant of
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(b) CL-tree index of G

Fig.6 An example for illustrating ACQ [61]

the CSD problem s to find acommunity, which not only satis-
fies the minimum degree constraints, but also is an SCC. The
CSD algorithms can be extended for solving this variant [66].

3.3 Keyword-based attributed graphs

A keyword-based attributed graph is an undirected graph
G(V, E), with vertex set V and edge set E. Each ver-
tex v € V is associated with a set of keywords, W(v).
The keyword-based attributed graphs are prevalent in social
media, bibliographical networks, and knowledge bases. In
Fig. 6a, a keyword-based attributed graph is depicted. For
example, vertex A has a set of keywords {w,x, y}. In
[57,58,61,173], CS on keyword-based attributed graphs has
been studied extensively.

Problem 6 (ACQ [61]) Given a keyword-based attributed
graph G(V, E), a positive integer k, a vertex ¢ € V, and a
set of keywords S € W(q), return a set G of subgraphs of
G, such that VG, € G, and the following properties hold:

1. Connectivity G, is connected and contains g;

2. Structure cohesiveness Yv € Gy, dequ (v) > k;

3. Keyword cohesiveness The size of L(G, §) is maximal,
where L(G4, S) = Myeg, (W) N S) is the set of key-
words shared in § by all vertices of G.

For example, in Fig. 6a, if ¢ = A,k = 2 and S = {w,
x,y}, then the output of Problem 6 is the subgraph of
{A, C, D}, with a shared keyword set {x, y}, meaning that
these vertices share the keywords x and y.

The subgraph G, is called an attributed community (or
AC)of g, and L(Gy, S) is the AC-label of G,. In Problem 6,
the first two properties ensure the structure cohesiveness.
Property 3 enables the retrieval of communities whose ver-
tices have common keywords in S. It requires L(G, S) to be
maximal, because it aims to find the AC(s) only containing
the most related vertices, in terms of the number of common
keywords. In Fig. 6a, if we use the same query (¢ = A,
k=2,8 = {w,x, y}), without the “maximal” requirement,
we can obtain communities such as {A, B, E} (which share

no keywords), {A, B, D}, or {A, B, C} (which share 1 key-
word). Note that there does not exist an AC with AC-label
being exactly {w, x, y}.

Two outstanding features of ACQ are as follows: (1) Ease
of interpretation. An AC contains tightly connected vertices
with similar contexts or backgrounds. Thus, an ACQ user can
focus on the common keywords or features of these vertices,
i.e., the AC-labels facilitate understanding of the vertices that
form the AC. (2) Personalization. The user of an ACQ can
control the semantics of the AC, by specifying a set of S of
keywords. Intuitively, S decides the meaning of the AC based
on the user’s need.

The ACQ problem is challenging. A simple method to
answer an ACQ runs three steps. First, all non-empty sub-
sets of S, S1, S2, ..., Syi_; (I = |S]), are enumerated. Then,
for each subset S;(1 < i < 2l — 1), it checks whether
there is a subgraph which satisfies the first two properties.
Finally, it outputs the subgraphs having the most shared
keywords. However, since there are exponential number of
subsets, it is impractical for large graphs. To alleviate this
issue, the authors observed the anti-monotonicity property,
which states that given a set S of keywords, if it appears in
every vertex of an AC, then for every subset S’ of S, there
exists an AC in which every vertex contains S’. Based on this
property, many subsets of S can be pruned, and thus, faster
online query algorithms can be developed.

An index, called CL-tree, is proposed for organizing
the vertex keyword data in a hierarchical structure. The CL-
tree has the same tree structure as ShellStruct (see
Sect. 3.1.1), but for each node p, it maintains an additional
inverted list such that for each keyword e that appears in the
vertices of p, alist of IDs of vertices which contain e is stored.
Since each graph vertex and each keyword appear only once,
the space cost of keeping such an index is 0(T~ n), where
7 denotes the average size of W (v) over V. As a result, the
space cost is linear to the size of G. As shown in [61], the
CL-tree structure can be built level by level in a bottom-
up manner and it takes linear time cost, i.e., O(m - a(n)).
In addition, index maintenance algorithms for the CL-tree
are developed [58]. Figure 6b presents the CL-tree index
for the graph in Fig. 6a.

Based on the CL-tree, two incremental algorithms
(from examining smaller candidate keyword sets to larger
ones) and one decremental algorithm (from examining larger
candidate keyword sets to smaller ones) are developed. For
each candidate keyword set, they check whether there is a
connected k-core containing g and finally return the one with
largest keyword set.

3.4 Location-based attributed graphs

A location-based attributed graph, also called geo-social net-
work, is an undirected graph G(V, E) with vertex set V and
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(b)Illustrating AppInc

(a) a graph

Fig.7 Illustration of SAC search [60]

Table 3 CS works on geo-social networks

CS query Spatial cohesiveness

SAC search [60,65]
RB-k-core search [185]
GSGQ [221]

Smallest minimum covering circle
Radius-fixed covering circle

Rectangle, center-fixed circles

edge set E. For each vertex v € V, it has a location position
(v.x,v.y), where v.x and v.y denote its positions along x-
and y-axis in a two-dimensional space. Geo-social networks
widely exist in many location-based services, including Twit-
ter, Facebook, and Foursquare [12,63,68]. In Fig. 7a, a
geo-social network with ten vertices is depicted.

Three kinds of CS queries have been studied on geo-social
networks, namely spatial-aware community (SAC) search
[60], radius-bounded k-core (RB-k-core) search [185], and
geo-social group queries with minimum acquaintance con-
straint (GSGQ) [221]. Generally, they all require that the
communities are structurally and spatially cohesive. For
structure cohesiveness, they all adopt the k-core model, but
for spatial cohesiveness, they use different constraints, as
outlined in Table 3. In SAC search, the community is in
the smallest minimum covering circle (MCC); in RB-k-core
search, the community is in a circle with radius less than
an input threshold; in GSGQ, the community is in a given
rectangle or circle centered at the query vertex.

3.4.1 Spatial-aware community (SAC) search

The MCC and SAC search are defined as follows. Note that
the notion of MCC has been widely adopted to describe a set
of spatially compact objects [53,85].

Definition 11 (MCC) Givenaset S of vertices with locations,
the MCC of S is the spatial circle, which contains all the
vertices in S with the smallest radius.

Problem 7 (SAC search) Given a geo-social network
G(V, E), a positive integer k, and a vertex ¢ € V, return
a subgraph G, C G, and the following properties hold:

1. Connectivity G, is connected and contains g;
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2. Structure cohesiveness Vv € G, dequ (v) > k;
3. Spatial cohesiveness The MCC of vertices in G; satisfy-
ing Properties 1 and 2 has the smallest radius.

A subgraph satisfying properties 1 and 2 is a feasible solu-
tion, and the subgraph satisfying all the three properties is
the optimal solution (denoted by ¥). The radius of the MCC
containing ¥ is denoted by ropt. In Fig. 7a, the two circles
denote the MCCs of C; = {Q, C, D} and C, = {Q, A, B}.
Let g = Q and k = 2. Then, ¥ contains vertex set C; with
Fopt = 1.5.

The SAC search problem is challenging. A basic exact
approach takes O (m x n®) time, which relies on an obser-
vation that a spatial circle can be determined by three points
on its boundary [53]. This implies that we can enumerate all
the three-vertex combinations, and for each combination we
find a connected k-core in its circle, and finally get ¥. This
approach, however, is impractical for large graphs due to its
high complexity.

To improve efficiency, the authors resorted to approxima-
tion algorithms. The first one, called AppInc, returns the
feasible solution in a circle O(q, 6) which centers at ¢ and
has the smallest radius §, and it has an approximation ratio of
2. Here, the approximation ratio is defined as the ratio of the
radius of MCC returned over rop. In Fig. 7b, let ¢ = Q and
k = 2. Then, AppInc returns the subgraph of {A, B, Q}.

The circle O (g, §) can also be approximated by perform-
ing binary search on the radius §. As a result, we can get
another approximation solution with ratio of (2+€r), where
€r > 0 is an input parameter. To achieve an approximation
ratio of (1+e4) where 0 < €4 < 1, the authors developed
another algorithm, called AppAcc. It first locates the area
containing the center of the circle of ¥, then approximates
the center by splitting the area into small grids, and finally
finds an approximation solution by using these grids. Overall,
these approximation algorithms guarantee that the radius of
the MCC of ¥ has an arbitrary expected approximation ratio.
Based on AppAcc, an advanced exact algorithm is devel-
oped. An interesting observation is that there is a trade-off
between the quality of results and efficiency, i.e., algorithms
with lower approximation ratios tend to have higher complex-
ities. In addition, the SACs can be returned in a continuous
manner, as shown in [65].

3.4.2 Radius-bounded k-core search

Problem 8 defines the problem of radius-bounded k-core
search, or RB-k-core search.

Problem 8 (RB-k-core search) Given a geo-social network
G(V, E), apositive integer k, aradius 7, and a vertex g € V,
return all the subgraphs G, € G, and the following proper-
ties hold:
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1. Connectivity G is connected and contains q;

2. Structure cohesiveness Yv € Gy, dequ (v) > k;

3. Spatial cohesiveness The MCC of vertices in G, has a
radius ' < r;

4. Maximality constraint There exists no other subgraph G ;
satisfying properties above and G, C Gﬁ].

Similar to SAC search, it adopts the MCC, but imposes
a constraint on its radius. To solve Problem 8, Wang et al.
proposed three algorithms. The first one, denoted by TriV,
is a triple-vertex-based algorithm, which is also based on the
observation that a spatial circle can be determined by three
points on its boundary [53]. It proposes to generate all the
candidate circles containing ¢ at first and then compute the
maximum k-core for the subgraphs contained in the candidate
circles with radius r’ < r. The time complexity of TriV is
(0] (mn3), since there are O (n?) candidate circles in the worst
case and each circle needs O (m) time to verity.

To reduce the number of candidate circles, a binary-vertex-
based algorithm BinV is proposed. In BinV, only the circles
with radius ' = r are generated and for each candidate
circle, its arc passes a pair of vertices in G. In this manner,
for each pair of vertices, at most two circles are generated.
As aresult, it reduces the number of candidate circles from
0(n?) to O(n?).

To further improve the efficiency, a rotating-circle-based
algorithm RotC is proposed to reuse the intermediate com-
putation results in the process of finding RB-k-cores. Fixing
each vertex v € V as a pole, RotC generates the candidate
circles in a rotating way so that the computation cost can be
shared among the adjacent circles. In addition, the authors
also proposed several pruning techniques to early terminate
the processing of invalid candidate circles.

3.4.3 Geo-social group queries with minimum
acquaintance constraint (GSGQs)

The GSGQ is defined formally as follows:

Problem 9 (GSGQ) Given a geo-social network G(V, E),
avertex g € V, a positive integer k, and a spatial constraint
A, return a subgraph G, € G, and the following properties
hold:

Connectivity G4 is connected and contains g;

Structure cohesiveness Vv € Gy, dequ (v) > k;
Spatial cohesiveness G satisfies constraint A.
Maximality constraint There exists no other subgraph G;
satisfying properties above and G, C G;.

bl

In Problem 9, for spatial constraint A, Zhu et al. [221]
considered three kinds of constraints:

Vi Vi Vi V2 Vi Vi V3 V2
i i i i Vi Vi
Vi Vi V2 oVs Vi Vi Va
0 1 2 3 4 5 6 7 8 9 10 ¢ V4
(a) A temporal graph (b) The projected graph

Fig.8 A temporal graph and the projected graph [129]

1. Ais a spatial rectangle for containing G;

2. A is acircle centered at g with radius less than the dis-
tance from g to its k-th nearest vertex in G, (G, may
contain more than k£ + 1 vertices);

3. A is a circle satisfying Constraint 2 and G, contains
exactly k + 1 vertices.

By using an R-tree index [86], a GSGQ with the first con-
straint can be answered in O (n + m) time; when the second
constraint is imposed, a GSGQ can be solved in O (n(n+m))
time; when the third constraint is applied, a GSGQ takes
O(Cy ' m + n)) time.

To improve efficiency, they proposed the social-aware R-
trees (or SaR-tree) index, which incorporates both vertices’
spatial locations and social relations. It is built based on the
concept of core bounding rectangle (CBR), which projects
the minimum degree constraint on the spatial layer. Specifi-
cally, the CBR of a vertex v is a rectangle containing v, inside
which any vertex group with v does not satisfy the minimum
degree constraint.

Unlink classical R-tree, each entry of an SaR-tree refers
to two pieces of information, i.e., a set of CBRs and a
minimum bounding rectangle (MBR). Perceptually, a CBR
bounds a group of vertices from the social perspective,
while an MBR bounds vertices from the spatial perspec-
tive. As such, SaR-tree gains power for both social-based and
spatial-based pruning. In addition, they developed a variant
of SaR-tree, called SaR*-tree, which optimizes the group of
spatial objects to minimize the disk I/O cost. Based on these
indexes, they developed efficient algorithms for answering
GSGQs with different spatial constraints.

3.5 Temporal graphs

Liet al. [129] studied the persistent community search prob-
lem in a temporal graph. A temporal graph is an undirected
graph G(V, E) with vertex set V and edge set E. Each edge
e € E is atriplet (u, v, t), where u, v are vertices in V and ¢
is the interaction time between « and v. For a temporal graph
G, the projected graph denoted by G, over the time interval
[#s, t.]isdefined as G, = (V, E, [ty, t.]), where V = V(G)
and £ = {(u,v)|(u,v,t) € E(G),t € [t,,1.]}. Figure 8b
illustrates the projected graph of the temporal graph in Fig. 8a
over the interval [1, 8].
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Definition 12 (Maximal (6, k)-persistent-core interval)
Given a temporal graph G = (V, E) and parameters 6 > 0
and k > 0, aninterval [¢, t,] with t, —t; > 6 is called a max-
imal (0, k)-persistent-core interval for G if and only if the
following two conditions hold. (1) Forany ¢ € [t,, t, —6], the
projected graph of G over the interval [¢, £ 46] is a connected
k-core subgraph. (2) There is no super-interval of [fs, 7. ] such
that (1) holds.

