
The VLDB Journal (2020) 29:419–458
https://doi.org/10.1007/s00778-019-00544-1

SPEC IAL ISSUE PAPER

Comparing heuristics for graph edit distance computation

David B. Blumenthal1 · Nicolas Boria2 · Johann Gamper1 · Sébastien Bougleux2 · Luc Brun2

Received: 31 December 2018 / Revised: 16 May 2019 / Accepted: 27 May 2019 / Published online: 15 July 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Because of its flexibility, intuitiveness, and expressivity, the graph edit distance (GED) is one of the most widely used distance
measures for labeled graphs. Since exactly computing GED is NP-hard, over the past years, various heuristics have been
proposed. They use techniques such as transformations to the linear sum assignment problem with error correction, local
search, and linear programming to approximate GED via upper or lower bounds. In this paper, we provide a systematic
overview of the most important heuristics. Moreover, we empirically evaluate all compared heuristics within an integrated
implementation.

Keywords Graph edit distance · Graph databases · Similarity search · Empirical evaluation

Mathematics Subject Classification 68R10 · 68T10 · 68P15 · 92E10

Contents

1 Introduction . 419
2 Related work . 421
3 Preliminaries . 421
4 Overview of compared heuristics 424
5 Heuristics based on transformations to the linear sum assign-

ment problem with error correction 425
6 Heuristics based on linear programming 430
7 Heuristics based on local search 433
8 Miscellaneous heuristics . 436
9 Experimental evaluation . 438
10Conclusions and future work 448
A Datasets and edit cost functions 450
B Visualization of experiments via dominance graphs 451
References . 456

B David B. Blumenthal
david.blumenthal@inf.unibz.it

Nicolas Boria
boria@ensicaen.fr

Johann Gamper
gamper@inf.unibz.it

Sébastien Bougleux
bougleux@unicaen.fr

Luc Brun
brun@ensicaen.fr

1 Faculty of Computer Science, Free University of
Bozen-Bolzano, Bolzano, Italy

2 Normandie Université, GREYC, ENSICAEN, UNICAEN,
Caen, France

1 Introduction

Labeled graphs can be used for modeling various kinds of
objects, such as chemical compounds, images, molecular
structures, andmanymore. Because of this flexibility, labeled
graphs have received increasing attention over the past years.
One task researchers have focused on is the following: Given
a database G that contains labeled graphs, find all graphs
G ∈ G that are sufficiently similar to a query graph H or find
the k graphs from G that are most similar to H [23,29,66].
Being able to quickly answer graph similarity queries of this
kind is crucial for the development of performant pattern
recognition techniques in various application domains [62],
such as keyword spotting in handwritten documents [61] and
cancer detection [48].

For answering graph similarity queries, a distance mea-
sure between two labeled graphs G and H has to be defined.
A very flexible, sensitive, and therefore widely used mea-
sure is the graph edit distance (GED), which is defined as the
minimum cost of an edit path between G and H [20,59]. An
edit path is a sequence of graphs starting at G and ending at
a graph that is isomorphic to H such that each graph on the
path can be obtained from its predecessor by applying one of
the following edit operations: adding or deleting an isolated
node or an edge, and relabeling an existing node or edge.
Each edit operation comes with an associated non-negative
edit cost, and the cost of an edit path is defined as the sum of
the costs of its edit operations.GED inheritsmetric properties

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00544-1&domain=pdf
http://orcid.org/0000-0001-8651-750X
http://orcid.org/0000-0002-0548-4257
http://orcid.org/0000-0002-7128-507X
http://orcid.org/0000-0002-4581-7570
http://orcid.org/0000-0002-1658-0527

420 D. B. Blumenthal et al.

from the underlying edit costs [36]. For instance, if G is the
domain of graphs with real-valued node and edge labels and
the edit costs are defined as the Euclidean distances between
the labels, then GED is a metric on G.

Of course, computing GED is not the only way for assess-
ing whether or not two graphs are similar. In particular,
one popular approach is to embed the graphs into multidi-
mensional vector spaces and then to compare their vector
representations [19,23,29,66]. The main advantage of this
paradigm is that it allows for fast computations. On the other
hand, a substantial part of the information encoded in the
original graphs is lost when embedding them into vector
spaces. If the graphs are large (e.g., social networks or street
networks), this information loss is tolerable. However, there
are application domains such as keyword spotting in hand-
written documents, cancer detection, and drug discovery,
where the graphs are quite small and where local informa-
tion that would be lost by embedding them into vector spaces
is crucial [62]. GED is mainly used for these application
domains, i.e., in settings where we have to answer fine-
grained similarity queries for (possibly very many) rather
small graphs.

Computing GED is a very difficult problem. In fact, it has
been shown that the problem of computing GED is NP-hard
even for uniform edit costs [68] andAPX-hard for metric edit
costs [45]. Even worse: since, by definition of GED, it holds
that GED(G, H) = 0 just in case G and H are isomorphic,
approximating GED within any approximation ratio is GI-
hard. These theoretical complexities are mirrored by the fact
that, in practice, no available exact algorithm can reliably
compute GED on graphs with more than 16 nodes [10].

Because of the hardness of exactly computing GED or
approximating it within provable approximation ratios, dur-
ing the past years, a huge variety of heuristics have been
proposed that approximate GED via lower or upper bounds,
using techniques such as transformations to the linear sum
assignment problem with error correction, linear program-
ming, and local search. Since no theoretical guarantees can be
provided for the produced bounds, the heuristics are always
evaluated empirically. The most frequently used evaluation
criteria are the following:

C1 Runtime behavior of the heuristics.
C2 Tightness of the produced lower or upper bounds.
C3 Performance of pattern recognition frameworks that use

the bounds produced by the heuristics as underlying
distance measures.

In this paper, we provide a systematic overview of the
most important heuristics for the computation of GED. Fig-
ure 1 shows the suggested taxonomy. Whenever possible,
we model the compared heuristics as instantiations of one
of the following three paradigms: LSAPE-GED, LP-GED,

Fig. 1 Suggested taxonomy for heuristics for GED computation

and LS-GED. Instantiations of LSAPE-GED use transfor-
mations to the linear sum assignment problem with error
correction (LSAPE) for heuristically computing GED. All
instantiations of LSAPE-GED produce upper bounds; some
also yield lower bounds. Instantiations of LP-GED com-
pute lower and upper bounds for GED by employing linear
programming (LP) relaxations of mixed integer program-
ming (MIP) formulations of GED. And instantiations of the
paradigm LS-GED improve initially computed or randomly
generated upper bounds by using variants of local search.

Locating the presented heuristics for GEDwithin the sug-
gested taxonomy has two main advantages: Firstly, it allows
to clearly highlight differences and similarities between the
presented heuristics. Secondly, the suggested taxonomy pro-
vides a guidance for implementing the heuristics in a clean,
code-efficient, and comparable way, as common constituents
of all instantiations of one of the paradigms can be imple-
mented within an interface representing the paradigm. For
instance, all instantiations of LSAPE-GEDmust have access
to a solver for LSAPE. This solver can be implemented
or called from an interface that represents the paradigm
LSAPE-GED.

We carried out extensive experiments in order to test how
the compared heuristics perform w.r.t. the evaluation criteria
C1 to C3. For enhancing comparability, we reimplemented
all heuristics within the C++ library GEDLIB and ensured
that they use the same data structures and subroutines when-
ever possible. GEDLIB mirrors the taxonomy displayed in
Fig. 1, i.e., we implemented the paradigms LSAPE-GED,
LP-GED, and LS-GED as abstract classes and their instan-
tiations as derived classes. GEDLIB is freely available on
GitHub: https://github.com/dbblumenthal/gedlib/.

An alternative view of the upper and lower bounds pro-
duced by heuristic algorithms for GED is to not regard them
as proxies for GED, but rather as independent distance mea-
sures for labeled graphs whose design is guided by GED.
With this interpretation, two meta-questions naturally arise:

123

https://github.com/dbblumenthal/gedlib/

Comparing heuristics for graph edit distance computation 421

Q1 Is it indeed beneficial to use GED as a guidance for
the design of graph distance measures, if these dis-
tancemeasures are to be usedwithin pattern recognition
frameworks?

Q2 Do graph distance measures defined by upper bounds
for GED or graph distance measures defined by lower
bounds for GED perform better when used within pat-
tern recognition frameworks?

To the best of our knowledge, these questions have not
been explicitly discussed in the literature. In this paper, we
intend to fill this gap. For addressing Q1, we evaluate if per-
forming well w.r.t. the evaluation criterion C3 is positively
correlated with performingwell w.r.t. C2. For addressingQ2,
we check if, globally, heuristics producing lower bounds or
heuristics producing upper bounds perform better w.r.t. C3.
In sum, our paper contains the following contributions:

– We suggest a taxonomy for algorithms that heuristically
compute GED.

– We present the most important existing heuristics within
this taxonomy.

– We present the results of an extensive empirical eval-
uation of all compared heuristics. For carrying out the
experiments, all heuristics were reimplemented in C++.

– We empirically address the question whether or not GED
constitutes a good guidance for the design of graph dis-
tance measures to be used for pattern recognition tasks.

– We empirically address the question whether lower or
upper bounds for GED perform better when used for pat-
tern recognition tasks.

The remainder of this paper is organized as follows: In
Sect. 2, related work is discussed. In Sect. 3, important con-
cepts and notations that are used throughout the paper are
introduced. In Sect. 4, a first overview of the compared
heuristics is provided and their most important properties
are summarized in a comparative way. In Sects. 5–7, heuris-
tics that instantiate the paradigms LSAPE-GED, LP-GED,
and LS-GED are presented. In Sect. 8, miscellaneous heuris-
tics that cannot be modeled as instantiations of one of the
paradigms are presented. In Sect. 9, the outcomes of the
experimental evaluation are presented. Section 10 concludes
the paper. Appendix A contains short descriptions of the test
datasets, and Appendix B contains further figures for visual-
izing the results of the experiments.

2 Related work

To the best of our knowledge, the present paper offers the
first comprehensive comparative evaluation of algorithms
for heuristically computing GED available in the litera-

ture. Nonetheless, there are similar works. In [10], some of
the most important algorithms for exactly computing GED
are evaluated. Structurally, this paper is very similar to the
present one, but its scope is different, as heuristics are not
considered.

In [1], the results of a graph edit distance contest are
reported. Authors of exact or heuristic algorithms for GED
could submit binaries of their algorithms, which were run
and compared w.r.t. a set of evaluation criteria. As only the
submitted algorithms are described in [1], many important
GED heuristics are not covered. Moreover, [1] differs from
the present paper in that it empirically evaluates implemen-
tations rather than algorithms.

In another survey [31], the main focus is on methods that
learn good edit costs for given datasets. Only a few algo-
rithms are presented that aim at computing GED for fixed
edit costs, and those that are, are mostly designed for special
graphs without node or edge labels. Moreover, the presented
algorithms are not compared empirically.

The surveys [19,23,29,66] provide broader overviews of
graph-based methods for pattern recognition. In addition to
GED, related topics such as exact graph matching and graph
kernels are discussed. Like in [31], the presented methods
are not compared experimentally in [19,23,29,66].

Methods for GED are also discussed in the books [49,
52]. In [52], some algorithms for exactly and heuristically
computingGED are described and empirically evaluated, but
the main focus is on how to use GED for defining graph
kernels and vector space embeddings that can be employed
for clustering and classification. The book [49] exclusively
treats GED heuristics, but has a very narrow scope: While a
few heuristics are described and tested in great detail, many
others are not covered.

Finally, in [67,69,71], it is discussed how to index graph
databases for efficiently answering graph similarity queries
when GED is used as the underlying distance measure. How-
ever, as these papers focus on indexing techniques rather than
on the design of heuristics, we do not present their findings
in this survey.

3 Preliminaries

Since the graphs for which GED-based methods are applied
are mostly undirected [2,50,62], most heuristics for GED are
presented for undirected labeled graphs, although they can
usually be easily generalized to directed graphs. For the ease
of presentation, we restrict to undirected graphs also in this
paper. For the generalizations of the presented heuristics to
directed graphs, we refer to the original publications.

An undirected labeled graph G is a 4-tuple G =
(V G , EG , �G

V , �G
E), where V G and EG are sets of nodes and

edges,ΣV andΣE are label alphabets, and �G
V : V G → ΣV ,

123

422 D. B. Blumenthal et al.

Table 1 Edit operations and edit costs

Edit operations Edit costs

Node edit operations

Substitute α-labeled node by α′-labeled node cV (α, α′)
Delete isolated α-labeled node cV (α, ε)

Insert isolated α-labeled node cV (ε, α)

Edge edit operations

Substitute β-labeled edge by β ′-labeled edge cE (β, β ′)
Delete β-labeled edge cE (β, ε)

Insert β-labeled edge between existing nodes cE (ε, β)

�G
E : EG → ΣE are labeling functions. The dummy symbol

ε denotes dummy nodes and edges as well as their labels.
Throughout the paper, we denote the nodes of a graph G by
V G := {ui | i ∈ [|V G |]} and the nodes of a graph H by
V H := {vk | k ∈ [|V H |]}. Furthermore, we use the notation
(ui , u j) := (u j , ui) := {ui , u j } ∈ EG to denote that there is
an undirected edge in G that connects the nodes ui and u j .

Let G := {G | img(�G
V) ⊆ ΣV ∧ img(�G

E) ⊆ ΣE } be the
domain of graphs with node labels from ΣV and edge labels
from ΣE . A function cV : ΣV ∪ {ε} × ΣV ∪ {ε} → R≥0 is
a node edit cost functions for G just in case, for all (α, α′) ∈
(ΣV ∪ {ε}) × (ΣV ∪ {ε}), cV (α, α′) = 0 holds if and only if
α = α′. Similarly, cE : ΣE ∪ {ε} × ΣE ∪ {ε} → R≥0 is an
edge edit cost functions for G just in case, for all (β, β ′) ∈
(ΣE ∪ {ε}) × (ΣE ∪ {ε}), cE (β, β) = 0 holds if and only if
β = β ′. We say that a node edit cost function cV is constant
just in case there are constants csubV , cdelV , cinsV ∈ R such that
cV (α, α′) = csubV , cV (α, ε) = cdelV , and cV (ε, α′) = cinsV hold
for all (α, α′) ∈ ΣV × ΣV with α 	= α′. Constant edge
edit costs are defined analogously. We say that the edit cost
functions cV and cE are uniform if and only if both of them
are constant and, additionally, we have csubV = cdelV = cinsV =
csubE = cdelE = cinsE .

Given fixed edit cost functions cV and cE , GED is defined
in terms of the six edit operations and their associated edit
costs, which are detailed in Table 1. An edit path P between
two graphs G, H ∈ G is a sequence P := (oi)

r
i=1 of edit

operations that satisfies (or ◦ . . . ◦ o1)(G) � H , i.e., trans-
forms G into a graph H ′ which is isomorphic to H . Its edit
cost c(P) is defined as the sum c(P) := ∑r

i=1 c(oi) of the
contained edit operations. We are now in the position to give
a first intuitive definition of GED.

Definition 1 (GED—first definition [10,36]) The graph edit
distance (GED) between two graphs G, H ∈ G is defined
as GED(G, H) := min{c(P) | P ∈ Ψ (G, H)}, where
Ψ (G, H) is the set of all edit paths between G and H .

Definition 1 is very intuitive but useless for algorithmic
purposes: Since the graph isomorphism problem currently

Table 2 Edit operations and edit costs induced by node map π ∈
Π(G, H); u ∈ V G and v ∈ V H are nodes, e ∈ EG and f ∈ E H

are edges

Case Edit operations Edit costs

Node edit operations

π(u) = v Substitute u by v cV (u, v) := cV (�G
V (u), �H

V (v))

π(u) = ε Delete u cV (u, ε) := cV (�G
V (u), ε)

π−1(v) = ε Insert v cV (ε, v) := cV (ε, �H
V (v))

Edge edit operations

π(e) = f Substitute e by f cE (e, f) := cE (�G
E (e), �H

E (f))

π(e) /∈ E H Delete e cE (e, ε) := cE (�G
E (e), ε)

π−1(f) /∈ EG Insert f cE (ε, f) := cE (ε, �H
E (f))

cannot be solved in polynomial time [3], it is not even possi-
ble to polynomially recognize an edit path as such, let alone
to optimize over the set of all edit paths. For this reason, all
exact or approximate GED algorithms work with an alterna-
tive definition. This definition crucially uses the concept of
a node map between two graphs G and H .

Definition 2 (Node map [10]) Let G, H ∈ G be two graphs.
A relation π ⊆ (V G ∪ {ε})× (V H ∪ {ε}) is called node map
betweenG and H if andonly if |{v | v ∈ (V H ∪{ε})∧(u, v) ∈
π}| = 1 holds for all u ∈ V G and |{u | u ∈ (V G ∪ {ε}) ∧
(u, v) ∈ π}| = 1 holds for all v ∈ V H . We write π(u) = v

just in case (u, v) ∈ π and u 	= ε, and π−1(v) = u just in
case (u, v) ∈ π and v 	= ε. Π(G, H) denotes the set of all
node maps between G and H . For edges e = (u, u′) ∈ EG

and f = (v, v′) ∈ E H , we introduce the shorthand notations
π(e) := (π(u), π(u′)) and π−1(f) := (π−1(v), π−1(v′)).

A node map π ∈ Π(G, H) specifies for all nodes and
edges of G and H whether they are substituted, deleted, or
inserted. Table 2 details these edit operations.

Definition 3 (Induced edit path) Let G, H ∈ G be graphs,
π ∈ Π(G, H) be a nodemap between them, and O be the set
of π ’s induced edit operations as specified in Table 2. Then,
an ordering Pπ := (or)

|O|
r=1 of O is called induced edit path

of the node map π if and only if edge deletions come first
and edge insertions come last, i.e., if there are indices r1 and
r2 such that or is an edge deletion just in case 1 ≤ r < r1
and oi is an edge insertion just in case r2 < r ≤ |O|.

It has been shown that induced edit paths are indeed edit
paths, i.e., that Pπ ∈ Ψ (G, H) holds for all π ∈ Π(G, H)

[14]. The cost c(Pπ) of an edit path Pπ induced by a node
map π ∈ Π(G, H) is given as follows:

123

Comparing heuristics for graph edit distance computation 423

Fig. 2 Two graphs G and H from the letter (h) dataset and a node
map π between them

c(Pπ) =
∑

u∈V G

π(u)∈V H

cV (u, π(u))

︸ ︷︷ ︸
node substitutions

+
∑

e∈EG

π(e)∈E H

cV (e, π(e))

︸ ︷︷ ︸
edge substitutions

(1)

+
∑

u∈V G

π(u)/∈V H

cV (u, ε)

︸ ︷︷ ︸
node deletions

+
∑

e∈EG

π(e)/∈E H

cE (e, ε)

︸ ︷︷ ︸
edge deletions

+
∑

v∈V H

π−1(v)/∈V G

cV (ε, v)

︸ ︷︷ ︸
node insertions

+
∑

f ∈E H

π−1(f)/∈EG

cE (ε, f)

︸ ︷︷ ︸
edge insertions

Note that, byDefinition 3, a nodemapπ generally induces
more than one edit path. However, all of these edit paths
are equivalent, as they differ only w.r.t. the ordering of the
contained edit operations. In the following, we will therefore
identify all edit paths induced by π . We can now give an
alternative definition of GED.

Definition 4 (GED—alternative definition [14,20]) The
graph edit distance (GED) between two graphs G, H ∈ G

is defined as GED(G, H) := min{c(Pπ) | π ∈ Π(G, H)},
where Pπ ∈ Ψ (G, H) is the edit path induced by the node
map π .

In [36], it is shown that Definition 1 and Definition 4 are
equivalent if the underlying edit cost functions cV and cE are
metrics. In [10], this result is extended to general edit cost
functions. Theremain advantage of usingDefinition 4 instead
of Definition 1 is that, unlike edit paths, node maps can be
constructed easily. Since each node map π ∈ Π(G, H)

induces an upper bound c(Pπ) ≥ GED(G, H), one can
hence straightforwardly generate upper bounds.

Example 1 Consider the graphs G and H shown in Fig. 2.
G and H are taken from the letter (h) dataset and repre-
sent distorted letter drawings [50]. Their nodes are labeled
with two-dimensional, non-negative Euclidean coordinates.
Edges are unlabeled. Hence, we have ΣV = R≥0 × R≥0

and ΣE = {1}. In [52], it is suggested that the edit cost func-
tions cV and cE for letter (h) should be defined as follows:

Table 3 Edit operations and edit costs induced by node map π shown
in Fig. 2, given the edit cost functions defined in Example 1

Edit operations Edit costs

Node edit operations

Substitute u1 by v1 cV (u1, v1) = 0.75
∥
∥
[
0.69
0.27

] − [
0.92
0.32

]∥
∥

Substitute u2 by v2 cV (u2, v2) = 0.75
∥
∥
[
1.40
1.85

] − [
1.76
1.81

]∥
∥

Substitute u3 by v3 cV (u3, v3) = 0.75
∥
∥
[
2.55
0.45

] − [
2.30
0.21

]∥
∥

Substitute u4 by v4 cV (u4, v4) = 0.75
∥
∥
[
0.93
1.37

] − [
0.92
0.85

]∥
∥

Delete node u5 cV (u5, ε) = 0.675

Edge edit operations

Substitute (u1, u2) by (v1, v2) cE ((u1, u2), (v1, v2)) = 0

Substitute (u2, u3) by (v2, v3) cE ((u2, u3), (v2, v3)) = 0

Delete (u4, u5) cE ((u4, u5), ε) = 0.425

Insert (v3, v4) cE (ε, (v3, v4)) = 0.425

cE (1, ε) := cE (ε, 1) := 0.425, cV (α, α′) := 0.75
∥
∥α − α′∥∥,

and cV (α, ε) := cV (ε, α) := 0.675 for all node labels
α, α′ ∈ ΣV , where ‖·‖ is the Euclidean norm. Now consider
the node map π ∈ Π(G, H) shown in Fig. 2. Its induced edit
operations and edit costs are detailed in Table 3. By summing
the induced edit costs, we obtain that π ’s induced edit path
Pπ ∈ Ψ (G, H) has cost c(Pπ) = 2.623179, which implies
GED(G, H) ≤ 2.623179.

