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Abstract
This paper provides a survey of the state-of-the-art and future directions of one of the most important emerging technologies
within business analytics (BA), namely prescriptive analytics (PSA). BA focuses on data-driven decision-making and consists
of three phases: descriptive, predictive, and prescriptive analytics. While descriptive and predictive analytics allow us to
analyze past and predict future events, respectively, these activities do not provide any direct support for decision-making.
Here, PSA fills the gap between data and decisions. We have observed an increasing interest for in-DBMS PSA systems in
both research and industry. Thus, this paper aims to provide a foundation for PSA as a separate field of study. To do this, we
first describe the different phases of BA. We then survey classical analytics systems and identify their main limitations for
supporting PSA, based on which we introduce the criteria and methodology used in our analysis. We next survey, categorize,
and discuss the state-of-the-art within emerging, so-called PSA+, systems, followed by a presentation of the main challenges
and opportunities for next-generation PSA systems. Finally, the main findings are discussed and directions for future research
are outlined.

Keywords Business intelligence · Database systems · Data analytics · Decision support systems

1 Introduction

Today’s world is fast becoming inextricably connected to
information technologies. Cloud services, smart machines,
Internet of things, and mobile computing are some of the top
technological trends reported by Gartner research in 2016
[33], showing how both business enterprises and users are
going through a process of digitalization of their activities,
rapidly leading to a higher data production rate. This massive
production of data poses new questions: how do we effi-
ciently store and manipulate such data and, most of all, how
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do we generate value from it? Data describe facts about the
present and the past. Thus, when collected and stored, data
are already dead, meaning that by itself it does not provide
any new understanding beyond those of the mere historical
facts [41]. If no efficient ways are found to make use of the
data we generate, the advantage of being able to collect such
data simply vanishes.

In a recent report [32], Gartner identifies business analyt-
ics (BA) as a top priority on the chief information officers’
agendas, by accounting for as much as 50% of the planned
investments, thereby largely surpassing other technologies
such as infrastructures and data centers, cloud computing,
and service digitalization. BA is a set of information tech-
nologies (IT) whose objective is to drive business planning
by utilizing data about the past to gain new insights about
the future [64]. For years, advancements in BA have pro-
vided efficient ways to store and analyze data: from simple
spreadsheets to advanced DBMSes with integrated analytics
functionality such as online analytical processing (OLAP),
data mining, machine learning, data visualization, etc [45].
The evolution of the data itself, from its increasing complex-
ity to the velocity with which it is produced, together with the
enterprises’ need for more effective data analytics solutions,
have been the key factors that triggered the advancement of
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BA [41]. BA has so far established a way to analyze the cur-
rent status of an activity and to predict the possible outcomes
in the future. However, to bring new value to the process,
another step is necessary: find and evaluate the best course
of action to achieve the business goal. From this perspective,
it is possible to recognize three phases of analytics within
BA, each with a different scope: descriptive analytics (DA),
predictive analytics (PDA), and prescriptive analytics (PSA).
After answering the questions what happened? (DA) and
what will happen in the future? (PDA), PSA answers how
to make it happen? allowing users to plan and perform a
sequence of actions to optimize the performance of a pro-
cess. PSA is a new type of data analytics [64], extending
the capabilities of the well-known DA and PDA, by enabling
data-driven optimization for decision support and planning.

While the term prescriptive analytics itself is relatively
new, introduced by IBM [64] and trademarked by Ayata only
in 2010, the underlying fundamental concepts and techniques
have been around for years and cannot be considered novel
in themselves. Instead, the novelty of PSA lies in the combi-
nation and integration of these concepts and techniques in a
synergetic way taking optimal advantage of hybrid data, busi-
ness rules, and mathematical/computational models. Thus,
PSA is an emerging and not yet established field. To first
evaluate howwidespread the term prescriptive analytics cur-
rently is in academia, we found (with Google Scholar) that
since 2010 only 67 published papers mention prescriptive
analytics in their title.Most of these papers analyze problems
and present PSA solutions for a specific application domain,
such as transportation [77,112], health care [53,107], busi-
ness process optimization [39], car rental [46], supply chain
[98], and smart grids and energymanagement [87]. Themost
comprehensive overview of PSA that we have found is given
by Soltanpoor et al. [96], where the authors define the distinc-
tion between DA, PDA, and PSA, and propose an abstract
architecture and a conceptual framework for PSA, specifi-
cally for the field of educational research. However, as our
goal is to thoroughly explore the current state-of-the-art of
PSA, beyond the use of a specific term, we broaden our sur-
vey to include papers that, although not explicitly referring to
PSA, propose contributions toward PSA development. Here,
we focus on the systemaspect of PSA, i.e., technical/tool con-
tributions rather than specific solutions.Within this scope, the
paper provides the following contributions:

– Analyzing the current status of PSA technologies and
identifying challenges and opportunities for future
research on these. To do so, we begin by briefly out-
lining the historical evolution of the broader area of BA,
following the steps that have lead from simple reports
to advanced analytics. We give an overview of the three
main phases of BA—namely DA, PDA, and PSA, defin-
ing the objectives and requirements for each of them.

– Identifying the typical tasks and the different approaches
that have been pursued for PSA. To delimit the scope
of the paper, we focus on categorizing and compar-
ing representative research papers and software systems
that propose steps to advance data management systems
toward PSA. By doing so, we identify state-of-the-art in
the field, the trends in the development of PSA systems,
and the differences between the emerging approaches.
For this survey, we collect the papers presenting the sys-
tems that explicitly focus on (some of the) aspects of PSA
development. To our knowledge, no previous study has
surveyed the state-of-the-art from the point of view of
PSA support.

– Defining the major challenges and opportunities of PSA,
together with an overview of the solutions proposed by
the state-of-the-art systems.

This paper is structured as follows. Section 2 describes
the evolution of BA, followed by the identification of the
different BA phases and tasks. Section 3 gives an overview
of the classical software systems used in BA applications.
Section 4 discusses evaluation criteria of the new emerging
systems as well as our survey methodology. Based on these
criteria and methodology, Section 5 surveys, evaluates, and
compares a number of new emerging systems. Section 6 dis-
cusses remaining challenges and opportunities, and Sect. 7
concludes the paper.

2 The evolution and phases of business
analytics

In this section, we give an overview of BA to position PSA
in its proper context. To do this, we start by describing the
evolution of BA and the characteristics of BA systems, fol-
lowed by the identification of the different BA phases and
tasks. Lastly, we give a real-world use case example of a
PSA application.

2.1 Introduction to business analytics

The first appearance of the term business intelligence, or
business analytics (BA), can be traced back to 1958, when
Hans Peter Luhn published in an IBM journal the article
“A Business Intelligence System” [63]. The author defined
the term business as a “[...] collection of activities carried
on for whatever purpose, be it science, technology, com-
merce, industry, law, government, defense, et cetera.”, and
the term intelligence as “[...]the ability to apprehend the inter-
relationships of presented facts in such a way as to guide
action towards a desired goal[...].” BA aims at providing
sophisticated information analysis and supporting manage-
rial decisions by making use of large amounts of data [17].
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Considering the technological applications of data analyt-
ics, the evolution of BA has spanned across multiple fields,
from the appearance of a computerized weather forecast sys-
tem in 1950 and the release of Visicalc in 1979 (the first
commercial spreadsheet software), over to the widespread
use of modern BA software suites [45]. The classic BA setup
is built around a (typically large) data warehouse [49], on
which various operations are possible: from simple reports
and Structured Query Language (SQL) queries to slicing and
dicing of multidimensional data [19] and applying advanced
data mining algorithms [64]. The combination of data man-
agement and analytical tools makes it possible to support
business-level decision-making. Therefore, BA can be seen
as the intersection of twomain research areas—decision sup-
port systems (DSSs) and data management systems.

DSSs are computer technology solutions that are used for
supporting decision-making and problem solving. Over the
last three decades, research inDSShas evolved from the early
work that started around 1985 (see [13,26,54]), to modern
solutions [81,90] that comprehend (i) advanced DBMSes,
(ii) mathematical modeling functions, and (iii) user inter-
faces offering querying and analysis tools aswell as graphical
visualization capabilities. The evolution of DSS has been the
fruit of the research in different fields, e.g., computer science,
mathematics, and operations research, leading to a combina-
tion of approaches belonging to different disciplines [91].

A crucial contribution to the evolution of DSSs has been
provided by the database community research, specifically
with the 1990s work in data warehousing, OLAP, and data
mining. The research in the database field has contributed
to the appearance of data-driven DSSs, where the source
and focus of the analysis have shifted from the mathematical
models that were previously the main DSS tools, to the data,
thanks to the large quantity of information now being avail-
able. As the amount of data that can be stored and processed
increases, so do the possibilities of utilizing such data for
analytical purposes.

We start now by first presenting the recognized structure
of BA. Then, we focus on the aspects most relevant for PSA,
including the typical tasks involved and the applicationwork-
flow.

2.2 The structure of business analytics

The consolidation of database solutions and data warehous-
ing, and the diffusion of DSSs, have lead to BA becoming an
umbrella term that covers a broad range of IT technologies
[45,64], among others: data management, data warehousing,
OLAP, statistics, data mining, machine learning, operations
research, data visualization, etc. (Fig. 1). Because of this
increase in the number of tools, and therefore also in the
number of scenarios in which BA has found application, it is
impossible to associate BA with a single field. Nevertheless,

Data 
management

Data 
Warehousing/ 

OLAP

Sta�s�cs
Data Mining 
/ Machine 
Learning

Opera�ons 
Research

Business Analy�cs Visualiza�on

Fig. 1 Key areas that contribute to BA

the following three core objectives of BA can be identified
[64]:

Hindsight: Gain understanding of the decision process, to
obtain a structured description and view of the
past and of the current state.

