
The VLDB Journal (2019) 28:597–622
https://doi.org/10.1007/s00778-019-00542-3

REGULAR PAPER

Fast diversified coherent core search onmulti-layer graphs

Rong Zhu1 · Zhaonian Zou1 · Jianzhong Li1

Received: 12 March 2018 / Revised: 15 March 2019 / Accepted: 15 May 2019 / Published online: 1 July 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Mining dense subgraphs on multi-layer graphs is an interesting problem, which has witnessed lots of applications in practice.
To overcome the limitations of the quasi-clique-based approach, we propose d-coherent core (d-CC), a new notion of dense
subgraph on multi-layer graphs, which has several elegant properties. We formalize the diversified coherent core search
(DCCS) problem, which finds k d-CCs that can cover the largest number of vertices. We propose a greedy algorithm with
an approximation ratio of 1 − 1/e and two search algorithms with an approximation ratio of 1/4. Furthermore, we propose
some optimization techniques to further speed up the algorithms. The experiments verify that the search algorithms are faster
than the greedy algorithm and produce comparably good results as the greedy algorithm in practice. As opposed to the quasi-
clique-based approach, our DCCS algorithms can fast detect larger dense subgraphs that cover most of the quasi-clique-based
results.

Keywords Multi-layer graph · Dense subgraph · Coherent core · Diversity

1 Introduction

Dense subgraph mining, that is, finding vertices cohesively
connected by internal edges, is an important task in graph
mining. In the literature, many dense subgraph notions have
been formalized [16], e.g., clique, quasi-clique, k-core, k-
truss, k-plex, and k-club.Meanwhile, a large number of dense
subgraph mining algorithms have also been proposed.

In many real-world scenarios, a graph often contains
various types of edges, which represent various types of
relationships between entities. For example, in biological
networks, interactions between genes can be detected by dif-
ferent methods [13,27]; in social networks, users can interact
through different social media [21]. In [5,20], such a graph
with multiple types of edges is modeled as a multi-layer
graph, where each layer independently accommodates a cer-
tain type of edges.

B Zhaonian Zou
znzou@hit.edu.cn

Rong Zhu
rzhu@hit.edu.cn

Jianzhong Li
lijzh@hit.edu.cn

1 School of Computer Science and Technology, Harbin Institute
of Technology, Harbin, Heilongjiang Province, China

Finding dense subgraphs on multi-layer graphs has wit-
nessedmany real-world applications.We show two examples
as follows.
Application 1 (joint mining of biological modules) Biolog-
ical networks represent interactions between proteins and
genes. These interactions can be detected by several different
methods such as biological experiments, co-expression, gene
co-occurrence, and text mining [27]. Finding groups of genes
and proteins cohesively interacting with each other, called
biological modules, is interesting and important in bioinfor-
matics [13,20]. However, the interaction data obtained by a
certainmethod are usually very noisy,whichmakes the detec-
tion results unconvincing or unreliable [20]. To filter out the
effects of spurious interactions, biologists try to jointly ana-
lyze the interactions in a collection of biological networks. In
particular, they model these biological networks as a multi-
layer graph,where each layer contains all interactions (edges)
detected by a certain method. A set of vertices is regarded
as a reliable biological module if they are simultaneously
densely connected across multiple layers [20].
Application 2 (extracting active co-author groups) Co-
authorship networks such as DBLP represent collaboration
between authors. Following active co-author groups that fre-
quently occur in research communities helps learn more
about research trends and hot spots in research domains. To
extract active co-author groups, scientists often organize co-
authorship networks as multi-layer graphs. All connections

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00542-3&domain=pdf
http://orcid.org/0000-0001-9475-8944

598 R. Zhu et al.

between authors are categorized into different layers either
based on time periods [31] or based on conferences [5]. A
group of authors are active if they have close collaborations
in multiple time periods or in multiple conferences.

Different from dense subgraph mining on single-layer
graphs, dense subgraphs on multi-layer graphs must be eval-
uated by the following two metrics:

(1) Density The interconnections between the vertices must
be sufficiently dense on some individual layers.

(2) Support The vertices must be densely connected on a
sufficiently large number of layers.

In the literature, the most representative and widely used
notion of dense subgraphs on multi-layer graphs is cross-
graph quasi-clique [5,20,32]. On a single-layer graph, a
vertex set Q is a γ -quasi-clique if every vertex in Q is adja-
cent to at least γ (|Q| − 1) vertices in Q, where γ ∈ [0, 1].
Given a set of graphsG1,G2, . . . ,Gn with the same vertices
(i.e., layers in our terminology), γ ∈ [0, 1] and mins ∈ N, a
vertex set Q is a cross-graph quasi-clique if Q is a γ -quasi-
clique on all of G1,G2, . . . ,Gn and |Q| ≥ mins . Although
the cross-graph quasi-clique notion considers both density
and support, it has several intrinsic limitations inherited from
γ -quasi-cliques.

The lower bound of a vertex’s degree in a γ -quasi-clique
Q is γ (|Q|−1), which linearly increases with |Q|. This con-
straint is too strict for large dense subgraphs in real graphs.
Thediameter of aγ -quasi-clique is often too small.Asproved
in [20], the diameter of a γ -quasi-clique is at most 2 for
γ ≥ 0.5. Hence, in cross-graph quasi-clique mining, a large
dense subgraph tends to be decomposed into many quasi-
cliques. It leads to the following limitations:

(1) Finding all quasi-cliques is computationally hard and is
not scalable to large graphs [5].

(2) Quasi-cliques are useful in the study of micro-clusters
(e.g., motifs [12]) but are not suitable for studying
large clusters (e.g., communities). To alleviate this prob-
lem, quasi-cliques are merged together to restore large
dense subgraphs in post-processing [16]. However, the
merging process not only takes additional time but also
the quality of the restored subgraphs depends on the
discovered quasi-cliques. Since γ and mins indirectly
affects the properties of the restored subgraphs, it is dif-
ficult for users to specify appropriate parameters. For
example, in the four-layer graph in Fig. 1, the ver-
tex set Q = {a, b, c, d, e, f , g, h, i, x, y, z} naturally
induces a large dense subgraph on all layers. However,
for γ ≥ 0.5 and mins = 6, the restored subgraph is
{c, f , i, x, y, z}, which miss many vertices in Q.

Hence, there naturally arises the first question:

Fig. 1 Example of four-layer graph

Q1 What is a better notion of dense subgraphs on multi-
layer graphs, which can avoid the limitations of cross-graph
quasi-cliques?

Additionally, as discovered in [5], dense subgraphs on
multi-layer graphs have significant overlaps. For practical
usage, it is better to output a small subset of diversified dense
subgraphs with little overlaps. Reference [5] proposes an
algorithm to find diversified cross-graph quasi-cliques. One
of our goal in this paper is to find dense subgraphs on even
larger multi-layer graphs. There will be even more dense
subgraphs, so the problem of finding diversified dense sub-
graphs will be even more critical. Hence, we face the second
question:
Q2 How to design efficient algorithms to find diversified
dense subgraphs according to the new notion?

To deal with the first questionQ1, we present a new notion
called d-coherent core (d-CC for short) to characterize dense
subgraphs on multi-layer graphs. It is extended from the d-
core notion on single-layer graphs [3]. Specifically, given a
multi-layer graph G, a subset L of layers of G and d ∈ N,
the d-CC with respect to (w.r.t. for short) L is the maximum
vertex subset S such that each vertex in S is adjacent to at
least d vertices in S on all layers in L . The d-CC w.r.t. L
is unique. The d-CC notion is a natural fusion of density
and support. In comparison with cross-graph quasi-clique,
the constraint d on the degree of the vertices in a d-CC is
independent of the size of the d-CC. There is no limit on
the diameter of a d-CC, and a d-CC often consists of a large
number of densely connected vertices. The d-CC notion has
the following advantages:

(1) A d-CC can be computed in linear time w.r.t. the size of
a multi-layer graph.

(2) A d-CC itself is a large dense subgraph. It is unnec-
essary to use a post-processing phase to restore large
dense subgraphs. The parameter d directly controls
the properties of the expected results. For example,
in Fig. 1, for d = 3, the d-CC on all layers is
{a, b, c, d, e, f , g, h, i, x, y, z}, which is directly the
large dense subgraph in the multi-layer graph.

(3) The d-CC notion inherits the hierarchy property of d-
core: The (d + 1)-CC w.r.t. L is a subset of the d-CC
w.r.t. L; Thed-CCw.r.t. L is a subset of thed-CCw.r.t. L ′
if L ′ ⊆ L .

123

Fast diversified coherent core search on multi-layer graphs 599

The d-CCnotion overcomes the limitations of cross-graph
quasi-cliques. Based on this notion, we formalize the diver-
sified coherent core search (DCCS) problem that finds dense
subgraphs on multi-layer graphs with little overlaps: Given a
multi-layer graph G, a minimum degree threshold d, a mini-
mum support threshold s, and the number k of d-CCs to be
detected, the DCCS problem finds k most diversified d-CCs
recurring on at least s layers of G. Like [2,5], we assess the
diversity of the k discovered d-CCs by the number of vertices
they cover and try to maximize the diversity of these d-CCs.
We prove that the DCCS problem is NP-complete.

To deal with the second question Q2, we propose a series
of approximation algorithms for the DCCS problem. First,
we propose a simple greedy algorithm, which finds k d-CCs
in a greedymanner. The algorithmhas an approximation ratio
of 1 − 1/e. However, it must compute all candidate d-CCs
and therefore is not scalable to large multi-layer graphs.

To prune unpromising candidate d-CCs early, we propose
two search algorithms, namely the bottom-up search algo-
rithm and the top-down search algorithm. In both algorithms,
the process of generating candidate d-CCs and the process
of updating diversified d-CCs interact with each other. Many
d-CCs that are unpromising to appear in the final results
are pruned in early stage. The bottom-up and top-down
algorithms adopt different search strategies. In practice, the
bottom-up algorithm is preferable if s < l/2, and the top-
downalgorithm is preferable if s ≥ l/2,where l is the number
of layers. Both of the algorithms have an approximation ratio
of 1/4.

To further speed up the algorithms for the DCCS prob-
lem,we develop someoptimization techniques.We introduce
an index structure, which organizes all the vertices hier-
archically. Base on this index, we propose a faster d-CC
computation method with less examination of vertices. The
faster d-CC computation method can be applied to all the
proposed algorithms.

We conducted extensive experiments on a variety of real-
world datasets to evaluate the proposed algorithms and obtain
the following results:

(1) The bottom-up and top-down algorithms are 1–2 orders
of magnitude faster than the greedy algorithm for small
and large s, respectively.

(2) The optimized greedy, bottom-up, and top-down algo-
rithms run faster than the original ones, respectively.

(3) The practical approximation quality of the bottom-up
and top-down algorithms is comparable to that of the
greedy algorithm.

(4) OurDCCS algorithmsoutperform the cross-graphquasi-
cliquemining algorithms [5,20,32] onmulti-layer graphs
in terms of both execution time and result quality.

The rest of the paper is organized as follows. Section 2
introduces the basic concepts and formalizes theDCCS prob-
lem. Section 3 introduces a method for computing d-CCs.
Section 4 presents the greedy algorithm. The bottom-up and
the top-down search algorithms are described in Sects. 5 and
6, respectively. The optimized algorithms are proposed in
Sect. 7. The experimental results are reported in Sect. 8. Sec-
tion 9 reviews the related work, and Sect. 10 concludes this
paper.

2 Problem definition

In this section, we introduce some basic concepts and for-
malize the problem.
Multi-layer graphs A multi-layer graph is a set of graphs
{G1,G2, . . . ,Gl}, where l is the number of layers, and
Gi is the graph on layer i . Without loss of generality, we
assume that G1,G2, . . . ,Gl contain the same set of ver-
tices because if a vertex is missing from layer i , we can add
it to Gi as an isolated vertex. Hence, a multi-layer graph
{G1,G2, . . . ,Gl} can be equivalently represented by the
tuple (V , E1, E2, . . . , El), where V is the universal vertex
set and Ei is the edge set of Gi .

Let V (G) and E(G) be the vertex set and the edge set of
graph G, respectively. For a vertex v ∈ V (G), let NG(v) =
{u|(v, u) ∈ E(G)} be the set of neighbors of v in G, and let
dG(v) = |NG(v)| be the degree of v inG. The subgraph ofG
induced by a vertex subset S ⊆ V (G) is G[S] = (S, E[S]),
where E[S] is the set of edges with both endpoints in S.

Given a multi-layer graph G = (V , E1, E2, . . . , El), let
l(G) be the number of layers of G, V (G) the vertex set of G,
and Ei (G) the edge set of the graph on layer i . The multi-
layer subgraph of G induced by a vertex subset S ⊆ V (G)

is G[S] = (S, E1[S], E2[S], . . . , El [S]), where Ei [S] is the
set of edges in Ei with both endpoints in S.
d-coherent coresWe define the notion of d-coherent core (d-
CC) on amulti-layer graph by extending the d-core notion on
a single-layer graph [3]. A graph G is d-dense if dG(v) ≥ d
for all v ∈ V (G), where d ∈ N. The d-core of graph G,
denoted by Cd(G), is the maximum subset S ⊆ V (G) such
that G[S] is d-dense. As stated in [3], Cd(G) is unique, and
we have Cd(G) ⊆ Cd−1(G) ⊆ · · · ⊆ C1(G) ⊆ C0(G) for
d ∈ N.

For ease of notation, let [n] = {1, 2, . . . , n}, where n ∈
N. Let G be a multi-layer graph and L ⊆ [l(G)] be a non-
empty subset of layer numbers. For S ⊆ V (G), the induced
subgraph G[S] is d-dense w.r.t. L if Gi [S] is d-dense for all
i ∈ L . The d-coherent core (d-CC) of G w.r.t. L , denoted by
Cd
L(G), is the maximum subset S ⊆ V (G) such that G[S] is

d-dense w.r.t. L . Similar to d-core, the concept of d-CC has
the following three properties.

123

600 R. Zhu et al.

Symbols and notations related to basic concepts (in Sect. 2)
G Single-layer graph
G Multi-layer graph
u, v, w Vertex
(u, v) Edge
V (G)(V (G)) The vertex set of single-layer graph G

(multi-layer G)
G[S](G[S]) The subgraph of single-layer graph G

(multi-layer graph G) induced by vertex
subset S

Ei (G), E(Gi) The edge set on layer i of multi-layer
graph G

l(G) The number of layers in multi-layer graph
G

[n] The set {1, 2, . . . , n}
dG(v) The degree of vertex v in single-layer

graph G
Cd (G) The d-core on single-layer graph G
CL
d (G) The d-CC on multi-layer graph G

w.r.t. layer subset L
Symbols and notations related to the DCCS problem (in Sect. 2)
d Degree threshold
k The desired number of diversified d-CCs
s Support threshold
Fd,s(G), F The set of d-CCs on s layers of

multi-layer graph G
R The result set of diversified d-CCs
Cov(R) The cover set of R, that is,

⋃
C∈R C

Symbols and notations related to the algorithms (in Sects. 5 and 6)
C∗(R) (in Sect. 5.1) The d-CC in R that covers the minimum

number of vertices exclusively by itself
Ud

L (G) (in Sect. 6.1) The potential vertex set w.r.t. the d-CC
Cd
L (G)

ML (NL) (in Sect. 6.2) The set of layer numbers in Class 1
(Class 2) in L

I (in Sect. 6.3) The index of the multi-layer graph

Property 1 (Uniqueness) Given a multi-layer graph G and a
subset L ⊆ [l(G)], Cd

L(G) is unique for d ∈ N.

Property 2 (Hierarchy) Given a multi-layer graph G and a
subset L ⊆ [l(G)], we have Cd

L(G) ⊆ Cd−1
L (G) ⊆ · · · ⊆

C1
L(G) ⊆ C0

L(G) for d ∈ N.

Property 3 (Containment) Given a multi-layer graph G and
two subsets L, L ′ ⊆ [l(G)], if L ⊆ L ′, we have Cd

L ′(G) ⊆
Cd
L(G) for d ∈ N.

