
The VLDB Journal (2019) 28:427–449
https://doi.org/10.1007/s00778-018-0525-6

REGULAR PAPER

A framework for efficient multi-attribute movement data analysis

Fabio Valdés1 · Ralf Hartmut Güting1

Received: 2 February 2018 / Revised: 1 August 2018 / Accepted: 10 October 2018 / Published online: 31 October 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
In the first two decades of this century, the amount of movement and movement-related data has increased massively,
predominantly due to the proliferation of positioning features in ubiquitous devices such as cellphones and automobiles. At
the same time, there is a vast number of requirements for managing and analyzing these records for economic, administrative,
and private purposes. Since the growth of data quantity outpaces the efficiency development of hardware components, it is
necessary to explore innovative methods of extracting information from large sets of movement data. Hence, the management
and analysis of such data, also called trajectories, have become a very active research field. In this context, the time-dependent
geographic position is only one of arbitrarily many recorded attributes. For several applications processing trajectory (and
related) data, it is helpful or even necessary to trace or generate additional time-dependent information, according to the purpose
of the evaluation. For example, in the field of aircraft traffic analysis, besides the position of the monitored airplane, also its
altitude, the remaining amount of fuel, the temperature, the name of the traversed country and many other parameters that
change with time are relevant. Other application domains consider the names of streets, places of interest, or transportation
modes which can be recorded during the movement of a person or another entity. In this paper, we present in detail a
framework for analyzing large datasets having any number of time-dependent attributes of different types with the help
of a pattern language based on regular expression structures. The corresponding matching algorithm uses a collection of
different indexes and is divided into a filtering and an exact matching phase. Compared to the previous version of the
framework, we have extended the flexibility and expressiveness of the language by changing its semantics. Due to storage
adjustments concerning the applied index structures and further optimizations, the efficiency of the matching procedure has
been significantly improved. In addition, the user is no longer required to have a deep knowledge of the temporal distribution
of the available attributes of the dataset. The expressiveness and efficiency of the novel approach are demonstrated by querying
real and synthetic datasets. Our approach has been fully implemented in a DBMS querying environment and is freely available
open source software.

Keywords Pattern matching · Multi-attribute data · Indexing

1 Introduction

As a consequence of the recent proliferation of GPS-enabled
devices such as cellphones or car navigation systems, a mas-
sive and still growing amount of position data is collected
every day. In response to this development, researchers have
explored new methods for storing, administrating, and ana-
lyzing an entity’s so-called movement data or geometric

B Fabio Valdés
fabio.valdes@fernuni-hagen.de

Ralf Hartmut Güting
rhg@fernuni-hagen.de

1 Database Systems for New Applications, Fernuniversität
Hagen, 58084 Hagen, Germany

trajectory that is represented by the sequence of timestamped
geographic positions obtained from the respective device.
From a more abstract point of view, the recorded movement
data can be considered as a continuous function from time
into two-dimensional space, denoted as a moving point [23].

Extracting information from geometric trajectories is
often neither efficient nor expedient. Many analysis tasks
include finding entities that have passed a certain street,
city, point of interest, etc., during some period of time or
sequences of such inquiries, instead of focusing on certain
geographic coordinates. Hence, a symbolic representation of
the movement, in most cases consuming clearly less storage
space than the corresponding geometric trajectory because
the described property (e.g., the street name or transportation
mode) can remain unchanged for longer periods (minutes or

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-018-0525-6&domain=pdf
http://orcid.org/0000-0003-4131-819X

428 F. Valdés, R. H. Güting

even hours) while the position is refreshed more frequently,
enables a more convenient and efficient querying, depending
on the evaluation purpose. A so-called symbolic trajectory
[25] can cover any property of movement or movement-
related data and is either directly computed from the raw
movement data (e.g., speed categories, cardinal directions)
or derived with the help of additional data (for example, alti-
tudes, names of traversed regions or places of interest) or
manually entered (such as activities or transportationmodes).

For numerous applications, it is useful or even necessary
to consider several values that change with time, besides or
instead of the geometric movement or a certain symbolic
representation. For example, the analysis of aircraft traffic
data is more effective if not only the airplanes’ position but
also further data such as altitude, temperature, or the remain-
ing amount of fuel are recorded at each timestamp. The
purpose for analyzing such multi-attribute data can be eco-
nomic (logistical optimization, customer behavior analysis,
targeted advertising), scientific (animal behavior analysis,
healthcare), administrative (urban planning, criminal investi-
gation), or private. A comprehensive collection of data types
representing values that change over time have been defined
as abstract functions, and discrete representations for them
have been implemented in the DBMS Secondo [13,22].
More precisely, each of the time-dependent data types is real-
ized as a chronologically ordered sequence of so-called units
that consist of a time interval and a value, for example, the
start and end point of a line representing a short segment of
a geometric trajectory, or a character string which could be
the name of a street, district, activity, etc.

Lately, we presented a framework for pattern matching on
datasets of arbitrarily many time-dependent attributes of dif-
ferent types [47] that is based on regular expressions, finite
state machines, and a combination of index structures and
that can be considered as a precursor of this work. In this
paper, we detail a novel framework that also analyzes sets of
tuples with any number of time-dependent attributes of dif-
ferent data types, offering several optimizations compared
to the mentioned publication. In [47], the user had to assign
one attribute whose temporal distribution, i.e., the number
and length of its units, was significant for the outcome of the
matching algorithm, hence a deep knowledge of the dataset
was required, entailing the risk of undesirable results. In this
work, this drawback has been removed by processing all
time-dependent attributes equally and independently from
their temporal distribution. In addition, the user-defined pat-
tern always had to match the complete temporal extent of the
data, a limitation that has been removed in the new frame-
work. Finally, the efficiency of the matching algorithm has
been improved, mostly by changing the way in which the
applied indexes are accessed.

The patternmatching algorithmdecideswhich tuples from
adatasetmatch a certain pattern,where one tuple usually con-

tains the available information related to the movement of a
certain entity. The algorithm is divided into twomain phases,
filtering and exactmatching. During the first phase, the tuples
for which there are no index results related to certain compo-
nents of the pattern are pruned. In many cases, this applies to
a large number of tuples. The exact matching phase is then
performed on the reduced dataset. The pattern is translated
into anNFA transition functionwhich is repeatedly executed,
while certain information about each active tuple are held and
updated inside specialized efficient data structures.

1.1 Insight into pattern language

Next, we provide an insight into the pattern language pro-
posed in this paper. We assume a relation with two attributes,
where the first one (named Trip) represents a human trajec-
tory in Los Angeles and the second one (Street) contains
the corresponding time-dependent sequence of street names.
Consider the pattern1

(2017 _ "Melrose Av") Z // speed(Z.Trip, wgs) > 20

whose three specifications inside the first pair of parentheses
are filters for the time and for the attributes Trip and Street,
respectively, where the underscore is interpreted as a wild-
card for the Trip attribute. Hence, according to the part left
of the double slash, all tuples that passed Melrose Avenue
in 2017 are found. Due to the variable Z and the specified
condition, the resulting tuples are further filtered, and only
those exceeding a speed of 20meters per second at least once
after passing Melrose Avenue.

In our previous work [47], the mentioned pattern can be
expressed as follows:

* (2017 _ "Melrose Av") * Z *

// sometimes(speed(Z.Trip, wgs) > 20)

However, its semantics is not equivalent to the pattern above.
We now focus on four differences between both approaches,
in increasing order of importance:

– The conditionmust be a boolean expression in [47]. In the
current approach, time-dependent boolean expressions
are allowed, too.

– The asterisks are not necessary anymore. This is because
pattern components now match time periods instead of
units (cf. Sect. 3), and attributes do not have to bematched
completely.

– In [47], one attribute has to be selected whose partition-
ing into units is relevant for the matching decision. No

1 Note that wgs is a database object of the type geoid, required for
precise computations on the earth’s surface.

123

A framework for efficient multi-attribute movement data analysis 429

matterwhich one is chosen, the variable Z from the exam-
ple above cannot be guaranteed to refer only to the part
after Melrose Avenue (due to possible repetitions inside
the attribute). In contrast, the current approach ensures
that the section represented by Z occurs completely after
passing Melrose Avenue.

– The novel approach guarantees that the condition defined
in the first pattern has to be evaluated precisely once (or
not at all, if the matching fails beforehand). This number
can be much larger and even prohibitively large in [47].

1.2 Contributions

In the following list, we summarize the contributions of this
paper:

– We introduce a framework for efficiently analyzing large
sets of movement data having any number of time-
dependent (movement-related) attributes.

– The corresponding pattern matching algorithm is fully
implemented and available as amodule of the open source
DBMS Secondo.

– Compared to the previously existing framework, the pat-
tern language and semantics have been changed:

– The user does not have to select a particular attribute
whose temporal distribution is relevant for thematch-
ing result; instead, all attributes are now processed
equally.