Definition 13 (Core persistence) Let T = {[ty,, te,], ...,
[#s, . t., 1} be the set of all maximal (6, k)-persistent-core inter-
vals of G. Then, the core persistence of G with parameters
0 and k, denoted by F (0, k, G), is defined as

r

F6,k,G) = El (te; —t;;)) —(r — DO, If T #0

0 otherwise

Definition 14 ((0, 7)-persistent k-core) Given a temporal
graph G and parameters 0, 7, and k, a (0, T)-persistent k-
core is an induced temporal subgraph C = (V¢, E¢) that
meets the following properties.

1. Persistent-core property F(0,k, C) > T,

2. Maximal property There does not exist an induced tem-
poral subgraph C’ that contains C and also satisfies the
persistent-core property.

Problem 10 (The persistent community search problem)
Given a temporal graph G and parameters 6, T and k, the
persistent community search problem aims to find the largest
(6, T)-persistent k-core in G.

Consider the temporal graph G in Fig. 8a. Assume that
0 = 3 and k = 2. We can see that there is no maximal
(3, 2)-persistent-core interval for the entire graph G. There
is amaximal (3, 2)-persistent-core interval [1, 5] for the sub-
graph C induced by vertices {v1, v2, v3}. This is because
[1, 5] is the maximal interval such that in any 3-length subin-
terval of [1, 5], the vertices {vy, v, v3} form a connected
2-core. Let T = 4, we can see that the subgraph C induced
by vertices {vy, va, v3} is a (3, 4)-persistent 2-core. Because
F (3,2, C) = 4, whichisnoless than 7; and C is the maximal
subgraph that meets such a persistent-core property.

As shown in [129], the persistent community search prob-
lem is NP-hard. Therefore, a prune-and-search approach is
proposed in [129]. In the pruning phase, a temporal graph
reduction algorithm is designed by decomposing the whole
time span of the temporal graph into several meta-intervals,
each of which has some properties to prune vertices. In the
search phase, a branch-and-bound algorithm with several
pruning rules is proposed to find the maximum (@, 7)-
persistent k-core.
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Fig.9 An example of influential CS (the numbers denote the weights)
[127]

3.6 Influence value-based attributed graphs
3.6.1 Single-dimensional influential CS

Li et al. [127] proposed the influential CS problem. They
considered an undirected graph G(V, E) with vertex set V
and edge set E. Each vertex v € V isassociated with a weight
wy, indicating the influence (or importance) of u. Without
loss of generality, they assumed that the weight vector W =
(wy, wa, ..., w,)formsatotal order, i.e., for any two vertices
v; and v;, if i # j, then w; # w;.

Definition 15 (Influence value of a subgraph) Given an undi-
rected graph G(V, E) and an induced subgraph H(Vy, Eg)
of G, the influence value of H denoted by f(H) is defined
as the minimum weight of the vertices in H, i.e., f(H) =
minueVH {wy}.

Definition 16 (k-influential community) Given an undirected
graph G = (V, E) and an integer k, a k-influential commu-
nity is an induced subgraph H* = (VL E 1’21) of G that meets
all the following constraints.

1. Connectivity H ks connected;

2. Cohesiveness Each vertex u in H* has degree at least k;

3. Maximal structure There is no other induced subgraph A
such that (1) H satisfies connectivity and cohesiveness
constraints, (2) H contains H¥, and (3) f(ﬁ) = f(H").

Consider the graph shown in Fig. 9. Suppose, for instance,
that k = 2, then by definition the subgraph induced by
vertex set {vi2, v13, V14, v15} is a 2-influential community
with influence value 12, as it meets all the constraints in
Definition 16. Note that the subgraph induced by vertex
set {vi2, v14, v15} is not a 2-influential community. This
is because it is contained in a 2-influential community
induced by vertex set {vi2, v13, V14, V15} Whose influence
value equals its influence value, and thus fail to satisfy the
maximal structure constraint.

Problem 11 (Top-r k-influential CS problem (TIC)) Given a
graph G(V, E) and two parameters k and r, the problem is
to find the top-r k-influential communities with the highest
influence value.
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Definition 17 (Non-contained k-influential community)
Given a graph G(V, E) and an integer k, a non-contained
k-influential community H k= (Vk , Eg) is a k-influential
community that meets the following constraint.

— Non-containment H* cannot contain a k-influential com-
munity H such that f(H*) > f(H¥).

Consider the graph shown in Fig. 9. Assume thatk = 2. By
Definition 17, we can see that the subgraphs induced by {v3,
V4, U5}, {vs, vg, v11} and {vy3, V14, v15} are non-contained 2-
influential communities. However, the subgraph induced by
{v12, v13, V14, V15} is not a non-contained 2-influential com-
munity, because it includes a 2-influential community (the
subgraph induced by {v3, vi4, v15}) with a larger influence
value.

Problem 12 (Top-r non-contained k-influential CS problem)
Given a graph G(V, E) and parameters k and r, find the top-
r non-contained k-influential communities with the highest
influence value.

e Online search algorithms An online search algorithm is
proposed in [127] to compute the top-r (non-contained) k-
influential communities given graph G and parameters r and
k. The algorithm first computes the k-core C of G and then
iteratively updates C by removing vertices from C until C
becomes empty. In each iteration, a vertex u with the smallest
influence value is removed from C. After u is removed, the
algorithm further removes those vertices that do not belong
to the k-core from C by invoking a DFS procedure. For each
iteration, the connected component that vertex u belongs to
forms a k-influential community. The k-influential communi-
ties obtained by the last r iterations are the top-r k-influential
communities. If after deleting a certain u, the vertices in the
whole connected component that u belongs to are removed in
the DFS procedure, then the corresponding connected com-
ponent is a non-contained k-influential community. In this
way, we can obtain the top-r non-contained k-influential
communities. The algorithm runs in O(m + n) time using
O (m + n) space.

The above algorithm needs to compute all (non-contained)
k-influential communities before obtaining the top-r (non-
contained) k-influential communities which is costly when
the graph is large and r is small. Therefore, Chen et al. [30]
proposed a backward search algorithm to obtain the top-r
(non-contained) k-influential communities. The general idea
is as follows: Instead of deleting the vertex with the small-
est influence value each time, the backward search algorithm
initializes an empty vertex set C and inserts into C the ver-
tex with the largest influence value in each iteration. After
a vertex u with the largest influence value is inserted, if the
core number of u in the subgraph induced by C is no smaller
than &, the connected component containing u in the subgraph

induced by C represents a k-influential community. The algo-
rithm can terminate once r k-influential communities are
reported. The top-r non-contained k-influential communi-
ties can be computed in a similar way by checking whether
each k-influential community is a non-contained k-influential
community before reporting the community.

The online search algorithms in [127] and [30] need to
access the whole graph to obtain the top-r (non-contained)
k-influential communities. To solve this issue, Bi et al. [21]
proposed a local search algorithm. Let G>; be the sub-
graph of G induced by all vertices with weights at least
7, the authors proved that if the subgraph G, of G con-
tains at least r k-influential communities, then the top-r
k-influential communities in G>. are the query result. The
goal is to find the smallest subgraph G>.+ of G contain-
ing at least r k-influential communities. The general idea
is as follows: The algorithm starts with a large t and iter-
atively decreases the value of 7 until reaching the target
value. For each 7, only the vertices with weights no smaller
than 7 need to be accessed. The authors proved that the
time complexity of the algorithm is linear to the size of the
smallest subgraph G >+ that an online search algorithm with-
out indexes needs to access to correctly compute the top-r
k-influential communities. Thus, the algorithm is instance
optimal. Their algorithm can be easily extended to solve
Problem 12.

e An index-based algorithm In [127], an index, called
ICP-Index, is presented for solving Problem 12. The index
is designed based on the observation that for each k, the
k-influential communities form an inclusion relationship.
Based on such an inclusion relationship, all the k-influential
communities can be organized by a tree-shape structure. The
index includes such tree structures for all possible k values. In
addition, instead of keeping the whole community for each
tree node, a compression method is proposed to make the
ICP-Index compact. Specifically, for each non-leaf node in
the tree which corresponds to a k-influential community, the
index only stores the vertices of the k-influential communities
that are not included in their sub-k-influential communities.
The same idea is recursively applied to all the non-leaf nodes
of the tree following a top-down manner. For each leaf node
which corresponds to a non-contained k-influential commu-
nity, the index stores all the vertices of that non-contained
k-influential community. Using the ICP-Index, the query can
be answered efficiently because each node in the tree corre-
sponds to a k-influential community and each leaf node in
the tree corresponds to a non-contained k-influential com-
munity. In [127], the authors proved that the ICP-Index can
be constructed in O (m'~) time using O(m + n) space.
Consider the graph shown in Fig. 9. Let us consider the
case of k = 2. Clearly, the entire graph is a connected 2-core,
so it is a 2-influential community. Therefore, the root node
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(a) k=1 (b)k=2

(c)k=3

Fig.10 Tree organization of all the k-influential communities (the ICP-
Index) [127]

of the tree corresponds to the entire graph. After deleting the
smallest-weight vertex vy, we get three 2-influential com-
munities which are the subgraphs induced by the vertex sets
{vs, v4, vs5}, {ve, ..., v11}, and {vq2, ..., v15}, respectively.
Thus, we create three child nodes for the root node which cor-
respond to the three 2-influential communities, respectively.
Since vy and v, are not included in these three 2-influential
communities, we store them in the root node. The same idea
is recursively applied in all the three 2-influential communi-
ties.

Figure 10 shows the tree organization for all k for the
graph shown in Fig. 9.

e An I/O-efficient algorithm An I/O-efficient algorithm to
compute the top-r (non-contained) k-influential communi-
ties is presented in [128]. It assumes that all vertices of the
graph can be stored in the main memory. The key idea of
the algorithm is that it computes the k-influential communi-
ties following the decreasing order of their weights, and the
communities (as well as the edges in community) with large
weights can be safely deleted without affecting the correct-
ness of the algorithm to compute the tree vertices with small
weights. Specifically, let w(e) = min{w,, w,} be the weight
of an edge e = (u, v). The algorithm first sorts the edges
in a non-increasing order of their weights using the standard
external-memory sort algorithm. (We can use the vertex ID
to break ties.) Then, following this order, the algorithm loads
the edges into the main memory up to the memory limit. Sub-
sequently, the algorithm invokes an in-memory algorithm to
compute the influential communities in the main memory.
After that, the algorithm deletes the computed influential
communities as well as the associated edges from the main
memory and then sequentially loads new edges into the main
memory until reaches the memory limit. The algorithm itera-
tively performs this procedure until all the edges are scanned.
Note that in each iteration, the algorithm only works on a par-
tial graph, which is loaded in the main memory.

As an example, consider the graph shown in Fig. 9. Sup-
pose k = 2 and the memory can hold at most 10 edges. The
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Fig. 11 Partial graphs in the memory (k = 2, memory can hold at most
10 edges) [128]

partial graph loaded into memory in the first three iterations
for the algorithm is shown in Fig. 11

e Center-core CS Another model to capture the influence of
vertices is called the center-core community search, which is
studied by Ding et al. [50]. The model uses k-core to qualify
the dense structure for the community and uses coreness to
evaluate the vertex influence. Given a query vertex g and an
integer k, the center-core community is a connected compo-
nent of the maximal k-core containing the query vertex g and
the coreness of vertices in the community is no less than g. In
addition, the community excludes those vertices with core-
ness equal to g but cannot be reached from ¢ via vertices with
the same coreness with ¢g. An online search algorithm and an
index-based algorithm are proposed in [50] to compute the
center-core community.

3.6.2 Multi-dimensional influential CS

In [126], Li et al. studied the multi-dimensional influential
CS. It deals with a multi-valued graph G(V, E, X) where
V and E denote the set of vertices and edges, respectively,
and X (|X| = n) is a set of d-dimensional vectors. In a
multi-valued graph, each vertex v € V is associated with
a d-dimensional real-valued vector denoted by X, = (x7,
..., xy), where X, € X and x € R. Suppose without loss
of generality that on the x; dimension, x} for all v € V
form a strict total order, i.e., x/ # x;' for any u # v. It is
important to note that if this assumption does not hold, we can
easily construct a strict total order by using the vertex identity
to break ties for any x/ = x;'. The d-dimensional vector
X, represents the values of the vertex v w.r.t. d different
numerical attributes. The model studied in [126], called the
skyline community search, is based on the one-dimensional
influential community model proposed in [127]. The authors
defined the value of H on the x; dimension (fori = 1,2, ...,
d)as f;(H) = minyey ) {x}}.

Definition 18 Let H(Vy, Ey) and H'(Vy/, Eg/) be two
subgraphs of a multi-valued graph G. If f;(H) < fi(H’)
foralli = 1,...,d, and there exists f;(H) < fi(H') for a
certain i, we call that H" dominates H, denotedby H < H'.

Definition 19 Given a multi-valued graph G(V, E, X) and
an integer k. A skyline community with a parameter k is an
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subgraph and H < H’;

3. Maximal property There does not exist an induced sub-
graph H' of G such that (1) H' is a connected k-core
subgraph, (2) H' contains H, and (3) fi(H') = fi(H)
foralli=1,...,d.

Problem 13 (Skyline CS problem) Given a multi-valued
graph G(V, E, X) and an integer k, the problem is to find all
the skyline communities from G with the parameter k. More
formally, let H be the set of all connected k-core subgraphs
in G. We aim to compute a subset R of H which is defined
as:

RE2{HeH|-3H',H" e H: H < H',
HCH'Af(H)= f(H")},

where H C H” denotes that H is a subgraph of H” and
H # H”,and f(H) = f(H") means that f;(H) = f;(H")
fori=1,...,d.