For readability, we put the some proofs of properties, lem-
mas and theorems in Appendix A of this paper.
Problem statement Given a multi-layer graph G, a minimum
degree threshold d ∈ N and a minimum support threshold
s ∈ N, let Fd,s(G) be the set of d-CCs of G w.r.t. all subsets
L ⊆ [l(G)] such that |L| = s. When G is large, |Fd,s(G)|
is often very large, and a large number of d-CCs in Fd,s(G)

significantly overlap with each other. For practical usage,
it is better to output k diversified d-CCs with little over-
laps, where k is a number specified by users. Like [2,5], we
assess the diversity of the discovered d-CCs by the num-
ber of vertices they cover and try to maximize the diversity

Fig. 2 Example of a six-layer graph

of these d-CCs. Let the cover set of a collection of sets
R = {R1, R2, . . . , Rn} be Cov(R) = ⋃n

i=1 Ri . We formally
define the Diversified Coherent Core Search (DCCS) prob-
lem as follows.

Given a multi-layer graph G, a minimum degree thresh-
old d ∈ N, a minimum support threshold s ∈ N, and the
number k ∈ N of d-CCs to be discovered, find the subset
R ⊆ Fd,s(G) such that (1) |R| = k, and (2) |Cov(R)| is
maximized. The d-CCs in R are called the top-k diversified
d-CCs of G on s layers.

Theorem 1 The DCCS problem is NP-complete.

Figure 2 shows a six-layer graph G. Let d = 3, s = 2, and
k = 2. The d-cores on all layers are highlighted in blue. The
result of the DCCS problem is R = {Cd{1,6}(G),Cd

{4,5}(G)},
where Cd{1,6}(G) = {a, b, c, d, n, w, y} and Cd

{4,5}(G) =
{a, b, c, d, f , i, k, x, z}. We have |Cov(R)| = 12.

3 The d-CC computation algorithm

In this section, we propose an algorithm for finding Cd
L(G),

the d-CC in a multi-layer graph G w.r.t. a set L of layer num-
bers. This algorithm is a key component of the algorithms
described in the next sections for the DCCS problem.

Our d-CC computation algorithm is inspired by the d-core
decomposition algorithm [3]. In this d-core decomposition
algorithm, the vertices whose degrees are less than d are iter-
atively removed from the input graph. Finally, the remaining
vertices form the d-core of the graph. Our d-CC computa-
tion algorithm follows a similar paradigm. By the definition
of d-CC, each vertex v in Cd

L(G) is adjacent to at least d
vertices in Cd

L(G) on each layer in L . According to this fact,
the central idea of our algorithm for computing Cd

L(G) is
removing from G the vertices that cannot satisfy this degree
constraint. Specifically, let m(v) = mini∈L dGi (v) be the
minimum degree of vertex v on all layers in L . If m(v) < d,

123

Fast diversified coherent core search on multi-layer graphs 601

Fig. 3 The dCC procedure

the degree of v must be less than d on a certain layer in L , so
we have v /∈ Cd

L(G) and thus remove v from G. Notice that
removing v may cause some vertices adjacent to v on some
layers in L not satisfy the degree constraint anymore. Hence,
we iteratively remove all such irrelevant vertices fromG until
m(v) ≥ d for all vertices v remaining in G. Finally, the set
of vertices remaining in G is identical to Cd

L(G).
In the following,we present an efficient implementation of

the d-CC computation method. The dCC procedure in Fig. 3
describes the pseudocode of this algorithm. The procedure
takes as input a multi-layer graph G, an integer d ∈ N, and
a subset L ⊆ [l(G)] and outputs the d-CC Cd

L(G) in linear
time w.r.t. the size of G. It works as follows. At the begin-
ning, we compute m(v) for all vertices v ∈ V (G) (line 1).
In the dCC procedure, we scan all vertices of G only once
and update m(v) when needed. To this end, we exploit four
arrays, namely ver, pos, sbin, and bin.

– The array ver stores all vertices v of G in the ascending
order of m(v). In ver, the consecutive vertices having
the same value of m(v) constitute a bin in ver.

– The arraypos records the position (offset) of each vertex
v of G in the array ver, i.e., ver[pos[v]] = v.

– The array sbin records the size of each bin in ver, i.e.,
sbin[i] is the number of vertices v such that m(v) = i .

– The array bin records the starting position (offset) of
each bin in ver, i.e., bin[i] is the position of the first
vertex v in ver such that m(v) = i .

Lines 2–13 set up the arrays. Let M = maxv∈V (G) m(v).
Obviously, the respective size of sbin and bin is M + 1.
First, we scan all vertices in V (G) to determine the size of

each bin (lines 4–5). Then, we accumulate the bins’ size in
sbin to obtain the starting position of each bin (lines 6–8).
Based on the starting positions, we scan all vertices of G and
place them into ver and pos accordingly (lines 9–13).

In the main iterations (lines 14–27), each time we check
the first vertex v in the array ver (line 15). If m(v) < d, we
have v /∈ Cd

L(G), so we delete v from the array ver (line 17)
and remove v and its incident edges from all layers of G
(line 18). Then, for each vertexu adjacent to v on some layers,
m(u)maychange.Note thatm(u) canbedecreasedby atmost
1 since we remove only one neighbor of u from G. Therefore,
we recompute m(u) as m(u)′ (line 20). If m(u)′ �= m(u), we
move vertex u from the m(u)th bin to the (m(u) − 1)th bin.
Let w be the first vertex in the m(u)th bin (line 22). We
can exchange the positions of u and w in the array ver and
exchange pos[w] and pos[v] accordingly (lines 23–25).
After that, bin[m(u)] is increased by 1 to indicate that u is
removed from its bin (line 26).

When the iterations terminate, all the vertices remaining
in G are returned as Cd

L(G) (line 28). The correctness of the
dCC procedure is obvious.
Complexity analysis Let n = |V (G)|, l = l(G), mi =
|Ei (G)|, and m = | ⋃i∈[l(G)] Ei (G)|. Line 1 computes m(v)

for all vertices v ∈ V (G) inO(nl) time. Lines 2–13 set up ele-
ments in the four arrays in O(n) time. In the main iterations,
for eachvertexu, the time for updatingm(u) and changing the
position of u is O(l). Let dG(u) denote |⋃i∈[l(G)] NGi (u)|.
The vertex u can be accessed by its neighbors at most dG(u)

times. Thus, the total time cost of the main iterations is at
most O(

∑
u∈V (G) dG(u)l) = O(2ml). Consequently, the

time complexity of dCC is O(nl + n + 2ml) = O(nl +ml).
The dCC procedure needs O(n) extra space to store the three
arrays and m(v) of each vertex v ∈ V (G). Thus, the space
complexity of dCC is O(n).

4 The greedy algorithm

A straightforward solution to the DCCS problem is gener-
ating all candidate d-CCs and selecting k d-CCs that cover
the maximum number of vertices. However, the search space
of all k-combinations of d-CCs is extremely large, so this
method is intractable even for small multi-layer graphs.
Alternatively, fast algorithms with provable performance
guarantees may be more preferable. This section proposes
a simple greedy algorithm with an approximation ratio of
1−1/e. Before describing the algorithm, we present the fol-
lowing lemma based on Property 3. The lemma enables us
to remove irrelevant vertices earlier.

Lemma 1 (Intersection bound) Given a multi-layer graph G
and two subsets L1, L2 ⊆ [l(G)], we have Cd

L1∪L2
(G) ⊆

Cd
L1

(G) ∩ Cd
L2

(G) for d ∈ N.

123

602 R. Zhu et al.

Fig. 4 The GD-DCCS algorithm

The greedy algorithm GD-DCCS is described in Fig. 4.
The input is a multi-layer graph G and d, s, k ∈ N. GD-DCCS
works as follows. Line 1 preprocesses G by Procedure Ver-
texDeletion, which will be described later. Line 2 initializes
the candidate d-CC set F and the result set R to be empty.
Lines 3–4 compute the d-core Cd(Gi) on each layer Gi by
the algorithm in [3]. Indeed, we have Cd

{i}(G) = Cd(Gi). In

order to find Cd
L(G) for each L ⊆ [l(G)] with |L| = s, we

first compute the intersection S = ⋂
i∈L Cd(Gi) (line 6). By

Lemma 1, we have Cd
L(G) ⊆ S. Thus, we compute Cd

L(G)

by Procedure dCC on the induced subgraph G[S] instead of
on G (line 7) and add Cd

L(G) to F (line 8).
Lines 9–11 select k d-CCs from F in a greedy manner.

Each time, we select the d-CC C∗ ∈ F that maximizes
|Cov(R ∪ {C∗})| − |Cov(R)|, add C∗ toR, and remove C∗
from F . Finally, R is output as the result (line 12).
Complexity analysis Let l = l(G), n = |V (G)| and m =
| ⋃l

i=1 Ei (G)|. Procedure dCC in line 7 runs in O(ms) time
as shown in Sect. 3. Line 10 runs in O(n|F |) time since
computing |Cov(R∪ {C})| − |Cov(R)| takes O(n) time for
each C ∈ F . In addition, |F | = (l

s

)
. Therefore, the time

complexity of GD-DCCS is O((ns + ms + kn)
(l
s

)
), and the

space complexity is O(n
(l
s

)
).

Theorem 2 The approximation ratio of GD-DCCS is 1 − 1
e .

Proof At lines 1–8, GD-DCCS exactly finds F , the set of
all candidate d-CCs. The remaining part of GD-DCCS aims
at finding the set R of k d-CCs from F that maximizes
|Cov(R)|. This is an instance of themax-k-cover problem [2].
Lines 9–11of GD-DCCS actually use the greedy algorithm [2]
to solve this problem. The approximation ratio of this greedy
algorithm is 1 − 1/e [2]. Thus, the theorem holds.
�
Vertex deletion procedure In line 1 of GD-DCCS, we apply
Procedure VertexDeletion to remove some unpromising ver-

tices from G. Let Supp(v) denote the number of layers i such
that v ∈ Cd(Gi). If Supp(v) < s, v cannot be contained in
any d-CCs Cd

L(G) with |L| = s. Thus, we can iteratively
remove all such vertices from G until Supp(v) ≥ s for all
vertices v remaining in G.

The VertexDeletion procedure takes as input amulti-layer
graph G and two integers d, s ∈ N. It removes the vertices v

with Supp(v) < s in iterations. In each iteration,we compute
thed-coreCd(Gi)oneach layer i (lines 2–3) and then remove
the vertices v from all layers in G if Supp(v) < s (line 6).
This process is repeated until Supp(v) ≥ s for all vertices v

remaining in G. Finally, the remaining graph G is returned as
the result (line 8).
LimitationsAs verified by the experimental results in Sect. 8,
GD-DCCS is not scalable to large multi-layer graphs. This is
due to the following reasons:

(1) GD-DCCS must keep all candidate d-CCs in F . Since

|F | = (l(G)
s

)
, we have |F | = (l(G)−s)s√

2πsss
(

l(G)
l(G)−s)

l(G)+1/2

according to Stirling’s approximation [9]. Obviously, for
fixed s, |F | grows exponentially as l(G) increases.When
F cannot fit in main memory, we store all d-CCs on the
disk, and the space cost is O(

(l(G)
s

)
n).

(2) The exponential growth on the size of F significantly
increases the time cost for selecting k diversified d-CCs
from F (lines 9–11). When F is stored on the disk, the
I/O cost for d-CC selection is O(

(l(G)
s

)
nk/B), where B

is the block size. The I/O cost is very high for large
graphs.

(3) The candidate d-CC generation phase (lines 2–8) is
separate from the diversified d-CC selection phase
(lines 9–11). There is no guidance on candidate gen-
eration, so a large number of unpromising candidates
are generated in vain.

5 The bottom-up algorithm

This section proposes a bottom-up approach to the DCCS
problem. In this approach, the candidate d-CC generation
phase and the top-k diversified d-CC selection phase are
interleaved. On the one hand, wemaintain a set of temporary
top-k diversified d-CCs and use each newly generated d-CC
to update them. On the other hand, we guide candidate d-CC
generation by the temporary top-k diversified d-CCs.

In addition, candidate d-CCs are generated in a bottom-up
manner. Like the frequent pattern mining algorithm [30], we
organize all d-CCs by a search tree and search candidate d-
CCs on it. The bottom-up d-CC generation has the following
advantage: If the d-CCw.r.t. subset L (|L| < s) is unlikely to
improve the quality of the temporary top-k diversified d-CCs,
the d-CCs w.r.t. all L ′ such that L ⊆ L ′ and |L ′| = s need

123

Fast diversified coherent core search on multi-layer graphs 603

not be generated. As verified by the experimental results in
Sect. 8, the bottom-up approach reduces the search space by
80–90% in comparison with the greedy algorithm and thus
saves large amount of time. Moreover, the bottom-up DCCS
algorithm has an approximation ratio of 1/4.

5.1 Maintenance of top-k diversified d-CCs

LetR be a set of temporary top-k diversified d-CCs. Initially,
R = ∅. To improve the quality of R, we try to update R
whenever we find a new candidate d-CC C . In particular, we
update R with C by one of the following rules:
Rule 1: If |R| < k, we directly add C into R to enlarge its
coverage.
Rule 2: For C ′ ∈ R, let Δ(R,C ′) = C ′ − Cov(R − {C ′}),
Δ(R,C ′) is the set of vertices inCov(R) exclusively covered
byC ′. LetC∗(R) = argminC ′∈R |Δ(R,C ′)|,C∗(R) exclu-
sively covers the least number of vertices by itself among all
d-CCs in R. If |R| = k, we can replace C∗(R) by a new
d-CC C if the coverage of R can be enlarged by a suffi-
ciently large factor. According to the framework for solving
the max-k-cover problem [2], we replace C∗(R) with C if
|R| = k and

|Cov((R − {C∗(R)}) ∪ {C})| ≥ (
1 + 1

k

) |Cov(R)|. (1)

As proved in [2], applying these two rules can lead to
a final result with guaranteed performance. The details of
Update are described in Appendix B of this paper. By using
two index structures, Update runs in O(max{|C |, |C∗(R)|})
time.

5.2 Bottom-up candidate generation

Candidate d-CCs Cd
L(G) with |L| = s are generated in a

bottom-up fashion. As shown in Fig. 5, all d-CCs Cd
L(G)

are conceptually organized by a search tree, in which Cd
L(G)

is the parent of Cd
L ′(G) if L ⊂ L ′, |L ′| = |L| + 1, and

the only number i ∈ L ′ − L satisfies i > max(L), where
max(L) is the largest number in L (specially, max(∅) =
−∞). Conceptually, the root of the search tree is Cd

∅ (G) =
V (G).

The d-CCs in the search tree are generated in a depth-first
order. The depth-first search is realized by recursive Proce-
dure BU-Gen described in Fig. 6. The BU-Gen takes as input
a multi-layer graph G, integers d, s, k ∈ N, two-layer subset
L, LQ ⊆ [l(G)], the d-CC Cd

L(G) w.r.t. L , and the result set
R. The BU-Gen procedure works as follows.

Given the d-CC Cd
L(G), we first expand L by adding a

layer number j into L . Notably, the input layer subset LQ

records some layers that cannot be used to expand L . LQ

is generated by the pruning method which will be described
later. Therefore, let LP = { j |max(L) < j ≤ l(G)} − LQ

Fig. 5 Bottom-up search tree

Fig. 6 The BU-Gen procedure

(line 1). LP is the set of layers potentially used to expand L .
We also initialize a layer subset LR to collect all layers in
LP that can be actually used to expand L (line 2). For each
j ∈ LP , let L ′ = L ∪ { j}. By Lemma 1, we have Cd

L ′(G) ⊆
Cd
L(G)∩Cd

{ j}(G) = Cd
L(G)∩Cd(G j). Thus, we can compute

Cd
L ′(G) on the induced subgraph G[Cd

L(G) ∩ Cd(G j)] by
Procedure dCC described in Sect. 3 (line 6 and line 20). Next,
we process Cd

L ′(G) according to the following cases:
Case 1 (lines 7–8) If |R| < k and |L ′| = s, we update R
with Cd

L ′(G) by Rule 1 specified in Sect. 5.2.
Case 2 (lines 9–10) If |R| < k and |L ′| < s, j can be used
to expand L . Thus, we add j into LR .
Case 3 (lines 21–22) If |R| = k and |L ′| = s, we update R
with Cd

L ′(G) by Rule 2 specified in Sect. 5.2.
Case 4 (lines 23–25) If |R| = k and |L ′| < s, we check if
Cd
L ′(G) satisfies Eq. (1) to updateR. If not satisfied, none of

the descendants of Cd
L ′(G) is qualified to be a candidate, so

123

604 R. Zhu et al.

we prune the entire subtree rooted at Cd
L ′(G); otherwise, j

can be used to expand L sowe add j into LR . The correctness
is guaranteed by the following lemma.