Insight: Utilize the past to predict future events.
Foresight: Combine knowledge about the past and the

future to drive decision-making and optimiza-
tion of the decision process.

Considering these objectives, it has been attempted to divide
BA into three phases—descriptive analytics (DA), predictive
analytics (PDA), and prescriptive analytics (PSA) [64,93]:

DA: What happened? Involves techniques that pro-
vide historical data analysis, typically based
on data aggregation and data mining.

PDA: What will happen? Involves techniques, typ-
ically based on machine learning, that aim at
producing predictions and forecasts.

PSA: How to make it happen? Involves techniques
to evaluate and find the best alternatives for
a decision process, given a (complex) set of
objectives, requirements, and constraints.

The differences between DA, PDA, and PSA can clearly
be seen in the context of a typical generic decision-making
workflow, as shown in Fig. 2. This includes a number of tasks
carried out by human analysts, using one or more BA tools.
In this context, DA, PDA, and PSA offer different levels of
support to the user (human analyst) for solving a complex
decision-making problem. Here, a specific BA phase con-
sists of a set of tasks, for which the user is offered support,
assistance, or automation by a given BA tool. We now give
a short overview of the tasks in this workflow:

1. Collect and consolidate data
In this task, data on the decision process are collected and
stored, e.g., in DBMSes, data sheets, distributed file sys-
tems, etc. Moreover, cleaning and consolidating the data
to eliminate errors and inconsistencies, or data mining to
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Fig. 2 Phases and tasks of a decision-makingworkflow . (Adapted from
[101, p. 5])

extract information and features, are common operations
within this task.

2. Make decision-based predictions
Using techniques frommachine learning (e.g., time series
forecasting, Markov models), the goal of this task is to
perform an exploratory analysis of the events and trends
that condition the decision process by analyzing histori-
cal data (provided by Task 1). This task is an intermediate
activity, which the analyst can perform to obtain predic-
tions about the future of the decision process, which can
in turn be used to guide decision-making in the subse-
quent tasks.

3. Identify alternative decisions and objectives
The first goal of this task is to identify the objective(s),
rules, and constraints of the decision task. To support
this task, analysis of the decision process is performed
with techniques such as business rule management and
process mining [1,110]. After having specified the objec-
tive(s), the second goal is to identify alternative decision
options, together with the respective cost/gain functions
and associated constraints.

4. Model and simulate alternative decisions
Next, the effect that the decision options will have on the
decision process has to be estimated. This task is con-
nected to Task 2, where prediction and simulationmodels
can be used to help simulate the behavior of the system
under different settings (decision alternatives).Generally,
simulation models can be either manually defined by the
user (using purpose oriented languages and software) or
automatically inferred from the available historical data.

5. Select an optimal decision
Selecting an optimal decision is what we refer to as a pre-
scription. With Task 2we know how to model the future,
and Task 4 tells us how our actions will affect the deci-

sion process. Therefore, it is possible to utilize techniques
such as optimization or game theory to find an optimal
course of action relative to the objectives and decision
options identified in Task 3 and the events predicted in
Task 2.

6. Perform analysis
This is an intrinsically iterative workflow: after the (pre-
scribed) decision options have been realized, the resulting
process events are observed. Collecting the data pertain-
ing to these events can now trigger a new iteration of the
BA workflow, starting again with Task 1. To understand
the results of the prescriptions and guide the workflow
process, we can analyze the effects of the changes on the
decision process using, for example, visualization tools
or business key performance indicators (KPIs).

Within the context of this workflow, DA, PDA, and PSA
are interdependent—DA is a sub-phase of PDA and PDA is a
sub-phase of PSA.Among these, PSA offers the highest level
of support within this workflow and therefore has the highest
value among the different phases. Based on the described
workflow, we will provide more detailed descriptions of BA
phases in the next sections.

2.3 Descriptive analytics

DA is the most widespread and established phase of BA, as
the vast majority of the tools currently used for analytics falls
within this phase. The focus in this phase is on collecting,
categorizing, and classifying data, as well as on identifying
and visualizing relevant patterns in the data [64]. It is possi-
ble to recognize in the research of the data management field
some of the most important technologies that have enabled
advanced data analytics, laying the basis for the develop-
ment of BA [51]. The introduction of data warehousing and
OLAP alongside the more traditional DBMSes opened new
possibilities for sophisticated and easily accessible data ana-
lytics (see [56,68]). Furthermore, other techniques that have
become standard toolboxes forDAapplications are data visu-
alization, dashboards, statistical analysis, and data mining
[76]. Methods such as pattern matching and clustering are
often a standard starting point in the decision process, allow-
ing the user to extract, translate, and visualize the information
contained in the data in a more meaningful and simple way.

2.4 Predictive analytics

DA tools lack the capability to perform predictions about
future events. PDA borrows many ideas and techniques from
machine learning, datamining, and statistics [3,24,62,67,80],
generally making use of large volumes of historical data to
extract and synthesize novel information [36]. These tech-
niques provide ways to, for example, forecast the probability
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of certain events, find patterns that may repeat in the future,
and determine relationships between events. PDA aims at
providing support for planning and decision-making bymod-
eling the process not only in terms of what has happened in
the past, but also of what will happen in the future. PDA
has been applied in different BA contexts, e.g., marketing
and financial services, health care, supply chains, capacity
planning, etc. [82,92,109]

2.5 Prescriptive analytics

PSAhas already been successfully applied inmany industrial
and research scenarios (see [37,96,97,107]) and logically fol-
lows the path lead by the two previous phases of BA: If the
past has been understood (DA), and predictions about the
future are available (PDA), then it is possible to actively sug-
gest (prescribe) a best option for adapting and shaping the
plans according to the predicted future. In comparison with
the other phases of BA, PSA allows decision-makers to not
only identify issues and opportunities (by looking into past,
present, or future), but also to directly prescribe the best deci-
sion options according to certain objectives and to evaluate
their results.

Although optimization techniques are already a well-
established and largely adoptedwayof solvingdecision prob-
lems, through the use of mathematical tools (see [9,10,108]),
it is the combination of predictions and optimization that
opens new possibilities for decision support. Moreover, as
PSA is often applied to real-world cases with significant
uncertainty, the optimization heavily relies on the accuracy
of the predictions and, in some cases, the ability to quan-
tify the uncertainty about the predictions. In such situations,
the optimization may explicitly take into account the uncer-
tainty inherent in the domain through the (combined) use of
statistical and simulation-based models [6,41].

To further elucidate and contrast the three BA phases, we
will in the following section exemplify the phases w.r.t. a
concrete use case.

2.6 A prescriptive analytics use case

Consider a shopkeeperwhoneeds to decide onwhich items to
keep in storage in order to maximize sales profits. Figure 3
outlines the workflow of this decision process. The shop-
keeper has access to item characteristics as well as previous
sales and promotion data, which can be exploited by a BA
solution. The storage can hold a maximum of 70 items (for
simplicity, we can assume that each item occupies a single
space unit); hence, the BA solution should prescribe an opti-
mal storagemanagement strategy conditioned on this storage
constraint.

The first task (1 and 2 in Fig. 3) consists in the collection
and integration of the disparate data sources. For this partic-

Fig. 3 Workflow for the shopkeeper use case. Data are collected (1),
transformed, and stored in a database (2). The future sales trends are
predicted (3), and the optimal storage management is (iteratively) pre-
scribed and applied (4)

ular example, the data sources may include both structured
and unstructured information; hence, the data may have to be
cleaned and processed. These tasks are generally performed
with DA tools, which can also help find patterns and rela-
tionships in the data.

PDA lays the bridge between data and the subsequent
decision-making (3 in Fig. 3). Here, machine learning and
data mining techniques may be used to predict future sales
of particular items based on item characteristics and previ-
ous sales information. However, predicting future events and
sales does not in itself provide a strategy for storage manage-
ment. For this an additional task is required.

PSA addresses this type of decision problem (4 in Fig. 3).
In our example, the optimization objective can be addressed
by considering the predictions obtained in the previous phase,
analyzing the effects of the possible decisions, and updating
the probability distributions over the sales to ultimately pre-
scribe a storage strategy that maximize the expected sales
profits.

2.7 Discussion

So far, we have presented how DA, PDA, and PSA fit in the
BA field and how they are interlinked. Among these, PSA
has the highest potential value for users. It is again important
to note that the underlying techniques used in PSA are not
necessarily novel. Similar to the way in which PDA was
coined as a new term for already existing machine learning
and statistical methods applied in business analytics, PSA
considers approaches already in use in operations research
[111] and normative decision support systems [13].However,
the value of PSA as a new field of study lies in defining,
clarifying, and integrating the entire BA workflow, and in
howPSA can bemade easily available to its users in a general
and standardized way. Our definition of PSA is given from a
conceptual standpoint. However, in practice PSA is not yet an
established phase of BA, and therefore not yet as widespread
asDA and PDA. To further investigate the reason for this lack
of standardized PSA tools and applications, we will expand
on this discussion in the next chapter, where wewill compare
different state-of-the-art PSA systems.
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Table 1 Overview of traditional BA systems and their support levels for both individual descriptive (DS), predictive (PS), and optimization (OS)
tasks and full DA, PDA, and PSA (·—basic support; �—intermediate support;

⊙
—advanced support)

Group System class Key representative systems DS PS OS DA PDA PSA

BA Tools Reporting and spreadsheet tools Excel, Google Sheets
⊙ · · ⊙ · ·

Data Mining & ML libraries Spark MLlib, Mahout · ⊙ · · · ·
Data Mining & ML GUI tools Weka, Hugin � ⊙ · � � ·
Online ML cloud services Watson, Azure ML � ⊙ · � � ·
Mathematical optimization tools Gurobi, CPLEX, OptaPlanner · · ⊙ · · ·
Computer algebra tools Mathematica, Mathcad � � ⊙ � � �
System modeling tools Dymola, Simulink � � � � � �

BA Suites Statistical computing suites MATLAB, R, Julia
⊙ ⊙ � ⊙ ⊙ �

Statistical GUI suites SAS, SPSS
⊙ ⊙ � ⊙ ⊙ �

3 Classical analytics systems

In this section, we first give an overview of the classical
software systems utilized in both general BA and PSA appli-
cations. Drawing on the characteristics and limitations of
these systems, we then in the next section define a number of
general criteria and properties for evaluating new emerging
PSA systems.

