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Abstract
The explosion in the amount of the available RDF data has lead to the need to explore, query and understand such data
sources. Due to the complex structure of RDF graphs and their heterogeneity, the exploration and understanding tasks are
significantly harder than in relational databases, where the schema can serve as a first step toward understanding the structure.
Summarization has been applied to RDF data to facilitate these tasks. Its purpose is to extract concise and meaningful
information from RDF knowledge bases, representing their content as faithfully as possible. There is no single concept of
RDF summary, and not a single but many approaches to build such summaries; each is better suited for some uses, and each
presents specific challenges with respect to its construction. This survey is the first to provide a comprehensive survey of
summarization method for semantic RDF graphs. We propose a taxonomy of existing works in this area, including also some
closely related works developed prior to the adoption of RDF in the data management community; we present the concepts at
the core of each approach and outline their main technical aspects and implementation. We hope the survey will help readers
understand this scientifically rich area and identify the most pertinent summarization method for a variety of usage scenarios.
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1 Introduction

Semantic languages and models are increasingly used in
order to describe, represent and exchange data in multiple
domains and forms. In particular, given the prominence of
theWorldWideWebConsortium (W3C)1 in the international
technological arena, its standard model for representing
semantic graphs, namely RDF, has been widely adopted.
Many RDF Knowledge Bases (KBs, in short) of millions
or even billions of triples are now shared through the Web,
also thanks to the development of the Open Data move-
ment, which has evolved jointly with the data linking best
practices based on RDF. A famous repository of open RDF
graphs is the Linked Open Data cloud, currently referenc-
ing more than 62 billion RDF triples, organized in large and
complex RDF data graphs [87]. Further, several RDF graphs
are conceptually linked together into one, as soon as a node
identifier appears in several graphs. This enables querying
KBs together, and increases the need to understand the basic
properties of each data source before figuring out how they
can be exploited together.

1 http://www.w3.org.
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The fundamental difficulty toward understanding an RDF
graph is its lack of a standard structure (or schema), as RDF
graphs can be very heterogeneous and the basic RDF stan-
dard does not give means to constrain graph structure in any
way. Ontologies can (but do not have to) be used in con-
junction with RDF data graphs, in order to give them more
meaning, notably bydescribing thepossible classes resources
may have, their properties, as well as relationships between
these classes and properties. On the one hand, ontologies do
provide an extra entry point into the data, as they allow to
grasp its conceptual structure. On the other hand, they are
sometimes absent, and when present, they can be themselves
quite complex, growing up to hundreds or thousands of con-
cepts; SNOMED-CT,2 a large medical ontology, comprises
millions of terms.

To cope with these layers of complexity, RDF graph sum-
marization has aimed at extracting concise but meaningful
overviews from RDF KBs, representing as close as possible
the actual contents of the KB. RDF summarization has been
used in multiple application scenarios, such as identifying
the most important nodes, query answering and optimiza-
tion, schema discovery from the data, or source selection, and
graph visualization to get a quick understanding of the data. It
should be noted that indexing, query optimization and query
evaluation were studied as standalone problems in the data
management areas, before the focus went to semantic RDF
graphs; therefore, several summarization methods initially
studied for data graphs were later adapted to RDF. Among
the currently known RDF summarization approaches, some
only consider the graph data without the ontology, some oth-
ers consider only the ontology, finally some use a mix of the
two. Summarization methods rely on a large variety of con-
cepts and tools, comprising structural graph characteristics,
statistics, pattern mining or a mix thereof. Summarization
methods also differ in their usage scope. Some summarize
an RDF graph into a smaller one, allowing some RDF pro-
cessing (e.g., query answering) to be applied on the summary
(also). The output of other summarization methods is a set
of rules, or a set of frequent patterns, an ontology etc.

Summarizing semantic graphs is a multifaceted problem
with many dimensions, and thus, many algorithms, methods
and approaches have been developed to cope with it. As a
result, there is now a confusion in the research community
about the terminology in the area, further increased by the
fact that certain terms are often used with different meanings
in the relevant literature, denoting similar, but not identical
research directions or concepts. We believe that this lack
of terminology and classification hinders scientific develop-
ment in this area.

To improve understanding of this field and to help stu-
dents, researchers or practitioners seeking to identify the

2 https://www.snomed.org/snomed-ct.

summarization algorithm, method or tool best suited for a
specific problem, this survey attempts to provide a first sys-
tematic organization of knowledge in this area. We propose
a taxonomy of RDF (and most representative, prior graph)
summarization approaches. Then, we classify existing works
according to the main class of algorithmic notions they are
based on; further, for each work, we specify their accepted
inputs, outputs, and when a tool is publicly available, we
provide the reference to it. We place each of the works in
the space defined by the dimensions of our classification;
we summarize their main concepts and compare them when
appropriate.

Since our focus is on RDF graph summarization tech-
niques, we leave out of our scope graph summarization
techniques tailored for other classes of graphs, e.g., biological
data graphs [89], social networks [57]. We focus on tech-
niques that have either been specifically devised for RDF,
or adapted to the task of summarizing RDF graphs. The
literature comprises surveys on generic (non-RDF) graph
summarization, and/or partial surveys related to our area of
study. The authors of [112] present generic graph summa-
rization approaches, with a main focus on grouping-based
methods. A recent survey [59] has a larger focus than ours.
It considers static graphs as well as graphs changing over
time; graphs which are just connection networks (node and
edge labels are non-existent or ignored), but also labeled
directed or undirected graphs, which can be seen as simple
subsets of RDF. Also, a recent tutorial [40] covers a similar
set of topics. However, given their broad scope, these works
describe areas of work we are not concerned with, such as
social (network) graph summarization, and ignore many of
the proposals specifically tailored for RDF graphs, which are
labeled, oriented, heterogeneous, and may be endowed with
type information and semantics. In contrast, our survey seeks
to answer a needwe encountered amongmany SemanticWeb
practitioners, for a comprehensive review of summarization
techniques tailored exactly to such graphs. Another recent
work [79] focuses on metrics used for ontology summariza-
tion only, whereas we consider both RDF graphs and their
ontologies.

Our survey is structured as follows: Sect. 2 recalls the
foundations of the RDF data model, and RDF Schema
(RDFS, in short), the simplest ontology language which can
be used in conjunction with RDF to specify semantics for its
data. Section 3 describes RDF summarization scope, appli-
cations and dimensions of analysis for this survey. In Sect. 4,
we classify along these dimensions a selection of the main
graph summarization works which preceded works on RDF
summarization.We include a short discussion of these works
here, as they were the first to introduce a set of concepts
crucial for summarization, and on which RDF-specific sum-
maries have built. In the sequel of the survey, Sects. 5, 6, 7
and 8 analyze the related works in each category. Finally,
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Sect. 9 concludes this paper and identifies fields of future
exploration.

2 Preliminaries: RDF graphs

We recall here the core concepts and notations related to
RDF graphs. At a first glance, these can be considered par-
ticular cases of labeled, oriented graphs, and indeed classical
graph summarization techniques have been directly adapted
to RDF; we recall them in Sect. 2.1. Then, we present RDF
graphs in Sect. 2.2, where we introduce the terminology
and specific constraints which make up the RDF standard,
established by the W3C; we also introduce here ontologies,
which play a central role in most RDF applications, with a
focus on the simple RDF Schema ontology language. From a
database perspective, themost common usage of RDFgraphs
is through queries; therefore, we recall the Basic Graph Pat-
tern (BGP) dialect at the core of the SPARQL RDF query
language in Sect. 2.3. Finally, a brief discussion of more
expressive ontology languages, sometimes used in conjunc-
tion with RDF graphs, is provided in Sect. 2.4.

2.1 Labeled directed graphs: core concepts

Labeled directed graphs are the core concept allowing to
model RDF datasets. Further, most (not all) proposals for
summarizing an RDF graph also model the summary as a
directed graph. Thus, without loss of generality, we will base
our discussion on this model. Note that it can be easily gen-
eralized to more complex graphs, e.g., those with (multi-)
labeled nodes.

Given a set A of labels, we denote by G = (V , E) an A-
edge labeled directed graph whose vertices are V , and whose
edges are E ⊆ V × A × V .

Figure 1 displays two such graphs; A edge labels are
attached to edges. Node labels will be used/explained shortly
in our discussion.

In addition, the notions of graph homomorphism and
graph isomorphism frequently appear in graph summary pro-
posals:

Definition 1 (Homomorphism and isomorphism) Let G =
(V , E) and G ′ = (V ′, E ′) be two A-edge-labeled directed
graphs. A function φ : V → V ′ is a homomorphism from

Fig. 1 Sample edge-labeled directed graphs

G to G ′ iff for every edge (v1, l, v2) ∈ E there is an edge
(φ(v1), l, φ(v2) ∈ G ′. If, moreover, φ is a bijection, and its
inverse φ−1 is also a homomorphism from G ′ into G, then φ

is an isomorphism.

A homomorphism from G to G ′ ensures that the graph
structure present in G has an “image“ into G ′. For our dis-
cussion, this is interesting in three different settings:

1. If G is a data graph and G ′ is a summary graph repre-
senting G, a homomorphism from G to G ′ ensures that
every subgraph of G has an image in G ′.

2. Conversely, a homomorphism froma summary graphG ′
into the data graph G means that all the graph structures
present in the summary also appear in the data graph.

3. If Q is a graph query, e.g., expressed in SPARQL, and
G is a data graph, e.g., an RDF graph, the answer to Q
on G, denoted Q(G), is exactly defined through the set
of homomorphisms which may be established from G
to G ′. Together with the two items above, this leads to
several interesting relationships between queries, data
graphs and their summaries, in particular allowing to
use the summary to gain some knowledge about Q(G)

without actually evaluating it.

Observe that while homomorphisms between a graph and
its summary have useful properties, an isomorphism would
defeat the purpose of summarization, as two isomorphic
graphs would have the same size.

In Fig. 1, the graph shown on the right is homomorphic
to that on the left. Indeed, a homomorphism maps each node
from the graph at left into the right graph node whose label
contains its number.

2.1.1 Notations: node and edge counts

Throughout this survey, unless otherwise specified, N
denotes the number of nodes and M the number of edges
of a directed graph input to some summarization approach.

2.2 The resource description framework (RDF)

Our study of graph summarization techniques is centrally
motivated by their interest when summarizing RDF graphs.
RDF is the standard data model promoted by the W3C for
Semantic Web applications.

2.2.1 RDF graph

AnRDF graph (in short a graph) is a set of triples of the form
(s, p, o). A triple states that a subject s has the property p,
and the value of that property is the object o. We consider
only well-formed triples, as per the RDF specification [106],
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Assertion Triple Relational notation
Class (s, rdf:type, o) o(s)
Property (s, p, o) p(s, o)

Constraint Triple OWA interpretation
Subclass (s, ≺sc, o) s ⊆ o
Subproperty (s, ≺sp, o) s ⊆ o
Domain typing (p, ←↩d, o) Πdomain(s) ⊆ o
Range typing (p, ↪→r, o) Πrange(s) ⊆ o

Fig. 2 RDF (top) and RDFS (bottom) statements

belonging to (U ∪ B) × U × (U ∪ B ∪ L) where U is a
set of Uniform Resource Identifiers (URIs), L a set of typed
or untyped literals (constants), and B a set of blank nodes
(unknown URIs or literals); U ,B,L are pairwise disjoint.
Blanknodes are essential features ofRDFallowing to support
unknown URI/literal tokens. These are conceptually similar
to the labeled nulls or variables used in incomplete relational
databases [1], as shown in [27]. As described above, it is easy
to see that any RDF graph is a labeled graph as described in
Sect. 2.1. However, as we explain below, RDF graphs may
contain an ontology, that is, a set of graph edges to which
standard ontology languages attach a special interpretation.
The presence of ontologies raises specific challenges when
summarizing RDF graphs, which do not occur when only
plain data graphs are considered.

2.2.2 Notations

We use s, p, and o as placeholders for subjects, proper-
ties and objects, respectively. Literals are shown as strings
between quotes, e.g., “string”. Figure 2 (top) shows how
to use triples to describe resources, that is, to express class
(unary relation) and property (binary relation) assertions.
The RDF standard [106] has a set of built-in classes and
properties, as part of the rdf: and rdfs: pre-defined names-
paces. We use these namespaces exactly for these classes
and properties, e.g., rdf:type specifies the class(es) to which
a resource belongs. For brevity, we will sometimes use τ to
denote rdf:type.

Example 1 (RDF graph) For example, the following RDF
graph G describes a book, identified by doi1, its author (a
blank node _:b1 whose name is known), title and date of
publication:

G =
{(doi1, rdf:type,Book), (doi1,writtenBy, _:b1),
(doi1,hasTitle, “Le Port des Brumes′′),
(_:b1,hasName, “G. Simenon′′),
(doi1,publishedIn, “1932′′)}

doi1

Book

Publication

“Le Port des Brumes”

:b1

“G. Simenon”

“1932”

Person

writtenBy

hasAuthor

publishedIn

rdfs:subClassOf

rdfs:domain

rdfs:range

rdfs:subPropertyOf

hasTitle

writtenBy

hasName

rdf:type

rdf:type

hasAuthor rdf:type

rdfs:domain

Fig. 3 RDF graph and its implicit triples

2.2.3 RDF schema (RDFS)

RDFS allows enhancing the assertions made in an RDF
graph with the use of an ontology, i.e., by declaring seman-
tic constraints between the classes and the properties they
use. Figure 2 (bottom) shows the four main kinds of RDFS
constraints, and how to express them through triples hence
particular graph edges. For concision, we denote the prop-
erties expressing subclass, subproperty, domain and range
constraints by the symbols ≺sc, ≺sp, ←↩d and ↪→r , respec-
tively. Here, “domain” denotes the first, and “range” the
second attribute of every property.