Consider the graph shown in Fig. 12. The left panel is
a graph with 6 vertices, and the right panel shows the val-
ues of these vertices in three different dimensions. Suppose,
for instance, that k = 2. Then, by Definition 19, H; =
{vy, va, v3} is a skyline community with values f(H;) =
(8, 14, 3), because there does not exist a connected 2-core
subgraph that can dominate it, and it is also the maximal
subgraph that satisfies the cohesive and skyline properties.
Similarly, Hy = {vz, v4, v5, v} 1S a skyline community
with f(H>) = (6, 8,4). The subgraph Hz = {v4, vs, ve}
is not a skyline community, because it is contained in Hy =
{va, v4, v5, vg} which has the same f values as Hs. The sub-
graph Hy = {v2, v3, v4, v5, U6} is not a skyline community,
as f(Hy) = (6, 8, 3) is dominated by H; and H,.

In [126], the authors first developed an efficient algorithm,
called SkylineComm?2D, to find all the skyline communi-
ties in the 2D case, i.e., d = 2. The time complexity of

Fig. 13 A profiled graph and two PC’s [31]

SkylineComm?2D is O (s(m + n)) where s denotes the num-
ber of 2D skyline communities (i.e., the answer size), and
the space complexity of SkylineComm2D is O (m 4+ n + s),
which is linear w.r.t. the graph and answer size. To handle
the high-dimensional case (i.e.,d > 3), the authors proposed
a space-partition algorithm to find the skyline communities
efficiently. Two novel features of the space-partition algo-
rithm are that (1) its worst-case time complexity is dependent
mainly on the answer size; thus, it is very efficient when the
answer size is not very large; and (2) it is able to progres-
sively output the skyline communities during the execution
of the algorithm, and thus, it is useful for applications that
only require part of skyline communities.

3.7 Profile-based attributed graphs

A profiled-based attributed graph, or profiled graph, is an
undirected graph G(V, E) with vertex set V and edge set E,
in which each vertex is associated with profile. The profile of
avertex v € V is a set of keywords 7 (v) that are arranged in
a hierarchical manner, called a P-tree. Typical such attributes
are users’ affiliation, expertise, locations, etc. Profiled graphs
are prevalent in knowledge bases and social media.

Figure 13a depicts a profiled graph. For instance, vertex
D has a hierarchically organized profile that describes his
expertise in computer science (e.g., abbreviation Al means
artificial intelligence) by following the ACM Computing
Classification System (CCS).3

Chen et al. [31] investigated the problem of profiled com-
munity search (or PCS) on profiled graphs. To capture the
profile-based cohesiveness, they introduced the concept of

3 ACM CCS: http://www.acm.org/publications/class-2012.
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“maximal common subtree,” which describes the common-
ality of vertices’ profile.

Definition 20 (Maximal common subtree) Given a profiled
graph G, the maximal common subtree of G, denoted by
M(G), holds the properties: (1) Vv € G, M(G) C T (v);
(2) there exists no other common subtree M’(G) such that
M(G) € M'(G).

Problem 14 (PCS) Given a profiled graph G(V, E), a pos-
itive integer k, a query node ¢ € G, find a set G of graphs,
such that VG, € G, and following properties hold:

1. Connectivity G4 is connected and contains q;

2. Structure cohesiveness Yv € Gy, dequ (v) > k;

3. Profile cohesiveness There exists no other G; C G sat-
isfying the above two constraints, such that M(G,) €
M(G;).

4. Maximal structure There exists no other subgraph G;]
satisfying the above properties, such that G, C G; and
M(Gy) = M(G);

The subgraph G, is called a profiled community (or PC).
In Problem 14, the first two properties guarantee the structure
cohesiveness. The profile cohesiveness captures the maximal
shared profile among all vertices in G. The maximal struc-
ture property aims to retrieve all qualified vertices in the
community. For instance, in Fig. 13a, if ¢ = D, k = 2,
then two PC’s and their maximal common subtrees are,
respectively, shown in Fig. 13b, c. These two common sub-
tree sufficiently reflects the “theme” of the community. For
example, in the PC grouped by vertices {B, C, D}, all the
researchers involved share interestin ML (i.e., machine learn-
ing) and artificial intelligence, whereas for the other PC, the
researchers are all interested in other research domains.

The PCS problem is technically challenging, because the
number of subtrees of a P-tree could be exponentially large,
and thus, enumerating all of them is impractical. To answer
the PCS query efficiently, Chen et al. [31] introduced the
anti-monotonicity property, based on which the query can be
performed much faster. To further improve efficiency, they
developed the CP-tree index, which systematically organizes
all the graph vertices and their P-trees into a compact tree
structure. The CP-tree index enables the development of two
fast PC discovery algorithms.

3.8 Discussions

In this section, we review CS studies that use the k-core
model. For simple graphs, we can divide them into two
groups, where the first group [15,46,175] focuses on undi-
rected graphs while the second group [66] only considers
directed graphs. In particular, for the first group, the first
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work [175] returns the maximal k-core containing the query
vertex, while communities of the other two studies [15,46]
may not be the maximal k-core or with size constraints.

For attributed graphs, all the corresponding CS studies
take both link relationship and attributes into consideration,
because the attributes often make communities more mean-
ingful and easy for interpretation. As a result, the solutions
for different attributed graphs are different. Generally, both
online and index-based algorithms are developed for CS on
these graphs. The index-based algorithms run faster, but incur
an offline computational cost.

In practice, the query users can select the CS solutions
based on the graph models since the community models are
formulated based on the graph models. For example, for
keyword-based attributed graphs, ACQ can be considered.
Meanwhile, if the CS queries are executed with high fre-
quency, the index-based algorithms should be better choices
as they are faster, although they have to build the index in an
offline manner.

4 K-truss-based community search

In this section, we review CS works that use the k-truss as
structure cohesiveness metrics, including triangle-connected
truss community [6,98], closest truss community [101],
attribute-driven truss community [102], and weighted truss
community [216]. In the following, we will introduce the
community models and compare their algorithms and appli-
cations.

4.1 Simple graphs

In a simple and undirected graph G(V, E), triangle-conne-
cted k-truss community model proposed by Huang et al. [98]
finds all communities containing a query vertex. We first
introduce the definitions of k-truss and triangle connectivity
and then present the model below.

A k-truss is the largest subgraph H of G such that every
edge is contained in at least k — 2 triangles in H,i.e.,Ve € E,
its support sup(e, H) > k — 2 by Definition 4. However,
k-truss may be disconnected with several components in a
graph, which is similar with k-core. Consider the graph G in
Fig. 14. There exist two components in the shaded regions
to form the 4-truss of G, which are obviously disconnected.
Disconnected subgraphs are insufficient to define a cohesive
and meaningful community.

To address the disconnectivity problem of k-truss, trian-
gle connectivity is imposed on top of the k-truss in [98].
Given two triangles A1 and A, in G, Ay and Aj are said
to be adjacent if they share a common edge. Then, for two
edges e1, ey € E, e1 and e, are triangle-connected if they
either belong to the same triangle, or are reachable from each
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4-truss edge

3-truss edge

(a) Graph G

Fig. 15 An example of TTC search. Here, k = 5

other through a series of adjacent triangles. In other words,
dA, Ap such that e; € Ay, ex € Ay, then either A} = Ay,
or A is triangle-connected with A,. Based on the k-truss
and triangle connectivity, the problem of triangle-connected
truss community (TTC) search is formulated as follows:

Problem 15 (TTC search) Given an undirected simple graph
G(V, E),aquery vertex g € V, and an integer k > 2, return
all subgraphs H < G which satisfies the following three
properties:

1. Structure Cohesiveness H contains the query vertex g
such that Ve € E(H), sup(e, H) > (k — 2);

2. Triangle Connectivity Ye1,e» € E(H), e; and e are
triangle-connected;

3. Maximal Subgraph H is the maximal subgraph of G sat-
isfying Properties 1 and 2.

TTC model imposes the triangle connectivity requirement
in Property 2 to ensure the discovered communities are con-
nected. This requirement also allows the query vertex to
participate in multiple overlapping communities. For exam-
ple, consider the graph G in Fig. 15a, a query vertex ¢, and
parameter k = 5. Two triangle-connected 5-truss communi-
ties C1 and C; containing vertex g are shown in Fig. 15b. As
the edges in C; cannot reach the edges in C; through adjacent
triangles, C1 and C, cannot merge as one large community.
This is reasonable, as there are few connections between the
two vertex sets {s1, s2, 53, s4} and {xy, x2, X3, x4}.

Thanks to k-trusses, truss-based community model inher-
its several good structural properties of k-trusses [98], such as
(k — 1)-edge-connected, bounded diameter, and hierarchical

structure. Specifically, the diameter of a k-truss community
H with |V (H)| vertices is no larger than LW(kﬂj [41].
Small diameter has been considered as an important feature
of a good community in [52]. Second, a k-truss community
is (k — 1)-edge-connected [41], i.e., the community keeps
connected whenever fewer than £ — 1 edges are deleted [74].
Third, truss-based communities have a strong decomposabil-
ity for analyzing large-scale networks at different levels of
granularity.

To tackle the problem of TTC search, there exists one
online search algorithm [98], and two index-based search
algorithms, which are, respectively, based on TCP-index [98]
and EquiTruss [6]. In the following, we briefly introduce the
key ideas of these algorithms one by one.

e Online search algorithm [98] Huang et al. [98] pro-
posed an online query algorithm to process a TTC query
on a graph G. The algorithm firstly applies the truss decom-
position [184] on graph G to compute the trussness of all
edges in G. By the community definition, it starts from the
query vertex g and checks an incident edge of (¢, v) € E
with trussness t((g, v)) > k to search triangle-connected
truss communities. It explores all edges that are triangle-
connected to (¢, v) and having trussness no less than k in a
BFS manner. This process iterates until all incident edges of
g have been processed. Finally, a set of k-truss communities
containing ¢ are returned.

However, this online search algorithm may incur a large
number of wasteful edge accesses on checking disqualified
edges, which is inefficient.

e TCP-index-based search algorithm [98] To avoid the
computational issues mentioned above, Huang et al. [98]
designed a triangle connectivity-preserving index (TCP-
index). TCP-index preserves the truss number and triangle
adjacency relationship in a compact tree-shape index and
supports the query of k-truss community in linear time with
respect to the community size, which is optimal. Given a
graph G, it needs to construct a TCP-index for each vertex
in G, which is denoted as 7. Take a vertex x as an example
for TCP-index construction. Essentially, 7 is the maximum
spanning forest of G, where G is the induced subgraph of G
by vertex set of x’s neighbors as N (x). For each edge (y, z) €
E(Gy), aweight w(y, z) = min{z((x, y)), T((x, 2)), T((y,
7))} is assigned to it, which indicates that Ay, can appear
only in k-truss communities where k < w(y, z). Figure 16
presents a TCP-index T, for vertex ¢ in graph G shown in
Fig. 15a. Vertices x1, x2, x3, and x4 are connected via the
weighted edges of 5, indicating these vertices present in a
triangle-connected 5-truss community.

Based on the TCP-index, an efficient query processing
algorithm is developed for CTC search. Assume that we want
to query 5-truss communities containing a query vertex g
in G in Fig. 15a, we first visit an incident edge on ¢, say
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Fig.16 TCP-index T, for vertex g of G in Figure 15a

(g, x1), where t((g, x1)) = 5. From TCP-index 7, in Fig.
16, we retrieve the vertex set {x1, x2, X3, x4} belong to the
same 5-truss community. Since 7, is a spanning forest, which
does not keep all the edges between the vertices, the query
processing algorithm then performs the reverse operations
on the TCP-index for each vertex x1, x», x3, x4 and gets the
complete 5-truss community.

Remarkably, the TCP-index supports the k-truss com-
munity query in the optimal time, which accesses each
edge in the answer community exactly twice [98]. Mean-
while, the TCP-index can be constructed in O( }_(, e
min{degg (1), degg(v)}) time and stored in O (m) space.

e EquiTruss-index-based search algorithm [6] To further
improve efficiency, Akbas and Zhao [6] proposed a novel
indexing technique of k-truss equivalence, to represent the
triangle connectivity and k-truss cohesiveness in the triangle-
connected truss communities.

We introduce the definition of k-truss equivalence as fol-
lows: Given two edges ej, e2 € E, e and ey are k-truss
equivalence, if and only if (1) t(e1) = t(e2) = k, and (2)
e1 and e; are triangle-connected via a series of triangles in a
k-truss.

The index of EquiTruss, a summarized graph G = (V, £),
is constructed based on k-truss equivalence. According to k-
truss equivalence, all edges of a given graph G are partitioned
into a series of mutually exclusive equivalence classes. Each
class represents a TTC. A super-node E; € ) represents
a distinct equivalence class C; where e € G, and a super-
edge (E;, Ej) € £, where E;, E; € V, indicates that the
two equivalence classes are triangle-connected; that is, there
exists two edges e; € E; and ey € Ej, s.t., e1 and e; are k-
truss triangle adjacent. Note that EquiTruss is a community-
preserving graph summary, where all triangle-connected
k-truss communities are comprehensively recorded in the
super-nodes, and the triangle connectivity across different
communities is exactly encoded in super-edges. In this way,
EquiTruss keeps records of all the information critical to
community search. Moreover, each edge e is recorded in
exactly one super-node, which represents its k-truss equiv-
alence class, C,. Compared with TCP-index, which may
redundantly maintain an edge in multiple maximum span-
ning forests, EquiTruss is significantly more succinct and
space efficient [6].

For example, Fig. 17 shows an EquiTruss index for graph
G in Fig. 15a. It has 5 super-nodes representing the k-truss
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Fig. 17 EquiTruss index for graph G in Fig. 15a

equivalence classes for edges in G, as tabulated in Fig. 17.
The super-node E; represents a 5-truss community with 10
edges: All these 10 edges are triangle-connected and belong
to the 5-truss. In addition, there exist 5 super-edges in Equi-
Truss, which represents the triangle connectivity between
super-nodes (triangle-connected k-truss communities).