– We adjusted the semantics of the pattern language
(partly as a direct consequence of the previous state-
ment), e.g., time-dependent condition results are now
supported.

– The pattern can not only match the complete tem-
poral extent of the data, but in general any temporal
restriction of it. This extends the expressiveness of
the pattern language and makes it more suitable for
analyzing incomplete data.

– The matching algorithm is clearly more efficient,
mostly due to adjusted indexes and a reduced number
of disk accesses.

– One section is dedicated to prove that the novel pattern
language is more expressive than its precursor.

– We present an application scenario based on a real
dataset.

– The novel approach is evaluated in a series of experiments
comprising several patterns of different complexities. A
synthetic dataset as well as a real-world dataset (and sub-
relations of both of them) are applied.

– To our knowledge, this is the only pattern matching
approach offering this level of expressiveness and flex-
ibility with respect to the pattern language and possible
application domains.

1.3 Paper organization

The remainder of the paper is organized as follows: Related
work is discussed in the subsequent section, before Sect. 3
introduces symbolic trajectories and the representation of
time-dependent data types in general. An overview of the
DBMS Secondo is also provided. In Sect. 4, we propose our
new approach for pattern matching on multi-attribute move-
ment data analysis. The superiority of the novel language
compared to its precursor is detailed in Sect. 5. Applied data
structures and algorithms are presented in Sect. 6. Section 7
details an application example with aircraft movement data
from Aircraft Traffic Control. We provide an experimental
evaluation in Sect. 8, before the paper is concluded in Sect. 9
with an outlook to future work.

2 Related work

The approach presented in this paper is connected to sev-
eral research areas. In the following, we review the state of
the art, dividing the research results into three categories:
data models and representations for trajectories with seman-
tic information, pattern matching languages, and trajectory
indexes. Note that this assignment is subjective and some
of the cited publications could also be assigned to another
category as they cover more than one.

2.1 Semantic trajectories

Approximately since the beginning of this century, moving
objects have become a very active research field [24,58]. The
authors of [43] introduce a conceptual trajectory model that
regards the movement of an entity as an alternating sequence
of stops and moves. Generalized variants [2,37,53] of this
model have been proposed subsequently. However, these
approaches remain on the conceptual level, such that issues of
data management and querying remain unsolved. The model
of [1] is based on the concept of stops and moves, too. For a
more efficient trajectory analysis, the geometries of seman-
tically important regions are extracted from the movement
data. In [3], the authors describe an approach to modeling
semantic trajectories as collections of subtrajectories with
semantic information such as events, goals or behaviors of a
person. However, no specialized query language is provided.
A framework for semantically enriching and analyzing tra-
jectories is proposed in [17]. With the help of Linked Open
Data collections, for example, geo-referenced social media
data, movement data can be annotated with concepts and
objects. Converting geo-tagged photographs from social net-
works into semantic trajectories is explored by the authors
of [7]. Additional information such as weather conditions
during the travel or type of place of interest are associated

123

430 F. Valdés, R. H. Güting

to movement data in order to mine behavior information via
cluster analysis. An approach to defining a database model
for semantic trajectories relying on the use of data types is
outlined in [39].

Orthogonal to the development of generic models, resear-
chers explore efficient access and query processing methods
for narrower trajectory classes. The authors of [54] define a
semantic trajectory as a sequence of timestamped places, i.e.,
pairs of a spatial location and a semantic label. This model
supports the detection of frequent sequential patterns from a
set of semantic trajectories, where a sequential pattern is a
sequence of temporally bounded transitions from one group
of places to another. The model proposed in [55] represents
a trajectory as a sequence of spatial points annotated with
a number of activities. Apart from the chronological order
of such a sequence, the concept of time is completely disre-
garded.

In [25], a comprehensive framework for the general-
ized representation of movement in a symbolic space is
presented, including four data types for different kinds of
symbolic trajectories. Based on and fully integrated in the
well-established data model for moving objects introduced
in [23], it is available for moving objects database systems
such as Secondo [13,22] or Hermes [38,39]. The proposed
paper is based on its data model.

2.2 Patternmatching languages

A simple symbolic representation can be viewed as a chrono-
logically ordered sequence of symbols. As a consequence, it
is possible to apply regular expressions for a patternmatching
language on such a representation and hence finite automata
[27,31] for a pattern matching algorithm. du Mouza and
Rigaux [14,15] are the first to present a pattern language
for trajectories defined as sequences of symbols in a discrete
symbolic space as well as a corresponding matching algo-
rithm based on a nondeterministic finite automaton (NFA).
Such a sequence of symbols denotes the successive zones
visited by the considered entity. However, the proposed lan-
guage does not support precise temporal specifications (apart
from the order of symbols) or conditions on variables. Vieira
et al. [50,51] propose an expressive pattern language for
geometric trajectories allowing the use of variables and con-
ditions. Sequences of timestamped region labels occur only
as a data structure within the implementation. The approach
is restricted to a partitioning of space into disjoint regions
and does not offer a general solution for trajectory annota-
tion. More general geometries are supported in [26], whose
authors mainly consider range and nearest neighbor queries
without providing a symbolic representation or an expressive
query language.

The authors of [8] introduce an ontology-based approach
for discovering certain events in trajectories that are enriched

with semantics. Status messages of ship containers are pro-
cessed in order to analyze the routes of the shipped goods
and to detect anomalies suggesting fraudulent intentions.
Given the container movement data in a suitable format,
the presented queries (e.g., find all containers loaded into
a vessel that returns to the loading port before reaching its
planned destination) could also be realized with the frame-
work presented in this paper. Another contribution in the field
of ontology proposes a high-level data model representing
trajectory episodes of different granularities [34]. The frame-
work includes several ways of representing spatio-temporal
information and supports expressing qualitative and quanti-
tative semantic descriptions.

The framework [25], whose data model for representing
moving objects in a symbolic space is already mentioned
in Sect. 2.1, also introduces an expressive pattern matching
and rewriting language based on regular expressions. It is
fully implemented and embedded in the Secondo imple-
mentation of the model of [23]. Related demonstrations
analyzing private trajectories of a person and the Microsoft
GeoLife [57] dataset are provided in [10,44], respectively.
In addition, application challenges are discussed in [11]. An
index-supported and thusmore efficient version of the pattern
matching framework is available [45].

As a major extension of the framework, relations of tuples
with arbitrarily many time-dependent attributes of different
types can be queried inside one pattern [47]. In other words,
the pattern language can not only be applied to symbolic
trajectories, but to collections of movement and movement-
related data. The approach is efficient due to a composite
index and a filtering phase that usually prunes a large part
of the data. A related demonstration is conducted in [48].
However, there are several shortcomings such as a limited
expressivity of the language, performance issues, and unde-
sirable results in some situations. Further details concerning
the work [47] follow in Sect. 3.4. These and other deficien-
cies have been cured in the proposed approach. For example,
the flexibility of its precursor has not only been preserved but
even extended, the matching semantics have been changed in
order to be more intuitive, and the efficiency of the matching
process has been enhanced by approximately one order of
magnitude. A demonstration of the novel system has been
conducted in [46]. To the best of our knowledge, there is
no other approach proposing a fully implemented expressive
pattern language that is applicable to datasets containing any
number and types of time-dependent attributes.

2.3 Indexingmovement data

In order to realize efficient search queries and pattern match-
ing algorithmson trajectory (and related) data, it ismandatory
to apply index structures. Numerous publications consider
index structures for spatial trajectories, e.g., the 3D R-tree

123

A framework for efficient multi-attribute movement data analysis 431

[49], the TB-tree [40], and the TMN-tree [9]. A survey of
indexes for spatio-temporal data of several categories is pro-
vided by [33]. In [52], an index structure supporting the
detection of similar multidimensional trajectories is detailed.

For efficiently querying collections of symbolic trajecto-
ries, a twofold index structure and a suitable patternmatching
algorithm are provided [45]. The authors of [28] present an
index tailored for the special case of spatio-textual trajecto-
ries. Their approach includes a query language that is limited
insofar as it does not support regular expressions, conditions,
or the use of time intervals.

A sophisticated hybrid index for spatio-temporal-textual
data and a corresponding matching algorithm for so-called
spatio-temporal keyword patterns in collections of semantic
trajectories are proposed in [20,21]. The introduced query
language supports spatial, temporal, and textual specifica-
tions as well as wildcards and regular expression structures.
On the other hand, it does not include variables or conditions,
and due to the fixed data model, it is not possible to represent
or query further information, such as a numerical attribute
for the altitude or different text categories.

The authors of [29] consider the similarity of spatial tra-
jectories fusioned with keywords. A hybrid index structure
named ST-tree is presented along with a suitable algorithm
that searches for similar trajectories using a probabilistic
topic model. Their approach relies on the correctness of the
keyword search that may be error-prone, and it seems that
the temporal dimension has been completely ignored.