The RDFS constraints depicted in Fig. 2 are interpreted
under the open-world assumption (OWA) [1], i.e., as deduc-
tive constraints. For instance, if the triple (hasFriend,←↩d
,Person) and the triple (Anne, hasFriend,Marie) hold in the
graph, then so does the triple (Anne, τ,Person). The latter is
due to the domain constraint in Fig. 2.

Example 2 (RDFgraphwith anRDFSontology)Assume that
the RDF graph G in the preceding example is extended with
the RDFS ontological constraints: (Book,≺sc,Publication),
(writtenBy,≺sp, hasAuthor), (writtenBy,←↩d ,Book) and
(writtenBy, ↪→r ,Person). The resulting graph is depicted in
Fig. 3. Its implicit triples are those represented by dashed-line
edges.

2.2.4 RDF entailment

An important feature of RDF graphs are implicit triples. Cru-
cially, these are consideredpart of theRDFgraph even though
they are not explicitly present in it, e.g., the dashed-line G
edges in Fig. 3, hence require attention for RDF graph sum-
marization.

W3C names RDF entailment the mechanism through
which, based on a set of explicit triples and some entail-
ment rules, implicit RDF triples are derived. We denote by
	i

RDF immediate entailment, i.e., the process of deriving new
triples through a single application of an entailment rule.
More generally, a triple (s,p,o) is entailed by a graph G,
denoted G 	RDF (s,p,o), if and only if there is a sequence
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of applications of immediate entailment rules that leads from
G to (s,p,o) (where at each step, triples previously entailed
are also taken into account).

2.2.5 Saturation

The immediate entailment rules allow defining the finite sat-
uration (a.k.a. closure) of an RDF graphG, which is the RDF
graph G∞ defined as the fixed-point obtained by repeatedly
applying 	i

RDF rules on G.
The saturation of an RDF graph is unique (up to blank

node renaming), and does not contain implicit triples (they
have all been made explicit by saturation). An obvious con-
nection holds between the triples entailed by a graphG and its
saturation: G 	RDF (s,p,o) if and only if (s,p,o) ∈ G∞.

RDF entailment is part of the RDF standard itself; in par-
ticular, the answers to a query posed on G must take into
account all triples in G∞ [109], since in the presence of
RDF Schema constraints, the semantics of an RDF graph
is its saturation [106]. As a result, the summarization of an
RDF graph should reflect its saturation, e.g., by summarizing
the saturation of the graph instead of the graph itself.

Example 3 (RDFentailment and saturation)The saturationof
the RDF graph comprising RDFS constraints G, displayed
in Fig. 3, is the graph G∞ obtained by adding to G all its
implicit triples that can be derived through RDF entailment,
i.e., the graphG in which the implicit/dashed edges are made
explicit/solid ones.

We introduce below a few more notions we will need in
order to describe existing RDF summarization proposals.

2.2.6 Instance and schema graph

An RDF instance graph is made of assertions only (recall
Fig. 2), while an RDF schema graph is made of constraints
only (i.e., it is an ontology). Further, an RDF graph can be
partitioned into its (disjoint) instance and schema subgraphs.

2.2.7 Properties and attributes of an RDF graph

While this is not part of the W3C standard, some authors
use attribute to denote a property (other than those built in
the RDF and RDFS standards, such as τ , ←↩d etc.) of an
RDF resource such that the property value is a literal. In
these works, the term property is reserved for those RDF
properties whose value is an URI.

Example 4 (Instance, schema, properties and attributes of
an RDF graph) The RDF graph G shown in Fig. 3 con-
sists of the RDF schema graph comprising the blue triples,
and of the RDF instance graph comprising the black triples.

Further, within this G instance subgraph, the properties con-
sidered attributes are the following: publishedIn, hasTitle and
hasName.

2.3 BGP queries

SPARQL3 is the standardW3C query language used to query
RDF graphs. We consider its popular conjunctive fragment
consisting of Basic Graph Pattern (BGP) queries. Subject of
several recent works [9,26,27,77,94], BGP queries are also
the most widely used in real-world applications [53,77]. A
BGP is a generalization of an RDF graph in which variables
may also appear as subject, property and object of triples.

2.3.1 Notations

In the following we use the conjunctive query notation
Q(x̄):- t1, . . . , tα , where {t1, . . . , tα} is a BGP. The head of Q
is Q(x̄), and the body of Q is t1, . . . , tα . The query head vari-
ables x̄ are called distinguished variables, and are a subset
of the variables occurring in t1, . . . , tα; for boolean queries x̄
is empty. We denote by VarBl(Q) the set of variables and
blank nodes occurring in the query Q. In the sequel, we will
use x , y, z, etc. to denote variables in queries.

2.3.2 Query evaluation

Given a query Q(x̄):- t1, . . . , tα and an RDF graph G, the
evaluation of Q against G is:

Q(G) = {Φ(x̄) | Φ : VarBl(Q) → Val(G) is a Q to G

homomorphism such that {Φ(t1), . . . , Φ(tα)} ⊆ G}

where we denote byΦ(t) (resp.Φ(x̄)) the result of replacing
every occurrence of a variable or blank node e ∈ VarBl(Q)

in the triple t (resp. the distinguished variables x̄), by the
value Φ(e) ∈ Val(G).

2.3.3 Query answering

The evaluation of Q against G uses only G’s explicit triples,
thus may lead to an incomplete answer set. The (complete)
answer set of Q against G is obtained by the evaluation of
Q against G∞, denoted by Q(G∞).

Example 5 (Query evaluation versus answering) The query
below asks for the author’s name of “Le Port des Brumes”:

Q(x3):- (x1,hasAuthor, x2), (x2,hasName, x3)
(x1,hasTitle, “Le Port des Brumes′′)

3 https://www.w3.org/TR/rdf-sparql-query/.
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300 Š. Čebirić et al.

Its answer against the explicit and implicit triples of our
sample graph is: Q(G∞) = {〈“G. Simenon′′〉}.

Note that evaluating Q only against G leads to the empty
answer, which is obviously incomplete.

2.4 OWL

Semantic graphs considered in the literature for summariza-
tion sometimes go beyond the expressiveness of RDF, which
comes with the simple RDF Schema ontology language. The
standard by W3C for semantic graphs is the OWL [107,108]
family of dialects that builds on Description Logics (DLs)
[4].

DLs are first-order logic languages that allow describing
a certain application domain by means of concepts, denoting
sets of objects, and roles, denoting binary relations between
concept instances. DL dialects differ in the ontological con-
straints they allow expressing on complex concepts and roles,
i.e., defined by DL formula. One of the most important
issues in DLs is the trade-off between expressive power and
computational complexity of reasoning with the constraints
(consistency checking, query answering, etc.)

The first flavor of OWL [107] consists of three dialects of
increasing complexity: OWL-Lite, OWL-DL andOWL-Full.
Unfortunately, very basic reasoning (concept satisfiability)
in these dialects is highly intractable: ExpTime-complete in
OWL-lite that corresponds to the SHIFD DL, NExpTime-
complete in OWL-DL that corresponds to the SHIOND
DL, and even undecidable in OWL-full. A second flavor of
OWL [108], a.k.a. OWL2, defines three new dialects, OWL2
EL based on the EL DL, OWL2 QL based on the DL-liteR
DL and OWL2 RL which can be expressed using logical
rules. These new dialects comes with PTIME complexity for
most of the reasoning tasks. In particular, data management
tasks (consistency checking, query answering, etc.) under
OWL2 QL/DL-liteR ontologies have the same complexity
as their counterparts in the relational database model [10].

3 RDF summarization: scope, applications
and dimensions of analysis for this survey

Aswe shall see, RDF summarization has been attachedmany
differentmeanings in the literature, and research is still ongo-
ing. Therefore, we start with delimiting the scope of RDF
summarization as considered in this survey (Sect. 3.1), before
describing the RDF summary applications most frequently
encounteredwithin this scope (Sect. 3.2), and finally present-
ing several dimensions along which the corresponding RDF
summarization techniques can be classified (Sect. 3.3).

3.1 Scope

Our goal in this survey is to study summarization notions and
tools which are useful to concrete RDF data management
applications. We will thus discuss a broad set of techniques,
some of which are also used outside our target RDF data
management contexts. However, to keep the survey focused,
self-contained, and useful to RDF practitioners, we do not
cover graph summarization or clustering techniques designed
for very specific classes of graphs. For instance, while social
network graphs can be modeled in RDF, such graphs have a
very specific semantics, for instance, to reflect the important
role of “user” nodes. Instead, we aim to cover summariza-
tion of general RDF graphs (without making assumptions on
their application domain), without ontologies (in which case
they basically coincide with labeled oriented graphs) or with
ontologies (that are a specific, crucial feature of RDF data
graphs).

Our review of the literature leads us to the following
generic definition. An RDF summary is one or both among
the following:

1. A compact information, extracted from the originalRDF
graph; intuitively, summarization is a way to extract
meaning from data while reducing its size;

2. A graph, which some applications can exploit instead
of the original RDF graph, to perform some tasks more
efficiently; in this vision, a summary represents (or
stands for) the graph in specific settings.

Clearly, these notions intersect, e.g., many graph sum-
maries extracted from the RDF graphs are compact and can
be used for instance to make some query optimization deci-
sions; these fit into both categories. However, some RDF
summaries are not graphs; some (graph or non-graph) sum-
maries are not always very compact, yet they can be very
useful etc.

3.2 Applications

Weillustrate the abovegeneric definition of anRDFsummary
through a (non-exhaustive) list of uses and applications.

3.2.1 Indexing

Most (RDF) summarizationmethods from the literature build
summaries which are smaller graphs; each summary node
represents several nodes of the original graphG. This smaller
graph, then, serves as an index as follows. The identifiers
of all the G nodes represented by each summary node v

are associated with the node v. To process a query on G,
we firstly identify the summary nodes, which may match
the query; then identify based on the index, the graph nodes
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corresponding to these summary nodes, as a first step toward
answering the query.

3.2.2 Estimating the size of query results

Consider a summary defined as a set of statistics about prop-
erty (edge label) co-occurrence in G, that is: the summary
stores, for any two properties a, b appearing inG, the number
of nodes which have at least an outgoing a edge and at least
an outgoing b edge. If a query searches, e.g., for resources
having both a “description” and an “endorsement” in an RDF
graph storing product information, if the summary indicates
that there are no such resources, we can return an empty
query answer without consulting G. Further, assume that a
BGP query requires a resource with properties p1, p2, some-
how connected to another resource with properties p3, p4. If
the summary shows that the former property combination is
much rarer than the latter, a query optimizer can exploit this to
start evaluating the query from the most selective conditions
p1, p2.

3.2.3 Making BGPs more specific

BGPs queries may comprise path expression with wildcards;
these are hard to evaluate, as they require traversing a poten-
tially large part ofG. A graph summarymay help understand,
e.g., that a path specified as “any number of a edges followed
by one or more b edges” corresponds to exactly two data
paths in G, namely: a b edge; and an a edge followed by a b
edge. These two short and simple path queries are typically
evaluated very efficiently.

3.2.4 Source selection

One can detect based on a summary whether a graph is likely
to have a certain kind of information that the user is looking
for, without actually consulting the graph. In a distributed
query processing setting, this can be used to knowwhich data
partition(s) are helpful for a query; in a LOD cloud querying
context, when answering queries over a large set of initially
unknown data sources, this problem is typically referred to
as source selection.

3.2.5 Graph visualization

A graph-shaped summary may be used to support the users’
discovery and exploration of an RDF graph, helping them
get acquainted with the data and/or as a support for visual
querying.

3.2.6 Vocabulary usage analysis

RDF is often used as a mean to standardize the description
of data from a certain application domain, e.g., life sciences,
Web content metadata etc. A standardization committee typ-
ically works to design a vocabulary (or set of standard data
properties) and/or an ontology; application designers learn
the vocabulary and ontology and describe their data based on
them. A few years down the road, the standard designers are
interested to know which properties and ontology features
were used, and which were not; this can inform decisions
about future versions of the standard.4

3.2.7 Schema (or ontology) discovery

When an ontology is not present in an RDF graph, some
works aim at extracting it from the graph. In this case, the
summary ismeant to beused as a schema,which is considered
to have been missing from the initial data graph.

3.3 Classification of RDF summarizationmethods

From a scientific viewpoint, existing summarization propos-
als are most meaningfully classified according to the main
algorithmic idea behind the summarization method:

1. Structural methods are those which consider first and
foremost the graph structure, respectively the paths and
subgraphs one encounters in the RDF graph. Given
the prominence of applications and graph uses, where
structural conditions are paramount, graph structure is
prominently used in summarization techniques.