The EquiTruss-index-based community search algorithm
is described as follows: Finding triangle-connected commu-
nities containing vertex g can be carried out directly on
EquiTruss, without the access to graph G. First, the algo-
rithm finds all super-nodes containing g. A hash structure can
help quick identification of such super-nodes. Next, starting
from these super-nodes, we can traverse G in a BFS man-
ner. For each unvisited neighboring super-nodes E* with
T(E*) > k, the edges within E* will be included into the
k-truss community. The algorithm outputs all the discovered
communities containing g. Consider the graph G in Fig. 15a,
k = 5 and query vertex ¢. Based on the EquiTruss index
in Fig. 15a, we first find two super-nodes E» and E4 con-
taining g with trussness no less than 5. Super-nodes E and
E4 are disconnected via any super-edges. Then, E> and E4
can be, respectively, output as two communities. Compared
to TCP-index, EquiTruss-index-based query processing only
needs to access each edge exactly once, which is more effi-
cient [6].

4.2 Closest truss community search

In this section, we introduce a new truss-based community
model for multiple query vertices. Although the triangle-
connected k-truss community model works well to find all
overlapping communities containing a single query vertex
¢, it may fail to discover any community for multiple query
vertices, due to the strict requirement of triangle connectiv-
ity constraint. For example, for the graph G in Fig. 18a and
query vertices Q = {v4, q3, p1}, the above k-truss commu-
nity model cannot find a qualified community for any &, since
the edges (v4, g3) and (g3, p1) are not triangle-connected in
any k-truss. To address this limitation, Huang et al. [101]
studied the problem of closest truss community (CTC) search
for multiple query vertices as follows:



A survey of community search over big graphs

371

(a)Graph G

(b)Closest Truss Community
for Q={q1, a2, 3}

Fig. 18 Closest truss community example

Problem 16 (CTC search)Given a graph G and a set of query
vertices Q, return a subgraph H C G as a closest truss com-
munity (CTC), satisfying the following two properties:

1. Connected k-truss. H is containing Q and a connected
k-truss with the largest k, i.e., Q € H and Ve € E(H),
sup(e, H) > k — 2;

2. Smallest Diameter. H is a subgraph of smallest diameter
satisfying Property 1.

Property 1 requires that the closest community contains
the query vertices Q which are densely connected. In addi-
tion, to ensure every vertex included in the community is
close to query vertices and other vertices in the community,
Property 2 uses graph diameter to measure the closeness of
all vertices in the community. Moreover, the CTC model can
avoid the free rider effect issue, that is, vertices far away
from query vertices and irrelevant to them are included in
the detected community [101].

Consider the graph G in Fig. 18a, and O = {q1, 2, ¢3};
the subgraph in the region shaded gray is a 4-truss con-
taining Q with the largest trussness and has a diameter of
4. Figure 18b shows another 4-truss containing Q but not
P1, P2, P3, and its diameter is 3. It can be verified that this
is indeed the CTC, which is the 4-truss containing the query
vertices Q with the smallest diameter.

The problem of CTC search is very challenging. A con-
nected k-truss with the largest k containing query vertices
can be found in polynomial time. However, finding such a
k-truss with the minimum diameter is NP-hard [101]. More-
over, it is even hard to approximate the CTC-Problem within
a factor better than 2. Here, the approximation is with regard
to the minimum diameter.

To find the closest truss community, a simple but effec-
tive greedy algorithm is proposed in [101]. The method
uses a greedy strategy for finding a CTC that delivers a
2-approximation to the optimal solution, thus essentially
matching the lower bound. Here is an overview of this algo-
rithm. First, given a graph G and query vertices Q, we find
a maximal connected k-truss, denoted G, containing Q and
having the largest trussness. As Gy may have a large diam-
eter, we iteratively remove vertices far away from the query
vertices, while maintaining the trussness of the remainder

subgraph at k. Actually, this algorithm can find a connected
k-truss with the largest k containing query vertices, which
achieves the smallest query distance in optimal. According
to the inequality of query distance and graph diameter, this
answer is a 2-approximation to CTC [101].

In order to improve the efficiency of CTC search, Huang
et. al proposed two new techniques of bulk deletion and local
exploration. One of them is based on bulk deletion of vertices
far away from query vertices. This speeds up the pruning pro-
cess, by deleting at least k vertices in batch, to achieve quick
termination while sacrificing some approximation ratio. Sec-
ond, they also propose a heuristic strategy of local exploration
to quickly find the closest truss community in the local neigh-
borhood of query vertices. The key idea is as follows: It
first forms a Steiner tree to connect all query vertices and
then expand the Steiner tree to a k-truss with the largest k
by involving the local neighborhood of the query vertices.
Finally, to reduce the diameter, it iteratively removes the fur-
thest vertices from this k-truss using the bulk deletion.

4.3 Keyword-based attributed graphs

In this section, we introduce a k-truss-based community
search model on a keyword-based attributed graph where
vertices are associated with a set of keywords. Huang and
Lakshmanan [102] proposed an attribute-driven truss com-
munity model, denoted by ATC, which finds the densely
interconnected communities containing query vertices with
similar query attributes. ATC is equipped with two key com-
ponents of (k, d)-truss and an attribute score function.

To capture dense cohesiveness and low communication
cost, ATC builds upon a notion of dense and tight substructure
called (k, d)-truss. A (k, d)-truss requires that every edge is
contained at least (k — 2) triangles, and the communication
cost between the vertices of H and the query vertices is no
greater than d. By definition, the cohesiveness of a (k, d)-
truss increases with &, and its proximity to query vertices
increases with decreasing d. For instance, H in Fig. 19b for
Vy =191, q2} is a (k, d)-truss with k =4 and d = 2.

To measure the goodness of an attributed community w.r.t.
attribute coverage and correlation, an attribute score function
is developed for ATC. Let f(H, W) be the attribute score of

(a) An attributed graph G

Fig. 19 An example of attributed truss community search with query
vertices V; = {q1, g2} and query attributes W, = { ‘DB’, ‘DM’}. Here,
k=4
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community H w.r.t. query attributes W,,. Then, f(H, W,) =

Yuew, score(fu) where score(H,w) = [Vu N V(H)
is the number of vertices covering query attribute w. The
function f(H, W,) satisfies three important properties as fol-
lows: Property 1 The more query attributes that are covered
by some vertices of H, the higher score of f(H, W,). The
rationale is obvious; Property 2 The more vertices that con-
tain an attribute w € W,, the higher the contribution of w
should be toward the overall score f(H, W,). The intuition
is that attributes that are covered by more vertices of H sig-
nify homogeneity within the community w.r.t. shared query
attributes; Property 3 The more vertices of H that are irrel-
evant to the query, the lower the score f(H, W,). The more
query attributes a community has that are shared by more of
its vertices, the higher its attribute score. For example, con-
sider the query QO = ({¢g1}, {‘'DB’, ‘DM’}) on the running
example graph of Fig. 19a. Intuitively, we can see that H
has 5 vertices covering ‘DB’ and ‘DM’ each and also has the
highest attribute score (i.e., f(H, W,) = % + % = 6.25),
which is the attributed truss community. On the other hand,
the induced subgraph of G by vertices {q1, q2, v1, v2, v3}
and {q1, g2, v4, vs, Ve} is mainly focused in one area (‘DB’
or ‘DM’), achieving the score of 5.8.

Based on the (k, d)-truss and f(H, W), Huangetal. [102]
studied the ATC problem.

Problem 17 (ATC search) Given a graph G, a query Q =
(Vy4» Wy), and two numbers k and d, return an attributed truss
community (ATC) H, satisfying the following properties:

1. H is a (k, d)-truss containing V.
2. H has the maximum attribute score f(H, W,) among all
subgraphs satisfying property 1.

Theoretical proofs show that ATC search is NP-hard [102],
which shows the challenge for computation. To help effi-
ciently processing of ATC queries, [102] presents a greedy
algorithmic framework for finding an ATC in a top-down
search manner. The general ideas of this algorithm have three
steps. First, it finds the maximal (k, d)-truss of original graph
G as acandidate. Second, it iteratively removes vertices with
the smallest “attribute marginal gains” from the candidate
graph and maintains the remaining graph as a (k, d)-truss,
until no longer possible. The removed vertices have the small-
est contribution to attribute score function f(H, W, ). Finally,
it returns a (k, d)-truss with the maximum attribute score
among all generated candidate graphs as the answer. If there
exists more than one (k, d)-truss with the maximum attribute
scores, the algorithms just outputs one answer.

To further improve the search efficiency while ensur-
ing high quality, a novel index called attributed truss index
(ATindex) is developed. The ATindex consists of two com-
ponents: structural trussness and attribute trussness, which
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Fig.20 An example of weighted truss community search

maintain known graph structure and attribute information.
ATindex can quickly identify a good candidate of (k, d)-
truss to the answer. In addition, another technique of local
exploration is applied for efficiently detecting a small neigh-
borhood subgraph around query vertices, which tends to be
densely and closely connected with the query attributes.

4.4 Weight-based attributed graphs

In this section, we consider an undirected weighted graph
G = (V,E,W), where the weight of e is denoted by
w(e) € W, representing the importance between vertices
u and v. Weighted graphs naturally exist in the real-world
applications. For instance, in the collaboration network, the
edge weights may represent the number of co-authored arti-
cles between two authors. Figure 20 depicts an undirected
weighted graph G, e.g., edge (g, s1) has a weight of 0.8. Tak-
ing the edge weights into consideration, community search
on weighted graphs can find communities capturing more
semantics. Zheng et al. [216] proposed a model of weighted
truss community (WTC):

Definition 21 (Weighted Truss Community) Given an undi-
rected weighted graph G = (V, E, W), and a positive integer
k, a weighted k-truss community is an induced subgraph
H C G, and the following properties hold:

1. Connectivity Ye1,e» € E(H), e; and ey are triangle-
connected in H;

2. Cohesiveness Ve € E(H), supy(e) > k — 2;

3. Maximal Structure H is amaximal induced subgraph that
satisfies Properties 1 and 2.

In the weighted k-truss community model, Property 1
adopts the same constraint of triangle connectivity as other
k-truss community models [98]; Property 2 requires the
community to satisfy the structure of k-truss; Property 3
can guarantee the property of maximal structure in the
weighted k-truss community. Given a weighted truss com-
munity H,the community weight of H is defined as w(H) =
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mingcg gy w(e). To discover the communities with large
weights, Zheng et al. [216] investigated the problem of
weighted truss community (WTC) search.

Problem 18 (WTC search) Given an undirected weighted
graph G(V, E, W), and parameters k and r, find the top-r
weighted k-truss communities H with the largest weights
w(H).

Consider a weighted graph G in Fig. 20,k = 5,andr = 1.
The community C; shown in Fig. 20 has the weight w(C7) =
0.8, which is larger than the weight of community C; as
w(Cp) = 0.2. Thus, C is the answer of WTC search with
the largest weight.

Straightforward to enumerate all weighted k-truss com-
munities to find the » communities with the largest com-
munity weights is impractical in large graphs. To speed up
the search efficiency, an index structure called KEP-Index is
designed. KEP-Index is built upon the observation that all the
communities can be organized into a tree-shaped structure.
This is because all the weighted k-truss communities form
a partial order relationship for each value of k. By indexing
all the pre-computed weighted k-truss communities in a tree-
shaped structure, WTC search can be done in the linear time
w.r.t. the answer size, which is optimal.

4.5 Discussions

Generally, the k-truss-based CS solutions on simple graphs
can be divided into two groups, where the first group [6,98]
computes the k-truss community, while the second group
[101] aims to find closest communities. In the first group,
Akbas et al. [6] improved the efficiency of [98] by developing
a novel index. For attributed graphs, there are two CS solu-
tions, which consider keywords [102] and influence values
[216], respectively. For all these studies above, both online
and index-based algorithm are developed.

For practitioners, to perform CS, we would like to offer
some suggestions: (1) We should figure out the type of graph
(e.g., simple graphs and attributed graphs) in the application.
(2) For simple graphs, there are two community models, i.e.,
triangle-connected model and closest model. Generally, the
triangle-connected model [6,98] is suitable for one single
query vertex to discover all overlapping communities con-
taining it, while the closest model [101] is suitable to discover
one closest community containing multiple query vertices,
which is not strict to one query vertex. Moreover, triangle
connectivity is weaker than the optimization metric of mini-
mum diameter. According to our experience in the real-world
applications, the discovered closest community has smaller
graph size than triangle-connected truss community. (3) For
triangle-connected model [6,98], the index-based algorithm
in [6] is faster than that in [98].

5 K-clique-based community search

In this section, we survey CS solutions that use k-clique or its
variants to capture the structure cohesiveness. We first briefly
introduce the k-clique model and its variants in Sect. 5.1.
Then, we present CS solutions using k-clique component and
k-plex models in Sects. 5.3 and 5.3 . After that, we discuss
the most influential CS using k-clique in Sect. 5.4. Finally,
we discuss these studies in Sect. 5.5.

5.1 K-clique and its variants

Recall that by Definition 6, a k-clique is a complete graph
with k vertices where there is an edge between every pair
of vertices. The k-clique model has been widely used for
the overlapping community detection (e.g., [4,151]). As the
condition of k-clique is strict, some relaxed variants such as
y-quasi-k-clique [23,45] and k-plex [171] are proposed to
identify cohesive subgraphs. Below are detailed definitions.

Definition 22 (y-quasi-k-clique [23,45]) A y-quasi-k-clique
is a graph with k vertices and at least |y @J edges, where
0<y=<1L

When y = 1, the corresponding y-quasi-k-clique is a k-
clique. We can tune the desired cohesiveness of the k vertices
by varying y value.

Definition 23 (k-plex [171]) A graph G(V, E) is a k-plex,
if for each vertex v € V, v has at least |V | — k neighbors in
G,where 1 <k <|V|.