A recommendation framework for activity trajectories is
proposed in [56]. It applies a hybrid index structure and a
similarity function that detects trajectories according to spa-
tial distance, keyword similarity, and keyword popularity.

The precursor of this work [47] applies a combination
of well-known and widespread index structures such as R-
tree, B-tree, and trie (inverted file) for its flexible approach,
supporting the efficient processing of geometric trajectories,
symbolic trajectories, and further time-dependent data such
as numeric or boolean values. The tuple id and unit posi-
tion are stored for every index entry. For efficiency reasons
and because our current approach focuses on time intervals
instead of unit positions, the indexes store the tuple id and
time interval instead.

3 Preliminaries

This section reviews the concept of symbolic trajectories,
and, in general, abstract and discrete representations of time-
dependent data types. The first two subsections are mostly
covered by [25]. Subsequently, an overview over the DBMS
Secondo and basic notations are provided. In the final sub-
section of this section, we briefly review the results of [47].

3.1 Symbolic trajectories and patternmatching

First, we present a short example of a symbolic trajectory.
It describes the sequence of transportation modes used by a
person during her/his trip.

[2017-06-13-18:17:11, 2017-06-13-18:21:27) walk
[2017-06-13-18:21:27, 2017-06-13-18:32:03) bus
[2017-06-13-18:32:56, 2017-06-13-18:58:40) train
[2017-06-13-18:59:32, 2017-06-13-19:09:09) bike

This trajectory is a sequenceU ′ = 〈u′
1, u

′
2, u

′
3, u

′
4〉 of four

so-called units in chronological order, where each unit is a
pair of a time interval and a label. The brackets and parenthe-
ses indicate whether or not a time interval is leftclosed and/or
rightclosed. The time intervals have to be disjoint but not
necessarily continuous (e.g., there is a gap between the third
and fourth unit). In the database system Secondo, the corre-
sponding data type ismoving(label), ormlabel, for short. An
object of this data type represents a label that changes with
time, i.e., a time-dependent character string. The data types
mlabels, mplace, and mplaces are closely related to mlabel
and also introduced in [25]. Each unit of one of them contains
a set of labels, a place, and a set of places, respectively, where
a place is a label with an additional reference into a repos-
itory of geometric information, e.g., river courses or region
shapes.

Database systems supporting these (or similar) data types
can offer numerous options for querying an object of this
kind. For example, in Secondo there are a large number of
operations such as passes or atinstant that can be applied
to extract certain information from a symbolic trajectory. In
order to cover more sophisticated queries, a very expressive
but still lucid pattern language has been developed as well
as a pattern matching algorithm that decides whether a pat-
tern p with m components matches a symbolic trajectory
U = 〈u1, . . . , un〉. The components of such a pattern can
match either one unit of U or a sequence of them, depend-
ing on the respective contents of the pattern component p j

and the unit ui . A component p j may contain a temporal
restriction (e.g., a time interval, a day of the week, or a
logical conjunction of such specifications) and/or a set of
labels/places. In this context, a match occurs (in the most
basic version) if and only if the time interval of ui is com-
pletely covered by the time period specified in p j and if the
labels/places in ui are also present in p j . For amatch of p and
U , there has to exist a partitioning ofU intom disjoint subse-
quences of units (possibly empty), where each subsequence
Uj is matched by the pattern component p j . For example,
consider the following pattern

({tuesday, 18:00∼18:30} "walk") *
(2017-06-13-18:55∼2017-06-13-19:15 "bike")

123

432 F. Valdés, R. H. Güting

which consists of three components. The first one (in paren-
theses) matches the first unit u′

1 of the symbolic trajectory
mentioned above, since the labels coincide and the unit’s time
interval fulfills both requirements, i.e., it occurs on aTuesday,
between 6 pm and 6:30 pm. Similarly, u′

4 is matched by the
final pattern component. The second component, an asterisk,
represents a wildcard element that can match any sequence
of units. In this case, it matches the sequence 〈u′

2, u
′
3〉 of

remaining units. Hence, the pattern successfully matches the
symbolic trajectory U ′.

In addition, the pattern language supports regular expres-
sion structures as well as variables prepended to pattern
components and comma-separated conditions. For example,
the pattern

X (_ "walk") Y *
Z [(_ "bike") | (_ "motorbike") | (_ "skateboard")]
// get_duration(X.time)<get_duration(Z.time), Y.card=2

matches the symbolic trajectoryU ′, too. Note that it does not
contain any temporal specifications. The first condition after
the double slash compares the temporal durations of the two
units bound to the variables X and Z , respectively, while the
second one refers to the number of units that belong to the
sequence bound to the wildcard variable Y . Any number of
conditions may be specified, and every operator and object
of the underlying database system can be applied. For exam-
ple, get_duration is a Secondo operator that computes the
duration of a periods value. The pattern language for ana-
lyzing collections of symbolic trajectories is detailed in [25]
and enhanced in [45].

3.2 Representation of time-dependent data types

Based on a comprehensive framework for representing and
querying moving objects in databases [16,18,23], in this
section we provide an introduction to abstract and discrete
representations of time-dependent data types.

The general purpose of that framework is to provide a
collection of abstract data types describing moving objects
and operations that can be applied to them. For example,
the data type moving(point) (mpoint, for short) represents
a time-dependent location in the Euclidean plane, while a
time-dependent real value is described by the type mreal.
The operation trajectory maps an object of the type mpoint

to a line2 value, and the distance operation returns the time-
dependent distance of two mpoint values as an mreal object.

These and many more data types and operations are inte-
grated into the data model of a DBMS in the following way.
The defined data types can be used as attribute types; hence,

2 The spatial data type line represents (a linear approximation of) a
continuous curve in the Euclidean plane.

wemay have a relation describing car trips of several persons
with the schema

Vehicles (Id: int, Trip: mpoint).

The operations can be applied in queries. For example, the
query

SELECT v1.Id, v2.Id
FROM Vehicles as v1, Vehicles as v2
WHERE minimum(distance(v1.Trip, v2.Trip)) < 0.1

finds pairs of vehicles that eventually have been closer to each
other than 100 meters. Note that the minimum operation
maps the time-dependent distance between the vehicles (data
type mreal) to a constant real value.

From a formal perspective, a system of data types and
operations on them can be considered as a (many-sorted)
algebra. It consists of a signature providing sorts and opera-
tions. Regarding the definition of the semantics, carrier sets
and functions have to be assigned to the sorts and operations,
respectively.

In thementioned framework for the representation ofmov-
ing objects, data types are created from certain basic types
and type constructors. The type system itself is described by
a signature, where the sorts are so-called kinds and the oper-
ations are type constructors. The terms of the signature are
exactly the available types of the type system. For example,
consider the following signature:

int, real, bool: → BASE
array: BASE → ARRAY

It contains the kinds BASE and ARRAY and the type
constructors int, real, bool, and array. The defined types int,
real, bool, array(int), array(real), and array(bool) are the
terms of the signature. Note that the three basic types are just
type constructors without arguments.

The type system for moving objects defined in [23] is pre-
sented in Table 1. It contains some basic standard types (first
line) as well as spatial types (second line). An object of the
data type instant represents an element from the continuous
domain of time, i.e., a time instant or a point of time. For
a given static type, the type constructor moving provides a
corresponding time-dependent type, such as the abovemen-
tioned type mpoint. The intime constructor yields for a static
type α a data type whose values are pairs of a time instant and
a value of the type α. Finally, the range constructor applied
to a type α provides another data type whose values are finite
sets of disjoint intervals over the domain of α. For exam-
ple, the mentioned data type periods is an abbreviation for
range(instant).

123

A framework for efficient multi-attribute movement data analysis 433

Table 1 Type system defined in [23]

Type Constructor Signature

int, real, string, bool →BASE

point(s), line, region →SPATIAL

instant →TIME

moving, intime BASE ∪ SPATIAL →TEMPORAL

range BASE ∪ TIME →RANGE

For providing the semantics of the data types, it is neces-
sary to define their domains or carrier sets. In this context,
it is important to distinguish between an abstract model and
a discrete model, as introduced in [16,18,23]. In an abstract
model, the domain of a data type may be defined with the
help of infinite sets, for example, regarding the domains of
integer or real values or points in the Euclidean plane. Such
an abstract model is conceptually simple, but it is in general
not directly implementable. In contrast, the possible values
of data types in a discrete model have to be defined in terms
of finite representations. These can be comfortably mapped
to data structures in an implementation.

For a data type α, we denote its carrier set in the abstract
model as Aα .When the undefined value⊥ belongs to a carrier
set Aα , let Āα = Aα \ {⊥} be the carrier set Aα without the
undefined value.

Definition 1 Let α be a data type to which the type construc-
tor moving is applicable. Then the carrier set of the data type
moving(α) is defined as

Amoving(α)

:= { f | f : Ainstant → Āα is a partial function}.

