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Abstract
Location details of social users are important in diverse applications ranging from news recommendation systems to disaster
management.However, user location is not easy to obtain from social networks becausemanyusers do not bother to provide this
information or decline to do so due to privacy concerns. Thus, it is useful to estimate user locations from implicit information
in the network. For this purpose, many location prediction models have been proposed that exploit different network features.
Unfortunately, these models have not been benchmarked on common datasets using standard metrics. We fill this gap and
provide an in-depth empirical comparison of eight representative prediction models using five metrics on four real-world
large-scale datasets, namely Twitter, Gowalla, Brightkite, and Foursquare. We formulate a generalized procedure-oriented
location prediction framework which allows us to evaluate and compare the prediction models systematically and thoroughly
under extensive experimental settings. Based on our results, we perform a detailed analysis of the merits and limitations of
the models providing significant insights into the location prediction problem.

Keywords Location prediction · Experimental evaluation · Large social network

1 Introduction

User location information contributes to in-depth social net-
work data analytics. Discovering physical locations of users
from social media helps us to bridge the online and offline
worlds. This also supports many real-life applications like
emergency reporting [2,46], disaster management [30,53],
location-based recommendation [24], location-based adver-
tisement [55], region-specific topic summarization [41], and
disease outbreak monitoring [36]. However, location infor-
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mation is not always available in social networks because
most users do not want to disclose locations in their profiles
for reasons such as users’ privacy, users’ attitude, or even lack
of interest to disclose [19]. For instance, only 16% of users
in Twitter register location information in their profiles [28].
In another study, Cheng et al. [10] report that 21% of Twit-
ter users from USA provide their location as city name and
5% provide their geo-coordinates. This calls for the develop-
ment of location prediction methods that can exploit various
implicit information inside the network to estimate users’
locations.

Social networks provide elementary means for declar-
ing spatial information through (1) self-reported context
and (2) GPS-enabled geo-tagging of posts and check-ins
[40]. There is significant interest in predicting user locations
through public posts, metadata, and network information.
Many researchers have focused on predictive algorithms to
infer the locations of social users [5,9,19,32,44,57]. Some
of these leverage the user-generated content (UGC) from
the social stream [9,19,57] to predict users’ locations using
location indicative words (or “local” words) available within
the users’ GPS-tagged posts. The prediction performance of
these models depends on the availability of local words in
post contents. However, the location information in user-
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generated posts is too limited. Ryoo et al. [44] report that only
0.4% of tweets (collected from the Korea region) have some
GPS-tagged location information. In another study, Hetch et
al. [19] report that only 0.77% of tweets among global users
have some location information. Therefore, content-based
location prediction approaches may not perform well due to
the sparseness of location indicative words in users’ posts.
Hence, instead of using social contents, some prediction
techniques [3,20,43] rely on the graph structure of a social
network. These techniques exploit the network featureswhile
inferring users’ locations using their social connections. For
example,Backstromet al. [3] assume that an unlabeled user is
co-located with one of their friends in the network and a loca-
tion is estimated by maximizing likelihood of their friends’
locations. McGee et al. [33] integrate various social factors
(e.g., number of followers) for the location prediction task.

Hybrid prediction models [27,28,38,40], on the other
hand, exploit both the user-generated contents as well as
the network information. If some neighbors (i.e., followers,
friends) provide locations in their profile, or they mention
some places in their posts, the hybrid prediction models
can use such information to predict locations of unlabeled
users. However, thesemodels have the flexibility to use either
one or both information types. Neural network-based geolo-
cation prediction models are reported in [34,39]. Recently,
some probabilistic frameworks [14,37] are proposed, which
consider features learned through deep learning from social
contexts. Apart from “user location” prediction, some stud-
ies focus on predicting other types of locations such as post
(e.g., tweet) location, mention location, and work location.
Meanwhile, themajority of the available works on predicting
location of “posts” [8,9,29,42,45] rely on the social contents.
The “mention” location prediction models [16,25,26,31]
extract textual fragments in posts that observe some loca-
tion names. There exists some work [8,11,58] which aim at
predicting location types such as work place, or supermarket.
Cho et al. [11] consider the temporal and social information
to distinguish home locations and work places. Pang et al.
[35] propose a feature learning framework based on deep
learning, and it can predict user demographics and location
category.Other notablework in predicting the next place visit
of social users is available in [48,61]. However, in this study
we are mainly focusing on the tasks of stable “user location”
prediction using the network information. Additionally, we
do not consider machine learning-based location prediction
models in our benchmark study which are heavily dependent
on the quality of training datasets.

With so many different models available for location pre-
diction, it becomes important to compare their performance
on standard benchmark datasets using similar metrics. The
majority of the existingmodels are based on different internal
configurations that best suit their targeted applications, and
hence it is difficult to analyze, compare, and evaluate their

suitability in a common base. It is also not clear how these
models will perform in different scenarios such as different
social network, different types of users, and location sparsity.
Since the list of location prediction models is extensive, it is
important to choose the representative approaches from each
prediction category and develop a generalized benchmark to
compare their relative performances.

In this paper, we compare models for stable “user loca-
tion” predictions in social media. A stable location is defined
as the long-term residential address (e.g., city level) or loca-
tion where the majority of the activities are performed. Our
main aim is to compare location prediction models that take
the network features as input and predict users’ stable loca-
tions. We also test whether the existing models can explain
the observed data adaptation in Twitter microblog as well as
in other location-based social network (LBSN) (i.e., check-
in) datasets including Gowalla, Brightkite, and Foursquare.
We assume that the majority of the activities of a user occur
near to her stable location [4,11,24]. Meanwhile, locations
may require different granularity given the specific applica-
tion needs. For the sake of standard evaluation, we choose a
uniform granularity level, i.e., city-level user locations. From
here onward,we simply use “user location” instead of “stable
user location” for brevity.

We divide existing models into four major categories
(details to follow in Sect. 3.2) based on the prediction
approach they use, and from each category, we choose rep-
resentative models in a unified framework (see Fig. 1) to
perform comparative analysis. Our aim is to gain insights
into the general approaches (of the four categories) as well as
the specific algorithms selected for comparison w.r.t. multi-
ple aspects. Specially, we perform experiments on four social
media datasets with different levels of location sparsity and
compare the performances of the models with various user-
centric and model-specific configurations. These evaluations
give us novel insights into the relative merits of the specific
location prediction models.

1.1 Challenges

The process of benchmarking location prediction models
poses three major challenges:

– Due to the large diversity in existing models, it is diffi-
cult to abstract a unified benchmarking framework. It is
critical to understand and diagnose the existing models
from a common viewpoint.

– For a fair comparison and in-depth analysis of different
location prediction model types, it is essential to apply
these models on the exact same datasets. This requires
the software implementation of thesemodels which are
not publicly available.
Re-implementing the representative models on a com-
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Fig. 1 Proposed benchmarking framework

mon coding platform and setting their parameters is a
daunting task.

– Previous researchers have tested their approaches using
a small number of metrics with limited scopes leading
to the possibility of incomplete views of the model’s
performance. It is important to identify a suite of met-
rics that can evaluate multiple aspects of the location
prediction outcomes of all existing models. Defining
such a suite of metrics is a challenging task.

1.2 Generalized procedural framework

We propose a generalized benchmarking framework for the
location prediction problem. We implement eight different
representative models and evaluate them on the prediction
task: “given a social network and information about geog-
raphy, infer the locations of the ‘unlabeled’ users.” The
“unlabeled users” is defined in Definition 1 in Sect. 3.1.
Our benchmarking framework consists of four core com-
ponents as shown in Fig. 1, such as: (1) Setup includes a set
of location prediction models, real-world datasets, parame-
ter configuration, and the social graph generated from the
datasets; (2) Prediction Framework presents a generalized
location prediction module, with deep cogitation of the com-
mon workflow in the location prediction framework (see
Sect. 4 for the framework details, and Sect. 5 for the map-
ping procedure); (3) Diagnoses discusses the key factors
that affect the prediction performance of these models; (4)
Evaluation provides a comprehensive evaluation module to
verify and compare themodels using both the dataset settings
and the model-wise parameters. The structural components
of our proposed framework are inspired from the bench-
marking framework designed for community detection [54].
However, the internal functions of the components such as
model-driven procedure, evaluation strategies, initial setup
configurations, and the diagnoses approaches of our frame-

work are very different. Moreover, in our study, we have
implemented all the selected models in a common code base
in a similar software environment allowing for a fair com-
parative analysis.

1.3 Contributions

We have conducted a comprehensive benchmarking study
that performs in-depth analyses and comparisons of the dif-
ferent location prediction models. Specifically, we make the
following major contributions:

– We review existing location prediction techniques and
re-implemented eight representative models in a com-
mon code base.

– We perform an in-depth evaluation of the models using
four real-world large-scale social media datasets with
five different data settings on user location sparsity.

– We evaluate eight representative prediction models
using five evaluation metrics under different user-
centric parameters and data settings to demonstrate
their strengths and limitations in a transparent com-
parison framework.

– We have adapted the network-based location predic-
tion techniques for predicting user location in check-in
datasets.

– We provide significant insights into the location predic-
tion problem within large-scale social media and draw
some interesting take-away conclusions about the com-
pared models.

The remainder of this paper is organized as follows. In
Sect. 2, we compare our work to existing survey papers on
the location prediction problem. We generalize the problem
of location prediction and sketch out the existing works in
Sect. 3. Next, we propose a universal framework on loca-
tion prediction of social users in Sect. 4. In Sect. 5, we map
each individual model to the framework without any loss in
their accuracy. We conduct extensive experiments to com-
pare these models under similar configurations using various
metrics and different data settings in Sect. 6. Finally, we con-
clude our study in Sect. 8 by giving some interesting insights
into the existing location prediction models in Sect. 7.