We conclude this section by recalling mathematical con-
cepts and notations that are used throughout the paper.

Definition 5 (Miscellaneous definitions) In the remainder of
this paper, we use the following definitions:

– For all N ∈ N, we define [N] := {n ∈ N | 1 ≤ n ∧ n ≤
N }.

– Let G ∈ G be a graph. A edge sequence ((ui1 , ui2))
k
i=1,

(ui1 , ui2) ∈ EG for all i ∈ [k], is called walk of length
k between the nodes ui1 , uk2 ∈ V G , if and only if ui2 =
ui+11 holds for all i ∈ [k − 1].

– Let G ∈ G be a graph. Awalk between two nodes u, u′ ∈
V G is called path between u and u′, if and only if no node
is encountered more than once.

– Let G ∈ G be a graph. The distance between two nodes
u, u′ ∈ V G in G, is defined as dG(u, u′) := 0, if u = u′,
as dG(u, u′) := min{|P| | Pis path between u and u′}, if
u 	= u′ and u and u′ are in the same connected component
of G, as dG(u, u′) := ∞, if u and u′ are in different
connected components of G.

– The diameter of a graph G ∈ G is defined as diam(G) :=
maxu∈V G maxu′∈V G dG(u, u′).

– Let G ∈ G be a graph. The kth neighborhood of a node
u ∈ V G in G is defined as N G

k (u) := {u′ ∈ V G |
dG(u, u′) = k}. The 1st neighborhood is called neigh-
borhood of node u and abbreviated as N G(u) := N G

1 (u).

123

424 D. B. Blumenthal et al.

Table 4 Overview of compared heuristics

Heuristic Publications Upper bound Lower bound Limitations Presented in

Instantiations of the paradigm LSAPE-GED

NODE [36] Yes Yes Ignores edges Section 5.2.1

BP [51] Yes No None Section 5.2.2

BRANCH [8,9,57] Yes Yes None Section 5.2.3

BRANCH-FAST [8,9] Yes Yes None Section 5.2.4

BRANCH-CONST [70,71] Yes Yes Constant cE Section 5.2.5

STAR [68] Yes Yes Ignores edge labels, uniform cV and cE Section 5.2.6

SUBGRAPH [21] Yes No None Section 5.2.7

WALKS [32] Yes No Constant and symmetric cV and cE Section 5.2.8

RING [4,5] Yes No None Section 5.2.9

RING-ML [5] Yes No None Section 5.2.10

PREDICT [5,54] Yes No None Section 5.2.11

Extensions of the paradigm LSAPE-GED

CENTRALITIES [25,53] Yes No None Section 5.3.1

MULTI-SOL [5,26] Yes No None Section 5.3.2

Instantiations of the paradigm LP-GED

F1 [43,44] Yes Yes None Section 6.2.1

F2 [44] Yes Yes None Section 6.2.2

COMPACT-MIP [10] Yes Yes None Section 6.2.3

ADJ-IP [36] Yes Yes Ignores edge labels, constant and symmetric cE Section 6.2.4

Instantiations of the paradigm LS-GED

REFINE [12,68] Yes No None Section 7.2.1

K-REFINE [12] Yes No None Section 7.2.2

BP-BEAM [56] Yes No None Section 7.2.3

IBP-BEAM [27] Yes No None Section 7.2.4

IPFP [7,14,16] Yes No None Section 7.2.5

Extensions of the paradigm LS-GED

MULTI-START [13,26] Yes No None Section 7.3.1

RANDPOST [12,13] Yes No None Section 7.3.2

Miscellaneous heuristics

HED [28] No Yes None Section 8.1

BRANCH-TIGHT [9] Yes Yes None Section 8.2

SA [58] Yes No None Section 8.3

BRANCH-COMPACT [71] No Yes Uniform cV and cE Section 8.4

PARTITION [71] No Yes Uniform cV and cE Section 8.5

HYBRID [71] No Yes Uniform cV and cE Section 8.6

– Let G ∈ G be a graph. The set of edges that are incident
with a node u ∈ V G is denoted by EG(u).

– Let G ∈ G be a graph. The degree of a node u ∈ V G in
G is defined as degG(u) := |N G(u)|.

– The maximum degree of a graph G ∈ G is defined as
max deg(G) := maxu∈V G degG(u).

– Let f : X → Y be a function and A ⊆ X be a subset of
its domain. The image of A under f is denoted by f [A],
and themultiset image of A under f is denoted by f �A�.

– Let G ∈ G be a graph and V ⊆ V G be a subset of
its nodes. Then, G[V] := (V , EG ∩ (V × V), �G

V , �G
E)

denotes the subgraph of G which is induced by the node
set V .

– The expression δtrue|false is defined as δtrue := 1 and
δfalse := 0.

4 Overview of compared heuristics

Table 4 gives an overview of the heuristics that are compared
in this survey. Each heuristic is denoted by a name written in
typewriter font. Whenever possible, this name is taken from

123

Comparing heuristics for graph edit distance computation 425

the original publication. If no original name is available, we
invented a name which reflects the main technical ingredient
of the heuristic.

Some heuristics are categorized as extensions rather than
instantiations of the paradigms LSAPE-GED and LS-GED,
respectively. Although, in the original publications, these
heuristics are usually presented as improvements of a spe-
cific instantiation of the respective paradigm, they can in fact
be used to improve all instantiations. For instance, in [26], it
is suggested that the local search algorithm IPFP should be
run from several initial solutions in parallel. As this technique
does not depend in the choice of the local search algorithm,
it can be generalized to paradigm level and hence yields the
extension MULTI-START of the paradigm LS-GED. In this
survey, we generalize techniques to paradigm level whenever
possible.

Moreover, some of the heuristics are designed for special
edit cost functions. For instance, BRANCH-CONST requires
constant edge edit costs, i.e., expects that there are constants
csubE , cdelE , cinsE ∈ R such that cE (β, β ′) = csubE , cE (β, ε) =
cdelE , and cV (ε, β ′) = cinsE holds for all (β, β ′) ∈ ΣE × ΣE

with β 	= β ′. In many datasets, this constraint is not satisfied.
In our implementation of BRANCH-CONST, we therefore set
csubE := min{cE (β, β ′) | (β, β ′) ∈ �G

E [EG] × �H
E [E H] ∧

β 	= β ′}, cdelE := min{cE (β, ε) | β ∈ �G
E [EG]}, and

cinsE := min{cE (ε, β ′) | β ′ ∈ �H
E [E H]} when running

BRANCH-CONST on graphs G and H that come with non-
constant edge edit costs. Since we use minima for defining
the constants, this preprocessing leaves BRANCH-CONST’s
lower bound valid. Similar techniques are used for enforcing
the cost constraints of the othermethods that are not designed
for general edit costs.

5 Heuristics based on transformations to the
linear sum assignment problemwith error
correction

In this section, we first introduce the paradigm LSAPE-GED,
which generalizes heuristics that use transformations to
the linear sum assignment problem with error correction
(LSAPE) for upper and, possibly, lower bounding GED
(Sect. 5.1). Subsequently, we present heuristics that can be
modeled as instantiations of LSAPE-GED (Sect. 5.2) and
summarize heuristics that can be modeled as extensions of
LSAPE-GED (Sect. 5.3).

5.1 The paradigm LSAPE-GED

Definition 4 implies that each node map between G and H
induces an upper bound for GED(G, H). Instantiations of
the paradigm LSAPE-GED use transformations to LSAPE

for heuristically finding a nodemap that induces a tight upper
bound. LSAPE is defined as follows:

Definition 6 (LSAPE—first definition [15]) Given a matrix
C ∈ R

(n+1)×(m+1) with cn+1,m+1 = 0, the linear sum assign-
ment problem with error correction (LSAPE) consists in the
task to minimize C(π) := ∑

(i,k)∈π ci,k over all relations
π ∈ Π(n, m), where

– Π(n, m) ⊆ P([n + 1] × [m + 1]) is defined as the set
of all feasible LSAPE solutions for C, and

– a relation π ⊆ [n+1]×[m +1] is called feasible LSAPE
solution for C if and only if |{k | k ∈ [m + 1] ∧ (i, k) ∈
π}| = 1 holds for all i ∈ [n] and |{i | i ∈ [n+1]∧(i, k) ∈
π}| = 1 holds for all k ∈ [m].

We write π(i) = k if (i, k) ∈ π and i 	= n + 1;
and π−1(k) = i if (i, k) ∈ π and k 	= m + 1. The
set of all optimal LSAPE solutions for C is denoted as
Π�(C) := argminπ∈Π(n,m) C(π). We write LSAPE(C) :=
minπ∈Π(n,m) C(π) for the cost of an optimal solution for C.

Given a matrix C ∈ R
(n+1)×(m+1), an optimal solution

π ∈ Π�(C) can be computed in O(min{n, m}2 max{n, m})
time [15], using variants of the famous Hungarian Algorithm
[38,46]. Once one optimal solution has been found, for each
s ∈ [|Π�(C)|], a solution set Π�

s (C) ⊆ Π�(C) of size s
can be enumerated in O(nm

√
n + m + s log (n + m)) time

[64,65]. Greedy suboptimal solutions can be computed in
O(nm) time [55].

Node maps and feasible solutions for LSAPE are closely
related. Assume that we are given graphs G and H and an
LSAPE instance C ∈ R

(|V G |+1)×(|V H |+1). Then it immedi-
ately follows from Definitions 2 and 6 that we can identify
the set Π(G, H) of all node maps between G and H with
the set Π(|V G |, |V H |) of all feasible LSAPE solutions for
C: For all i ∈ [|V G |] and all k ∈ [|V H |], we associate C’s
i th row with the node ui ∈ V G and C’s kth column with
the node vk ∈ V H . The last row and the last column of C
are associated with the dummy node ε. Therefore, each fea-
sible LSAPE solution π for C yields an upper bound for
GED(G, H), namely the cost c(Pπ) of the edit path induced
by π ’s interpretation as a node map.

Sometimes, it is useful to view LSAPE not as an optimiza-
tion problem over relations, but rather as an optimization
problem over binary matrices. With this view, LSAPE can
be equivalently defined as follows.

Definition 7 (LSAPE—alternative definition [15]) Given a
matrixC ∈ R

(n+1)×(m+1) with cn+1,m+1 = 0, the linear sum
assignment problem with error correction (LSAPE) consists
in the task to minimize C(X) := ∑n+1

i=1
∑m+1

k=1 ci,k xi,k over
all binary matrices X ∈ Π(n, m), where

123

426 D. B. Blumenthal et al.

Fig. 3 Two LSAPE solutions of size 6 × 5 in matrix representation.
If viewed as node maps between graphs G and H with |V G | = 5 and
|V H | = 6, the last row corresponds to the dummy node ε in G and the
last column corresponds to the dummy node ε in H

– Π(n, m) ⊆ {0, 1}(n+1)×(m+1) is defined as the set of all
feasible LSAPE solutions for C, and

– a binary matrix X ∈ {0, 1}(n+1)×(m+1) is called feasible
LSAPE solution forC if and only if

∑m+1
k=1 xi,k = 1 holds

for all i ∈ [n] and ∑n+1
i=1 xi,k = 1 holds for all k ∈ [m].

Example 2 Let C ∈ R
6×5 be a matrix and again consider

the node map π ∈ Π(G, H) visualized in Fig. 2. The node
map π ’s interpretation as a feasible LSAPE solution forC in
relational form is given by {(i, i) | i ∈ [5]}. Its matrix rep-
resentation X is shown in Fig. 3, along with another feasible
LSAPE solution X′. Instead of substituting row 3 by column
3 and row 4 by column 4, X′ substitutes row 4 by column 3,
deletes row 3, and inserts column 4.

Instantiations of the paradigm LSAPE-GED now proceed
as described in Algorithm 1: In the first step, the input graphs
G and H and the edit cost functions are used to construct
an LSAPE instance C of size (|V G | + 1) × (|V H | + 1)
such that optimal LSAPE solutions for C induce cheap edit
paths between G and H (line 1). This construction phase
is where different instantiations of LSAPE-GED vary from
each other. Subsequently, the LSAPE instanceC is solved—
either optimally or greedily—and the cost c(Pπ) of the edit
path induced by the obtainedLSAPE solutionπ is interpreted
as an upper bound for GED(G, H) (line 2). If the protocol
for constructing the LSAPE instance C ensures that one can
define a scaling function ξ(G, H , cV , cE) such that

ξ(G, H , cV , cE) · LSAPE(C) ≤ GED(G, H) (2)

holds for all graphs G, H ∈ G and all edit cost functions cV

and cE and an optimal LSAPE solver was used to compute
π , ξ(G, H , cV , cE)C(π) is returned as a lower bound for
GED along with the upper bound derived from the induced
edit path (lines 4 to 7). Otherwise, only the upper bound is
returned (lines 9 to 12).

Assume that an instantiation of LSAPE-GED constructs
its LSAPE instance C in O(ω) time. Optimally solving
C requires O(min{|V G |, |V H |}2 max{|V G |, |V H |}) time,

Algorithm 1 The paradigm LSAPE-GED.
Input: Graphs G and H , node edit costs cV , edge edit costs cE .
Output: An upper bound UB and, possibly, a lower bound LB for

GED(G, H).
1: use information encoded in G, H , cV , and cE to construct LSAPE

instance C ∈ R
(|V G |+1)×(|V H |+1);

2: use optimal or greedy solver to compute cheap LSAPE solution
π ∈ Π(|V G |, |V H |);

3: set upper bound to UB := c(Pπ);
4: if line 1 ensures LSAPE(C) ≤ ξ(G, H , cV , cE) ·GED(G, H) then
5: if optimal solver was used in line 1 then
6: set lower bound to LB := ξ(G, H , cV , cE) · C(π);
7: return LB and UB;
8: else
9: return UB;
10: end if
11: end if
12: return UB;

while the complexity of greedily computing a cheap sub-
optimal solution is O(|V G ||V H |). The induced cost of the
obtained node map π can be computed in O(max{|EG |,
|E H |}) time. The heuristic’s overall runtime complex-
ity is hence O(ω + min{|V G |, |V H |}2 max{|V G |, |V H |} +
max{|EG |, |E H |}) if an optimal solver is used in line 2, and
O(ω+|V G ||V H |+max{|EG |, |E H |}) ifC is solved greedily.

5.2 Instantiations of the paradigm LSAPE-GED

Next, we present 11 algorithms for heuristically computing
GED that can be modeled as instantiations of the paradigm
LSAPE-GED. All heuristics compute upper bounds forGED,
and some of them also compute lower bounds. Some of the
heuristics require special edit costs, while others can be used
with general edit costs.

5.2.1 The algorithm NODE

The algorithm NODE [36] is a very simple instantiation of
LSAPE: It completely ignores the edges of the input graphs
G and H and just defines C as the node edit cost matrix
between G and H . In other words, it sets

ci,k := cV (ui , vk)

ci,|V H |+1 := cV (ui , ε)

c|V G |+1,k := cV (ε, vk)

for all (i, k) ∈ [|V G |] × [|V H |].
The time complexity of constructing C is O(|V G ||V H |).

As Eq. (2) with ξ :≡ 1 holds for all graphs G, H ∈ G and
all edit cost functions cV and cE , NODE computes both an
upper and a lower bound for GED.

123

Comparing heuristics for graph edit distance computation 427

5.2.2 The algorithm BP

Unlike NODE, the algorithm BP [51] also considers edges.
Informally, this is done by adding to ci,k as defined by NODE
the optimal cost of transforming the edges that are incident
with ui in G into the edges that are incident with vk in H .

Formally, for each (i, k) ∈ [|V G |] × [|V H |], an aux-
iliary LSAPE instance Ci,k ∈ R

(degG (ui)+1)×(degH (vk)+1)

is constructed. Let (ui j)
degG (ui)

j=1 be an enumeration of ui ’s

neighborhood N G(ui) and (vkl)
degH (vk)

l=1 be an enumeration
of vk’s neighborhood N H (vk). BP sets

ci,k
j,l := cE ((ui , ui j), (vk, vkl))

ci,k
j,degH (vk)+1

:= cE ((ui , ui j), ε)

ci,k
degG (ui),l

:= cE (ε, (vk, vkl))

for all (j, l) ∈ [degG(i)] × [degH (i)] and computes an opti-
mal LSAPE solution π i,k ∈ Π(degG(ui), degH (vk)). Once
this has been done for all (i, k) ∈ [|V G |] × [|V H |], the final
LSAPE instance C is constructed by setting

ci,k := cV (ui , vk) + Ci,k(π i,k)

ci,|V H |+1 := cV (ui , ε) +
degG (ui)∑

j=1

cE ((ui , ui j), ε)

c|V G |+1,k := cV (ε, vk) +
degH (vk)∑

l=1

cE (ε, (vk, vkl))

for all (i, k) ∈ [|V G |] × [|V H |].
BP requires O(|V G ||V H |ΔG,H

min
2
Δ

G,H
max) time for con-

structingC,whereΔ
G,H
min := min{max deg(G),max deg(H)}

and Δ
G,H
max := max{max deg(G),max deg(H)}. This con-

struction does not guarantee that Eq. (2) holds, which implies
that BP only returns an upper bound for GED.

5.2.3 The algorithm BRANCH

The algorithm BRANCH [8,9,57] is a slight modification of
BP that also allows for the computation of a lower bound. The
only modification is that the edge costs in the construction
of the LSAPE instance C are divided by 2, i.e., C is defined
by setting

ci,k := cV (ui , vk) + 0.5 · Ci,k(π i,k)

ci,|V H |+1 := cV (ui , ε) + 0.5 ·
degG (ui)∑

j=1

cE ((ui , ui j), ε)

c|V G |+1,k := cV (ε, vk) + 0.5 ·
degH (vk)∑

l=1

cE (ε, (vk, vkl))

for all (i, k) ∈ [|V G |] × [|V H |].
Like BP, BRANCH requires O(|V G ||V H |ΔG,H

min
2
Δ

G,H
max)

time for constructing C. Unlike BP, the construction carried
out by BRANCH ensures that Eq. (2) with ξ :≡ 1 holds for
all graphs G, H ∈ G and all edit cost functions cV and cE ,
which implies that BRANCH also computes a lower bound
for GED. Furthermore, it is shown that, given fixed metric
edit cost functions cV and cE , the lower bound returned by
BRANCH is a pseudo-metric on G, i.e., is symmetric, non-
negative, respects the triangle inequality, and equals 0 if two
graphs G, H ∈ G are isomorphic.

5.2.4 The algorithm BRANCH-FAST

The algorithm BRANCH-FAST suggested in [8,9] speeds up
BRANCH at the cost of producing a looser lower bound.
For all (i, k) ∈ [|V G |] × [|V H |], BRANCH-FAST com-
putes Γ

i,k
E as the size of the intersection of the multisets

of edge labels that are incident to ui in G and to vk in
H , i.e., sets Γ

i,k
E := |�G

E �EG(ui)� ∩ �H
E �E H (vk)�|. More-

over, BRANCH-FAST computes the minimal deletion cost
ci
min := min{cE (e, ε) | e ∈ EG(ui)}, the minimal insertion
cost ck

min := min{cE (ε, f) | f ∈ E H (vk)}, as well as the
minimal substitution cost ci,k

min := min{cE (e, f) | (e, f) ∈
EG(ui) × E H (vk) ∧ �G

E (e) 	= �H
E (f)} for the sets EG(ui)

and E H (vk) of edges that are incident to ui in G and to vk

in H , respectively. With these ingredients, BRANCH-FAST
constructs its LSAPE instance C by setting

ci,k := cV (ui , vk) + 0.5 · [(Δi,k
min − Γ

i,k
E)ci,k

min

+ δdegG (ui)>degH (vk)
(Δi,k

max − Δ
i,k
min)c

i
min

+ δdegG (ui)<degH (vk)
(Δi,k

max − Δ
i,k
min)c

k
min]

ci,|V H |+1 := cV (ui , ε) + 0.5 · degG(ui)c
i
min

c|V G |+1,k := cV (ε, vk) + 0.5 · degH (vk)c
k
min

for all (i, k)∈[|V G |]×[|V H |], whereΔ
i,k
min:=min{degG(ui),

degH (vi)} and Δ
i,k
max := max{degG(ui), degH (vi)}.

By sorting all sets of incident edge labels before populat-
ing C, BRANCH-FAST can reduce the time complexity of
constructing C to O(max{|V G |, |V H |}ΔG,H

max log(ΔG,H
max) +

|V G ||V H |ΔG,H
min Δ

G,H
max). AsEq. (2)with ξ :≡ 1holds for each

input, BRANCH-FAST returns an upper and a lower bound
for GED. Like the lower bound produced by BRANCH, the
lower bound yielded by BRANCH-FAST is a pseudo-metric
if the underlying edit costs are metric. Furthermore, it can be
shown that BRANCH-FAST’s lower bound is never tighter
than the one computed by BRANCH. For constant edge edit
costs, BRANCH and BRANCH-FAST are equivalent.

123

428 D. B. Blumenthal et al.

5.2.5 The algorithm BRANCH-CONST

The algorithm BRANCH-CONST [70,71] can be viewed as a
speedup of BRANCH and BRANCH-FAST for constant edge
edit costs cE .1 It uses the fact that if the edge edit costs are
constant, the minimum edge deletion, insertion, and substi-
tution costs employed by BRANCH-FAST do not have to
be computed, as we have ci

min = cdelE , ck
min = cinsE , and

ci,k
min = csubE . This implies that the LSAPE instance C can

be constructed in O(max{|V G |, |V H |}ΔG,H
max log(ΔG,H

max) +
|V G ||V H |ΔG,H

min) time. All other properties are inherited
from BRANCH and BRANCH-FAST.