When k = 1, the k-plex is exactly a k-clique. Clearly, by
setting a smaller value of k, we can obtain a more cohesive
k-plex. The problem of finding a k-plex from a given graph
for an integer k is NP-hard [14].

Another way to relax the constraint of k-clique is to con-
sider the connection of two vertices.

Definition 24 (kr-clique [125]) Given a graph G and two
integers k and r, a kr-clique S is an induced subgraph of G
such that: (1) the number of vertices in S is at least k; and (2)
any two vertices in S can reach each other within r hops.

Clearly, the problem of finding kr-clique is NP-hard
because kr-clique is a k-clique when r = 1.

5.2 K-clique-based community search

In Sect. 5.2.1, we introduce the seminar work on overlapping
community detection [151], in which the k-clique component
is proposed. Section 5.2.2 presents the community search
algorithm based on the relaxation of k-clique component,
while Sect. 5.2.3 studies the densest k-clique community
search.
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5.2.1 K-clique-based community

In [151], Palla et al. showed that that many real networks are
characterized by well-defined overlapping communities. For
instance, a person may belong to three different communities
related to school, hobby, and family. For a given graph G,
a k-clique graph Gy can be derived where each node is a
k-clique in G and there is an edge if two nodes (k-cliques)
are adjacent, i.e., they share k — 1 vertices in G. Then, the
k-clique communities are the union of all adjacent k-cliques,
which are defined as follows:

Definition 25 (k-clique component) Let C denote a con-
nected component in the k-clique graph, then a k-clique
component is the union of all k-cliques represented by ver-
tices in C.

One may explore the communities of the graph based on
the k-cliques and their adjacency, and a graph vertex may
belong to several communities. Efficient k-clique component
detection algorithm is presented in [4]. Particularly, consid-
ering that each k-clique must be contained by at least one
maximal clique, they first identify all maximal cliques of the
network and then enumerate the communities by carrying out
a standard component analysis of the clique overlap matrix.

5.2.2 K-clique-based community search

In [45], Cui et al. showed that there are two shortcomings in
the k-clique community model: (1) there are overwhelming
number of k-cliques communities in real-life graphs; and (2)
the k-clique constraint and the definition of adjacent (i.e.,
sharing k — 1 common vertices) are not flexible in practice.
To address these two shortcomings, they proposed an online
community search (OCS) problem. Instead of enumerating
all communities, they focused on the search of the commu-
nities containing a given query vertex g. They relaxed the
k-clique adjacent from k — 1 common vertices to « vertices,
namely a-adjacency. They also relaxed k-clique model to
y -quasi-k-clique model (Definition 22). By doing this, the k-
clique components in the k-clique communities are relaxed to
the y-quasi-k-clique components. Below is the formal prob-
lem definition.

Problem 19 ((«, y)-OCS) Given an undirected simple graph
G(V, E), aquery vertex g € V, and an integer k, an integer
o < k —1, and a real value y with 0 < y < 1, find all
y-quasi-k-clique components containing query vertex ¢.

Clearly, a k-clique component search is a special case
of (a, y)-OCS with « = k — 1 and y = 1. By reduc-
ing to k-clique decision problem, it is shown in [45] that
the («, ¥)-OCS problem is #P-complete. It is shown that
the density of each community in (¢, y)-OCS is at least
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2 max{0, min{ f (1), f(«)}} where f(x) = w Both
exact and approximate solutions are proposed in [45]. A naive
algorithm for exact solution is to enumerate all y-quasi-k-
cliques containing the query vertex g and then compute the
y-quasi-k-clique components based on the o-adjacency. To
avoid enumerating cliques belonging to none of the valid
communities, a new computing framework is proposed to
check the adjacency when a clique is discovered. By care-
fully maintaining the visit status of each clique, authors
further optimize the searching cost. Authors also proposed an
approximate solution. To reduce the search space, the approx-
imate algorithm only enumerates an unvisited clique which
contains at least one new vertex not contained by any exist-
ing community. A heuristic is proposed to choose a vertex
sequence such that the resulting clique sequence is short,
leading to a good approximation solution.

5.2.3 Densest clique percolation community search

Following the k-clique community model in [151], Yuan et
al. studied the problem of densest clique percolation commu-
nity search [205], where a k-clique percolation community
(KCPC) is a k-clique component in [151]. In particular, they
aimed to find the k-clique percolation community with the
maximum k value that contains a given set of query vertices.

Problem 20 Given an undirected simple graph G(V, E) and
a set of query vertex Q C V, the problem of the densest
clique percolation community (DCPC) search is to find the
k-clique component with the maximum k value that contains
all the vertices in Q.

Figure 21 in [205] illustrates a part of the collaboration
network in DBLP, in which each vertex represents an author
and each edge indicates the co-author relationship between
two authors. G is a 4-clique percolation community as itis a
maximal union of five adjacent 4-cliques: {v14, v15, V16, V17},
{vi4, vi5, V16, V18}, {V14, V15, V17, Vi), {v14, V16, V17, Vig),
{vis, v16, V17, V18}, and any two 4-cliques share 3 nodes.
Similarly, G, is also a 4-clique percolation community.
G overlaps G, with nodes vy4, vi5. Given a query ¢ =
{vg, v13}, the densest clique percolation community of g is
the 3-clique percolation community G3 since G3 is the k-
clique percolation community with maximum k value that
contains vg and vg.

A baseline solution is to start from the maximal possi-
ble k value and check if there is a KCPC by applying the
k-clique component detection algorithm in [151]. If there
is no KCPC detected, the k value will be decreased by one
until a KCPC is detected. To efficiently support online DCPC
search, an index-based approach is developed in [205]. Par-
ticularly, based on the observation that a k-clique component
can be treated as a union of maximal cliques, they take max-
imal cliques as building blocks of k-clique components and
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Fig.21 Illustration of DCPC search [205]

propose a tree structure named clique adjacency tree which
can efficiently identify the k-clique components for a given
k value. The authors further developed a new tree structure
named ordered adjacency tree such that only the subtrees
related to the query vertices will be explored. Together with
maximal cliques and their inverted indexes, a compact index
structure named DCPC Index is proposed to support efficient
DCPC queries.

5.3 K-plex-based community search
5.3.1 Social group query (SGQ)

Problem 21 presents SGQ, which was designed for suggest-
ing attendees in activity planning [195].

Problem 21 (SGQ) Given a simple undirected graph
G(V, E), an activity initiator g € V, three integers p, s, and
k, return a set F of vertices from G such that the following
properties hold:

L |F|=p;

2. The length of the minimum distance path between v and
q, dy,q,1s at most s;

3. Each vertex v € F is allowed to share no edges with at
most k other vertices in F;

4. The total social distance X crd,, 4 is minimized.

In Problem 21, Property 1 controls the expected num-
ber of attendees in the activity; Property 2 specifies a radius
constraints which requires each attendee is close to ¢ in the
graph G; Property 3 requires that each attendee is acquainted
with other attendees by following the k-plex model; Property
4 ensures that the returned group is the most compact one
among all the groups satisfying all the above properties.

The SGQ problem is computationally challenging because
it is NP-hard, which can be proved by a reduction from the
k-plex problem [14]. To answer SGQ, Yang et al. [195] pro-
posed an efficient solution SGSelect. The idea is that we
can first extract a subgraph H € G by using the radius con-
straint. Then, starting from ¢, we iteratively explore vertices

in H to derive the optimal solution. In each iteration, we can
keep track of a set of vertices that satisfy the constraint of
k, until the set has p vertices. To further speedup this pro-
cess, some effective pruning criteria have been developed.
For example, to choose vertices, we can give high priorities
for vertices that may significantly increase the total social
distance. Also, during the search process, we can prune ver-
tices which would not lead to eventual answer by considering
the acquaintance constraint p and social radius constraint s.

In addition, Yang et al. [195] studied another query,
called social-temporal group query (STGQ), which general-
izes SGQ by considering the available time of each candidate
attendee. In specific, it finds a group of vertices satisfying:
(1) all constraints in an SGQ); and (2) all the attendees are
available in a time period [¢, £ 4§, ], where 7 is time slot and §;
is query parameter. The STGQ problem is also NP-hard and
some efficient solutions are developed. For details, please
refer to [195].

5.3.2 Maximum k-plex community query (MCKPQ)

In [187], Wang et al. proposed and studied the maximum
k-plex community query (MCKPQ):

Problem 22 (MCKPQ) Given a simple undirected graph
G(V, E),asetof query vertices Q € V,aninteger k, return a
subgraph Go(Vgp, Eg) € G(V, E) such that the following
properties hold:

1. Connectivity G ¢ is connected and contains Q;

2. Structure cohesiveness G g is a k-plex;

3. Maximal structure There exists no other G’
fying the above properties and Go C G’Q.

C G satis-

A good property of MCKPQ is that the communities
returned by an MCKPQ can avoid the free rider effect,
which is introduced and discussed in Sect. 4. Nevertheless,
the MCKPQ problem is very computationally challenging,
because it is NP-complete, which can be proved by a reduc-
tion from the k-plex problem [14]. Moreover, it is hard to
approximate for MCKPQ problem in polynomial time within
a factor n' €.

A basic solution to the MCKPQ problem is to use the
generate-and-verify method, which enumerates all the k-
plexes in the whole search space and then returns the one
with the largest size. Obviously, this method is too expen-
sive and impractical for large graphs. To alleviate this issue,
Wang et al. developed a more advanced method based on
the branch-and-bound paradigm with some effective prun-
ing criteria and a heuristic method which performs fast but
has no theoretical guarantee [187]. We skip the details due
to space limitation.
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5.4 Most influential community search

In [125], Li et al. proposed the problem of most influential
community search, which aim to find the most influential
cohesive subgraph. The concept of kr-clique community
(Definition 24) is proposed to capture the cohesiveness of
a set of vertices. In addition to cohesiveness, authors also
considered the influence of the community. Following the
popular linear threshold (LT) model [120], the aggregate
influence probability of a community C w.r.t a vertex v,
denoted by Pr(v|C), is defined as follows:

Pr|C) =1—- ] = Pz

ueC

where P,_,, is the probability that v is influenced by u. Note
that there is a influence probability P,, for each edge (u, v)
in G, and P,_,, is computed by multiplying the influence of
the edges along the maximum influence path [120] from u
to v. Given a probabilistic threshold A, the influence score
of the community C is the number of vertices in G \ C with
aggregate influence not less than A, denoted by score(C).
Below is the problem definition.

Problem 23 Given a simple graph G where each edge has
an influence probability, the problem of the most influential
community search is to find a maximal kr-clique community
with the highest influence score.

It is shown in [125] that the problem is NP-hard because
of the clique computation. A baseline solution is to access the
vertices by their individual influence and compute the max-
imal kr-clique for each vertex. To improve efficiency, a tree
structure named C-Tree is proposed such that any kr-clique
community can be generated efficiently. Four efficient search
algorithms are developed to significantly prune the search
space based on the kr-clique constraints and the influence
scores.

5.5 Discussions

In this section, we survey the CS solutions [45,125,187,195,
205] using k-clique model. We can divide them into two
groups, where the first group [45,187,195,205] focuses on
simple graphs, while the second group [125] is developed
for attributed graphs. In the first group, the first one [45] uses
quasi-clique model, the second one [205] adopts k-clique
model, and the last two [187,195] are based on k-plex model.
However, to our best knowledge, there is no systematic study
to compare the goodness of different k-clique-based models
in real-life applications, which is crucial for researchers and
practitioners to choose desirable models in practice. More-
over, there is no investigation on the trade-off between the
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computing time complexity and the flexibility of these mod-
els. It will be interesting to fill these two gaps in the future
study.

6 K-ECC-based community search

In this section, we review CS studies [25,95] that use the k-
ECC model as the community structure cohesiveness. Given
a graph G and a set Q of vertices, their general goals
are to find a subgraph H of G, which contains Q and
has the maximum edge connectivity, also called the Steiner
Maximum-Connected Subgraph (SMCS). Their difference is
that one maximizes the size of H [25], while the other one
tries to minimize the size of H [95].

6.1 Maximum SMCS

In [25], Chang et al. computed the maximum SMCS for a set
of query vertices Q, which is defined as follows:

Problem 24 Given an undirected simple graph G(V, E), and
asetof query vertices Q C V,returnasubgraph H(Vy, Eg)
of G, such that

1. Vg contains Q;

2. M(H) is maximized;

3. There exists no other subgraph H' satisfying the above
properties, such that H C H'.

For example, consider the graph in Fig. 22a. Let Q =
{v1,v4}. Then, for this query we will return the subgraph g1,
and its connectivity is A(g1) = 4.

A basic solution of Problem 24 is to sequentially enumer-
ate all the maximal k-ECCs by varying k from | V| to 1, and
stops when the first k.-ECC which contains Q is found. Then,
the first k-ECC is returned as the community. In the literature,
there are two efficient k-ECC enumeration algorithms. One
is based on graph decomposition [26], while the other one is
based on the random contraction [7]. As shown in [25], the
basic solution takes O (|V |-k -1 -|E]) time if the first k-ECC
enumeration algorithm is adopted, or O(|V| - ¢ - | E|) time if
the second one is used, where /& and [ are bounded by small
constants for real graphs, and r = O(log? - |V |). Obviously,
both of them are inefficient for large graphs.

To improve the query efficiency, Chang et al. proposed a
novel compact index structure, which allows the query can
be answered in optimal time cost, i.e., the time cost is linear
to the size of H. The index is built based on a key observation
that for any pair of vertices # and v in H, their connectivity
A(u, v) is at least L(H). This implies that if the connectivity
of each pair of vertices in G is preserved, then the query can
be answered in linear time cost, because we can first get AL (H)
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Fig.22 An example for illustrating maximum SMCS [25]

by checking the connectivity of vertex pairs in Q, and then
find H by traversing the connected edges whose connectivity
are at least A(H).