To begin, we review software systems that aim at sup-
porting (some of) the tasks described in Fig. 2. We have
selected the systems that are already in widespread use in
BA applications, defining them as classical systems for BA.
This selection is not an exhaustive list of the existing sys-
tems. Instead, it constitutes a representative list of software
systems in a number of system classes.

As seen in Table 1, we divide these classical systems into
two main groups: BA Tools, specialized software for indi-
vidual tasks and/or specific models and domains, and BA
Suites, composed of a set of tools for genericBAapplications.
For the different classes of systems within these groups, we
identify levels towhich users are provided support by the sys-
tem when performing analytics tasks in the PSA workflow
(Fig. 2). Further, based on the analytical tasks supported, we
also identify the level of DA, PDA, and PSA support for the
different tools/suites as basic, intermediate, or advanced.

BA tools from different classes mentioned in Table 1 have
been used in BA scenarios for many years. Among these,
Excel [75] is one of the most widely used spreadsheet-based
BA tools for data analysis, reporting, and charting used in
many typical DA cases. As it offers very basic support for
predictions and optimizations, the overall PDA and PSA
support is fairly limited. Data mining and machine learn-
ing (ML) libraries and tools, such as Weka [42], Mahout
[80], and MLlib [74], offer graphical user interfaces (GUI)
providing support for exploratory and predictive machine
learning algorithms integrated with some basic data man-
agement primitives. They are therefore suitable and actively

used as standalone tools, for basic DA and PDA activities.
In this category, Hugin [65] provides support for probabilis-
tic graphicalmodels (PGMs) enabling probabilistic inference
and reasoning under uncertainty, as well asmodels andmeth-
ods for defining and solving decision problems. Existing
online ML cloud services such as Watson [44] and Azure
ML [8] are capable of handling much larger data volumes
and information processing tasks. However, they are typi-
cally used for DA and PDA applications, and the support
for PSA is fairly limited. On the other hand, mathematical
optimization tools such as Gurobi [40], CPLEX [60], and
OptaPlanner [95] focus on mathematical programming and
thus offer dedicated languages and generic high-performance
solvers for different problem classes such as linear program-
ming and mixed integer programming. Despite substantial
support for optimization, these tools alone are not suitable for
exploratory data analysis and predictive modeling, and they
therefore need to be combinedwith other tools to provide full
DA, PDA, and PSA support. Computer algebra tools such as
Mathematica [2] and Mathcad [83] offer a rich set of tools
for manipulating mathematical expressions in a way similar
to the traditional manual computations of mathematicians.
Among other things, these tools offer solvers for effectively
solving systems of equations, ordinary differential equations
(ODEs), etc. However, they lack general-purpose data man-
agement and predictive functionalities, as required for DA,
PDA, and PSA. Similarly, system modeling tools such as
Dymola and Simulink offer rich environments for analyzing
and optimizing complex systems composed of mathematical
equations that describe the dynamic behavior of a system.
While these systemmodeling tools can be used in specialized
DA, PDA, and PSAapplications, they do not offer support for
data-driven (as opposed to model-driven) exploratory analy-
ses, predictions, and optimizations.

Irrespective of their differences in focus, these systems
share a common characteristic: none of them offer any sub-
stantial support for the tasks of the PSA workflow, requiring
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Table 2 Productivity feature
categorization criteria and
values

Productivity features Traditional (·) Modern (�) Advanced (
⊙

)

Workflow Support algorithm-oriented task-oriented process-oriented

System Extensibility closed system – extensible systems

Language Integration multiple languages – unified language

instead the use of multiple separate tools or integrated BA
suites.

BA suites provide access to multiple tools in a single inte-
grated environment, facilitating the development of more
complex DA, PDA, and PSA applications using a single
ecosystem. BA suites can typically provide functionality
offered by individual BA tools. For example, MATLAB [71]
supplies a programming environment and an engine target-
ing numerical computing, where analytics components can
be utilized as toolboxes. In a similar way, softwares like
SAS [89], IBM SPSS/CPLEX [48], and Julia [7] are high-
performance suites with integrated analytics more oriented
toward business applications. A non-exhaustive survey and
comparison of these systems is provided in [100].

In summary, the BA tools and BA suites do not offer a con-
venient way of expressing and executing user-defined PSA
workflows (Fig. 2). The major limitations are as follows:

– First, they typically support only procedural program-
ming languageswith nodeclarative primitives for express-
ing the PSA workflow tasks. While software developers
are familiar with procedural programming, and often
have a high level of expertise withmultiple programming
languages, data analysts often benefit from a declarative
approach, where the focus is on data analysis and not
on algorithmic specifications. For example, BA tools and
BA suites still require the use of multiple languages and
imperative constructs for expressing different tasks of the
PSA workflow, e.g., data collection and prediction.

– Second, there is no native support of the PSA workflow
of Fig. 2. Although BA tools and BA suites let the user
develop PSA applications, their design is not directly
focused on PSA applications. Therefore, no specific sup-
port is provided to the user for these types of use cases.
As a result, the different tools required for PSA have to be
interconnected manually in an ad hoc fashion, resulting
in less structured and more time-consuming and error-
prone specifications of PSA workflows. Furthermore, if
new algorithms or specialized models (e.g., energy flexi-
bility models [78,79]) need to be used in the application,
the closed structure of the architecturesmight completely
prevent this, or lead to the ad hoc integration of new tools,
e.g., by the connection of external programs, to which the
data have to be transferred via an API.

– Third, the analytics computations are still performed on a
single-node machine, and often far away from where the
data are stored. Hereby, BA tools and BA suites often lack
highly scalable distributed analytics algorithms, which
minimize the overhead from data exchanges and trans-
formations while performing the analytics computations
that are part of the PSA workflow. As such, they do not
optimize the interleaved data management and analytics
workflows, but instead use pre-defined code that makes
API calls for accessing common DBMSes.

In the next section, we outline the evaluation criteria for
a class of more recent emerging systems, denoted as PSA+
systems, that aim to address (some of) these limitations and
thus enhance the overall support for PSA applications.

4 PSA+ criteria andmethodology

In this section, we first define the PSA+ system evaluation
criteria, followed by our chosen survey methodology.

4.1 PSA+ system evaluation criteria

We now propose a number of PSA+ system evaluation crite-
ria within the following three feature categories: productivity
features, technological features, and analytics features.

Productivity features First, we have identified that a
common thread among recent PSA+ systems appears to
be the focus on developer productivity. That is, efforts are
targeted toward increased usability while also offering high-
productivity features and providing a common easy-to-use
framework for data analytics. We therefore intend to evalu-
ate the contributions based on the three criteria—workflow
support, system extensibility, and language integration, each
taking the values shown in Table 2.

Technological features Second, we have identified basic
properties for characterizing the more technological side of
the advancements proposed in the literature. This includes
the following criteria: distributed computation to character-
ize the potential for system scalability, data independence
to characterize data flow optimization opportunities, and
implementation independence to characterize auto-selection
of algorithms and optimization opportunities.

123



582 D. Frazzetto et al.

Analytics features Lastly, we evaluate the levels of sup-
port for DA, PDA, and PSA tasks. For this, we define the
following criteria: descriptive primitives, predictive prim-
itives, and optimization primitives. These criteria describe
whether, for each of the phases of BA, the fundamental ana-
lytics operations are supported natively in the system.

In the following sections, we will describe the proposed
criteria and their properties in more detail.

4.2 Productivity features

Workflow support describes the capability of the system
to support the user in the entire decision process, bring-
ing the data and the results from one phase to the next
while assisting in the natural iterative process of perform-
ing the analytics shown in Fig. 2. On the one end of the
spectrum, we identify algorithm-oriented approaches, aim-
ing at simplifying the development of analytics algorithms
by separating the algorithm definition from the underlying
data representation. For example, SystemML [35] pro-
poses an algorithm-oriented approach, supporting low-level
operations such as reading/writing data, iterations, matrix
operations, and binary operations. Task-oriented approaches
describe systems focusing on separating the analytics pro-
cess from the algorithmic level, by providing the user with
support for specific analytics applications, such as predic-
tions or optimization. For example, MLBase [57] proposes
a task-oriented approach, supporting high-level operations
such as classification, features generation, and clustering.
Finally, process-oriented approaches use high-level instruc-
tions and core optimization techniques to support the user
throughout the PSA workflow tasks, from data to decisions.