– Quotient A particular natural concept when building
summaries is that of quotient graphs (Definition 2).
They allow characterizing some graph nodes as
“equivalent“ in a certain way, and then summarizing
a graph by assigning a representative to each class of
equivalence of the nodes in the original graph. A par-
ticular feature of structural quotient methods is that
each graph node is represented by exactly one sum-
mary node, given that one node can only belong to
one equivalence class.

– Non-quotient Other methods for structurally summa-
rizing RDF graphs are based on other measures, such
as centrality, to identify the most important nodes,
and interconnect them in the summary. Such meth-
ods aim at building an overview of the graph, even if
(unlike quotient summaries) some graph nodes may
not be represented at all.

4 Thanks to William van Voensel from schema.org for sharing this
application with us.
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2. Pattern-mining methods These methods employ min-
ing techniques for discovering patterns in the data; the
summary is then built out of the patterns identified by
mining.

3. Statistical methods These methods summarize the con-
tents of a graph quantitatively. The focus is on counting
occurrences, such as counting class instances or build-
ing value histograms per class, property and value type;
other quantitative measures are frequency of usage of
certain properties, vocabularies, average length of string
literals etc. Statistical approaches may also explore
(typically small) graph patterns, but always from a quan-
titative, frequency-based perspective.

4. Hybrid methods To this category belong works that
combine structural, statistical and pattern-mining tech-
niques.

Another interesting dimension of analysis is the required
input by each summarization method, in terms of the actual
dataset, and of other user inputs which some methods need:

1. Input parameters Many works in the area require user
parameters to be defined, e.g., user-specified equiv-
alence relations, maximum summary size, weights
assigned to some graph elements etc., whereas others
are completely user independent. While parameterized
methods are able to produce better results in spe-
cific scenarios, they require some understanding of the
methodology and as such limit their exploitation ability
only to experts.

2. Input Dataset Different works have different require-
ments from the dataset they get as input. RDF data
graphs are most frequently accepted, usually RDF/S
and/or OWL are used for specifying graph semantics,
whereas only very few works consider DL models. In
addition, some works consider or require only ontolo-
gies (semantic schema), whereas other works exploit
only instances. Hybrid approaches exploit both instance
and schema information. For instance, the instance and
schema information can be used to compute the sum-
mary of the saturated graph, even if the instance graph
is not saturated.

For what concerns the summarization output, we identify
the following dimensions:

1. Type This dimension differentiates techniques accord-
ing to the nature of the final result (summary) that is
produced. The summary is sometimes a graph, while in
other cases it may be just a selection of frequent struc-
tures such as nodes, paths, rules or queries.

2. NatureAlong this dimension, we distinguish summaries
which only output instance representatives, from those
that output some form of summary a posteriori schema,
and from those that output both.

AvailabilityLast but not least, fromapractical perspective,
it is interesting to know the availability of a given summariza-
tion service. This will allow a direct comparison with future
similar tools:

1. System/tool Several summarization approaches aremade
available by their authors as a tool or system shared
with the public; in our survey, we signal when this is the
case. In addition, some of the summarization tools can
be readily tested from an online deployment provided
by the authors.

2. Open source The implementation of some summariza-
tion methods is provided in open source by the authors,
facilitating comparison and reuse.

We also consider the quality characteristics of each indi-
vidual algorithm. Quality has to do with: completeness in
terms of coverage, precision and recall of the results if an
“ideal” summary is available as a gold standard to compare
with, the connectivity of the computed summary and, at the
end, computational complexity. Given variety of RDF sum-
marization approaches, it is not easy to define and evaluate a
single meaningful notion of quality. A more comprehensive
effort to establish a generic framework for computing qual-
ity metrics on summaries is proposed in [121], where authors
discuss summarization quality concerning both the schema
and instances levels. However, difficulties remain, e.g., iden-
tifying the complexity of a summarization algorithm is not
always possible when the available description of the algo-
rithm does not provide sufficient information.

The main categorization we retain for the different
RDF summarization approaches is based on their measur-
able/identifiable characteristics and not on their intended use.
This is because the boundaries among the different usages
are not very clear and there are types of methods that can
be used in diverse cases/applications. Thus, the advantages
and/or disadvantages for each category of methods cannot be
identified in a genericway; however, we inserted a discussion
whenever pertinent.

Figure 4 depicts a high-level taxonomy of the RDF sum-
marization works, based on the aforementioned dimensions.
Note that many of the dimensions are orthogonal; thus, a
work may be classified in multiple categories. In the sequel,
we classify the works, describe the main ideas and the imple-
mented algorithms. Then, we identify the specific dimension
of analysis captured in Fig. 4 for each of these works.
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Fig. 4 A taxonomy of the works in the area

4 Generic graph (non-RDF) summarization
approaches

In this section, we review generic graph summarization
approaches. While these have not been specifically devised
for RDF, they have either been applied to RDF subsequently,
or served as inspiration for similar RDF-specific proposals.
An overview of the generic graph summarization works is
provided in Tables 1 and 2.More precisely, Sect. 4.1 presents
structural graph summarization methods, Sect. 4.2 describes
works based on mining and statistics, while Sect. 4.3 consid-
ers summaries based on statistic and hybrid (structural and
statistic) methods.

4.1 Structural graph summarization

The structural complexity and heterogeneity of graphs make
query processing a challenging problem, due to the fact that
nodes which may be part of the result of a given query can be
found anywhere in the input graph. To tame this complexity
and direct query evaluation to the right subsets of the data,
graph summaries have been proposed as a basis for indexing,
by storing next to each summary node, the IDs of the original
graph nodes summarized by this node; this set is typically
called the extent. Given a query, evaluating the query on the
summary and then using the summary node extents allows
obtaining the final query results.

4.1.1 Quotient graph summaries

Many proposals for indexing graph data are based on estab-
lishing some notion of equivalence among graph nodes, and
storing the IDs of all nodes as the extent of the summary

node. Formally, these correspond to quotient graphs, whose
definition we recall below:

Definition 2 (Quotient graph) Let G = (V , E) be an
A-edge-labeled directed graph and ≡ ⊆ V × V be an equiv-
alence relation over the nodes of V . The quotient graph of G
using ≡, denoted G/≡, is an A edge-labeled directed graph
having:

– a node uS for each set S of ≡-equivalent V nodes;
– an edge (vS1, l, vS2) iff there exists an E edge (v1, l, v2)
such that vS1 (resp. vS2 ) represents the set of V nodes
≡-equivalent to v1 (resp. v2).

Prominent node equivalence relations used for graph
summarization build on backward, forward, or backward-
and-forward bisimulation [32]:

Definition 3 (Backward bisimulation) In an edge-labeled
directed graph, a relation ≈b between the graph nodes is a
backward bisimulation if and only if for any u, v, u′, v′ ∈
V :

1. If v ≈b v′ and v has no incoming edge, then v′ has no
incoming edge;

2. If v ≈b v′ and v′ has no incoming edge, then v has no
incoming edge;

3. If v ≈b v′, then for any edge u a−→ v there exists an edge
u′ a−→ v′ such that u ≈b u′;

4. If v ≈b v′, then for any edge u′ a−→ v′ there exists an
edge u

a−→ v such that such that u ≈b u′.

Forward bisimulation, noted ≈ f , is defined similarly to
backward simulation, but considers the outgoing edges of v

and v′, instead of the incoming ones. Forward and backward
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simulation, noted ≈ f b, is both a backward and a forward
bisimulation.

We already pointed out that, in Fig. 1, the graph on
the right is homomorphic to that on the left. The for-
mer is actually the quotient graph of the latter using
≈ f b. In particular, the classes of ≈b-equivalent nodes
are {1}, {2, 3, 4, 5}, {6, 8, 9}, {7}, those of ≈ f -equivalent
nodes are {1}, {2}, {3, 4}, {5, 6, 7, 8, 9}, and those of ≈ f b-
equivalent nodes are {1}, {2}, {3, 4}, {5}, {6}, {7}, {8, 9}.

Finally, we remark that it easily follows from the bisim-
ulation definitions that if v ≈ v′, for instance for forward
bisimulation, then any label path that can be followed from
v in the graph G can also be followed from v′ in G and
the other way around. In other words, the same paths start
(respectively, end) in two ≈-equivalent nodes. This condi-
tion is hard to meet in graphs that exhibit some structural
heterogeneity: in such cases, every node is ≈-equivalent to
very few (if any) other nodes.

The Template Index (or T-index) [64] summary considers
that two graph nodes are equivalent if they are backward
bisimilar. In particular, in a T-index, nodes represented
together need to be reachable by the exact same set of incom-
ing paths. The goal of theT-index is to speed up the evaluation
of complex queries of a certain form (or template), such as
P.v (all nodes v reachable by a path matching the regular
expression P) or v.P.u (all v, u node pairs connected by a
path matching P); the proposal generalizes to arbitrary arity
queries, although the authors note it is likely to be most use-
ful in the above two simplest forms. The simulation relation
between the nodes of a graph G is known to be computable
in O(M ∗ log(M)) [71] or O(N ∗ M) [32]; the cost drops
to linear for acyclic graphs. All these algorithms assume the
graph fits in memory.

To support efficient processing of graph queries that nav-
igate both forward (in the direction of the graph edges) and
backward, Kaushik et al. [37] describes the Forward and
Backward Index (F&B) which considers two nodes equiv-
alent if they are undistinguishable by any navigation path
composed only of forward and backward steps (see Fig. 5
for an example). While this equivalence condition is very
powerful, it is rarely satisfied by two nodes, thus the F&B-
index is likely to have a large amount of nodes (close to the
number of nodes in the original graph), making the manipu-
lation of the F&B-index structure inefficient. To address the
problem, the authors note that in practice not any path query
is frequently asked by applications; therefore, it suffices to
consider F&B equivalence of nodes as being undistinguish-
able by forward and backward navigation along the paths
from a certain set only.

Another method proposed in [38,82], in order to make
the F&B-index smaller and more manageable, is to consider
bisimilarity restricted only to paths of a certain length around
the graph nodes (see Fig. 5 for an example). This increases
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Table 2 Other graph summary proposals

Work Method Input requirements Purpose Output type Output nature System–theory

Dataguide [28] Structural
non-quotient

None Indexing, query
answering

Single root,
node- and
edge-labeled
graphs

Instance System

Rudolf et al. [85] Structural
non-quotient

Required user
parameters

Visualization Property graph Instance System

Chen et al. Graph
OLAP [16]

Structural
non-quotient

None OLAP Multiple
non-RDF
graphs

Multiple
Instances

Theory

Zhao et al. [117] Pattern mining None Indexing, graph
containment
queries

Set of frequent
trees

Instance Theory

Yan et al. [111] Pattern mining Parameterized
user input

Indexing, query
answering

Tree Instance Theory

Koutra et al. [51] Clustering,
pattern mining

None Visualization Graph Instance Theory

Khan et al. [41] Structural
non-quotient,
data mining

Required degree
threshold,
overlap ratio

Visualization Graph Instance Theory

Navlakha
et al. [69]

Structural
non-quotient,
data mining

Optional
user-specified
bounded-error
parameter

Visualization Graph Instance Theory

LeFevre et al.
[55], Riondato
et al. [83]

Structural
non-quotient,
data mining

Required number
of summary
nodes, size of
the extent of
summary nodes

Answering
adjacency,
degree and
centrality
queries

Graph Instance Theory

Chen et al.
Randomized
summaries [15]

Structural
non-quotient,
pattern mining

Required support
threshold

Visualization Graph Instance Theory

Fig. 5 Structural graph summarization examples

the chances that two nodes be considered equivalent, thus
reducing the size of the bisimilarity-based summary. Lim-
ited bisimulation summaries like this, can be computed by
evaluating structural group-by queries (for k-bounded bisim-

ilarity), respectively, queries derived from the workload of
interest (for workload-driven F&B summarization). While
the theoretical complexity of such queries is O(Mk), with M
the number of edges and k the size of themost complex query
involved, efficient graph query processors, with the help of
good indexing, achieve much better performance in practice.

Consens et al. [18] considers the summarization of large
Web document collections. While the main structure in this
case consists of trees, they may also feature reference edges
which turn the dataset into a global graph. The authors build
a summary as a collection of regular expression queries, such
that the set of results to these queries, together, make up a par-
tition over the set of nodes in all the documents of the input
collection. To each such regular expression is associated
a set of cardinality statistics, to help application designers
chose meaningful queries and inform them on the expected
performance which may be reached on those queries. The
dominant-cost operation required by this approach is com-
puting simulations among N nodes; summaries can then be
refined based on user-specified path queries.
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Luo et al. [62] provides an I/O efficient external memory-
based algorithm for constructing the k-bisimulation summary
of a disk-resident graph on a single machine, based on
several passes of sorting and gradually refining partitions
of nodes on disk. The I/O complexity of the algorithm is
O(k ∗ sort(Mp) + k ∗ scan(Np) + sort(Np)), where Mp,
respectively, Np are the numbers of disk pages required
to store the graph edges, respectively, graph nodes, while
sort(·) and scan(·) quantify the cost of an external sort,
respectively, the cost to scan a certain number of pages.