To preserve all the connectivity information of G, Chang
et al. developed the concept of connectivity graph G for the
graph G, which has the same sets of vertices and edges with
G, and for each edge (u,v) € G, it is associated with a
connectivity value denoting the edge connectivity between
vertices # and v in G. Then, the maximum spanning tree
(MST) of G, is the index structure built for G. For example,
Fig. 22b presents the index structure for the graph in Fig. 22a.
The index can be built by first constructing the connectivity
graph G, and then computing the MST from G.. Clearly, the
space cost of the MST is O(| V) since it has | V| vertices and
at most | V| — 1 edges.

Based on the index MST, Chang et al. proposed an effi-
cient query algorithm to solve Problem 24. Specifically, it
first computes A(H) by using the MST and then finds the
maximum SMCS by collecting the subtree of MST, whose
edges have connectivity values being at least A(H). By using
the technique of lowest common ancestor (LCA), the query
can achieve a time cost of O(|Hy|), which is optimal since
outputting the vertex set of H takes O (Vp) time.

In addition, the authors studied a variant of Problem 24 by
imposing an additional constraint, which requires the number
of vertices in H is atleast L, where L is a parameter specified
by the user. It can also be solved in optimal time cost with
the index MST.

6.2 Minimum and minimal SMCS'’s

In [96], Hu et al. found that although the maximum SMCS
has a high cohesiveness (i.e., high connectivity), the size
of maximum SMCS’s is often extremely large and com-
plex. For example, on the DBLP bibliographical network
that contains 803K vertices and 3.2M edges, the average
number of vertices in a maximum SMCS is over 400K.
This not only hinders the analysis of the SMCS structure,
but also makes it difficult to be used in real situations. To
remedy this issue, Hu et al. examined the discovery of an
SMCS that has a small number of vertices. Particularly,
they studied the minimum SMCS and minimal SMCS prob-
lems:
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mal SMCS’s (G and G») for query Q = {f} [96]

Problem 25 (Minimum SMCS) Given an undirected simple
graph G(V, E), and a set of query vertices Q C V, return a
subgraph H(Vy, Eg) of G, such that

1. Vg contains Q;
2. A(H) is maximized;
3. |Hy| is minimized.

Problem 26 (Minimal SMCS) Given an undirected simple
graph G(V, E), and a set of query vertices Q C V, return a
subgraph H(Vy, Eg) of G, such that

1. Vg contains Q;

2. A(H) is maximized;

3. There exists no other subgraph H' C H satisfying the
above properties.

Obviously, a minimum SMCS is also a minimal SMCS,
and both of them are much smaller than the maximum SMCS.
For example, on the DBLP network, their average sizes are
less than 0.23 K, while the average size of maximum SMCS
is over 400K . We illustrate these three kinds of SMCS in
Fig. 23.

In[96], Hu et al. showed that the minimum SMCS problem
is APX-hard, since it is a generalization of the STEINER TREE
problem (see Sect. 3.1.2). Furthermore, unless P = NP,
there does not exist any polynomial-time algorithm that
approximates the minimum SMCS problem within any con-
stant ratio. Therefore, it is not only intractable to obtain a
minimum SMCS, but also hard to get its approximate ver-
sion in an accurate manner. To trade-off the efficiency and
result quality, Hu et al. [96] focused on the minimal SMCS
problem.

A naive solution for Problem 26 is to first adopt the
solution in [25] to compute the maximum SMCS G’ and
then iteratively refine G’ to ensure its minimality. While
this solution is simple, it has a high time complexity, since
the cost of testing the minimality of an SMCS is high. To
achieve higher efficiency, Hu et al. proposed an Expand-
Refine framework to find a minimal SMCS, which consists
of three steps. First, the Steiner connectivity of the query ver-
tex set Q (i.e., the maximum A(H)) is computed. Then, in
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the Expand step, through local expansion of vertices starting
from vertices in Q, a subgraph H' of G with connectivity
being A(H) is obtained. In the Refine step, an algorithm is
proposed to remove vertices based on the dependence of
vertices on their minimal SMCS’s. As a result, the min-
imal SMCS problem can be solved in a polynomial time
cost,i.e., O(t- h- Il-|E]|), wheret < |Hy]|, and h and [
are usually bounded by small constants. Besides, to further
improve the efficiency, the authors relaxed the constraints
from two perspectives, namely connectivity and minimality,
and computed the approximate SMCS with theoretical guar-
antee.

In addition, for an important special case with only one
query vertex (i.e., |Q| = 1), Huetal. developed a customized
algorithm for it. The main idea is to keep the processing
information related to the current query in a small cache
structure and use these information to answer the subse-
quent queries. As a result, it performs faster than the solution
above.

6.3 Discussions

In this section, we review two CS studies that adopt the k-
ECC model as the community cohesiveness metric. The first
one [25] aims to find the maximum SMCS, while the sec-
ond one [95,96] tries to find the minimum SMCS. In terms
of efficiency, the maximum SMCS can be computed more
efficiently. For example, by using the MST index [25], it
can be computed in the optimal time cost. Nevertheless, the
maximum SMCS may have size much larger than that of
the minimum or minimal SMCS’s. This also implies that
for practitioners, they have to choose the specific algorithm,
based on their specific requirements on community sizes and
efficiency.

We remark that these two CS studies mainly focus on sim-
ple graphs. Itis not clear how to adapt for them for other kinds
of graphs, such as directed graphs and attributed graphs.
Thus, an interesting future topic is to investigate how to per-
form CS on other kinds of graphs by adopting the k-ECC
model.

7 Other metrics-based community search

In this section, we review a particular kind of community
search, namely local community detection, which takes an
input vertex as a seed and expands the community from the
seed according to a specific goodness function. The repre-
sentative goodness functions are local modularity [40,136],
query biased density [190], personalized PageRank [114],
and neighbor expansion [142].

@ Springer

7.1 Local modularity-based community search

Generally, studies of local modularity-based CS follow Prob-
lem 1 with a local modularity-based goodness function f.
Two typical such functions are as follows:

e Boundary-based local modularity [40] Assume we have
a simple undirected graph G and three sets of vertices, i.e.,
C,U,B € G. The known set C contains vertices in the known
proportion of the community; the unknown set ¢/ is a set of
vertices that are adjacent to vertices in C; and the boundary set
B is a subset of C, which contains vertices having neighbors
inU.

By considering all the edges linked to sets B and C, Clauset
et al. [40] defined the local modularity of C as f(C) = I /T,
where [ is the number of edges with no end vertex in ¢/, and
T is the number of edges with at least one end vertex in B.
Intuitively, a good community has a sharp boundary, which
means that there are few connections from its boundary set
B to the unknown set I, resulting in a higher value of f(C).

To uncover a community, Clauset et al. developed an algo-
rithm that works in vertex-at-a-time manner. Let g be a source
(seed) vertex. Initially, it lets C = {¢g} and puts ¢’s neigh-
bors into set /. At each step, it adds to C the neighboring
vertex that results in the largest increase of the local modu-
larity. This process continues until it has agglomerated either
a given number of vertices k, or it has discovered the entire
enclosing component, whichever happens first. As a result,
its time complexity is O (k>d), where d is the mean degree
and k is the number of vertices to be explored.

e Subgraph degree-based local modularity [136] Given
a subgraph C of a graph G, Luo et al [136] defined its in-
degree, ind(), as the number of edges within C, and its out-
degree, outd(C), as the number of edges that connect C to
the remaining part of G. Then, they defined the subgraph
modularity of S as f(C) = ind()/outd(). Clearly, its value
will increase if C has more internal edges and fewer external
edges.

To find a community, Luo et al. proposed an algorithm
consisting of an addition step and a deletion step. Initially, C
contains a seed vertex ¢ and its neighbors are in a set \V. In
the addition step, it iteratively adds vertices from A to C that
results in the greatest increase of f(C), until a certain number
of neighbors have been in the subgraph. In the deletion step,
it iteratively removes vertices in C that result in the increase
of f(C) but not separating C. The addition and deletion steps
will be repeated until no vertex is added to C. Note that there
is no guarantee whether ¢ will be in the returned community
as it may be removed during the deletion step. It has the
same time complexity as the algorithm for the boundary-
based local modularity.
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7.2 Query biased density-based community search

In [190], Wu et al. proposed the query biased density as
the goodness function for CS. Before introducing the query
biased density, the authors presented a vertex weighting
scheme, which ensures that vertices far away from the query
vertices will have large weights, resulting in high penalties
to be included in the community. To assign each vertex u
a weight r(u) w.r.t a set Q of query vertices, they adopted
the penalized hitting probability, which can be computed by
random walk. Then, the query biased vertex weight of ver-
tex u, w(u), can be defined as the reciprocal of r(u), i.e.,
w(u) = 1/r(u).

Based on the weights, the authors defined the query biased
density of a graph S as p(S) = %, where ¢(S) is the sum of
edges weights and 7 () is the sum of query biased weights for
vertices in S. After that, the authors proposed and studied the
problem of finding the query biased densest subgraph S from
a graph G (or QDS problem), which theoretically guarantees
that QDS is a connected subgraph and contains Q.

Clearly, if w (u) = 1, the query biased density degenerates
to the classical edge density (i.e., %), and accordingly the
QDS problem is reduced to the problem of densest subgraph
discovery [78]. This also implies that after weighting 7 (1), it
forces the global densest subgraph shift to the neighborhood
of the query vertices.

Unfortunately, the QDS problem is computationally intra-
ctable. To improve efficiency, the authors introduced two
variants of the QDS problem by removing constraints that
S is connected and Q is included in S, respectively. They
showed that these variants can be solved in polynomial time
and the results can be used to find an optimized solution for
the QDS problem.

7.3 Personalized PageRank-based community
search

In [114], Kloumann et al. studied the use of personalized
PageRank (PPR) model for identifying the community of
a set of seed vertices Q. We first introduce the PageRank
model: suppose there are an infinite number of surfers walk-
ing on a graph. If at a certain timestamp a surfer is staying at
vertex i, at the next timestamp she goes to a random neigh-
bor vertex j. As time goes on, the expected percentage of
surfers at each vertex i converges (under certain conditions)
toalimitr (i), called PageRank score of vertex i. Since r (7 ) is
independent of the distribution of starting vertices, it reflects
the global importance of the vertex i.

Notice that (i) is computed with no preference for any
particular vertices. However, in reality, for a particular user,
some vertices, denoted by a set O, may be more interesting
than others, and they could be considered as the preferred ver-
tices. To incorporate preferences of Q into the model above,

we can make a modification: At each step, a surfer jumps
back to a vertex in Q with probability ¢, and with probability
(1 — ¢) continues forth along a neighbor. The limit distribu-
tion of surfers in this model would favor vertices in Q and
vertices which are close to Q. The modified model is also
called PPR model. Clearly, if we let Q be a set of query ver-
tices, the vertices whose limit probabilities are highest can
be considered as Q’s community members.

Now we formally introduce the PPR model. Consider a
graph G and let deg; (i) denote the degree of vertex i and A
be the adjacent matrix of G, i.e., A; ; = deglw if vertex i is
linked to vertex j, where degg (i) is the degree of vertex i.
The preference vector u is defined over the seed vertices such
that [u| = 1 and u(i) = @ if the i-th vertex is in Q. Then,
the PPR equation is v = (1 — ¢)Av + cu, where ¢ € (0, 1]
is the decay factor and a typical value of ¢ is 0.10 [114]. The
solution v, called PPR vector, is a steady-state distribution of
surfers.

Problem 27 Given a graph G(V, E), a set of query vertices
Q C V, and an integer k, return a set C of vertices, such that

. 0CC;
2. C contains k vertices, whose corresponding values in the
PPR vector w.r.t Q are the highest.

In the literature [9,114], many efficient PPR algorithms
have been developed, and thus can be applied to CS. We skip
the details due to space limitation.

7.3.1 Neighbors expansion-based community search

In [142], Mehler et al. presented a neighbor expansion
method to discover the community from representative seeds.
Specifically, given a graph G(V, E) and a set S of seed ver-
tices, it repeatedly identifies the optimal “next” vertex v,
which is not in the community C (initially C = §) but linked
with vertices of C, based in some manner on the number or
strength of v’s neighbors who had previously been identified
as community members. Details of vertex selection criteria
and stopping rules of the expansion process are introduced
as follows:

e Selection criteria Mehler et al. proposed to assign a score
to each vertex in the graph and select the highest-scoring
outside vertex to join the community. The score assignment
criteria are as follows:

— neighbor count the number of v’s neighbors in C;

— juxtaposition count consider the weights of edges when
counting the number of v’s neighbors in C;

— neighbor ratio normalize vertices’ degrees and count the
degree-normalized neighbors in C;
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— juxtaposition ratio consider the weights of edges when
computing the neighbor ratio;

— binomial probability compute the binomial probability
that v is in C, given its neighbor count.

o Stopping rules The authors proposed to reserve some frac-
tion of seed vertices as validation members and then monitor
the frequency with which these validation members are incor-
porated into the community, during the expansion process. In
the first phase, when community members are identified with
high precision, we expect to add a new validation member
with frequency equal to the fraction of community comprised
by the validation set. After leaving the natural boundaries of
the neighborhood, we expect to rediscover validation mem-
bers according to their frequency in the entire graph. As a
result, we can find the stopping vertex as the one that best
splits the validation interval (i.e., the difference between the
discovery times of the ith and (i — 1)-st validation members)
into two groups.

7.4 Discussions

In this section, we review CS studies that do not rely on
metrics introduced in Sect. 2, which are often referred as
local community detection. These studies mainly focus on
simple undirected graphs and uncover the communities by
seed expansion using link-based metrics, such as modular-
ity, density, PageRank, etc. Unlike CS studies introduced
before, these works often rely on good seed selection algo-
rithms [146] and assume that there are some ground-truth
communities. In other words, they might not aim to search
communities in an online manner over big graphs, based on
a query request. As a result, some of them may cost high
running time for searching communities. Consequently, an
interesting research direction is to develop index-based solu-
tions for supporting efficient online CS queries using these
metrics. Moreover, it would be interesting to study how to
apply them for CS on attributed graphs.