System extensibility describes the possibility of extend-
ing the system’s tool set/algorithms. Traditional solutions
often follow a closed-system approach, where the user has
no possibility of extending the system with custom tools,
or where the only possibility is the connection to external
programs. More advanced extensible systems instead pro-
vide interfaces for user extensions within the system itself.
This type of approach allows the user to integrate custom
algorithms within the same core architecture while taking
advantage of the available ecosystem of existing algorithms.

Language integration describes the effort to reduce the
number of languages required for PSA applications. While
traditional systems use multiple languages for data manage-
ment, analytics, and decision support, recent developments
attempt to integrate these tasks in a single unified language,
with the objective of reducing the developing time and cost.
For example, in Tiresias [73], data management and manip-
ulation are performed via standard SQL, while optimization
problem modeling and solving are supported via a Datalog-
based language. On the other hand, SolveDB [103] uses a
single SQL-based language for both data management and

optimization problem specification and solving. Improved
productivity from a single declarative language is reported
both for SolveDB [103] and for general big data analytics
systems [70].

4.3 Technological features

Distributed computation describes whether the system
allows the analytics computation to be effectively run in a
distributed setting. The system language/interface hides from
the user the distributed execution of algorithms, tasks, and
processes.

Data independence describes whether the system can run
a user application correctly irrespective of the physical orga-
nization of data. In traditional DBMSes, physical and logical
data independence, as initially defined [50], shields the user
application from changes to the physical organization of the
data. Systems that bring this property to the analytics func-
tions satisfydata independence. For example, SolveDB[103]
fulfills the property bymaking query and solver implementa-
tions immune to the physical data organization and the data
management optimizations performed.

Implementation independence determines whether the
system decouples the high-level specification of an ana-
lytics application from its physical implementation. When
the property is satisfied, results are correct and equivalent,
independent of, for example, the chosen algorithm, operator
implementation, and optimization strategy. Standard DBM-
Ses already guarantee this property [50]. For example, in
SystemML [35], the property is fulfilled via distributed/cen-
tralized deterministic operations, of which the algorithms are
composed. In MADlib [43], this property is not guaranteed,
as the algorithms are user-defined.

4.4 Analytics features

Descriptive primitives appear in traditional DBMSes and
provide the user with basic primitives for datamanipulation/-
operations. The primitives are known by the system in order
to generate execution plans for the operations. The user is
provided with primitive operations that allow the implemen-
tation of BA tasks, algorithms, or processes. The operational
semantics resulting from the standard primitives allows the
system to reason about equivalences and cost of alterna-
tive execution strategies. Descriptive primitives refer to, for
example, relational algebra, or built-in aggregation functions
such as GROUP BY or COUNT, and OLAP operations.

Predictive primitives define whether the system is
equipped with special primitives to manipulate predic-
tive algorithms and models. For predictive algorithms, this
includes primitives for linear algebra, matrix operations, sta-
tistical functions, whereas for predictive tasks, this includes
specific model functions, such as fit and predict. The oper-
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ational semantics of predictive primitives allows the system
to evaluate execution plans for the operations supported by
the primitives. An example of a system supporting predictive
primitives is F2DB [30], with declarative primitives for time
series forecasting in SQL, e.g., SELECT c AS OF time
interval.

Optimization primitives define whether the system is
equipped with operations to specify and manipulate opti-
mization models (problems), such as specifying objective
variables, loss functions, objective functions, and con-
straints. Similar to descriptive and predictive primitives,
the known semantics of the optimization primitives makes
meta-optimization of the execution plan of the primitives
possible. An example of a systemoffering optimization prim-
itives is SolveDB [103], where SOLVESELECT t(x) AS
(...) MINIMIZE (SELECT sum(x) FROM t)...,
defines decision variables and the objective function of an
optimization problem in SQL.

We next describe our literature survey methodology,
which will form the basis for Sect. 5, where we present our
categorization of the relevant literature, describe the different
categories in detail, and classify the selected systems accord-
ing to the criteria given in Sect. 4.1.

4.5 Surveymethodology and categorization

As already discussed in Sect. 1, the number of papers and
systems focusing directly on PSA is limited. In our review,
we therefore survey recent literature that, while not neces-
sarily mentioning PSA explicitly, indirectly contributes to
enhancing user PSA applications. First, we performed sim-
ple searches using Google Scholar to provide an overview
of the existing work in PSA and to identify conferences,
researchers in the field, and relevant keywords, e.g., recurring
terms, common research topics, etc. Our research produced
an initial pool of papers that have been used as a foundation
for an exhaustive iterative structured search. In each itera-
tion, we selected new papers deemed relevant to our PSA
survey, adding them to our paper pool until the selection pro-
cess converged to a point in which no more (relevant) papers
could be found. The selection of papers was determined by
the following criteria:

– Papers including the identified keywords.
– Papers whose title and abstract refer to the PSA charac-
teristics defined in Sect. 4.1.

– Papers referenced by the papers in the current paper pool.
– Papers citing the papers in the current paper pool (cita-
tions found using Google Scholar).

– The publication history of each paper’s author in the cur-
rent paper pool.

– All conference proceedings or journal issues published
after 2010 (included) in which the papers in the paper

Table 3 Summary of the PSA+ system comparison. WS—workflow
support; SE—system extensibility; LI—language integration; DC—
distributed computation; DI—data independence; II—implementation
independence; DP—descriptive primitives; PP—predictive primitives;
OP—optimization primitives

pool have been found. The 8 most common outlets
were ACM SIGMOD, PVLDB, IEEE ICDE, TKDE,
CIDR, DOLAP, Decision Support Systems, and Journal
of Machine Learning Research.

Finally, we selected the systems proposed by the papers
from the collected literature based on two constraints: (1) sys-
tems presented in papers published after 2010 (included), and
(2) systems proposing advancements or directly addressing
the aforementioned problems (see Sect. 3) of limited lan-
guage support, lack of high-productivity features, and lack
of PSA workflow optimizations. Only systems meeting both
constraints were selected.

5 Emerging PSA+ systems

In this section, we survey, evaluate, and compare a number
of PSA+ systems based on our system evaluation criteria and
methodology.

5.1 Summary of emerging PSA+ systems

Table 3 gives an overview of the thirteen systems we have
evaluated and shows how the systems compare according to
the different criteria specified in Sect. 4. In general, these
contributions range from PSA-oriented architecture propos-
als over user programming/interaction interfaces to newly
designed DBMSes for improved PSA applications. We have
also found that the two main trends among all the con-
tributions appear to be (1) strengthening the connection
between analytics and data management and (2) declarative
approaches for data analytics. In fact, all the emerging PSA+
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Fig. 4 Taxonomy of the PSA+
systems

systems in Table 3 aim at integrating the DBMS with analyt-
ics framework technologies.

By looking at the contributions and focus points of the
presented software systems and papers, we have synthesized
a system taxonomy and grouped the systems according to
this taxonomy. As seen in Fig. 4, we recognize a single
root, denoted DBMS & analytics, encompassing the efforts
of integrating DBMS and analytics framework functional-
ities. This root has two main system branches: analytical
frameworks and analytical DBMSes. Analytical frameworks
denote a class of systems that aim at unifying analytics tools
with a data management layer in order to make the PSA
process more efficient and developer productivity oriented.
The frameworks aim at providing high-level specifications of
analytics tasks or algorithms and provide a tighter connec-
tion between the data and analytics layers. Broader surveys of
the systems in this category are available [12,59] (out of the
scope of this paper). In this category, two sub-branches have
already been identified [43]: Language-based and Library-
based. In the other top branch, analytical DBMSes propose
DBMS architectures integrating analytics functionality and
BA support directly within the DBMS. This is achieved by
extending the DBMS architecture, query language, and opti-
mization techniques for in-DBMSanalytics.On theonehand,
we find systems proposing the idea of predictive DBMSes, by
focusing on extending DBMSes with predictive algorithms
and machine learning-focused languages. On the other hand,
we have identified optimization DBMSes, systems aiming at
integrating DBMSes with optimization solving capabilities.

We now survey the emerging PSA+ systems in these cat-
egories.

5.2 Language-based analytical frameworks

Language-based analytical frameworks focus on high-level
declarative programming languages to increase developer
productivity. To support such languages, the frameworks
deliver a data processing infrastructure for analytics pro-

cessing. Examples of this category are SystemML [35] and
MLBase [57].

SystemML provides a framework for the development of
machine learning algorithms for both single node and dis-
tributed computation (MapReduce and Spark). SystemML
introduces a declarative machine learning language (DML)
with the objective of providing a framework that abstracts
away the low-level details of distributed machine learning
algorithms from the user. The solution proposed by Sys-
temML follows an algorithm-oriented workflow approach,
where the declarative support focuses on hiding the map
reduce details from the user. DML allows the user to define
machine learning algorithms based on descriptive primitives
and predictive primitives, and iterative numerical optimiza-
tion procedures [35]. By making the map reduce details
transparent,DMLallows the developer to performdistributed
data analytics within a unified language framework. This
approach satisfies both data independence and implementa-
tion independence, by exposing only the abstract data types
frame, matrix, and scalar without their physical data struc-
tures [12].