In the abstract model, the issue of how such functions
can be represented is completely disregarded. The discrete
model presented in [18] provides finite representations for all
the types of the abstract model. The so-called sliced repre-
sentation for data typesmoving(α) is introduced. This means
that the time domain is partitioned into disjoint time inter-
vals (slices) such that within each slice, the development can
be represented by some function of time which is finitely
representable. In other words, the function for a slice can be
described by a constant number of parameters instead of an
infinite set of pairs of a time instant and a value.

The sliced representations of two sample objects of the
types moving(real) and moving(point) are depicted in Fig. 1.
The representation of a single slice, which consists of a time
interval and a function description, is called a unit.

For the data types listed in Table 1, a comprehensive set
of operations is defined. Most of the operations are generic,
i.e., applicable to many of the available data types. Consider
the following two operations:

t

v

x

y

t

Fig. 1 Sliced representations for the types moving(real) and
moving(point)

deftime: moving(α) → range(instant)
atinstant: moving(α) × instant → intime(α)

The deftime operation returns the set of time intervals during
which a moving object is defined, while atinstant computes
the value of a moving object at a certain time instant. Both
operations are generic, since they are applicable to all data
types generated by the moving type constructor. Please refer
to [23] formore details and complete definitions of data types
and operations.

3.3 The DBMS SECONDO

In this section, we briefly introduce the DBMS Secondo,
reviewing some of the results of [22].Secondo is a prototype
DBMS that has been developed at University of Hagen since
1995. It can be run on Linux and MacOS X platforms and is
freely available open source software [12].A clean extensible
architecture aswell as support for spatial and spatio-temporal
data types and applications have always been themain design
goals.

The architecture of the Secondo system is depicted in
Fig. 2. It has three major components: the kernel, the opti-
mizer, and the GUI. The kernel does not implement a fixed
data model. Instead, it is open for the implementation of a
wide variety of DBMS data modules, and it can be extended
by algebra modules. More exactly, a particular data model is
entirely implemented within such algebra modules. Hence,
there are algebras in Secondo for basic data types, for tuples
and relations including operations such as hashjoin, for B-
trees and R-trees with their build and access operations, for
spatial and spatio-temporal data types, andmanymore. Some
algebras are beyond the scope of a relational model and
support nested relations, movement in networks, or parallel
processing.

The Secondo kernel evaluates terms over the existing
objects and operations. For example, it can evaluate the
expression

query Trains feed
filter[day_of(inst(initial(.Trip))) = 9]
filter[length(trajectory(.Trip)) > 2000.0] count

where Trains is a relation containing an attribute Trip of the
type mpoint, representing trajectories of a metro train. The

123

434 F. Valdés, R. H. Güting

Fig. 2 Secondo components (left), architecture of kernel system
(right) [22]

syntax for an operation can be freely determined. It is often
convenient to use postfix notation for query processing opera-
tions, e.g., the first argument to the filter operation is Trains
feed. Stream processing is built into the engine. The set of
commands and queries processed directly by the kernel are
called the executable language. The kernel is written in C++
and uses BerkeleyDB as the underlying storage manager.

The Secondo optimizer is not as independent from the
data model as the kernel. It assumes an object-relational
model and supports a language similar to SQL that is mapped
to the executable language shown above. The optimizer can
be extended by registering types and operations from the
executable level and by defining translation rules and cost
functions. New index types can be added, and concepts to
distinguish between logical and physical indexes are pro-
vided. The optimizer determines predicate selectivities by a
sampling strategy which is the only feasible way to support
predicates with arbitrary data type operations. The optimizer
is written in Prolog.

The Secondo GUI sends the user’s commands and
queries to a kernel and visualizes the results returned by
the kernel. It supports the SQL-like optimizer language as
well as Secondo executable language. In the former case, it
interacts with the optimizer to obtain an execution plan that is
then sent to the kernel. The GUI can be extended by so-called
viewers that can realize their ownmethods of displaying data
types. The GUI is written in Java.

3.4 Patternmatching on tuples of time-dependent
values

While the framework presented in [25,45] only allows for
querying collections of symbolic trajectories, an extension
that processes tuples of time-dependent values is proposed
in [47]. Similarly to the four types of symbolic trajecto-
ries, the remaining time-dependent data types are realized
as sequences of units, where a unit consists of a time inter-
val and a finitely representable value. The time-dependent
data types supported by the extended framework are listed in
Table 2. Consider [25] (regarding symbolic trajectories) and,
particularly, [23] for more details.

Table 2 Time-dependent data types supported by [47]

Data type Value domain for each time interval

mlabel label; a character string of arbitrary length

mlabels labels; a set of arbitrarily many label values

mplace place; a label and a reference to a geometry

mplaces places; a set of arbitrarily many place values

mpoint a linear movement from a start to an end point

mregion a region’s linear movement between two points

mbool a boolean value

mint an integer value

mreal a quadratic function of reals, or its square root

mstring string; a string of at most 48 characters

Fig. 3 Visualization of a tuple of three time-dependent attributes; the
second tuple unit is highlighted

With the mentioned framework [47], it is possible to for-
mulate sophisticated patterns for analyzing collections of
tuples with any number of time-dependent (and constant)
attributes. Due to a flexible combination of index structures,
the pattern matching process is rather efficient.

A pattern in [47] is only valid in combinationwith a certain
attribute of the dataset which is assigned as main attribute.
The choice of this attribute is critical for the matching deci-
sion insofar as its partitioning into units is relevant. This is
because every component of a pattern can match either one
tuple unit or a sequence of them, where a tuple unit is the
restriction of a tuple of time-dependent values to the time
interval of a unit of the main attribute. The concept of a tuple
unit is depicted in Fig. 3, where the example tuple has the
schema (τ1: mlabel, τ2: mpoint, τ3: mint). The attribute τ2
may represent the geometric component of the movement,
hence the large number of units is realistic, compared to τ1
containing the sequence of street names and τ3, which holds
the respective speed limit.

In this figure, we assume that τ is a tuple with three time-
dependent attributes fromwhich τ1 has been selected asmain
attribute. The highlighted strip covers the tuple unit deter-
mined by the second unit of τ1.As an example of the language
of [47], consider the pattern

123

A framework for efficient multi-attribute movement data analysis 435

* (_ "Rodeo Dr" _ _) * (_ "Sunset Blvd" _ <28 33>) *

Each of the asterisks can match any number of tuple units,
including 0. The first component in parentheses matches
exactly the tuple unit highlighted in Fig. 3, while the follow-
ing tuple unit is matched by the pattern’s second component
in parentheses. Hence, the matching is successful in this
example.

However, the approach has several shortcomings, for
example:

– The user has to select one time-dependent attribute as
main attribute whose temporal distribution into units is
critical for the outcome of the matching. Depending on
the user’s choice, the same pattern may lead to different
matching results. If she/he does not know exactly about
the temporal distribution, undesirable results are likely,
particularly if the attributes have gaps and/or different
durations.

– The beginning and end of the pattern have to match the
beginning and end of the tuple (more precisely, of the
main attribute). This limitation reduces the expressive-
ness of the pattern language and makes it less suitable
for processing incomplete data. Further limitations con-
cern the restricted use of conditions.

– Depending on the pattern, the corresponding NFA may
contain loops. This may result in a poor performance,
especially for a pattern with conditions that have to be
evaluated repeatedly (possibly many times) in this case.

– Due to the implementationof the index structures, retriev-
ing index results causes unnecessary disk accesses. In
some cases, the exact matching phase follows multiple
matching pathswhich can be very inefficient, particularly
if the main attribute has a large number of units.

As a consequence, in this paper we propose an adjusted
pattern language with different semantics that is detailed in
Sect. 4. The novel approach does not require the concept
of tuple units and a main attribute, instead all the time-
dependent attributes are processed with equal priority and
based on time intervals instead of units. Asterisks are not
required anymore, because temporal gaps between pattern
components are implicitly allowed. Moreover, a tuple does
not have to be matched in its complete temporal extent. In
addition to the data type bool, conditions may also be speci-
fied as time-dependent expressions of the type mbool.

Without reducing the expressivity of the language, the
existence of loops in the NFA representing the pattern is
avoided. In combination with a reduced number of index
accesses and condition evaluations, the performance gain is
massive, as we demonstrate in the experimental evaluation
(Sect. 8).

time

18:15:00
18:17:11

18:21:27

18:32:03
18:32:56

18:58:40
18:59:32

19:09:09

Fig. 4 Visualization of the tuple τ ′; transportation mode illustrations
gratefully downloaded from [35]

3.5 Running example

The set of two tuples defined in the following is going to
serve as a brief running example throughout the remainder
of this paper. The notations and their meaning are precisely
explained in Sect. 4. Let τ ′ be a tuple whose first attribute
τ ′
1 is the symbolic trajectory U ′ introduced at the beginning
of Sect. 3.1, which describes the sequence of transportation
modes corresponding to the movement of a person. The sec-
ond attribute of τ ′ is assumed to have the type mpoint and
to represent the geometric movement of this person between
6:15 p.m. and 7:09:09 p.m. in Dortmund, Germany, with a
new unit for every five seconds, ending precisely at the city
center. Hence, it has not only 4, but 54 ∗ 12+ 2 = 650 units.
We denote the two attributes as TMode (type mlabel) and
Trip (type mpoint).