5.2.6 The algorithm STAR

The algorithm STAR [68] considers the neighbors of the
nodes ui ∈ V G and vk ∈ V H when populating the cell ci,k of
its LSAPE instanceC. It requires uniform edit cost functions
cV and cE and ignores the edge labels of the input graphs.
Let C be the constant such that cV (α, α′) = cE (β, β ′) = C
holds for all (α, α′) ∈ (ΣV ∪ {ε}) × (ΣV ∪ {ε}) with α 	= α′
and all (β, β ′) ∈ (ΣE ∪{ε})×(ΣE ∪{ε})with β 	= β ′. In the
first step, STAR computes Γ

i,k
V as the size of the intersection

of the multisets of node labels that are adjacent to ui in G and
to vk in H , i.e., sets Γ

i,k
V := |�G

V �N G(ui)� ∩ �H
V �N H (vk)�|.

STAR then defines its LSAPE instance C by setting

ci,k := C · [δ�G
V (ui) 	=�H

V (vk)
+ 2Δi,k

max − Δ
i,k
min) − Γ

i,k
V]

ci,|V H |+1 := C · [1 + 2 degG(ui)]
c|V G |+1,k := C · [1 + 2 degH (vk)]

for all (i, k) ∈ [|V G |] × [|V H |], where Δ
i,k
min and Δ

i,k
min are

defined as in Sect. 5.2.4.
STAR has the same time complexity asBRANCH-CONST,

that is,STAR requires O(max{|V G |, |V H |}ΔG,H
max log(ΔG,H

max)

+|V G ||V H |ΔG,H
min) time for constructing its LSAPE instance

C. Furthermore, Eq. (2) holds if the scaling function ξ is
defined as ξ(G, H , cV , cE) := 1/max{4,ΔG,H

max + 1}. STAR
hence returns both a lower and an upper bound for GED.

5.2.7 The algorithm SUBGRAPH

The algorithm SUBGRAPH [21] considers more global infor-
mation than the previously presented heuristics for construct-
ing its LSAPE instance C. Given a constant K ∈ N≥1,
SUBGRAPH constructs graphlets Gi := G[⋃K

s=0 N G
s (ui)]

and Hk := H [⋃K
s=0 N H

s (vk)] for all (i, k) ∈ [|V G |] ×
1 As BRANCH-CONST was proposed before BRANCH and
BRANCH-FAST, it is in fact more correct to say that BRANCH and
BRANCH-FAST generalize BRANCH-CONST to arbitrary edit costs.
For the sake of simplicity, we here change the order of presentation.

[|V H |], i.e., associates all nodes in the input graphs to
the subgraphs which are induced by the sets of all nodes
that are at distance at most K . For graphlets Gi and Hk ,
SUBGRAPH defines GEDi,k(Gi , Hk) := min{c(Pπ) | π ∈
Π(Gi , Hi) ∧ π(ui) = vk} as the edit distance under the
restriction that Gi ’s root node ui be mapped to Hk’s root
node vk . SUBGRAPH then constructs its LSAPE instance C
by setting

ci,k := GEDi,k(Gi , Hk)

ci,|V H |+1 := GED(Gi ,E)

c|V G |+1,k := GED(E , Hk)

for all (i, k) ∈ [|V G |] × [|V H |], where E denotes the empty
graph.

The time complexity of SUBGRAPH’s construction phase
of its LSAPE instance C is exponential in Δ

G,H
max . This

implies that, unless max deg(G) and max deg(H) are con-
stantly bounded, SUBGRAPH does not run in polynomial
time. SUBGRAPH only computes an upper bound for GED.

5.2.8 The algorithm WALKS

The algorithm WALKS [32] requires constant and symmetric
edit cost functions cV and cE and aims at computing a tight
upper bound for GED by associating each node in the input
graphs to the set of walks of size K that start at this node.
Given a constant K ∈ N≥1, a node ui ∈ V G , and a node
vk ∈ V H , WALKS defines W G

i and W H
k as, respectively,

the sets of walks of size K that start at ui and vk . Walks
W ∈ W G

i and W ′ ∈ W H
k are called similar if they encode

the same sequences of node and edge labels. Otherwise, W
and W ′ are called different.

WALKS now computes the matrix productsWK
G ,WK

H , and
WK× , where WG is the adjacency matrix of G, WH is the
adjacency matrix of H , and W× is the adjacency matrix of
the direct product graph G × H of G and H . G × H contains
a node (ui , vk) for each (i, k) ∈ [|V G |] × [|V H |] such that
�G

V (ui) = �H
V (vk). Two nodes (ui , vk) and (u j , vl) of the

product graph G × H are connected by an edge if and only if
(ui , u j) ∈ EG , (vk, vl) ∈ E H , and �G

E (ui , u j) = �H
E (vk, vl).

With the help of WK
G , WK

H , and WK× , for each node label
α ∈ ΣV , WALKS computes an estimate ĥi\k(α) of the num-
ber of walks W ∈ W G

i that end at a node with label α and
must be substituted by a different walk W ′ ∈ W H

k . Anal-
ogously, ĥk\i (α) is computed as an estimate of the number
of walks W ′ ∈ W H

k that end at a node with label α and
must be substituted by a different walk W ∈ W G

i . Moreover,
WALKS computes an estimate r̂i\k := ∑

α∈ΣV
ĥi\k(α) −

min{̂hi\k(α), ĥk\i (α)} of the number of walks in W ∈ W G
i

that must be substituted by a different walk W ′ ∈ W H
i

that does not end at the same node label, and an estimate

123

Comparing heuristics for graph edit distance computation 429

r̂k\i := ∑
α∈ΣV

ĥk\i (α)−min{̂hi\k(α), ĥk\i (α)} of the num-

ber of walks in W ′ ∈ W H
k that must be substituted by a

different walk W ∈ W G
i that does not end at the same node

label. With these ingredients, WALKS constructs its LSAPE
instance C by setting

ci,k := [(δ�G
V (ui) 	=�H

V (vk)
+ K − 1)csubV

+ K csubE] · ∑
α∈ΣV

min{̂hi\k(α), ĥk\i (α)}
+ [(δ�G

V (ui) 	=�H
V (vk)

+ K)csubV

+K csubE] · min{̂ri\k, r̂k\i }
+[(δ�G

V (ui) 	=�H
V (vk)

+K)cdelV

+K cdelE] · |̂ri\k−r̂k\i |
ci,|V H |+1 := [(δ�G

V (ui) 	=�H
V (vk)

+ K)cdelV + K cdelE] · |W G
i |

c|V G |+1,k := [(δ�G
V (ui) 	=�H

V (vk)
+ K)cdelV + K cdelE] · |W H

k |

for all (i, k) ∈ [|V G |] × [|V H |].
WALKS requires O((|V G ||V H |)ω) time for computing

its LSAPE instance C, where O(nω) is the complexity
of multiplying two matrices with n rows and n columns.
The asymptotically fastest matrix multiplication algorithms
achieve ω < 2.38 [40]; the fastest practically useful matrix
multiplication algorithm runs in O(nlog2(7)) ≈ O(n2.81) time
[63]. WALKS only computes an upper bound for GED.

5.2.9 The algorithm RING

LikeSUBGRAPH andWALKS, the algorithm RING [4,5] aims
at computing a tight upper bound for GED by consider-
ing enlarged local structures. Given a constant K ∈ N≥1,
a node ui ∈ V G , and a node vk ∈ V H , RING uses breadth-
first search to construct rings RG

i := (L G
l (ui))

K−1
l=0 and

RH
k := (L H

l (vk))
K−1
l=0 whose l th layers are defined as

the triplets L G
l (ui) := (N G

l (ui), OEG
l (ui), IEG

l (ui)) and
L H

l (vk) := (N H
l (vk), OEH

l (vk), IEH
l (vk)), respectively.

OEG
l (ui) := EG ∩ (N G

l (ui) × N G
l+1(ui)) is defined the

set of edges from G that connect nodes at distance l from
ui to nodes at distance l + 1, while the set IEG

l (ui) :=
EG ∩ (N G

l (ui) × N G
l (ui)) contains all edges that connect

two nodes at distance l. The edge sets OEH
l (vk) and IEH

l (vk)

are defined analogously.
In the next step, RING defined ring distances dR(RG

i ,

RH
k) := ∑K−1

l=0 λldL (L G
l (ui),L

H
l (vk), where the layer

distance dL is defined as dL (L G
l (ui),L

H
l (vk) := α0dV

(N G
l (ui), N H

l (vk)) + α1dE (OEG
l (ui), OEH

l (vk)) + α2dE

(IEG
l (ui), IEH

l (vk)), (λl)l ∈ R
K≥0 and (αs)s ∈ R

3≥0 are sim-
plex vectors, dV is a distancemeasure between node sets, and
dE is a distance measure between edge sets. RING suggests
a strategy that uses a blackbox optimization for intelligently
choosing the meta-parameters λl , αs , and K .

Three different definitions of the node set distance dV

are suggested. The first proposal is to use the node edit cost
function cV to construct an auxiliary LSAPE instance Ci,k

for the node sets N G
l (ui) and N H

l (vk) and then to define
dV (N G

l (ui), N H
l (vk)) := LSAPE(Ci,k). Alternatively, it is

proposed to define dV (N G
l (ui), N H

l (vk)) := LSAPE(Ci,k),

where LSAPE(Ci,k) is a proxy for LSAPE(Ci,k) which
is efficiently computed via greedy LSAPE solvers or fast
heuristics based on multiset intersection. The edge set dis-
tance measure dE can be defined analogously. RING then
constructs its LSAPE instance C by setting

ci,k := dR(RG
i ,RH

k)

ci,|V H |+1 := dR(RG
i ,E)

c|V G |+1,k := dR(E ,RH
k)

for all (i, k) ∈ [|V G |]× [|V H |], where E := (∅,∅,∅)K−1
l=0 is

the empty ring of size K .
Constructing all rings for a graphG requires O(|V G |(|V G |

+|EG |)) time. LetΩ be the maximum size of a node or edge
set that appears in one of the rings rooted at the nodes ofG and
H . Then, once all rings for G and H have been constructed,
RING populates its LSAPE instance C in O(|V G ||V H |Ω3)

time if an optimal LSAPE solver is used for computing dV

and dE , and in O(|V G ||V H |Ω2) time if greedy or multi-
set intersection-based heuristics are employed. RING only
computes an upper bound for GED.

5.2.10 The algorithm RING-ML

The algorithm RING-ML [5] is similar to RING in that it
also decomposes the input graphs into rings rooted at their
nodes. However, instead of computing distances between
the rings, RING-ML constructs a feature vectors xi,k :=
(xG,H , x0, . . . , xl , . . . , xK−1) ∈ R

6K+10 for all (i, k) ∈
[|V G | + 1] × [|V H | + 1]. The features contained in xl ∈ R

6

express the dissimilarity of the l th layers of the ringsRG
i and

RH
k . They are defined as xl

0 := |N G
l (ui)|− |N H

l (vk)|, xl
1 :=

|OEG
l (ui)|−|OEH

l (vk)|, xl
2 := |IEG

l (ui)|−|IEH
l (vk)|, xl

3 :=
dV (N G

l (ui), N H
l (vk)), xl

4 := dE (OEG
l (ui), OEH

l (vk)), and
xl
5 := dE (IEG

l (ui), IEH
l (vk)), where u|V G |+1 := v|V H |+1 :=

ε. The vector xG,H contains global features that are the same
for all (i, k) ∈ [|V G |] × [|V H |]: the number of nodes and
edges of G and H , the average costs for deleting nodes and
edges fromG, the average costs for inserting nodes and edges
into H , and the average costs for substituting nodes and edges
in G by nodes and edges in H .

Given a training set, RING-ML defines a node assignment
(u, v) ∈ (V G ∪{ε})×(V H ∪{ε}) as good if and only if there
is a node map π ∈ Π(G, H)with c(Pπ) = GED(G, H) and
(u, v) ∈ π . Next, RING-ML learns a function p� that esti-
mates the probability that a node assignment is good. This is

123

430 D. B. Blumenthal et al.

done by computing optimal or close-to-optimal node maps
between all graphs contained in a training set and then train-
ing a support vector classifier with probability estimates and
RBF kernel, a one-class support vector machine with RBF
kernel, or a fully connected, feedforward neural network on
the generated training data. Once the probability estimate p�

has been learned, RING-ML constructs its LSAPE instance
C by setting

ci,k := 1 − p�(xi,k)

ci,|V H |+1 := 1 − p�(xi,|V H |+1)

c|V G |+1,k := 1 − p�(x|V G |+1,k)

for all (i, k) ∈ [|V G |] × [|V H |].
Depending on the choice of the node and edge set dis-

tances dV and dE , RING-ML requires O(|V G ||V H |Ω3) or
O(|V G ||V H |Ω2) time for constructing all feature vectors for
the graphs G and H . The time complexity of populating C
once the feature vectors have been constructed depends on
the employed machine learning technique. RING-ML only
computes an upper bound for GED.

5.2.11 The algorithm PREDICT

The algorithm PREDICT [5,54] differs from RING-ML
only in that it uses different feature vectors xi,k . For com-
puting its feature vectors, PREDICT first constructs an
auxiliary LSAPE instance CBP as done by the algorithm
BP presented in Sect. 5.2.2. Subsequently, for all (i, k) ∈
[|V G | + 1] × [|V H | + 1], PREDICT defines xi,k :=
(xG,H , xi , xk, cV (ui , vk), cBPi,k − cV (ui , vk)) ∈ R

24, where

u|V G |+1 := v|V H |+1 := ε. The vector xG,H ∈ R
4 contains

four global features: the maximum, the minimum, the aver-
age, and the deviation of CBP. The vector xi ∈ R

9 contains
nine features associated with the i th row of CBP: its maxi-
mum, its minimum, its average, its deviation, its uniqueness,
its divergence, its leader, its interval, and its outlierness.Anal-
ogously, xk ∈ R

9 contains nine features associated with the
kth rowofCBP. Finally, xi,k contains features for the node and
the edge edit costs which are induced by assigning ui to vk .
Once all feature vectors have been constructed, PREDICT
proceeds exactly like RING-ML.

5.3 Extensions of the paradigm LSAPE-GED

Next, we present two extensions of the paradigm
LSAPE-GED. Both of them can be used to improve all of
the heuristics described in Sect. 5.2.

5.3.1 The extension CENTRALITIES

Assume that an LSAPE instanceC ∈ R
(|V G |+1)×(|V H |+1) has

been constructed by one of the instantiations of LSAPE-GED

presented in Sect. 5.2. In [25,53], it is suggested to define a
node centrality measure φ that maps central nodes to large
and non-central nodes to small non-negative reals. Suggested
centrality measures are, for instance, the degrees, the eigen-
vector centralities [11], and the pagerank centralities [18] of
the nodes of the input graphs.

With the help ofφ, the upper bound for GED induced byC
can be improved. To this purpose, a second LSAPE instance
C′ ∈ R

(|V G |+1)×(|V H |+1) is constructed by setting

c′
i,k := (1 − γ) · ci,k + γ · |φ(ui) − φ(vk)|

c′
i,|V H |+1 := (1 − γ) · ci,|V H |+1 + γ · φ(ui)

c′
|V G |+1,k := (1 − γ) · c|V G |+1,k + γ · φ(vk)

for all (i, k) ∈ [|V G |] × [|V H |], where 0 ≤ γ ≤ 1 is a
meta-parameter. Subsequently, two cheap or optimal LSAPE
solutionsπ, π ′ ∈ Π(|V G |, |V H |) forC andC′ are computed,
and the returned upper bound for GED is improved from
UB := c(Pπ) to UB := min{c(Pπ), c(Pπ ′)}.2

5.3.2 The extension MULTI-SOL

Given a constant K ∈ N≥1, the extension MULTI-SOL of
the paradigm LSAPE-GED suggested in [5,26] improves the
upper bound returned by instantiations of LSAPE-GED by
considering not only one, but rather up to K optimal LSAPE
solutions. MULTI-SOL cannot be used in combination with
greedyLSAPE solvers, as it requires that theLSAPE instance
C is solved optimally in line 2 of Algorithm 1. Once the first
optimal LSAPE solution π�

0 ∈ Π�(C) has been computed,
MULTI-SOL uses a variant of the algorithm suggested in
[64] for enumerating K ′ := min{K , |Π�(C)|} − 1 optimal
LSAPE solutions {π�

l }K ′
l=1, all of which are pairwise different

and different fromπ�
0 . Since K is a constant, this enumeration

requires only O(|V G |+|V H |) additional time. Subsequently,
the upper bound for GED is improved from UB := c(Pπ�

0
)

to UB := minK ′
l=0 c(Pπ�

l
).

6 Heuristics based on linear programming

In this section, we first introduce the paradigm LP-GED,
which generalizes heuristics that use linear programming for
lower and upper bounding GED (Sect. 6.1). Subsequently,
we present heuristics that can be modeled as instantiations
of LP-GED (Sect. 6.2).

2 In the original publications, this technique is suggested for the LSAPE
instance produced by BP (cf. Sect. 5.2.2). It can, however, be employed
in combinationwith the LSAPE instances produced by any instantiation
of LSAPE-GED.

123

Comparing heuristics for graph edit distance computation 431

Fig. 4 A quadratic programming formulation of GED

6.1 The paradigm LP-GED

Recall the alternative Definition 4 of GED, which defines
the problem of computing GED as a minimization problem
over the set of all node maps between two graphs G and
H . This definition can straightforwardly be transformed into
the quadratic programming formulation of GED detailed in
Fig. 4 [16,49]. The binary decision variables xsubi,k , xdeli , and

x insk indicate, respectively, whether the node ui ∈ V G is to be
substituted by the node vk ∈ V H , whether ui is to be deleted,
andwhethervk is to be inserted.Analogously, the binary deci-
sion variables ysubi, j,k,l , ydeli, j , and yinsk,l indicate, respectively,

whether the edge (ui , u j) ∈ EG is to be substituted by the
edge (vk, vl) ∈ E H , whether (ui , u j) is to be deleted, and
whether (vk, vl) is to be inserted. The quadratic constraint
ysubi, j,k,l − xsubi,k xsubj,l − xsubi,l xsubj,k = 0 ensures that (ui , u j) is
substituted by (vk, vl) if and only if the node map π encoded
by xsub, xdel, and xins satisfies π(ui , u j) = (vk, vl).

Heuristics that use linear programs (LP) for upper and
lower boundingGEDproceed as described inAlgorithm2: In
a first step, the quadratic program shown inFig. 4 is linearized
to obtain a (mixed) integer linear programming (MIP) formu-
lation F̂ (line 1). This linearization phase is where different
instantiations of LP-GEDvary fromeachother.Next, all inte-
grality constraints contained in F̂ are continuously relaxed,
which yields in an LP F (line 2). Subsequently, F is solved
and the lower bound LB is set to the optimal solution of F .

In the literature, LP-based heuristics for GED are usually
described as algorithms that only yield lower bounds. How-
ever, they can straightforwardly be extended to also compute

Algorithm 2 The paradigm LP-GED.
Input: Graphs G and H , node edit costs cV , edge edit costs cE .
Output: An upper bound UB and a lower bound LB for GED(G, H).
1: construct linearization of the quadratic programming formulation

detailed in Fig. 4;
2: relax all integrality constraints of the obtained MIP;
3: solve the resulting LP and set LB to the obtained minimum;
4: use optimal continuous solution to construct projection problemC ∈

[0, 1](|V G |+1)×(|V H |+1);
5: compute π� ∈ argminπ∈Π(|V G |,|V H |) C(π);
6: set UB := c(Pπ�);
7: return LB and UB;

upper bounds. To that purpose, after solving the LP F , an
LSAPE instance C ∈ R

(|V G |+1)×(|V H |+1) is constructed,
whose optimal solutions π� ∈ argminπ∈Π(|V G |,|V H |) C(π)

can be viewed as projections of the previously computed
optimal and possibly continuous solution for F to the dis-
crete domain (line 4). Subsequently, an optimal solution π�

for C is computed (line 5), the upper bound UB is set to its
induced edit cost (line 6), andLB andUB are returned (line 7).

In theory, the LP F can be solved in O(var(F)3.5 enc(F))

time, where var(F) is the number of variables contained in
F and enc(F) is the number of bits needed to encode F [37].
However, popular LP solvers such as IBMCPLEX or Gurobi
Optimization often use asymptotically slower but practically
faster algorithms. Solving the projection problemC requires
O(min{|V G |, |V H |}2 max{|V G |, |V H |}) time.

6.2 Instantiations of the paradigm LP-GED

We present four different linearizations of the quadratic pro-
gram shown in Fig. 4. The first three linearizations presented
in Sects. 6.2.1–6.2.3 are designed for general graphs and edit
costs. They hence not only yield upper and lower bounds for
GED as detailed in Algorithm 2, but also exact algorithms if
fed into exact MIP solvers. The last linearization presented
in Sect. 6.2.4 requires the edge edit costs to be constant and
symmetric. Furthermore, it is designed for graphs without
edge labels. If used with graphs whose edges are labeled, it
hence does not yield an exact algorithm for GED, even if fed
into an exact MIP solver.

6.2.1 The linearization F1

The integer linear program F1 [43,44] displayed in Fig. 5
is a straightforward linearization of the quadratic program-
ming formulation shown in Fig. 4. F1 has |V G ||V H | +
|V G | + |V H | + |EG ||E H | + |EG | + |E H | = O(|EG ||E H |)
binary variables and |V G | + |V H | + |EG | + |E H | +
2|EG ||E H | = O(|EG ||E H |) constraints. Given an optimal
solution (xsub, xdel, xins, ysub, ydel, yins) for the continuous
relaxation of F1, the projection problem C is defined as

123

432 D. B. Blumenthal et al.

Fig. 5 Linearization F1 suggested in [43,44]

ci,k := 1 − xsubi,k

ci,|V H |+1 := 1 − xdeli

c|V G |+1,k := 1 − x insk

for all (i, k) ∈ [|V G |] × [|V H |].