4.1.2 Non-quotient graph summaries

There are also many methods that construct non-quotient
graph summaries. They distinguish nodes according to
several criteria/measures and create summaries in which
summary nodes represent multiple nodes out of the original
graph.

ADataguide [28] (see Fig. 5 for an example) is a summary
of a directed acyclic graph, havingonenode for eachdata path
in the original graph. A graph node reachable by a set of paths
belongs to the extents of all the respective Dataguide nodes.
Thus, given a path query which may also contain wildcards,
and a Dataguide, it is easy to identify the Dataguide nodes
corresponding to the query, and from there their extents. The
authors show how to integrate the Dataguide path index with
more conventional indexes, e.g., a value index which gives
access to all the nodes containing a certain constant value
etc. A Dataguide is not a quotient: an input node may be
represented by two Dataguide nodes, if it is reachable by two
distinct paths in the input graph. Building a Dataguide out
of a data graph amounts to determinizing an undeterministic
finite automaton; the worst-case complexity of this is known
to be exponential in the size of the input graph, yet only linear
when the database is tree-structured.

Summary-based query answeringwith an acceptable level
of error is considered in [41,69]. The focus is on graph com-
pression while preserving bounded-error query answering
and/or the ability to fully reconstruct the graph from the sum-
mary with the help of so-called “corrections” (i.e., edges to
add to or remove from the “expansion” of the summary into
the regular part of the graph it derives from). The nodes of
the resulting structural summary represent partitions of sim-
ilar nodes from G, while a summary edge exists between
two summary nodes u and v only if the nodes from G repre-
sented by u and v are densely connected. Similarly, LeFevre
and Terzi [55] aims to compress G, but without consider-
ing corrections, while their edge labels represent the number
of edges within each partition set, and the number of edges
between every two such sets. To determine similar nodes,
Khan et al. [41] relies on locality-sensitive hashing, while
[55,69] use a clusteringmethodwhere pairs of nodes tomerge
are chosen based on the optimal value of an objective func-

tion. In [83], the authors build on the concepts of [55] to show
how to obtain in polynomial time, summaries which are close
to the optimal one (in terms of corrections needed. However,
these works focus on node connectivity, and ignore the node
and edge labels which crucially encode the data content of
an RDF graph.

Tian et al. [96] proposes the SNAP (Summarization on
Grouping Nodes on Attributes and Pairwise Relationships)
technique, whose purpose is to construct, with some user
input, a summary graph that can be used for visualization.
A SNAP summary represents all the input graph nodes and
edges: its nodes forms a partition of the input graph nodes,
and there is an edge of type t between two summary nodes
A and B if and only if some input graph node represented
by A is connected through an edge of type t to an input
graph node represented by B. Further, a SNAP summary
has a minimal number of nodes such that (i) all input graph
nodes represented by a summary node have same values for
some user-selected attributes and (i i) every input graph node
represented by some summary node is connected to some
input graph nodes through edges of some user-selected types.

Fan et al. [22] considers reachability and graph pattern
queries on labeled graphs, and builds answer-preserving
summaries for such queries, that is: for a given graphG, sum-
mary S(G) and query Q, there exists a query Q′ which can be
computed from Q, and a post-processing procedure P such
that P(Q′(S(G))) = Q(G). In otherwords, evaluating Q′ on
the summary and then applying the post-processing P leads
to the result Q(G). This property is rather strong; however, it
is attainednot under theusual query semantics basedongraph
homomorphism, underlying SPARQL, but under a bounded
graph simulation one. Under these semantics, answering a
query becomes P (instead of N P), at the price of not pre-
serving the query structure (i.e., joins). The authors propose
two parallel graph compression strategies, targeting different
kinds of queries: (i) reachability queries, where we seek to
know if one node is reachable from another; (ii) graph pattern
queries, for which they attain a significant compression ratio.
It should be again stressed that the authors consider these
queries under non-standard, more lenient semantics than the
ones used for RDF querying. The complexity of building
their summaries are O(N ∗ M) for reachability queries, and
O(N ∗ log(M)) for graph pattern queries.

4.2 Mining-based graph summarization

OLAP and data mining techniques applied to data graphs
have considered them through global, aggregated views,
looking for statistics and/or trends in the graph structure and
content.

Yan et al. [111] leverages pattern-mining techniques to
build graph indices in order to help processing a graph query.
It firstly applies a frequent pattern-mining algorithm to iden-
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tify all the frequent patterns with the size support constraint.
Once the frequent patterns are extracted, they are organized
in a prefix tree structure, where each pattern is associated
with a list of ids of the graphs containing it. This prefix tree
is then used to answer queries asking for the respective part of
the graph. This approach by design does not reflect all data
and is based on numeric information. [117] uses the same
idea, but considers trees instead of graphs.

The Vocabulary-based summarization of Graphs (VoG)
[51] aims at summarizing a graph by its characteristic sub-
graphs of some fixed types, which have been observed
encoding meaningful information in real graphs: cliques,
bi-partite cores, stars, chains, and approximations thereof.
VoG first decomposes the input graph, using any clustering
method, into possibly overlapping subgraphs, the (approx-
imate) type of each is then identified using the Minimum
Description Length principle [84]. Finally, the input graph
summary is composed of some non-redundant subgraphs,
picked by some heuristic like top k, hence may not reflect
all the input graph. Importantly, the VoG method has been
shown to scale well; it is near-linear in the number of edges.
The VoG code is available for download.5

An aggregation framework for OLAP operations on
labeled graphs is introduced in [16]. The authors assume
as available an OLAP-style set of dimensions with their
hierarchies and measures; in particular, graph topological
information is used as aggregation dimensions. Based on
these, they define a “graph cube” and investigate efficient
methods for computing it. With a different perspective, [15]
focuses on building out of node- and edge-labeled graphs,
a set of randomized summaries, so that one can apply data
mining techniques on the summary set instead of the original
graph. Using the summary set leads to better performance,
while guaranteeing upper bounds on the information loss
incurred.

A graph summarization approach, based solely on the
graph structure is reported in [58]. It produces a summary
graph that describes the underlying topology characteris-
tics of the original one. Every summary node, or supernode,
comprises of a set of nodes from the original graph; every
summary edge, or super-edge, represents an all-to-all con-
nections between the nodes in the corresponding supernodes.
The goal of this work is to generate a summary that min-
imizes the false positives and negatives introduced by this
summarization. The authors investigate different distributed
graph summarization methods, which proceed in an incre-
mental fashion, gradually merging nodes into supernodes;
the methods differ in the way they chose the pairs of nodes
to be merged, and cut different trade-offs between efficiency
(running time) and effectiveness (keeping the false positives
and negatives under control). The method termed Dist-LSH

5 https://github.com/yikeliu/VoG-Overlap.

selects node pairs with a high probability to be merged; the
probability is estimated based on locality-sensitive hashing
(LSH) of the nodes. The algorithms are implemented on top
of the Apache Giraph framework.

Lin et al. [57] surveys many other quantitative, mining-
oriented graph sampling and summarization methods.

4.3 Statistical and hybrid graph summarization

Several follow-ups on the SNAP summarization approach
(Sect. 4.1.2) have been proposed in the literature.

The k-SNAP summarization approach [96,97] is an
approximation of the SNAP one. It allows setting the desired
number k of summary nodes, so that a whole graph can be
visualized at different granularity levels, similarly to roll-up
and drill-down OLAP operations. A k-SNAP summary is a
graph of k summary nodes which satisfy the above condi-
tion (i) of a SNAP summary, but relax condition (ii) so that
only some (not every) input graph node represented by some
summary node satisfies it. Further, as many such summaries
may exist, a k-SNAP summary is defined as one that best
satisfy the condition (ii) of SNAP summaries. Finding such
a summary is NP-complete [96]; hence, tractable heuristic-
based algorithms are proposed to compute approximations
of k-SNAP summaries.

The k-SNAP summarization approach has been further
extended [114] to handle numerical attributes, while k-SNAP
as well as SNAP before have only considered categorial
attributes whose domains are made of a limited number of
values. The proposed CANAL approach allows bucketiz-
ing the values of some numerical attribute into the desired
number of categories, hence reducing the summarization of
graphs with categorial and numerical attributes to that of
graphs with categorial attributes only. For a given numerical
attribute a, each of the obtained categories represent a range
of a values that nodes with similar edge structure have. Com-
puting such categories is in O(N log N + k4a), where ka is
the number of distinct a values that the input graph contains.
Also, to ease the use of k-SNAP to inspect a graph in an roll-
up and drill-downOLAP fashion, Zhang et al. [114] provides
a solution to automatically recommend k values for visual-
izing this graph. It consists in ranking k-SNAP summaries
of varying k according to a so-called interestingness mea-
sure, defined in terms of conciseness, coverage and diversity
criteria.

k-SNAP has also strongly inspired the summarization
approach in [60], which similarly aims at computing graph
summaries w.r.t. user-selected number of summary nodes,
attributes and edge types. The summaries are computed using
a variant of one above-mentioned tractable k-SNAP heuris-
tics, which keeps the SNAP condition (i) but changes the
SNAP condition (i i) that k-SNAP tries to best satisfies, so
that a summary best reflects the organization in social com-
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munities of the input graph nodes w.r.t. the selected attributes
and edge types.

From a different perspective, [85] sketches SAP HANA’s
approach for large graph analytics through summarization.
It consists in defining rules to summarize part of an analyzed
graph. Rules are made of two components, one graph pattern
to bematched on the graph, and how thematched data should
be grouped and aggregated into a result graph.

5 Structural RDF summarization

Structural summarization of RDF graphs aims at producing
a summary graph, typically much smaller than the original
graph, such that certain interesting properties of the original
graph (connectivity, paths, certain graph patterns, frequent
nodes etc.) are preserved in the summary graph. Moreover,
these properties are taken into consideration to construct a
summary. The methods for structural summarization are dis-
tinguished into two categories. The quotient summarization
methods, discussed in Sect. 5.1, while the remaining struc-
tural summarization methods are described in Sect. 5.2

5.1 Structural quotient RDF summaries

We begin with summarization techniques that are based on
quotient methods. Intuitively, each summary node corre-
sponds to (represents) multiple nodes from the input graph,
while an edge between two summary nodes represents the
relationships between the nodes from the input graph, repre-
sented by the two adjacent summary nodes. Often, the nodes
formulated in summaries like these, are called supernodes,
while their edges are called super-edges.

An interesting property, which directly follows from the
notion of quotient graph, relates query answers on an RDF
graph G to query answers on its quotient summary:

Definition 4 (Representativeness) Given an RDF query lan-
guage (dialect) Q, an RDF graph G and a summary Sum of
it, Sum isQ-representative of G if and only if for any query
Q ∈ Q such that Q(G∞) �= ∅, we have Q(Sum∞) �= ∅.

Informally, representativeness guarantees that queries
having answers on G should also have answers on the sum-
mary. This is desirable in order for the summary to help users
formulate queries: the summary should reflect all graph pat-
terns that occur in the data.

Anoverviewof the structural quotient summaries is shown
in Table 3. Section 5.1.1 introduces summaries defined based
on bisimulation graph quotients (recall Definition 2), while
Sect. 5.1.2 discusses other quotient summaries.

5.1.1 (Bi)simulation RDF summaries

The classical notion of bisimulation (Sect. 4.1) has been used
to define many RDF structural quotient summaries.

Thus, [77] presents SAINT-DB, a native RDF manage-
ment system based on structural indexes. This index is an
RDF quotient simulation, based on triple (not node) equiv-
alence. The summary is not an RDF graph: its nodes group
triples from the input, while edge labels indicate positions
in which triples in adjacent nodes join. Thus, the index is
tailored for reducing the query join effort, by pruning any
dangling triples which do not participate in the join. Since
the index contains only information on joins, and nothing of
the values present in the input graph, the query language is
restricted to BGPs comprising of variables in all positions;
further, these BGPs must be acyclic. For compactness, they
bound the simulation, for small k values, e.g., 2; this enables
compression factors of about 104. Semantic information or
ontologies are not considered. The time complexity of the
algorithmcomes from the corresponding algorithms for com-
puting graph simulation. This is O(N 2 ∗ M), where N is the
number of nodes (equivalent types) and M is the number of
edge labels in the result graph. In practice, different query
processing strategies aimed at join pruning are implemented
by integrating the structural index with the RDF-3X [70]
engine.

A structure-based index is proposed in [98], defined as
a bisimulation quotient; the authors show that the summary
is representative of only tree-shaped queries over non-type
and non-schema triples, comprising a single distinguished
variable which corresponds to the root node. Further, the
authors study limited versions of the bisimulation quotient
by considering: (i) only forward bisimulation, (ii) only back-
ward bisimulation or (iii) only neighborhoods of a certain
length for tree structures of the input graph. The proposed
applications of the structure index are twofold: (i) for data
partitioning, by creating a table for each node of the struc-
ture index, thereby physically grouping triples with subjects
that share the same structure, and (ii) for query answering,
where the query may be run first on the structure index, to
obtain the set of candidate answers, thus achieving pruning
of the (larger) original graph. The authors do not consider
graph semantics, nor answering queries over type and schema
triples. The complexity of the corresponding algorithm for
generating the index is O((N1 ∪ N2) ∗ M ∗ log N ), where
N1 and N2 are the nodes selected for backward and forward
bisimulation, respectively, M is the number of edges and N
the number of nodes of the input graph.