Lemma 2 (Search tree pruning) For a d-CCCd
L(G), if Cd

L(G)

does not satisfy Eq. (1), none of the descendants of Cd
L(G)

can satisfy Eq. (1).

Pruning methods To further improve the efficiency of the
bottom-up search, we exploit several pruning methods when
|R| = k (Cases 3 and 4).
Method 1: support-based pruning (lines 12–13) For the d-
CC Cd

L(G), we need to add s − |L| layers into L to obtain a
d-CC on s layers to updateR. Let D ⊆ LP be a layer subset
such that |D| = s −|L|, and let ID = ∩i∈DCd(Gi). Clearly,
if | argmaxD Cd

L(G) ∩ ID| < 1
k |Cov(R)| + |Δ(R,C∗(R))|,

none of the decedents of Cd
L(G) can updateR. However, the

computation of the exact D that maximizes |Cd
L(G) ∩ ID|

is NP-Hard and hard to approximate [6]. Alternatively, we
derive a bound for all ID according to the following lemma.

Lemma 3 Let I be the set of vertices that are contained in
at least s − |L| d-cores on the layers in L P . For any subset
D ⊆ LP such that |D| = s − |L|, we have ID ⊆ I .

With the bounding vertex subset I , we can stop search-
ing the subtree rooted at Cd

L(G) if we have |Cd
L(G) ∩ I | <

1
k |Cov(R)|+ |Δ(R,C∗(R))|. The correctness is ensured by
the following lemma.

Lemma 4 (Support-based pruning) For a d-CC Cd
L(G) and

the bounding vertex subset I , if we have |Cd
L(G) ∩ I | <

1
k |Cov(R)| + |Δ(R,C∗(R))|, for any descendant Cd

S (G) of
Cd
L(G) such that |S| = s, Cd

S (G) cannot satisfy Eq. (1).

Method 2: Order-based pruning (lines 14–17) For all j ∈
LP , we can order the layer numbers j in decreasing order
of |Cd

L(G) ∩ Cd(G j)| and generate Cd
L∪{ j}(G) according to

this order. For some j , if |Cd
L(G)∩Cd(G j)| < 1

k |Cov(R)|+
|Δ(R,C∗(R))|, we can stop searching the subtrees rooted
at Cd

L∪{ j}(G) and Cd
L∪{ j ′}(G) for all j ′ succeeding j in the

order. The correctness is ensured by the following lemma.

Lemma 5 (Order-based pruning) For a d-CC Cd
L(G) and

each j ∈ LP, if |Cd
L(G) ∩ Cd(G j)| < 1

k |Cov(R)| +
|Δ(R,C∗(R))|, Cd

L∪{ j}(G) cannot satisfy Eq. (1).

Method 3: Internal d-CC computation pruning (line 20)
Recall that in the dCC procedure, each time we remove an
unpromising vertex that cannot exist in the d-CC from the
graph. Therefore, the size of the input multi-layer graph
decreases gradually. At some moment when the size of
the remaining vertices is too small, the generated d-CC is
impossible to update the result set R. Therefore, we can
immediately terminate the d-CC computation at this time.

We call this pruning method the internal d-CC computation
pruning.

We can apply this pruning method to the dCC procedure
at line 20 of BU-Gen which computes Cd

L ′(G). To achieve
this, several minor modifications need to be made to the
dCC procedure. Specifically, the dCC procedure takes the
size 1

k |Cov(R)| + |Δ(R,C∗(R))| as an additional input
parameter. After line 18 of the dCC procedure, the unpromis-
ing vertex is removed from the graph, so we can check if
the number of remaining vertices, i.e., V (G), is less than
1
k |Cov(R)| + |Δ(R,C∗(R))|. If so, the generated d-CC
Cd
L ′(G) is unable to updateR. Therefore,we can immediately

terminate the dCC procedure and safely skip the execution
of lines 21–25 of the BU-Gen procedure. Otherwise, the dCC
procedure works as usual. The correctness of this pruning
method is obvious.
Method 4: Layer pruning (lines 27–29) For each j ∈ LP ,
if Cd

L∪{ j}(G) does not satisfy Eq. (1), we need not gener-

ate Cd
S (G) for all S such that L ∪ { j} ⊆ S ⊆ [l(G)]. The

correctness is guaranteed by the following lemma.

Lemma 6 (Layer pruning) For a d-CC Cd
L(G) and each j ∈

LP, if Cd
L∪{ j}(G) does not satisfy Eq. (1), Cd

S∪{ j}(G) cannot
satisfy Eq. (1) for all S such that L ⊆ S ⊆ [l(G)].

For each j ∈ LR , let L ′ = L−{ j} (line 28). By Lemma 6,
any layer in LQ ∪(LP −LR) cannot be used to expand the d-
CCCd

L ′(G). As a result, for each L ′, we make a recursive call
to BU-Gen with parameters G, d, s, k, L ′, LQ ∪ (LP − LR),
Cd
L ′(G) and R (line 29).

5.3 The bottom-up algorithm

Figure 7 describes the complete bottom-up DCCS algorithm
BU-DCCS. Given a multi-layer graph G and three parame-
ters d, s, k ∈ N, we can solve the DCCS problem by calling
BU-Gen(G, d, s, k,∅,∅, V (G),R) (line 4). To further speed
up the algorithm, the preprocessing method (Procedure Ver-
texDeletion) proposed in Sect. 4 is applied in line 1. In
addition, we propose two additional preprocessing methods.
Sorting layers We sort the layers of G in descending order
of |Cd(Gi)|, where 1 ≤ i ≤ l(G). Intuitively, the larger
|Cd(Gi)| is, the more likely Gi contains a large candidate
d-CC.Although there is no theoretical guarantee on the effec-
tiveness of this method, it is indeed effective in practice.
Line 3 of BU-DCCS applies this preprocessing method.
Initialization of R The pruning techniques in BU-Gen are
not applicable unless |R| = k, so a good initial state of R
can greatly enhance the pruning power. We develop a greedy
procedure InitTopK to initialize R such that |R| = k.

The InitTopK procedure takes as input a multi-layer graph
G, three integers d, s, k ∈ N and the set R of temporary
top-k diversified d-CCs. First, we set R as an empty set

123

Fast diversified coherent core search on multi-layer graphs 605

Fig. 7 The BU-DCCS algorithm

(line 1). The for loop (lines 2–11) executes k times. In each
loop, a candidate d-CC is added to R in the following way:
First, we select layer i such that the d-core Cd(Gi) can
maximally enlarges Cov(R) (line 3). Let C = Cd(Gi) and
L = {i} (lines 4–5). Then, we add s − 1 other layer num-
bers to L in a greedy manner. In each time, we choose layer
j ∈ [l(G)] − L that maximizes |C ∩ Cd(G j)|, update L to
L ∪ { j}, and update C to C ∩ Cd(G j) (lines 7–9). When
|L| = s, we compute the d-CC Cd

L(G) and update R with
Cd
L(G) (lines 11–12).

Theorem 3 The approximation ratio of BU-DCCS is 1/4.

6 The top-down algorithm

The bottom-up algorithm traverses a search tree from the
root down to level s. When s ≥ l(G)/2, the efficiency of the
algorithm degrades significantly. As verified by the experi-
ments in Sect. 8, the performance of the bottom-up algorithm
is close to or even worse than the greedy algorithm when
s ≥ l(G)/2. To handle this issue, we propose a top-down
approach for the DCCS problem when s ≥ l(G)/2.

In this section, we assume s ≥ l(G)/2. In the top-down
algorithm, we maintain a temporary top-k result set R and
update it in the samewayas in the bottom-up algorithm.How-
ever, candidate d-CCs are generated in a top-down manner.
Given that we now have a d-CC C w.r.t. layer subset L , we
generate the d-CC C ′ w.r.t. layer subset L ′ such that L ′ ⊆ L
in the top-down algorithm. Obviously, we have C ⊆ C ′, so
the pruning techniques in the bottom-up algorithm based on
the containment property (Property 3) of d-CC are certainly
not applicable. Therefore, we must propose a series of new
pruning techniques suitable for the top-down search. Specif-
ically, for each d-CC, we associate it with a potential set that
contains all vertices in the descendants of this d-CC in the
top-down search tree. We observe that the potential set satis-
fies the containment property. Let U and U ′ be the potential

Fig. 8 Top-down search tree

set ofC andC ′, respectively. We have C ′ ⊆ U ′ andU ′ ⊆ U .
Therefore, if U ′ is unlikely to improve the quality of the
result, none of the descendants of C ′ can do. The top-down
algorithm also has an approximation ratio of 1/4. As veri-
fied by the experiments in Sect. 8, the top-down algorithm is
superior to the other algorithms when s ≥ l(G)/2.

6.1 Top-down candidate generation

Wefirst introduce how to generate d-CCs in a top-downman-
ner. In the top-down algorithm, all d-CCs are conceptually
organized as a search tree as illustrated inFig. 8,whereCd

L (G)

is the parent of Cd
L ′(G) if L ′ ⊂ L , |L| = |L ′| + 1, and the

only layer number i ∈ L − L ′ satisfies i > max([l(G)]− L).
Except the root Cd

[l(G)], all d-CCs in the search tree have a
unique parent. We generate candidate d-CCs by depth-first
searching the tree from the root down to level s and update
the temporary result set R during search.

Let Cd
L(G) be the d-CC currently visited in DFS, where

|L| > s. We must generate the children of Cd
L(G). By Prop-

erty 3 of d-CCs, we have Cd
L(G) ⊆ Cd

L ′(G) for all L ′ ⊆ L .
Thus, to generate Cd

L ′(G), we only have to add some vertices
to Cd

L(G) but need not delete any vertex from Cd
L(G).

To this end, we associate Cd
L(G) with a vertex set Ud

L (G).
Ud

L (G) must contain the vertices in all descendants Cd
S (G)

of Cd
L(G) such that |S| = s. Ud

L (G) serves as the scope
for searching for the descendants of Cd

L(G). We call Ud
L (G)

the potential vertex set w.r.t. Cd
L(G). Obviously, we have

Cd
L(G) ⊆ Ud

L (G). Initially, Ud
[l(G)](G) = V (G). Section 6.2

will describe how to shrink Ud
L (G) to Ud

L ′(G) for L ′ ⊆ L ,
so we have Ud

L ′(G) ⊆ Ud
L (G) if L ′ ⊆ L . The relationships

betweenCd
L(G),Ud

L (G),Cd
L ′(G), andUd

L ′(G) are illustrated in
Fig. 9. The arrows in Fig. 9 indicate that Cd

L ′(G) is expanded
from Cd

L(G), and Ud
L ′(G) is shrunk from Ud

L (G). Keeping
this in mind, we focus on top-down candidate generation in
this subsection. Sections 6.2 will describe how to compute
Ud

L ′(G) in details.
The top-down candidate d-CC generation is implemented

by the recursive procedure TD-Gen in Fig. 10. Let LR =
{ j |max([l(G)] − L) < j ≤ l(G)} ∩ L be the set of layer
numbers possible to be removed from L (line 1). For each
j ∈ LR , let L ′ = L − { j}. We have that Cd

L ′(G) is a child
of Cd

L(G). We first obtain Ud
L ′(G) by the method in Sect. 6.2

123

606 R. Zhu et al.

Fig. 9 Relationships between Cd
L (G), Ud

L (G), Cd
L ′ (G), and Ud

L ′ (G)

Fig. 10 The TD-Gen procedure

(line 4). After obtaining Ud
L ′(G), Cd

L ′(G) can be easily com-
puted by applying the dCC procedure on input G[Ud

L ′(G)], d
and L ′ (lines 8 and 20). Next, we process Cd

L ′(G) based on
the following cases:
Case 1 (lines 9–10) If |R| < k and |L ′| = s, we update R
with Cd

L ′(G) by Rule 1 specified in Sect. 5.2.
Case 2 (lines 11–12) If |R| < k and |L ′| > s, we recursively
call TD-Gen to generate the descendants of Cd

L ′(G).
Case 3 (lines 21–22) If |R| = k and |L ′| = s, we update R
with Cd

L ′(G) by Rule 2 specified in Sect. 5.2.
Case 4 (lines 23–30) Similar to Lemma 2, if |R| = k and
|L ′| > s, we apply Ud

L ′(G) to check whether to extend the
descendants of Cd

L ′(G) (line 24).

Lemma 7 (Search tree pruning) For a d-CC Cd
L(G) and its

potential vertex set Ud
L (G), where |L| > s, if Ud

L (G) does
not satisfy Eq. (1), any descendant Cd

L ′(G) of Cd
L(G) with

|L ′| = s cannot satisfy Eq. (1).

Pruning methods If |R| = k (Cases 3 and 4), we present
several pruning methods to further speed up the top-down
search process as follows.
Method 1: Order-based pruning (lines 14–17) Similar to
Lemma 5, we can also order the layer numbers j ∈ LR

in descending order of |Ud
L−{ j}(G)| (line 14) and prune some

subtrees earlier (lines 17–18).

Lemma 8 (Order-based pruning) For a d-CC Cd
L(G), its

potential vertex set Ud
L (G) and j > max([l(G)] − L), if

|Ud
L−{ j}(G)| < 1

k |Cov(R)| + |Δ(R,C∗(R))|, any descen-

dant Cd
L−{ j}(G) of Cd

L(G) cannot satisfy Eq. (1).

Method 2: Potential set pruning (lines 25–28)More interest-
ingly, for Case 4, in some optimistic cases, we need not to
search the descendants of Cd

L(G). Instead, we can randomly
select a descendant Cd

S (G) of Cd
L(G) with |S| = s to update

R (lines 26–28). The correctness is ensured by the following
lemma.

Lemma 9 (Potential set pruning) For a d-CC Cd
L(G) and its

potential vertex set Ud
L (G), where |L| > s, if Cd

L(G) satisfies
Eq. (1), and Ud

L (G) satisfies

|Ud
L (G)| <

(
1
k + 1

k2

)
|Cov(R)| + (

1 + 1
k

) |Δ(R,C∗(R))|,
(2)

the following proposition holds: For any two distinct descen-
dantsCd

S1
(G)andCd

S2
(G)ofCd

L(G) such that |S1| = |S2| = s,

if |R| = k andR has already been updated by Cd
S1

(G), then

Cd
S2

(G) cannot update R any more.

6.2 Refinement of potential vertex sets

Let Cd
L(G) be the d-CC currently visited by the DFS and

Cd
L ′(G) be a child of Cd

L(G). To generate Cd
L ′(G), Procedure

TD-Gen first refines Ud
L (G) to Ud

L ′(G) and then generates
Cd
L ′(G) based on Ud

L ′(G). This subsection introduces how to
shrink Ud

L (G) to Ud
L ′(G).

First we introduce some useful notation. Given a subset of
layer numbers L ⊆ [l(G)], we can divide all layer numbers
in L into two disjoint classes:
Class 1:By the relationship of d-CCs in the top-down search
tree, for any layer number i ∈ L and i < max([l(G)] − L),
layer i will not be removed from L in any descendant of
Cd
L(G). Thus, for any descendantCd

S (G) ofCd
L(G)with |S| =

s, we have i ∈ S.
Class 2:By the relationship of d-CCs in the top-down search
tree, for any layer number i ∈ L and i > max([l(G)] − L),
layer i can be removed from L to obtain a descendant of
Cd
L(G). Thus, for a descendantCd

S (G) ofCd
L(G)with |S| = s,

it is undetermined whether i ∈ S.