6.2.2 The linearization F2

The linearization F2 [44] displayed in Fig. 6 improves F1
by reducing the number of variables and constraints. It
uses the fact that the node and edge substitution variables
xsub and ysub implicitly encode the node and edge dele-
tion and insertion variables xdel, xins, ydel, and yins. F2 has
|V G | + |V H | + |V H ||EG | = O(|V H ||EG |) constraints and
|V G ||V H | + |EG ||E H | = O(|EG ||E H |) binary variables.
Given an optimal solution (xsub, ysub) for the continuous
relaxation of F2, the projection problem C is defined as

ci,k := 1 − xsubi,k

ci,|V H |+1 :=
∑

vk∈V H

xsubi,k

c|V G |+1,k :=
∑

ui ∈V G

xsubi,k

for all (i, k) ∈ [|V G |] × [|V H |].

Fig. 6 Linearization F2 suggested in [44]. The modi-
fied edit costs c′

V and c′
E and the constant C are defined

as c′
V (ui , vk) := cV (ui , vk) − cV (ui , ε) − cV (ε, vk),

c′
E ((ui , u j), (vk , vl)) := cE ((ui , u j), (vk , vl)) − cE ((ui , u j), ε) −

cE (ε, (vk , vl)), and C := ∑
ui ∈V G cV (ui , ε) + ∑

vk∈V H cV (ε, vk) +∑
(ui ,u j)∈EG cE ((ui , u j), ε) + ∑

(vk ,vl)∈E H cE (ε, (vk , vl))

6.2.3 The linearization COMPACT-MIP

The linearization COMPACT-MIP [10] displayed in Fig. 7
makes do without edge variables. Instead, it contains con-
tinuous variables zsub, zdel, zins, which, at the optimum,
contain the edit costs which are induced by the node assign-
ment π encoded by optimal binary node variables xsub,
xdel, and xins. COMPACT-MIP has |V G ||V H | + |V G | +
|V H | = O(|V G ||V H |) binary variables, |V G ||V H | +
|V G | + |V H | = O(|V G ||V H |) continuous variables, and
|V G ||V H | + |V G | + |V H | = O(|V G ||V H |) constraints. It
is hence smaller than both F1 and F2. Given an optimal
solution (xsub, xdel, xins, zsub, zdel, zins) for the continuous
relaxation of COMPACT-MIP, the projection problem C is
defined as

ci,k := 1 − xsubi,k

ci,|V H |+1 := 1 − xdeli

c|V G |+1,k := 1 − x insk

for all (i, k) ∈ [|V G |] × [|V H |].

6.2.4 The linearization ADJ-IP

The linearization ADJ-IP [36] displayed in Fig. 8 requires
the edge edit costs cE to be constant and symmetric. Further-
more, it is designed for graphs without edge labels. ADJ-IP
has 3(|V G | + |V H |)2 = O((|V G | + |V H |)2) binary vari-
ables and 2|V G | + 2|V H | + |V G ||V H | + |V G |2 + |V H |2 =
O((|V G | + |V H |)2) constraints. Note that ADJ-IP sets all
edge substitution costs to 0. If used with graphs whose edges
are labeled, it hence ignores all edit costs induced by sub-
stituting an edge (ui , u j) ∈ EG by an edge (vk, vl) ∈ E H

123

Comparing heuristics for graph edit distance computation 433

Fig. 7 Linearization COMPACT-MIP suggested in [10]. For all
(ui , vk) ∈ V G × V H , the constants asub

i,k , adel
i , and ains

k are defined

as asub
i,k := 0.5 · [∑u j ∈N G (ui)

∑
vl ∈N H (vk) cE ((ui , u j), (vk , vl)) +

∑
u j ∈N G (ui)

(|V H | − degH (vk) + 1)cE ((ui , u j), ε) +
∑

vl ∈N H (vk)(|V G | − degG(ui) + 1)cE (ε, (vk , vl))], adel
i :=

0.5 · ∑
u j ∈N G (ui)

(|V H | + 1)cE ((ui , u j), ε), and ains
k := 0.5 ·

∑
vl ∈N H (vk)(|V G | + 1)cE (ε, (vk , vl))

with �G
E (ui , u j) 	= �H

E (vk, vl). Given an optimal solution
(x, s, t) for the continuous relaxation of ADJ-IP, the pro-
jection problem C is defined as

ci,k := 1 − xi,k

ci,|V H |+1 :=
∑

vk∈V H

xi,k

c|V G |+1,k :=
∑

ui ∈V G

xi,k

for all (i, k) ∈ [|V G |] × [|V H |].

Fig. 8 Linearization ADJ-IP suggested in [36]

7 Heuristics based on local search

In this section, we first introduce the paradigm LS-GED,
which generalizes heuristics that use variants of local search
for upper bounding GED (Sect. 7.1). Subsequently, we
present heuristics that can be modeled as instantiations
(Sect. 7.2) and extensions (Sect. 7.2) of LS-GED.

7.1 The paradigm LS-GED

Algorithm 3 shows how to compute an upper bound for GED
via a variant of local search. In the first step, an initial node
mapπ ∈ Π(G, H) is generated randomly or constructed, for
instance, by calling an instantiation of LSAPE-GED (line 1).
Subsequently, a variant of local search is run, which produces
an improved node map π ′ ∈ Π(G, H) with c(Pπ ′) ≤ c(Pπ)

(line 2). This refinement phase is where different instantia-
tions of LS-GED vary from each other. Once π ′ has been
computed, UB := c(Pπ ′) is returned (lines 3 to 4).

Algorithm 3 The paradigm LS-GED.
Input: Graphs G and H , node edit costs cV , edge edit costs cE .
Output: An upper bound UB for GED(G, H).
1: compute or randomly construct initial node mao π ∈ Π(G, H);
2: use information encoded in G, H , cV , and cE to construct node map

π ′ ∈ Π(G, H) with c(Pπ ′) ≤ c(Pπ) via local search starting at π ;
3: set upper bound to UB := c(Pπ ′);
4: return UB;

123

434 D. B. Blumenthal et al.

7.2 Instantiations of the paradigm LS-GED

In the sequel, we present five algorithms for heuristically
computing GED that can be modeled as instantiations of the
paradigm LS-GED. All of them yield upper but no lower
bounds for GED and can be used with general edit costs.

7.2.1 The algorithm REFINE

Given an initial node map π ∈ Π(G, H), the algorithm
REFINE [12,68] proceeds as follows: Let ((us, vs))

|π |
s=1 be

an arbitrary ordering of the node assignments contained in
π , let u|π |+1 := v|π |+1 := ε, and let Gπ := (V G

π ∪ V H
π , Aπ)

be an auxiliary directed bipartite graph, where V G
π := {us |

s ∈ [|π | + 1]}, V H
π := {vs | s ∈ [|π | + 1]}, and Aπ :=

π ∪ {(u|π |+1, v|π |+1)} ∪ {(vs, us′) | (s, s′) ∈ [|π | + 1] ×
[|π | + 1] ∧ s 	= s′}. In other words, Gπ contains a forward
arc for each assignment contained inπ , a forward arc between
the additionally added dummy nodes u|π |+1 and v|π |+1, and
backward arcs between nodes in V G

π and V H
π that are not

assigned to each other by π . Note that, by definition of a
node map, V G

π contains each node u ∈ V G exactly once,
V H

π contains each node v ∈ V H exactly once, but both V G
π

and V H
π might contain multiple copies of the dummy node ε.

A directed cycle C ⊆ Aπ in Gπ with |C | = 4 is called swap.
There are exactly

(|π |+1
2

) = O((|V G | + |V H |)2) swaps.
For each swapC={(us, vs), (vs, us′), (us′ , vs′), (vs′ , us)},

REFINE checks if the swappednodemapπ ′ := (π\{(us, vs),

(us′ , vs′)}) ∪ {(us, vs′), (us′ , vs)} induces a smaller upper
bound than π . If, at the end of the for-loop, a node map π ′
has been found that improves the upper bound, π is updated
to the node map that yields the largest improvement and the
process iterates. Otherwise, the output node map π ′ is set to
π and REFINE terminates.

For checking if a swap C improves the induced upper
bound, it suffices to consider the edges that are incident
with the nodes involved in the swap. Therefore, one iter-
ation of REFINE runs in O((|V G | + |V H |)2ΔG,H

max) time,
where Δ

G,H
max := max{max deg(G),max deg(H)}. Since the

induced upper bound improves in each iteration, this gives an
overall runtime complexity of O(UB(|V G | + |V H |)2ΔG,H

max)

for integral edit costs, where UB is the initial upper bound.

7.2.2 The algorithm K-REFINE

The algorithm K-REFINE [12] is a straightforward exten-
sion of the algorithm REFINE presented in the previous
section. Let π ∈ Π(G, H) be an initial node map and
K ∈ N≥2 be a constant. Furthermore, let the auxiliary
directed bipartite graph Gπ be defined as in the previous
section. A directed cycle C ⊆ Aπ in Gπ with |C | = 2K ′ is
called swap of size K ′, where K ′ ∈ {2, . . . , K }. There are

exactly
(|π |+1

K ′
)
(K ′ − 1)! = O((|V G | + |V H |)K ′

) swaps of
size K ′.

Starting with K ′ := 2, K-REFINE checks if there is a
swap of size K ′ that improves the induced upper bound. If so,
π is updated to the node map obtained by the swap of size K ′
that yields the largest improvement, K ′ is reset to 2, and the
process iterates. If no swap of size K ′ yields an improvement,
K-REFINE checkswhether K ′ equals themaximal swap size
K . If this is the case, the output node map π ′ is set to π and
K-REFINE terminates. Otherwise, K-REFINE increments
K ′ and continues the search.

One iteration of K-REFINE runs in O((|V G | + |V H |)K

Δ
G,H
max) time. For integral edit costs, K-REFINE’s overall

runtime complexity is hence O(UB(|V G | + |V H |)K Δ
G,H
max),

where UB is the initial upper bound.

7.2.3 The algorithm BP-BEAM

Given an initial node map π ∈ Π(G, H) and a con-
stant K ∈ N≥1, the algorithm BP-BEAM [56] starts by
producing a random ordering ((us, vs))

|π |
s=1 of the node

assignments contained in π . BP-BEAM now constructs
an output node map π ′ with c(Pπ ′) ≤ c(Pπ ′) by par-
tially traversing an implicitly constructed tree T via beam
search with beam size K . The nodes of T are tuples
(π ′′, c(Pπ ′′), s), where π ′′ ∈ Π(G, H) is an ordered node
map, c(Pπ ′′) is its induced edit cost, and s ∈ [|π |] is the
depth of the tree node in T . Tree nodes (π ′′, c(Pπ ′′), s)
with s = |π | are leafs, and the children of an inner node
(π ′′, c(Pπ ′′), s) are {(swap(π ′′, s, s′), c(Pswap(π ′′,s,s′)), s +
1) | s′ ∈ {s, . . . , |π |}}. Here, swap(π ′′, s, s′) is the ordered
node map obtained from π ′′ by swapping the assignments
(us, vs) and (us′ , vs′), i.e., setting vs := vs′ and vs′ := vs .

At initialization, BP-BEAM sets the output node map π ′
to the initial node map π . Furthermore, BP-BEAMmaintains
a priority queue q of tree nodes which is initialized as q :=
{(π, c(Pπ), 1)} and sorted w.r.t. non-decreasing induced edit
cost of the contained node maps. As long as q is non-empty,
BP-BEAM extracts the top node (π ′′, c(Pπ ′′), s) from q and
updates the output node map π ′ to π ′′ if c(Pπ ′′) < c(Pπ ′).
If s < |π |, BP-BEAM adds all of its children to the priority
queue q and subsequently discards all but the first K tree
nodes contained in q. Once q is empty, the cheapest encoun-
tered node map π ′ is returned.

By construction of T , we know that at most 1+ K (|π | −
1) = O(|V G | + |V H |) tree nodes are extracted from
q. For each extracted inner node, BP-BEAM has to con-
structed all children,which requires O((|V G |+|V H |)ΔG,H

max)

time, and subsequently sort q, which requires O((|V G | +
|V H |) log(|V G | + |V H |)) time. BP-BEAM hence runs in
O((|V G | + |V H |)2(ΔG,H

max + log(|V G | + |V H |))) time.

123

Comparing heuristics for graph edit distance computation 435

7.2.4 The algorithm IBP-BEAM

Since the size of the priority queue q is restricted to K ,
which parts of the search tree T are visited by BP-BEAM
crucially depends on the ordering of the initial node map π .
Therefore, BP-BEAM can be improved by considering not
one but several initial orderings. The algorithm IBP-BEAM
suggested in [27] does exactly this. That is, given a constant
number of iterations I ∈ N≥1, IBP-BEAM runs BP-BEAM
with I different randomly created orderings of the initial node
map π and then returns the cheapest node map π ′ encoun-
tered in one of the iterations. Therefore, IBP-BEAM runs in
O(I (|V G | + |V H |)2(ΔG,H

max + log(|V G | + |V H |))) time.

7.2.5 The algorithm IPFP

The algorithm IPFP [42] can be seen as an adaptation of
the seminal Frank–Wolfe algorithm [30] to cases where
an integer solution is required. Its adaptation to the case
of GED, first suggested in [16], implicitly constructs a
matrixQ ∈ R

((|V G |+1)·(|V H |+1))×((|V G |+1)·(|V H |+1)) such that
minX∈Π(|V G |,|V H |) vec(X)TQ vec(X) = GED. Recall that

Π(|V G |, |V H |) ∈ {0, 1}(|V G |+1)×(|V H |+1) is the set of feasi-
ble LSAPE solutions of size (|V G | + 1) × (|V H | + 1) and
that LSAPE solutions of size (|V G | + 1) × (|V H | + 1) are
equivalent to node maps between G and H . Q can hence be
viewed as a matrix representation of the quadratic program
shown in Fig. 4. In this context, we define the cost function c :
[0, 1](|V G |+1)·(|V H |+1) → R as c(X) := vec(X)TQ vec(X).

Starting from an initial node map X0 ∈ Π(|V G |, |V H |)
with induced upper bound UB := c(X0), the algorithm con-
verges to a, possibly fractional, local minimum for GED by
repeating the five following steps:

1. Populate LSAPE instance Ck := Q vec(Xk).
2. Compute Bk+1 ∈ argminB∈Π(|V G |,|V H |) Ck(B).
3. Set UB := min{UB, c(Bk+1)}.
4. Compute αk+1 := minα∈[0,1] c(Xk + α · (Bk+1 − Xk)).
5. Set Xk+1 := Xk + αk+1(Bk+1 − Xk).

The algorithm iterates until |c(Xk)−Ck(Bk+1)|/c(Xk) is
smaller than a convergence threshold ε or a maximal number
of iterations I have been reached. Subsequently, the possibly
fractional local optimumXk+1 is projected to the closest inte-
gral solution X̂, and the upper bound UB := min{UB, c(X̂)}
is returned.

Populating the LSAPE instance Ck in step 1 requires
O(k|V G ||V H |max{|V G |, |V H |}) time. Solving the LSAPE
instance in step 2 requires O(min{|V G |, |V H |}2 max{|V G |,
|V H |}) time. Updating the upper bound in step 3 requires
O(max{|V G |, |V H |}2) time. Determining the optimal step
widthαk+1 in step4 canbedone analytically in O(|V G ||V H |)

time. And projecting the final fractional solution Xk+1 to
the integral solution X̂ requires O(min{|V G |, |V H |}2 max
{|V G |, |V H |}) time. IPFP’s overall runtime complexity is
hence O(I 2|V G ||V H |max{|V G |, |V H |}).

Slightly different versions of IPFP that use LSAP instead
of LSAPE as a linear model have been presented in [14]
and [7]. The main advantage of these versions w.r.t. the one
presented in this survey is that they are easier to imple-
ment: Unlike LSAPE, LSAP is a standard combinatorial
optimization problem and solvers are available for all major
programming languages. The drawback of the version pre-
sented in [14] is that is uses a significantly larger quadratic
matrixQ, while the drawback of the version presented in [7]
is that it can be used only for quasimetric edit cost functions.

7.3 Extensions of the paradigm LS-GED

Next, we present two extensions of the paradigm LS-GED.
Both of them can be used to improve all of the heuristics
described in Sect. 7.2.

7.3.1 The extension MULTI-START

MULTI-START was suggested in [26] as an extension to
the IPFP algorithm. While the general LS-GED framework
computes a local optimum, the quality of the local optimum
highly depends on the initialization of the method, which
is a general drawback of local search methods. Hence, the
MULTI-START extension to the framework simplyproposes
to use K different initial solutions, run the LS-GED frame-
work on each of them (possibly in parallel), and return the
best among the K computed local optima.

In order to further reduce the computing time of
MULTI-STARTwhen parallelization is available, it was sug-
gested in [13] to run in parallel more local searches than the
number of desired local optima and to stop the whole process
when the number of local searches that have converged has
reached the number of desired local optima. In this context,
the framework runs with two parameters: K is the number of
initial solutions, and 0 < ρ ≤ 1 is defined such that �ρ · K �
is the number of desired computed local optima.

7.3.2 The extension RANDPOST

The RANDPOST framework initially proposed in [13] and
refined in [12] aims at extending the MULTI-START frame-
work by running it several times in a row, and using the infor-
mation contained in the computed local optima computed so
far in order to produce better initializations. In addition to the
two parameters K and ρ of MULTI-START, RANDPOST
requires two parameters: the number of iterations L ∈ N

and a penalty parameter η ∈ [0, 1]. RANDPOST maintains a

123

436 D. B. Blumenthal et al.

score matrix M ∈ R
(|V G |+1)×(|V H |+1)
≥0 for all possible node

assignments, which is initialized as 0(|V G |+1)×(|V H |+1). The
score for each substitution (ui , vk) ∈ V G × V H is repre-
sented by the value mi,k in the score matrix M, while the
scores for the deletion (ui , ε) and the insertion (ε, vk) are
represented by the values mi,|V H |+1 and m|V G |+1,k , respec-
tively. When the penalty parameter η equals 0, mi,k always
represents the number of converged local optima that con-
tain the corresponding assignment. When η > 0, the score
of each assignment depends on both the number and the cost
of converged local optima that contain it (assignments that
appear in node maps with lower costs receive higher scores).

RANDPOST starts by running one iteration of
MULTI-START. Next, RANDPOST carries out L iterations
of itsmain for-loop. Inside this for-loop,RANDPOST starts by
updating the scores matrixM asM := M+ ∑

π∈S X
π [(1−

η) + η UB−LB
c(Pπ)−LB], where S is the set of converged node maps

computed by the previous iteration of MULTI-START and,
for each node map π ∈ S, Xπ is the binary matrix that
encodes π . Subsequently, RANDPOST randomly generates
new initial node maps such that assignments with higher
scores are more likely to be part of the generated node maps:
For each of the first |V G | rows Mi of the score matrix M,
RANDPOST draws a column k ∈ [|V H | + 1] from the distri-
bution encoded my Mi . If k = |V H | + 1, the node deletion
(ui , ε) is added to the node map π that is being constructed.
Otherwise, the substitution (ui , vk) is added to π , the score
m j,k is temporarily set to 0 for all j ∈ [|V G |]\[i], and the
column k is marked as covered. Once all nodes of G have
been processed, node insertions (ε, vk) are added to π for all
uncovered columns k ∈ [|V H |]. This process is repeated until
K different node maps have been created. Once all new ini-
tial node maps have been generated, RANDPOST carries out
another iteration of MULTI-START and updates the upper
bound if one of the newly computed node maps yields an
improvement.

8 Miscellaneous heuristics

In this section, we describe six algorithms that do not instan-
tiate any of the paradigms LSAPE-GED, LS-GED, and
LP-GED discussed in Sects. 5–6. The first three algorithms
presented in Sects. 8.1–8.3 accept arbitrary edit cost func-
tions, whereas the remaining three algorithms presented in
Sects. 8.4–8.6 are designed for uniform edit costs.

8.1 The algorithm HED

Given two input graphs G and H , the algorithm HED
[28] starts by constructing the same LSAPE instance C ∈
R

(|V G |+1)×(|V H |+1) as the algorithm BRANCH presented in

Sect. 5.2.3 above. However, instead of feeding C into an
LSAPE solver for obtaining upper and lower bounds for
GED, HED computes a lower bound

LB := 0.5 ·
|V G |∑

i=1

min
k∈[|V H |+1]

ci,k + 0.5 ·
|V H |∑

k=1

min
i∈[|V G |+1]

ci,k

for GED by summing the minima of C’s rows and columns.
Note that, in general, LB does not correspond to a feasible
LSAPE solution, because of which HED does not compute
an upper bound for GED. Furthermore, it holds that LB ≤
LSAPE(C), which implies that HED’s lower bound is never
tighter than the lower bound computed by BRANCH.

As detailed in Sect. 5.2.3, the LSAPE instance C can

be constructed in O(|V G ||V H |ΔG,H
min

2
Δ

G,H
max) time, where

Δ
G,H
min := min{max deg(G),max deg(H)} and Δ

G,H
max :=

max{max deg(G),max deg(H)}. This implies that the over-

all runtimecomplexity of HED is O(|V G ||V H |ΔG,H
min

2
Δ

G,H
max).

8.2 The algorithm BRANCH-TIGHT

Given two input graphs G and H , the algorithm
BRANCH-TIGHT [9] starts by enforcing |V G | = |V H | =:
N . If the edit cost functions cV and cE are metric, this is
done by adding max{|V G |, |V H |} − |V G | isolated dummy
nodes to G and adding max{|V G |, |V H |} − |V H | isolated
dummy nodes to H . Otherwise, |V H | isolated dummy nodes
are added to G and |V G | isolated dummy nodes are added
to H . Next, dummy edges are added to G and H to ren-
der G and H d-regular with d = O(Δ

G,H
max). Both of these

preprocessing operations leave GED(G, H) invariant.
After preprocessing the input graphs, BRANCH-TIGHT

runs an anytime algorithm that, given a maximal number
of iterations I , computes lower bounds (LBs)

I
r=1 and upper

bounds (UBs)
I
r=1 for GED such that LB1 equals the lower

bound computed by the algorithm BRANCH presented in
Sect. 5.2.3 and LBr+1 ≥ LBs holds for all r ∈ [I −1]. Once I
or a given time limit has been reached or the lower bound has
converged, BRANCH-TIGHT returns the last lower bound
LB := LBI ′ and the best encountered upper bound.