The development of τ ′ is depicted in Fig. 4. Let τ ′′ be
another tuple that is almost equal to τ ′, except for the time
intervals that are all postponed by oneweek, i.e., the identical
movement occurred on June 20, 2017. In addition, consider
the following pattern3 p′:

[(tuesday "aircraft" _)|(_ "walk" dortmund)
(_ "bus" _)]

X Y (2017-06-13 "bike" _)
// not(X.TMode passes "subway"),

3 Let dortmund and center be database objects of the types region
and point representing the shape and the city center of Dortmund,
respectively.

123

436 F. Valdés, R. H. Güting

distance(Y.Trip, center)
<= minimum(distance(X.Trip, center))

It matches all tuples that include either a flight on a Tues-
day or a walk in Dortmund with a later bus trip. Any of these
alternatives has to be followed by a bike trip on June 13, 2017.
In addition, both conditions have to be fulfilled. According
to the first one, the transportation modes used by the moving
entity between the end of the time period π ′

1 associated to
the first simple pattern element and the period π ′

2 of the final
element must not include a subway. The second condition is
evaluated to true if the distance of the entity to the city center
during the period π ′

1 is eventually smaller or equal than the
minimum distance between π ′

1 and π ′
2. Note that each of the

conditions in p′ contains a variable (X and Y , respectively)
that also occurs in the first part of the pattern. The result of
a condition depends on the so-called binding of the involved
variables to time periods.

For easier referencing, we denote the four items in paren-
theses in the first line as p′

1, p
′
2, p

′
3, and p′

4 (precise definitions
follow in Sect. 4). The composite expression in square brack-
ets is denoted as [p′

1 | p′
2 p′

3].

4 Advanced concepts for multi-attribute
movement data analysis

This section is dedicated to the language for patternmatching
on tuples of time-dependent values. Of course, there exist
similarities with [47], but the new pattern language described
in the following has been designed from scratch.

Patterns without conditions are discussed before we pro-
ceed toward patterns with conditions. First, two basic defini-
tions are provided.

Definition 2 An instant or time instant represents a point of
time, where time is regarded as linear and continuous, hence
it is isomorphic to the real numbers.

As a straightforward consequence of the above definition,
comparison operators are applicable to time instants.

Definition 3 Let τ = (τ1, . . . , τk) be a tuplewith k attributes.

1. An attribute τ j , 1 ≤ j ≤ k, is a time-dependent attribute
if its data type is one of the types listed in Table 2.

2. If τ contains at least one time-dependent attribute, it is
called a tuple of time-dependent values (or attributes).

4.1 Patterns

From now on, let τ = (τ1, . . . , τk) always be a tuple of time-
dependent attributes. For the sake of clarity and without loss
of generality, we assume that the time-dependent attributes

Table 3 Specification alternatives for a pattern atom

Data type Specification alternatives

mlabel(s), mstring, name of DB object of textual type

mplace(s) character string

mplace(s) name of DB object of a spatial type

name of DB object of place(s) type

mpoint, mregion name of DB object of a spatial type

mbool name of DB object of boolean type

boolean value

mint, mreal name of DB object of a numeric type

integer or real value

interval of the form 〈a b lc rc〉

of τ occupy the positions 1, . . . , d and the constant attributes
have the indices d + 1, . . . , k, where 1 ≤ d ≤ k.

Definition 4 A temporal specification is either a time instant,
a time interval, or an infinitely repeated semantic definition
such as the name of a weekday, a month, or a time of the
day (“morning”, “afternoon”, “evening”, or “night”).
A time interval can be specified by entering its start and end
instant, separated by a tilde. One of the instants may be omit-
ted, which is then interpreted as either “anytime before ...” or
“anytime after ...”. Abbreviations for intervals are possible,
e.g., “2017” and “2017-06-13” (now without tilde) represent
the whole year of 2017 and the complete day of June 13,
2017, respectively.

Depending on the data type of the attribute τ j , for each
of the elements of s j , j ≤ 1 ≤ d, a specification may be
applied as listed in Table 3.

A tuple of the form (sι, s1, . . . , sd) is denoted as a pattern
atom, if sι is a set of temporal specifications and each s j ,
1 ≤ j ≤ d, is a set of specifications suitable for the time-
dependent attribute τ j of τ . Each of the specification sets
may be empty (expressed by an underscore), representing a
wildcard, as long as at least one of the s j , 1 ≤ j ≤ d, is
specified.

Note that the spatial data types are point, points, line,
region, and rect, while int and real as well as range(int) and
range(real) are considered as numeric types. The set of tex-
tual types consists of string, text, and label(s). In the interval
representation, a and b are the left and right limits (instant
values), and the boolean values lc and rc indicate whether
the interval is leftclosed and/or rightclosed. Please refer to
[25] for a complete list of supported time specifications.

Definition 5 A simple pattern is defined as a sequence
〈p1, . . . , pm〉, m ∈ N, of simple pattern elements, where
a simple pattern element is either a pattern atom or a pattern
element, where the latter has one of the forms [p], [p̄ | p̂],
or [p]?, with simple patterns p, p̄, and p̂.

123

A framework for efficient multi-attribute movement data analysis 437

The meaning of the pattern elements [p̄ | p̂] and [p]? is
related to regular expression structures. Details concerning
their semantics follow in Definiton 7.

Regarding the running example (Sect. 3.5), the pattern p′
contains two simple pattern elements, where the first one
is a pattern element (surrounded by square brackets, with
a logical alternative) and the second one is a pattern atom
(preceded by the variable Y).

Definition 6 Let π0 be a time period, that is, π0 = 〈I1, . . . ,
Il〉, l ≥ 0, where each I j , 1 ≤ j ≤ l, is a time
interval, and the intervals are disjoint and chronologically
ordered. Then the tuple restriction τ(π0) is defined as
(τ1(π0), . . . , τd(π0), τd+1, . . . , τk), where τ j (π0), 1 ≤ j ≤
d, is the restriction of the attribute τ j during the time period
π0.More precisely, τ j (π0) is derived from τ j by setting it to⊥
for all instants outside π0 and keeping the remaining values.

Note that the restriction of a time-dependent attribute of
the typemα to a certain time period yields a value of the iden-
tical type. For example, the attribute TMode from Sect. 3.5
can be restricted to the period 〈[18:45:00, 19:09:00)〉 with
the following result:

[2017-06-13-18:45:00, 2017-06-13-18:58:40) train
[2017-06-13-18:59:32, 2017-06-13-19:09:00) bike

Definition 7 Let τ(π0) be a tuple restriction.

1. A pattern atom (sι, s1, . . . , sd) matches τ(π0) :⇔ π0 ⊂
sι and τ j (π0) ⊂ s j for every j ∈ {1, . . . , d}.

2. A sequence 〈p1, . . . , pm〉 of pattern atoms matches
τ(π0) :⇔ there is a sequence 〈π1, . . . , πm〉 of time peri-
ods, with πl ≺ πl+1 for every l ∈ {1, . . . ,m − 1}, such
that p j matches τ(π j) for every j ∈ {1, . . . , d}. For
two non-empty time periods π1 and π2, π1 ≺ π2 holds
iff there exist time instants ι1 ∈ π1 and ι2 ∈ π2 with
ι1 < ι2.

3. Let p, p̄, and p̂ be simple patterns. Then

– [p] matches τ(π0) :⇔ p matches τ(π0),
– [p̄ | p̂] matches τ(π0) :⇔ p̄ matches τ(π0) ∨ p̂

matches τ(π0),
– [p]? matches τ(π0) :⇔ p matches τ(π0) ∨ π0 = ∅.

Regarding the running example (Sect. 3.5), p′
1 does not

match any of the tuples, p′
2 matches both tuples during the

period π ′
2 = 〈[18:17:11, 18:21:27)〉 (year, month, and day

are omitted here), p′
3 matches both tuples during π ′

3 =
〈[18:21:27, 18:32:03)〉, and p′

4 matches only τ ′ during the
period π ′

4 = 〈[18:59:32, 19:09:09)〉. Since π ′
2 ≺ π ′

3 ≺ π ′
4

holds, the sequence of simple pattern elements of p′ matches
the tuple τ ′ but not τ ′′.

4.2 Variables

With the help of variables, it is possible to formulate con-
ditions, in order to verify predicates beyond the scope of a
simple pattern. For example, the values that a time-dependent
attribute assumes at certain time periods (or instants) can be
compared, such as the altitude of an airplane or the speed of
a car at different stages of the respective journey.