In the same category of language-based frameworks, a
different approach is presented byMLBase. Similarly to Sys-
temML, MLBase provides a framework for DA and PDA
distributed machine learning techniques on a map reduce
architecture. However, contrary to SystemML’s algorithm-
oriented approach, MLBase introduces a syntax to specify
task-oriented workflows [12]. This approach provides the
user with high-level descriptive primitives and predictive
primitives, in order to define standard analytics tasks such as
classify or predict. By hiding both map reduce and
algorithmic specification details in the underlying system,
and with annotated algorithm characteristics and determin-
istic results, MLBase also satisfies the data independence
and implementation independence properties. The transla-
tion from high-level tasks to map reduce operations is aided
by techniques for selecting the choice of learning algorithm
and by having the runtime execution optimized for the data
processing of these tasks [57].
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The twoapproaches,algorithm-oriented and task-oriented,
show both advantages and disadvantages. On the one hand,
both approaches satisfy data independence and implemen-
tation independence by providing the user with high-level
primitives for a simplified specification of the analytics algo-
rithms. On the other hand, the task of manually defining
analytics algorithms is often viable only to programmers,
thus limiting the impact of algorithm-oriented systems.
Task-oriented systems provide a more coarse-grained scope,
lowering the flexibility in exchange for developer productiv-
ity.

An example of a task-oriented approach is given by the
simple PSA problem introduced in Sect. 2.6. For this prob-
lem, MLBase (for example) can be utilized to predict the
probability with which the items will be sold in the future,
guiding the shopkeeper to keep only the most probable ones.
The shop possesses historical data related to the sales they
have made in the past months. These data are organized in
their DBMS, under the table sales-facts. In MLBase,
the prediction task can be solved by declaratively calling a
prediction function, whichwill find the best predictionmodel
for the dataset to determine if an item will be sold or not. The
code in Listing 1 shows an example of the specification for
this problem in the MLBase language. While the variable
X holds the model features from the DB (selected from the
columns 2 to 10 with the load operation) and y the prediction
labels (extracted from the first column, again with the load
operation), doPredict selects and fits a model for predict-
ing sales, saving the model and the results summary in the
fn-model and summary variables. Using this approach,
the prediction problem becomes a sequence of tasks.

Listing 1 Example of MLBase program for forecasting shop sales

1 var X = load("sales -facts" ,2 to 10)
2 var y = load("sales -facts" ,1)
3 var (fn -model , summary )= doPredict

(X,y)

5.3 Library-based analytical frameworks

The second category of analytical frameworks is library-
based frameworks, exemplified by MADlib [43], Bismarck
[28], and TupleWare [23]. Library-based frameworks share
the goal of providing a set of analytics blocks/tools, mainly
focused on DA/PDA, together with library support for the
user development process.

MADlib is an open-source library that collects a suite
of SQL-based in-DBMS algorithms for DA and PDA, for
both centralized and distributed computation architectures.
MADlib follows a task-oriented approach, by introducing
User-Defined Aggregates (UDAs) that can be utilized by the
user as standard SQL aggregation functions, such as SUM
or COUNT. UDAs can take advantage of the execution capa-

bilities (e.g., multithreading, multiple nodes) of the DBMS,
without requiring to modify the DBMS code to integrate
them.

MADlib gives the user the possibility to extend the sys-
tem with additional UDAs. To do this, MADlib provides an
abstraction layer to facilitate the specification of UDAs and
to encapsulate DBMS-specific logic inside the abstraction
layer. By integrating the methods as SQL aggregate func-
tions, MADlib succeeds at combining data management and
data analytics tasks within the same unified language envi-
ronment.

Tupleware proposes an approach similar to the one fol-
lowed by MADlib, focusing on map reduce implementa-
tions for small clusters. Tupleware proposes a task-oriented
approach, where the authors describe an architecture for
automatic compilation of user-defined function (UDF)work-
flows for in-DBMSanalyticsmethods. Tupleware presents an
extensible system, supported by the possibility of develop-
ing the UDFs using generic programming languages. The
architecture is based on the LLVM [61] compiler, pro-
viding a language-agnostic front end to allow the user to
choose from different programming languages and to opti-
mize UDFworkflows at code generation [22]. However, both
Tupleware and MADlib fail at satisfying the data and imple-
mentation independence properties as the UDAs/UDFs are
implemented against custom data structures, and the opera-
tional semantics of UDAs/UDFs are by definition unknown
in the system and not based on standard system primitives.

A different point of view is given by Feng et al. [28] with
their Bismarck architecture. In their work, the authors advo-
cate that the key bottleneck in the race for analytical DBMSes
is that each new data analytics tool requires several expensive
ad hoc steps every time it is installed in a new DBMS. This is
caused by a lack of unification in data management architec-
tures and algorithms. Common analytics tasks can be defined
as convex programming problems [14], e.g., the learning task
of machine learning algorithms often reduces to minimizing
an error functionwhilefitting a set of parameters to themodel.
The paper suggests that, since a number of statisticalmethods
already fall into this category (e.g., support vector machines,
logistic regression, and localized matrix factorization), the
goal should be to unify the algorithmic diversities under the
same theoretical framework. Thus, the Bismarck architecture
attempts to unify in-DBMSanalytics, providing a single level
of abstraction for the definition of general-purpose optimiza-
tion UDFs, by following an algorithm-oriented approach via
optimization primitives.

On the one hand, the paper does not directly address PSA,
and further research has to be conducted to verify that the
broad range of algorithms and models required by PSA use
cases fall into the convex programming problem category.On
the other hand, the vision of designing a framework facili-
tating analytics extensions is a promising approach, which
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would allow both more control over the analytics process
and easier implementation and use of the algorithms. Never-
theless, similar to the other UDF-based systems described so
far, Bismarck does not satisfy the property of data indepen-
dence and the Hogwild!-style [12,85] model updates deny
the implementation independence property.

To conclude, the systems belonging to the analytical
frameworks category present several advantages, proposing
extensible and efficient frameworks with integrated DBMS
and analytics capabilities, easy UDF implementation, and
declarative languages for querying the models and the data.
Task-oriented approaches also give the user an interface for
easy implementation of the analytics workflow as high-level
functions that can be combined to fulfill the analytics pro-
cess, thereby possibly reducing the development of user PSA
workflows to a combination of UDFs. Nevertheless, the sys-
tems in this category mostly focus on the preliminary tasks
of DA and PDA, and do therefore not extend to the entire
PSA workflow. Moreover, some of the systems do not sat-
isfy the properties of data independence and implementation
independence.

5.4 Predictive DBMSes

The systems in this branch propose extensions to well-
known DBMSes with functionality addressing predictive
tasks. While the approaches discussed in Sect. 5.2 provide
analytical frameworks that can be used on top of the existing
data management layers, predictive DBMSes focus on inte-
grating the analytical tools directly into relational DBMSes.
Representatives of this type of approach are Longview [3],
SciDB [15], BayesDB [69], and F2DB [30].

To start with an example, we consider again the shop-
keeper problem. The query in Listing 2 is written in Bayesian
Query Language (an extension of SQL), the language used
in BayesDB. The query can be used to predict which items
will most probably be sold. INFER (line 1) is used to
declare a prediction query, as a generalization of theSELECT
command, in which the results, the sold items, will be
predicted in inferred-sales (line 2) by the use of
the command PREDICT. In line 3, CONFIDENCE obtains
the prediction confidence for each predicted sale, saved
in inferred-sales-confidence. The SQL language
gives the possibility to easily specify constraints on the pre-
dictions (line 5), where the prediction can be narrowed to
items sold in the shops in Ohio. The resulting view, now con-
taining the predicted data, can then be queried by the user via
standard SQL queries to extract the results. As the reader can
see, the code in Listing 2 can be used to solve the predictive
phase of the problem, while the prescription (the optimiza-
tion of the storage) still requires manual specification by the
user.

Listing 2 Example of Bayesian Query Language (BQL) for predicting
sales

1 INFER orderdate
2 PREDICT sales AS inferred -sales
3 CONFIDENCE inferred -sales -confidence
4 FROM sales -facts
5 WHERE state = 'Ohio '

In general, the systems belonging to the predictive DBM-
Ses category present similar characteristics. The main goal
of these systems is to integrate PDA techniques within a rela-
tional DBMS. The systems offer a wide range of common
machine learning techniques, from clustering to classifica-
tion and forecasting. As already noted in [58], the main con-
tributions can be categorized in terms of model management,
providing support for querying and model maintenance, fea-
ture engineering, algorithm selection, and parameter tuning.
The systems support techniques for transparently selecting,
processing, andmaintaining the forecastingmodels; thus, the
choice anduse of the forecastingmodels canbekept hidden to
the user. With the design of new predictive query languages,
these systems allow the end user to easily apply PDA tools
with a declarative and task-oriented approach.Moreover, the
extension of the SQL language allows for seamless unifica-
tion between the data processing and predictive tasks. The
properties of data independence and implementation inde-
pendence are satisfied by the underlying DBMS, and by the
use of a standardized workflow architecture for model cre-
ation, maintenance, and usage. The systems present both
descriptive primitives, inherited from the DBMS, and pre-
dictive primitives, by providing predictive task operations as
first-class citizens in the DBMS.

Among the presented systems, F2DB takes a narrower
approach, focusing on integrating time series forecasting
within aDBMS [29]. The authors of F2DBargue that, in PDA
applications and decision-making in general, one of the key
statisticalmethods is time series forecasting, and that a deeper
integration of these techniques will contribute to improving
efficiency and usability in such use cases. F2DB allows for
in-DBMS time series forecasting, with an integrated SQL-
based language to define the forecasting queries. F2DB also
provides the user with an extensible interface for integrating
new algorithms.