RDF summaries defined in [17] are quotients based on FW
bisimulation. The authors do not consider graph semantics
or ontologies. They show how to use the summary as a sup-
port for query evaluation: incoming navigational SPARQL
queries are evaluated on the summary, then the results on the
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Table 3 Structural quotient RDF summaries

Work RDF input
component

Input
requirements

Purpose Output type Output nature System–theory

ExpLOD [42]
[43]

Instance None Data exploration,
visualization

Graph Instance and
schema

System

Campinas et al.
[11]

Instance None Query
formulation

RDF graph Instance and
schema

Theory

Consens et al.
[17,45]

Instance None Query answering RDF graph Instance and
schema

System

Khatchadourian
et al. [44]

Instance None Data exploration,
visualization

Graph Instance and
schema

Theory

Schatzle et al.
[86]

Instance None Graph reduction Graph Instance and
schema

Theory

ASSG [113] Instance Required
user-
selected
queries

Query answering Graph Compressed
graph

Theory

Čebirić et al. [12] Instance
and
schema

None Query
optimization,
query
formulation,
visualization

RDF graph Instance and
schema

System

Jiang et al. [34] Instance None Semantic mining Labeled graph Instance Theory

Picalausa et al.
[77]

Instance None Indexing, query
answering

Graph Instance and
schema

System

Tran et al. [98] Instance Optional
parame-
ters
FW/BW/FB
and
neigh-
borhood
size

Indexing, data
partitioning,
query
processing

Graph Instance and
schema

Theory

summary are transformed into results on the original graph
by exploring the extents of summary nodes. They propose in
[45] an implementation based on GraphChi [52], the single-
machine multi-core processing framework, to construct the
summary in roughly the amount of time required to load
the input KB plus write the summary. GraphChi supports
the Bulk Synchronous Parallel (BSP) [105] iterative, node-
centric processing model, by which nodes in the current
iteration execute an update function in parallel, depending
on the values from the previous iteration. Their summariza-
tion approach is based on the parallel, hash-based approach
of [6] which iteratively updates each node’s block identi-
fier by computing a hash value from the node’s signature
defined by the node’s neighbors from the previous iteration.
The main idea is that two bisimilar nodes will have the same
signature, the same hash value, and thus have the same block
identifier. Due to the large size of the resulting bisimulation
summary, the authors propose a so-called singleton optimiza-
tion, which involves removing summary nodes representing

only one node from G; the reduced summary is therefore no
longer a quotient of G.

ExpLOD [42,43] produces summaries of RDF graphs, by
first transforming the original RDF dataset into an unlabeled-
edge-ExpLOD-graph, where a node is created for each triple
in the original RDF graph, labeled with the triple prop-
erty; unlabeled edges go from the original triple’s subject
and object, to the newly constructed property node. Then,
the ExpLOD graph is summarized by a forward bisimula-
tion quotient, grouping together nodes having the same RDF
usage. RDF usage can be statistical, e.g., the number of
instances of a particular class, or the number of times a prop-
erty is used to describe resources in the graph. RDF usage can
also be structural, e.g., the set of classes to which an instance
belongs, the sets of properties describing an instance, or
sets of resources connected by the owl:sameAs property.
As such, they do not propose one summary, but rather a
framework where one can select the summary according
to his “usage“ preferences. Finally, the bisimulation quo-
tient is applied without taking into account neither schema
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Fig. 6 RDF vocabulary for the data graph summary [11]

nor type triples; thus, the summary is not representative.
There are two sequential implementations of ExpLOD. The
first implementation computes the relational coarsest parti-
tion of a graph using a partition refinement algorithm [71]
and requires datasets to fit in main memory. The second
approach uses SPARQL queries against an RDF triple store;
although in principle this is more scalable, as datasets need
not be stored in main memory, it is slower due to the query
answering time. To overcome the limitation of the centralized
approach, the authors extend ExpLOD, proposing a novel,
scalable mechanism to generate usage summaries of billions
of Linked Data triples based on a parallel Hadoop implemen-
tation [44].

Schätzle et al. [86] considers the problem of efficiently
building quotient summaries of RDF graphs based on the
FW bisimulation node equivalence relation. The authors do
not reserve any special treatment to RDF type and schema
triples, which prevents the resultingRDF summaries of being
representative. Two implementations of the algorithm for
computing graph bisimulations, first introduced in [3], are
presented: one for sequential single-machine execution using
SQL, and the other for distributed execution, taking advan-
tage of MapReduce parallelization to reduce running time.
They both have worst-case time complexity of a O(M ∗ N +
N 2).

5.1.2 Other structural quotient summaries

To assist users whose task is query formulation, Campinas et
al. [11] creates the summary graph, the so-called node collec-
tion layer, by grouping nodes having the exact same types,
or in the absence of types, the same outgoing properties, into
entity nodes; further, nodes from the input with no outgoing
properties, and having the same incoming properties from
subjects with the same set of types, are represented by blank
nodes (Fig. 6). An edge exists between two summary nodes
v1 and v2, labeled by a property p, if there exist two nodes
v′
1 and v′

2 in G, such that v′
1 is represented by v1, v′

2 is rep-
resented by v2, and there exists an edge labeled by p in G
from v′

1 to v′
2. The number of represented nodes from the

input is attached to each summary node, and the number of

represented edges from the input to each summary edge. This
summary graph may group resources frommultiple datasets.
The proposed dataset layer groups together nodes of the node
collection layer which belong to the same dataset. Schema
triples are not considered. The approach bears similarities
with ExpLOD, since nodes in the first layer are partitioned
by types, and partitions are represented by distinct summary
nodes. However, unlike ExpLOD, the G nodes having a type
are not further distinguished by their data properties, i.e., two
nodes of the same type A, one having the data properties a,
b and c and the other having the properties a and d will be
represented by the same summary node. Unlike ExpLOD,
their summary graph is an RDF graph.

RDF summaries are defined in a rather restricted setting
in [34]. The authors assume that all subjects and objects are
typed, and that each has exactly one type; class and property
URIs are not allowed in subject and object position, and no
usage is made of possible schema triples. Under this hypoth-
esis, they construct from the RDF graph a typed object graph
(TOG) comprising (s,p,o) triples and assigning an RDF
type for each such s and o. Two methods are proposed for
summarizing the TOG, namely, equivalent compression and
dependent compression. The equivalent compression pro-
duces a quotient of the TOG by grouping together nodes
having the same type and the same set of labels on the edges
adjacent to the node. In the dependent compression, two
nodes v1 and v2 of the TOG are grouped together if v1 is
adjacent only to v2, or vice-versa. As application scenarios of
this approach the authors indicate mining semantic associa-
tions, usually defined as graph or path structures representing
group relationships among several instances.

Based on query-preserving graph compression [22]
(Sect. 4.1.2), an Adaptive Structural Summary for RDF
graphs (ASSG, in short) is introduced in [113]. ASSG aims at
building compressed summaries of the part of an RDF graph
which is concerned by a certain set of queries. The authors
compute a structural rank of nodes, which is 0 for leaves,
and grows with the shortest distance between the node and a
leaf; then, nodes having the same label and the same rank are
considered equivalent, and are all compressed together in a
single ASSG node. To partition the N nodes of a graph G to
different equivalent classes by their label and rank the cost is
O(N + M), where M the number of the edges of the graph.

RDF summaries defined in [12–14] adapt the idea of quo-
tient summaries to two characteristic features of RDFgraphs:
(i) the presence of type triples (zero, one, or any number of
types for a given resource), and (ii) the presence of schema
triples. As we explained in Sect. 2.1, RDF Schema informa-
tion is also expressed by means of triples, which are part of
G. [12] shows that quotient summarization of schema triples
does more harm than good, as it destroys the semantics of
the original graph. To address this, they introduce a notion
of RDF node equivalence which ensures that class and prop-
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erty nodes (part of schema triples) are not equivalent to any
other G nodes, and define a summary as the quotient of G
through one such RDF node equivalence. Such summaries
are shown to preserve the RDF Schema triples intact, and to
enjoy representativeness (Definition 4) for BGP queries hav-
ing variables in all subject and object positions. The authors
show how bisimulation summaries can be cast in this frame-
work, and introduce four novel summaries based property
cliques, which generalize property co-occurrence as follows.
A clique cG is a set of data properties from G such that for
any p1, p2 ∈ cG , a resource of G is the source and/or target
of both p1 and p2. For instance, if resource r1 has prop-
erties a and b, while r2 has b and c, then a, b, c are part
of the same source clique; if, instead, r1 and r2 are targets
of these properties, then a, b, c are part of the same target
clique. The so-called weak summary groups together nodes
having the same sourceor target clique,while the strong sum-
mary requires the same source and the same target clique;
their variant typed-weak and typed-strong summaries first
group nodes according to their types, and then according to
their cliques. All these summaries can be computed in linear
time in the size of the input graph. A benefit of this specific
approach is that clique summaries are orders of magnitude
more compact than bisimulation summaries. The authors also
study how to obtain the summary of G’s semantics, which is
the saturation ofG. They provide a sufficient condition on the
RDF equivalence relation, ensuring that the summary ofG∞
can be computed from G without saturating it, and show that
this may be many times faster than the direct procedure of
first saturating G, then summarizing G∞. The software tool
implementing this approach is available as open source.6

5.2 Structural non-quotient RDF summaries

Several structural RDF summaries have been based on
techniques different from structural quotients. Our pre-
sentation below attempts to identify families of proposals
based on the summarization techniques and/or, as appro-
priate, on the usage for which the summaries are built. An
overview of all structural, non-quotient summaries is shown
in Table 4, depicting their individual characteristics as well.
Section 5.2.1 presents proposals based on text summarization
and information retrieval; Sect. 5.2.2 describes summaries
built around concepts of centrality (or rank, importance) of
nodes in a graph; Sect. 5.2.3 considers structural RDF sum-
marization based on an index or other structures which aim at
selective data access; finally, Sect. 5.2.4 discusses RDF sum-
maries whose goal is to facilitate the extraction of a schema,
understood as a compact structural description, of the input
RDF graph.

6 https://gitlab.inria.fr/cedar/quotientSummary.

5.2.1 Inspired by text summarization and information
retrieval

One way of summarizing data, especially when the summary
ismeant for human users, is to select amost significant subset
thereof. Such summarization is very useful, considering that
the human ability to process information does not change
as the available data volumes grow. We describe here RDF
knowledge base summarization efforts inspired from infor-
mation retrieval and text summarization.

In [95], the authors study the problemof selecting themost
important part of an RDF graph which is to be shown to a
user interested in a certain entity (resource). A fixed space
(triple) budget is to be used; beyond labels, authors also allow
the edges of the RDF graph to carry weights, with higher-
weight edges being more important to show. The authors
provide algorithms which select triples favoring closeness
to the target entity and weight; then, they extend this with
criteria based on diversity (include edgeswith different labels
in the selection) and popularity (favor frequently occurring
edge labels). It is worth noting that similar techniques have
recently been included in Google’s search engine, when the
user searches for an entity present in Google’s Knowledge
Graph, and is presented with a small selection of this entity’s
properties.

Besides this, text summarization principles, where a text
can be seen as a collection of terms or a bag of sentences, have
been applied to summarize ontologies. An ontology sum-
marization method along these lines is introduced in [116],
based on RDF Sentence Graphs. An RDF Sentence Graph is
a weighted, directed graph where each vertex represents an
RDF sentence, which is a set of RDF Schema statements as
illustrated in Fig. 7. A link between two sentences exists, if
an object of one sentence belongs to another sentence aswell.
The creation of a sentence graph is customized by domain
experts, who provide as input the desired summary size, and
their navigation preferences, i.e., weights in the links they are
mostly interested in. Then, the importance of each RDF sen-
tence is assessed by determining its centrality in the sentence
graph. The authors compare different centrality measures
(based on node degree, betweenness, and the PageRank and
HITS scores, and show thatweighted in-degree centrality and
some eigenvector-based centralities produce better results.
Finally, themost importantRDF sentences are re-ranked con-
sidering the coherence of the summary and the coverage of
the original ontology, and the constructed result is returned
to the user.

This method does not handle implicit information (thus,
it should be applied to a saturated ontology); also, it does not
consider the instance graph.