123

Fast diversified coherent core search on multi-layer graphs 607

Fig. 11 The RefineU procedure

Fig. 12 The TD-DCCS algorithm

Let ML and NL denote the Class 1 and Class 2 of layer
numbers w.r.t. L , respectively. Procedure RefineU in Fig. 11
refines Ud

L (G) to Ud
L ′(G). Let U = Ud

L (G) (line 1). First,
we obtain ML ′ and NL ′ w.r.t. L ′ (line 2). Then, we repeat
the following two refinement methods to remove irrelevant
vertices from U until no vertices can be removed any more
(lines 3–8). Finally, U is output as Ud

L ′(G) (line 9).
Refinement Method 1 (lines 4–5) For each layer number i ∈
ML ′ , we have i ∈ S for all descendants Cd

S (G) of Cd
L ′(G)

with |S| = s. Note that Cd
S (G) must be d-dense in Gi . Thus,

if the degree of a vertex v in Gi [U] is less than d, we have
v /∈ Cd

S (G), so we can remove v from U and G.
Refinement Method 2 (lines 6–7) If a vertex v ∈ U is con-
tained in a descendant Cd

S (G) of Cd
L(G) with |S| = s, v must

occur in all the d-cores Cd(Gi) for i ∈ ML ′ and must occur
in at least s − |ML ′ | of the d-cores Cd(G j) for j ∈ NL ′ .
Therefore, if v occurs in less than s − |ML ′ | of the d-cores
Cd(G j) for j ∈ NL ′ , we can remove v from U and G.

6.3 Top-down algorithm

We present the complete top-down DCCS algorithm TD-
DCCS in Fig. 12. The input is a multi-layer graph G and
parameters d, s, k ∈ N. First, we apply the preprocess-
ing methods of vertex deletion (line 1) and initializing
of R (line 2). For the preprocessing method of sorting
layers, we sort all layers i of G in ascending order of
|Cd(Gi)| at line 3 since a layer whose d-core is small
is less likely to support a large d-CC. Next, we com-
pute Cd

[l(G)] (line 4) and invoke recursive Procedure TD-

Gen(G, d, s, k, [l(G)],Cd
[l(G)], V (G),R) to generate candi-

date d-CCs and update the result setR (line 5). Finally,R is
returned as the result (line 6).

Theorem 4 The approximation ratio of TD-DCCS is 1/4.

7 Optimized algorithms

In this section, we propose several optimized algorithms for
fast finding the diversified d-CCs in a multi-layer graph. In
all aforementioned algorithms for the DCCS problem, we
invoke the dCC procedure proposed in Sect. 3 to compute d-
CCs in the search process. However, this method is still not
efficient enough since it involves lots of redundant exami-
nations of vertices. In this section, we introduce an index
structure, which organizes all vertices of the input multi-
layer graph hierarchically. Base on this index, we propose
a faster d-CC computation method with less examination of
vertices. By applying thismethod to the previousDCCS algo-
rithms, the experimental results in Sect. 8 show that all of the
optimized algorithms run faster than the original algorithms.

7.1 The index structure

We introduce the index structure in this subsection. The index
I organizes all the vertices of G hierarchically and helps filter
out the vertices irrelevant to Cd

L ′(G) efficiently. Recall that
Supp(v) is the number of layerswhosed-cores containv. The
index I is constructed basedonSupp(v). Specifically, for 1 ≤
h ≤ l(G), let Jh be the set of vertices v iteratively removed
from G due to Supp(v) ≤ h. Let Ih = Jh − Jh−1. Obviously,
I1, I2, . . . , Il(G) is a disjoint partition of all vertices of G 1.

We present the BuildIndex procedure for constructing the
index in Fig. 13. BuildIndex takes a multi-layer graph G and
an integer d ∈ N as input. At the very beginning, we compute
the d-core on each layer (line 2) and initialize the index I as
empty (line 3). The index I is basically the hierarchy of the
vertices following I1, I2, . . . , Il(G), that is, the vertices in
Ii+1 are placed on higher levels than those in Ii . Internally,
the vertices in Ii are also placed on a stack of levels. Initially,
we set h = 1 (line 4). For each h, vertices in Ih are placed as
follows.

Suppose the vertices in I1, I2, . . . , Ii−1 have been remo-
ved from G. Although the vertices v ∈ Ii are iteratively
removed from G due to Supp(v) ≤ i , they are actually
removed in different batches. In each batch (lines 7–12), we
select all the vertices v with Supp(v) ≤ i into S (line 7)
and remove them together from all layers of G (line 12). In
addition, let L(v) be the set of layer numbers on which v is
contained in the d-core just before v is removed from G in
batch (line 10). We associate each vertex v in the index with
L(v) (line 11).

1 We do not need to consider I0 since vertices in I0 are not in the d-core
on any layer of the multi-layer graph G.

123

608 R. Zhu et al.

Fig. 13 The BuildIndex procedure

Fig. 14 Illustration of index structure

After a batch, due to the removal of vertices, we need to
update the d-core on each layer (line 14). After that, some
vertices v originally satisfying Supp(v) > i may become
Supp(v) ≤ i and thus will be removed in next batch. There-
fore, in Ii , the vertices removed in the same batch are place on
the same sub-level, and the vertices removed in a later batch
are placed on a higher sub-level than the vertices removed
in an early batch. We repeat the removal process until S is
empty. After that, we increase h by 1 (line 16) and continue
to process vertices in Ih+1. The iteration is repeated until all
vertices have been removed from the graph.

After placing all vertices of G into the index I , we add an
edge between vertices u and v in the index if (u, v) is an edge
on a layer of G (line 19). Finally, the index I is returned as
the result (line 20).
Complexity analysis Let n = |V (G)|, l = l(G), mi =
|Ei (G)|, m = | ⋃i∈[l(G)] Ei (G)|, and m′ = ∑

i∈[l(G)] mi .
By [3], thed-core computation consumesO(

∑
i∈[l(G)] mi) =

O(m′) time. LetΔ be themaximum degree of a vertex across
all layers. Note that, for each 1 ≤ h ≤ l(G), there exist at
most Δ batches. This is because if the support number of
a vertex decreases, at least one of its neighbors is removed
from the graph. Thus, the time complexity of the index build-
ing process is at most O(m′ + Δml). Obviously, the space
to store the index is at most O(nl + m).

For ease of understanding, we illustrate an example of the
index structure in Fig. 14 for the multi-layer graph G shown
in Fig. 2 when d = 3. In the index, level h represents all
vertices in Ih . In general, the vertices in Ih may be removed

in a sequence of batches. The vertices removed together in a
batch forms a sub-level of level h.

Initially (h = 1), we have Supp(v) > 1 for all vertices
v in G, so level 1 contains no vertex. Then, h is increased
to 2, and we have Supp(w) = 2 because w ∈ Cd(G1) and
w ∈ Cd(G6). For each vertex v in G, the table in Fig. 14
lists L(v), the set of layer numbers on which v is contained
in the d-cores just before v is removed from G. Hence, we
place w on level 2 and remove it from G. After that, we have
Supp(v) > 2 for all vertices v remaining in G, so we set
h = 3. Now, we have Supp(m) = Supp(y) = Supp(n) = 3,
so they are placed on level 3 and removed from G. Since no
vertex v in G now satisfies Supp(v) > 3, we increase h to 4.
At this time, we have Supp(f) = Supp(g) = Supp(h) = 4
and Supp(e) = Supp(k) = Supp(i) = 5. Thus, vertices
f , g, and h are removed together in the same batch, so f ,
g, and h are placed on the first sub-level of level 4. After
removing f , g, and h, we have Supp(e) = 0, Supp(k) = 1,
and Supp(i) = 2.Hence, vertices e, k, and i must be removed
in the same batch, so they are placed on the second sub-level
of level 4. After removing e, k, and i , no vertex v inG satisfies
Supp(v) ≤ 4, so we increase h to 5. Later, vertices x and z
are placed on level 5. Finally, h is increased to 6, and vertices
a, b, c, and d are placed on level 6.

7.2 The faster d-CC computationmethod

In this subsection, we propose a faster d-CC computation
method based on the index structure.
Main idea Recall that, in the dCC procedure proposed in
Sect. 3, we need to repeatedly check whether each remain-
ing vertex satisfies the degree constraint of the d-CC. Clearly,
there involve lots of redundant vertex examinations. To
alleviate this, in the fast d-CCcomputationmethod,we accel-
erate the d-CC computation process by using the following
two strategies.
Strategy 1: Safely eliminating vertices without examination
In the dCC procedure, for each remaining vertex v, we need
to check the degree of v on each layer to decide whether to
remove v. However, if we have already known that v must
not exist in the d-CC by other means in advance, we can
directly eliminate it without examination.
Strategy 2: Terminating vertices’ examination early During
the dCC procedure, if a vertex v is removed from the graph,
for each vertex u adjacent to v on some layer, we need to
update the degree of u on each layer, whereas, if we have
already known that u must in or must not in the d-CC, there
is no need to update u’s degree afterward. In other words, we
can terminate the examination of such vertices early.

The two strategies can help reduce lots of redundant vertex
examinations in the d-CC computation. In the following, we
describe their implementation details.

123

Fast diversified coherent core search on multi-layer graphs 609

Details of Strategy 1 By exploiting the index structure, we
can detect some vertices that must not in the d-CC Cd

L(G)

before examination. To this end, we first introduce some use-
ful concepts as follows.

For each vertex w in the index, we call w a candidate
vertex if L ⊆ L(w). w is possible to exist in Cd

L(G). For any
two vertices w and z in the index, we denote w ≺ z if z is
placed on a higher level than w and (w, z) is an edge in the
index. If there exists a sequence of vertices w0, w1, . . . , wn

in the index such thatw0 is a candidate vertex, andwi ≺ wi+1

for 0 ≤ i < n, we say there exists a candidate path in the
index to the vertex wn .

With the concept of candidate path, the following lemma
states a necessary condition for a vertexw existing inCd

L(G).
In the d-CC computation, we can directly eliminate all ver-
tices that do not satisfy the following condition.

Lemma 10 For each vertex w ∈ Cd
L(G), there must exist a

candidate path in the index to w.

For example, consider the index in Fig. 14. Let L =
{3, 4, 5}. We find that vertex w does not satisfy L ⊆ L(w),
so w is not in Cd

L(G). In the next level, there are no can-
didate paths to vertices m, y, and n, so they can also be
removed. On the remaining levels, we can also remove ver-
tices g, h and e. Therefore, we only need to examine vertices
a, b, c, d, f , k, i, x , and z.
Details of Strategy 2 To achieve the early termination, we set
each vertex v in the index to be in one of the following four
states:

– discarded if it has been determined that v /∈ Cd
L ′(G);

– existing if it has been determined that v ∈ Cd
L ′(G);

– undetermined if v has been checked but has not be deter-
mined if v ∈ Cd

L ′(G);
– unexplored if it has not been checked by the search pro-
cess.

In the d-CC computation process, a discarded vertex or an
existing vertex will not be involved in the following compu-
tation; an undetermined vertex may become discarded due to
the deletion of some edges or become existing if it connects
to sufficient number of existing vertices; an unexplored ver-
tex will become undetermined after examination or directly

Fig. 15 The ProcessUnd, ProcessDis, and ProcessEst procedure

become discarded if it does not satisfy the condition stated
in Lemma 10.

For each vertex v whose state is firstly setting to be unde-
termined, discarded, and existing, we use the ProcessUnd
procedure, the ProcessDis procedure and the ProcessEst pro-
cedure (in Fig. 15) to process the effects to other vertices of
changing v’s state, respectively. The details of the three pro-
cedures are elaborated as follows.
Procedure ProcessUnd For each i ∈ L , let d+

i (v) be the
number of non-discarded vertices adjacent to v in Gi and
let d∗

i (v) be the number of existing vertices adjacent to v in
Gi . Clearly, d

+
i (v) is an upper bound on v’s degree in Gi .

If d+
i (v) < d for some i ∈ L , we must have v /∈ Cd

L(G),
so we set v as discarded (line 2) and invoke the ProcessDis
procedure on v (line 3). If d∗

i (v) ≥ d for each i ∈ L , we
must have v ∈ Cd

L(G), so we set v as existing (line 5) and
invoke the ProcessEst procedure on v (line 6). Otherwise,
since v is undetermined, there may exist a candidate path to
each vertex u such that v ≺ u. By Lemma 10, u may exist
in Cd

L(G). Therefore, if u is unexplored, we set u as unde-
termined (line 10) and recursively invoke the ProcessUnd
procedure to further check the vertex u (line 11).
Procedure ProcessDis If v is set as discarded, the removal of
v may trigger the removal of other vertices. Therefore, for
each undetermined or unexplored vertex u adjacent to v in
the index, we decrease d+

i (u) by 1 if (u, v) is an edge on a
layer i ∈ L (line 3). If d+

i (u) < d for some i ∈ L , we also set
u as discarded (line 5) and recursively invoke the ProcessDis
procedure on u (line 6).
Procedure ProcessEst If v is set as existing, we may find
more existing vertices from v. Specifically, for each undeter-
mined or unexplored vertex u adjacent to v in the index I ,
we increase d∗

i (u) by 1 if (u, v) is an edge on a layer i ∈ L

123

610 R. Zhu et al.

Fig. 16 The FastdCC procedure

(line 3). If d∗
i (u) ≥ d for each i ∈ L , we also set u as existing

(line 5) and recursively invoke the ProcessEst procedure on
u (line 6).
Fast d-CC computation We present the FastdCC procedure
to faster compute the d-CC in Fig. 16. The input of FastdCC
includes the multi-layer graph G, integers d, s ∈ N, the layer
subset L , the index I , and two vertices subset X and Y . The
two vertices subset X and Y satisfy that X ⊆ Cd

L(G) ⊆ Y .
At the very beginning, we obtain the vertex subset Z = Y ∩
(
⋃l(G)

h=|L ′| Ih) (line 1) and remove all vertices not in Z from
the graph G and the index I (line 2). This is because we
only need to consider vertices in Z to compute Cd

L(G) by the
following lemma.

Lemma 11 Cd
L(G) ⊆ Y ∩

(⋃l(G)
h=|L| Ih

)
.

Before the search starts, we compute d+
i (v) and d∗

i (v)

for all vertices v ∈ V (G) and for all layers i ∈ L (line 4).
Initially, the state of a vertex v of G is set to be existing if it
is in X (line 6) and unexplored otherwise (line 8).

In the main search process, we check the vertices in the
index in a level-by-level fashion from lower levels to higher
levels. In each iteration (lines 10–17), we examine all vertices
on a level of the index. Based on the states of vertices on the
level, they are processed in two cases:
Case 1 (lines 10–13) There exist some undetermined vertices
in the level. At this time, since all vertices in lower levels have
been examined, it implies that there exist no candidate paths
to each unexplored vertex v in the level. By Lemma 10, we
must have v /∈ Cd

L(G). Therefore, we can directly set v to
be discarded (line 12) and invoke Procedure ProcessDis on
v (line 13).
Case 2 (lines 14–17) Otherwise, each unexplored vertex v

on the level is potential to exist inCd
L(G). Therefore, we set v

as undetermined (line 16) and invoke Procedure ProcessUnd
to further check v (line 17).

After examining all levels in the index, Cd
L(G) is exactly

the set of all undetermined and existing vertices (line 18).

Following the previous example, let L = {3, 4, 5}, X =
{a, b, c, d}, and Y = {a, b, c, d, f , k, i, x, z}. All vertices
in X are set to be existing. First, we examine vertex f in
the lowest level. f remains to be undetermined. Therefore,
we further check vertices k and i in the next level of f . For
vertex k, we have d+

3 (k) = 1 and d−
3 (k) = 0, so k is set to

be discarded. Then, we proceed to check k’s neighbors. For
vertex i , we have d+

4 (i) = 1 and d−
4 (i) = 1, so i is also set

to be discarded. Next, we have d+
3 (f) = 1 and d−

3 (f) = 1.
Therefore, f is set to be discarded. After that, we check
vertices x and z. The states of x and z remain undetermined.
Finally, we obtain Cd

{3,4,5} = {a, b, c, d, x, z}.
Correctness analysis The correctness of the FastdCC proce-
dure can be guaranteed by the following lemma.

Lemma 12 For any vertex v /∈ Cd
L(G), v must be set to dis-

carded in the FastdCC procedure.