2 Related work

There are two survey papers in the existing literature that
compare the availablemodels for location prediction in social
media. Ajao et al. [1] studied the basic concepts in location
inference techniques on Twitter social network and reported
the accuracy of ten existing models. However, their compar-
isons are limited to the results presented in those ten works.
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From their survey [1], it is not possible to derive a fair com-
parison of the models because the evaluations in the original
papers were not performed on the same datasets and stan-
dard configurations. Another survey on location prediction
on Twitter is reported recently by Zheng et al. [59]. This
survey focused on comparing the models on three types of
location (i.e., home location, tweet location, and mention
location) prediction tasks. However, their comparisons are
based on the summaries of the prediction models and lack
comparative analysis. The survey [59] also does not provide
the technical backgrounds of the prediction models.

Jurgens et al. [21] conducted a comparative review and
analysis of nine network-based geolocation inference tech-
niques using a bidirectional Twittermention network dataset.
They investigated the performance of the models on the task
of predicting “tweet location” of an arbitrary user’s post.
However, they did not investigate the models’ effectiveness
under different parameter settings. Moreover, they did not
provide any insights into the models’ designs. The effective-
ness and efficiency of the existing location predictionmodels
may vary due to model-centric parameter settings as well as
dataset properties. A comprehensive comparison of the mod-
els requires testing the models under different data-centric
parameters and on different types of social networks. Hence,
the comparisons reported in [21] are insufficient as they use
only one dataset under limited model-centric settings. More-
over, the prediction performance of network-based models
is significantly affected by variations in location sparsity.
However, the analysis of Jurgens et al. [21] does not con-
sider variations in location sparsity at all. More precisely,
they consider the data setting with a majority of the users
(i.e., 80%) with location annotated to predict the locations
of the remaining 20% users only. This setting is far from
real-world scenarios.

The prediction of “post” location (e.g., Tweet location)
and that of “user” location are two different tasks [6,9,42]
and hence require different approaches and evaluation met-
rics. Another limitation of the analysis in [21] is the choice
of evaluation metrics. They used area under curve (AUC ),
Median–Max, and user coverage (instead of post coverage)
which are not designed for similar types of prediction tasks.
For example, AUC is used to evaluate the predicted locations
of the posts, whereas the Median–Max and user coverage
measure the user-level performances. In this case, the high-
est error of a user’s predicted posts’ locations is identified and
then the median of these errors across all users is reported as
the Median–Max of the location prediction. There is a high
chance of getting a misleading conclusion when the majority
of the user’s posts have lower error distance and few posts
are predicted very far from the original post locations. In this
case, theMedian–Maxdistance errors of each usermay give a
higher value, but the performance of the corresponding mod-
els may yet generate a better accuracy. In such a case, while

comparing different models, the Median–Max metric fails to
produce coherent results leading to misleading conclusions.

Also, it is difficult to decide from [21], which models
perform better on accuracy and prediction coverage. For
example, if a model predicts locations of a few posts of each
user, the user coverage of the model will be high, but it will
fail to justify the post coverage and accuracy of the model.
Hence, the metrics used by Jurgens et al. [21] are insufficient
to produce conclusive comparisons. As an example, if we
consider the results of Backstrom [3] and SLP [20] models
as reported in [21], the AUC of these two models is similar,
whereas Median–Max error is 30.2km lower in Backstrom,
and the user coverage is 43.4% higher in SLP model. Hence,
it is hard to conclude which model has overall better perfor-
mance among these two models. In addition, the analysis in
[21] lacks the functionality-wise comparison of the models
in a common frame.

In our study, we address the above-mentioned issues and
conduct a systematic in-depth benchmarking study by com-
paring eight location prediction models on four real-world
datasets with different essential settings. We present sev-
eral comparisons using different location sparsity levels,
geographic region-specific predictions, agreements between
model pairs, and the impact of user-centric information in
location prediction tasks. Our comparisons give significant
insights into the models’ performances under various user-
and data-centric settings.

3 Preliminaries and background

3.1 Preliminary

Since themajority of themodels were originally tested on the
Twitter data, they used Twitter-related terminologies in their
discussions. However, in this paper we use different types of
social media datasets, and hence, generic terminologies, i.e.,
“message” or “post” instead of “Tweet,” will be used in this
paper.

Definition 1 (Social Networks) A social network is a math-
ematical structure consisting of a set of entities (i.e., social
users and locations) and their relationships. We define it as
G(V , E, L, T ) where,

– V is the set of social users. It includes the labeled (V ∗)
and the unlabeled users (V N ), i.e., V = V ∗ ∪ V N .
The “labeled” users (u∗

i ∈ V ∗) are location-annotated
users who have disclosed their locations in profiles. In
some check-in datasets (e.g., Gowalla, Brightkite) if no
profile locations are available, we can choose a “single”
representative location among the multiple check-ins
(discussed in Sect. 6.2) of the users where a majority of
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Table 1 Features and time
complexity of the models

Models f1 f2 f3 f4 f5 f6 Complexity

UDI [28] � � � � � O(m|E |)
MLP [27] � � � � O(m|E |)
Backstrom [3] � � O(|V |k2)
SLP [20] � � O(|V |k2)
TFIDF [23] � � � O(|V ||L|)
Friendly [33] � � � O(|V |ck2 + k|V | log |V |)
SPOT [22] � � � O(|V |k2)
LMM [56] � � � O(|V |k2)

the activities occur. These locations are used to annotate
the “labeled” users in check-in datasets. The remaining
users, i.e., (V − V ∗), are considered as unlabeled users
(V N ).

– L is the set of locations available in social network
which contains the users’ profile location, check-in
locations, and locations available in users’ posts (e.g.,
Tweets).

– E is the set of directed edges e〈vi , v j 〉 from vi to v j ,
which consists of “following relationships” EF : {V ×
V } and “messaging relationships” ET : {V ×L}. Edge
e〈vi , v j 〉 is written as f 〈i, j〉 ∈ EF where user ui ∈
V follows another user u j ∈ V , or as t〈i, j〉 ∈ ET

where user ui ∈ V mentions a location l j ∈ L in her
posts. If some datasets do not have any user posts, the
“messaging relationships” edges will be absent in G.
In Twitter terminology, the “messaging relationships”
is similar to “twitting relationships.”

– T represents the set of posts (or messages) posted by
V in G. The messages can be user posts, replies, or
even forwarded messages (e.g., re-tweets). If a dataset
do not have any message contents, the corresponding
tuple of graph G(V , E, L, φ) remains null.

Different geolocation models consider different types of
inputs e.g., content, network, and contextual information.
Following relationships ( f1) and user location ( f3) are the
main input features of network-based location prediction
models. The other features such as messaging relationship
( f2), message or post contents ( f4), mentioned location fre-
quency ( f5), social tie and closeness ( f6) have been used in
different prediction models.

Table 1 lists the features that are used by the prediction
models. The last columnpresents the time complexity of each
model, “m” being the number of iterations, “k” the average
number of labeled neighbors, and “c” the number of parti-
tions for the tree regressions used in [33]. The tree regressor
divides the dataset into smaller partitions to sort out the best
contacts for the location prediction.

Definition 2 (Location Type) In social media, there are three
types of locations, i.e., location of “post,” “mentioned” loca-
tion, and “user” location. The “post” location is generally
available in the geo-tags of a post (e.g., tweet). “Mentioned”
location refers to the locations available in post contents,
whereas “user” location is available in self-reported profile
and other check-in activities. Such locations may be home
location, work location, or favorite location. We consider
“stable” user location (e.g., home location) at city levelwhere
the majority of user activities occur.

Definition 3 (Location Prediction Problem) Given a social
network G(V = V ∗ ∪ V N , E, L, T ), location prediction
problem is to label a set of users V̂ N ∈ V N with the locations
selected from set L using a specified prediction model Mx ,
such that the predicted location l̂ui of ui ∈ V̂ N is close to the
actual location lui .

3.2 Predictionmodels and algorithms

We focus on the fundamental problem of location prediction
that aims to identify the locations of unlabeled users as pre-
cisely as possible. In most studies, the stable user locations
are predicted at city level, state level or sometimes at the
country level. Existing models have used three main input
types, namely contents, network, and context. The models
are broadly categorized into either content- or network-based
approaches. The hybrid models, on the other hand, use both
the content and network information simultaneously. How-
ever, we categorize the existing models based on their key
approaches rather than the input type. For each category as
shown in Fig. 2, we re-implement their representative mod-
els.
Probabilistic approaches The models in this category exam-
ine the probability distribution of different characteristics in
the social network. Language Model [5,6,9,19,23,32,57], a
sub-category of probabilistic approaches, analyzes the text-
based contents of labeled users and build a “languagemodel”
(LM) using location indicative words (e.g., local words)
available in users’ posts. The local words have strong cor-
relation with a specific location. These models calculate the
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Fig. 2 Categorization of location prediction approaches

word distribution extracted from the labeled users’ posts
(e.g., tweets), and scores of locations are measured using
probability distribution. Hecht et al. [19] and Yamaguchi et
al. [57] calculate CALGARI and KL-divergence scores of
words, respectively, to identify the local words in social con-
tents. Mahmud et al. [32] apply heuristic rules to identify
such words, whereas Cheng et al. [9] propose a model-driven
approach based on the observed geographic distribution of
the words. We choose TFIDF [23] model as the representa-
tive language model where a similar approach is considered
to build a languagemodel based onword distribution.Aword
is considered as a “local”word to a location if the correspond-
ing tf–idf score is higher than a threshold parameter.