BRANCH-TIGHT repeatedly solves instances of the linear
sum assignment or minimum cost perfect bipartite matching
problem (LSAP). LSAP is similar to LSAPE but does not
allow deletions and insertions of rows and columns.

Definition 8 (LSAP) Given a square matrix C ∈ R
n×n , the

linear sum assignment problem (LSAP) asks to minimize
C(X) := ∑n

i=1
∑m

k=1 ci,k xi,k over all permutation matrices
X ∈ Π̂(C), where Π̂(n, m) := {X ∈ {0, 1}n×n | 1TX =
1T∧X1 = 1} and 1 is the n-sized vector of ones. LSAP(C) :=
C(X) denotes the cost of an optimal solution X.

123

Comparing heuristics for graph edit distance computation 437

For each (ui , vk) ∈ V G × V H and each iteration r ∈
[I], BRANCH-TIGHT constructs and solves LSAP instances
Ci,k,r ∈ R

d×d defined as

ci,k,r
j,l :=

⎧
⎪⎨

⎪⎩

0.5 · cE ((ui , u j), (vk , vl)) if r = 1

ci,k,r−1
j,l − si,k,r−1

j,l − sr−1
i,k
d + s j,l,r−1

i,k + sr−1
j,l
d else

for all (u j , vl) ∈ N G(ui) × N H (vk). Here, sr ,i,k
j,l is the slack

of the variable x j,l in an optimal LSAP solution of the LSAP
instance Ci,k,r , and sr

i,k is the slack of the variable xi,k in an

optimal solution of the LSAP instance Cr ∈ R
N×N , which,

in turn, is constructed by setting

cr
i,k := cV (ui , vk) + LSAP(Ci,k,r)

for all (ui , vk) ∈ V G×V H . After constructingCr , an optimal
solution Xr for Cr is computed, LBr is set to LSAP(Cr),
and UBr is set to the cost of the edit path induced by Xr .
Subsequently, r is incremented and the process iterates.

Preprocessing the input graphs G and H requires O(N 3

Δ
G,H
max

2
), and one iteration of the anytime algorithm runs in

O(N 2Δ
G,H
max

3 + N 3). This implies that BRANCH-TIGHT’s

overall runtime complexity is O(N 3Δ
G,H
max

2+ I (N 2Δ
G,H
max

3+
N 3)). Recall that we have N = max{|V G |, |V H |}, if the edit
cost functions are metric, and N = |V G |+ |V H |, otherwise.

8.3 The algorithm SA

The algorithm SA [58] uses simulated annealing to improve
the upper bound computed by an instantiation of the
paradigm LSAPE-GED discussed in Sect. 5.3 SA is hence
similar to the local search-based heuristics presented in
Sect. 7. However, instead of varying an initial node map, SA
varies the processing order for greedily computing a cheap
solution for an initially computed LSAPE instance.

Assume w.l.o.g. that G and H are two input graphs with
|V G | ≥ |V H |. SA starts by running an instantiation of
LSAPE-GED to obtain an initial node map π ∈ Π(G, H),
an LSAPE instanceC ∈ R

(|V G |+1)×(|V H |+1), and, possibly, a
lower bound LB. If the employed LSAPE-GED instantiation
does not yield a lower bound, LB can be computed with any
other method that produces a lower bound.

Given a maximal number of iterations I and start and
end probabilities p1 and pI with 1 > p1 ≥ pI > 0 for
accepting an unimproved node map, SA initializes an order-
ing σ : [|V G |] → [|V G |] of the first |V G | rows of C by

3 In [58], SA is presented as a technique for improving the upper bound
computed by the LSAPE-GED instantiation BP. Since SA can be used
with any instantiation of LSAPE-GED, we here present a more general
version.

setting σ(i) := i for all i ∈ [|V G |], computes a cooling fac-
tor a := (log(p1)/ log(pI))

1/(I−1) such that pa−(I−1)

1 = pI ,
sets the current acceptance probability to p := p1, initializes
the best encountered node map π ′ and the current node map
π ′′ as π ′ := π ′′ := π , and sets the number r of consecutive
iterations without improvement of the upper bound to r := 0.

While the maximal number of iterations I has not been
reached and the best upper bound c(Pπ ′) is greater than
LB, SA does the following: First, a candidate row order-
ing σ ′ is obtained from the current ordering σ by setting
σ ′(1) := σ(i), σ ′(j) := σ(j − 1) for all j ∈ [i]\{1}, and
σ ′(j) := σ(j) for all j ∈ [|V G |]\[i], where i ∈ [|V G |] is
a randomly selected row of C. Next, a candidate node map
π ′′′ is computed by greedily assigning the σ ′-ordered rows
of C to the cheapest unassigned columns. If π ′′′’s induced
upper bound is cheaper than the upper bound of the current
node map π ′′, π ′′ and σ are updated to π ′′′ and σ ′, respec-
tively. Otherwise, they are updated with a probability that
is proportional to the current acceptance probability p and
inversely proportional to the deterioration c(Pπ ′′′) − c(Pπ ′′)
of the induced upper bound.

After updating π ′′ and σ , SA checks if π ′′’s induced upper
bound is tighter than the upper bound induced by the best
encountered node map π ′. If this is the case, π ′ is updated
to π ′′ and the number r of consecutive iterations without
improvement is reset to 0. Otherwise, r is incremented and
the current ordering σ is reshuffled randomly with proba-
bility r/I . Finally, the current acceptance probability p is
set to pa−s

1 , where s is the number of the current iteration,
and SA iterates. After exiting the main loop, SA returns
UB := c(Pπ ′).

The dominant operations in one iteration of SA are the
greedy computation of the candidate node map π ′′′ and
the computation of its induced upper bound. One itera-
tion of SA hence runs in O(|V G ||V H | + max{EG, E H })
time. This implies that SA’s overall runtime complexity is
O(ω + I (|V G ||V H | + max{EG, E H })), where O(ω) is the
runtime required for computing the initial upper and lower
bounds as well as the LSAPE instance C.

8.4 The algorithm BRANCH-COMPACT

The algorithm BRANCH-COMPACT [71] yields a lower
bound for GED with uniform edit cost functions cV and
cE . Recall that cV and cE are uniform if there is a constant
c ∈ R>0 such that cV (α, α′) = cE (β, β ′) = c holds for all
node labels (α, α′) ∈ (ΣV ∪ {ε}) × (ΣV ∪ {ε}) with α 	= α′
and all edge labels (β, β ′) ∈ (ΣE ∪ {ε}) × (ΣE ∪ {ε}) with
β 	= β ′.

Given input graphs G and H , BRANCH-COMPACT starts
by constructing branches BG

i := (�G
V (ui), �

G
E �EG(ui)�)

and BH
k := (�H

V (vk), �
H
E �E H (vk)�) for all ui ∈ V G and

123

438 D. B. Blumenthal et al.

all vk ∈ V H . Subsequently, BRANCH-COMPACT sorts
the branches in non-decreasing lexicographical order, i.e.,
computes orderings σ G : [|V G |] → [|V G |] and σ H :
[|V H |] → [|V H |] such that BG

σ G (i)
�L BG

σ G (i+1)
holds

for all i ∈ [|V G | − 1] and BH
σ H (k)

�L BH
σ H (k+1)

holds for

all k ∈ [|V H | − 1].
BRANCH-COMPACT now performs a first parallel linear

scan over the sorted sequences of branches (BG
σ G (i)

)
|V G |
i=1

and (BH
σ H (k)

)
|V H |
k=1 to delete a maximal number of pairs of

branches (BG
σ G (i)

,BH
σ H (k)

) with BG
σ G (i)

= BH
σ H (k)

. Subse-
quently, BRANCH-COMPACT initializes its lower bound as
LB := 0 and performs a second parallel linear scan over
the remaining branches. In this scan, a maximal number
of pairs of branches (BG

σ G (i)
,BH

σ H (k)
) with �G

V (uσ G (i)) =
�H

V (vσ H (k)) are deleted and LB is incremented by c/2 for
each deleted pair of branches. Finally, LB is incremented by
c(max{|V G |, |V H |} − D), where D is the number of pairs
of branches that have been deleted during the two scans.

BRANCH-COMPACT first sorts the branches in
O(max{|V G |, |V H |}ΔG,H

max log(ΔG,H
max)) time and then com-

putes its lower bound in O(max{|V G |, |V H |}) time.
BRANCH-COMPACT’s overall runtime complexity is hence
O(max{|V G |, |V H |}(ΔG,H

max log(ΔG,H
max) + log(max{|V G |,

|V H |}))).

8.5 The algorithm PARTITION

The algorithm PARTITION [71] computes a lower bound
for GED with uniform edit costs. Given input graphs G and
H and a constant K ∈ R≥1, PARTITION starts by initial-
izing a collection S := ∅ of K ′-sized substructures of G
that are not subgraph-isomorphic to H , where K ′ ∈ [K]
and a K ′-sized substructure of G is a connected subgraph
of G that is composed of K ′ elements (nodes or edges). For
instance, 1-sized substructures are single nodes or edges, 2-
sized substructures are nodes together with an incident edge,
and 3-sized substructures are nodes together with two inci-
dent edges or edges together with their terminal nodes.

Starting with K ′ := 1, PARTITION now consecutively
checks for each K ′-sized substructure SG ⊆ G of G if there
is a K ′-sized substructure of H which is isomorphic to SG .
If this is not the case, SG is added toS and deleted from G.
Once all K ′-sized substructures have been considered, K ′ is
incremented and the process iterates if K ′ ≤ K . Otherwise,
PARTITION returns the lower bound LB := c|S |.

Since G and H have, respectively, O(|EG |) and O(|E H |)
substructures of sizes 1, 2, and 3, PARTITION with K ≤ 3
runs in O(|EG ||E H |) time. Determining non-isomorphic
substructures of size K > 3 cannot be done naively but
requires to call subgraph isomorphism verification algo-
rithms such as the one proposed in [24]. These algorithms

run in super-polynomial time but are often fast in practice
for small K .

8.6 The algorithm HYBRID

The algorithm HYBRID [71] improves the lower bounds
of the algorithms BRANCH-CONST and PARTITION pre-
sented in Sects. 5.2.5 and 8.5. Given input graphs G and H
and a constant K ∈ R≥1, HYBRID first runs PARTITION
with the maximal size of the considered substructures set to
K and hence obtains a collectionS of substructures SG ⊆ G
of G that are not subgraph-isomorphic to H .

Let C (S) :=×SG∈S SG be the set of all configurations
of nodes or edges that appear in the non-isomorphic sub-
structures. For each configuration a := (as)

|S |
s=1 ∈ C (S),

HYBRID creates a modified graph Ga , where all nodes or
edges as contained in the configuration a get a special wild-
card label γ , and runs a variant of BRANCH-CONST on
the graphs Ga and H , which edits γ -labeled nodes and
edges for free. Finally, HYBRID returns the lower bound
LB := |S |+min{LBa | a ∈ C (S)}, where LBa is the lower
bound returned by the wildcard version of BRANCH-CONST
if run on the graphs Ga and H . This lower bound is guaran-
teed to be as least as tight as the lower bounds computed by
PARTITION and BRANCH-CONST.

Let O(ω1) be the runtime complexity of PARTITION
with themaximal size of the considered substructures set to K
and O(ω2) be the runtime complexity of BRANCH-CONST.
Then, HYBRID runs in O(ω1 + ω2|C (S)|) time. Note
that |C (S)| can get huge. For instance, assume that
PARTITION completely partitions G into substructures of
size 2. Then, it holds that |C (S)| = ∏

SG∈S |SG | = 2|V G |.
HYBRID’s runtime complexity is hence not polynomially
bounded.

9 Experimental evaluation

We carried out extensive experiments to empirically eval-
uate the presented heuristics and to address the two meta-
questions Q1 and Q2 introduced in Sect. 1. We first describe
the setup of our experiments (Sects. 9.1–9.4) and then report
their results (Sects. 9.5–9.9).

9.1 Datasets and edit cost functions

We tested on the widely used benchmark datasets aids,
muta, protein, letter (h), grec, and fp from the IAM
Graph Database Repository [50,52] and used the edit cost
functions suggested in [2,52]. Table 5 summarizes important
statistics of the datasets. For details on the edit cost function,
cf. Appendix A. In order to be able to compare all heuristics

123

Comparing heuristics for graph edit distance computation 439

Table 5 Overview of test datasets

Dataset # graphs # classes # nodes # edges Labels

Min Max Mean SD Median Min Max Mean SD Median Nodes Edges

aids 1500 2 2 95 15.7 13.8 11 1 103 16.2 15.1 11 Yes Yes

muta 4337 2 4 417 30.3 20.1 27 3 112 30.8 16.8 28 Yes Yes

protein 600 6 2 126 32.6 15.3 32 1 149 62.1 25.5 60 Yes Yes

letter (h) 2250 15 1 9 4.7 1.3 5 0 9 4.5 1.6 5 Yes No

grec 1100 22 4 24 11.5 4.9 11 2 29 11.9 6.0 10 Yes Yes

fp 2800 4 0 26 5.4 5.0 4 0 24 4.4 4.5 3 No Yes

on all datasets, we used the technique described in Sect. 4 to
extend heuristics with cost constraints to general edit costs.

9.2 Choice of options and parameters

For all instantiations of the paradigms LSAPE-GED,
LS-GED, and LP-GED and for all miscellaneous heuris-
tics, we followed the original publications to determine their
meta-parameters. In the remainder of this section, we give
detailed descriptions for each heuristic and describe how we
tested the extensions MULTI-SOL and CENTRALITIES
of the paradigm LSAPE-GED, as well as the extensions
MULTI-START and RANDPOST of the paradigm LS-GED.

– Meta-parameters for SUBGRAPH and WALKS: As sug-
gested in [21,32], for each dataset, we determined the
parameters K of SUBGRAPH and WALKS as the K ∈ [5]
that yielded the tightest average upper bounds on a set of
training graphs. To cope with SUBGRAPH’s exponential
runtime complexity, we set a time limit of 1ms for the
computation of each cell of its LSAPE instance C.

– Options and meta-parameters for RING: As highlighted
in [4,5], RING performs best if the node and edge set
distances are computed via optimal LSAPE solvers or
multiset intersection-based proxies. We included both
options in our experiments; the resulting heuristics are
denoted as RINGOPT and RINGMS, respectively. For both
variants and each dataset, themeta-parameters λl ,αs , and
K were determined by running a blackbox optimizer on
a set of training graphs, as suggested in [4,5].

– Options for RING-ML and PREDICT: As highlighted
in [4], the machine learning-based heuristics RING-ML
and PREDICT perform best if one-class support vector
machines with RBF kernel or fully connected feed-
forward deep neural networks are used for training.
We included both variants in our experiments; the
resulting heuristics are denoted as RING-ML1-SVM,
RING-MLDNN, PREDICT1-SVM, and PREDICTDNN,
respectively.

– Meta-parameters for K-REFINE: We ran K-REFINE
with swap size K := 3. We hence followed the sugges-

tion in [12], where it is highlighted that K > 3 leads to
an enormous blowup of K-REFINE’s runtime on larger
graphs.

– Meta-parameters for BP-BEAM and IBP-BEAM: As
suggested in [27,56], we set the beam size employed by
BP-BEAM and IBP-BEAM to K := 5 and the number of
iterations employed by IBP-BEAM to I := 20.

– Options and meta-parameters for IPFP: As highlighted
in [7], the best performing variant of IPFP that can cope
with general edit costs is the one suggested in [16]. In
our experiments, we therefore only included this variant.
Like in the experiments of the original publications, we
set the maximal number of iterations to I := 100 and the
convergence threshold to ε := 10−3.

– Meta-parameters for BRANCH-TIGHT: As suggested
in [9], we set the number of iterations carried out by
BRANCH-TIGHT to I := 20.

– Meta-parameters for SA: As suggested in [58], we set
SA’s number of iterations to I := 100 and used start and
end probabilities p1 := 0.8 and pI := 10−2. We used
BRANCH for computing SA’s initial LSAPE instance C.

– Meta-parameters for PARTITION and HYBRID: In
[71], it is suggested to set the maximal size of the sub-
structures employed by PARTITION and HYBRID to
K := 8. However, how to implement these heuris-
tics with K > 3 is not well documented in [71] and
the authors did not reply to our request to share their
implementation.We therefore used K := 3 for our exper-
iments. To cope with HYBRID’s exponential runtime
complexity, we set a time limit of 1 s and set up HYBRID
to return the maximum of the lower bounds computed by
PARTITION and BRANCH-CONST if it did not termi-
nate within the time limit.

– Configurations for the extensions MULTI-SOL and
CENTRALITIES of the paradigm LSAPE-GED: In
order to test MULTI-SOL and CENTRALITIES, we ran
all instantiations of LSAPE-GEDwith all configurations
(K , γ) ∈ {1, 3, 7, 10}×{0, 0.7}, where K is themaximal
number of solutions computed by MULTI-SOL and γ is
the weight of the centralities used by CENTRALITIES.
We used pagerank centralities with γ = 0.7, because in

123

440 D. B. Blumenthal et al.

[53] this setup is reported to yield the best results among
all variants of CENTRALITIES. MULTI-SOL is used
just in case K 	= 1 and CENTRALITIES is used just in
case γ 	= 0.

– Configurations for the extensions MULTI-START and
RANDPOST of the paradigm LS-GED: For testing
MULTI-START and RANDPOST, we ran each LS-GED
instantiation with all (K , ρ, L, η) ∈ ({(40, 1/2, 1),
(40, 1/4, 3), (40, 1/8, 7)}×{0, 1})∪({1, 10, 20, 30, 40}×
{(1, 0, 0)}). K is the number of initial node maps con-
structed by MULTI-START, �ρ · K � is the number of
completed runs from initial node maps, L is the number
of RANDPOST loops, and η is the penalty for expen-
sive converged node maps employed by RANDPOST.
The initial node maps were constructed randomly under
the constraint that they contain exactly min{|V G |, |V H |}
node substitutions. Note that each configuration that uses
RANDPOST (i.e., has L > 0) in total carries out exactly
40 runs from different initial node maps.

9.3 Test protocol and test metrics

For each test dataset D , we randomly selected a training set
Dtrain ⊆ D and a testing set Dtest ⊆ D\Dtrain. We ensured
that both sets are balanced w.r.t. the classes of the contained
graphs and set their sizes to the largest integers not greater
than, respectively, 50 (for training) and 100 (for testing) that
allowed balancing. All algorithms that require training were
trained on Dtrain. Subsequently, we ran all compared algo-
rithms on all pairs of graphs (G, H) ∈ Dtest × Dtest. Recall
that we compared various configurations of the extensions
MULTI-SOL and CENTRALITIES for the instantiations
of LSAPE-GED and that we tested various configurations
of the extensions MULTI-START and RANDPOST for the
instantiations of LS-GED. In the following, the expression
“algorithm” denotes a heuristic together with its configura-
tion.

Algorithms for GED computation are typically evaluated
w.r.t. their runtime behavior, the tightness of the produced
bounds, and the performance of pattern recognition frame-
works that use the produced bounds as underlying distance
measures (cf. the criteria C1 to C3). For all compared algo-
rithms ALG, we therefore recorded the average runtime
t(ALG). Moreover, we recorded the average lower bound
dLB(ALG) and the classification coefficient cLB(ALG) for all
algorithms that yield lower bounds, and the average upper
bound dUB(ALG) and the classification coefficient cUB(ALG)

for all algorithms that yield upper bounds.
The coefficients cLB and cUB were computed as

cLB(ALG) := (d inter
LB (ALG) − d intra

LB (ALG))/max LB(ALG)

cUB(ALG) := (d inter
UB (ALG) − d intra

UB (ALG))/max UB(ALG),

where d inter
LB (ALG) and d inter

UB (ALG) are the average lower
and upper bounds between graphs with different classes,
d intra

LB (ALG) and d intra
UB (ALG) are the average lower and

upper bounds between graphs with the same class, and
max LB(ALG) andmax UB(ALG) denote the maximal lower
and upper bounds computed by ALG. The reason for defining
the classification coefficients in this way is that pattern recog-
nition frameworks based on distance measures perform well
just in case the intra-class distances are significantly smaller
than the inter-class distances. Hence, large classification
coefficients cLB(ALG) and cUB(ALG) imply that the respec-
tive lower or upper bounds are fit for use within distance-
based pattern recognition frameworks. We normalized by
the maximal lower and upper bounds in order to ensure
cLB(ALG), cUB(ALG) ∈ [−1, 1] and hence render the classi-
fication coefficients comparable across different datasets.We
rounded t(ALG) to microseconds and dLB|UB(ALG) as well
as cLB|UB(ALG) to two decimal places.

After running all algorithms, we computed a joint score
sLB(ALG) ∈ [0, 1] for all algorithms that yield lower bounds
and a joint score sUB(ALG) ∈ [0, 1] for all algorithms that
yield upper bounds. The joint scores are defined as

sLB(ALG) := dLB(ALG)

3 · d�
LB

+ t�LB

3 · t(ALG)
+ cLB(ALG)

3 · c�
LB

sUB(ALG) := d�
UB

3 · dUB(ALG)
+ t�UB

3 · t(ALG)
+ cUB(ALG)

3 · c�
UB

,

where d�
LB, t�LB, and c�

LB denote the best (i.e., largest) average
lower bound, the best average runtime, and the best classifi-
cation coefficient yielded by any algorithm that computes a
lower bound. Analogously, d�

UB, t�UB, and c�
UB denote the best

(i.e., smallest) average upper bound, the best average run-
time, and the best classification coefficient yielded by any
algorithm that computes an upper bound. With this defini-
tion, each evaluation criterion contributes a quantity between
0 and 1/3 to the joint score, and an algorithm has joint score
1 if it performs best w.r.t. all three criteria.