5.5 Optimization DBMSes

Predictive DBMSes cover both DA and PDA, providing
efficient and easy-to-use solutions for these phases. Nev-
ertheless, predictions are only an intermediate step in the
PSA workflow, and the optimization phase is not directly
integrated into theworkflowof the predictiveDBMSes. Alter-
natively, in optimization DBMSes, we have grouped systems
that specifically address mathematical optimization tasks.
This group includes PaQL [16], Tiresias [73], SolveDB
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[103], and LogicBlox [4] as representatives of DBMSes
with integrated optimization problem solving capabilities.
These systems provide the user with optimization primitives
for linear programming (LP), mixed integer programming
(MIP) [20], constraint programming (CP), global optimiza-
tion, scheduling, etc. In this area, we have recognized two
high-level approaches, based on the type of language pro-
vided to the user: (1) Datalog-based optimization DBMSes
and (2), SQL-based optimization DBMSes. While both
approaches aim at providing the user with declarative query
languages, the choice between SQL and Datalog leads to
either an extendedSQLwithPSAmethods, or to the inclusion
into the DBMS of a separate analytics-oriented language, in
this case, Datalog.

Tiresias belongs to the class of Datalog-based optimiza-
tion DBMSes by providing a system that can be interfaced
with any relational DBMS.1 In the shop sales scenario, a
possible query could, for example, be which items should
be kept in storage in order to maximize the profit? This is
done by utilizing hypothetical tables, which form, together
with the traditional DB tables, a Hypothetical DB (HDB).
Hypothetical tables present the same schema of the tradi-
tional tables, with the addition of hypothetical columns that
define the objective variables to optimize. Tiresias offers a
new language based onDatalog, TiQL,withwhich it is possi-
ble to specify the hypothetical tables, the constraints, and the
minimization/maximization objective. Recalling the storage
optimization problem described before, the code in Listing
3 shows such an approach.

The program is divided into three parts,HTABLE specifies
the hypothetical tables, RULES the optimization constraints,
and MAXIMIZE/MINIMIZE the objective function. Intu-
itively, HItemFacts will be initialized as a hypothetical
table, where qnt? (quantity) is non-deterministically set by
the DBMS to comply with user-defined constraints. After
having defined the specifications for the optimization prob-
lem in the section RULES, the system translates them into a
mixed integer programming (MIP) problem, with the objec-
tive given in MAXIMIZE. The program is then handed to a
MIP solver, which will output a solution that will be used to
populate the HDB.

Listing 3 Example of TiQL program for the storage optimization prob-
lem.

1 HTABLE:
2 HItemFacts(item , profit , qnt?) :-

KEY(item ,price)
3 RULES:
4 HItemFacts(item , price , qnt?) :-

ItemFacts(item , price , qnt)
5 [SUM(qnt?) <= 70] :-

HItemFacts(item , price , qnt?)

1 At the time of publication [73], Tiresias has been tested only with
PostgreSQL.

6 MAXIMIZE(SUM(profit*qnt?))

Similarly to the other declarative approaches described so
far, the user does not directly specify optimization solving
details. Besides the constraints and objective functions, it is
the DBMS that selects a specific LP/MIP solver, applies the
solving algorithm, and records a solution for the optimization
problem by updating the hypothetical columns of the tables
in the HDB. While in the case of predictive DBMSes, it was
not possible to solve optimization problems, but only to find
which items would most probably be sold in the future (as
illustrated in Listing 2), Tiresias disregards the prediction
phase and targets only the optimization task.

LogicBlox proposes another platform for integrating DA,
PDA, and PSA in the sameDBMSarchitecture. The intention
is to expand the notion of database systems to include fea-
tures found in programming languages, statistical systems,
andmathematical optimization. LogicBlox extendsDBMSes
in a similar way as Tiresias, also introducing a new Datalog-
based language,LogiQL, aimed at describinghow-to queries.
However, LogicBlox also supports forecasting techniques
natively in the system. These are implemented as a collection
of built-in machine learning algorithms and can be accessed
via the creation of statistical relationalmodels. Thesemodels
are obtained by extensions of LogiQL supporting the mod-
eling of Markov logic networks [86] and probabilistic soft
logic (PSL) [34]. PSLmodels are specified via the use of soft
constraints, rules similar to regular optimization constraints
but holding continuous values instead of a binary acceptance
condition.

Considering again the storage optimization problem, an
example of the solution obtained with LogicBlox is shown
in Listing 4. Here, the first part of the code (lines 1–9) spec-
ifies the problem of maximizing the profit under the storage
space limit. LogiQL uses Datalog-like constraints, where in
lines [1–5] the user defines the predicates that will be used
in the optimization problem, such as how to calculate the
profit for an item (line 1) or for all the items (line 5). Line
6 specifies the constraint of the storage space. Finally, line 8
describes the prescription problem by defining Stock as a
free variable, which the system is responsible for populating
while respecting the constraints in line 6 and the objective
function in line 9.

Additionally, as LogicBlox allows for predictive model-
ing, it is possible to forecast the probability with which the
items will be sold in the future, in order to optimize the stor-
age in advance. In this case, the store could consider that a
user will buy a promoted item (w1), or an item in the same
category ofwhat she has already purchased (w2), andwill not
buy an item too similar to what has already been purchased
(w3). Under this formalism, maximum a posteriori (MAP)
inference can be used for finding the most likely possible
world under the specified constraints. After having populated
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the tableswith the predicted data, the optimization problem is
again solvable as a how-to query similar to the one described
in lines 1–9.

Listing 4 Example of a LogiQL program for an optimization storage
problem (adapted from the original paper [4])

// BASE PREDICATES
1 profitItem[i]=v → Item(i),float(v)
3 Stock[i]=v → Item(i), float(v)
4 totalShelf []+= Stock[i]
5 totalProfit []+= profitItem[i]* Stock[i]
// RULES
6 totalShelf [] = u → u ≤ 70

// PRESCRIPTION CONSTRAINTS
8 lang:solve:variable(Stock)
9 lang:solve:max(totalProfit)

// PREDICTION CONSTRAINTS
w1:Customer(c),Promoted(i) → Purchase(c,i)
w2:Customer(c),Purchased(j),SameCategory(i,j)→

Purchase(c,i)
w1:Customer(c),Purchased(i),Similar(i,j)→

!Purchase(c,i)

The Datalog-based optimization DBMSes we have
described focus on integrating in-DBMS optimization solv-
ing capabilities within a relational DBMS. Even though
LogicBlox also allows for soft constraint programming to
enable the user to specify prediction tasks, compared to
the predictive DBMSes the support for PDA is limited by
the number of problem classes that can be specified in the
LogiQL language. Although the Datalog extensions offer a
declarative and task-oriented approach to the user, they fail,
however, at unifying data processing and data analytics, as
they require the combination of SQL and a Datalog-based
language. Finally, the systems do not yet support extensibil-
ity of the tools implemented in the architecture.

On the other branch of the tree, SQL-based optimization
DBMSes propose to unify both data management and ana-
lytics layers under the same language, by extending standard
SQL with additional constructs. Among these, PaQL [16]
proposes a system for solving integer linear programming
problems by adopting so-called package queries. Standard
database queries follow the principle that each result tuple
must satisfy a given set of constraints. However, PaQL advo-
cates that, as many problems require a collection of result
tuples to be evaluated over the constraints, rather than indi-
vidual tuples, it is more efficient to handle the result set
collectively as packages, i.e., a set of result tuples that
describe the possible worlds which could solve the problem.
PaQL thus offers a declarative language, based on SQL, to
specify package queries, and a DBMS integrated system to
solve such queries.

An example is shown in Listing 5, where we reuse the
storage optimization example. Intuitively, the PACKAGE
keyword describes that the result of the query will be the
set of tuples from the schema itemFacts that collectively
satisfy the constraint defined in SUCH THAT and according
to the objective in MINIMIZE. As in Tiresias, PaQL does not

directly support the prediction task; thus, the code in Listing
5 only solves the optimization part of the problem. While
it is shown how PaQL query approximation techniques can
scale to large datasets [16], the class of problems that can be
handled is limited to integer linear programming.

Listing 5 Example of PaQL program for a storage problem

1 select PACKAGE(I) as P
2 from itemFacts r
3 SUCH THAT sum(stock) <= 70 and
4 MINIMIZE sum(profit*stock)

In the same category of SQL-based optimization DBM-
Ses, SolveDB [94,103] offers a more general framework for
solvingoptimization problemsusing an extensible infrastruc-
ture for integrating solvers for different classes of problems
directly within a relational DBMS. SolveDB sees every pre-
diction and decision problem as an instance of a special
optimization problem, solvable within the framework. This
is achieved with an interface for the use and extension of
optimization problem solver modules, similar to what is pro-
vided by the analytics framework described in Sect. 5.2, and
an SQL-based syntax for defining optimization problems.

Solver modules can be accessed by the user via a spe-
cial SQL clause SOLVESELECT, which can potentially be
embedded into more complex nested SELECT SQL queries.
These solvers include pre-implemented optimization solvers
from libraries such as GLPK [66] or CBC [21], or user-
defined solvers (UDSs), installed in theDBMSas extensions.
The extension interface can also be used to add predic-
tive algorithms as UDSs, making use of the optimization
machinery already provided in SolveDB to train the mod-
els’ parameters. The specification of a PSA application thus
reduces to a combination of optimization problems for which
the user defines the objectives, constraints, and which of the
installed solvers to apply.