Subsequently, the authors extended their technique from
one ontology, to the global set of ontologies harvested from
the semantic web [115]. Specifically, to decide the impor-
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Table 4 Structural non-quotient RDF summaries

Work RDF input
component

Input requirements Purpose Output type Output nature System–theory

SchemEX
[49,50]

Instance Data stream
window size

Indexing RDF graph Instance Theory

RDF Sentence
Graph [115,116]

Schema Required
schema,
Parameterized
user input,
RDF/OWL

Visualization Labeled graph Schema System

KCE [66,75] Instance and
schema

Required
schema,
Parameterized
user input,
RDF/OWL

Visualization Isolated nodes Schema nodes System

RDFDigest [74,
99,101]

Instance and
schema

Required
schema,
Parameterized
user input,
RDF/OWL,
Semantics-
aware, Handle
implicit data

Visualization,
query
answering tasks

Labeled graph Schema System

Queiroz et al. [81] Schema Required
schema,
Parameterized
user input,
RDF/OWL

Visualization Labeled graph Schema System

Sydow et al. [95] Instance Entity of interest Visualization RDF graph Instance Theory

Gurajada et al.
[29]

Instance None Query answering RDF graph Instance System

Kellou et al. [39] Instance and
Schema

None Schema
discovery

Graph Schema Theory

Le et al. [54] Instance Required
neighborhood
size

Indexing,
keyword
queries

Partitioned RDF
graph

Instance Theory

Udrea et al. [104] Instance Assumes
saturated input
graph,
Required size k
of the input
graph partition

Indexing, visual
querying

Balanced binary
tree (leaves =
partition over
resources)

Instance System

tance (salience) of an RDF sentence, they extend it with
neighboring information, for example counting how often
the terms of the sentence are linked or instantiated in the
global semantic web. Two salience measures are proposed:
structural and pragmatic importance. Structural importance
measures the number of entities in the web that have a ref-
erence to the local RDF sentences with regard to subjects,
predicates or objects. Secondly, the pragmatics importance
takes into account the statistical frequency of terms instan-
tiated across the global semantic web. The two measures
are combined in order to produce an integrated importance
value for each RDF sentence, which again is passed to a
re-ranking step to ensure coverage over the whole ontol-

ogy.Although, in the second approach, statistical information
over the instances is considered, the approach still does not
consider implicit information.

KCE [66,75], on the other hand, attempts to automatically
identify the key concepts in an ontology. To achieve this, it
combines cognitive principles with lexical and topological
measures (the density and the coverage). The goal is to iden-
tify a number of concepts that would be selected by human
experts. To this direction a number of criteria are defined:

– The notion of natural category is used for identifying
concepts that are information-rich in a psycho-linguistic
sense. This is approximated by two measures: (i) name
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Fig. 7 Sample RDF sentences [116]

simplicity promotes concepts labeled with simple names
and penalizes compounds; (ii) basic level measures how
central a concept is in the taxonomy of the ontology. This
is combined with the density favouring concepts which
have many properties and taxonomic relationships.

– The coverage tires to ensure that no part of the ontology
is neglected.

– Lastly, the notion of popularity, is based on lexical statis-
tics, and tries to identify concepts commonly used in
natural language.

Each ontology concept is assigned a score, which is a
weighted sum of the scores assigned for each individual cri-
terium; then, the key concepts of the ontologies are taken to
be those with the highest score. This approach extracts only
schema elements, based on both schema and instance infor-
mation. Implicit information in the ontology is also taken
into account in the process. To fine-tune result quality, the
method requires the user to specify values for a set of param-
eters. The tool implementing this approach is available online
and in open source.7

5.2.2 Focused on centrality measures

In this section,wepresent approaches that focus on exploiting
centrality measures (and in some cases in combination with
other parameters)in order to produce summaries.

RDFDigest [99,101] produces summaries of RDF
schemas, consisting of the most representative concepts of
the schema, seen also from the angle of their frequency in a
given instance (RDF graph). Thus, the input of the process
includes both an ontology and a data graph. The tool starts
by saturating the knowledge base with all implicit data and
schema information, thus taking them into account for the
rest of the process. The goal of the work is to identify the

7 http://www.essepuntato.it/kce.

most important nodes in the ontology, and to link them in
order to produce a valid subgraph of the input schema.

In its first version [100], node relevance is definedbasedon
the relative cardinality, and the in/out degree centrality of the
node. Then, themost relevant nodes are retained as being part
of the answer. Tofind out how to connect these nodes in a sub-
schema, two algorithms are proposed, trying tomaximize the
importance of the selected ontology edges either globally or
locally. In the first case, a spanning tree is calculated max-
imizing the importance of the selected edges, and then, the
most important nodes are connected using paths from this
tree. In the second case, the edges linking the most important
nodes are selected based on the notion of coverage trying
to maximize the most representative edges out of the whole
schemagraph.The authors report that linking themost impor-
tant nodes based on maximum-cost spanning trees produces
better summaries according to their experiments with both
methods having a worst-case time complexity of O(N 3

O),
where NO is the number of nodes in the ontology. However,
this method does not guarantee that the total weight of the
selected subgraph is maximized, and when picking a con-
necting path, it may introduce many additional nodes in the
result, some of which may not be important at all. The size
and quality of the resulting summary can be fine-tuned by
specifying values for a set of parameters; the system is avail-
able online8 and is mostly targeted for visually presenting
the ontology summaries.

The more recent version [74] tries to identify the most
important schema nodes using six well-known measures
from graph theory (i.e., degree, betweenness, bridging
centrality, harmonic centrality, radiality, and ego centrality
[8]) and adapting them for RDF/S KBs in order to con-
sider instance information as well. The authors model the
problem of linking those nodes as a graph Steiner Tree
selection problem [30], trying to minimize the total number
of additional nodes introduced, employing approximations
and heuristics to speed up the execution of the respective
algorithms. According to the authors, the optimal selection
of importance measure and approximation for linking the
most important nodes yields a worst-case time complexity
of O(N 2 ∗ M) + O(S ∗ (N + M)) where N is the num-
ber of nodes, M is the number of edges in the ontology and
S the number of most important nodes to be selected. An
overview of the summarization process is shown in Fig. 8.
Also in this version, users have the opportunity to parameter-
ize the process by specifying values of different parameters,
such as the number of summary nodes to be selected. In the
latest version of the system [102,103], the authors propose
exploration operations based on summaries such as zoom and
extend. Extend focuses on a specific subgraph of the initial

8 http://www.ics.forth.gr/isl/rdf-digest/.
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Fig. 8 Creating an ontology schema graph using [74]

ontology, whereas zoom on the whole graph, providing more
or less detailed information for the selected nodes.

Queiroz-Sousa et al. [81], on the other hand, tries to com-
bine user preferences with centrality measures in order to
calculate the importance of a node. Then, paths that include
the most important nodes are identified to produce the final
graph. Thus, the result is a subgraph of the original graph. The
main steps of this summarizationmethod are shown in Fig. 9:
(i) select the parameters (e.g., the size of the summary and
importance thresholds) and possibly nodes that are important
according to user’s opinion; (ii) compute the relevance of the
concepts in the ontology as the weighted sum of the degree
centrality and the closeness centrality; (iii) identify the paths
linking the selected nodes using the Broaden Relevant Paths
algorithm. The specific algorithm tries to find paths of great-
est quality within the summarized graph by considering the
relevance of the included nodes in the path. The approach
supports RDF or OWL ontologies and mainly aims to help
ontology understanding through visualization.

5.2.3 Index-driven RDF summaries

Besides summaries focusing on centrality measures, other
approaches try to exploit summaries for indexing.

GRIN [104], for example, is an index for RDF graphs
that has been designed for efficient query answering. The
semantics of the indexed RDF graph is taken into account
by assuming that the input graph is saturated before being
indexed; however, the RDF Schema is not part of the index.
A GRIN index is a hierarchical clustering of the resources
of an RDF graph, modeled as a balanced binary tree. The set
of leaf nodes in the tree, form a partition of the set of triples
in the RDF graph; each leaf node represents the resources of
the triples it holds. Interior nodes are constructed by finding
a center triple, and a radius value R. An interior node in the
tree implicitly represents the set of all vertices in the graph
that are within R units of distance (i.e., less than or equal to
R links) from that center. Inner nodes at a same level of the

index form a partition of the input RDF graph; each inner
node reflects the resources of the triples of the nodes it is
an ancestor of. The worst-case complexity for building the
index is O(R4∗log2 R). Then, at query time, GRIN derives a
set of inequality constraints from the query, evaluated against
the nodes of the GRIN index in order to identify the smallest
subgraph that contains answers to the input query.

Gurajada et al. [29] studies efficient query processing in
theTriADdistributedRDFdatamanagement system, by rely-
ing on a summary of the RDF graph storedwithin the system.
This summary, which is an RDF graph, follows from a stan-
dard partitioning of the input RDF graph, computed with
METIS,9 which minimizes the number of edges across the
partition’s blocks. The summary is made of triples of the

form B1
p−→ B2 reflecting that there exists a triple (s, p, o)

in the input graph with s a resource of the partition block B1

and o a resource of the block B2. The proposed technique
does not consider implicit triples of the input RDF graph and
basically reflects how (some resources of) sets of strongly
connected triples, i.e., those reflected by the partition blocks,
are loosely connected. Then, at query time, the index is used
to prune dangling triples by identifying the bindings for the
join variables in the query, which are later used to generate
results via the relational joins of the underlying system.

Le et al. [54] builds RDF graph summaries meant to help
answer keyword queries in RDF graphs. As common in this
setting, a match is a tree of interconnected RDF triples, such
that each keyword from the query is present in one of the
triples; the score of a query match is consisted of several
keywords and decreases with the number of edges (triples)
in this tree, that is, the closest the nodes (thus, the smaller
the tree) the better; and the answer to the query is the set
of the highest-scoring matches. To enable efficient query
answering, the authors build a summary as a collection of
tree structures (see below), each representing a subset of the
graph triples; the summary trees, together, represent all graph

9 http://glaros.dtc.umn.edu/gkhome/metis/metis/overview.
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Fig. 9 Flowchart of the ontology summarization method [81]

triples. Given a summary tree, the authors estimate the length
of a path which may connect the tree with the nodes match-
ing different query keywords. If the result tree has a length
larger thanone already found, there is no reasonof visiting the
nodes of this tree. To summarize an RDF graph (the authors
consider a restricted setting where each resource has at most
one type), they proceed as follows. (i) For each type T and
each resource r of this type, given a user-specified integer
parameter α, a partition block is created comprising of the
triples forming paths of length at most α from r , except the
triples included in previously built partition blocks. (ii) Next,
they search for a partition block (subgraph of G) which can
be embedded via homomorphism into another, and when this
happens, they discard the former (as it can be considered to
be “sufficiently well represented” by the latter). More specif-
ically, each partition is represented by its graph core, and
homomorphisms are identified between cores; for efficiency,
covering trees of subgraphs are used instead of the subgraphs
themselves. Overall, this technique does not consider RDF
Schema nor implicit information.

5.2.4 Oriented toward schema extraction

In this subsection, we focus on methods that try to create
schema-like structures of the available data sources.

One of the challenges when working with Linked Open
Data is the lack of a concise schema, or a clear description
of the data that can be found in the data source. SchemEX
[49,50], an indexing and schema extraction tool for the LOD
cloud, attempts to solve this problem. Out of an RDF graph,
it produces a three-layered index, based on resource types.
Each layer groups input data sources of the LOD cloud into
nodes, as follows: (i) in the first layer, each node is a single
class c from the input, to which the data sources containing
triples whose subject is of type c are associated; (i i) in the
second layer, each node, now named as an RDF type cluster,
is a set of classes C mapped to those data sources having
instances whose exact set of types is C ; (i i i) in the third
layer, each node is an equivalence class, where: two nodes

u and v from the input belong to the same equivalence class
if and only if they have the exact same set of types, they are
both subjects of the same data property p, and the objects
of that property p belong to the same RDF type cluster. Fur-
ther, each equivalence class is mapped to all data sources
comprising of triples (s,p,o) from an input RDF graph,
such that s belongs to the equivalence class of the node. To
build the index, a stream-based computation approach is pro-
posed, depicted in Fig. 10. The restriction to a certainwindow
size of the data stream typically leads to incomplete results,
thus the choice of the appropriate window size is an essential
parameter for the quality of the extracted index. The spe-
cific approach does not consider implicit triples, nor untyped
resources. In addition, the resulting index is not a quotient,
since in each layer data sources may be mapped to multiple
index nodes (while a quotient partitions the graph nodes).
Finally, the time complexity of the approach is O(N ∗ log N )

or O(M ∗ logM), where N is the number of RDF classes
available and M is the number of properties.

Toward the same goal of building a compact representa-
tion of anRDFgraph to be used as a schema, [39] proposes an
approach to extract a schema-like directed graph, as follows.
A density-based clustering algorithm is used on the input
RDF graph to identify the summary nodes: each such node,
called a (derived) type, corresponds to a set of resources with
sufficient structural similarity. Further, each of these types
is described by a profile, i.e., a set of (property, probability)
pairs of the form (

−→p , α)or (←−p , α)meaning that a resource of
that type has the outgoing or incoming property pwith proba-
bilityα. These profiles are used to defineoutput schemaedges
of two kinds: (i) There is a p-labeled edge from a type node

T1 to a type node T2, i.e., T1
p−→ T2, whenever p is an outgo-

ing property of T1’s profile and an incoming property of T2’s
profile. (ii) There is an rdfs:subClassOf-labeled edge from a

type node T1 to a type node T2, i.e., T1
rdfs:subClassOf−−−−−−−−−→ T2,

whenever T1 is found more specific than T2 by an ascending
hierarchical clustering algorithmapplied to their profiles. The
time complexity of the corresponding algorithm is O(N 2)

where N is the number of entities in the dataset. The out-
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Fig. 10 Graph compression technique for SchemEX

put directed graph can be seen as a summary describing first,
types which correspond to structurally similar resources, and
second, how properties relate resources of various types.