We partially ordered the compared algorithms w.r.t. the
Pareto dominance relations�LB and�UB. For two algorithms
ALG1 and ALG2 that compute lower bounds, we say that the
lower bound computed by ALG1 dominates the one produced
by ALG2 on a given dataset (in symbols: ALG1 �LB ALG2)
just in case ALG1 performs at least as good as ALG2 w.r.t.
to all three evaluation criteria dLB, t , and cLB, and strictly
better than ALG2 w.r.t. at least one of them. The dominance
relation �UB for the upper bounds is defined analogously.
Note that, with these definitions, ALG1 �LB ALG2 implies
sLB(ALG1) > sLB(ALG2) and ALG1 �UB ALG2 implies
sUB(ALG1) > sUB(ALG2), but the inverse implications do
not hold. The joint scores sLB and sUB hence allow to com-
pare algorithms that are Pareto optimal.

123

Comparing heuristics for graph edit distance computation 441

Using the partial orders �LB and �UB, we computed
aggregated joint lower bound scores ŝLB(H) for all heuris-
tics H that compute lower bounds, as well as aggregated joint
upper bounds score ŝUB(H) and ŝUB(E) for all heuristicsH that
compute lower bounds and all extensions E of the paradigms
LSAPE-GED and LS-GED. These scores were computed as

ŝLB(H) := δC (H)∩MAX�LB 	=∅ max
ALG∈C (H)∩MAX�LB

sLB(ALG)

ŝUB(H) := δC (H)∩MAX�UB 	=∅ max
ALG∈C (H)∩MAX�UB

sUB(ALG)

ŝUB(E) :=
δC (P(E))∩MAX�UB 	=∅

∑
ALG∈C (E)∩MAX�UB

sUB(ALG)
∑

ALG∈C (P(E))∩MAX�UB
sUB(ALG)

,

where C (H) is the set of compared algorithms that are con-
figurations of the heuristic H, C (E) is the set of compared
algorithms that use the extension E, C (P(E)) is the set of
compared algorithms that instantiate the paradigm extended
by E, andMAX�LB andMAX�UB are the set of maxima w.r.t.
the partial orders �LB and �UB, respectively. In other words,
we set the aggregated joint scores ŝLB(H) and ŝUB(H) of a
heuristic H to the maximal scores of Pareto optimal configu-
rations of H, and to 0 if no configurations of H were Pareto
optimal. The aggregated joint upper bound score ŝUB(E) of
an extension E of the paradigms LSAPE-GED and LS-GED
was set to the sum of the joint upper bound scores of Pareto
optimal algorithms that use E divided by the sum of the joint
upper bound scores of Pareto optimal algorithms that instanti-
ate the paradigm extended by E, and to 0 if no algorithms that
instantiate the paradigm extended by E were Pareto optimal.
We also computed vectors χLB(H) ∈ {0, 1}3 for all heuris-
tics that yield lower bounds and vectors χUB(H), χUB(E) ∈
{0, 1}3 for all heuristics that yield upper bounds and all exten-
sions of the paradigms LSAPE-GED and LS-GED. These
vectors indicate whether a heuristic or an extension has a
configuration that performed best w.r.t. one or several of the
observed metrics f1LB|UB := dLB|UB, f2LB|UB := tLB|UB, and
f3LB|UB := cLB|UB. That is, the indicator vectors were com-
puted as follows:

χLB(H) := (δ∃ALG∈C (H): frLB (ALG)= f �
rLB

)3r=1

χUB(H) := (δ∃ALG∈C (H): frUB (ALG)= f �
rUB

)3r=1

χUB(E) := (δ∃ALG∈C (E): frUB (ALG)= f �
rUB

)3r=1

Finally, we trained linear regressionmodels cLB ∼ dLB :=
(aLB, mLB) and cUB ∼ dUB := (aUB, mUB) defined as

(aLB, mLB) := argmin
(a,m)∈R×R

∑

ALG

[cLB(ALG)

−(a + m · dLB(ALG))]2

Table 6 Overview of test metrics

Syntax Semantic

Observed metrics for compared algorithms

dLB|UB Average lower and upper bounds

t Average runtime

cLB|UB Classification coefficients of lower and upper bounds

Inferred metrics for compared algorithms

sLB|UB Joint lower and upper bound scores

Inferred metrics for compared heuristics and extensions

ŝLB|UB Aggregated joint lower and upper bound scores

χLB|UB Indicate whether heuristics and extensions have
configuration that are optimal w.r.t. observed metrics

Inferred metrics for test datasets

d�
LB|UB Tightest average lower and upper bounds

t�LB|UB Average runtimes of fastest algorithms producing lower
and upper bounds

c�
LB|UB Best classification coefficients of lower and upper

bounds

mLB|UB Slopes of linear regression models cLB|UB ∼ dLB|UB

pLB|UB p values of linear regression models cLB|UB ∼ dLB|UB

(aUB, mUB) := argmin
(a,m)∈R×R

∑

ALG

[cUB(ALG)

−(a + m · dUB(ALG))]2

for each dataset, which relate the tightnesses of the com-
puted upper and lower bounds to the obtained classification
coefficients: Tightness of lower bounds is positively corre-
lated with high classification coefficients if the slope mLB

is positive; tightness of upper bounds is positively corre-
lated with high classification coefficients if the slope mUB

is negative. We also computed the p values pLB and pUB

of the regression models, to assess whether the correlations
between bounds and classification coefficients are statisti-
cally significant. Table 6 gives an overview of all test metrics.

9.4 Implementation and hardware specifications

To ensure comparability, we reimplemented all compared
heuristics in C++. Our implementation builds upon the Boost
Graph Library [41] and Eigen [33] for efficiently manag-
ing graphs and matrices. For solving LSAPE, we used the
solver suggested in [17], which is efficiently implemented
in the LSAPE toolbox available at https://bougleux.users.
greyc.fr/lsape/. We used the blackbox optimizer NOMAD
[39] for training RINGOPT and RINGMS, the support vector
machine library LIBSVM [22] for training RING-ML1-SVM

and PREDICT1-SVM, the artificial neural network library
FANN [47] for training RING-MLDNN and PREDICTDNN,
and the mathematical programming library Gurobi [34] for
implementing the instantiations of LP-GED.

123

https://bougleux.users.greyc.fr/lsape/
https://bougleux.users.greyc.fr/lsape/

442 D. B. Blumenthal et al.

All heuristics were run in six threads: Instantiations of
LSAPE-GEDwere set up to parallelly construct their LSAPE
instance C, instantiations of LS-GED were implemented
to parallelly carry out runs from several initial solutions,
and instantiations of LP-GED were allowed to use multi-
threading when solving their LP via calls to Gurobi. For
the miscellaneous heuristics, we used the following par-
allelization techniques: HED was set up to construct its
LSAPE instanceC in parallel, BRANCH-TIGHTwas imple-
mented to parallelize the construction phases of all of its
LSAP instances Cr , and SA and HYBRID were set up to
use the parallelized versions of, respectively, BRANCH and
BRANCH-CONST as subroutines. BRANCH-COMPACT and
PARTITION do not allow straightforward parallelizations
and where hence run in only one thread.

Source code and datasets are distributed with GEDLIB:
https://github.com/dbblumenthal/gedlib/ [6]. Tests were run
on a machine with two Intel Xeon E5-2667 v3 processors
with 8 cores each and 98 GB of main memory running
GNU/Linux.

9.5 Lower bounds

Figure 9 shows the average lower bounds and runtimes
of all heuristics that compute lower bounds. Globally, we
see that instantiations of LP-GED (except COMPACT-MIP)
yielded tight lower bounds, but were also relatively slow.
Instantiations of LSAPE-GED were faster and only slightly
less accurate. Among the miscellaneous heuristics, only
BRANCH-TIGHT and HYBRID produced competitive lower
bounds.

Table 7 shows the aggregated joint lower bound scores
ŝLB(H), as well as the indicator vectors χLB(H). The fast but
relatively imprecise LSAPE-GED instantiations
BRANCH-CONST and NODE were Pareto optimal on six
(BRANCH-CONST), respectively, five (NODE) out of six
datasets. Among the more precise heuristics,
BRANCH-TIGHT and the LP-GED instantiations ADJ-IP
and F2 performed best. They were Pareto optimal on four
(ADJ-IP), respectively, three (F2 and BRANCH-TIGHT)
out of six datasets.

In Fig. 10, the results are further aggregated by aver-
aging the scores and summing the indicator vectors over
all datasets. Instantiations of LSAPE-GED are displayed
white, instantiations of LP-GED are displayed light gray,
andmiscellaneous heuristics are displayed black.Weobserve
that, globally, BRANCH-CONST and NODE achieved the best
aggregated joint lower bound scores, i.e., exhibited the best
trade-offs between tightness of the obtained lower bound,
runtime, and classification coefficient (cf. Fig. 10a). NODE
and BRANCH-CONST also performed best in terms of run-
time (cf. Fig. 10c). In terms of tightness of the obtained
lower bound, the LP based heuristics ADJ-IP performed

Fig. 9 Average lower bounds versus average runtime. Instantiations
of LSAPE-GED and LP-GED are displayed as circles and squares,
respectively; miscellaneous methods are displayed as triangles

best, followed by BRANCH-TIGHT and F2 (cf. Fig. 10b).
BRANCH-TIGHT and ADJ-IP also were the best perform-
ingheuristicsw.r.t. the classification coefficient (cf. Fig. 10d).

Figures 17, 18, 19, 20, 21, and 22 in Appendix B show
the dominance graphs induced by the relation �LB for each
dataset and hence visualize the results in more detail.

9.6 Upper bounds

Figure 11 shows the average upper bounds and runtimes of
all heuristics that compute upper bounds. Instantiations of
LS-GED usually provided the tightest upper bounds at the
price of large execution times. Instantiations of LP-GED
(except COMPACT-MIP) also yielded low upper bounds
but were even slower. Finally, the paradigm LSAPE-GED
represents the category with the largest variations. Its instan-
tiations usually required low execution times (except RING,

123

https://github.com/dbblumenthal/gedlib/

Comparing heuristics for graph edit distance computation 443

Table 7 Overview of results for lower bounds

Heuristic letter (h) muta aids protein fp grec

χLB ŝLB χLB ŝLB χLB ŝLB χLB ŝLB χLB ŝLB χLB ŝLB

Instantiations of the paradigm LSAPE-GED

NODE (0, 0, 0) 0.00 (0, 1, 0) 0.59 (0, 1, 1) 0.92 (0, 1, 1) 0.97 (0, 1, 1) 0.93 (0, 1, 0) 0.94

BRANCH (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 1) 0.68 (0, 0, 0) 0.68 (0, 0, 1) 0.73

BRANCH-FAST (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 1) 0.71 (0, 0, 1) 0.74 (0, 0, 1) 0.79

BRANCH-CONST (0, 1, 0) 0.92 (0, 0, 0) 0.41 (0, 0, 1) 0.76 (0, 0, 1) 0.74 (0, 0, 1) 0.75 (0, 0, 1) 0.86

STAR (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

Instantiations of the paradigm LP-GED

F1 (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 1) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

F2 (0, 0, 0) 0.00 (0, 0, 0) 0.32 (0, 0, 1) 0.66 (1, 0, 1) 0.67 (0, 0, 0) 0.00 (0, 0, 0) 0.65

COMPACT-MIP (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

ADJ-IP (1, 0, 1) 0.67 (1, 0, 1) 0.67 (1, 0, 1) 0.67 (0, 0, 1) 0.00 (0, 0, 1) 0.00 (1, 0, 0) 0.66

Miscellaneous heuristics

HED (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

BRANCH-TIGHT (0, 0, 1) 0.68 (0, 0, 1) 0.00 (0, 0, 1) 0.00 (0, 0, 1) 0.00 (1, 0, 0) 0.64 (0, 0, 1) 0.66

BRANCH-COMPACT (0, 0, 0) 0.00 (0, 0, 1) 0.63 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

PARTITION (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

HYBRID (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 1) 0.00 (0, 0, 1) 0.00 (0, 0, 1) 0.00

For each heuristic H and each dataset, a non-zero aggregated joint lower bound (displayed bold) score implies that H was Pareto optimal on the
dataset

SUBGRAPH, and WALKS), but the provided upper bounds
greatly depend on the intrinsic difficulty of the datasets.

Table 8 shows the aggregated joint upper bound scores
ŝUB(H) and ŝUB(E), as well as the indicator vectors χUB(H)

and χUB(E). The LS-GED instantiation IPFP was Pareto
optimal on all datasets, as it always computed the tightest
upper bound. The instantiation NODE of LSAPE-GED was
Pareto optimal and the fastest heuristic on five out of six
datasets and also achieved very high aggregated joint upper
bound scores on these datasets. The instantiation REFINE
of LS-GED performed well, too, as it was Pareto optimal
on all datasets except for grec. On the negative side, we
see that the instantiations of LP-GED and the miscellaneous
heuristics performed very poorly, as they were almost always
dominated by other heuristics.

In Fig. 12, the results are further aggregated by averag-
ing the scores and summing the indicator vectors over all
datasets. Instantiations and extensions of LSAPE-GED are
displayed white, instantiations of LP-GED are displayed
light gray, instantiations and extensions of LS-GED are
displayed dark gray, and miscellaneous heuristics are dis-
played black. We observe that, globally, NODE, IPFP, and
REFINE achieved the best aggregated joint upper bound
scores, i.e., exhibited the best trade-offs between tightness
of the obtained upper bound, runtime, and classification
coefficient (cf. Fig. 12a). In terms of runtime, NODE and
BRANCH-CONST performed best (cf. Fig. 12c). In terms of
classification coefficient and tightness, the instantiations of

LS-GED performed best, with IPFP as the best performing
heuristic among them (cf. Fig. 12b, d).

The average aggregated joint upper bound scores of
both extensions CENTRALITIES and MULTI-SOL of the
paradigm LSAPE-GED turned out to be smaller than 0.5 (cf.
Fig. 12a). That is, on average, instantiations of LSAPE-GED
did not benefit from the extensions CENTRALITIES and
MULTI-SOL. However, on each dataset, some instantiations
of LSAPE-GED did benefit from the extensions, as some
algorithms using CENTRALITIES and MULTI-SOL were
Pareto optimal on almost all datasets (cf. Table 8).

We also observe that the average aggregated joint upper
bound scores of the extensions MULTI-START and
RANDPOST of the paradigm LS-GED are, respectively,
clearly larger and clearly smaller than 0.5 (cf. Fig. 12a).
That is, on average, instantiations of LS-GED benefited
from MULTI-START but not from RANDPOST. However,
RANDPOST still turned out to be used by Pareto optimal
algorithms on all datasets except for the datasets letter (h)
and fp, which contain very small graphs. MULTI-START
was used by Pareto optimal algorithms on all datasets (cf.
Table 8). Moreover, we see that, on all six datasets, algo-
rithms using MULTI-START and RANDPOST yielded the
tightest upper bounds and the best classification coefficients
(cf. Fig. 12b, d).

Figures 23, 24, 25, 26, 27, and 28 in Appendix B
show the dominance graphs induced by the relation �UB

123

444 D. B. Blumenthal et al.

(a)

(b) (c)

(d)

Fig. 10 Average aggregated joint lower bound scores and numbers of
datasets where heuristics are optimal w.r.t. tightness of lower bound,
runtime, and lower bound classification coefficient, respectively. Only
non-zero statistics are displayed

for each dataset and hence visualize the results in more
detail.

9.7 Gaps between lower and upper bounds

Table 9 shows the tightest average lower and upper bounds
d�

LB and d�
UB for all datasets and the gaps between them.

We see that the best upper bounds overestimate the best
lower bounds (and hence, a fortiori, the exact GED) by at
most 4.23% and only 1.99% on average. Given the hardness
of exactly computing GED (cf. Sect. 1), this is a remark-
able result. On all datasets, d�

UB was computed by IPFP (cf.
Sect. 9.6). On fp, d�

LB was computed by BRANCH-TIGHT;
on protein, it was computed byF2; and on all other datasets,
it was computed by ADJ-IP (cf. Sect. 9.5).

Fig. 11 Average upper bounds versus average runtime. Instantiations of
LSAPE-GED, LP-GED, and LS-GED are displayed as circles, squares,
and diamonds, respectively; miscellaneous methods are displayed as
triangles. For each heuristic H, the results are displayed only for the
configuration that does not use any extensions

9.8 Effect of graph sizes

We also carried out experiments for evaluating the effect
of the graph sizes on the compared methods. For this, we
partitioned the datasets aids, muta, and protein that also
contain larger graphs into subsets of graphs whose num-
bers of nodes are between 1 and 10, 11 and 20, and so
forth. Subsequently, we randomly sampled ten graphs from
each subset with at least ten graphs, and, for each sample
Dsample, ran all compared methods on all pairs of graphs
(G, H) ∈ Dsample × Dsample.

Figure 13 shows the observed trends for the average run-
times t and the average lower and upper bounds dLB and

123

Comparing heuristics for graph edit distance computation 445

Table 8 Overview of results for upper bounds

Heuristic letter (h) muta aids protein fp grec

χUB ŝUB χUB ŝUB χUB ŝUB χUB ŝUB χUB ŝUB χUB ŝUB

Instantiations of the paradigm LSAPE-GED

NODE (0, 0, 0) 0.00 (0, 1, 1) 0.94 (0, 1, 0) 0.89 (0, 1, 1) 0.99 (0, 1, 0) 0.92 (0, 1, 0) 0.98

BP (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

BRANCH (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 1) 0.67 (0, 0, 0) 0.00 (0, 0, 0) 0.68

BRANCH-FAST (0, 0, 0) 0.78 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.65 (0, 0, 0) 0.76

BRANCH-CONST (0, 1, 0) 0.93 (0, 0, 1) 0.68 (0, 0, 0) 0.00 (0, 0, 1) 0.75 (0, 0, 0) 0.00 (0, 0, 0) 0.81

STAR (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.70 (0, 0, 0) 0.00

SUBGRAPH (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

WALKS (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

RINGOPT (0, 0, 0) 0.63 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

RINGMS (0, 0, 0) 0.00 (0, 0, 1) 0.63 (0, 0, 0) 0.58 (0, 0, 1) 0.00 (0, 0, 0) 0.64 (0, 0, 0) 0.00

RING-ML1-SVM (0, 0, 1) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

RING-MLDNN (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

PREDICT1-SVM (0, 0, 1) 0.55 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

PREDICTDNN (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

Extensions of the paradigm LSAPE-GED

MULTI-SOL (0, 0, 0) 0.00 (0, 0, 1) 0.46 (0, 0, 0) 0.59 (0, 0, 1) 0.62 (0, 0, 0) 0.38 (0, 0, 0) 0.62

CENTRALITIES (0, 0, 0) 0.48 (0, 0, 1) 0.58 (0, 0, 0) 0.44 (0, 0, 1) 0.49 (0, 0, 0) 0.41 (0, 0, 0) 0.58

Instantiations of the paradigm LP-GED

F1 (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

F2 (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

COMPACT-MIP (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

ADJ-IP (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

Instantiations of the paradigm LS-GED

REFINE (1, 0, 0) 0.64 (0, 0, 1) 0.66 (0, 0, 0) 0.64 (0, 0, 1) 0.66 (0, 0, 1) 0.67 (0, 0, 1) 0.00

K-REFINE (1, 0, 0) 0.63 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 1) 0.00 (0, 0, 1) 0.00

BP-BEAM (1, 0, 0) 0.62 (0, 0, 0) 0.30 (0, 0, 0) 0.60 (0, 0, 1) 0.00 (0, 0, 0) 0.63 (0, 0, 1) 0.00

IBP-BEAM (1, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 1) 0.00 (0, 0, 1) 0.00

IPFP (1, 0, 0) 0.63 (1, 0, 1) 0.67 (1, 0, 1) 0.67 (1, 0, 1) 0.67 (1, 0, 1) 0.67 (1, 0, 1) 0.67

Extensions of the paradigm LS-GED

MULTI-START (1, 0, 0) 0.40 (1, 0, 1) 0.91 (1, 0, 1) 0.85 (1, 0, 1) 0.80 (1, 0, 1) 0.68 (1, 0, 1) 0.83

RANDPOST (1, 0, 0) 0.00 (1, 0, 1) 0.29 (1, 0, 1) 0.32 (1, 0, 1) 0.40 (1, 0, 1) 0.00 (1, 0, 1) 0.17

Miscellaneous heuristics

BRANCH-TIGHT (0, 0, 0) 0.62 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

SA (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 1) 0.00 (0, 0, 0) 0.00 (0, 0, 0) 0.00

For each heuristic H and each dataset, a non-zero aggregated joint upper bound score (displayed bold) implies that there was a Pareto optimal
configuration of H. For each extension E and each dataset, a non-zero aggregated joint upper bound score (displayed bold) means that at least one
algorithm using E was Pareto optimal. An aggregated joint upper bound score greater than 0.5 means that, on average, the heuristics instantiating
the paradigm extended by E benefited from E

dUB. In order not to overcrowd the plots, trends are displayed
only for the five methods with the best average aggre-
gated joint lower and upper bound scores:BRANCH-CONST,
NODE, ADJ-IP, F2, and BRANCH-FAST for dLB (cf.
Fig. 10a), and NODE, IPFP, REFINE, BRANCH-CONST,
and BRANCH-FAST for dUB (cf. Fig. 12a). As expected,
instantiations of LSAPE-GEDwere faster than instantiations

of LS-GED, which, in turn, were faster than instantiations
of LP-GED. We also see that, for all three datasets, there are
hardly any crossing points between the trends for the lower
and upper bounds. This is interesting, because it means that
the graph sizes have little effect on the question which of
two heuristic H1 and H2 yields the tighter lower or upper
bound. Finally, we observe that, on protein, the gap between

123

446 D. B. Blumenthal et al.

(a)

(b) (c)

(d)

Fig. 12 Average aggregated joint upper bound scores and numbers of
datasets where heuristics are optimal w.r.t. tightness of upper bound,
runtime, and upper bound classification coefficient, respectively. Only
non-zero statistics are displayed

the tightest average lower and upper bounds is very narrow
across all graph sizes. On aids and muta, the gaps grow
with increasing graph sizes, but are still moderate also on the
samples that contain the largest graphs (also cf. Table 9).