The likelihood estimation approach [3,13,42] estimates
location of an unlabeled user by constructing a probabilistic
model andmeasures the likelihoodof users’ friendshipwithin
a distance. Ren et al. [42] assume that if the majority of the
user’s friends live at a particular area, there is a higher chance
for the user to co-locate with their friends. TheBackstrom [3]
model is the base model in this category, and we consider it
as the representative model.
Influence-based approaches This type of model captures
influence scope of nodes (i.e., user, location) by consider-
ing the relationship factors of social users and locations.
The generative influence-based approach [28] integrates the
social network and user-centric data in a generative frame-
work tomodel the “following” and “messaging” relationships
jointly. It predicts user’s location by calculating the influ-
ence probability of how likely they follow other users or
mention a location in their posts. Generative relationship-
based approaches [13,27,52], in this category, measure the
probability of various relationships using structural and spa-
tial properties. Davis Jr. et al. [13] consider the structural
relationship where the popular locations among the friends
are considered as the location of a user. Li et al. [27] pro-
pose a generative approach that models the probability of
generating “following” and “messaging” (i.e., twitting) rela-
tionship based on users’ location. The most likely locations

are assigned to an unlabeled user using the relationship prob-
ability of followers and mentioned locations.

We choose UDI [28] and MLP [27] as representative
models of generative influence and generative relationship
sub-categories, respectively. These two models use similar
features (following and messaging relationships). However,
the approaches of observing such relationships have signifi-
cant differences as below:

(1) AGenerative influence-based approach (e.g.,UDI) cal-
culates influence scope of nodes (i.e., user, venue) using
Gaussian distribution and models them in a generative
way. On the other hand, Generative relationship-based
approaches directly observe following and messaging
relationships and model them using power law and
multinomial distributions, respectively (e.g., MLP).

(2) A Generative influence-based model (e.g., UDI) itera-
tively computes location of a user and updates the influ-
ence scope of her neighbors andmentioned places. This
process continues until the likelihood converges.On the
other hand, Generative relationship-based model (e.g.,
MLP) calculates the joint probability of the observed
(e.g., following and messaging) relationships, and the
maximum likelihood locations are assigned as the
inferred locations.

Inference-based approaches These approaches are based on
semi-supervised iterative algorithms which consider the spa-
tial distribution of locations and infer a suitable location
based on the social relationships. The factor graphmodel [37]
uses location inference techniques to propagate the labeled
locations by incorporating the deep features learned from the
social context. The Label Propagation method [12,20,38,40]
infers location by spatially propagating locations using the
neighborhood information. Rahimi et al. [38,40] propose a
hybrid approach which combines logistic regression with
network-based label propagation to improve the location
predictions. Both the models [38,40] use label propagation
technique as themain prediction approach, but the initial esti-
mation of user location is made by text-based geolocation
techniques. For example, the model [40] considers logistic
regression model prior for test users and the similar label
propagation approach as SLP [20] is used to infer users’ loca-
tions using updated median of neighbors’ locations. Among
the existing label propagation models [12,20,38,40], the SLP
[20] is the basic one and has extended the label propagation
concept of [60]. We choose SLP [20] as the representative
model of this category.
Social closeness-based approaches The models in this cat-
egory consider different network properties such as friend-
ships, interactions, and social trust to estimate the locations
of users. These models are based on the concept that social
closeness of two users is better indicator of home proximity.
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Algorithm 1: Generalized Location Prediction Proce-
dure
Input: Social graph G = (V ∗ ∪ V N , E, T , L), Model (Mx , P)
Output: V̂ N

1 Initialize: P ← �;
2 for each user ui in V N do
3 Seq ← (ui ,FeatureInit(ui ))

4 PreCompute(G,P, Mx );
5 while Iteration ! = IterationMax do
6 for each user ui in Seq do
7 Select(G, Mx , Seq);

8 ltmp
ui ← Calculate(ui , G,P, Mx );

9 V̂ N ← Update(lt
ui

, ltmp
ui , V̂ N );

10 Iteration++;

11 Validate(G, lui );

12 return V̂ N

The social tie-strength-based approach [7,15,33,43] predicts
the location of an unlabeled user considering the tie strength
of the user and their labeled neighbors. Various social rela-
tionships like friendship, user mention, and node degree are
used to measure the tie strength. We select FriendlyLoca-
tion [33] as the representative model of this sub-category.
The social coefficient-based models [17,22] in this category
measure the closeness of two users based on their quantita-
tive neighbor information.Gu et al. [17] proposed the concept
of social trust to measure the closeness in the social struc-
ture using the number of common friends. Kong et al. [22]
propose SPOT model that calculates social closeness using
cosine similarity between a user pair.We consider SPOT [22]
as the representative of social coefficient-based model sub-
category. The social concentration-based model (e.g., LMM
[56]) infers locations from neighbors who have the higher
spatial concentration with their social connections. The rep-
resentative models of each category are discussed in Sect. 5.

4 The generalized procedure

We propose our benchmarking framework and use a gener-
alized procedure to map the functionalities of eight location
predictionmodels. To re-implement the existingmodels from
a common view point, we formulate an adaptive procedure
so that the models can be adjusted easily in different types
of social networks. Our framework comprises three main
phases, namely Initialization, Model-driven location predic-
tion process, and Validation in the “Prediction Framework”
as illustrated in Fig. 1. These phases are the key steps to
characterize the generic procedure of the location prediction
models. Algorithm 1 shows the generalized procedure of the
proposed framework, and the details of the phases are dis-
cussed below.

4.1 Initialization phase

The Initialization phase initializes the primary configuration
parameters of the models. We extract the model-specific fea-
tures using FeatureInit() method (Line 3 of Algorithm 1)
and create user prediction sequence Seq. We initialize the
maximumnumber of iterations, IterationMax, as suggested
by the original authors and set the parameter to 1 for the
models which do not have multiple passes (e.g., TFIDF,
LMM). Some models need to pre-calculate some parameters
in PreCompute() (Line 4), such as power law distribution
parameters in MLP [27].

4.2 Model-driven prediction

Initialization is followed by the prediction process. We
abstract the three common key steps includingSelect,Cal-
culate, andUpdate at Lines 5–10. In Select() method, we
pick the unlabeled users one by one, and the corresponding
features of each user are loaded. The Calculate() method
infers a location to the unlabeled user ui ∈ V N . Finally,
the method Update() assigns a new location by replacing
any previously predicted geo-points. The three methods, i.e.,
Select, Calculate, and Update, iterate until the termina-
tion criteria of the respective model are met.

4.3 Validation phase

In the final phase, we transform the geo-points into our pre-
dictable location type using the nearest city name. Some
existing models assign geo-points to the predicted users,
while the other return city names. This step ensures that
the locations are validated consistently. Some model may
return a “null” value corresponding to the users locations.
Such invalid locations are removed in this step and the cor-
responding users remain unlabeled.

5 Within framework implementation

We recapitulate eight representative models with necessary
adaptations to the proposed generic framework.

5.1 Probabilistic languagemodel

Languagemodel-based locationpredictionmodels character-
ize word distributions in users’ texts (i.e., posts) and follow a
probabilistic approach to infer users’ locations. The models
in this category construct a languagemodel (LM)using “local
words” available in labeled users’ posts. Local words are
tightly coupledwith semantic locations.Though the language
model-based prediction approaches use the social contents to
predict users’ locations, we consider suchmodels to compare
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with the other network-based models. Significant amount of
research (e.g., [5,9,23]) in this category have been carried
out on identifying “local words.” For example, Bo et al. [5]
proposed a model based on inverse location frequency (ILF)
and inverse city frequency (ICF) to measure the probability
of words in a location. A representative probabilistic model
proposed by Cheng et al. [9] uses the distribution of user’s
home location l with the post (tweet) contents. Given a set of
words w extracted from user u’s posts T (u), the probability
of the user u being located at location l is calculated as

p(l|T (u)) =
∑

w∈T (u)

p(l|w) ∗ p(w). (1)

Here, p(w) is the probability of word w in the dataset and
is calculated using the occurrence of the word w in the local
word dataset. We consider TFIDF [23] as the representative
model of this category. The mapping of this representative
model in our framework is described as follows:

In PreCompute method, a language model (LM) is built
using the location information of the labeled users and their
corresponding post contents. The purpose of creating an LM
is to compute the probability distribution of each location
indicative words. The probability of a word w is calcu-
lated using term frequency and inverse document frequency
(TFIDF) in a location l as

p(l|w) = c(w, l)∑n
i=1 c(wi , l)

, c(w, l) =
∑

s∈post(l)
t f (w, s). (2)

c(w, l) calculates the total number of occurrences (term fre-
quency) of word w in the posts of “labeled” users who have
location l. In Select, each unlabeled user is chosen one by
one, and in Calculate, the probability of a user u located
at location l is calculated using Eqs. 1 and 2. A location
with themaximum likelihood probability is considered as the
predicted location. However, the content-based probabilistic
model may not perform well, as the availability of location
indicative textual information is very rare in ordinary users’
posts[19,44].

5.2 Generative influence-basedmodel

The “Generative Influence Model” is based on modeling the
influence scope of nodes in generative way. It follows a prob-
abilistic approach to model the influences. The unified and
discriminative influencemodel (UDI [28]) considers both the
influence of neighbors and the locations mentioned in their
posts. This approach models user’s influence as a bivariate
Gaussian distribution, and the variance of the distribution
is interpreted as influence scope. Further, an iterative pro-
cess is followed to update an unlabeled user’s location using

neighbor information. The newly predicted locations are sub-
sequently used to estimate other users in the network.