Complexity analysis Let n = |V (G)|, l = l(G), mi =
|Ei (G)|, m = | ⋃i∈[l(G)] Ei (G)|, and m′ = ∑

i∈[l(G)] mi .
The following lemma states the time complexity of FastdCC.
Since m′ ≤ ml, the time complexity of FastdCC is always
lower than that of dCC. For the space complexity, the Fast-
dCC procedure needs O(n) extra space to store the states of
all vertices and O(nl) extra space to d+

i (v) and d∗
i (v) of all

vertices in all layers in L . Therefore, the space complexity
of FastdCC is O(n + nl) = O(nl).

Lemma 13 The time complexity of the FastdCC procedure is
O(nl + m′).

7.3 The optimized algorithms

Wepresent several optimizedDCCS algorithms, namelyGD-
DCCS+, BU-DCCS+, TD-DCCS+, in this subsection.
Optimized greedy algorithm The GD-DCCS+ algorithm can
be simply obtained by two minor modifications of the GD-
DCCS algorithm:

(1) Before line 2 of GD-DCCS, we add a statement “I ←
BuildIndex(G, d)” to construct the index I .

(2) Line 7 of GD-DCCS is replaced by the statement “Cd
L(G)

← FastdCC(G, d, s, L, I ,∅, S).”

Optimized bottom-up algorithm The BU-DCCS+ algorithm
can be simply obtained by several minor modifications of
the BU-DCCS algorithm, the InitTopk procedure, and the BU-
Gen procedure:

(1) Before line 4 of BU-DCCS, we add a statement “I ←
BuildIndex(G, d)” to construct the index I .

(2) InitTopK adds the index I as an input parameter. Line 10
of InitTopK is replaced by the statement “C ′ ←
FastdCC(G, d, s, L, I ,∅,C).”

123

Fast diversified coherent core search on multi-layer graphs 611

(3) BU-Gen adds the index I as an input parameter. Line 6
and line 20 of BU-Gen are replaced by the state-
ment “Cd

L ′(G) ← FastdCC(G, d, s, L ′, I ,∅,Cd
L (G) ∩

Cd(G j)).”
(4) The internal d-CC computation pruning method pro-

posed in Sect. 5.2 needs to be adapted to be applied
in the BU-Gen procedure. In the FastdCC procedure,
we can also terminate the computation of d-CC early
sometimes. Specifically, the FastdCC procedure, and
the ProcessDis procedure take the size 1

k |Cov(R)| +
|Δ(R,C∗(R))| as an input parameter. In the Pro-
cessDis procedure, we check whether the number of
the non-discarded vertices is less than 1

k |Cov(R)| +
|Δ(R,C∗(R))| at the very beginning. If so, we can
immediately terminate the FastdCCprocedure and safely
skip the execution of lines 21–25 in the BU-Gen proce-
dure.

Optimized top-down algorithm The TD-DCCS+ algorithm
can be simply obtained by several minor modifications of
the TD-DCCS algorithm, the InitTopk procedure, and the TD-
Gen procedure:

(1) Before line 4 of TD-DCCS, we add a statement “I ←
BuildIndex(G, d)” to construct the index I .

(2) Line 4 of TD-DCCS is replaced by the statement
“Cd

[l(G)](G) ← FastdCC(G, d, s, L, I ,∅, V (G)).”
(3) InitTopK adds the index I as an input parameter. Line 10

of InitTopK is replaced by the statement ”C ′ ←
FastdCC(G, d, s, L, I ,∅,C).”

(4) TD-Gen adds the index I as an input parameter. Line 8
and line 20 of TD-Gen are replaced by the statement
“Cd

L ′(G) ← FastdCC(G, d, s, L ′, I ,Cd
L(G),Ud

L ′(G).”
Line 27 of TD-Gen is replaced by the statement
“Cd

S (G) ← FastdCC(G, d, s, L ′, I ,∅,Ud
L ′(G).”

Notably, the algorithms GD-DCCS+, BU-DCCS+, and TD-
DCCS+ have the same approximation ratios of GD-DCCS,
BU-DCCS, and TD-DCCS, respectively.

8 Performance evaluation

8.1 Experimental setting

Algorithms We implemented all of the proposed algorithms
in this paper, including GD-DCCS, BU-DCCS, TD-DCCS,
GD-DCCS+, BU-DCCS+, and TD-DCCS+, in C++ and exper-
imentally evaluated them in this section. We designate
GD-DCCS as the baseline. Each algorithm is evaluated by its
execution time (efficiency) and the result cover size (accu-
racy). All the experiments were run on a machine with an

Fig. 17 Statistics of graph datasets used in experiments

Intel Core i5-2400 CPU (3.1GHz and 4 cores) and 22GB of
RAM, running 64-bit Ubuntu 14.04.
Datasets We use six real-world graph datasets of various
types and sizes in the experiments. The statistics of the
graph datasets are summarized in Fig. 17. PPI is a protein–
protein interaction network extracted from theSTRINGDB2.
It contains eight layers representing the interactions between
proteins detected by differentmethods. The dataset Author is
a co-authorship network obtained from AMiner3. It contains
ten layers representing the collaboration between authors in
ten different years. The other datasets were obtained from
the KONECT4 and SNAP 5, where each layer contains the
connections generated in a specific time period. Specifically,
in German and English, each layer consists of the interac-
tions between users in a year; in Wiki and Stack, each layer
contains the connections generated in an hour.
Parameters We set five parameters in the experiments,
namely k, d, and s in the DCCS problem and p, q ∈ [0, 1].
Parameters p and q are varied in the scalability test. Specif-
ically, p and q control the proportion of vertices and layers
extracted from the graphs, respectively. The ranges and
the default values of the parameters are shown in Fig. 18.
Notably, we adopt two configurations for parameter s. When
testing for small s, we select s from {1, 2, 3, 4, 5}; when test-
ing for large s, we select s from {l(G) − 4, l(G) − 3, l(G) −
2, l(G) − 1, l(G)}. Without otherwise stated, when varying a
parameter, the other parameters are set to their default values.

8.2 Experimental results

Execution time w.r.t. parameter k We evaluate the execution
time of all of the algorithms w.r.t. parameter k. At first, we
experiment for small s. Since the TD-DCCS and TD-DCCS+
algorithms are not applicable when s < l(G)/2, we only
test the other four algorithms for small s. Figure 19 shows
the execution time of the algorithms on the dataset Wiki and
English. We have the following observations: (1) The exe-
cution time of GD-DCCS and GD-DCCS+ increases with k
because the time cost for selecting d-CCs in GD-DCCS and

2 http://string-db.org.
3 http://cn.aminer.org.
4 http://konect.uni-koblenz.de.
5 http://snap.stanford.edu.

123

http://string-db.org
http://cn.aminer.org
http://konect.uni-koblenz.de
http://snap.stanford.edu

612 R. Zhu et al.

Fig. 18 Parameter configuration

5 10 15 20 25
25

30

35

40

1000

1200

1400

1600

1800

5 10 15 20 25

70

80

90

100

600

800

1000

1200
GD-DCCS BU-DCCS GD-DCCS+ BU-DCCS+

T
im

e
(S

ec
)

k

T
im

e
(S

ec
)

k
(a) Wiki (b) English

Fig. 19 Execution time versus parameter k (with small s)

5 10 15 20 25
20
30
40
50

800

1000

1200

1400

1600

5 10 15 20 25

20

30
500

600

700

800

4000

5000

6000
GD-DCCS BU-DCCS TD-DCCS GD-DCCS+ BU-DCCS+ TD-DCCS+

(a) Wiki

T
im

e
(S

ec
)

k

(b) English

T
im

e
(S

ec
)

k

Fig. 20 Execution time versus parameter k (with large s)

GD-DCCS+ is proportional to k. (2)The execution timeof BU-
DCCS and BU-DCCS+ is insensitive to k. This is because the
power of the pruning methods we adopted in BU-DCCS and
BU-DCCS+ relies on the result cover size |Cov(R)| according
to Eq. (1). However, as we will shown later, when k grows,
|Cov(R)| increases insignificantly for small s, so k has little
effects on the execution time of BU-DCCS and BU-DCCS+. (3)
GD-DCCS+ and BU-DCCS+ run faster thanGD-DCCS and BU-
DCCS, respectively. This is because in these two algorithms,
we adopt the optimization techniques to reduce the redundant
examination of some vertices in d-CC computation, which
in turn speeds up the algorithms. (4) BU-DCCS+ runs 1–2
orders of magnitude faster than GD-DCCS+. The main rea-
son is that the pruningmethods adopted byBU-DCCS+ reduce
the search space of the DCCS problem by 80–90%. For the
same reason, BU-DCCS also outperforms than GD-DCCS by
1–2 orders of magnitude.

We also examine the algorithms for large s and show
results in Fig. 20. At this time, we also test the TD-DCCS and
TD-DCCS+ algorithms. Except for the same observations of
small s, we have the following new findings: 1) The exe-
cution time of TD-DCCS and TD-DCCS+ is also insensitive
to k. This is also because the pruning methods adopted in

5 10 15 20 255000

6000

7000

8000

9000

5 10 15 20 252000

3000

4000

5000

6000

7000

k

R
es

ul
tC

ov
er

Si
ze

GD-DCCS+ BU-DCCS+

(a) Wiki (b) English
k

R
es

ul
tC

ov
er

Si
ze

Fig. 21 Result cover size versus parameter k (with small s)

TD-DCCS and TD-DCCS+ rely on |Cov(R)|. However, when
k grows, |Cov(R)| increases insignificantly for large s, so
k has little effects on the execution time of TD-DCCS and
TD-DCCS+. 2) TD-DCCS+ runs faster than TD-DCCS. This
is because we also apply the optimization techniques pro-
posed in Sect. 7 in TD-DCCS+ to speed up the algorithm. 3)
BU-DCCS and BU-DCCS+ are not efficient for large s. Some-
times, it is even worse than GD-DCCS and GD-DCCS+. This
is because the size of the d-CCs significantly decreases for
large s. BU-DCCS and BU-DCCS+ have to search down deep
the search tree until the pruning techniques taking effects.
Thus, BU-DCCS and BU-DCCS+ may search more d-CCs
than GD-DCCS and GD-DCCS+. 4) TD-DCCS+ runs much
faster than all the others. This is because d-CCs are gener-
ated in a top-down manner in TD-DCCS+, so the number of
d-CCs searched by TD-DCCS+must be less than BU-DCCS+.
Moreover, lots of unpromising candidates d-CCs are pruned
earlier in TD-DCCS+.
Result cover sizew.r.t. parameter kWeevaluate the cover size
|Cov(R)| of the result R w.r.t. parameter k. Since the opti-
mized GD-DCCS+, BU-DCCS+, and TD-DCCS+ algorithms
always output the same results of the GD-DCCS, BU-DCCS,
and TD-DCCS algorithms, respectively, we only present the
results of the optimized algorithms. Figures 21 and 22 show
the experimental results for small s and large s, respec-
tively. We have two observations: (1) For all the algorithms,
|Cov(R)| grows w.r.t. k, however insignificantly for k ≥ 15.
From another perspective, this implies that there exist sub-
stantial overlaps among d-CCs. To reduce redundancy, it is
meaningful to find top-k diversified d-CCs on a multi-layer
graph. (2) In most cases, the results of different algorithms
cover similar amount of vertices for either small s or large
s. Sometimes, the result of GD-DCCS+ covers slightly more
vertices than the results of BU-DCCS+ and TD-DCCS+. This
is because GD-DCCS+ is (1 − 1/e)-approximate, while BU-
DCCS+ and TD-DCCS+ are 1/4-approximate. It verifies that
the practical approximation quality of BU-DCCS+ and TD-
DCCS+ is close to GD-DCCS+. Based on these observations,
in the following experiments, we only examine GD-DCCS+
and BU-DCCS+ for small s and GD-DCCS+ and TD-DCCS+
for large s.

123

Fast diversified coherent core search on multi-layer graphs 613

5 10 15 20 250

400

800

1200

1600

2000

5 10 15 20 250

400

800

1200

1600

2000

2400

2800

R
es

ul
tC

ov
er

Si
ze

GD-DCCS+ BU-DCCS+ TD-DCCS+

k

(a) Wiki

R
es

ul
tC

ov
er

Si
ze

k

(b) English

Fig. 22 Result cover size versus parameter k (with large s)

1 2 3 4 5
100

101

102

103

104

1 2 3 4 5
100

101

102

103

104

105

(a) English

T
im

e
(S

ec
)

s

GD-DCCS+ BU-DCCS+

(b) Stack

T
im

e
(S

ec
)

s

Fig. 23 Execution time versus parameter s (small)

11 12 13 14 15
100

101

102

103

104

20 21 22 23 24
100

101

102

103

104

105

(a) English

T
im

e
(S

ec
)

s

GD-DCCS+ TD-DCCS+

(b) Stack

T
im

e
(S

ec
)

s

Fig. 24 Execution time versus parameter s (large)

Effects of parameter s We evaluate the effects of the param-
eter s on the performance of algorithms. By varying s,
Figs. 23 and 24 show the execution time of the algorithms
on the datasets English and Stack for small s and large s,
respectively. We have the following observations: (1) For
small s, the execution time of GD-DCCS+ and BU-DCCS+
substantially increases with s. This is simply because the
search space of the DCCS problem fast grows with s when
s < l(G)/2. (2) For large s, the execution time of all the
algorithms decreases when s grows. This is because the
search space of the DCCS problem decreases with s when
s ≥ l(G)/2. (3) For small s and large s, BU-DCCS+ and
TD-DCCS+ runs much faster than GD-DCCS+.

Figures 25 and 26 show the effects of s on the results
cover size for small s and large s, respectively. We find that:
(1) For all the algorithms, |Cov(R)| decreases with s. This is
because while s increases, the size of a d-CC never decreases
due to Property 3, soR cover less vertices. (2) The practical

1 2 3 4 5103

104

105

106

1 2 3 4 5103

104

105

106

s

R
es

ul
tC

ov
er

Si
ze

(a) English

GD-DCCS+ BU-DCCS+

(b) Stack

R
es

ul
tC

ov
er

Si
ze

s

Fig. 25 Result cover size versus parameter s (small)

11 12 13 14 151000

1500

2000

2500

3000

20 21 22 23 240

40

80

120

160

200

(a) English
R

es
ul

tC
ov

er
Si

ze

s

GD-DCCS+ TD-DCCS+

(b) Stack

R
es

ul
tC

ov
er

Si
ze

s

Fig. 26 Result cover size versus parameter s (large)

2 3 4 5 6
0

5

10

15

20

40

60

80

100

2 3 4 5 6

60

80

100

450

600

750

900
GD-DCCS+ BU-DCCS+

(a) German
d

T
im

e
(S

ec
)

(b) English
d

T
im

e
(S

ec
)

Fig. 27 Execution time versus parameter d (with small s)

2 3 4 5 6
0

3

6

25

30

35

40

2 3 4 5 6
0

10

20

30

500

600

700

800
GD-DCCS+ TD-DCCS+

(a) German
d

T
im

e
(S

ec
)

(b) English
d

T
im

e
(S

ec
)

Fig. 28 Execution time versus parameter d (with large s)

approximation quality of BU-DCCS+ and TD-DCCS+ is close
to GD-DCCS+.
Effects of parameter dWe examine the effects of parameter d
on the performance of the algorithms. By varying d, Fig. 27
shows the execution time of BU-DCCS+ and GD-DCCS+ on
datasets German and English for s = 3, and Fig. 28 shows
the execution time of TD-DCCS+ and GD-DCCS+ on German

123

614 R. Zhu et al.

2 3 4 5 60

500

1000

1500

2000

2500

3000

3500

2 3 4 5 60

3000

6000

9000

12000

(a) German
d

R
es

ul
tC

ov
er

Si
ze

GD-DCCS+ BU-DCCS+

(b) English
d

R
es

ul
tC

ov
er

Si
ze

Fig. 29 Result cover size versus parameter d (with small s)

2 3 4 5 6

160

180

200

220

240

2 3 4 5 61000

1500

2000

2500
GD-DCCS+ TD-DCCS+

(a) German
d

R
es

ul
tC

ov
er

Si
ze

(b) English
d

R
es

ul
tC

ov
er

Si
ze

Fig. 30 Result cover size versus parameter d (with large s)

and English for s = l(G) − 2. We observe that the execution
time of all the algorithms decreases as d grows. The reasons
are as follows: (1) Due to Property 2, the size of a d-CC
decreases as d grows. Thus, GD-DCCS+ takes less time in
selecting d-CCs, and BU-DCCS+ and TD-DCCS+ take less
time in updating temporary results. (2) The size of the d-
core on each layer decreases w.r.t d, so the algorithms spend
less time on d-CC computation. Moreover, both BU-DCCS+
and TD-DCCS+ are much faster than GD-DCCS+.