The allowed syntax for a variable is a capital letter fol-
lowed by any number of letters and/or digits. A variable is
associated to a simple pattern element by prepending it, e.g.,

X (saturday "bike").

If it is written between two simple pattern elements with
variables, it refers to the time interval between them, for
example, the variable B inside the pattern

A (saturday "bike") B C (sunday "train").

During a successful pattern matching process, the specified
variables are bound to time periods. Hence, the values of all
time-dependent attributes as well as temporal properties can
be accessed for formulating conditions. Each variable may
applied only once in a pattern.

Definition 8 Let V be a domain of possible variable names.
Then a pattern is a sequence p = 〈e1, . . . , em〉 of pattern
elements, where each e j , 1 ≤ j ≤ m, is either a pair (v j , p j)

of a variable v j ∈ V and a simple pattern element p j , or just
a simple pattern element p j .

An additional variable may be positioned between two
adjacent pattern elements e j and e j+1 (if e j+1 has a variable
itself), 1 ≤ j ≤ m − 1, as well as in front of e1 (if e1 has a
variable) and behind em .

For a pattern p, the corresponding simple pattern 〈p1, . . . ,
pm〉 is denoted as simple(p).

Definition 9 Let p = 〈e1, . . . , em〉 be a pattern with
simple(p) = 〈p1, . . . , pm〉. Then p matches τ with binding
B :⇔ there existm timeperiodsπ1, . . . , πm ,withπ j ≺ π j+1

for 1 ≤ j ≤ m − 1, such that p j matches τ(π j) for each
j ∈ {1, . . . ,m}. The corresponding binding is

B = Belem ∪ Binter =
m⋃

i=1

bi ∪
m+1⋃

j=1

b′
j , where

bi =
{ {(vi , πi)} ifei = (vi , pi)

∅ ifei = pi ,

b′
j =

{ {(v′
j , π

′
j)} if ∃v′

j after e j−1 and/or before e j
∅ else.

In this context, if p matches τ , each time period πi in the
set Belem is the maximum time period in which the pattern

123

438 F. Valdés, R. H. Güting

element ei matches the tuple τ . A time period π ′
j of Binter is

determined as follows4:

π ′
j =

⎧
⎨

⎩

[
π j−1.start, π j .end

] \ (π j−1 ∪ π j) if1 < j ≤ m
{(−∞, π1.start)} if j = 1
{(πm .end,∞)} if j = m + 1

Note that the variable v′
1 (if existing) is located in front of

the first simple pattern element e1. Similarly, the position of
v′
m+1 is behind the final simple pattern element em .
As mentioned before, after a variable is bound to a time

period, certain properties can be accessed via attributes of
the variable.

Definition 10 Let B be a binding and let (v, π) an element of
B. Then the terms v.time, v.start , v.end, v.lc, and v.rc refer
to the time periodπ , its initial instant, its final instant, and the
leftclosed/rightclosed flags of π , respectively. Moreover, the
notion v.name(τ j) can be applied to access the value τ j (π),
1 ≤ j ≤ k. Note that v.name(τ j) has the same data type as
the original attribute τ j .

Regarding the running example and applying the time
periods introduced at the end of Sect. 4.1, the accessible prop-
erties for one possible binding of the variables X and Y are
listed in Table 4. The values refer to the only matching tuple
τ ′, where we omitted the year, month, and day information.

4.3 Patterns with conditions

With the help of variables, additional conditions can be for-
mulated for a pattern. A condition is an expression over
attributes of the applied variables (Definition 10), constant
values, and database objects that can use any operation
available on the respective data types. The result type of a
condition must be either boolean, i.e., it can be evaluated to
be either true or false, or mbool, which means that the result
of the condition depends on the instant of evaluation and can
be true or false (if the mbool value is not defined at the eval-
uation instant, we consider the result as false). The general
syntax of a pattern with conditions is as follows:

<pattern with variables> // <cond. 1>, ..., <cond. c>

For a successful matching result, all boolean conditions
have to be fulfilled, and the conditions of the typemboolmust
have a common non-empty time period where all of them are
evaluated to true.

4 The leftclosed/rightclosed flags displayed here may vary: In the first
case, the interval is lc/rc iff π j−1/π j is lc/rc; in the second case, the
interval is rc iff π1 is not lc; in the third case, the interval is lc iff πm is
not rc.

Table 4 Accessible properties of the variables X and Y for the running
example

Expression Data type Value

X .time periods {[18:32:03, 18:59:32)}
X .start instant 18:32:03

X .end instant 18:59:32

X .lc bool true

X .rc bool false

X .T Mode mlabel 〈([18:32:03, 18:32:56),⊥),

([18:32:56, 18:58:40), “train”),
([18:58:40, 18:59:32),⊥)〉

X .Trip mpoint units from 18:32:03 to 18:59:32, i.e.,

〈. . . , ([18:36:08, 18:36:13),
((7.59, 51.81), (7.54, 51.63))), . . . 〉

Y .time periods {[18:59:32, 19:09:09)}
Y .start instant 18:59:32

Y .end instant 19:09:09

Y .lc bool true

Y .rc bool false

Y .T Mode mlabel 〈([18:59:32, 19:09:09), “bike”)〉
Y .Trip mpoint units from 18:59:32 to 19:09:09, i.e.,

〈. . . , ([19:09:02, 19:09:07),
((7.47, 51.52), (7.46, 51.53))), . . . 〉

T Mode mlabel the complete TMode attribute

Trip mpoint the complete Trip attribute

Regarding the first condition of p′, the restriction of the
attribute TMode to the period mentioned in Table 4 (lines 6-
8) never assumes the value “subway”; thus the expression
is evaluated to true. The second condition is also fulfilled,
since the expression on the left of the comparison operator
equals 0. Hence, p′ matches τ ′ with the mentioned binding
of the variables X and Y .

5 Language comparison

In this section, we compare the pattern language presented
in this paper, denoted as P , and its precursor, denoted as
Q [47], with respect to their expressive power. Before the
general proof, we provide a brief example showing that a
pattern in P can express a query that cannot be realized in
Q.

Let τ ′′ = (τ ′′
1 , τ ′′

2) be a tuple of time-dependent attributes,
where τ ′′

1 has the type mlabel and assumes the constant label
value “Hyde Park” between 10 and 11 a.m. (dates are omitted
for the sake of brevity), otherwise it is undefined. The sec-
ond attribute describes a geometric trajectory (type mpoint)

123

A framework for efficient multi-attribute movement data analysis 439

moving inside London and is defined only between 11:30
and 11:45 a.m. Consider the pattern5

(_ "Hyde Park" _) (_ _ london)

which is an element of P . It matches the tuple τ ′′, because
the two specifications can be matched in the given order.
However, in Q it is not possible to define a pattern that can
match τ ′′. This is because a main attribute must be selected
whose time intervals are relevant for the matching decision.
This means, if τ ′′

1 is chosen, the first component matches the
only unit from 10 to 11 a.m., but the matching algorithm of
[47] stops because the main attribute is completely traversed
while the pattern (or the NFA, respectively) is not. Selecting
τ ′′
2 as main attribute results in a mismatch at the first pattern
componentwhose corresponding time interval (10 to 11 a.m.,
from τ ′′

1) does not correspond to the definition timeof τ ′′
2 from

11:30 to 11:45 a.m.

Theorem 1 For the pattern languages P and Q, the property
P � Q holds.

Proof We first show that all pattern semantics existing in Q
can also be expressed in P . Letq ∈ Q be a pattern.As amajor
difference to a pattern p ∈ P , the pattern atoms q1, . . . , qm
of q are strictly related to units (or sequences of units) of the
main attribute τ1, and the start of q1 (end of qm) can only
match the beginning of the first unit (end of the final unit)
of τ1. This behavior can also be achieved with p. The initial
(final) instant of a time-dependent attribute τi can be accessed
in a condition, e.g., X.start = inst(initial(Trip))

or Z.end = inst(final(Trip)). Moreover, every pattern
atom of p can be limited to match one time interval (instead
of a sequence of two or more) by applying a condition of the
form no_components(deftime(Y.time)) = 1.

The wildcard atoms ∗ and + from Q have been omitted
in P . However, the asterisk is implicitly replaced because
in P we assume that between two pattern atoms there can
always be a temporal gap, whose properties can still be
accessed with the help of a variable (as in Q). If two
atoms are desired to match consecutive time intervals (i.e.,
in Q no wildcard is located between them), a condition
such as X.end = Y.start can be applied. The wildcard
+, matching at least one unit of the main attribute in Q,
can be replaced in P by defining the conditions Y.start =

inst(initial(getunit(Trip, getPosition(Trip,

Y.start)))), restricting the time period associated to Y

to start at the beginning of a unit of the Trip attribute, as
well as its analogy Y.end = inst (final(getunit(Trip,

getPosition(Trip, Y.end)))).