The influence probability of a “node” ni at a location l
is modeled using a Gaussian distribution (refer Eq. 3). It
considers a “node” as both a user and a location.

P(l|θni ) = 1

2πσ 2
ni

e
−[ (Xni −Xl )

2

2σ2ni
+ (Yni −Yl )

2

2σ2ni
]
. (3)

Here, θni is the node ni ’s influence model and σni is the
influence scope of ni . Two types of influencemodels are gen-
erated to measure the probabilities of generating following
andmessaging relationships usingEq. 3.A location thatmax-
imizes the joint probability of generating such relationship
edges with the labeled neighbors and mentioned locations is
inferred as the corresponding user’s location. The generative
influence model has two types of prediction methods. The
Local prediction method observes the direct edges to infer
the location of a user. The Global prediction method utilizes
all relationships available in the entire graph, and it allows to
iterate multiple times until it converges. Initially, this model
assigns unlabeled users with random locations and then itera-
tively updates those locations using their neighbors’ locations
and mentioned locations.

Remark The UDI [28] model assigns a random location to
the unlabeled users first. It followsmultiple inner iterations to
converge the assigned locations by updating influence scope
of friends’ and their mentioned locations. We notice that
location prediction process in UDI using “random” location
initialization takes time to converge. To optimize the process,
we initialize the unlabeled userswith the centroid of (atmost)
ten labeled neighbors’ locations (rather using random loca-
tions). Such an approach has reduced 18% of the total inner
iterations without affecting the overall accuracy. However, if
a user has less than ten labeled neighbors, we consider all
her labeled neighbors (to calculate centroid) to initialize the
user. Meanwhile, we assign a random location to the unla-
beled users if they do not have any “labeled” neighbor.

5.3 Generative relationship-basedmodel

MLP [27] model, a representative of generative relationship-
based model category, uses a supervised extension of latent
Dirichlet allocation (LDA) tomodel the relationship between
users and locations. The MLP model considers the effect of
noisy relationships generated due to influences of famous
personalities (e.g., “Lady Gaga”) and popular venues (“Hol-
lywood”). However, the approaches of considering the
influences in a generative model are different from the
influence-based model (discussed in Sect. 5.2).

MLP calculates the likelihood of a user following spa-
tially close friends and mentioning nearby places. Locations
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are observed from labeled users, and explicit correlations
between locations and following relationships are measured.
The following probability at distance “d” can be expressed
as P(d|α, β) = β.dα , and the values of the parameters
α and β are learned using the labeled user information.
Additionally, the location-based messaging model captures
the messaging relationships using the mentioned location
information. The messaging probabilities are modeled as
multinomial distribution. However, this component (e.g.,
location-based messaging model) is not effective when there
is no content-based information available in dataset. How-
ever, some relationships may not be generated based on
the location distances. The MLP model captures noisy and
location-based relationships using random generative mod-
els that measure the probability of randomly following a user
or tweeting a venue.

This model combines the discrete (power law) and contin-
uous (multinomial) distributions in a non-trivial manner, and
Gibbs sampling-based algorithm is used to estimate the loca-
tion assignments. After obtaining the location assignments
for relationships of each user, their corresponding location
distribution θi is measured with the maximal likelihood esti-
mation, p(l|θi ) = ϕi,l+γi,l

ϕi +∑L
l=1 γi,l

, where ϕ is the user location

assignments and γ is the prior distribution parameter of θ .
The locations with largest probabilities in θi are estimated as
the “stable” multiple locations of user ui .

Remark MLP model can discover a user’smultiple locations.
We make a small addition to this approach to identify single
“stable” location among the estimatedmultiple locations.We
select the closest location to the centroid of the “multiple”
predicted locations as the “stable” location of the user.

5.4 Probabilistic likelihood estimation-basedmodel

The location prediction models (e.g., Backstrom et al. [3],
Davis et al. [13], Ren et al. [42]) in this category study the
interplay between geographic distance and social relation-
ships. We choose Backstrom model (“Back” in short), one
of the primitive models as the representative of this cate-
gory. Location inference begins by building a probabilistic
model representing the likelihood of observing a relationship
between the userswhen a geographic distance is given. Based
on the location distribution of labeled neighbors, a user is
assigned a location which has the maximum likelihood. This
model assumes that the location distribution of a typical user
does not have many friends at long distances. Although the
original paper [3] mentioning Backstrom model is conducted
on Facebook, we adapt this model to other social media like
Twitter and Foursquare.

In a large social network, the probability of friendship
is roughly inversely proportional to the physical distance
between the social friends [3]. Given a distance “d” between

two users, the probability of having an edge (i.e., follow-
ing relationship) between them is measured as p(d) =
a(b + d)−c. As mentioned in the original paper [3], the
value of the constants a = 0.0019, b = 0.196, c = 1.05 is
empirically determined using Facebook data. However, these
values may vary in different datasets with different popula-
tion distributions. For a given location lu of user u ∈ U∗, if
Lv ∈ L(ngbr(u)) are the locations of the labeled friends of u
the edge probability for each neighbor location is computed
as p(|lu − lv|) = a(b + |lu − lv|)−c s.t. lv ∈ Lv . A loca-
tion lu co-located with one of u’s friends is considered as the
location of user u if the value of γ (lu) (refer Eq. 4) returns
maximum value than considering the other neighbors’ loca-
tions.

γ (lu) =
∏

e(u,v j )∈EF

p(|lu − lv|)
1 − p(|lu − lv|) , lu �= lv. (4)

Computing γ for each location is itself an expensive opera-
tion. As suggested in [3], the value of γ likelihood of each
location can be pre-computed and we compute γ using Pre-
Compute() method in our generalized framework.

Remark In the original paper [3], the authorsmention that the
model performs better for the users with 16 or more located
friends. Hence, we exclude inferring some users who have
“a few” (e.g., one or two) neighbors and it helps to improve
the efficiency of this model.

5.5 Social tie-strength-basedmodel

The tie-strength-based models [7,33,43] investigate social
relationships that have stronger social tie and incorporate
them in predicting users’ locations. FriendlyLocation [33]
(abbreviated as Friendly) is the representative model of this
category. It leverages the relationship between tie strength of
users pairs and their mutual distances. The basic assumption
of this model is that users with strong ties are more likely
to live near each other. Several social factors, e.g., follow-
ing relationships, number of friends, conversations between
social users, etc., are considered to measure the user proxim-
ity.

The Friendly model is semi-supervised model where the
aforementioned social factors are used to train a decision tree
classifier to distinguish between users’ pairs who are likely to
live nearby, and those who are distant. This model divides the
predicted distance returned by the regression tree into “m”
number of quantiles. Let {q0, q1, . . . , qm} be the boundaries.
Each predicted distance d p

i of i th edge (s.t. ei 〈u, v〉 ∈ E) is
assigned with a quantile number:

qntl(d p
i ) = max

j∈{0,...,m}{ j : d p
i < q j }.
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The number of socially connected edges (act Edges) in each
quantile with distance “d” is measured as

act Edges(k, d) = | fi 〈u, v〉 ∈ EF : d = da
i ∧ k = qntl(d p

i )|.

Similarly, possible number of edges (stgr Edges) that could
have existed at a distance d is calculated as

stgr Edges(d) = |e〈u, v〉 : u ∈ V ∧ v ∈ V ∧ d = dist(lu, lv)|.

Finally, the probability of a neighbor in a quantile j lives
within d distance is measured as

p∗(k, d) = act Edge(k, d)

stgr Edges(d)
.

Using training data, p∗(k, d) function can be fit into curve
for each quantile:

p∗(k, d) = ak(bk + d)−ck .

Now, the likelihood of a location l ∈ L(ngbr(u)) is maxi-
mized and the best location is inferred to the user:

F(l, L) =
∏

l(ngbri (u)),d p
i ∈D p

p∗(qntl(d p
i ), |l, l(ngbri (u)|)

(1 − p(|l, l(ngbri (u)|)) .

5.6 Social coefficient-basedmodel

Social coefficient-based model is based on the hypothesis
that social distance can identify the closest friends in location
estimation. In this model category, Kong et al. [22] propose
SPOT model that calculates the energy of a user ui ∈ U N

locating at location l and having the social closeness score
si j with neighbors. The “social closeness” is calculated using
the cosine similarity between a pair of users ui and u j :

si j = |ngbr(ui ) ∩ ngbr(u j )|/
√

|ngbr(ui )||ngbr(u j )|.

Given the information of the labeled users in network, the
probability p(di j , si j ) of users ui ∈ V ∗ and u j ∈ V ∗ located
at distance (di j ) with their social closeness si j is measured.
The maximum likelihood of a neighbor location w.r.t. social
closeness score is predicted as the user location.

SPOT [22] model improves the location estimation errors
due to highly uneven neighbor distribution and location spar-
sity problem. In these scenarios, to enhance the performance
of “social closeness”-based models, the energy and local
social coefficient-based approach is introduced to measure
total energy of a user ui locating at a location li :

Q(ui , li ) = −
|ngbr(ui )|∑

j=1

si j .g(ui , u j ).

Here, g(ui , u j ) = −e−|li ,l j |/d(si j ), u j ∈ ngbr(ui ) ∧ U∗ and
d(si j ) is the average distance of user ui and neighbors u j

when the social similarity score is si j .
Local social coefficient of each user is calculated as

C(ui ) = 3Q�
3Q� + Q∧

.