Figures 29 and 30 show the effects of d on the cover size
of the results of BU-DCCS+, TD-DCCS+, and GD-DCCS+ for
small s and large s, respectively. We find that the cover size
of the results decreases w.r.t. d for all the algorithms. This
is because that the size of a d-CC decreases as d increases.
Therefore, the results cover less vertices for larger d. More-
over, the practical approximation quality of BU-DCCS+ and
TD-DCCS+ is close to GD-DCCS+.
Scalability w.r.t. parameters p and q We evaluate the scala-
bility of the algorithms w.r.t. the input multi-layer graph size.
We control the graph size by randomly selecting a fraction p
of vertices or a fraction q of layers from the original graph.
Note that we apply the small and large s when comparing
BU-DCCS+ and TD-DCCS+ with GD-DCCS+, respectively.
Figure 31 shows the execution time of BU-DCCS+, TD-
DCCS+, and GD-DCCS+ on the largest dataset Stack by
varying p from 0.2 to 1.0 for both small and large s. All
the algorithms scale linearly w.r.t. p because the time cost of
computing d-CCs is linear to the vertex count.

Figure 32 shows the execution time of BU-DCCS+, TD-
DCCS+, and GD-DCCS+ on Stack w.r.t. q for both small and

0.2 0.4 0.6 0.8 1
0

100

200

300

400

10k

20k

30k

0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500
GD-DCCS BU-DCCS

(a) Small s
p

T
im

e
(S

ec
)

TD-DCCS

(b) Large s
p

T
im

e
(S

ec
)

Fig. 31 Execution time versus parameter p

0.2 0.4 0.6 0.8 1
101

102

103

104

105

0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500
GD-DCCS+ BU-DCCS+

(a) Small s
q

T
im

e
(S

ec
)

(b) Large s
q

T
im

e
(S

ec
)

TD-DCCS+

Fig. 32 Execution time versus parameter q

0

20

40

60

80

100

T
im

e
(S

ec
)

0

30

60

90

120

150

180

210

240

BU-DCCS+ No-SL No-IR No-VD No-Pre

T
im

e
(S

ec
)

(a) Wiki (b) English

Fig. 33 Effects of preprocessing methods (with small s)

large s. We observed that: (1) The execution time of all algo-
rithms grows with q. This is because the search space of the
DCCS problem increases w.r.t. the layer number of the input
multi-layer graph. (2) The execution time of GD-DCCS+
growsmuch faster than both BU-DCCS+ and TD-DCCS+. The
main reason is that both BU-DCCS+ and TD-DCCS+ adopt
the effective pruning techniques to significantly reduce the
search space. The number of candidate d-CCs examined by
GD-DCCS+ grows much faster than that of BU-DCCS+ and
TD-DCCS+.
Effects of preprocessing methods We evaluate the effects of
the preprocessing methods. Figures 33 and 34 show the com-
parison results for BU-DCCS+ and TD-DCCS+, respectively.
Here, No-VD, No-SL, and No-IR mean the preprocessing
method “vertex deletion,” “sorting layers,” and “result ini-
tialization” are disabled, respectively, and No-Pre means all
the preprocessing methods are disabled. We have the fol-
lowing observations: (1) Every preprocessing method can
improve the efficiency of BU-DCCS+ and TD-DCCS+. It ver-

123

Fast diversified coherent core search on multi-layer graphs 615

0

20

40

60

80

100

T
im

e
(S

ec
)

TD-DCCS+ No-SL No-IR No-VD No-Pre

(a) Wiki (b) English
0

10

20

30

40

T
im

e
(S

ec
)

Fig. 34 Effects of preprocessing methods (with large s)

ifies that the preprocessing methods can reduce the input
graph size (by vertex deletion) and enhance the pruning
power (by sorting layers and result initialization). (2) A
preprocessing method may have different effects for differ-
ent algorithms. For example, the result initialization method
has more significant effects on BU-DCCS+ than on TD-
DCCS+. This is because for smaller s, the cover size of
the result is much larger by Property 3. By Eq. (1), the
initial result can eliminate more candidates d-CCs in BU-
DCCS+.
Performance of index constructionWe also examine the per-
formance of the BuildIndex procedure for constructing the
index structure. Figure 35 shows the index construction time
by varying d. We can see that: (1) The BuildIndex procedure
runs very fast on all the datasets. In the DCCS algorithms, the
fraction of index construction time is very small. According
to Sect. 7.1, the index construction can be completed in lin-
ear time w.r.t. the graph size. (2) When d becomes larger,
the execution time of BuildIndex decreases. This is because
for larger d, the d-cores contain less vertices, so the index
construction process runs much faster.

8.3 Comparison with quasi-clique-based algorithms

We compare our DCCS algorithms with three representa-
tive quasi-clique-based algorithms, namely Crochet [20],
Cocain [32], and MiMAG [5], in terms of time efficiency and
result similarity. In general, these three algorithms use three
parameters, γ ,mins , and s, to constrain the properties of dis-
covered densely connected vertex subsets Q on a multi-layer
graph G. Parameter mins ∈ N specifies a size constraint:
|Q| ≥ mins . Parameter γ ∈ [0, 1] specifies a density con-
straint: Q must be a γ -quasi-clique on some layer Gi of G,
i.e., every vertex in Gi [Q] has degree at least γ (|Q| − 1).
Parameter s ∈ N specifies a support constraint: Q must be a
γ -quasi-clique on at least s layers of G.

Note that Crochet finds γ -quasi-cliques occurring on all
layers of G, so s = l(G). For our algorithms, the density
constraint is specified by parameter d. Since a d-CC contains
at least d + 1 vertices, our algorithms need not to set mins .
In terms of result redundancy, Crochet and Cocain return

Fig. 35 Execution time of the BuildIndex procedure (in s)

all results satisfying the constraints, while MiMAG and our
algorithms find a set of diversified results.

On the same input, our BU-DCCS+ and TD-DCCS+ algo-
rithms yield the same output in different time. For ease of
presentation, we use DCCS to refer to the faster one.
Parameter setting We set the parameters as follows: (1) We
set the same parameter s for all algorithms except Crochet
(s = l(G) for Crochet). (2) We specify the same parameters
γ and mins for all quasi-clique-based algorithms. (3) We
independently set d and γ . (4) For the sake of fairness, we
coordinate mins with respect to d and γ . Specifically, mins
is set to the smallest integer such that �γ (mins −1)� = d. In
this way, we have the same minimum degree constraint for
all algorithms.
Execution time We test the execution time of the algo-
rithms on the datasets PPI, Author, German, and Wiki for
s = l(G)/2, d = 3. We vary γ = 0.5, 0.6, and 0.8 and
mins is set accordingly to 6, 5, and 4, respectively. Figure 36
shows that DCCS ≺ Crochet ≺ MiMAG ≺ Cocain, where ≺
means “faster than.” DCCS is 1–3 orders of magnitude faster
than the other algorithms. This is because the search trees of
BU-DCCS+ and TD-DCCS+ both contain 2l(G) vertex subsets;
however, the search trees of all quasi-clique-based algorithms
contain 2|V (G)| vertex subsets, where l(G) � |V (G)|. Cro-
chet runs faster than MiMAG and Cocain because it finds
quasi-cliques occurring on all layers rather than on s layers,
and therefore, more unpromising vertex subsets are pruned
early. MiMAG is faster than Cocain because it only finds a
set of diversified quasi-cliques, and thus, many quasi-cliques
with large overlaps are pruned earlier.
Comparison of results similarityWe also compare the results
of the algorithms. Let RD , RC , RN and RM be the out-
put ofDCCS,Crochet,Cocain, andMiMAG, respectively. For
R ∈ {RC ,RN ,RM }, we compareRD withR by four mea-
sures: 1) cover sizes |Cov(RD)| and |Cov(R)|; 2) precision
|Cov(RD)∩Cov(R)|

|Cov(RD)| ; 3) recall |Cov(RD)∩Cov(R)|
|Cov(R)| ; 4) F1-score,

the harmonic average of precision and recall. As shown in
Fig. 36, we have the following observations:
(1) DCCS(RD) versus Corchet (RC) We have |Cov(RD)| >

|Cov(RC)|, i.e.,RD covers more vertices thanRC . Accord-
ing to the recall measure, 85%–100% vertices covered by
RC are also covered by RD . This is because Corchet finds
quasi-cliques occurring on all layers, which are highly likely
to be covered by the d-CCs found by DCCS.

123

616 R. Zhu et al.

Fig. 36 Comparison between DCCS and quasi-clique-based algorithms Crochet, Cocain, and MiMAG

(2) DCCS(RD) versus Cocain(RN) The vertices covered by
RD significantly overlap with the vertices covered by RN .
According to the precision, 67%–78% vertices covered by
RD are also covered by RN ; according to the recall, 59%–
78% vertices covered by RN are also covered by RD .
(3) DCCS(RD) versusMiMAG(RM) The vertices covered by
RD largely overlap with the vertices covered byRM . In par-
ticular, 65%–85% vertices covered by RD are also covered
by RM ; in reverse, 70%–88% vertices covered by RM are
also covered by RD .
(4) MiMAG(RM) versus Cocain(RN) versus Corchet(RC)

According to the F1-score, the output of DCCS is closer to
RM and RN than to RC . Since Cocain returns all qualified
results, whileMiMAG returns diversified results,RM is more
close toRD than RN .

In terms of both algorithm efficiency and result similarity,
MiMAG outperformsCocain andCorchet. For this reason,we
present more details on evaluating the result quality between
DCCS and MiMAG.

8.4 Evaluation of result quality

We introduced two applications in Sect. 1, namely biologi-
cal module discovery and active co-author group extraction.
Here, we evaluate the result quality of DCCS and MiMAG in
these applications.
Biological module discovery We extract the protein–protein
interaction networks of six organisms from the STRINGDB.
Each network contains eight layers representing the inter-
actions detected by different methods. We use DCCS and
MiMAG to find dense subgraphs on each network, which are
closely related to protein complexes. We take the protein
complexes recorded in the MIPS database6 as the ground
truth. To evaluate the results of DCCS andMiMAG, we intro-
duce three measures: (1) complete containment ratio (CCR):
the ratio of protein complexes completely contained in the
result; (2) partial containment ratio (PCR): the ratio of pro-
tein complexes partially (more than 60%) contained in the
result; (3) pair-wise containment ratio (PWCR): the ratio of
protein pairs in the result co-existing in a known protein com-
plex.

6 http://mips.helmholtz-muenchen.de.

Fig. 37 Comparison between DCCS andMiMAG in biological modules
discovery

To evaluate the result quality under different parameter
settings, we set k = 10, s = 4, d = 2, 3, 4, γ = 0.8 and the
corresponding parameter mins is set to 3, 4, 5, respectively.
Figure 37 shows the experimental results for each setting.
We have the following observations: (1) In terms of all the
measures,DCCS outperformsMiMAG. As shown in Sect. 8.3,
this is because the dense subgraphs found by DCCS cover
more densely connected vertices than MiMAG. (2) As d (or
mins) increases, the values of all measures decrease. This is
because as d (or mins) increases, the results of DCCS and
MiMAG both cover less vertices.
Active co-author group extraction We apply both DCCS and
MiMAG on the dataset Author to extract active co-author
groups. We set parameters k = 10, s = 5, d = 3, γ = 0.8,
and mins = 4. Figure 38 shows the subgraphs induced
by Cov(RD) and Cov(RM) on all the ten layers. The ver-
tices in Cov(RD) ∩ Cov(RM), Cov(RD) − Cov(RM), and
Cov(RM) − Cov(RD) are colored in red, green, and blue,
respectively.We have two observations: (1) The blue vertices
in Cov(RM) − Cov(RD) are sparsely connected compared
with the red vertices in Cov(RM)∩Cov(RD). (2) The green
vertices in Cov(RD)−Cov(RM) are densely connected with
themselves, and the red vertices in Cov(RD) ∩ Cov(RM).
However, the dense subgraph induced by the green vertices
was not found by MiMAG.

To further show the difference of the dense subgraphs
generated by DCCS and MiMAG, we present two explana-
tory examples in Fig. 39. The left one is a group of authors
in data mining domain. MiMAG finds the famous scientists

123

http://mips.helmholtz-muenchen.de

Fast diversified coherent core search on multi-layer graphs 617

Fig. 38 Dense subgraphs found by DCCS and MiMAG on Author

Philip S. Yu
Jiawei Han Jian Pei

Wei Fan

C. C. Aggrawal
Haixun Wang

Xiangnan Kong

Jeffery Ullman
Jennifer Widom

Rajeev Motwani
Hector Garcia-Molina

John Hopcropt

Result by MiMAG

Result by DCCS

Fig. 39 Results found by DCCS and MiMAG

such as Philip S. Yu and Jiawei Han. However, DCCS also
finds other scientists such as XifengYan and JianmingWang,
who also have close collaborations with them. The right one
is a group of authors in the database domain. We can also see
that DCCS detects more researchers thanMiMAG. The reason
is that DCCS can find large-scale dense subgraphs covering
more vertices than MiMAG.

From these two applications, we can see that our DCCS
algorithm can find dense subgraphs missed by quasi-clique-
based algorithms, so its result quality is much higher.

9 Related work

Dense subgraph mining is a fundamental graph mining task,
which has been extensively studied on single-layer graphs.
Recently, mining dense subgraphs on graphs with multiple
types of edges has attractedmuch attention.A detailed survey
can be found in [14]. Existing work can be categorized into
two classes: dense subgraph mining on two-layer graphs and
dense subgraph mining on general multi-layer graphs.
Dense subgraph mining on two-layer graphs Two-layer
graph is a special multi-layer graph. In a two-layer graph,
one layer represents physical link structures and the other
represents conceptual connections between vertices derived
from physical structures. The dense subgraph mining algo-
rithms on two-layer graphs take both physical and conceptual
connections into account. The algorithm in [17] finds dense
subgraphs by expanding from initial seed vertices. The algo-
rithm [21] adopts edge-induced matrix factorization. In [35],
structural and attribute information is combined to form
a unified distance measure, and a clustering algorithm is
applied to detect dense subgraphs. In [29], structures and
attributes are fused by a probabilistic model, and a model-
based algorithm is proposed to find dense subgraphs. Other

work on two-layer graphs includes the method based on cor-
relation pattern mining [24] and graph merging [22]. All the
algorithms are tailored to fit two-layer graphs. They only
support the input where one layer represents physical con-
nections and the other represents conceptual connections.
Therefore, they cannot be adapted to process general multi-
layer graphs.
Dense subgraph mining on general multi-layer graphs A
general multi-layer graph is composed by many layers rep-
resenting different types of edges between vertices. Dong
[10] and Tang et al. [28] study dense subgraph mining using
matrix factorization. The goal is to approximate the adja-
cency matrix and the Laplacian matrix of the graph on
each layer. However, the matrix-based methods require huge
amount of memory and are not scalable to large graphs.
Alternatively, other work such as [5,20,32] focus on finding
dense subgraph patterns by extending the quasi-clique notion
defined on single-layer graphs. In [20,32], the algorithms
find cross-graph quasi-cliques. In [5], the method is adapted
to find diversified result to avoid redundancy. However,
all these works have inherent limitations: (1) Quasi-clique-
based methods are computationally costly; (2) the diameter
of the discovered dense subgraphs is often very small. As
verified by the experimental results in Sect. 8, the quasi-
clique-based methods tend to miss large dense subgraphs.
d-CC versus cross-graph quasi-clique The d-CC and cross-
graph quasi-clique are two different notions to characterize
dense subgraphs on multi-layer graphs. As discussed in
Sect. 1, each cross-graph quasi-clique is a motif containing
a small number of cohesively connected vertices. Therefore,
all dense subgraphs in a multi-layer graph are represented
by a set of cross-graph quasi-cliques. However, the d-CC
represents all dense subgraphs in a multi-layer graph by a
macroscopic structure. The d-CC can be divided into mul-
tiple components. Each component is connected in some
layers, which forms a dense subgraph in the multi-layer
graph. The advantages of the d-CC notion are obvious. As
shown in Sects. 8.3 and 8.4, our DCCS algorithms can fast
detect larger dense subgraphs that cover most of the quasi-
clique-based results.