9.9 Classification coefficients versus tightness of
lower and upper bounds

Figure 14 and Table 10 relate the lower bounds of the algo-
rithms producing lower bounds to the obtained lower bound
classification coefficients. Figure 14 contains plots for all
datasets. In each of them, each black dot represents an algo-
rithm that yields a lower bound and the gray line visualizes
the obtained linear regression model cLB ∼ dLB. For each
dataset, Table 10 summarizes the slopes and p values of the

Table 9 Tightest average lower and upper bounds

Dataset d�
LB d�

UB Gap in %

aids 73.45 76.18 3.58

muta 93.76 97.90 4.23

protein 302.80 307.65 1.58

letter (h) 4.72 4.75 0.63

grec 898.83 904.70 0.65

fp 3.04 3.08 1.30

Average – – 1.99

models, as well as the maximum and average lower bound
classification coefficients.

We observe that, onmuta, all obtained classification coef-
ficients either equal 0.00 or 0.01. This can be explained
by the fact that, for both of its classes, muta contains
graphs of very different sizes, which leads to a small dif-
ference between intra- and inter-class distances. As we have
cLB(ALG) ∈ {0.00, 0.01} for all algorithms ALG that pro-
duce lower bounds, the obtained linear regression model has
a very high p value and hence is not statistically significant.

For all other datasets, the obtained linear regression mod-
els have p values smaller than 10−3 and are hence highly
significant. Furthermore, all linear regression models except
the statistically insignificant model for muta have a positive
slope. That is, tight lower bounds tend to go hand in hand
with good classification coefficients.

Figure 15 andTable 11 relate the upper bounds of the algo-
rithms producing upper bounds to the obtained upper bound
classification coefficients. Figure 15 contains plots for all
datasets. In each of them, each black dot represents an algo-
rithm that yields an upper bound and the gray line visualizes
the obtained linear regression model cUB ∼ dUB. For each
dataset, Table 11 summarizes the slopes and p values of the
models, as well as the maximum and average upper bound
classification coefficients.

We again note that, on muta, all obtained classifica-
tion coefficients either equal 0.00 or 0.01. Since we tested
manymore algorithms that compute upper bounds than algo-
rithms that yield lower bounds,4 the linear regression model
cUB ∼ dUB for muta nonetheless has a p value smaller
than 10−3 and is hence still highly statistically significant.
However, its p value is much larger than the p values of
the linear regression models cUB ∼ dUB we obtained for the
other datasets.

We observe that, for all datasets, the slopes of the linear
regression models cUB ∼ dUB are positive. We can hence

4 To be precise, we tested 19 algorithms that compute lower bounds
and 173 algorithms that compute upper bounds. The reason for this is
that the extensions of the paradigms LSAPE-GED and LS-GED only
affect the upper bounds.

123

Comparing heuristics for graph edit distance computation 447

Fig. 13 Effect of graph sizes on methods with best average aggregated joint lower and upper bound scores. For each heuristic H, the results are
displayed only for the configuration that does not use any extensions

Fig. 14 Average lower bounds versus lower bound classification coef-
ficients. Each black dot represents one algorithm that computes a lower
bound. The linear regression model cLB ∼ dLB is displayed in gray

Table 10 Maximum and average lower bound classification coeffi-
cients for all datasets, and slopes and p values of the linear regression
models cLB ∼ dLB

Dataset c�
LB Avg cLB(ALG) mLB pLB

aids 0.15 0.13 1.11 × 10−3 2.51 × 10−5

muta 0.01 0.00 −2.33 × 10−5 4.76 × 10−1

protein 0.04 0.03 6.27 × 10−5 1.07 × 10−4

letter (h) 0.29 0.23 4.16 × 10−2 2.87 × 10−9

grec 0.37 0.32 1.97 × 10−4 9.29 × 10−5

fp 0.12 0.09 3.38 × 10−2 1.11 × 10−9

Average 0.16 0.14 1.28 × 10−2 –

draw the same conclusion as for the lower bounds, namely,
that tight upper bounds tend to go hand in hand with good
classification coefficients. These findings allow us to posi-
tively answer themeta-questionQ1 raised in the introduction:
It is indeed beneficial to useGED as a guidance for the design
of graph distance measures that are to be used within pattern
recognition frameworks.

The second meta-question Q2 asked whether lower or
upper bounds for GED are better suited for use as graph dis-
tance measures within classification frameworks. Since the
classification coefficients induced by the lower and upper

123

448 D. B. Blumenthal et al.

Fig. 15 Average upper bounds versus upper bound classification coeffi-
cients. Each black dot represents one algorithm that computes an upper
bound. The linear regression model cUB ∼ dUB is displayed in gray

Table 11 Maximum and average upper bound classification coeffi-
cients for all datasets, and slopes and p values of the linear regression
models cUB ∼ dUB

Dataset c�
UB Avg cUB(ALG) mUB pUB

aids 0.15 0.11 −1.95 × 10−3 5.47 × 10−136

muta 0.01 0.01 −5.36 × 10−5 3.76 × 10−5

protein 0.04 0.03 −1.45 × 10−4 3.91 × 10−43

letter (h) 0.33 0.25 −4.97 × 10−2 3.67 × 10−43

grec 0.35 0.27 −5.97 × 10−4 3.12 × 10−82

fp 0.11 0.10 −5.29 × 10−2 1.69 × 10−35

Average 0.17 0.13 −1.76 × 10−2 –

Fig. 16 Snapshot of the dominance graph induced by �UB on the
dataset fp shown in Fig. 24

bounds turned out to be very similar, this question cannot
be answered as straightforwardly as Q1. However, there is a
tendency:While the average lower bound classification coef-
ficients were slightly better than the average upper bound
classification coefficients, the opposite can be observed for
the maximum lower and upper bound classification coef-
ficients. Moreover, on average, the slopes of the linear

regression models cUB ∼ dUB are slightly steeper than the
slopes of the linear regression models cLB ∼ dLB. Together,
these observations suggest that the upper bound classifica-
tion coefficients benefit more from tight upper bounds than
the lower bound classification coefficients benefit from tight
lower bounds. As a rule of thumb, we can hence conclude
that tight upper bounds for GED (e.g., the upper bound com-
puted by IPFP) should be used for classification purposes, if
one is willing to invest a lot of time in the computation of the
graph distance measure. Otherwise, a quickly computable
lower bound such as the one produced by BRANCH-CONST
should be employed.

10 Conclusions and future work

In this paper, we provided a systematic overview of the state
of the art for heuristically computing GED. In total, we pre-
sented 30 different heuristics that were initially suggested
in 28 different articles published from 2006 on. Thirteen
heuristics weremodeled as instantiations or extensions of the
paradigm LSAPE-GED, which generalizes algorithms that
upper and, possibly, lower boundGEDvia transformations to
LSAPE. Four heuristicsweremodeled as instantiations of the
paradigm LP-GED, which uses linear programming for com-
puting lower and upper bounds for GED. Seven heuristics
were modeled as instantiation or extensions of the paradigm
LS-GED, a local search-based approach for upper bounding
GED. The remaining six heuristics do not fit within any of
the suggested paradigms and were hence presented as mis-
cellaneous heuristics.

We reimplemented all methods in C++ and empirically
evaluated them by carrying out experiments on six dif-
ferent benchmark datasets. As the gap between tightest
average lower bounds and tightest average upper bounds
never exceeded 4.23%, the experiments showed that despite
the high theoretical complexity of approximating GED, on
small- to medium-sized graphs as the ones contained in the
test datasets, GED can be bounded within tight margins.

On average, the instantiation ADJ-IP of LP-GED sug-
gested in [36] computed the tightest lower bounds, followed
by the LP-GED instantiation F2 [44] and the miscellaneous
heuristic BRANCH-TIGHT [9]. On all datasets, the tightest
upper bounds were computed by the instantiation IPFP of
LS-GED suggested in [7,14,16]. The instantiations NODE
[36], BRANCH-CONST [70,71], and BRANCH-FAST [8,9]
of LSAPE-GED achieved excellent trade-offs between tight-
ness, runtime, and classification coefficient—both w.r.t. the
produced lower and w.r.t. the produced upper bounds.

Furthermore, we addressed a tacit assumption made in
many publications on GED, which states that the tighter
the lower or upper bound for GED, the better its per-
formance when used as a graph distance measure within
pattern recognition frameworks. Our experiments provided

123

Comparing heuristics for graph edit distance computation 449

Fig. 17 Transitive reduction of
dominance graph for lower
bounds on the dataset letter
(h)

Fig. 18 Transitive reduction of
dominance graph for lower
bounds on the dataset fp

Fig. 19 Transitive reduction of
dominance graph for lower
bounds on the dataset aids

Fig. 20 Transitive reduction of
dominance graph for lower
bounds on the dataset muta

thorough evidence to support this assumption. They hence
justify the ongoing competition for tight upper and lower
bounds.

Given the small gaps between the tightest currently avail-
able lower and upper bounds for GED, we see little room
for further tightening these bounds. Instead, we suggest that
future work on the heuristic computation of GED should

123

450 D. B. Blumenthal et al.

Fig. 21 Transitive reduction of
dominance graph for lower
bounds on the dataset grec

Fig. 22 Transitive reduction of dominance graph for lower bounds on
the dataset protein

focus on the task of speeding up those existing heuristics
that yield the tightest currently available bounds.

A Datasets and edit cost functions

– The datasets aids and muta: Graphs contained in
aids and muta represent molecular compounds. The
molecules represented by the graphs contained in aids
are divided into the class of molecules that do and the
class ofmolecules that do not exhibit activity againstHIV.
Similarly, the molecules represented by the graphs con-
tained inmuta are divided into the class ofmolecules that
do and the class of molecules that do not cause genetic
mutation. The nodes of the graphs contained in aids and
muta are labeled with chemical symbols, and their edges

are labeled with a valence (either 1 or 2). Node edit costs
are defined as cV (α, α′) := 5.5 ·δα 	=α′ , cV (α, ε) := 2.75,
and cV (ε, α′) := 2.75, for all (α, α′) ∈ ΣV × ΣV .
Edge edit costs are defined as cE (β, β ′) := 1.65 · δβ 	=β ′ ,
cE (β, ε) := 0.825, and cE (ε, β ′) := 0.825, for all
(β, β ′) ∈ ΣE × ΣE .

– The dataset protein: Graphs contained in protein rep-
resent proteins which are annotated with their EC classes
(EC1, EC2, EC3, EC4, EC5, and EC6) [60]. Nodes are
labeled with tuples (t, s), where t is the node’s type
(helix, sheet, or loop) and s is its amino acid sequence.
Nodes are connected via structural or sequential edges or
both, i.e., edges (ui , u j) are labeled with tuples (t1, t2),
where t1 is the type of the first edge connecting ui

and u j and t2 is the type of the second edge connect-
ing ui and u j (possibly null). Node edit costs are
defined as cV (α, α′) := 16.5 · δα.t 	=α′.t + 0.75 · δα.t=α′.t ·
LD(α.s, α′.s)), cV (α, ε) := 8.25, and cV (ε, α′) := 8.25,
for all (α, α′) ∈ ΣV × ΣV , where LD(·, ·) is Leven-
shtein’s string edit distance. Edge edit costs are defined
as cE (β, β ′) := 0.25 · LSAPE(Cβ,β ′

), cE (β, ε) :=
0.25 · f (β), and cE (ε, β ′) := 0.25 · f (β ′), for all
(β, β ′) ∈ ΣE × ΣE , where f (β) := 1+ δβ.t2 	=null and

Cβ,β ′ ∈ R
(f (β)+1)×(f (β ′)+1) is constructed as cβ,β ′

r ,s :=
2 · δβ.tr 	=β ′.ts and cβ,β ′

r , f (β ′)+1 := cβ,β ′
f (β)+1,s := 1, for all

(r , s) ∈ [f (β)] × [f (β ′)].
– The dataset letter (h): Graphs contained in letter
(h) represent highly distorted drawings of the capital let-
ters A, E, F, H, I, K, L, M, N, T, V, W, X, Y, and Z.
Nodes are labeled with two-dimensional Euclidean coor-
dinates. Edges are unlabeled. Node edit costs are defined

123

Comparing heuristics for graph edit distance computation 451

Fig. 23 Transitive reduction of dominance graph for upper bounds on the dataset letter (h)

as cV (α, α′) := 0.75 · ∥∥α − α′∥∥, cV (α, ε) := 0.675, and
cV (ε, α′) := 0.675, for all (α, α′) ∈ ΣV × ΣV , where
‖·‖ is the Euclidean norm. The edge edit costs cE are
defined as cE (1, ε) := cE (ε, 1) := 0.425.

– The dataset grec: Graphs contained in grec represent
22 different symbols from electronic and architectural
drawings. Nodes are labeled with tuples (t, x, y), where
t equals one of four node types and (x, y) is a two-
dimensional Euclidean coordinate. Nodes are connected
via line or arc edges or both, i.e., edges (ui , u j) are
labeled with tuples (t1, t2), where t1 is the type of
the first edge connecting ui and u j and t2 is the type
of the second edge connecting ui and u j (possibly
null). Node edit costs are defined as cV (α, α′) :=
0.5 · ∥

∥α.(x, y) − α′.(x, y)
∥
∥ · δα.t=α′.t + 90 · δα.t 	=α′.t ,

cV (α, ε) := 45, and cV (ε, α′) := 45, for all (α, α′) ∈
ΣV × ΣV . Edge edit costs are defined as cE (β, β ′) :=
0.5 · LSAPE(Cβ,β ′

), cE (β, ε) := 0.5 · f (β), and
cE (ε, β ′) := 0.5 · f (β ′), for all (β, β ′) ∈ ΣE ×
ΣE , where f (β) := 1 + δβ.t2 	=null and Cβ,β ′ ∈
R

(f (β)+1)×(f (β ′)+1) is constructed as cβ,β ′
r ,s := 30 ·

δβ.tr 	=β ′.ts and cβ,β ′
r , f (β ′)+1 := cβ,β ′

f (β)+1,s := 15 for all
(r , s) ∈ [f (β)] × [f (β ′)].

– The dataset fp: Graphs contained in fp represent fin-
gerprint images which are annotated with their classes
(arch, left loop, right loop, and whorl) from the Galton-
Henry classification system [35]. Nodes are unlabeled
and edges are labeled with an orientation β ∈ R with
−π/2 < β ≤ π/2. Node edit costs are defined as
cV (1, ε) := cV (ε, 1) := 0.525. Edge edit costs are
defined as cE (β, β ′) := 0.5 ·min{|β −β ′|, π −|β −β ′|},
cE (β, ε) := 0.375, and cE (ε, β ′) := 0.375, for all
(β, β ′) ∈ ΣE × ΣE .

B Visualization of experiments via
dominance graphs

See Figures 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, and
28.

Figures 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
and 28 visualize the transitive reductions of the dom-
inance graphs induced by �LB (Figs. 17, 18, 19, 20,
21, 22) and �UB (Figs. 23, 24, 25, 26, 27, 28) and
hence provide more detailed views on the results of the
experiments reported in Sects. 9.5 and 9.6. In the domi-
nance graphs, instantiations of LSAPE-GED are displayed

123

452 D. B. Blumenthal et al.

Fig. 24 Transitive reduction of
dominance graph for upper
bounds on the dataset fp

black on white, instantiations of LP-GED are displayed
black on light gray, instantiations of LS-GED are dis-
played white on dark gray, and miscellaneous heuristics
are displayed white on black. For all algorithms instan-
tiating LSAPE-GED, we display the configuration (K , γ)

of the extensions MULTI-SOL and CENTRALITIES in
addition to the name of the heuristic. Similarly, for all
algorithms instantiating LS-GED, we display the configu-

ration (K , ρ, L, η) of the extensions MULTI-START and
RANDPOST. Recall that instantiations of LSAPE-GED are
run without extensions just in case (K , γ) = (1, 0) and
that instantiations of LS-GED are run without extensions
just in case (K , ρ, L, η) = (1, 1, 0, 0) (cf. Sect. 9.2 for
more details). For Pareto optimal algorithms, we also show
the test metrics dLB|UB, t , and cLB|UB, and the joint score
sLB|UB.

123

Comparing heuristics for graph edit distance computation 453

Fig. 25 Transitive reduction of
dominance graph for upper
bounds on the dataset aids

As the extensions MULTI-SOL and CENTRALITIES of
LSAPE-GED improve the computed upper bounds at the
price of increased runtimes but have no effect on the obtained
lower bounds, for all instantiations of LSAPE-GED, we only
show the baseline configurations (K , γ) = (1, 0) in the
dominance graphs induced by�LB. In the dominance graphs
induced by �UB, for each heuristic H, we only display those

configurations that are Pareto optimal (i.e., maximal w.r.t.
�UB) or have a maximal joint score sUB among all tested
configurations of H.

In the transitive reduction of the dominance graphs
induced by �LB, we draw an arc from ALG1 to ALG2 just
in case ALG1 �LB ALG2 and there is no algorithm ALG3
such that ALG1 �LB ALG3 �LB ALG2. Arcs are blue if,

123

454 D. B. Blumenthal et al.

Fig. 26 Transitive reduction of
dominance graph for upper
bounds on the dataset muta

additionally, ALG1 yielded a tighter lower bound than ALG2,
red if ALG1 was faster than ALG2, and green if ALG1 had a
better classification coefficient than ALG2. Multicolored arcs
indicate that several of these relations holds. The graphs are
oriented from left to right, such that an algorithm is Pareto
optimal just in case it appears in the leftmost layer. The
colored labels d�

LB, t�LB, and c�
LB highlight those Pareto opti-

mal algorithms that, respectively, yielded the tightest lower
bound, exhibited the best runtime behavior among all heuris-
tics that compute lower bounds, or gave the best lower bound
classification coefficient. The dominance graphs induced by
�UB are constructed analogously.

Example 3 Figure 16 exemplifies the visualizations of the
dominance graphs induced by �LB and �UB. It shows a

123

Comparing heuristics for graph edit distance computation 455

Fig. 27 Transitive reduction of dominance graph for upper bounds on the dataset grec

snapshot of the dominance graph induced by �UB on the
dataset fp shown in Fig. 24. We see that IPFP run with
the configuration (K , ρ, L, η) = (40, 1, 0, 0) was Pareto
optimal on fp. The blue label d�

LB indicates that IPFP
(40, 1, 0, 0) computed the tightest average upper bound
on fp; the green label c�

LB tells us that it also yielded
the best upper bound classification coefficient. Further-
more, we see that t(IPFP (40, 1, 0, 0)) = 1.63 · 10−2s,
dUB(IPFP (40, 1, 0, 0)) = 3.08, cUB(IPFP (40, 1, 0, 0)) =
0.11, and sUB(IPFP (40, 1, 0, 0)) = 0.67.

The blue–red arc from IPFP (40, 1, 0, 0) to IBP-BEAM
(40, 0.5, 1, 0) tells us that, on fp, IPFPwith (K , ρ, L, η) =
(40, 1, 0, 0) dominated IBP-BEAM with (K , ρ, L, η) =
(40, 0.5, 1, 0). More precisely, we have t(IBP-BEAM (40,
0.5, 1, 0)) > t(IPFP (40, 1, 0, 0)) = 1.63 · 10−2s,
dUB(IBP-BEAM (40, 0.5, 1, 0)) > dUB(IPFP (40, 1, 0, 0))
= 3.08, and cUB(IBP-BEAM (40, 0.5, 1, 0)) = cLB(IPFP
(40, 1, 0, 0)) = 0.11. As IPFP and IBP-BEAM instantiate
LS-GED, they are shown white on dark gray.