Here, Q� is the number of closed triplet and Q∧ is the num-
ber of open triplet connected by ui with her neighbors. The
energy value, Q(ui , li ), and the social coefficient, C(ui ), of
each friend location are ranked to fit a logistic response func-
tion. The location with the highest probability is predicted as
the user location.

5.7 Label propagation-basedmodel

The label propagation-based location prediction approaches
(e.g., SLP [20]) predict a user’s location by propagating the
location labels among their neighbors. It follows a multi-
pass iterative process. SLP [20] model, a representative of
this category, assigns a location of a user with the geometric
median of neighbors’ locations. The inferred locations can
be used further to predict the location of the adjacent users
while making new inferences.

In SLP, a location among the neighbors is selected by
analyzing the spatial arrangement of the neighbors’ locations.
The geometric median “m”:

m = arg min
l∈L(ngbr(u))

∑

lv∈L(ngbr(u)

|l, lv|

is estimated as the location of the user u ∈ U N in the first
pass. In each iteration, the newly predicted user location is
further used to infer unlabeled neighbors’ locations. This
process continues until it satisfies convergence criteria. In
SLP, the concept of the iteratively propagating the newly
predicted location generates a flatter population distribution,
which contradicts the concept that the majority of users live
in dense area.

This model iterates multiple times until the stopping crite-
rion is satisfied. In each iteration, the estimated locations are
further used to predict the neighbors. In this way, some users
with no labeled friends at the beginning may be predicted
after a certain number of iterations. However, two problems
may arise: (a) The incorrect estimation of a friend may lead
to decreased accuracy when such predicted location is fur-
ther used to infer the user. (b) Extensive iterations required
for convergence may shift the correctly predicted location
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Table 2 Summary of the datasets used

Dataset name # Users # Edges Average degree Average neighbor distance (km) Average node locality

Twitter 138,012 2,274,416 32.95 1402 0.82

Gowalla 107,092 456,830 8.53 1722 0.52

Brightkite 51,406 197,167 7.67 1819 0.69

Foursquare 2,127,093 8,640,352 8.12 2629 0.79

away, if a large number of incorrect neighbor locations are
included in each iteration.

5.8 Social concentration-basedmodel

The social concentration-based model assumes that a higher
proportion of a user’s friends live in a dense location region.
The representative Landmark Mixture Model (LMM) [56]
model first identifies the set of landmark users who resides
in a close proximity to others. After that, a location with the
maximum likelihood among the landmark users’ locations is
inferred. Each landmark user is connected with a number of
labeled neighbors, and the centroid of the neighbors is used
to calculate dominance distribution using Gaussian mixture
model (GMM). The users with lower variance in dominance
distribution and having sufficient neighbors (e.g., landmark
user) are used to infer the unlabeled neighbors. The maxi-
mum likelihood location of landmark users (among labeled
neighbors) is selected as the predicted location.

The landmark users must have a large number of imme-
diate neighbors, and the probability density of neighbor
location distribution at the mode point should be high. How-
ever, the selection process of landmark users in LMM [56]
is trivial. It lacks theoretical proof in identifying such users,
and the optimal parameter ranges are not mentioned. More-
over, this model may fail to predict a suitable location if the
neighbors are distributed sparsely.

6 Benchmarking evaluation

We perform extensive evaluation using our benchmark to
measure the effectiveness, efficiency, memory consumption,
prediction coverage, and combined performance of the eight
representative models. The framework is implemented using
Python in a Windows environment with Intel i7 CPU and 40
GB memory.

6.1 Datasets

We use four real-world datasets including Twitter microblog,
Gowalla, Brightkite, and Foursquare LBSN. All these four
datasets have graph structure where each user is considered a

vertex (i.e., node), and the relationship between two users (if
exists) is represented with an edge. The spatial distribution of
users’ network can be used to infer individuals’ locations.We
have adapted the functionalities of the selected location pre-
diction models in LBSN (i.e., check-in) datasets. It is noted
that in real world, many LBSN users might have social con-
nections but no check-ins (or profile locations) [50]. Hence,
it is useful to infer locations of such users from the network
properties of LBSN. Table 2 gives a summary of the four
datasets.
Twitter The Twitter (TW) dataset [28] was originally col-
lected in May 2011, and the users are distributed in different
cities of USA. We select 138,012 active users from this
dataset who have both network information and tweet con-
tents. This dataset is location-annotated (see [28] for details),
and we transform the location name to geo-points using
Google Geolocation API.1

Gowalla The Gowalla (GW) LBSN dataset is collected
from SNAP repository (http://snap.stanford.edu) and con-
tains 6,442,892 check-ins on 1,280,969 places worldwide
over a period spanning from February 2009 to October 2010.
In this dataset, 107,092 users have multiple check-in loca-
tions and form an explicit social network.
Brightkite Brightkite (BK) is another publicly available
LBSN dataset in SNAP repository. The original data were
collected over the period April 2008–October 2010. This
dataset has multiple check-in locations, and a social graph
is constructed using 50,686 users who have both check-ins
and network information.
FoursquareTheFoursquare (FS)LBSNdatasetwas collected
using public API [24]. A total of 2.12 million users have
self-reported location profile. We create a social graph, G,
using the users who have self-reported locations and social
connections.

6.2 Ground-truth information of datasets

Self-reported profile locations are used as the ground truth in
Twitter [28] and Foursquare [24]. Since no profile locations
are explicitly available in Brightkite and Gowalla datasets,
we select the ground-truth location using approaches similar
to Cho et al. [11]. We discretize the spherical earth surface

1 https://developers.google.com/maps/documentation/.
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Table 3 Summary of the
Twitter dataset

Dataset ID # Unlabeled users # Labeled users # Average labeled neighbors

Dataset TW-I 27,602 110,410 28.86

Dataset TW-II 55,205 82,807 23.20

Dataset TW-III 82,807 55,205 15.44

Dataset TW-IV 110,410 27,602 7.68

Dataset TW-V 124,211 13,801 5.72

Table 4 Summary of the
Gowalla dataset

Dataset ID # Unlabeled users # Labeled users # Average labeled neighbors

Dataset GW-I 21,418 85,674 11.08

Dataset GW-II 42,830 64,262 8.85

Dataset GW-III 64,262 42,830 7.09

Dataset GW-IV 85,674 21,418 5.43

Dataset GW-V 96,383 10,709 4.15

Table 5 Summary of the
Brightkite dataset

Dataset ID # Unlabeled users # Labeled users # Average labeled neighbors

Dataset BK-I 10,137 40,549 6.54

Dataset BK-II 20,274 30,412 4.93

Dataset BK-III 30,412 20,274 3.43

Dataset BK-IV 40,549 10,137 2.02

Dataset BK-V 45,617 5069 0.80

Table 6 Summary of the
Foursquare dataset

Dataset ID # Unlabeled users # Labeled users # Average labeled neighbors

Dataset FS-I 425,418 1,701,674 7.73

Dataset FS-II 850,837 1,276,2557 5.76

Dataset FS-III 1,276,255 850,837 3.83

Dataset FS-IV 1,701,674 425,418 2.08

Dataset FS-V 1,914,382 212,710 0.61

(a) Twitter (b) Gowalla (c) Brightkite (d) Foursquare

Fig. 3 Probabilities of following as function of distance

into 0.2 degree by 0.2 degree cells, which is approximately
equal to 22 by 22 kmw.r.t. equatorial region. For a given user,
we find the cell with the “most number of check-ins” [49] and
within this cell, we select the average check-in position as the
ground truth for Gowalla and Brightkite datasets (Tables 3,
4, 5, and 6).

6.3 Friendship, distance, and check-in characteristics

In Fig. 3, we plot the following probability with distance
between a pair of users ui and u j , s.t. e(ui , u j ) ∈ E . The fig-
ure shows that (1) the following probability decreases when
the distance between the user pairs increases, (2) in Twitter,
the distribution is much flatter than the other three datasets.
Gowalla and Brightkite have similar distributions. All the
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(a) Twitter (b) Gowalla (c) Brightkite (d) Foursquare

Fig. 4 Average node locality as a function of node degree

patterns successfully capture the fact that a user is likely to
follow others who live close. The following probabilities in
each dataset can be fitted into a power law distribution curve
if we ignore the larger distance pairs in each dataset. The
user check-in activities also follow a heavy-tailed distribu-
tion [50], and the majority of check-in venues are near to
users’ stable locations [11].

6.4 Node locality

Node Locality is useful to quantify the geographic closeness
of the neighbors to a certain user. For a userui with |ngbr(ui )|
1-hop neighbors, the node locality is calculated as [47]:

N L(ui ) = 1

|ngbr(ui )| ×
∑

v j ∈ngbr(ui )

e− d(ui ,v j )
β ,

where β is a scaling factor and it is calculated as follows:

β = 1

|E | ×
∑

u,v∈V ,e(u,v)∈E

d(u, v).

Table 2 provides the average neighbor distance and the
average node locality of each dataset. A dataset with higher
average node locality should have large number of social
connections within a close geographic region [47]. The users
in Twitter dataset are distributedwithinUSA, and this dataset
has a higher average node locality score (0.82). Meanwhile,
Gowalla has a lower node locality score (0.52) among the
four datasets. This provides evidence that users in Gowalla
are engaged with a geographically spread set of individuals
rather than only with users at closer distances.

The correlation between node degree and node locality
is useful to understand the socio-spatial properties of users.
Figure 4 shows the average node locality as a function of
node degree. It shows a fairly constant trend in each dataset
when the average node degree is less than 100. These set of
users may have similar properties with a similar proportion
of neighbors living distant. In Gowalla, the average node
locality drops significantly with the increase in node degree.