6 Pattern-based RDF summarization

In this section, we review summarization methods based on
data mining techniques, which extract the frequent patterns
from the RDF graph, and use these patterns to represent the
original RDF graph. A frequent pattern, usually referred to as
a knowledge pattern in the RDF/OWLKB context (or simply
pattern from now on), characterizes a set of instances in an
RDF data graph that share a common set of types and a com-
mon set of properties. It is usually modeled as a star BGP
of the form {(x, τ, c1), . . . , (x, τ, cn), (x, Pr1, ?b1), . . . ,
(x, Prm, ?bm)} denoting some resource x having types
c1, . . . , cn and properties Pr1, . . . , Prm . Given an RDF
graphG, a patternKP identifies all theG resources thatmatch
x in the embeddings ofKP intoG; the number of such embed-
dings is called the support of KP in G. Patterns identified in
such a manner become representative nodes (supernodes).

Example 6 (Knowledge pattern) Consider again our sample
RDF graph G presented in Fig. 1. The following knowl-
edge pattern {(x, τ,Publication), (x,hasTitle, y),
(x,hasAuthor, z)} has no support in G and a support of 1
in G∞ (when the embedding matches x to doi1).

An overview of the works in this category is shown in
Table 5. Section 6.1 discusses methods that exploit mining
graph patterns, while Sect. 6.2 is concerned with methods
which summarize the RDF graph based on rules derived from
mining techniques.

6.1 Mining graph patterns

In this section, we describe methods that exploit patterns
that eventually appear in the RDF graph and construct the
summary based on these patterns.

Zneika et al. [119,120] present an approach for RDF graph
summarization based on mining a set of approximate graph
patterns that “best” represent the input graph; the summary
is an RDF graph itself, which allows to take advantage of
SPARQL to evaluate (simplified) queries on the summary
instead of the original graph. The approach proceeds in
three steps, as shown in Fig. 11. First, the RDF graph is
transformed into a binary matrix. In this matrix, the rows
represent the subjects and the columns represent the pred-
icates. The semantics of the information is preserved, by
capturing the available distinct types and all attributes and
properties (capturing property participation both as subject
and object for an instance). Second, the matrix created in the
previous step is used in a calibrated version of the PaNDa+
[61] algorithm, which allows to retrieve the best approximate
RDF graph patterns, based on different cost functions. Each
extracted pattern identifies a set of subjects (rows), all having
approximately the same properties (columns). The patterns
are extracted so as to minimize errors and to maximize the
coverage (i.e., provide a richer description) of the input data.
A pattern thus encompasses a set of concepts (type, property,
attribute) of the RDF dataset, holding at the same time infor-
mation about the number of instances that support this set
of concepts. Based on the extracted patterns and the binary
matrix, the summary is reconstructed as an RDF graph,
enrichedwith the computed statistic information; this enables
SPARQLquery evaluation on the summary to return approxi-
mate answers to queries asked on the original graph. The time
complexity of the approach is O(M ∗ N + K ∗ M2 ∗ N ),
where K is the maximum number of patterns to be extracted,
M and N are, respectively, the number of distinct properties
and subjects/resources in the original KB. The authors note
that the algorithm works equally well on homogeneous and
heterogeneous RDF graphs.

In [90], the goal is to discover the k patterns which maxi-
mize an informativeness measure (an informativeness score
function is provided as input). The algorithm takes as input
an integer distance in d, which will be used to control the
neighborhoods in which we will look for similar entities,
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and a bound k as the maximum number of the desired pat-
terns. The algorithm discovers the k d-summaries/patterns
that maximize the informativeness score function.

The authors use d-similarity to capture similarity between
entities in terms of their labels and neighborhood infor-
mation up to the distance d. Compared to other graph
patterns like frequent graph patterns, (bi)simulation-based,
dual- simulation-based and neighborhood-based summaries,
d-similarity offers greater flexibility in matching, while it
takes into account the extended neighborhood, something
that provides better summaries especially for schema-less
knowledge graphs, where similar entities that are not equiv-
alent in a strict pairwise manner. A node v of the original
graph G is attributed to the base graph of the d-summary P
if and only if there is a node u of P which has the same label
as v and for every parent/child u1 of u in P , there exists a
parent/child v1 of v in G such that edges (u1, u) and (v1, v)

have the same edge label. Then the d-summaries are used,
e.g., to facilitate query answering.

A d-summary P is said to dominate another d-summary
P ′ if and only if supp(P) ≥ supp(P ′); a maximal d-
summary P is one that dominates any summary P ′ that
may be obtained from P by adding one more edge. The
algorithm starts by discovering all maximal d-summaries
by mining and verifying all k-subsets of summaries for the
input graph G, then greedily adds a summary pair (P, P1)
that brings the greatest increase to the informativeness score
of the summary. The time complexity of the approach is
O(S ∗ (b + N ) ∗ (b + M) + K

2 ∗ S2), where N , M are,
respectively, the total number of nodes (subject and objects)
and edges (triples) of the original RDF graph, and S is the
number of possible d-summaries whose size is bounded by
b.

6.2 Mining rules

Methods described here use rule mining techniques in order
to extract rules for summarizing the RDF graph. A common
limitation of such methods is that, by design, the summary is
not an RDF graph, thus it cannot be exploited using the com-
mon set of RDF tools (e.g., SPARQL querying, reasoning
etc.)

Joshi et al. [35,36] propose compressing the RDF datasets
removing triples that can be inferred using logical and infer-
ence rules. Thus, graph decompression infers such triples
again, to retrieve the original graph.

This approach, which is depicted in Fig. 12, generates,
from a given RDF graph G, an active graph GA containing
the triples that adhere to certain logical rules, and a dormant
graph GD , which contains the set of triples of the original
graphwhich none of the identified rule can infer. This leads to
viewing anRDFgraphG as being R(GA)∪GD , where R rep-
resents the set of rules to be applied to the active graph GA,

123
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Fig. 11 Zneika et al. [120] approach

Fig. 12 Graph compression technique for Joshi et al. [36]

while (GA,GD) together represent the compressed graph.
An association rule mining algorithm is employed to auto-
matically identify the set of logical rules.

The authors leverage the Apriori [2] or FP-Growth [31]
frequent pattern-mining algorithms, to identify sets of asso-
ciation rules. First, for each property p, a “transaction” (in
classical data mining terms) is a list of objects which are
the values of property p for a given subject. Each rule
thus is defined by: a property p, an object item k, and a
frequent itemset x associated with k. One sample rule is:
∀x, (x, p, k) → ∧n

i=1(x, p, vi ), stating that the subjects
that carry the value k for property p, carry also the values
ui for the same property. Based on such a rule, the triple
(x, p, k) is encoded in the summary,while the inferred triples
∧n

i=1(x, p, vi ) can be removed. Further, the authors extend
the approach to use as a transaction, the lists of all (p, o) pairs
for a given subject, and similarly mine for frequent itemsets
in this context, each of which will be interpreted as a logical
compression rule.

The specific approach works well when the original graph
contains many different nodes, sharing many same “neigh-
bors”, but it is not effective when the contrary is true. To
deal with the last issue, the authors of [73] extend the
previous approach by exploiting a graph pattern with two

variables instead of one, which makes it applicable to more
generic graph structures, reducing the size of the summary
graph. This is because the number of triples in the sum-
mary graph is halved (a rule can now represent more triples).
The time complexity of the two previous approaches is
O(M ∗ R + Np ∗ O2

v ∗ Ns), where M is the total number
of triples, R is the number of the generated logical rules, Np

and Ns are respectively the number of distinct properties and
subjects/resources in the graph, and Ov is the average num-
ber of different objects/values that are assigned to a property
p (we should remember that we are looking for common
neighbors and thus for common values for the properties in
the object/value part, (s, p, o) or (s, p, v) in the triple nota-
tion); thus, the lower the average number of different values
the more common the neighborhood and the better the algo-
rithm behaves as already stated earlier (Fig. 13).

7 Statistical summarization

The works we discuss here focus on quantitatively summa-
rization of the contents of an RDF graph. An overview is
shown in Table 6.
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Fig. 13 Graph compression framework following [73]

Table 6 Statistical RDF summaries

Work RDF input
component

Input
requirements

Purpose Output type Output nature System–theory

Hose et al. [33] Instance None Source selection Statistical
information

Instance Theory

Wu et al. [110] Schema Requires schema,
RDF/OWL,
minor user
input

Visualization Isolated schema
nodes

Schema Theory

Pires et al. [78] Schema Requires schema,
OWL

Query answering
tasks

Labeled graph Schema System

LODSight [21] Instance and
schema

None Compression,
Visualization

Labeled graph Instance System

Mynarz et al. [68] Instance and
schema

Required schema
summary
patterns, the
number (k) of
selected
examples,

Understanding of
dataset,
Visualization

Labeled graphs Instance System

Presutti et al. [80] Instance and
schema

None Querying Dataset Labeled graphs Construct an
ontology and
the
corresponding
instances that
summarize key
features of
dataset and
identify the
core KPs

Theory

A first motivation for statistical summarization works
comes from the source selection problem. In general, statisti-
cal methods are interested in providing quantitative statistics
on the content of the KBs in order to decide if it is pertinent
to use the KB or not. In that respect, compared to the pattern-
mining category (which is conceptually close) and the other
categories, it has the advantage not to care too much about
issues of structural completeness of the summary and thus
reducing computational costs. Early works in this area [5,88]
use SPARQLASKqueries to identifywhether a triple pattern
exists in a source node or not, and query those sources only in

a subsequent step. The main problem of this solution is that
many sources might contain the same facts, meaning that we
will have many duplicate results and therefore many unnec-
essary requests. The authors of [33] propose to expand ASK
queries in order not to return a boolean answer, but a concise
summary of the result, in the form of Bloom filters [7]. Based
on these summaries, a corresponding algorithm estimates the
benefit of retrieving results for a triple pattern from a specific
source, ignoring sources with low or zero benefit. The sum-
maries produced are called sketches, and include statistical
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information on the instances. In this approach, input is not
required from the users.

Another approach, which seeks to identify the most
important resources in an ontology, is [110]. The proposed
algorithm, named Concept-And-Relation-Ranking, does not
consider instances and tries to identify the most important
schema concepts and relations in an iterative manner. The
importance of a concept is a combination of the number of
relations starting from it, its relations to more important con-
cepts, and the weights of these relations. The more important
the concept at the source of a relation, the higher the weight
of the relation. The importance of nodes and the weights of
the relations reinforce one another in an iterative process.
The approach considers implicit and semantic information
as well; it is based on an ontology graph model to which
RDF, DAML+OIL and OWL ontologies can be mapped.

Pires et al. [78] proposes an method to automatically sum-
marize local ontologies that are used as schemas of peers
participating in a peer-to-peer system. The goal is to help peer
clustering, where an incoming peer must search for seman-
tically similar peers in order to join. To do that, a schema
summary of the new node is compared with the schema sum-
maries of the existing peers in order to decide where to join.

In order to determine the relevance of a concept, two
measures are combined: centrality and frequency. Central-
ity is an adaptation of the degree centrality; different weights
can be assigned to user-defined properties, on the one hand,
and to the special properties isA (RDFS subclassOf), partOf
and sameAs; frequency is the ratio between the number of
concept correspondences and the number of distinct local
ontologies. The algorithm starts by computing the relevance,
then it selects the top-k nodes, and subsequently groups adja-
cent relevant concepts. Finally, in order to link non-adjacent
groups, the first k-paths connecting them are examined in
order to select the ones that have the best f -measure and
average relevance. The approach does not consider the data
triples of the input graph, nor the implicit triples. However,
it supports OWL ontologies. Using it requires setting the
values of a set of parameters and weights, in particular to
determine the importance of different properties, to compute
the relevance, to determine the summary size etc. The tool is
available online for download.10

LODSight [21] is an RDF dataset summary visualization
tool that displays typical combinations of types and predi-
cates. It relies solely on SPARQL queries and as such, given
aSPARQLendpoint, it can theoretically summarize all acces-
sible data, without requiring any user input. Through those
SPARQL queries, it collects statistical information on the
available combinations of types and predicates, and visual-
izes them in a labeled graph. Implicit RDF data are only
accounted for to the extent that the endpoint returns full

10 http://www.cin.ufpe.br/~speed/OWLSummarizer/.

answers based on reasoning. The tool provides dynamic
means of changing the level of details and is able to sum-
marize very large datasets. The system is available online.11

LODSightwas extended in [68] in order to further improve
the understanding of a dataset, by instantiating the sum-
mary patterns identified by LODSight. To do that, the authors
propose an approach to select instances through three meth-
ods, namely random, distinct and representative. In random
selection, random examples of each RDF summary path are
selected; this runs the risk of returning duplicates. The dis-
tance selection method aims to select data paths as distinct
from one another as possible; to this effect, distance mea-
sures are used to find how similar two paths are, and a greedy
heuristic is employed to construct a sufficiently diverse set of
pairs. The representation selection method combines diver-
sity and representativeness criteria in order to select a set
of paths achieving a comprehensive result. The selection
method is available as a web service.12

Presutti et al. [80] proposes a dataset analysis method
based on recognizing and discovering patterns. The aim of
this method is to support query answering. As such, the
authors create initially an ontology that depicts the organi-
zation of the dataset and identifies its main features, i.e.,
information about triples, paths, and types and properties
occurring in the paths. In addition, it includes statistics about
these elements, such as the number of occurrences of each
path. Using this ontology, the core types and properties can
be distinguished based on their frequencies and the position
in paths. According to these observations, central knowl-
edge patterns (containing a central type and properties) are
extracted in order to define prototypical queries. Implicit
information is not taken into account.