5 We assume that london is a database object representing the shape
of the city of London.

All other items of the pattern language Q, including alter-
natives, optional elements, and combined specifications, can
be directly applied in P , too. As seen in the previous para-
graph, it is rather inconvenient to express certain structures
from Q in P . This is because the language P presented in this
paper does not focus on the distribution of the time-dependent
attributes into units. However, with some knowledge of avail-
able Secondo operations, a translation into P can be found.
Hence, P ⊃ Q holds.

On the other hand, there are patterns in P whose seman-
tics cannot be expressed in Q. A pattern atom p j of p ∈ P
matches the tuple τ during a time period that in general con-
sists ofmore than one interval, depending on the index results
for p j . Repetitions can also be realized in Q with the help
of regular expression structures. Nevertheless, every single
matching in Q is still strictly related to the units of τ1, lim-
iting the expressiveness of the language. Now we consider a
time-dependent attribute τi that is assumed to have a larger
temporal extent than τ1, more precisely, it starts earlier and
ends later. In this situation, in Q it is impossible to access the
parts of τi occurring before the start of τ1 and after the end of
τ1, because every pattern in Q is limited to match precisely
the temporal extent of the main attribute. In contrast, a pat-
tern atom in P may be applied to match a particular set of
attributes, no matter whether other attributes are defined dur-
ing that time period or not. Moreover, in P conditions with a
time-dependent result can be specified, e.g., speed(X.Trip)
> 25.0, having a result of the data type mbool. Conditions
in Q must have the result type bool. This proves P �= Q, and
with P ⊃ Q from above, P � Q follows. ��

6 Implementation concepts and details

In the following, we present the data structures and algo-
rithms applied for realizing a flexible and efficient pattern
matchingon tuples of time-dependent values.Moreprecisely,
given a set T = {τ (1), . . . , τ (n)}, with n ∈ N, of such tuples
(all having the same schema) and a pattern p, the objective
is to determine a subset T ′ of T containing exactly the tuples
that match p.

We assume that each of the n tuples in a collection/relation
has a unique identifier which is needed for indexing the con-
tents of the respective attributes. Since the tuple ids are used
for efficiently accessing certain array slots, and since the tuple
ids are not necessarily consecutive in general, we first map
them onto a set {1, . . . , n} during the whole computation.
After the list of the ids of the successfully matches tuples is
returned by the main algorithm, the list entries are mapped
back to the original tuple ids. In the remainder of this paper,
we refer to a tuple id as if they were in consecutive order,
beginning with 1.

123

440 F. Valdés, R. H. Güting

(...) → →

pattern
atom

multi-
index

index
results

X

Y
z → →

NFA
shift

a > b ? → →

mi mi condition tuples Secondo
QP

(a) Preprocessing (Filtering Step) (b) Matching (NFA traversal) (c) Condition Evaluation

Fig. 5 Overview of the matching process, divided into three main stages; some illustrations gratefully downloaded from [35]. a Preprocessing
(Filtering Step), bMatching (NFA traversal) and c Condition Evaluation

Since Secondo is a relational DBMS, the tuples of
time-dependent values are organized in a relation which is
completely scanned for constructing the multi-index. When
the index is accessed with a certain specification from the
pattern, it internally returns a sequence of tuple ids and time
intervals. However, it is not necessary to access the relation,
unless the pattern contains one or more conditions.

6.1 Overview of thematching process

Before presenting the applied data structures and algorithms
indetail, in the followingwegive anoverviewof thematching
process that is illustrated in Fig. 5.

In the preprocessing phase (Sect. 6.3.1), depicted in
Fig. 5a, the multi-index (cf. Sect. 6.2.2) is queried with the
contents of a pattern atom (e.g., a street name or a geomet-
ric location). The results are inserted into the index result
container which is introduced in Sect. 6.2.3.

Figure 5b shows the matching phase that is detailed in
Sect. 6.3.2. An NFA transition, which is equivalent to a
pattern atom, requires updating every suitable instance of
the class IndexMatchInfo (introduced in Sect. 6.2.4). The
instances from the previous iteration are located inmi , while
the updated ones are inserted into mi ′.

Finally, the evaluation of conditions (Sect. 6.3.3) is illus-
trated in Fig. 5c. Variable expressions (for example, X.Trip,
referring to an attribute) are replaced by the corresponding
data retrieved from the persistent relation. The transformed
expression is then passed to the Secondo query processor
that executes it and returns the result.

The multi-index and the original relation are stored as
persistent database objects. All other structures only exist in
the main memory.

6.2 Data structures

This section introduces the most important data structures
applied during the matching process.

6.2.1 NFA

In one of the first steps of the computation, the user-defined
pattern is translated into an NFA whose transitions repre-

1start 2 3 4
p2 p3 p4

p1

Fig. 6 The NFA corresponding to the running example pattern

Table 5 Time-dependent attributes and corresponding single index
types in a multi-index

Time-dependent data type Appropriate index type

mlabel(s), mplace(s), mstring trie (inverted file)

mpoint, mregion 2-dimensional R-tree

mreal 1-dimensional R-tree

mint B+-tree

sent exactly the instant patterns. If one of the final states
is active—there may be more than one final state due to
regular expression structures—the matching process can be
considered as successfully finished (apart from verifying the
additional conditions). The NFA depicted in Fig. 6 corre-
sponds to the running example pattern defined in Sect. 3.5.
Note that the alternative [p′

1 | p′
2 p′

3] is translated into two
different paths from state 1 to state 3.

6.2.2 Multi-index

In [47], a composite index structure for sets of tuples of time-
dependent values is detailed. In this section we review some
of the previous results and focus on the novelties developed
since then. A multi-index is an index structure deployed
for the efficient pattern matching approach described in
this paper. For each of the time-dependent attributes of the
dataset, the corresponding multi-index contains one single
index of a suitable type. The type of the single index depends
on the attribute type as listed in Table 5.

When a multi-index for a dataset is created, first a new
single index is created for each time-dependent attribute.
For an efficient insertion of all values, the attributes are pro-
cessed one after another. More precisely, the processing of
an attribute is divided into three steps:

123

A framework for efficient multi-attribute movement data analysis 441

1. For each tuple, the value of the attribute is read, and for
every scanned unit three items are stored in a vector:
tuple id, time interval, value representation (e.g., a label
in case of an mlabel attribute, or a rectangle representing
the bounding box of a segment of an mpoint).

2. The vector is sorted by the value representation (for
example, by alphabetical order of the labels or by x- and
y-coordinate of the bounding boxes).

3. The entries of the sorted vector are bulkloaded into a
single index of the corresponding type.

As a crucial difference to the cited work, we store the time
intervals corresponding to the respective values instead of
unit positions inside a time-dependent attribute. In the previ-
ous version, for every position retrieved from themulti-index,
it was necessary to access the corresponding attribute inside
the tuple and then to read the time interval at the respective
position. In the novel approach, the time intervals are directly
retrieved from the multi-index. The reason for this change is
twofold: First, the new method is more efficient because no
access to the persistently stored tuples is required, and sec-
ond, considering the proposed pattern semantics focusing on
time periods instead of units and their positions, it is conse-
quent to store the time intervals directly. Section 6.3 details
how the index results are processed. In the experimental eval-
uation (Sect. 8), we provide an efficiency comparison of both
approaches. In addition, there is no separate index for the time
intervals of a certain attribute anymore. This is because all
attributes are treated equally, as stated in the previous sec-
tions.

The multi-index corresponding to the running example
(Sect. 3.5) contains a trie for the labels of the TMode attribute
and a two-dimensional R-tree holding the bounding boxes of
the Trip attribute. We depict the trie in Fig. 7, where each
leaf node contains pairs of a tuple id (which can only be 1
or 2 in our example) and a time interval (I ′

j and I ′′
j represent

the time intervals of the units of the TMode attribute for the
tuples τ ′ and τ ′′, 1 ≤ j ≤ 4).

B

i

k

{(1, I4), (2, I4)}
e

u

{(1, I2), (2, I2)}
s

T

r

a

i

{(1, I3), (2, I3)}
n

W

a

l

{(1, I1), (2, I1)}
k

Fig. 7 The trie corresponding to the running example

6.2.3 Index result container

In order to avoidmultiple accesses to the same contents of the
multi-index, which may be likely due to possible repetitions
inside the NFA, we store all retrieved index results in a spe-
cialized data structure with constant insertion, retrieval, and
deletion cost. Another reason for deploying such a container
is that more and more tuples are not considered anymore
during the matching algorithm, resulting in an increasing
number of useless index results when accessing the multi-
index directly.