Table 7 Parameter settings in different models

Model Parameters and value

UDI [28] Outer iteration = 3, convergence error = 0.1

MLP [27] Location-based following probability distribution
parameters, α = −0.55, β = 0.0045 (values of
α, β depend on data type)

Back [3] Friendship distance coefficient: a = 0.0019,
b = 0.196, c = −1.05 (values of a, b, c depend
on data type)

SLP [20] No. of iterations = 4

TFIDF [23] tfidf threshold = 0.1

Friendly [33] LCR min dist = 40 km, quantile number = 10,
max sample leaf = 1000

SPOT [22] No. of iterations = 4

6.5 Parameter settings

In our evaluation, the essential parameters of the models are
configured as recommended in the original papers. Table 7
shows the parameter settings of themodels.One of the impor-
tant parameters is the number of times a model is allowed to
iterate.We set the default value as “two” for thosemodels that
follow multiple iterations but do not clearly mention in the
original papers (e.g., Backstrom [3]). Meanwhile, the friend-
ship distance coefficient [3] and location-based following
probability parameters (α, β) [27] are sensitive to the types
of data. MLP [27] model reports the value of α = −0.55
and β = 0.0045 in Twitter; however, it is calculated as
α = −0.42 and β = 0.0030 in our selected Twitter social
graph. Similarly, in our experiment, the values of (α, β) in
Gowalla, Brightkite, andFoursquare aremeasured as (−1.52,
0.612), (−1.14, 0.20), and (−0.65, 0.016), respectively.

6.6 Metrics for evaluation

Table 8 lists the metrics used in the existing location predic-
tion models. In this section, we discuss the suite of metrics
used in our study to compare the models in a transparent
comparison frame. We use Haversine [51] formula to mea-
sure the distance between two geo-points in kilometer unit.
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Table 8 Metrics used in different models

Metrics Model/work reference

AED@d, MeanED UDI [28], Friendly [33], LMM [56], SLP
[20], Cheng et al. [9]

AED@k% UDI [28]

MedianEd Friendly [33], LMM [56]

Acc, Acc@d UDI [28], MLP [27], Friendly [33], Rout
et al. [43], Cheng et al. [9]

Acc@K Cheng et al. [9], [10], MLP [27], Bo et al.
[18]

Precision, DP@K OLIM [57], MLP [27], Davis Jr. et al. [13]

Recall, DR@K OLIM [57], MLP [27], Davis Jr. et al.
[13], Compton et al. [12], LMM [56]

CDF Back [3], SLP [20]

Haversine strikes a good balance between correctness and
computational efficiency that works over spherical earth sur-
face.
Metric I Average Error Distance (AED) calculates the
average distance between the actual location (lui ) and the
predicted location (l̂ui ) of users:

AE D(V̂ N , Mx ) =
∑

ui ∈V̂ N Err(ui , Mx )

|V̂ N | ,

where Err(ui , Mx ) = d(lui , l̂ui ) is the Error Distance (ED)
between the actual and the predicted location of a user ui in
model Mx .

We evaluate the models using both “distance”- and
“percentage”-based AED. The distance-based AED@d met-
ric measures the average of the error distances of those users
whose locations are predicted within “d” km:

AE D@d= 1

|ui |
∑

ui ∈V̂ N

Err(ui |ui ∈ V̂ N ∧ Err(ui , Mx )≤d).

The percentage-based AED@k% calculates the average of
the error distance of top “k%” predicted users.
Metric II Precision (Prec) measures the quality of a predic-
tionmodel. This metric calculates the percentage of the users
predicted with error distance less than “d” kilometers. In a
set of predicted users V̂ N , the precision of a model Mx is
calculated as:

Prec@d = |{ui |ui ∈ V̂ N ∧ Err(ui , Mx ) ≤ d}|
|V̂ N | .

Metric III Accuracy (Acc@d) (or Recall [27,56]) measures
the proportion of the correctly predicted users (with error
distance less than “d”) among the test users V N in a location
prediction model Mx ,

Acc@d = |{ui |ui ∈ V N ∧ Err(ui , Mx ) ≤ d}|
|V N | .

Metric IV Prediction coverage measures the percentage of
the unlabeled users (V N ) who have been assigned a location
by amodel regardless of the prediction accuracy. Let, amodel
Mx predicts V̂ N users amongV N unlabeledusers in a dataset.

The coverage of the model is calculated as (
|V̂ N |
|V N | × 100).

Metrics V Mutual Prediction Ratio (MPR) measures the per-
centage of similar predictions of two different models Mx

and My within a given error distance d (e.g., 20 km):

M P R(Mx , My)=
| ⋂Mx ,My

{ui |ui ∈ V̂ N ∧ Err(ui ) ≤ d}|
| ⋃Mx ,My

{ui |ui ∈ V̂ N ∧ Err(ui ) ≤ d}| .

This metric measures the mutual agreement of two models
on location prediction.

6.7 Performance evaluation configuration

6.7.1 Evaluation on data types and location sparsity

To evaluate the models using various “data-centric” configu-
rations, we perform experiments on the Twitter microblog
and three LBSN datasets (e.g., Gowalla, Brightkite, and
Foursquare). Initially, these datasets are location-annotated.
We investigate the effect of the location sparseness and ran-
domly choose 20%, 40%, 60%, 80%, and 90% users from
each dataset to mask their locations (labeled as I, II, III, IV,
V). Data setting I is the “less” sparse with 20% unlabeled and
80% labeled users, whereas data setting IV is the “highly”
sparse containing 80% unlabeled and 20% labeled users.
Data setting V has “extreme” sparsity with 90% unlabeled
users. The location masked users are termed as “unlabeled”
(V N ) and not used in the location estimation process. The
statistics of the datasets with five sparsity levels are given in
Tables 3, 4, 5, and 6.

6.7.2 Evaluation on different types of users

Wedesign some experimental settings using node degree and
node locality to analyze the effects of “user-centric” proper-
ties in the network.
Different node degree Different number of neighbors may
affect the accuracy of the location prediction models. We
divide the users into four groups w.r.t. node degree as: “5–
10,” “10–20,” “20–30,” and “> 30.”
Different node locality Moreover, to explore the effect of
neighbors’ geographic distances in the prediction accuracy,
we also group the users as “0.0–0.2,” “0.2–0.4,” “0.4–0.6,”
“0.6–0.8,” “0.8–1.0” on node locality.
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6.7.3 Region-specific model performance

Different social media captures different kinds of users dis-
tributed in various spatial regions. The network properties
of social media in particular regions may have distinct set
of characteristics. Hence, for some model, it may be much
easier to predict a large number of users in a specific spatial
region than the other models.

6.7.4 Scalability evaluation

Scalability of the prediction models is an important dimen-
sion for practical point of view in various applications (e.g.,
emergency reporting system). We compare the time cost and
average memory consumption of the models in different data
settings.

6.8 Effectiveness on different types of social media
datasets with different parameter settings

We analyze the eight models on the metrics defined in
Sect. 6.6. Note that TFIDF model can only be tested on
Twitter data as the three LBSN datasets do not have content
information.

6.8.1 AED@d

In Fig. 5, we report AED@d within 20km, 50km, 100km,
and 160km of error distances using data settings I (less
sparse), IV (highly sparse), and V (extreme sparse). The
models in the Twitter dataset have lower AED value than
three LBSN data. For example, in Twitter with data sparsity
I and IV, the UDI model has 2.4km and 2.7km AED@20,
respectively.However, it is observed5kmhigher in theLBSN
datasets with similar data settings. The AED in extreme spar-
sity (i.e., level V) level is little higher than sparsity level IV.
We found AED@d is always higher in TFIDF model. Below,
we discuss models’ relative performance using AED@d.
SLP model The SLP model has the lowest AED@d values in
threeLBSNdatasetswith “less” sparse data setting (e.g., 20%
unlabeled), and it generates AED@160 as 19.3km, 22.6km,
and 22.6km in Gowalla, Brightkite, and Foursquare, respec-
tively. However, the AED@160 increases by 3.0, 3.6, and
2.6 km in these three datasets, respectively, when data spar-
sity level changes from I to IV (e.g., from “less” to “highly”
sparse). In Twitter, the value of AED@160 increases by 2.4
km only.
Backstrom, SPOT, and friendly models The relative AED@d
of Backstrom, SPOT, and Friendly remains similar in each
data types. However, in Foursquare with high data sparsity
(e.g., FS-IV), the AED@160 of Backstrom has higher value
than the other two models.

LMM model The LMM model has higher AED@d in major-
ity of the data settings in LBSN. A significant increase in
AED@160 is noticedwhile location sparsity changes inTwit-
ter dataset. However, theAED ofLMM does not changemuch
in LBSN. For example, in Twitter, the AED@160 is 10km
and in Brightkite 1.1km higher when sparsity level changes
from I to IV.
UDI and MLP model In comparison with Twitter, the UDI
andMLP models have always higher AED in LBSN datasets.
This is because the content information available in Twit-
ter helps to predict more precise locations than three LBSN
datasets.

6.8.2 AED@k%

A distance-based AE D@d can be easily affected by the out-
liers in the results. In addition, different amount of predictions
within a certain error distance may not make a transparent
comparison of the models. Hence, we use percentile-based
AEDs that calculate average error distance using top k% (i.e.,
60%, 80%, and 100%) of the predicted users ranked by their
error distances. Figure 6 shows the AE D@k%of themodels.
UDI and MLP modelsTheUDI model has the lowestAED@k
in Gowalla and Brightkite. In Twitter, MLP and UDI have
similar AED@k in both I and IV settings. However, we have
noticed thatMLP model has predictedmore precise locations
in FS-IV setting which generates a better in AE D@100%.
Meanwhile, the number of predicted users is lower in MLP.
We have discussed the effect of prediction coverage in
Sect. 6.11.
Backstrom, friendly, and LMM modelsThe relativeAED@k%
of Backstrom and Friendly models is similar in each dataset.
The prediction approaches of these twomodelsmaximize the
probability of locations based on the curve fit using the edge
probability with distance. However, the edge probabilities
are different in these two models, but in similar setting these
two models can predict users with similar error distances.
The LMM model has relatively the highest AE D@k in each
of the data settings.