As an example, to apply SolveDB to the same storage
problem described above, we present a possible solution in
Listing 6. The optimization query is specified by the clause
SOLVESELECT x IN that definesx as a database table col-
umn with free variables that has to be populated according to
the constraints in SUBJECTTO and the objective function in
MAXIMIZE. The constraint specification consists of a series
of SELECT statements in which the allowed values are spec-
ified. In the example, the query will use stock as a free
variable, whereby the quantity of items will be chosen by the
optimization solver. The only constraint is specified in line
5, where the sum of the items in stockmust not exceed the
maximum value of 70. The objective function is given in line
4, where the aggregation function SUM(profit*stock)
calculates the profit of the items selected to be in storage.
Finally, line 6 defines which solver module should be used
for solving the resulting optimization problem, in this case
solverlp.
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Listing 6 Example of SolveDBprogram for solving the storage problem

1 SOLVESELECT stock in r as
2 (select itemID ,profit ,null:: integer as stock
3 from ItemFacts)
4 MAXIMIZE (select sum(profit*stock) from r)
5 SUBJECTTO (select sum(stock )<=70 from r)
6 USING solverlp ()

The same query can also be specified as in Listing 7,where
the logic is instead hard-coded in the storageSolver
extension that can be installed by the user in the DBMS.
This approach can be useful for more experienced users who
want to use custom algorithms, to add domain knowledge for
specific cases, and to encode predictive algorithms directly
in the solver.

Listing 7 Example of use of a SolveDB user-defined solver for the
storage problem

1 SOLVESELECT stock IN r AS
2 (select itemID ,stock from ItemFacts)
3 USING storageSolver ()

To conclude, all the optimization DBMSes we have
presented exploit the natural declarative characteristics of
relational DBMSes for analytics purposes, thus satisfying
both data independence and implementation independence.
These systems offer a unified and declarative approach to the
query language by extending the standard SQL for solving
optimization problems. The language syntax and the under-
lying optimization techniques enable the user to follow a
task-oriented approach to the specification of optimization
problem workflows. SolveDB also offers a generic interface
for extending various types of solvers, which enables the
specification of a wide range of optimization tasks and, by
the use of UDSs, also predictive tasks. Nevertheless, optimi-
zation DBMSes have been designed mainly for optimization
problem solving. While they excel in this scenario, PSA
applications require the solution of more intermediate tasks
currently lacking in the available optimization DBMSes, thus
not providing the user with support for carrying out the full
PSA process.

5.6 Discussion

In our evaluation, we have first identified traditional (clas-
sical) systems that have been used for many years for
developing DA, PDA, and PSA applications. We have found
that there exist many BA tools that typically target one (or a
few) tasks within the full workflow of a typical PSA applica-
tion.BA suites integrate functionalities of such individual BA
tools into a single eco-environment, offering better end-to-
end support for user applications, in particular DA and PDA.
Despite the growing importance of DBMSes in decision-
making and business applications [3], the BA Tools and BA
Suites we have reviewed do not yet natively integrate data
management technologies, forcing the user to utilize multi-
ple software systems and multiple (often procedural, closed)

languages. This causes user errors, poor developer productiv-
ity, reduced overall execution performance, and lack of user
guidance throughout the PSA workflow. These traditional
software systemsuseDBMSesonly as a back-enddata server,
missing the advantages of a tight coupling between data and
analytics for an improved overall performance and usability.
Some commercial DBMSes (Oracle [99], SQL server [105],
DB2 [47]) include simple analytics extensions, but they pro-
vide limited or no support for PSA.

There have, however, been attempts at providing much
richer support for user PSA (and PDA) applications. We
have provided a comparison of such PSA+ systems that
aims at providing support for user PSA applications by
focusing on the aforementioned limitations of the classical
systems. These are evaluated based on the criteria given in
Sect. 4.1. As seen in our survey, the database community has
already proposed new architectures to support solutions with
integrated DBMS and analytics framework functionalities.
Among these, analytical DBMSes and analytical frameworks
improve user PSA applications by providing easier access
to the required tools through a unified high-level languages
aimed at increasing developer productivity. We have identi-
fied some important trends in this field, such as declarative
approaches for PDA and PSA. Further, we have found that
a few systems, described as analytical DBMSes, have com-
bined a number of analytics tools inside the DBMS back-end
itself, to be able to optimize mixed data management and
analytics workloads while offering overall improved per-
formance and a unified language for data management and
analytics. However, as these systems were not originally
designed for the totality of PSA, they are still far from being
easily applied in PSA scenarios. Thus, a more integrated
approach for PSA is needed.

Furthermore, we have seen how the analytics process has
undergone a paradigm shift, where declarative languages
have taken the place of traditional procedural approaches. All
the emerging PSA+ systems we have described in Table 3
support a declarative paradigm, as the difficulty encountered
by the end users in designing algorithms and applications via
traditional procedural languages has already been recognized
as one of the major issues in the diffusion of PSA systems
[11]. Nevertheless, while the different authors agree on hav-
ing a declarative paradigm, there is no consensus about the
concrete use of declarative approaches.

Thefirst choice regardswhich type of declarative language
best supports PSA applications. Among the selected systems,
we have identified two main approaches, Datalog-based and
SQL-based systems. Specifically, SQL-based optimization
DBMSes attempt to integrate advanced analytics with tradi-
tional query processing, and at the same time to leverage the
well-known SQL syntax for data operations.We see the argu-
ment for language unification as a compelling idea toward the
simplification of PSA applications.

123



590 D. Frazzetto et al.

Second, the scope of PSA declarative paradigms is yet
to be fully defined. Some of the analytical frameworks and
analytical DBMSes we have reviewed propose the argument
of task-oriented approaches. Others also allow the users to
extend the system/frameworkswithUDFs, providingways to
solve analytics applications as collections of domain-specific
tools. Nevertheless, we find that the task-oriented declara-
tive paradigms provided by most of the systems reviewed
do not yet match the needs of PSA applications. When tar-
geting specific predictive or optimization tasks, the systems
successfully provide the user with declarative methods to
specify the application workflow. However, in the case of
full PSA applications, when multiple tasks from different
BA phases have to be combined, the programmer lacks PSA
process-oriented support for specific processes. In this case,
the user has to fall back to procedurally defining each of the
phases of the workflow. We will discuss the specific chal-
lenges and opportunities for developing the next-generation
PSA+ systems more extensively in the next section.

6 Challenges and opportunities

In this section, we summarize our findings and, based on
the PSA system problems presented in Sect. 3, identify the
three major challenges in developing the next generation of
systems for PSA applications. For these challenges, we also
describe opportunities available for PSA researchers and sys-
tem engineers.

6.1 PSA language challenge

In general, declarative languages have been a huge suc-
cess in data management and analytics, ranging from simple
SQL/MDX (multidimensional expressions used for OLAP)
to declarative data mining and machine learning languages
[11,12]). We thus believe that a possible solution to some of
the current PSA limitations consists in making PSA more
declarative, especially for data engineers and PSA appli-
cation developers; these groups of advanced users should,
however, also be offered procedural and/or imperative con-
structs for specifying computations. The difference between
procedural and declarative approaches is easily exemplified
by comparing data retrieval before and after the introduction
of SQL. In the pre-SQL DBMS era, developers had to pro-
gram the complex data access procedures themselves, e.g.,
in CODASYL or hierarchical databases. With SQL, this has
been both simplified and highly optimized. In comparison,
most PSA tasks still need to be defined in a pre-SQL fash-
ion [72].

While yet another analytics language is not a goal in itself,
the advantages are imminent. For example, a PSA analytics
language based on SQL could easily be integrated into exist-

ing DBMSes. It will thus find a large user base, without the
need for BA developers to learn a completely new syntax.
The PSA+ systems (analytical DBMSes) we have reviewed
demonstrate these advantages.

An equally important gap between an ideal PSA language
and currently employed analytics languages is discussed in
Sect. 5: Although the languages of current systems may fol-
low a declarative paradigm, the full PSA workflow is not
supported. For example, predictive DBMSes give the possi-
bility of easily defining forecasting tasks, while optimization
DBMSes can effectively solve optimization problems. How-
ever, to combine the two phases, which is needed in a full
PSA application, the systems force users to follow a proce-
dural approach, severely diminishing the advantages of the
declarative languages. A powerful declarative unified lan-
guage for the entire PSA workflow would enable a more
effective, faster, and easier development of PSA applications.
We thus define this as our first challenge:

– Challenge 1 - How to develop effective languages for
PSA applications? PSA systems need prescriptive-ori-
ented languages with enough generality and expressivity
to support the full variety of PSA tasks.

A candidate language addressing this challenge should
ensure an appropriate balance of language constructs as well
as declarative and imperative primitives to cater the full range
of users, ranging from analysts to PSA application and algo-
rithm developers. At the same time, the language should
support a wide range of relevant PSA application domains,
while also offeringdataand implementation independence so
that performance optimization is possible across the full PSA
workflow. Furthermore, a number of advanced PSA language
features should also be available to ensure an appropriate
degree of support in the development process: First, hybrid
data (structured, semi-, and unstructured) have been identi-
fied as oneof the keypillars for PSAsuccess [5]; hence, native
language support for this type of data should be considered.
The language should thus offer effective specialized primi-
tives for accessing, manipulating, analyzing/mining, fusing,
and integrating into PSA workflows a wide range of data
types (e.g., documents, images, videos, JSON, graphs), sim-
ilar to what document stores [18] do for data management
alone.

Second, native support and treatment of (AI/predic-
tion/simulation/optimization) models should be considered.
Such models need to be managed as first-class citizens
like the data itself. The language should offer effective
model specification, manipulation (composition, decompo-
sition), analysis, and processing primitives for a variety of
model types supporting, e.g., prediction and optimization.
These primitives could be intermixed with standard data
management operations, giving the user increased flexibil-

123



Prescriptive analytics: a survey of emerging trends and technologies 591

ity when dealing with these models. Some of the reviewed
systems, including MATLAB [71], R/SystemML [35], and
SolveDB [103], offer such primitives to some degree.