123

456 D. B. Blumenthal et al.

Fig. 28 Transitive reduction of dominance graph for upper bounds on the dataset protein

References

1. Abu-Aisheh, Z., Gaüzere, B., Bougleux, S., Ramel, J.Y., Brun, L.,
Raveaux, R., Héroux, P., Adam, S.: Graph edit distance contest
2016: results and future challenges. Pattern Recognit. Lett. 100,
96–103 (2017). https://doi.org/10.1016/j.patrec.2017.10.007

2. Abu-Aisheh, Z., Raveaux, R., Ramel, J.: A graph database reposi-
tory and performance evaluationmetrics for graph edit distance. In:
Liu, C., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015,
LNCS, vol. 9069. Springer, Cham, pp. 138–147 (2015). https://doi.
org/10.1007/978-3-319-18224-7_14

3. Babai, L.: Graph isomorphism in quasipolynomial time [extended
abstract]. In: Wichs, D., Mansour, Y. (eds.) STOC 2016. ACM,
New York, pp. 684–697 (2016). https://doi.org/10.1145/2897518.
2897542

4. Blumenthal, D.B., Bougleux, S., Gamper, J., Brun, L.: Ring based
approximation of graph edit distance. In: Bai, X., Hancock, E., Ho,
T., Wilson, R., Biggio, B., Robles-Kelly, A. (eds.) S+SSPR 2018,
LNCS, vol. 11004. Springer, Cham, pp. 293–303 (2018). https://
doi.org/10.1007/978-3-319-97785-0_28

123

https://doi.org/10.1016/j.patrec.2017.10.007
https://doi.org/10.1007/978-3-319-18224-7_14
https://doi.org/10.1007/978-3-319-18224-7_14
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1007/978-3-319-97785-0_28
https://doi.org/10.1007/978-3-319-97785-0_28

Comparing heuristics for graph edit distance computation 457

5. Blumenthal, D.B., Bougleux, S., Gamper, J., Brun, L.: Upper
bounding GED via transformations to LSAPE based on rings and
machine learning (2019)

6. Blumenthal, D.B., Bougleux, S., Gamper, J., Brun, L.: GEDLIB:
a C++ library for graph edit distance computation. In: Conte,
D., Ramel, J.Y., Foggia, P. (eds.) Graph-Based Representations
in Pattern Recognition. GbRPR 2019. Lecture Notes in Computer
Science, vol. 11510, pp. 14–24. Springer, Cham (2019)

7. Blumenthal, D.B., Daller, E., Bougleux, S., Brun, L., Gamper, J.:
Quasimetric graph edit distance as a compact quadratic assignment
problem. In: ICPR 2018. IEEE Computer Society, pp. 934–939
(2018). https://doi.org/10.1109/ICPR.2018.8546055

8. Blumenthal, D.B., Gamper, J.: Correcting and speeding-up bounds
for non-uniform graph edit distance. In: ICDE 2017. IEEE Com-
puter Society, pp. 131–134 (2017). https://doi.org/10.1109/ICDE.
2017.57

9. Blumenthal, D.B., Gamper, J.: Improved lower bounds for graph
edit distance. IEEE Trans. Knowl. Data Eng. 30(3), 503–516
(2018). https://doi.org/10.1109/TKDE.2017.2772243

10. Blumenthal, D.B., Gamper, J.: On the exact computation of the
graph edit distance. Pattern Recognit. Lett. (2018). https://doi.org/
10.1016/j.patrec.2018.05.002

11. Bonacich, P.: Power and centrality: a family of measures. Am. J.
Sociol. 92(5), 1170–1182 (1987). https://doi.org/10.1086/228631

12. Boria, N., Blumenthal, D.B., Bougleux, S., Brun, L.: Improved
local search for graph edit distance (2019). Submitted.
arXiv:1907.02929

13. Boria, N., Bougleux, S., Brun, L.: Approximating GED using a
stochastic generator and multistart IPFP. In: Bai, X., Hancock,
E.R., Ho, T.K., Wilson, R.C., Biggio, B., Robles-Kelly, A. (eds.)
S+SSPR 2018. Springer, Cham, pp. 460–469 (2018). https://doi.
org/10.1007/978-3-319-97785-0_44

14. Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento,
M.: Graph edit distance as a quadratic assignment problem. Pattern
Recognit. Lett. 87, 38–46 (2017). https://doi.org/10.1016/j.patrec.
2016.10.001

15. Bougleux, S., Gaüzère, B., Blumenthal, D.B., Brun, L.: Fast linear
sum assignment with error-correction and no cost constraints. Pat-
tern Recognit. Lett. (2018). https://doi.org/10.1016/j.patrec.2018.
03.032

16. Bougleux, S., Gaüzère, B., Brun, L.: Graph edit distance as a
quadratic program. In: ICPR 2016. IEEE Computer Society, pp.
1701–1706 (2016). https://doi.org/10.1109/ICPR.2016.7899881

17. Bougleux, S., Gaüzère, B., Brun, L.: A Hungarian algorithm for
error-correcting graph matching. In: Foggia, P., Liu, C., Vento, M.
(eds.) GbRPR 2017, LNCS, vol. 10310. Springer, Cham, pp. 118–
127 (2017). https://doi.org/10.1007/978-3-319-58961-9_11

18. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web
search engine. Comput. Netw. 30(1–7), 107–117 (1998). https://
doi.org/10.1016/S0169-7552(98)00110-X

19. Brun, L., Foggia, P., Vento, M.: Trends in graph-based representa-
tions for pattern recognition. Pattern Recognit. Lett. (2018). https://
doi.org/10.1016/j.patrec.2018.03.016

20. Bunke, H., Allermann, G.: Inexact graph matching for structural
pattern recognition. Pattern Recognit. Lett. 1(4), 245–253 (1983).
https://doi.org/10.1016/0167-8655(83)90033-8

21. Carletti, V., Gaüzère, B., Brun, L., Vento, M.: Approximate
graph edit distance computation combining bipartite matching and
exact neighborhood substructure distance. In: Liu, C., Luo, B.,
Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015, LNCS, vol. 9069.
Springer, Cham, pp. 188–197 (2015). https://doi.org/10.1007/978-
3-319-18224-7_19

22. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector
machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011).
https://doi.org/10.1145/1961189.1961199

23. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of
graph matching in pattern recognition. Int. J. Pattern Recog-
nit. Artif. Intell. 18(3), 265–298 (2004). https://doi.org/10.1142/
S0218001404003228

24. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph
isomorphism algorithm for matching large graphs. IEEE Trans.
Pattern Anal. Mach. Intell. 26(10), 1367–1372 (2004). https://doi.
org/10.1109/TPAMI.2004.75

25. Cortés, X., Serratosa, F., Moreno-García, C.F.: On the influence of
node centralities on graph edit distance for graph classification. In:
Liu, C., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015,
LNCS, vol. 9069. Springer, Cham, pp. 231–241 (2015). https://doi.
org/10.1007/978-3-319-18224-7_23

26. Daller, É., Bougleux, S., Gaüzère, B., Brun, L.: Approximate graph
edit distance by several local searches in parallel. In: Fred, A.,
di Baja, G.S., Marsico, M.D. (eds.) ICPRAM 2018. SciTePress,
pp. 149–158 (2018). https://doi.org/10.5220/0006599901490158

27. Ferrer,M., Serratosa, F., Riesen,K.:Afirst step towards exact graph
edit distance using bipartite graph matching. In: Liu, C., Luo, B.,
Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015, LNCS, vol. 9069.
Springer, Cham, pp. 77–86 (2015). https://doi.org/10.1007/978-3-
319-18224-7_8

28. Fischer,A., Suen,C.Y., Frinken,V., Riesen,K., Bunke,H.:Approx-
imation of graph edit distance based on Hausdorff matching.
Pattern Recognit. 48(2), 331–343 (2015). https://doi.org/10.1016/
j.patcog.2014.07.015

29. Foggia, P., Percannella, G., Vento, M.: Graph matching and
learning in pattern recognition in the last 10 years. Int. J. Pat-
tern Recognit. Artif. Intell. 28(1), 1450001:1–1450001:40 (2014).
https://doi.org/10.1142/S0218001414500013

30. Frank, M., Wolfe, P.: An algorithm for quadratic programming.
Nav. Res. Logist. Q. 3(1–2), 95–110 (1956). https://doi.org/10.
1002/nav.3800030109

31. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit dis-
tance. Pattern Anal. Appl. 13(1), 113–129 (2010). https://doi.org/
10.1007/s10044-008-0141-y

32. Gaüzère, B., Bougleux, S., Riesen, K., Brun, L.: Approximate
graph edit distance guided by bipartite matching of bags of walks.
In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M.
(eds.) S+SSPR 2014, LNCS, vol. 8621. Springer, Cham, pp. 73–82
(2014). https://doi.org/10.1007/978-3-662-44415-3_8

33. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.
tuxfamily.org. Accessed 5 July 2019

34. Gurobi Optimization LLC: Gurobi Optimizer Reference Manual.
http://www.gurobi.com. Accessed 5 July 2019

35. Henry, E.R.: Classification and Uses of Finger Prints. Routledge,
London (1900)

36. Justice, D., Hero, A.: A binary linear programming formulation of
the graph edit distance. IEEE Trans. Pattern Anal. Mach. Intell.
28(8), 1200–1214 (2006). https://doi.org/10.1109/TPAMI.2006.
152

37. Karmarkar, N.: A new polynomial-time algorithm for linear pro-
gramming. Combinatorica 4(4), 373–396 (1984). https://doi.org/
10.1007/BF02579150

38. Kuhn, H.W.: The Hungarian method for the assignment problem.
Nav.Res. Logist.Q. 2(1–2), 83–97 (1955). https://doi.org/10.1002/
nav.3800020109

39. Le Digabel, S.: Algorithm 909: NOMAD: nonlinear optimization
with the MADS algorithm. ACM Trans. Math. Softw. 37(4), 44:1–
44:15 (2011). https://doi.org/10.1145/1916461.1916468

40. Le Gall, F.: Powers of tensors and fast matrix multiplication.
In: Nabeshima, K., Nagasaka, K., Winkler, F., Szántó, Á. (eds.)
ISSAC 2014. ACM, pp. 296–303 (2014). https://doi.org/10.1145/
2608628.2608664

123

https://doi.org/10.1109/ICPR.2018.8546055
https://doi.org/10.1109/ICDE.2017.57
https://doi.org/10.1109/ICDE.2017.57
https://doi.org/10.1109/TKDE.2017.2772243
https://doi.org/10.1016/j.patrec.2018.05.002
https://doi.org/10.1016/j.patrec.2018.05.002
https://doi.org/10.1086/228631
http://arxiv.org/abs/1907.02929
https://doi.org/10.1007/978-3-319-97785-0_44
https://doi.org/10.1007/978-3-319-97785-0_44
https://doi.org/10.1016/j.patrec.2016.10.001
https://doi.org/10.1016/j.patrec.2016.10.001
https://doi.org/10.1016/j.patrec.2018.03.032
https://doi.org/10.1016/j.patrec.2018.03.032
https://doi.org/10.1109/ICPR.2016.7899881
https://doi.org/10.1007/978-3-319-58961-9_11
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/j.patrec.2018.03.016
https://doi.org/10.1016/j.patrec.2018.03.016
https://doi.org/10.1016/0167-8655(83)90033-8
https://doi.org/10.1007/978-3-319-18224-7_19
https://doi.org/10.1007/978-3-319-18224-7_19
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1142/S0218001404003228
https://doi.org/10.1142/S0218001404003228
https://doi.org/10.1109/TPAMI.2004.75
https://doi.org/10.1109/TPAMI.2004.75
https://doi.org/10.1007/978-3-319-18224-7_23
https://doi.org/10.1007/978-3-319-18224-7_23
https://doi.org/10.5220/0006599901490158
https://doi.org/10.1007/978-3-319-18224-7_8
https://doi.org/10.1007/978-3-319-18224-7_8
https://doi.org/10.1016/j.patcog.2014.07.015
https://doi.org/10.1016/j.patcog.2014.07.015
https://doi.org/10.1142/S0218001414500013
https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1007/s10044-008-0141-y
https://doi.org/10.1007/s10044-008-0141-y
https://doi.org/10.1007/978-3-662-44415-3_8
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://www.gurobi.com
https://doi.org/10.1109/TPAMI.2006.152
https://doi.org/10.1109/TPAMI.2006.152
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/BF02579150
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1145/1916461.1916468
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/2608628.2608664

458 D. B. Blumenthal et al.

41. Lee, L., Lumsdaine, A., Siek, J.: The Boost Graph Library: User
Guide and Reference Manual. Addison-Wesley Longman, Boston
(2002)

42. Leordeanu, M., Hebert, M., Sukthankar, R.: An integer projected
fixedpointmethod for graphmatching andMAP inference. In:Ben-
gio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta,
A. (eds.) NIPS 2009. Curran Associates, pp. 1114–1122 (2009)

43. Lerouge, J., Abu-Aisheh, Z., Raveaux, R., Héroux, P., Adam, S.:
Exact graph edit distance computation using a binary linear pro-
gram. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F.,
Wilson, R. (eds.) S+SSPR 2016, LNCS, vol. 10029. Springer,
Cham, pp. 485–495 (2016). https://doi.org/10.1007/978-3-319-
49055-7_43

44. Lerouge, J., Abu-Aisheh, Z., Raveaux, R., Héroux, P., Adam, S.:
New binary linear programming formulation to compute the graph
edit distance. Pattern Recognit. 72, 254–265 (2017). https://doi.
org/10.1016/j.patcog.2017.07.029

45. Lin, C.L.: Hardness of approximating graph transformation prob-
lem. In: Du, D.Z., Zhang, X.S. (eds.) Algorithms and Computation,
LNCS, vol. 834. Springer,Berlin, pp. 74–82 (1994). https://doi.org/
10.1007/3-540-58325-4_168

46. Munkres, J.: Algorithms for the assignment and transportation
problems. SIAM J. Appl. Math. 5(1), 32–38 (1957). https://doi.
org/10.1137/0105003

47. Nissen, S.: Implementation of a Fast Artificial Neural Network
Library (FANN). Technical report, Department of Computer Sci-
ence, University of Copenhagen (2003). http://fann.sourceforge.
net/report/

48. Ozdemir, E., Gunduz-Demir, C.: A hybrid classification model for
digital pathologyusing structural and statistical pattern recognition.
IEEE Trans. Med. Imaging 32(2), 474–483 (2013). https://doi.org/
10.1109/TMI.2012.2230186

49. Riesen, K.: Structural Pattern Recognition with Graph Edit
Distance. Advances in Computer Vision and Pattern Recogni-
tion. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27252-8

50. Riesen, K., Bunke, H.: IAM graph database repository for graph
based pattern recognition and machine learning. In: da Vito-
ria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M.,
Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008, LNCS,
vol. 5342. Springer, Berlin, pp. 287–297 (2008). https://doi.org/
10.1007/978-3-540-89689-0_33

51. Riesen, K., Bunke, H.: Approximate graph edit distance compu-
tation by means of bipartite graph matching. Image Vis. Comput.
27(7), 950–959 (2009). https://doi.org/10.1016/j.imavis.2008.04.
004

52. Riesen, K., Bunke, H.: Graph Classification and Clustering Based
on Vector Space Embedding. Series in Machine Perception and
Artificial Intelligence, vol. 77. World Scientific, Singapore (2010).
https://doi.org/10.1142/7731

53. Riesen, K., Bunke, H., Fischer, A.: Improving graph edit dis-
tance approximation by centrality measures. In: ICPR 2014. IEEE
Computer Society, pp. 3910–3914 (2014). https://doi.org/10.1109/
ICPR.2014.671

54. Riesen, K., Ferrer, M.: Predicting the correctness of node assign-
ments in bipartite graph matching. Pattern Recognit. Lett. 69, 8–14
(2016). https://doi.org/10.1016/j.patrec.2015.10.007

55. Riesen, K., Ferrer, M., Fischer, A., Bunke, H.: Approximation
of graph edit distance in quadratic time. In: Liu, C., Luo, B.,
Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015, LNCS, vol. 9069.
Springer, Cham, pp. 3–12 (2015). https://doi.org/10.1007/978-3-
319-18224-7_1

56. Riesen, K., Fischer, A., Bunke, H.: Combining bipartite graph
matching and beam search for graph edit distance approximation.
In: Gayar, N.E., Schwenker, F., Suen, C. (eds.) ANNPR 2014,

LNCS, vol. 8774. Springer, Cham, pp. 117–128 (2014). https://
doi.org/10.1007/978-3-319-11656-3_11

57. Riesen, K., Fischer, A., Bunke, H.: Computing upper and lower
bounds of graph edit distance in cubic time. In: Gayar, N.E.,
Schwenker, F., Suen, C. (eds.) ANNPR 2014, LNCS, vol. 8774.
Springer,Heidelberg, pp. 129–140 (2014). https://doi.org/10.1007/
978-3-319-11656-3

58. Riesen, K., Fischer, A., Bunke, H.: Improved graph edit distance
approximation with simulated annealing. In: Foggia, P., Liu, C.,
Vento,M. (eds.) GbRPR 2017, LNCS, vol. 10310. Springer, Cham,
pp. 222–231 (2017). https://doi.org/10.1007/978-3-319-58961-
9_20

59. Sanfeliu, A., Fu, K.S.: A distance measure between attributed
relational graphs for pattern recognition. IEEE Trans. Syst. Man
Cybern. 13(3), 353–362 (1983). https://doi.org/10.1109/TSMC.
1983.6313167

60. Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C.,
Huhn, G., Schomburg, D.: BRENDA, the enzyme database:
updates and major new developments. Nucleic Acids Res.
32(Database–Issue), 431–433 (2004). https://doi.org/10.1093/nar/
gkh081

61. Stauffer, M., Fischer, A., Riesen, K.: A novel graph database for
handwritten word images. In: Robles-Kelly, A., Loog, M., Big-
gio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016, LNCS, vol.
10029. Springer, Cham, pp. 553–563 (2016). https://doi.org/10.
1007/978-3-319-49055-7_49

62. Stauffer, M., Tschachtli, T., Fischer, A., Riesen, K.: A survey on
applications of bipartite graph edit distance. In: Foggia, P., Liu,
C., Vento, M. (eds.) GbRPR 2017, LNCS, vol. 10310. Springer,
Cham, pp. 242–252 (2017). https://doi.org/10.1007/978-3-319-
58961-9_22

63. Strassen, V.: Gaussian elimination is not optimal. Numer. Math.
13(4), 354–356 (1969). https://doi.org/10.1007/BF02165411

64. Uno, T.: Algorithms for enumerating all perfect, maximum and
maximal matchings in bipartite graphs. In: Leong, H.W., Imai, H.,
Jain, S. (eds.) ISAAC 1997, LNCS, vol. 1350. Springer, Berlin, pp.
92–101 (1997). https://doi.org/10.1007/3-540-63890-3_11

65. Uno, T.: A fast algorithm for enumerating bipartite perfect match-
ings. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001, LNCS, vol.
2223. Springer, Berlin, pp. 367–379 (2001). https://doi.org/10.
1007/3-540-45678-3_32

66. Vento, M.: A long trip in the charming world of graphs for pattern
recognition. Pattern Recognit. 48(2), 291–301 (2015). https://doi.
org/10.1016/j.patcog.2014.01.002

67. Wang, X., Ding, X., Tung, A.K.H., Ying, S., Jin, H.: An efficient
graph indexing method. In: Kementsietsidis, A., Salles, M.A.V.
(eds.) ICDE 2012. IEEE Computer Society, pp. 210–221 (2012).
https://doi.org/10.1109/ICDE.2012.28

68. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing
stars: on approximating graph edit distance. PVLDB 2(1), 25–36
(2009). https://doi.org/10.14778/1687627.1687631

69. Zhao,X., Xiao, C., Lin, X., Zhang,W.,Wang,Y.: Efficient structure
similarity searches: a partition-based approach. VLDB J. 27(1),
53–78 (2018). https://doi.org/10.1007/s00778-017-0487-0

70. Zheng, W., Zou, L., Lian, X., Wang, D., Zhao, D.: Graph similarity
searchwith edit distance constraint in large graph databases. In:He,
Q., Iyengar, A., Nejdl, W., Pei, J., Rastogi, R. (eds.) CIKM 2013.
ACM, pp. 1595–1600 (2013). https://doi.org/10.1145/2505515.
2505723

71. Zheng, W., Zou, L., Lian, X., Wang, D., Zhao, D.: Efficient graph
similarity search over large graph databases. IEEE Trans. Knowl.
Data Eng. 27(4), 964–978 (2015). https://doi.org/10.1109/TKDE.
2014.2349924

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-49055-7_43
https://doi.org/10.1007/978-3-319-49055-7_43
https://doi.org/10.1016/j.patcog.2017.07.029
https://doi.org/10.1016/j.patcog.2017.07.029
https://doi.org/10.1007/3-540-58325-4_168
https://doi.org/10.1007/3-540-58325-4_168
https://doi.org/10.1137/0105003
https://doi.org/10.1137/0105003
http://fann.sourceforge.net/report/
http://fann.sourceforge.net/report/
https://doi.org/10.1109/TMI.2012.2230186
https://doi.org/10.1109/TMI.2012.2230186
https://doi.org/10.1007/978-3-319-27252-8
https://doi.org/10.1007/978-3-319-27252-8
https://doi.org/10.1007/978-3-540-89689-0_33
https://doi.org/10.1007/978-3-540-89689-0_33
https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/10.1142/7731
https://doi.org/10.1109/ICPR.2014.671
https://doi.org/10.1109/ICPR.2014.671
https://doi.org/10.1016/j.patrec.2015.10.007
https://doi.org/10.1007/978-3-319-18224-7_1
https://doi.org/10.1007/978-3-319-18224-7_1
https://doi.org/10.1007/978-3-319-11656-3_11
https://doi.org/10.1007/978-3-319-11656-3_11
https://doi.org/10.1007/978-3-319-11656-3
https://doi.org/10.1007/978-3-319-11656-3
https://doi.org/10.1007/978-3-319-58961-9_20
https://doi.org/10.1007/978-3-319-58961-9_20
https://doi.org/10.1109/TSMC.1983.6313167
https://doi.org/10.1109/TSMC.1983.6313167
https://doi.org/10.1093/nar/gkh081
https://doi.org/10.1093/nar/gkh081
https://doi.org/10.1007/978-3-319-49055-7_49
https://doi.org/10.1007/978-3-319-49055-7_49
https://doi.org/10.1007/978-3-319-58961-9_22
https://doi.org/10.1007/978-3-319-58961-9_22
https://doi.org/10.1007/BF02165411
https://doi.org/10.1007/3-540-63890-3_11
https://doi.org/10.1007/3-540-45678-3_32
https://doi.org/10.1007/3-540-45678-3_32
https://doi.org/10.1016/j.patcog.2014.01.002
https://doi.org/10.1016/j.patcog.2014.01.002
https://doi.org/10.1109/ICDE.2012.28
https://doi.org/10.14778/1687627.1687631
https://doi.org/10.1007/s00778-017-0487-0
https://doi.org/10.1145/2505515.2505723
https://doi.org/10.1145/2505515.2505723
https://doi.org/10.1109/TKDE.2014.2349924
https://doi.org/10.1109/TKDE.2014.2349924

	Comparing heuristics for graph edit distance computation
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Overview of compared heuristics
	5 Heuristics based on transformations to the linear sum assignment problem with error correction
	6 Heuristics based on linear programming
	7 Heuristics based on local search
	8 Miscellaneous heuristics
	9 Experimental evaluation
	10 Conclusions and future work
	A Datasets and edit cost functions
	B Visualization of experiments via dominance graphs
	References