6.8.3 Precision

Figures 7, 8, 9, and 10 show the precision of each model in
four datasets with five sparsity levels. We only discuss the
significant observations of the models’ performance w.r.t.
precision at 160 km (i.e., Prec@160).
UDI model The UDI model has higher precision in major-
ity of the datasets in different sparsity levels. In three LBSN
datasets, the precision in UDI does not change much when
location sparsity changes. For example, in Gowalla, the pre-
cision of UDI model drops only 3.12%, while no significant
changes are observed in Brightkite and Foursquare datasets.
However, inTwitter, the precision changes notablyw.r.t. loca-
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Fig. 5 AED@d using different data settings
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Fig. 6 AED@k% using different data settings
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Fig. 7 Precision of the location prediction models using Twitter dataset
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Fig. 8 Precision of the location prediction models using Gowalla dataset
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Fig. 9 Precision of the location prediction models using Brightkite dataset
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Fig. 10 Precision of the location prediction models using Foursquare dataset

tion sparsity. For example, it drops 11% when sparsity level
increases from I from IV. Similarly, in extreme sparseness
(e.g., TW-V), the precision drops 14% in Twitter.
SLP model In Gowalla and Brightkite datasets, the SLP
model has the second best Prec@160 in sparsity levels I
and II. Similarly, in Foursquare dataset, SLP has the highest
precision on FS-I (68.33%) and FS-II (67.87%) data settings.
However, we notice a significant decrease in precision of SLP
when the location sparsity increases to higher and extreme
higher levels.

Backstrom, SPOT, friendly models The relative precision of
these three models in Gowalla and Brightkite datasets are
similar, where SPOT has higherPrec@160 thanFriendly and
lower thanBackstrom. However, inTwitter dataset, SPOT has
betterPrec@160 than other twomodels. Thismaybebecause
the local social coefficient factor is effective inTwitter dataset
and the average neighbor distance is lower in Twitter.
MLP and SLP models The MLP model has better precision
than SLP in Twitter dataset. However, Prec@160 in SLP is
higher than MLP model in the first three data settings (i.e., I,
II, and III) in LBSN datasets. Meanwhile, MLP has a better
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Fig. 11 Accuracy of the location prediction models using Twitter dataset
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Fig. 12 Accuracy of the location prediction models using Gowalla dataset
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Fig. 13 Accuracy of the location prediction models using Brightkite dataset
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Fig. 14 Accuracy of the location prediction models using Foursquare dataset

precision in sparser data settings. For example, in Gowalla
GW-I setting, the value of Prec@160 is 12% higher in SLP;
however, MLP generates 5% and 12% better Prec@160 in
GW-IV and GW-V, respectively.
LMM model The precision in LMM decreases drastically
in three LBSN datasets with the increase in data sparsity.
For example, Prec@160 of LMM changes in Gowalla from
54% to 35% with sparsity level changes from I to IV. This is
because LMM does not iterate multiple times to precise the
predicted users’ locations.

6.8.4 Accuracy

Figures 11, 12, 13, and 14 show the accuracy of the mod-
els in the four datasets under five location sparsity settings
and different error distances ranging from 20 to 160km. We
discuss accuracy of the models with 160km (i.e., Acc@160)
error distance in the following discussions.
UDI model UDI has the highest accuracy in Twitter dataset,
but it is lower than SLP model in less sparse Gowalla and
Foursquare data. However, with “high” and “extreme” spar-
sity level in these two datasets, the UDI model outperforms
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the second best model by 2–12% in Acc@160. This is due to
multiple inner iterations performed by UDI model, where a
better location is assigned until it converges. Hence, in sparse
datasets, the UDI model can predict more users with precise
locations. In Brightkite, the accuracy of UDI is the highest
in each of the five different data settings.
SLP model SLP has better accuracy in less sparse data
settings, and it decreases heavily when location sparsity
increases. The performance of SLP model is always bet-
ter when a large number of users have sufficient neighbor
information. It reports the highest Acc@160 in Gowalla and
Foursquare with data setting I and outperforms the second
best by 7% and 3%, respectively. However, in Twitter TW-I
the Acc@160 is 51% only.
MLP model The accuracy ofMLP model decreases smoothly
when the number of unlabeled user increases. In Twitter
dataset, theAcc@160 drops 14%when sparsity level changes
from I to V. However, in LBSN datasets the accuracy of MLP
model is always lower than Twitter and it generates similar
accuracy trend as Backstrom model.
Backstrom, SPOT, and friendly These three models gener-
ate different pattern in different types of social network.
For example, SPOT and Friendly have higher Acc@160
than Backstrom model in Twitter dataset. However, in LBSN
datasetsBackstrom outperforms the other twomodels. This is
because inTwitter various factors related to social tie improve
the prediction results in SPOT and Friendly, whereas the
LBSN datasets lack such social factor parameters.

6.8.5 Mutual prediction ratio

The Mutual Prediction Ratio (MPR) between a “pair” of
prediction models is shown in Tables 9, 10, 11, and 12. Note
that we use data settings I and IV of Twitter microblog and
Foursquare LBSN to evaluate similar predictions of model
pairs within 20km of error distance. The SLP model returns
higherMPRwhen pair withUDI and MLP models in Twitter
dataset. This is because these models consider user rela-
tionships and their neighbor distance as important factors
in their prediction task, and similar set of users with higher
node locality are predicted within a lower error distance.
The TFIDF model produces lower MPR score with others
models. This is because the prediction approach and fea-
tures used in TFIDF model are totally different from the
remaining network-based models. On the other hand, Back-
strom model produces a higherMPR score with Friendly and
SPOT models. This is because these models consider similar
social factors such as friendship and social closeness with
the neighbor distance. The MPR scores between model pairs
decrease in highly sparse datasets. For example, in FS-I, the
majority of the model pairs haveMPR score larger than 0.50,
whereas in FS-IV the majority of the MPR scores are below
0.40.

Table 9 Mutual prediction ratio in TW-IV data

MLP Back SLP TFIDF Friendly SPOT LMM

UDI 0.39 0.32 0.51 0.22 0.37 0.33 0.24

MLP – 0.35 0.53 0.29 0.39 0.35 0.26

Back – – 0.37 0.31 0.42 0.59 0.32

SLP – – – 0.25 0.35 0.43 0.34

TFIDF – – – – 0.30 0.24 0.20

Friendly – – – – – 0.36 0.45

SPOT – – – – – – 0.29

Table 10 Mutual prediction ratio in TW-IV data

MLP Back SLP TFIDF Friendly SPOT LMM

UDI 0.25 0.12 0.25 0.26 0.15 0.35 0.23

MLP – 0.18 0.63 0.20 0.19 0.27 0.17

Back – – 0.20 0.11 0.25 0.45 0.18

SLP – – – 0.15 0.22 0.36 0.20

TFIDF – – – – 0.11 0.15 0.16

Friendly – – – – – 0.24 0.21

SPOT – – – – – – 0.18

Table 11 Mutual prediction ratio in FS-I data

MLP Back SLP Friendly SPOT LMM

UDI 0.67 0.64 0.63 0.60 0.58 0.51

MLP – 0.60 0.58 0.63 0.52 0.48

Back – – 0.62 0.68 0.65 0.55

SLP – – – 0.60 0.56 0.52

Friendly – – – – 0.52 0.45

SPOT – – – – – 0.53

Table 12 Mutual prediction ratio in FS-IV data

MLP Back SLP Friendly SPOT LMM

UDI 0.30 0.33 0.43 0.30 0.32 0.30

MLP – 0.51 0.34 0.41 0.34 0.29

Back – – 0.37 0.44 0.35 0.25

SLP – – – 0.34 0.36 0.31

Friendly – – – – 0.32 0.25

SPOT – – – – – 0.23

6.9 Effectiveness on local vs. global inference

6.9.1 Local inference technique

Local Inference (Local prediction) technique uses one- or
two-hop friendship information to infer users’ locations. We
compare the model performances using Twitter microblog
(see Fig. 15) and Foursquare (see Fig. 16), the largest among
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Fig. 15 Local prediction accuracy of the location prediction models using Twitter dataset
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Fig. 16 Local prediction accuracy of the location prediction models using Foursquare dataset
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Fig. 17 Global prediction accuracy of the location prediction models using Twitter dataset

the three LBSNs datasets for the comparison of the model
performance using first four data settings (e.g., I–IV).

Considering the one-hop neighbor information, the UDI
and MLP models produce higher accuracy than the other
models in Twitter and Foursquare datasets. The accuracy of
SPOT has declined by 4% (in TW-I dataset) compared to its
default configuration with four iterations. In Twitter, there is
no major differences in local inference accuracy of Friendly,
LMM models with their default configuration. The local pre-
diction accuracy is stable in TFIDF model, as the number
of iteration is ineffective to the performance of this model.
In both datasets, the accuracy of Backstrom, Friendly, and
SPOT declines faster with the increases in location sparsity.

6.9.2 Global inference technique

Global Inference (Global prediction) technique is used to
overcome the location sparsity problem where a newly pre-
dicted location can be used further and updated iteratively to

predict the locations of other users in the network. We set the
number of iteration as 4 and show the accuracy of the models
in Figs. 17 and 18 using data settings I–IV in Twitter and
Foursquare data, respectively.