8 Community search systems

Recently, many graph processing systems have been devel-
oped [18]. Generally, they can be classified into two groups.
The first group (e.g., GraphX [80] and Pregel [138]) aims
to provide a platform for supporting general graph tasks
(e.g., computing PageRank scores). The second group is
customized for specific graph tasks. For example, in [69],
Fan et al. developed a graph system, called Expfinder,
for finding experts in social networks; in [105], a system
called VIIQ is developed for interactive graph query for-
mulation; in [203], AutoG shows an interactive system to
facilitate graph query formulation. However, none of them
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can be readily used for CS. To address this issue, recently
some systems have been developed for searching, visual-
izing, and analyzing communities in large graphs. Below,
we introduce two systems, namely C-Explorer [62] and
VizCS [106].

8.1 C-Explorer

C-Explorer is a web-based system that enables community
retrieval in a simple, online, and interactive manner. The key
features of C-Explorers are as follows:

First, it implements several typical CS algorithms on sim-
ple undirected graphs and keyword-based attributed graphs,
including Global and Local (see Sect. 3.1), ACQ algo-
rithm (see Sect. 3.3). In addition, a CD algorithm called
CODICIL [164] is included.

Second, it offers a user-friendly facility that enables online
visualization of communities. Figure 24 shows the user
interface of C-Explorer configured to run on the DBLP bibli-
ographical network. On the left panel, a user inputs the name
of an author (e.g., “jim gray”) and the minimum degree of
each vertex in the community she wants to have. The user
can also indicate the labels or keywords related to her com-
munity. Once she clicks the “Search” button, the right panel
will display a community of Jim Gray. The user can further
click on one of the vertices (e.g., Michael Stonebraker) and
continue to examine its community.

Third, it allows users to compare the communities retri-
eved by various CS and CD algorithms, in terms of commu-
nity quality and statistics.

Finally, it provides a list of API functions so that other CS
and CD algorithms can be plugged in. For public users, they
can easily plug their own algorithms into C-Explorer using
these API functions.
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8.2 VizCS

VizCS is an online query processing system for searching and
visualizing communities in graphs [106]. VizCS exhibits four
key innovative features as follows:

First, VizCS adopts a triangle-connected truss community
model for dynamic graphs where vertices/edges undergo fre-
quently insertions/deletions [98]. It provides the feature of
CS over dynamic graphs, which can be uploaded with one
file of graph updates by users.

Second, VizCS offers a user-friendly visual interface to
formulate queries and a real-time response query processing
engine. Figure 25 shows an example query of author vertex
g = “Jim Gray” and parameter k = 8. Thanks to efficient k-
truss CS algorithms, the query results can be quickly obtained
in real time.

Third, VizCS generates a community exploration wall by
offering interactive community visualization, which facil-
itates users to in-depth understanding of the data. The
community exploration wall uses graph visualization tech-
niques to depict the community results and also presents
informative features to users through various exploration
channels, such as the profile search of community members
by Google, structural statistic report, collaborator recom-
mendation, and tag cloud. Figure 25 shows the community
exploration wall.

Lastbutnotleast, VizCS is a CS platform that can visualize
and compare different community results by various state-of-
the-art algorithms and user-uploaded approaches. It benefits
users to understand different models vividly and directly.

9 Comparison analysis

Recall that in the last subsections of Sects. 3, 4, 5, and 6, we
have compared and analyzed the CS solutions using k-core,
k-truss, k-clique, and k-ECC, respectively. In this section,
we would like to further compare these CS solutions across
different metrics. Due to the space limitation, we are unable

to compare all the surveyed 27 CS problems as well as their
solutions. In the following, we mainly compare the repre-
sentative CS problems and solutions on simple graphs and
attributed graphs, respectively, while other solutions can be
considered as either their variants or less representative stud-
ies.

9.1 Simple graphs

In this section, we compare representative CS problems for
cohesiveness metrics studied on simple graphs, which are
Problem 1 for k-core, Problem 15 for k-truss, Problem 20
for k-clique, and Problem 24 for k-ECC. In the following,
we first compare these solutions in terms of the complexi-
ties and scalability of the state-of-the-art online algorithms,
index construction complexities, index-based query algo-
rithms, community cohesiveness, and support for overlapped
CS as well as dynamic graphs. After that, we perform an
experiment on real large graphs by using these CS algorithms
and compare their empirical performance.

To make a fair comparison, we consider a simple undi-
rected graph G(V, E), where n = |V|, m = |E|, and its
arboricity is denoted by «(G) («¢(G) is often much smaller
than /m). We use h and [ to denote small values that can
be bounded by small constants [25]. In Table 4, we com-
pare these representative CS solutions on G. Note that to
measure the strength of algorithm scalability and community
cohesiveness, we use notation s ; that is, an algorithm with
more % means that it has better scalability or cohesiveness.
Meanwhile, if a CS solution returns only one community C,
we denote its community edge number by |E(C)|. If mul-
tiple communities are returned, we use C; to denote the
i-th (I < i < r) community, where r is the total number
of returned communities. We use “O” and “D” to denote
whether the solutions support overlapped CS and dynamic
graphs, respectively.

In addition, for the complexities of the k-clique-based
algorithm, we adopt the notations in [205], where s is the
average size of maximal cliques, T is the time to enumerate
all maximal cliques, L is the number of maximal cliques, p is
the average number of maximal cliques a vertex is contained
in, Q is the number of maximal cliques containing at least
one query vertex, and g is the height of the index tree.

From Table 4, we can make the observations:

— For online query algorithms, in terms of query time com-
plexity, we can rank them as: k-core < k-ECC < k-truss
< k-clique, which is consistent with the efficiency rank-
ing relationship of these metrics in Sect. 2.2. As a result,
the k-core-based algorithm achieves the highest scala-
bility while the k-clique-based algorithm has the lowest
scalability.
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Table 4 Comparison analysis for representative CS solutions on simple graphs
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— For index construction algorithms, the ranking relation-
ship above still holds. For index-based query algorithms,
most of them except k-clique have the optimal time com-
plexity, which is linear to the community edge number
(i.e., |E(C)]).

— The community structure cohesiveness is in line with the
cohesiveness of these four metrics.

— The k-core and k-ECC-based solutions can only return
one community for each query, while the other two
solutions may return multiple overlapped communities
containing the query vertex.

— All algorithms support dynamic graphs where vertices
and edges are inserted or deleted dynamically.

Next, we empirically evaluate the performance of algo-
rithms in Table 4. The input of these algorithms except the
k-truss-based one is a query vertex, and they aim to find
communities containing the query vertex which will maxi-
mize the value of k. For the k-truss-based one (Problem 15),
its input is a set of query vertices and an integer k. To make a
fair comparison, we adapt its algorithm such that its input is a
query vertex and the algorithm will maximize the value of .
To measure the quality of returned communities (subgraphs),
we introduce four metrics, i.e., diameter, degree, density (i.e.,
the number of edges over the maximum number of possible
edges in a graph), and clustering coefficient (CC). Gener-
ally, a lower value of diameter and higher values of degree,
density, and CC mean the higher quality of the community.

To conduct the experiments, we use a real-world graph
Google 4 which contains 875,713 vertices and 5,105,039
edges. We randomly select 100 vertices from the graph as
query vertices, perform CS queries using these vertices, com-
pute the average running time and community quality, and
report experimental results in Table 5. Generally, the effi-
ciency results in Table 5 are consistent with the complexity
analysis in Table 4. More specifically, we have:

— For online query algorithms, the k-core-based algo-
rithm is the fastest. The k-truss-based and k-ECC-based
algorithms have similar time cost. The k-clique-based
algorithm takes the highest time cost.

— To build indexes, the k-core-based algorithm is the fastest
and the k-truss-based algorithm is slower than others.

— For index space cost, the k-core-based index takes the
least space, while the space cost of others is around or
over an order of magnitude larger than that of k-core-
based algorithm.

— Forindex-based query algorithms, the k-core-based algo-
rithm is slower than the k-truss-based algorithm (which
also takes optimal query time cost), because its returned
communities are larger than those of other algorithms.

4 Available at http://snap.stanford.edu/data/index.html.
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Table 5 Empirical comparison for representative CS solutions on a real large graph

Metric Online algorithm  Index-based algorithm Community quality Community number
Query (s) Time (s)  Space (MB)  Query (s) Diameter  Degree  Density CC

k-core 7.2 8.1 7.9 2.7 14.0 19.2 0.044 0.763 1

k-truss 55.1 103.1 179 0.2 4.1 13.9 0.476 0.868  1.31

k-clique 1872 61.6 108 4.3 10.6 9.2 0.424 0.709  1.05

k-ECC 39.9 38.3 68 0.15 10.5 18.4 0.152 0774 1

The k-clique-based algorithm is the slowest, as its com-
plexity is higher than others.

— In terms of community quality, the k-truss-based solu-
tion achieves the smallest diameter, highest density, and
highest clustering coefficient, due to small and tight
triangle-based community structure. The k-core-based
algorithm achieves the highest degree, against other
methods. The k-clique-based method achieves the small-
est degree.

— In line with Table 4, the k-core-based and k-ECC-based
solutions return one community, while k-truss-based and
k-clique-based solutions, respectively, return 1.31 and
1.05 communities.

9.2 Attributed graphs

As shown in Table 1, for attributed graphs, five kinds of
attributes have been considered for CS, which are keywords,
locations, temporal information, profile, and influence val-
ues. However, the semantics of these attributed communities
are different. Moreover, the problem definitions are also dif-
ferent. Therefore, it may not make sense to compare them
under the same metrics.

For location, temporal information, and profile-based
attributed graphs, only the k-core model has been studied
on these graphs, which have been discussed and compared
extensively in Sect. 3.8. For influence value-based graphs, the
meanings of influences are very different. In k-core-based
CS solutions [21,30,50,126-128], the influence values are
associated with graph vertices, denoting their influence or
importance. In k-truss-based CS solutions [216], the influ-
ence values are associated with graph edges, representing
the influence or importance of edges. In k-clique-based CS
solutions [125], the influence values are also associated with
graph edges, but they are probability values, meaning how
likely a vertex is influenced by another vertex. Meanwhile,
none of these influence value-based graphs has been investi-
gated with at least two different cohesiveness metrics, so we
do not compare solutions for influence value-based graphs
in this paper. In the following, we mainly focus on compar-
ing and analyzing CS solutions on keyword-based attributed
graphs.

For keyword-based attributed graphs, there are two rep-
resentative studies, namely ACQ [58,61] and ATC [102].
Generally, both of them seek to find a densely connected
community containing query vertex(es) with similar query
keywords, but ACQ adopts the k-core model, while ATC
uses the k-truss model. From the discussions in Sect. 2.2,
we infer that the community of ATC is more structurally
cohesive, but may take higher computational cost. Besides,
in terms of keyword cohesiveness, ACQ model in Sect. 3.3
imposes a strict homogeneity constraint, requiring that each
vertex shares same query attributes in the community; ATC
model in Sect. 4.3 uses an attribute score function to quantify
the query keyword coverage and allows missing some query
keywords in the community.

In [102], Huang et al. empirically compared the commu-
nity quality and efficiency of ACQ and ATC. They used 13
real graphs with ground-truth communities. For each graph,
they ran 200 CS queries. Specifically, for each query, they
randomly selected a ground-truth community and then ran-
domly selected a vertex from the community as the query
vertex. After that, they ran ACQ and ATC with the same
parameters, i.e., k = 4, and two query keywords which
are selected from the community. The results are consistent
with the discussions above. Specifically, ATC achieves higher
average F1 score values than ACQ on all the datasets, which
means that it is more accurate to search communities. On
the other hand, in terms of efficiency, ACQ consistently out-
performs ATC on all the datasets and is up to two orders of
magnitude faster than ATC.

10 Related work

In this section, we review related studies, including commu-
nity detection, cohesive subgraph discovery, graph keyword
search, and graph pattern matching.

10.1 Community detection

Below, we review representative CD studies on undirected
graphs, directed graphs, and attributed graphs.
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10.1.1 Undirected graphs

A large number of studies aim to detect communities from
simple graphs, and we can classify these studies based on
the techniques they use. Some representative classes are as
follows, to name a few:

1. Community quality optimization-based methods (e.g.,
modularity [148]);
2. Clustering methods (e.g., k-means [178], spectral clus-
tering [182]);
3. Graph partitioning methods (e.g., Metis [109]);
4. Embedding-based methods (e.g., DeepWalk [132,155]);
5. Random walk-based methods (e.g., [157]);
6. Label propagation-based methods (e.g., [81]);
7. Information diffusion-based methods (e.g., [87]);
8. Statistic inference-based models (e.g., [89]);
9. Deep learning-based methods (e.g., [200]);
10. Centrality-based methods (e.g., [149]);
11. Locality sensitive hashing-based methods (e.g., [137]);
12. Physics-based methods (e.g., Potts low [189]);
13. Local metric-based methods (e.g., k-plex [42]);
14. Multi-commodity flow-based methods (e.g., [122]);
15. Hybrid-based methods (e.g., [91]).

For a detailed survey of CD, please refer to the following
survey and empirical evaluation papers: [8,44,48,71,83,88,
110,112,123,152,154,156,158,163,194,197]. Although these
CD solutions are able to discover communities from net-
works, they may not well satisfy the desirable factors of CS
on big graphs as we discuss in Sect. 1, because most of them
often use a global predefined criterion for generating com-
munities and cannot find communities in an online manner.