We also discuss on some other related work.
Multi-layer graph analytics Multi-layer graphs are also
calledmulti-view,multi-dimensional, ormulti-attributed net-
works. Detailed surveys on analyzing multi-layer graphs can
be found in [15,23]. In the literature, lots of algorithms have
been proposed to address fundamental problems on multi-
layer graphs, including the shortest path [4], the minimum
spanning tree [8], graph clustering [19], and betweenness
centrality [7,25]. Aside from analyzing algorithms, many
work studies the applications of the multi-layer graphs in
real-world scenarios, such as linkprediction [33], topic detec-
tion [11], path planning [1], and congestion control [34].

123

618 R. Zhu et al.

Frequent subgraph pattern mining Given a set D of labeled
graphs, frequent subgraph pattern mining discovers all sub-
graph patterns that are subgraph isomorphic to at least a
fractionminsup of graphs in D (i.e., frequent) [30]. Our work
is different from frequent subgraph pattern mining: (1) The
graphs in D are labeled graphs. A vertex in a graph may not
be identical to any vertex in other graphs. Hence, the graphs
in D usually do not form a multi-layer graph. Inversely, a
multi-layer graph is not necessary to be labeled. (2) A fre-
quent subgraph pattern represents a common substructure
recurring in many graphs in D. However, a d-CC is a set
of vertices, and they are not required to have the same link
structure on different layers of a multi-layer graph.
Clustering on heterogeneous information networks Hetero-
geneous information network (HIN) is a logical network
composed by multiple types of links between multiple types
of objects. The clustering problem on HINs has been well
studied in [26]. This work is different from our work in two
aspects: (1) HIN characterizes the relationships between dif-
ferent types of objects. Normally, only one type of edges
between two different types of vertices is considered. How-
ever, a multi-layer graph models multiple types of relation-
ships between homogenous objects of the same type. (2) HIN
is single-layer graph. The clustering algorithmonly considers
the cohesiveness of a vertex subset rather than its support.
d-cores on single-layer graphs The d-core notion is widely
used to represent dense subgraphs on single-layer graphs. It
has many useful properties and has been applied to commu-
nity detection [18]. However, the d-core notion only consid-
ers density of but ignores support. In this paper, we propose
the d-CC notion, which extends the d-core notion from two
aspects: (1) considering both density and support of dense
subgraphs; (2) inheriting the elegant properties of d-cores.

10 Conclusions

This paper addresses the diversified coherent core search
(DCCS) problem on multi-layer graphs. The new notion of
d-coherent core (d-CC) has three elegant properties, namely
uniqueness, hierarchy, and containment. The greedy algo-
rithm is (1 − 1/e)-approximate; however, it is not efficient
on largemulti-layer graphs. The bottom-up and the top-down
DCCS algorithms are 1/4-approximate. For s < l(G)/2,
the bottom-up algorithm is faster than the other ones; for
s ≥ l(G)/2, the top-down algorithm is faster than the other
ones. The DCCS algorithms outperform the quasi-clique-
based cohesive subgraph mining algorithms in terms of both
time efficiency and result quality.

Acknowledgements This workwas partially supported by theNational
Natural Science Foundation of China under Grant Nos. 61672189,
61532015, and 61732003.

A Missing proofs

Proof (Property 1)SupposeCd
L (G) is not unique. LetC1 and

C2 be two distinct d-CCs of G w.r.t. L . LetC = C1∪C2. We
have C1 ⊂ C and C2 ⊂ C . On each layer i ∈ L , Gi [C1] is
a subgraph of Gi [C]. Thus, for each vertex v ∈ C , we have
dGi [C](v) ≥ dGi [C1](v) ≥ d for all i ∈ L . By the definition
of d-CC,C is also a d-CC, so neitherC1 norC2 is maximum,
which leads to a contradiction. Thus, Cd

L(G) is unique.
�
Proof (Property 2) Let d1, d2 ∈ N and d1 > d2. For each
vertex v ∈ Cd1

L (G), we have d
Gl [Cd1

L (G)](v) ≥ d1 > d2
for every layer number l ∈ L . By the definition of d-CC,
Cd1
L (G) ⊆ Cd2

L (G). Thus, the property holds.
�
Proof (Property 3) For each vertex v ∈ Cd

L ′(G), we have
dGl [Cd

L′ (G)](v) ≥ d for each layer number l ∈ L . Based on

the definition of d-CC, we have Cd
L ′(G) ⊆ Cd

L(G). Hence,
the property holds.
�
Proof (Lemma 1) It is clear that L1 ⊆ L1 ∪ L2 and L2 ⊆
L1 ∪ L2. By Property 3, we have Cd

L1∪L2
(G) ⊆ Cd

L1
(G)

and Cd
L1∪L2

(G) ⊆ Cd
L2

(G). Thus, Cd
L1∪L2

(G) ⊆ Cd
L1

(G) ∩
Cd
L2

(G).
�
Proof (Lemma 2) Let Cd

L ′(G) be a descendant of Cd
L(G).

We have L ⊆ L ′. By Property 3, we have Cd
L ′(G) ⊆

Cd
L(G). Thus, Cov((R−{C∗(R)})∪{Cd

L ′(G)}) ⊆ Cov((R−
{C∗(R)}) ∪ {Cd

L(G)}). Obviously, if we have |Cov((R −
{C∗(R)}) ∪ {Cd

L(G)})| <
(
1 + 1

k

) |Cov(R)|, we must have
|Cov((R − {C∗(R)}) ∪ {Cd

L ′(G)})| <
(
1 + 1

k

) |Cov(R)|.
Thus, Cd

L ′(G) cannot satisfy Eq. (1), which means none of
the descendants of Cd

L(G) satisfies Eq. (1).
�
Proof (Lemma 3) For any subset D ⊆ LP such that |D| =
s−|L|, since ID = ∩i∈DCd(Gi), we have ID ⊆ Cd(Gi) for
each i ∈ D. Consequently, for each vertex v ∈ ID , we have
v ∈ Cd(Gi) for each i ∈ D. That is, v must be contained
in at least s − |L| d-cores on the layers in LP , so v ∈ I .
Therefore, we have ID ⊆ I .
�
Proof (Lemma 4) LetCd

S (G) be a descendant ofCd
L(G) such

that |S| = s. Let D = S − L and ID = ∩i∈DCd(Gi). By
Lemma 1, we have Cd

S (G) ⊆ Cd
L(G) ∩ ID . Since ID ⊆ I

according to Lemma 3, we have Cd
S (G) ⊆ Cd

L(G) ∩ I .
For ease of presentation, let C = Cd

L(G) ∩ I . We illus-
trate the relationships between Cov(R), C∗(R) and C in
Fig. 40 with seven disjoint subsets A, B, D, E , F , G,
and H . We have |Cov(R)| = |A| + |B| + |D| + |F | +
|G| + |H |, |C∗(R)| = |B| + |D| + |G| + |H |, |C | =
|D| + |E | + |F | + |G|, |Δ(R,C∗(R))| = |D| + |H |.

Since |C | < 1
k |Cov(R)|+|Δ(R,C∗(R))|, we have |D|+

|E | + |F | + |G| < 1
k (|A| + |B| + |D| + |F | + |G| + |H |) +

|D| + |H |. Thus,

123

Fast diversified coherent core search on multi-layer graphs 619

Fig. 40 Relationships between Cov(R), C∗(R), and C

|Cov((R − {C∗(R)}) ∪ {C})|
= |A| + |B| + |D| + |E | + |F | + |G|
<

1

k
(|A| + |B| + |D| + |G| + |F | + |H |) + |A|

+ |B| + |D| + |H |
≤

(

1 + 1

k

)

(|A| + |B| + |D| + |G| + |F | + |H |)

=
(

1 + 1

k

)

|Cov(R)|.

Since Cd
S (G) ⊆ C , we have Cov((R − {C∗(R)}) ∪

{Cd
S (G)}) ⊆ Cov((R − {C∗(R)}) ∪ {C}). Then, we have

|Cov((R−{C∗(R)})∪{Cd
S (G)})| ≤ |Cov((R−{C∗(R)})∪

{C})| <
(
1 + 1

k

) |Cov(R)|. Thus, the lemma thus holds.
�

Proof (Lemma 5) By the definitions of d-CC and d-core,
we have Cd(G j) = Cd

{ j}(G). By Lemma 1, we have

Cd
L∪{ j}(G) ⊆ Cd

L(G) ∩ Cd(G j). Let C = Cd
L(G) ∩

Cd(G j), in similar to the proof of Lemma 4, if |C | <
1
k |Cov(R)|+|Δ(R,C∗(R))|, we haveCov((R−{C∗(R)})∪
{Cd

L∪{ j}(G)}) ⊆ Cov((R−{C∗(R)})∪{C}). Then, we must

have |Cov((R − {C∗(R)}) ∪ {Cd
L∪{ j}(G)})| ≤ |Cov((R −

{C∗(R)}) ∪ {C})| <
(
1 + 1

k

) |Cov(R)|. The lemma thus
holds.
�
Proof (Lemma 6) Since L ⊆ S, we have L ∪ { j} ⊆ S ∪ { j}.
According to Property 3, we have Cd

S∪{ j}(G) ⊆ Cd
L∪{ j}(G).

Therefore, Cov((R−{C∗(R)})∪{Cd
S∪{ j}(G)}) ⊆ Cov((R−

{C∗(R)}) ∪ {Cd
L∪{ j}(G)}). Since Cd

L∪{ j}(G) does not satisfy

Eq. (1),wemust have |Cov((R−{C∗(R)})∪{Cd
S∪{ j}(G)})| <

(
1 + 1

k

) |Cov(R)|. Thus, the lemma holds.
�
Proof (Lemma 7)According to the usage of potential vertex
sets, for any descendant Cd

L ′(G) of Cd
L(G) with |L ′| = s, we

have Cd
L ′(G) ⊆ Ud

L (G). In similar to the proof of Lemma 2,
the lemma holds.
�
Proof (Lemma 8) Similar to the proof of Lemma 5, we have
|Cov((R− {C∗(R)}) ∪ {Ud

L−{ j}(G)})| <
(
1 + 1

k

) |Cov(R)|.
According to the usage of potential sets, for any descendant
Cd
L ′(G) of Cd

L(G) with |L ′| = s, we have Cd
L ′(G) ⊆ Ud

L (G).
Thus, we must have |Cov((R − {C∗(R)}) ∪ {Cd

L ′(G)})| ≤
|Cov((R− {C∗(R)}) ∪ {Ud

L−{ j}(G)})| <
(
1 + 1

k

) |Cov(R)|.
Thus, the lemma holds.
�

Fig. 41 Relationships between Cd
L (G), Cd

S1
(G), Cd

S2
(G), and Ud

L (G)

Proof (Lemma 9) We illustrate the relationships between
Cd
L(G), Cd

S1
(G), Cd

S2
(G), and Ud

L (G) in Fig. 41 with five

disjoint subsets A, B, C , D, and E . We have |Cd
S1

(G)| =
|A| + |B| + |C |, |Cd

S2
(G)| = |A| + |C | + |D|, |Ud

L (G)| =
|A| + |B| + |C | + |D| + |E |, |Cd

S1
(G) ∩ Cd

S2
(G)| = |A|.

Since Cd
S1

(G) can update R, Lemma 5 implies that

|Cd
S1

(G)| ≥ 1
k |Cov(R)| + |Δ(R,C∗(R))|. Let R′ be

the resulting R after updating R with Cd
S1

(G). We have

|Cov(R′)| ≥ (
1 + 1

k

) |Cov(R)|.
Suppose Cd

S2
(G) can update R′ again, then we have

|Cov((R′ − {C∗(R′)})∪{Cd
S2

(G)})| ≥ (
1 + 1

k

) |Cov(R′)| ≥
(
1
k + 1

k2

)
|Cov(R)|. Since A ∪ C ⊂ Cd

S2
(G), Cov((R′ −

{C∗(R′)})∪{Cd
S2

(G)}) = Cov(R′)−Δ(R′,C∗(R′))+D ⊆
Cov(R′) + D.

Putting them together, we have |Cov(R′)| + |D| ≥
|Cov((R′ − {C∗(R′)}) ∪ {Cd

S2
(G)})| ≥ (

1 + 1
k

) |Cov(R′)|.
That means |D| ≥ 1

k |Cov(R′)|. Thus, for Ud
L (G), we have

|Ud
L (G)| = |A| + |B| + |C | + |D| + |E | ≥ |Cd

S1(G)| + |D|
≥ 1

k
|Cov(R)| + |Δ(R,C∗(R))| + 1

k
|Cov(R′)|

=
(
1

k
+ 1

k2

)

|Cov(R)| + |Δ(R,C∗(R))|

+ 1

k
|Cov(R)|

≥
(
1

k
+ 1

k2

)

|Cov(R)|

+
(

1 + 1

k

)

|Δ(R,C∗(R))|.

The last equation holds due to the pigeonhole principle. For
each C ′ ∈ R, we must have |Δ(R,C ′)| ≤ 1

k |Cov(R)|. Now,
|Ud

L (G)| contradicts with Eq. (2). Thus, if Ud
L (G) satisfies

Eq. (2), Cd
S2

(G) cannot update R any more.
�
Proof (Lemma 10) We prove that if there not exists a can-
didate path in the index to w, w certainly does not exist in
Cd
L(G).
First, for each vertex v in the lowest level, if L � L(v),

there must exist a layer number j ∈ L such that v /∈ Cd(G j).
ByLemma1,wemust have v /∈ Cd

L(G). Thus,we can remove

123

620 R. Zhu et al.

all such vertices from the graph and the index. After that, we
consider each vertex w in the next level of the lowest level.
At this time, all of w’s neighbors u in the lowest level such
that L � L(u) have already been removed from the graph.
Thus, vertexw has the same neighbors as we build the index.
If L � L(w), there must exist a layer number j ′ ∈ L such
that w /∈ Cd(G j ′). By Lemma 1, w cannot be contained
in Cd

L(G). We can continue this process level by level. This
implies that all the vertices that do not satisfy this condition
cannot exist in Cd

L(G).
�

Proof (Lemma 11) We have Cd
L(G) ⊆ Y by the definition

of Y . For each vertex v, if v ∈ ⋃|L|−1
h=0 Ih , the support of v is

less than |L|. Thus, v is unlikely to exist in a d-CC on at least
|L| layers. Therefore, we must have v ∈ ⋃l(G)

h=|L| Ih . Thus,
the lemma holds.
�

Proof (Lemma 12) We prove this lemma by simply con-
tradiction. Suppose there exists a vertex v /∈ Cd

L(G) and v

is not set to be discarded after the FastdCC procedure. We
must have d+

i (v) ≥ d for each i ∈ L . Otherwise, v must
set to be discarded at line 2 of the ProcessUnd procedure
or line 5 of the ProcessDis procedure. At this time, since v

only connects to undetermined or existing vertices, we have
dGi (v) = d+

i (v) ≥ d for each i ∈ L . Therefore, we have
v ∈ Cd

L(G), which leads to a contradiction. Thus, the lemma
holds.
�

Proof (Lemma 13) To analyze the time complexity of Fast-
dCC procedure, we first analyze the cases when an edge can
be accessed as follows:

(1) At line 4 of the FastdCC procedure, when computing
d+
i (v) and d∗

i (v) of all i ∈ L for each vertex v, each
edge (u, v) on a layer i ∈ L will be accessed exactly
once.