8 Other summarizationmethods

In this section, we present approaches that combine methods
from the structural, statistical and pattern-mining categories
in order to get better results. In addition, there are methods
going beyondRDFgraph summaries, for example summariz-
ing DL ontologies. An overview of the works in this category
is shown in Table 7.

Alzogbi and Lausen [3] proposes a hybrid structural sum-
marization technique for RDF graphs, the purpose of which
is to reduce their size while retaining their structure as much
as possible. It consists of a graph quotient step followed
by a graph clustering step. The first one adopts bounded
forward bisimulation, as according to the authors, previ-
ous studies showed that, in general, unbounded bisimulation
is not amenable to significant graph size reduction. This

11 http://lod2-dev.vse.cz/lodsight/about.html.
12 https://github.com/jindrichmynarz/rdf-path-examples.
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intermediate graph being a quotient, it represents all the N
nodes and M edges of the input graph, and is computed in
O(M∗N+N 2). It is then further compressed by hierarchical
clustering, which fuses root nodes of similar depth-bounded
tree subgraphs. This is achievedwith the so-calledComplete-
Link Clustering algorithm in O(N 2) [67], where N is the
number of nodes of the aforementioned intermediate graph.
This technique produces a standard graph out of an RDF one,
without user input, which summarizes the whole input graph
(nodes and edges). However, it does not perform particular
treatment on RDF Schema triples, hence does not capture
the implicit triples they entail, unless input RDF graph are
saturated prior to summarization.

ABSTAT [72,91,92] is a summarization method for RDF
graphs (and OWL KBs), which aims at reflecting how class
instances are related through properties. A summary is not
a graph but a set of abstract knowledge patterns (AKPs) of
the form (c1, p, c2) representing the (s, p, o) graph triples
with c1 (resp. c2) one of the most specific types of s (resp.
o); there may have several such c1, c2 pairs for a given prop-
erty p. An ABSTAT summary is built in polynomial time
in the size of the input RDF graph, by first computing for
every value presents in the graph all its types, from which
are pruned out the redundant ones. Then, for each property
assertion (s, p, o), an AKP (c1, p, c2) is built if c1 (resp.
c2) is a most specific type for value s (resp. o). ABSTAT is
available online.13

Stefanoni et al. [93] proposes to use structural summaries
of RDF graphs for estimating the cardinality of conjunctive
queries. The authors build a graph summary of an RDF graph
by grouping together nodes having exactly the same set of
types, same outgoing and same incoming properties. A sum-
mary edge is labeled with the number of edges of G that
have been collapsed due to merging (thus, the summary is
not a quotient). The classes (appearing in the object posi-
tion of type triples), and properties appearing in the property
position are preserved, i.e., they are represented in the sum-
mary by themselves. However, properties appearing in the
subject/object positions are not preserved; moreover, possi-
ble RDFS properties are summarized just as any other data
property; thus, the schema is not conserved either. These
summaries, built in time linear in M , the number of graph
edges, may be too large; therefore, the authors propose an
algorithm to reduce the summary to a target size specified
by the user, by merging nodes having similar incoming and
outgoing properties. The similarity is determined by a Jac-
card index, approximated by MinHashing [56]; to efficiently
compute the similarity between all pairs of summary nodes,
locality-sensitive hashing [56] is used. The approach gets as
input only instances and optional parameters for summary
refinement and returns an instance graph. This graph is fur-

13 http://abstat.disco.unimib.it/search.

ther used to enable the estimation of the cardinality for easing
query answering and evaluation.

Pham et al. [76] combines structural non-quotient and sta-
tistical methods to create a summary of an RDF graph, which
they call relational schema. The initial summary is generated,
in linear time of the RDF graph size (average complexity),
by computing sets of properties joining on the subject, the
so-called characteristic sets, denoted CS. A summary node
is created for each CS, thus representing nodes of G having
the same outgoing properties. An edge exists between two
summary nodes, labeled by a property p, if there exist two
G nodes in their respective extents, such that there exists an
edge labeled by p in G between the two G nodes. This struc-
tural aspect therefore considers only the instance component
of an RDF graph. In the second step, a short human-friendly
label is computed for summary nodes and edges, by relying
on type triples, or in their absence, on ontology information.
To reduce the summary size, summary nodes are subse-
quently merged. In semantic merging, two summary nodes
can be merged in two ways: (i) if they have the same label,
taken from an ontology, or (i i) if their labels, originating
from different ontologies, have a common superclass, and
the generality score of this superclass is lower than a cer-
tain threshold. The generality score of an ontology class v

is computed as the ratio between the number of instances of
v’s subclasses and the total number of instances covered by
the ontology to which v belongs. Moreover, the two ways in
which two summary nodes can bemerged in structural merg-
ing are as follows: (i) if they both have an incoming edgewith
the same property, from another summary node, or (i i) if the
properties in their respectiveCSs have the TF/IDF similarity
score higher than a given threshold. The merging order of the
nodes, affects the resulting summary. The summary is mod-
eled relationally: a table is created per summary node, with a
column for each property in the CS represented by the sum-
mary node; the relationships between the nodes are stored
as foreign keys. The chosen relational model proves chal-
lenging for storing the possibly highly heterogeneous graph
structure, inherent to RDF graphs, and it drives the modifi-
cations to the summary. First, the CS of each summary node
may be a result of merging multiple summary nodes and thus
their CSs. Therefore, a G node in the extent of a summary
node may not have a value for each property in the CS of the
summary node, and will have a NULL value in the table for
each such property. Properties having few non-NULL values
are deleted. Second, a single property in RDFmay have mul-
tiple literal values, possibly of different types. In such cases,
Pham et al. [76] chooses to add a column for each distinct lit-
eral value type per property, which other than incurring space
costs, may lead to more NULL values. Therefore, for each
literal value type below the infrequency threshold, all triples
are moved to a separate single PSO table. Finally, infrequent
edges are deleted from the summary, while a summary node
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is deleted if the number of nodes it represents is below a
threshold; with the exception of summary nodes which are
referred tomany times from other tables. The approach relies
on end-users for choosing the right parameters, whereas the
authors propose also an auto-tuning algorithm for determin-
ing the best value of the similarity threshold.

Zheng et al. [118] proposes a framework formining equiv-
alent structure patterns with equivalent semantic meaning.
As in RDF KBs, it is common to have different graph struc-
tures, sharing the same meaning, the authors’ aim is to
ease end-user’s querying task. As such, instead of demand-
ing from the users to have the complete knowledge of the
schema—enumerating in the query all possible semanti-
cally equivalent graph structures—the authors propose an
approach that performs query rewriting, exploiting automat-
ically other possible graph structures with the samemeaning.
To achieve that, they define the notion of semantic graph edit
distance and present a framework that tries first to rewrite the
input query to one considering semantic equivalences and
then finding the subgraphs minimizing the semantic graph
edit distance. For efficiency, they build offline a semantic
summary graph over which they perform a two-level pruning
at query time in order to finally provide answers. The seman-
tic summary graph is a multi-layer graph where the first layer
is consisted of the linked types of the instances (they call them
semantic facts). Then, they abstract this graph in the layers
above, replacing/abstracting in each layer classes with their
superclass. The summary produced does not require user
input to be produced, whereas the aforementioned method
can only be applied in fully typed RDF KBs.

Finally, the next works consider structural methods for the
summarization of ABoxes (facts) in description logics KBs.

Glimm et al. [25] proposes a method for compress-
ing (hence summarizing) the ABox of a Horn-ALCHOI
description logic KBs, using the notion of ABox abstrac-
tion. Given an ABox A, for each A value v, a type pattern
of the form tp(v) = (tp↓, tp→, tp←) is computed, where
tp↓ denotes the explicit types v has in A (C’s such that
C(v) ∈ A), tp→ the outgoing properties v has in A (R’s
such that R(v, v′) ∈ A) and tp← the incoming properties
v has in A (S’s such that S(v′, v) ∈ A). These type pat-
terns are then used to build the abstraction B of the ABox,
which is an ABox itself; each such type pattern is used to
represent all the ABox values that match it: for every type
pattern tp = ({C1, . . . ,Cm}, {R1, . . . , Rn}, {S1, . . . , Sl}), B
contains {C1(xtp), . . . ,Cm(xtp), R1(xtp, y

R1
tp ), . . . , Rn(xtp,

yRn
tp ), S1(y

S1
tp , xtp), . . . , Sl(y

Sl
tp, xtp)}. We remark that, given

an ABox, its abstraction is simply obtained by traversing
its facts. It is further shown in [25] how the abstraction of
the ABox of an input Horn-ALCHOI KB can be gradually
refined, using reasoning steps, to obtain the abstraction of the
ABox of the input KB saturation.

ABox summaries has also been considered for the data
management tasks of consistency checking [23,24] and query
answering [19,20] inSHIN KBs. In these works, the notion
of a summary ABox is very general: an ABox A′ is a sum-
mary of another ABox A w.r.t. some function f that maps
A values to A′ ones whenever f defines a homomorphism
fromA toA′. Based on this property ofABox summaries, the
purpose of [19,20,23,24] is to study howSHIN consistency
and query answering reasoning techniques can be performed
correctly and more efficiently than when handling the input
ABox.

9 Conclusions and future work

In this survey, we present a comprehensive state-of-the-art in
semantic graph summarization. To this direction, we intro-
duce a taxonomy of the works in the area (based on different
properties/criteria that the works adhere to), that can help
practitioners and researchers to determine the method most
suitable for their data and goal. In this taxonomy, we grouped
the main methods of the algorithms presented into four main
categories structural, statistical, pattern-mining and hybrid,
identifying subcategories whenever possible. In addition, we
also classified works in the field according to their input,
output, availability on the internet and purpose, showing the
rapidly evolving dynamics in the area.

In general, RDF graph summaries can be useful in vari-
ous application scenarios ranging from data understanding
to query answering and from RDF graph data indexing to
RDF graph visualization. Structural quotient summaries are
most applicable to indexing and query answering through
graph reduction; this holds especially for quotients built
through equivalence relations such as bisimilarity (possibly
bounded). Non-quotient summaries mostly target visual-
ization, schema discovery and data understanding. Pattern-
mining summaries provide in many cases logical rules
besides the summary graph as part of the final result, so could
be possibly more useful in RDF graph compression scenar-
ios. Summaries could also be really useful in data integration
scenarios [48], where instead of generatingmappings [63,65]
between data source schemas, summaries could be used to
drive the definition of the mapping. Extending this to a sce-
nario where the sources can also evolve [46,47], summaries
can play a key role in schema understanding and mapping
redefinition. Different RDF summarization scenarios each
bring their very specific requirements (e.g., whether the sum-
mary size is bounded or not, whether a schema is present or
not, whether to summarize the data or the schema, whether
the summary needs to reflect all the structure or not etc.); in
many cases more than one algorithm or family of algorithms
will provide suitable results. The goal of our survey was to
provide enough information to the users of these algorithms
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(i.e., application developers or researchers) in order to be able
to easily refer to the characteristics of each approach, and
evaluate their suitability to their application requirements.

Despite the considerable amount of work in the area of
semantic graph summarization, there still aremany important
open problems in the field. Belowwemention twoof themost
notable ones.

The first one is the quality of the produced RDF summary.
Since the result summary for the different algorithms, varies
among a selection of nodes, quotients, some other frequency
structure or a complete graph with various types of nodes
and links identifying a single golden standard is a complex
task. On the other hand, even domain experts in many cases
disagree on which specific elements should be selected in a
semantic summary. However, having in mind our proposed
taxonomy, we believe that the next step in the area is the
establishment of different golden standards specific to each
subcategory focusing on specific purpose input and output.

Another open issue we perceive as really important, is
the dynamic nature of all these datasets. As new informa-
tion becomes available due to new experimental evidence
or observations and erroneous past conceptualizations are
constantly updatedmanydatasets are rapidly changing.How-
ever, summarization in most cases and especially for big
data sources is a time-consuming process that should be con-
stantly updated to facilitate data exploration. As such, novel
ideas should focus in this dynamicity, augmenting the explo-
ration experience of end-users.

Thework in RDF graph summarization gainsmore impor-
tance as the RDF Knowledge Bases become larger and more
connected and thus we expect to see additional advances in
the field in the near future.
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