Third, direct language support forwhat-if scenarios and/or
time travel capabilities is crucial. What-if primitives would
offer analysts an effective way of creating, analyzing, and
comparing analytical results in case of hypothetical changes
in input data and/or models without having to redefine the
complete workflow. One reviewed system, Tiresias [73],
offers limited support for such hypothetical scenarios. Fur-
ther, time travelingprimitives [55] enable effective evaluation
of PSA workflows in the context of both historical data and
predicted states/observations. Thus, users could conveniently
travel forward and backward in time, while comparing DA,
PDA, and PSA query results using both historical data and
predicted/expected observations.

Lastly, new advanced types of queries that benefit from
integrated descriptive, predictive, and prescriptive function-
ality, such as package queries [16] or advanced exploratory
queries [52], should also be considered.

Of the above four contributions to increased language sup-
port, the first and third appear as the lowest hanging fruits
from a conceptual point of view. There already exists previ-
ous work on how to deal with hybrid data, what-if scenarios,
and time travel inmore restricted datamanagement-only sce-
narios. It thus appears likely that one could make progress by
initially investigating how to best integrate these proposals
within the concepts and constructs provided by the emerging
PSA+ systems.On the other hand, support formore advanced
queries and native model support have seen less earlier work
and represent bigger conceptual steps.

We have here considered the challenge of language func-
tionality alone, but will look at the implementation and
optimization of such languages in Sect. 6.2.

6.2 PSA system optimization challenges

Traditional BA applications have evolved around a myr-
iad of technologies, growing into a complex software stack
composed of many distinct tools [38]. While these technolo-
gies are highly optimized for their individual purposes, the
structure and the nature of the complete PSA workflow are
typically not exploited. This often leads to labor-intensive,
cumbersome, poor performing ad hoc solutions, which are
typically based on a singleDBMSmanually coupledwith one
or multiple analytical packages. As discussed in Sect. 5.6, to
address these problems recent developments aim at marry-
ing traditional data management and analytics to optimize
and execute the whole PSA workflow in a single common
runtime (back-end) system. This raises a challenge as well
as opportunities:

– Challenge 2 - How to optimize PSA workflows in a
unified (PSA+ ) data management and analytics sys-
tem? The aim is to offer the best result quality in the
shortest execution time, where performance and result
quality are complementary objectives.

In the context of this challenge, there are a number
of opportunities for database researchers and practition-
ers. First, techniques for optimizing user-specified targets,
while offering the most effective use of computational
and network resources, are important, especially in a dis-
tributed setting with parallel execution of PSA workloads.
In this setting, the aim is to find the most effective dis-
tribution and placement of data and analytics algorithms
for an arbitrary user-given PSA workflow. When perfor-
mance is desired, query execution/optimization techniques
based on automatic analytical task partitioning, parameter
tuning, data sampling, and progressive execution with fail-
safe state snapshotting can significantly reduce execution
time of CPU-intensive workloads. For input–output (IO)-
intensive workloads, more traditional optimization tech-
niques based on pipelining and streaming of analytical
task input/output become relevant. When the accuracy of
the results is key, optimization techniques involving more
elaborate auto-selection of algorithms, test runs, and/or
ensemble processing become prominent. Furthermore, in
continuous online PSA applications, additional optimiza-
tion based on result caching and warm-starting is possi-
ble.

Second, native support for models (treated as white
boxes/first-class citizens) offers a number of optimization
possibilities. For instance, automatic on-the-fly synthesis
(compilation) of model management algorithms becomes
possible. Such algorithms make the processing of a specific
model instance much faster on a given hardware platform.
An example of this optimization is the solver synthesis for
symbolic nonlinear optimization models. Further, optimiza-
tion techniques based on automatic model partitioning [103],
composition/decomposition [29], aggregation [104,106], or
approximation [102] become possible.

Lastly, additional PSA workflow optimization techniques
based on analytical query rewriting, indexing, material-
ization, and use of new hardware (main memory, NVM,
multicore, GPUs) are potentially feasible.

In terms of difficulty, this challenge is conceptually
relatively easy, since the (optimization) problem is bothwell-
specified and measurable. Thus, the challenge lies more in
designing methods and techniques for these more complex
workflows and queries. Optimization based on native model
support is probably the hardest, but also the most interest-
ing.
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6.3 PSA user productivity challenge

Decades of research in PSA-related fields, e.g., statistical
analysis, data mining, and machine learning, have led to a
multitude of methods and tools for BA, many of which are
based on sophisticated algorithms and complex mathematics
[36,84,88]. The focus of these disciplines has mostly been
on efficient and scalable algorithms, rather than studying the
inner relationship between these methods and how to make
them available to the users in the most accessible way [11].

Having access to more techniques does not necessarily
translate into better applications for the end users, but often
only increases complexity and confusion among the devel-
opers. In a typical PSA scenario, developers will end up
choosing either well-known off-the-shelf algorithms that are
not tailored for their specific tasks, leading to sub-optimal
solutions, ormore recent techniques forwhich the risk ofmis-
use is higher. Furthermore, PSA applications often involve
analytical tasks that require picking the right tools, inputs,
and parameters for improving performance. Again, if not
performed in a rigorous and well-informed manner, these
practices can lead to misinterpretations of required inputs,
parameters, and results [25,27]. While picking and fine-
tuning the right techniques is complex in itself, things get
even worse when different tools for different PSA phases
need to be integrated, often resulting in long development
cycles and low programmer productivity. A challenge is thus
how to achieve the best user productivity in PSA systems
while ensuring efficient and correct use of techniques. We
identify this as our third challenge:

– Challenge 3 - How to achieve high user productiv-
ity when developing PSA applications? PSA systems
should offer effective tools and user support for all levels
and tasks in the PSA development process, while ensur-
ing that the best techniques and practices are chosen and
used correctly.

In the context of this challenge, there are a number of
opportunities for system architects, developers, and system
usability experts (UX). First, end-to-end PSA ecosystems
with comprehensive tool packages ranging from scalable
(big)data stores, over-advanced query processing and AI
engines (supporting the aforementioned language features),
to flexible integrated development environments (IDEs) and
dashboards, need to be developed and customized to sup-
port themost typical PSA scenarios and application domains.
For the most common PSA (sub-)tasks, models, and queries,
templates and wizards need to be prepared and exposed to
the users, e.g., via GUI-based process-, model-, and query
builders. Where possible, problem and data specific (GUI-
based) model and algorithm advisors/recommenders should
be provided. Furthermore, such PSA systems should also

offer support for developing online PSA applications (e.g.,
for energy flexibilitymanagement [31]), which are becoming
quite common. In these applications, process measurements
(and other data) are collected automatically, continuously,
and in (near) real time (e.g., via sensors) and then imme-
diately used in the next decision-making cycle. Among the
reviewed systems, only BI suites such as MATLAB [71] and
SAS [89] offer similar capabilities, but they lack a tight data
management integration.

This challenge is perhaps the hardest of the three, since
it does not concern (relatively) simple language constructs
or (objectively measurable) system performance. Instead, it
concerns the aspect of user productivity which is both quite
fuzzy, inherently subjective with different users having dif-
ferent preferences, and very hard to measure. Thus, solving
this challenge will require many trial-and-error iterations of
designing tool support and having diverse users applying
them in different scenarios.

7 Conclusion and future work

In this paper, we surveyed developments and trends in an
emerging subfield of BA, called prescriptive analytics. We
have presented an overview of the evolution of BA, from the
traditional descriptive analytics (DA) and predictive analyt-
ics (PDA), to the more recent prescriptive analytics (PSA).
As part of the survey, we described the typical decision-
making workflow used in BA applications and identified
tasks that are relevant for a particular type of analytics along
with the technology requirements. We provided an overview
of both established and emerging technologies that offer
user support in the different phases of the PSA development
process. Three major limitations of the existing established
systems were identified (limited language support, lack of
high-productivity features, and lack of PSA workflow opti-
mizations), together with a number of criteria for evaluating
more recent emerging systems (denote as PSA+): Work-
flowSupport, SystemExtensibility,Language Integration and
on the properties of Distributed Computation, Data Inde-
pendence, Implementation Independence, and Descriptive,
Predictive andOptimization primitives. Finally,we surveyed,
evaluated, and compared a number of recent PSA+ systems
in the areas of analytical frameworks and analytical DBMSes
(including prediction DBMSes and Optimization DBMSes).

In general, the emerging PSA+ systems we have surveyed
attempt to solve the aforementioned limitations by combin-
ing specialized analytics tools with generic datamanagement
tools. These integrated systems often demonstrate the ability
to outperformmore ad hoc implementations based on a num-
ber of highly specialized analytics tools. We argue that, for
successful PSA applications, the focus of the research in the
coming years should be on a continued effort at combining
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analytics and datamanagement tools, while offering new lan-
guages and language primitives, user productivity features,
as well as mixed workflow optimizations encompassing the
full PSA process. These observations have been condensed
and presented as three distinct challenges: How to develop
effective languages for PSA applications?, How to optimize
PSA workflows in a unified data management and analytics
system?, and How to achieve high user productivity when
developing PSA applications?.

To conclude, PSA is not yet an established field.While the
tasks and methods that characterize PSA applications have
already been used in BA and decision-making, the discipline
is, compared to the more established DA and PDA, still only
affirming its separate identity. However, if future research is
done along the presented directions, we will soon experience
a wider adoption and use of PSA applications, together with
a more well-understood and established PSA field.
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