The Backstrom, Friendly, and LMM models have sig-
nificant improvements in accuracy compared to the local
inference. For example, in TW-IV data settings the accu-
racy Acc@160 increases in these three models by 5%, 5%,
and 9%, respectively. In Foursquare FS-IV, the accuracy of
these threemodels improves between 4 and 11%.The relative
performance of the UDI model is quite stable in both of the
datasets w.r.t the default settings. This is because the differ-
ence in number of iterations in global inference and default
setting is only one in UDI, and hence, no significant new pre-
dictions occur. A large number of iterations may not always
improve the performance of the models. We have identified
SLP as the most sensitive model to “number of iterations.”
This model performs best in Foursquare with four and in
Twitter with three iterations.
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Fig. 18 Global prediction accuracy of the location prediction models using Foursquare dataset
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Fig. 19 Performance of models with different node degrees

6.10 Effectiveness on different types of users

6.10.1 Users with different node degrees

Figure 19 shows the performance of the location prediction
models on users with different numbers of neighbors (i.e.,
node degree). Here, we are reporting the result using “less”
sparse (i.e., data setting I with 80% labeled users) and “high”
sparse (i.e., data setting IVwith 20% labeled users) data. The
location inference technique of TFIDF model is independent
of the network information; hence, we exclude this model
from the discussions. We make the following observations:

In Twitter, the relative accuracy of the models in differ-
ent node degrees is quite similar. In TW-IV data setting,
the average accuracy decreases linearly in each model when
node degree increases beyond 20. Similar pattern occurs in
majority of the models in the remaining three datasets. In
Gowalla, the users with node degree between 10 and 20 have
higher accuracy inUDI,MLP, and SLP. In Brightkite BK-IV,
the accuracy of UDI is constant w.r.t. different node degree
ranges. In Foursquare dataset with FS-I setting, the relative
accuracy of users in different ranges of node degree is similar

with Gowalla GW-I data settings. Themajority of the models
obtain higher accuracy for the users who have node degree
between 10 and 30. Users with a very large node degree fail
to infer better locations.

6.10.2 Users with different node locality

Figure 20 shows the proportion of the users predicted by
each model within 160 km from the actual users’ location.
Eachmodel has predicted a very small proportion of the users
who have smaller node locality (i.e., less than 0.2), while a
large amount of users with node locality more than 0.8 have
been predicted precisely within 160 km. In Twitter, there
is a steady increase in proportion of predicted users with
the increase in node locality score. We notice that there is a
sudden growth in the predicted user proportion in Brightkite
and Foursquare when node locality scores of the users are
more than 0.8. Among the four datasets, more than 80% of
users in Foursquare with node locality scores 0.8–1.0 have
been predicted precisely within 160 km of error distance in
UDI, MLP, and SLP models. In general, large proportion of
the users with higher node locality are predicted precisely by
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Fig. 20 Predicted users proportion (with error distance less than 160 km) with different node locality
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Fig. 21 Prediction coverage of models in different datasets with default configuration
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Fig. 22 Prediction coverage of models when local prediction is considered

the location prediction models in each dataset. This means
the predicted users are more concentrated in some locations
closer to the actual locations co-shared by the neighbors.

6.11 User prediction coverage

Figure 21 shows the user prediction coverage of the mod-
els using default number of iterations. The relative coverage
of the models in Gowalla and Brightkite is quite similar.
UDI, MLP, and SLP models have higher prediction cover-
age (Fig. 21a) in Twitter, and the remaining models decline
significantly with location sparsity. For example, in Friendly
and LMM, the user coverage declines from 97% to 88% and
89% to 75%, respectively, when the sparsity level changes

from I to IV. This is because the default settings of thesemod-
els do not considermultiple iterations. The TFIDF model has
the lowest prediction coverage among the eight representa-
tive models. In Fig. 22, we show the prediction coverage of
themodels when they are allowed to iterate only once. All the
network-based models have lower prediction coverage than
the default configuration. However, the prediction coverage
in SLP model drops significantly from “less” to “extreme”
sparsity level, e.g., it drops 21% in Foursquare. The major-
ity of the models in default configuration execute multiple
iteration and have similar coverage with the global predic-
tion. Hence, we do not include the global prediction coverage
here.
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Fig. 23 Running time of the different models

6.12 Running time andmemory consumption

The time costs (in hour) of the model-driven prediction pro-
cess are shown in Fig. 23. The Backstrom model is the most
time-efficient among the other models, whereas SLP con-
sumes the maximum time to process the four large-scale
datasets.Meanwhile, thememory consumption does not vary
much in different data settings; it depends on the size of the
dataset. We report the memory consumption in Twitter as
reference to the other datasets. The Backstrom model con-
sumes a lower memory of 810 MB, as it only stores the
neighbor information while processing each dataset. The
memory consumption of MLP is higher (e.g., 1725 MB),
because it integrates various generative modules and each of
the modules stores the following and messaging information
throughout the program. The remaining models have mem-
ory costs between 850 MB and 1380 MB.

6.13 Region-specific comparison of overall
prediction performance of themodels

Different social networks have different region-specific char-
acteristics. Some models may have better performance in
predicting users’ locations from a specific region. Here, we
compare and visualize the proportion of the users predicted
within 160km of error distance with actual locations using
Google Maps. We choose UDI, MLP, Backstrom, and SLP
models to compare the region-specific predictions in Twit-
ter and Brightkite datasets. In Twitter, the majority of the
users are distributed in New York and Los Angeles region,
whereas the users in Brightkite are spanning over New York,
Los Angeles, San Francisco, and London. In Fig. 24, the dark
red regions show relatively higher population density in the
original Twitter and Brightkite datasets.

In Twitter, the UDI model has relatively higher prediction
in Chicago and Atlanta region, whereas a lower prediction in
Los Angeles area (Fig. 25a). The prediction proportion of the
other three models is identical with the original datasets. In
Brightkite, the relative prediction of UDI and MLP in New
York, Los Angeles, and San Francisco area is similar with the
ground-truth location distribution. However, the predicted

(a) Twitter (b) Brightkite

Fig. 24 User location distribution in original datasets

location density using Backstrom and SLP models is slightly
sparse in these three regions (refer Fig. 25).

7 Summary of the findings

Our comprehensive evaluations have brought up many inter-
esting insights that are useful for better understanding of
the location prediction models. These insights are helpful
in designing and optimizing models for different scenarios
such as location sparsity, data type and neighbor types. We
summarize our findings below:

– In a dataset that has both network information and
social content, theUDI model achieves better accuracy
(Fig. 11).

– SLP model is highly sensitive to location sparsity. The
prediction performance of this model drops signifi-
cantly when the location sparsity increases. On the
other hand, UDI model is less sensitive to sparsity and
can predict precise users’ locations in sparse data also.
This is because the inner iterations of UDI model exe-
cute to find the best location by updating the influence
scope of each user from minimal location information
(Figs. 11–14).

– The performance of MLP, Backstrom, and Friendly
models heavily relies on the type of data. Different
social networks capture different kinds of users, and
hence, they have different probabilities of friendships
w.r.t. distances. Therefore, the friendship coefficient
parameters must be calculated each time for a new
social network dataset.
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(a) UDI in TW-I data (b) MLP in TW-I data (c) BACK in TW-I data (d) SLP in TW-I data

(e) UDI in BK-I data (f) MLP in BK-I data (g) BACK in BK-I data (h) SLP in BK-I data

Fig. 25 Heatmap of user prediction in different models using Twitter and Brightkite data setting I

– With respect to execution speed, UDI model performs
the best on all datasets as it uses local inference (i.e.,
one iteration). SLP model performance (accuracy and
prediction coverage) drops significantly with the num-
ber of iterations (Figs. 11–14, 15–16, 21–22)

– In terms of training scalability, SPOT and Backstrom
are the most scalable models as their preprocessing
time is constant w.r.t. the number of labeled users.
However, the preprocessing time of Friendly model
increases linearly with the increase in number of
labeled users.

– Backstrom and LMM are the most cost-effective mod-
els, while SLP is the least efficient (Fig. 23).

– Users with moderate node degree (i.e., 10–30) have
higher probabilities to be predicted precisely. A large
number of neighbors may not substantiate better accu-
racy to users with high node degree (Fig. 19).

– In datasets with high declination in following prob-
ability with distance as in the case of Gowalla and
Brightkite datasets, the Backstrom and MLP models
perform better (Figs. 3, 12–13).

– SLP model has higher accuracy in datasets with prop-
erties similar to Foursquare. However, it suffers from
high execution time. If execution time is not an issue,
SLP model can be the best option to choose. Other-
wise, UDI is a better option as it strikes a good balance
between efficiency and effectiveness (Figs. 14, 23).

8 Conclusion

In this paper, we performed a comprehensive evaluation
of eight representative location prediction models on four
large-scale real-world datasets. This benchmarking study
can also advance research on social computing problems
such as uncovering meaningful spatial communities, visiting
location recommendation, and location-based event plan-

ning. We compared the prediction accuracy of the models
using network properties such as friendships and interac-
tions, neighbor proximity, location sparsity, node locality,
and degree. We have summarized our key findings of the
models with different parameter settings. Our analysis shows
that the effectiveness of location prediction is heavily depen-
dent on the richness of neighbor information. In sparse
networks, global inference techniques are more effective in
prediction tasks. The key findings of this study strongly sug-
gest that service providers can greatly improve the quality of
their services by selecting suitable location prediction mod-
els based on their application need.
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