(2) At line 8 of the ProcessUnd procedure, when vertex u
accesses a vertex v on a higher level, each edge (u, v)

on a layer i ∈ L ′ will be accessed exactly once.
(3) At line 3 of the ProcessDis procedure, when updat-

ing d+
i (u), the edge (u, v) on a layer i ∈ L will be

accessed. Note that the edge (u, v) on a layer i ∈ L will
be accessed only once. This is because, when updating
d+
i (u), v has already been set to be discarded. The state
of a discarded vertex will never change. Thus, v will
never have chance to visit u any more. Meanwhile, since
v is discarded, u also will not visit vertex v afterward.

(4) At line 3 of the ProcessEst procedure, when updating
d∗
i (u), the edge (u, v) on a layer i ∈ L will be accessed.
In similar, at this time, v has already been set to be
existing. The state of an existing vertex will also never
change. Thus, the edge (u, v) on a layer i ∈ L will also
be accessed only once.

Thus, the total edge access time is O(4
∑

i∈L ′ |Ei (G)|) =
O(4m′).

Next, we analyze the time cost on comparing d+
i (v) and

d∗
i (v) on each vertex v w.r.t. d as follows.

(1) At line 1 and line 3 of the ProcessUnd procedure, we
compared+

i (v) andd∗
i (v)w.r.t.d for eachvertexvwhich

is set to undetermined at the first time. The time cost for
vertex v is O(2l). Thus, the total time cost for all vertices
is O(2nl).

(2) At line 4 of the ProcessDis procedure which compares
d+
i (v) w.r.t. d, since the comparison can be involved in
the updating of d+

i (v) at line 3, the comparison times
equals to the number of the edge access times. As we
analyzed earlier, each edge on each level is accessed at
most once, so the total time cost is O(m′).

(3) At line 4 of the ProcessEst procedure which compares
d∗
i (v)w.r.t. d, the comparison can also be involved in the
updating of d∗

i (v) at line 3. In similar, the comparison
times equals to the number of the edge access times. The
total time cost is O(m′).

Meanwhile, the time cost to set the states of each vertex
is at most O(4n) since there are only four states in the pro-
cedure. Putting them together, the time complexity of the
FastdCC procedure is O(2nl + 6m′ + 4n) = O(nl +m′).
�
Proof (Theorem 1) Given a collection of sets F = {C1,C2,

. . . ,Cn} and k ∈ N, the max-k-cover problem is to find
a subset R ⊆ F such that |R| = k and that |Cov(R)| is
maximized. The max-k-cover problem has been proved to
be NP-complete unless P = NP [2].

It is easy to show that the DCCS problem is in NP. We
prove the theorem by reduction from the max-k-cover prob-
lem in polynomial time. Given an instance (F , k) of the
max-k-cover problem, we first construct a multi-layer graph
G. The vertex set of G is

⋃n
i=1 Ci . There are n layers in G.

An edge (u, v) exists on layer i if and only if u, v ∈ Ci

and u �= v. Then, we construct an instance of the DCCS
problem (G, d, s, k), where d = 1 and s = 1. The result of
the DCCS problem instance (G, d, s, k) is exactly the result
of the max-k-cover problem instance (F , k). The reduction
can be done in polynomial time. Thus, the DCCS problem is
NP-complete.
�

To prove Theorems 2 and 3, we first state the following
claim. The correctness of the claim has been proved in [2].

Claim Let F = {C1,C2, . . . ,Cn} and k ∈ N. Let R∗ the
subset of F such that |R∗| = k and |Cov(R∗)| is maxi-
mized. Let R ⊆ F be a set obtained in the following way.
Initially, R = ∅. We repeat taking an element C out of
F randomly and updating R with C according to the two
rules specified in Sect. 5.1 until F = ∅. Finally, we have
|Cov(R)| ≥ 1

4 |Cov(R∗)|.

123

Fast diversified coherent core search on multi-layer graphs 621

Proof (Theorem 3) Note that the BU-DCCS algorithm uses
the same procedure described in Claim A to updateR except
that some pruning techniques are applied as well. Therefore,
we only need to show that the pruning techniques will not
affect the approximation ratio stated in Claim A. Let C be
a d-CC pruned by a pruning method and DC be the set of
descendant candidate d-CCs of C in the search tree. For all
C ′ ∈ DC , according to Lemmas 2, 4, or 5,C ′ must not update
R. By ClaimA, candidate d-CCs can be taken in an arbitrary
order without affecting the approximation ratio. Therefore,
we can safely ignore all the d-CCs in DC without affecting
the quality of R. Finally, we have |Cov(R)| ≥ 1

4 |Cov(R∗)|.
Thus, the theorem holds.
�

Proof (Theorem 4) The TD-DCCS algorithm uses the same
procedure described inClaimA toupdateR and applies some
pruning techniques in addition. By the same arguments in the
proof of Theorem 2, this theorem holds.
�

B The Update procedure

We present the Update procedure in Fig. 42. The input
includes the set R of temporary top-k diversified d-CCs, a
newly generated d-CCC and k ∈ N. For each d-CCC ′ ∈ R,
we store both C ′ and the size |Δ(R,C ′)|. To facilitate fast
updating of R, we build some auxiliary data structures.
Specifically, we store R in two hash tables M and H . For
each entry in M , the key of the entry is a vertex v, and the
value of the entry isM[v] = {C ′|C ′ ∈ R, v ∈ C ′}, that is, the
set ofd-CCsC ′ ∈ R containing vertex v. For each entry in H ,
the key of the entry is an integer i , and the value of the entry
H [i] is the set of d-CCs C ′ ∈ R such that |Δ(R,C ′)| = i .
Obviously, C∗(R) can be easily obtained from H by retriev-
ing the entry of H indexed by the smallest key.

Given the temporary result set R and a new d-CC C , the
procedure relies on three key operations to updateR, namely
Size(R,C) that returns the size |Cov((R−{C∗(R)})∪{C})|,
Delete(R) that removes C∗(R) from R, and Insert(R, C)
that insertsC toR. We describe these procedures as follows.
Operation Size(R,C) Note that Cov((R − {C∗(R)}) ∪ {C}
can be decomposed into three disjoint subsets Cov(R −
{C∗(R)}), C − Cov(R) and C ∩ Δ(R,C∗(R)). In the
beginning, we can obtain C∗(R) and |Δ(R,C∗(R))| from
H (line 1) and initialize the counter c to 0 (line 1). For
each vertex v ∈ C , if v is not a key in M , we have
v ∈ C − Cov(R), so we increase c by 1 (line 5). Other-
wise, if v ∈ C∗(R) and M[v] only contains C∗(R), c is also
increased by 1 (line 7) since v ∈ C ∩ Δ(R,C∗(R)). Since
|Cov(R− {C∗(R)})| is equal to size(M) − |Δ(R,C∗(R))|,
we accumulate size(M) − |Δ(R,C∗(R))| to c (line 8) and
return c as the result (line 9).

Fig. 42 The Update, Size, Delete, and Insert procedure

Operation Delete(R) First, we retrieve C∗(R) from H
(line 1). For each vertex v ∈ C∗(R), C∗(R) is removed
from M[v] (line 3). Note that, if M[v] contains a single
element C ′ after removing C∗(R), v is a vertex only cov-
ered by C ′. Therefore, we move C ′ from H [|Δ(R,C ′)|] to
H [|Δ(R,C ′)| + 1] (line 6) and increase |Δ(R,C ′)| by 1
(line 7). If M[v] is empty, v is not covered by R, so v is
removed from M (line 9).
Operation Insert(R,C) First, we insert C to R (line 1) and
then set |Δ(R,C)| to 0 (line 2). For each vertex v ∈ C , if v is
not a key in M , we insert an entry with key v and value C to
hash table M (lines 5–6). At this moment, v is only covered
by C , so |Δ(R,C)| is increased by 1 (line 7). If v is a key in
M , C can be directly inserted to M[v] (line 12). Note that,
if M[v] contains a single element C ′ before insertion, v will
not be covered only byC ′ after insertingC , soC ′ is moved in
H from H [|Δ(R,C ′)|] to H [|Δ(R,C ′)| − 1] (line 11), and
|Δ(R,C ′)| is decreased by 1 (line 12). After updating M , we
obtain |Δ(R,C)| and insert C to H accordingly (line 14).

Putting them altogether, we have the Update procedure.
If |R| < k, we directly insert C toR (line 2). If |R| ≥ k, the
Size(R,C) procedure is invoked to check ifC satisfies Rule 2

123

622 R. Zhu et al.

(line 5). If so, R is updated with C by invoking Delete(R)
and Insert(R, C) (lines 6–7).
Complexity analysis First we analyze the time complex-
ity of the Update procedure. Assume that an entry can be
inserted to or deleted from a hash table in constant time.
Thus, the time complexity of Size(R, C), Delete(R), and
Insert(R, C) is O(|C |), O(|C∗(R)|) and O(|C |), respec-
tively. Consequently, the time complexity of Update is
obviously O(max{|C |, |C∗(R)|}).

The space cost for storing the result setR andmaintaining
the hash table M is O(

∑
C ′∈R |C ′|), and the space cost for

storing |Δ(R,C ′)| andmaintaining the hash table H is O(k).
Thus, the space complexity of Update is O(2

∑
C ′∈R |C j |+

2k) = O(
∑

C ′∈R |C ′|).

References

1. Abdel-Rahim, A., Oman, P., Johnson, B.K., Sadiq R.A.: Assessing
surface transportation network component criticality: a multi-layer
graph-based approach. In: IEEE Intelligent Transportation Systems
Conference, pp. 1000–1003 (2007)

2. Ausiello, G., Boria, N., Giannakos, A., Lucarelli, G., Paschos, V.T.:
Onlinemaximumk-coverage. In: International Conference on Fun-
damentals of Computation Theory, pp. 181–192 (2011)

3. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decom-
position of networks. Comput. Sci. 1(6), 34–37 (2003)

4. Bilbro, G.L.: Solution of the recirculant multilayer graph problem
using compensated simulated annealing. In: Proceedings of SPIE,
the International Society for Optical Engineering, vol. 1766 (1992)

5. Boden, B., Nnemann, S., Hoffmann, H., Seidl, T.: Mining coherent
subgraphs in multi-layer graphs with edge labels. In: KDD, pp.
1258–1266 (2012)

6. Bogue, E.T., de Souza, C.C., Xavier, E.C., Freire, A.S.: An integer
programming formulation for the maximum k-subset intersection
problem. In: Lecture Notes in Computer Science, vol. 8596, pp.
87–99 (2014)

7. Chakraborty, T., Narayanam, R.: Cross-layer betweenness central-
ity in multiplex networks with applications. In: ICDE, pp. 397–408
(2016)

8. Chuang, J.R., Lin, J.M.: Efficient multi-layer obstacle-avoiding
preferred direction rectilinear Steiner tree construction. In: Asia
and South Pacific Design Automation Conference, pp. 527–532
(2011)

9. David, C.W.: Stirling’s Approximation. Betascript Publishing,
Saarbrücken (2007)

10. Dong, X., Frossard, P., Vandergheynst, P., Nefedov, N.: Clustering
with multi-layer graphs: a spectral perspective. IEEE Trans. Signal
Process. 60(11), 5820–5831 (2011)

11. Fang,Y., Zhang,H.,Ye,Y., Li,X.:Detecting hot topics from twitter:
a multiview approach. J. Inf. Sci. 40(5), 578–593 (2014)

12. Frickey, T., Weiller, G.: Mclip: motif detection based on cliques of
gapped local profile-to-profile alignments. Bioinformatics 23(4),
502–3 (2007)

13. Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent
dense subgraphs across massive biological networks for functional
discovery. Bioinformatics 21(suppl-1), i213 (2005)

14. Kim, J., Lee, J.G.: Community detection in multi-layer graphs: a
survey. ACM SIGMOD Record 44(3), 37–48 (2015)

15. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y.,
Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–
271 (2014)

16. Lee,V.E., Ruan,N., Jin, R.,Aggarwal, C.C.:A survey of algorithms
for dense subgraph discovery. In: Aggarwal, C.C., Wang, H. (eds.)
Managing and Mining Graph Data, pp. 303–336. Springer, New
York (2010)

17. Li, H., Nie, Z., Lee,W.C., Giles, L.,Wen, J.R.: Scalable community
discovery on textual data with relations. In: CIKM, pp. 1203–1212
(2008)

18. Li, R.H., Qin, L., Yu, J.X., Mao, R.: Influential community search
in large networks. PVLDB 8(5), 509–520 (2015)

19. Liu, J., Wang, C., Gao, J., Han, J.: Multi-view clustering via joint
nonnegative matrix factorization. In: SDM, pp. 252–260 (2013)

20. Pei, J., Jiang, D., Zhang, A.: On mining cross-graph quasi-cliques.
In: KDD, pp. 228–238 (2005)

21. Qi, G.J., Aggarwal, C.C., Huang, T.: Community detection with
edge content in social media networks. In: ICDE, pp. 534–545
(2012)

22. Ruan, Y., Fuhry, D., Parthasarathy, S.: Efficient community detec-
tion in large networks using content and links. In: WWW, pp.
1089–1098 (2012)

23. Sanjeev, K., Gilbert, H.: Multilayer Networks. Wiley, Hoboken
(2011)

24. Silva,A., Jr,W.M.,Zaki,M.J.:Mining attribute-structure correlated
patterns in large attributed graphs. PVLDB 5(5), 466–477 (2012)

25. Solé-Ribalta, A., De Domenico, M., Gómez, S., Arenas, A.: Cen-
trality rankings in multiplex networks. In: Proceedings of the 2014
ACM Conference on Web Science, pp. 149–155. ACM (2014)

26. Sun, Y., Yu, Y., Han, J.: Ranking-based clustering of heterogeneous
information networkswith star network schema. In:KDD, pp. 797–
806 (2009)

27. Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S.,
Simonovic,M., Santos, A., Doncheva, N.T., Roth, A., Bork, P.: The
string database in 2017: quality-controlled protein-protein asso-
ciation networks, made broadly accessible. Nucleic Acids Res.
45(Database), D362–D368 (2017)

28. Tang,W., Lu, Z., Dhillon, I.S.: Clustering with multiple graphs. In:
ICDM, pp. 1016–1021 (2009)

29. Xu, Z., Ke, Y., Wang, Y., Cheng, H., Cheng, J.: A model-based
approach to attributed graph clustering. In: SIGMOD, pp. 505–516
(2012)

30. Yan, X., Han, J.: gSpan: graph-based substructure pattern mining.
In: ICDM, pp. 721–724 (2002)

31. Yang, Y., Yan, D., Wu, H., Cheng, J., Zhou, S., Lui, J.C.S.: Diver-
sified temporal subgraph pattern mining. In: KDD, pp. 1965–1974
(2016)

32. Zeng, Z., Wang, J., Zhou, L., Karypis, G.: Coherent closed quasi-
clique discovery from large dense graph databases. In: KDD, pp.
797–802 (2006)

33. Zhang, J., Kong, X., Yu, P.S.: Predicting social links for new
users across aligned heterogeneous social networks. In: ICDM,
pp. 1289–1294 (2013)

34. Zhou, P., Miao, G., Bing, B.: Cross-layer congestion control and
scheduling inmulti-hopOFDMAwireless networks. In: IEEECon-
ference on Global Telecommunications, pp. 1–6 (2009)

35. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on struc-
tural/attribute similarities. PVLDB 2(1), 718–729 (2009)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Fast diversified coherent core search on multi-layer graphs
	Abstract
	1 Introduction
	2 Problem definition
	3 The d-CC computation algorithm
	4 The greedy algorithm
	5 The bottom-up algorithm
	5.1 Maintenance of top-k diversified d-CCs
	5.2 Bottom-up candidate generation
	5.3 The bottom-up algorithm

	6 The top-down algorithm
	6.1 Top-down candidate generation
	6.2 Refinement of potential vertex sets
	6.3 Top-down algorithm

	7 Optimized algorithms
	7.1 The index structure
	7.2 The faster d-CC computation method
	7.3 The optimized algorithms

	8 Performance evaluation
	8.1 Experimental setting
	8.2 Experimental results
	8.3 Comparison with quasi-clique-based algorithms
	8.4 Evaluation of result quality

	9 Related work
	10 Conclusions
	Acknowledgements
	A Missing proofs
	B The Update procedure
	References