10.1.2 Directed graphs

In recent years, a number of studies have investigated CD
on directed graphs. Here are some representative studies,
to name a few. In [121], Leicht et al. extended the con-
cept of modularity maximization [148], which was originally
designed for undirected graphs, for detecting community
structure in directed networks that makes explicit use of
information contained in edge directions. In [70], Flake et
al. identified communities from websites network, which can
be considered as directed graphs. In [119], Lancichinetti et
al. introduced new benchmark graphs to test CD methods on
directed networks. In [113], Kim et al. also proposed a new
modularity metric for CD on directed networks. In [201],
Yang et al. developed a new stochastic block model for CD on
directed networks. In [199], Yang et al. presented algorithms
for detecting communities from both directed and undirected
networks. Ning et al. [150] studied local community extrac-
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tion in directed networks. A recent survey can be found in
[139].

10.1.3 Keyword-based attributed graphs

To identify communities from keyword-based attributed
graphs, recent works [33,99,159,164,176,220] often use clus-
tering techniques. Zhou et al. [220] computed vertices’
pairwise similarities using both links and keywords and then
clustered the graph. Subbian et al. [176] explored noisy
labeled information of graph vertices for finding commu-
nities. Qi et al. [159] dynamically maintained communities
of moving objects using their trajectories. Ruan et al. [164]
developed a method CODICIL, which augments the original
graph by creating new edges based on content similarity and
then performs clustering on the new graph.

Another common approach is based on topic models. In
[135,147], the Link-PLSA-LDA and Topic-Link LDA
models jointly model vertices’ content and links based on
the LDA model. In [192], the attributed graph is clustered
based on probabilistic inference. In [165], the topics, inter-
action types, and the social connections are considered for
discovering communities. CESNA [198] detects overlapping
communities by assuming communities “generate” both the
link and content. A discriminative approach [202] has also
been considered for community detection. However, com-
puting pairwise similarity among vertices is very costly, and
thus, they are questionable for performing online CS queries.

10.1.4 Location-based attributed graphs

The problem of CD on location-based attributed graphs
(or geo-social networks) [16] has been extensively studied
[32,54,77,84,172]. In [77], Girvan et al. introduced the geo-
community, which is a graph of intensely connected vertices
being loosely connected with others, but it is more com-
pact in space. Guo et al. [84] proposed the average linkage
(ALK) measure for clustering objects in spatially constrained
graphs. In [54], Expert et al. uncovered communities from
spatial graphs based on modularity maximization. In [172],
Shakarian et al. used a variant of Newman—Girvan mod-
ularity to mine the geographically dispersed communities.
In [32], Chen et al. proposed a method using modularity
maximization for detecting communities from geo-social
networks.

10.1.5 Temporal graphs

Many recent studies aim to detect communities from tempo-
ral graphs. In [217], Zhou et al. studied CD over a temporal
heterogeneous social network consisting of authors, docu-
ment content, and the venues. In [134], Liu et al. studied
persistent community detection for identifying communities
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that exhibit persistent behavior over time. In [10], Angadi
et al. detected communities from dynamic networks where
data arrive as a stream to find the overlapping vertices in
communities. In [19], Bazzi et al. investigated the detec-
tion of communities in temporal multilayer networks. In
[51], DiTursi et al. proposed a filter-and-verify framework
for community detection in dynamic networks. In [116],
Kuncheva et al. presented a method by using spectral graph
wavelets to detect communities in temporal graphs. For more
related studies, please refer to survey papers [163,177].

10.2 Cohesive subgraph discovery

In this section, we review studies on cohesive subgraph dis-
covery. Notice that CD is one kind of cohesive subgraph
discovery, but the latter one is more general.

10.2.1 Simple graphs

For simple graphs, typical cohesive subgraph models are k-
core [17,170], k-truss [41,166,212], k-clique [2,151], and
k-ECC [76,95], as discussed in Sect. 2. To compute these
subgraphs, there are many efficient in-memory algorithms
(e.g., k-core [17], k-truss [184], k-clique [47], and k-ECC
[7,26,218]). For graphs that are too large to be kept in mem-
ory, there are also some disk-based and parallel algorithms.
For example, in [34,111,184,188], and [36], disk-based algo-
rithms for computing k-core, k-truss, and k-clique are devel-
oped, respectively; in [145] and [29], parallel algorithms for
computing k-core and k-truss are proposed, respectively. In
addition, to maintain k-core and k-truss for dynamic graphs,
some efficient algorithms are developed in [130,167,213] and
[219], respectively.

Besides, there are many other cohesive subgraph mod-
els and the representatives are as follows: In [171], Seidman
proposed the k-plex model (which is introduced in Sect. 5).
In [141], Matsuda et al. introduced the concept of quasi-
clique model. In [210], Zhang et al. proposed the (k, s)-core,
which considers both user engagement and tie strength. In
[168], the authors proposed the concept of nucleus, which
is a generalization of k-core and k-truss. In [214], Zhao et
al. introduced the mutual-friend subgraph. In [186], Wang et
al. proposed the DN-Graphs by considering vertices’ com-
mon neighbors. In [26], Chang et al. studied the problem of
enumerating k-ECCs in a graph for a given k. In [222], Zhu
et al. introduced the notion of coherent cores on multilayer
graphs. In addition, Goldberg et al. [78] and Fang et al. [67]
discovered the densest subgraph, Galbrun et al. [73] studied
the top-k densest subgraphs, Tsourakais et al. [180] com-
puted the quasi-clique-based dense subgraphs, and Qin et al.
[161] studied the problem of finding top-k locally densest
subgraphs.

10.2.2 Attributed graphs

For attributed graphs, in addition to CD methods, there are
also many studies of finding cohesive subgraphs. In [196],
Yang et al. studied the socio-spatial group query which finds a
group of users that are cohesively linked and close to the rally
point in a geo-social network. In [211], Zhang et al. studied
the problem of finding (k, r)-cores on attributed graph and
for a specific (k, r)-core, each vertex has at least k neighbors,
and the attribute similarity of each pair of vertices is at least
r. In [28], Chen et al. studied the problem of (k, d)-MCC
(maximum colocated community) search on geo-social net-
work, where a (k, d)-MCC is a connected k-truss and for any
two vertices, their distance is at most d. In addition, Wu et al.
[191] studied the problem of finding the densest connected
subgraph from the dual network, which can be considered as
an attributed graph.

10.3 Graph keyword search

Generally, graph keyword search [183,204,206,208] aims to
find a tree or a subgraph, which contains a set of query key-
words, from a large graph G. Earlier studies often output
a tree structure. In [20], Bhalotia et al. developed a back-
ward algorithm for finding Steiner trees. In [49], Ding et al.
proposed a dynamic programming algorithm finding Steiner
trees. In [79], Golenberg et al. presented a novel algorithm
which produces Steiner trees with polynomial delay. In [107],
Kacholia et al. proposed a bidirectional search algorithm, and
He et al. [90] improved its efficiency by introducing a new
index structure.

Recently, some solutions have output subgraphs. In [124],
Li et al. proposed to find r-radius Steiner graphs that contain
query keywords. Qin et al. [162] proposed to find multicen-
tered subgraphs that contain query keywords within a given
distance. Kargar et al. [108] studied the r-clique which is
a set of vertices that cover query keywords and satisfy the
distance constraint.

However, these works are substantially different from CS
queries on keyword-based attributed graphs. First, they do not
specify query vertices as required by CS queries. Second, the
tree or subgraph produced do not guarantee structure cohe-
siveness. Third, their solutions do not ensure strong keyword
cohesiveness.

10.4 Graph pattern matching (GPM)

For simple graphs, the problem of GPM is NP-complete [43]
and it has been studied extensively under different settings:
(1) in main memory [37,181]. For example, Ullmann [181]
proposed a backtracking algorithms. (2) In external memory,
Chu et al. [39] and Hu et al. [97] studied triangle counting;
in [160], a novel GPM solution based on graph compres-
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sion is presented. (3) In distributed platforms, both DFS-style
approaches [5,153] and BFS-style approaches [117,118] are
developed. The DFS-style approaches avoid intermediate
results by using one-round computation, while BFS-style
approaches shuffle a large number of intermediate results.

For attributed graphs, there are also many studies. Tong et
al. [179] studied the use of lines, loops, and stars for finding
the matched subgraphs; Zou et al. [223] developed a novel
GPM solution based on distance join; Fan et al. [55] studied
GPM by using bounded simulation; in [56], GPM has been
studied for finding graph association rules; in [35], Cheng
et al. studied the problem of top-k GPM. Recently, Fang et
al. have studied a variant of the GPM problem on spatial
databases [59,64], and it aims to find spatial objects that are
matched with a given pattern. However, GPM is different
from CS since (1) it often focuses on small patterns, so it
cannot generate large communities; and (2) the subgraphs
of GPM solutions often do not guarantee strong structure
cohesiveness. Other related topics include subgraph search
[207,209].

11 Future work

Recall that in Table 1, the cohesiveness metrics are orthogo-
nal to graph types, so if a metric has not been studied for a
particular type of graphs, then it is a future research direction
to study CS by applying the metric on this type of graphs.
Apart from this, we present a number of promising future
directions as follows:

11.1 Optimization for query parameters

Most existing CS queries require users to input some parame-
ters, in addition to the query vertex. A typical parameter is the
integer k [15,46,175], which controls the structure cohesive-
ness of returned communities. For attributed graphs, existing
works also require users to input some parameters related to
attributes. For example, in ACQ [61] and ATC [102], a set
of query keywords are required. Although these parameters
provide strong flexibility and personalization for the query,
it may not be easy for users to set proper values for these
parameters. For example, if the integer k is too large, a false
query may incur, i.e., the query returns empty result. On the
other hand, if & is too small (e.g., k = 1 or 2), the returned
community may contain too many vertices, which may make
the community meaningless.

Unfortunately, most existing CS works assume that users
can input proper values for these parameters. This assump-
tion, however, is too strong, especially when users do not
know much about the underlying network. To suggest query
parameters, a possible research direction is to exploit his-
torical query logs and suggest some values of parameters
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automatically [13,140]. Another direction is to study how
to use crowdsourcing platforms (e.g., AMT [1]) to facilitate
query suggestions.

11.2 More cohesiveness metrics

As aforementioned, in CS solutions, a community is required
to satisfy certain cohesiveness metrics. Essentially, the cohe-
siveness metrics formally define the communities, so they
play crucial roles in CS.

For structure cohesiveness, there are many other cohesive-
ness models (see Sect. 10.2) which have not been used for CS.
Thus, it would be interesting to study CS using these mod-
els. For example, in [168,169], the authors have proposed the
concept of nucleus, which is a generalization of k-core and
k-truss.

For attribute-based cohesiveness, as discussed in
Sect. 10.2, there are some studies finding cohesive subgraphs
from attributed graphs. Thus, it is of interest to extend them
for CS on attributed graphs. Besides, each existing CS solu-
tion only focuses on one particular type of attribute (e.g.,
keyword). This, however, may be problematic for many real
applications because a real graph often involves multiple
types of attributes. Thus, it is desirable to study how to per-
form CS by considering multiple types of attributes.

11.3 Other types of graphs

In recent years, many novel network models have been devel-
oped and the representative ones are as follows:

— Public-private network [11,38,100]. In a public—private
network (e.g., Facebook), there is a public graph G, con-
taining a set of vertices and a set of edges that are visible
to all users of the network. In particular, each vertex u
is associated with a private graph G, where vertices of
G, are vertices from the public graph G, and G, is only
known to u.

— Uncertain graph [94,104,131]. In many real applications
(e.g., biology), the graph data are often noisy, inexact, and
inaccurate, and they can be modeled as uncertain graphs,
where each edge is associated with a value denoting its
existence probability.

— Signed graph [193]. A signed graph is a graph whose
edges carry signs. For example, in social networks, the
relationship of two users is either positive (e.g., friend-
ship) or negative (e.g., hostility). Thus, users’ relationship
can be modeled as a signed graph.

— Multi-dimensional graphs [68]. In many scenarios, a
graph often contains various types of edges, which repre-
sent various types of relationships between entities. Such
graphs are often called multi-dimensional graph, or mul-
tilayer graphs or multi-view graphs.
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— Heterogeneous information network (HIN) [93,174].
HINSs are networks with multiple typed objects and mul-
tiple typed links denoting different relations.

To our best knowledge, there is no prior research about
CS on these graphs. Thus, it is still an open problem of how
to perform CS on these graphs.

11.4 Real big graphs

Most existing CS studies assume that the graphs can be kept
in the memory of a single machine. The graphs used for
experimental evaluation are often million-scale, and only a
few of them [66,127] are able to process billion-scale graphs.
However, in many real applications (e.g., Facebook), the
graphs may involve billions of vertices and edges [133]. As a
result, existing CS solutions may fail to process such real big
graphs within reasonable time cost. Hence, how to efficiently
perform online CS on such big graphs is a challenging task.

For big graphs that cannot be kept by a single machine,
some possible research directions are as follows: First, we can
consider developing query algorithms based on distributed
computation platforms (e.g., GraphX [80]), which are able
to process big graphs in a cluster. Second, to save memory
space, we may keep the graph data on disk and design 1/O-
efficient query algorithms.

11.5 An online repository for codes and datasets

For most of surveyed CS studies, their codes of algorithms
and datasets are not publicly available. Thus, it is desir-
able to build an online repository to keep these codes and
datasets. The major benefits of doing this are twofold: First,
for researchers, the codes and datasets can serve as a bench-
mark for comparison studies. Second, practitioners can easily
plug these CS solutions into their applications without re-
implementation.

12 Conclusion

In this paper, we conduct an extensive survey on the topic
of community search over large graphs. We systematically
review over 30 research articles, which focus on the topic of
community search, published between 2010 and 2019. We
first analyze and compare different community cohesiveness
metrics. Then, we classify studies about CS according to
these metrics, and for each class of works, we review and dis-
cuss the representative studies on different types of graphs.
Furthermore, two systems that are customized for the purpose
of community search are discussed. Finally, we point out a
list of future research topics as well as challenges. In sum-
mary, our survey provides an overview of the start-of-the-art

research achievements on the topic of community search, and
it will give researchers a thorough understanding of commu-
nity search.
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