The applied structure consists of a two-dimensional array
whose dimensions represent the pattern atoms and the tuple
ids, respectively. The value in each array slot (i, j), 1 ≤ i ≤
m, 1 ≤ j ≤ n, has the type periods and corresponds to the
timeperiod inwhich the specifications inside the pattern atom
at position i hold for the tuple j , based on the retrievals from
the multi-index. In addition, every slot contains references
to its (vertical) successor and predecessor (set to 0 if not
existing), which is particularly helpful for efficiently pruning
tuple ids and for fast scans over all index results for a pattern
element. When a value is inserted or deleted, the references
are updated immediately.

Note that a similar concept has been introduced in [47],
where sets of unit positions are stored instead of time periods.
In some situations, the structure described here consumes
more storage space because a time interval consists of two
instants (8 Bytes each) and two boolean value (1 Byte each),
compared to 4 Bytes for a unit position. However, sometimes
one label occurs several times in a row, so that the correspond-
ing time intervals can be combined to a single one.

In Fig. 8, we present the described data structure for the
index results of the running example, wherem equals 4 and n
equals 2. Note that for the sake of clarity, the year, month, and
day information as well as the references to predecessors are
omitted. How to compute the values is detailed in Sect. 6.3.

6.2.4 Exact matching support

While the auxiliary structure presented in the preceding sec-
tion is motivated exclusively by efficiency reasons, we now
introduce adata structure that is crucial for the exactmatching

p1 p2 p3 p4

τ ∅ {[18:17, 18:21)} {[18:21, 18:32)} {[18:59, 19:09)}

τ ∅ {[18:17, 18:21)} {[18:21, 18:32)} ∅

Fig. 8 The index result container for the running example; time instants
occur on 2017-06-13 for τ ′ and on 2017-06-20 for τ ′′ (seconds omitted
for the sake of brevity)

123

442 F. Valdés, R. H. Güting

process. The IndexMatchInfo (IMI) structure encapsulates a
partial binding of pattern elements to time periods, mod-
eled as a mapping from integers (representing the pattern
elements) to periods values. In contrast to the index result
container whose entries are closely related to pattern atoms
(which can be considered as equivalent to NFA transitions),
the IMI instances represent the state of the matching pro-
cess for a certain NFA state and a particular tuple. Again,
references to the successive and preceding tuple having IMI
instances are deployed for inserting, deleting, and accessing
the respective information efficiently. The whole structure is
denoted as MatchInfo, and in the following, we denote a par-
ticular slot referring to an IMI instance as mi(s, t), where s
and t represent an NFA state and a tuple id, respectively.

A similar concept has been detailed in [47]. However, in
our novel approach, the IMI data structure is simpler and
more efficient insofar as it exclusively stores the binding of
pattern elements to time periods. In addition, no more than
one IMI instance is required per state and per tuple id because
the NFA does not contain repetitions anymore.

For example, we focus on the final NFA state during
the matching process of the pattern p′ and the tuples τ ′
and τ ′′ (Sect. 3.5). After p′

4 matches τ ′ during the period
{[2017-06-13-18:59:32, 2017-06-13-19:09:09)}, the binding
of the two pattern elements [p′

1 | p′
2 p′

3] and p′
4 is recorded

in a new IMI instance. The created object is placed at the slot
mi(4, 1), referring to the fourth NFA state and the first tuple.
The remaining slots of the structure are empty.

6.3 Algorithms

The pattern matching algorithm is divided into a filtering
phase and an exact matching phase. Both of them are real-
ized differently compared to the approach detailed in [47].
The efficiency of our technique is discussed at the end of this
section.

6.3.1 Filtering phase

After the pattern is translated into anNFA,we apply the latter
to exclude as many tuples as possible from further computa-
tion. This is done as follows:

We first determine the so-called crucial transitions,
defined in [47] as the set of NFA transitions that have to be
executed for a successful traversal, i.e., for a path from the
start state to any of the final states. Essentially, these are all
transitions that are not part of a logical alternative. For exam-
ple, theNFAdepicted in Fig. 6 has only one crucial transition,
because the transition corresponding to the pattern atom p′

4
is the only segment that cannot be substituted by other tran-
sitions. In the next step, we determine all index results for
the specifications existing in the pattern atoms corresponding
to the crucial transitions and insert them into the container

structure described in Sect. 6.2.3. More precisely, for every
non-empty specification set, a time period is retrieved from
the multi-index for every tuple having a result (by uniting
the results for every single specification). Their intersection
is computed and then again intersected with the specified
temporal restriction sι. For example, the label “bike” from
p′
4 yields the respective periods value {I ′

4} for τ ′ and {I ′′
4 }

for τ ′′ from the trie (illustrated in Fig. 7). These intermediate
results are then intersected with each other (separately for
each tuple) and then with the temporal specification 2017-
06-13 of p′

4, with the result {I ′
4} for τ ′ which is inserted into

the index result container, and an empty time period for τ ′′. If
a certain tuple has no index result for one of the crucial tran-
sitions, the latter cannot be executed for that tuple, thus there
is no possibility for the pattern to match it as the transition
is mandatory for a successful traversal. Hence, tuples with-
out index results for a crucial transition are not considered
anymore, such as τ ′′ in the running example. We can even
exclude all tuples that do not have index results for every
crucial transition, usually a large part of the dataset.

In our previous work [47], the multi-index as well as the
index result container store the tuple id and unit position for
every value that exists in the dataset. Regarding the access
times it is more efficient to store periods values throughout
the multi-index, since the previous approach required addi-
tional hard disk accesses for retrieving the time interval that
corresponds to each unit position and combining them to a
time period. The same argument is the reason for storing
periods values in the index result container, too.

In case the NFA contains at least one crucial transition,
for each tuple that passes the preprocessing one IMI instance
with an initially empty binding is created and inserted into
the slot mi(0, i) (for the tuple id i). For each of the pat-
tern atoms corresponding to a crucial transition, the retrieved
index results are directly stored in the index result container.
Otherwise, if there is no crucial transition, no tuples can be
pruned and such an instance has to be deployed for every
tuple of the dataset. Simultaneously, the global integer vari-
able numActT up (initially set to 0) is incremented for every
tuple id with an entry in mi , describing the number of tuples
that are currently involved in the computation and therefore
matching candidates. The exact matching algorithm stops
as soon as this variable equals 0. If a tuple is successfully
matched by the pattern, its id is appended to a list named
result which is initially empty.

6.3.2 Traversal of the NFA

The general idea for the exact matching algorithm is to
execute transitions of the NFA and to store and update infor-
mation about the matching state and the current binding
for each active tuple, in order to avoid expensive scans of
the time-dependent attributes. Despite the semantic changes

123

A framework for efficient multi-attribute movement data analysis 443

compared to [47], the applied concept remains similar, as
listed in Algorithm 1. Throughout this section, we denote
the set of transitions of an NFA as δ and the set of transitions
outgoing from a state s as δ(s). For a transition tr ∈ δ, its
source state, transition number (equivalent to the number of
the pattern atom), and destination state are denoted as tr .src,
tr .atom, and tr .dest , respectively.

Algorithm 1: applyNFA
Input: a pattern p including an NFA with s states, transition

function δ and a set ϕ of final states;
a non-negative integer numActT up;
a vector is Active of boolean values;
mi , see Section 6.2.4;

Output: a list result of tuple ids, initially empty;
1 let S ←− {0}, S′ ←− {0}, mi ′ ←− mi ;
2 while numActT up > 0 do
3 S ←− S′;
4 S′ ←− ∅;
5 mi ←− mi ′;
6 clear mi ′;
7 δ(S) ←− ⋃

s∈S δ(s); // collect available
transitions

8 if δ(S) = ∅ then return result ;
9 foreach tr ∈ δ(S) do // loop over transitions

10 if
atomMatch(mi,mi ′, tr , numActT up, is Active, result)
then S′ ←− S′ ∪ {tr .target}

11 foreach id : is Active[id] ∧mi ′[j][id] = ∅ ∀ 0 ≤ j ≤ s
do

12 deactivate(id); numActT up ←− numActT up − 1;
13 return result ;

When Algorithm 1 is invoked, the set S of active NFA
states is initialized with state 0. For the set of active states
and for the mi data structure, two versions are required: in
each iteration of the while loop, S and mi are read-only, i.e.,
inside the atomMatch function, both are applied as informa-
tion source.On the other hand, S′ andmi ′, being cleared at the
beginning of every iteration (lines 4 and 6), are enriched with
new data when the atomMatch function is executed. More
precisely, NFA states that become active due to a successful
transition are inserted into S′ and newly created IMI instances
are placed into a slot of mi ′. When the successive iteration
begins, S and mi are cleared and then receive the contents
of S′ and mi ′, respectively. This technique ensures that an
NFA state becoming active in a particular iteration cannot be
the source of a transition simultaneously. Similarly, a newly
created IMI instance must not be used instantaneously but in
the subsequent iteration of the while loop.

For every active state s ∈ S and every transition that orig-
inates from it, the atomMatch function is invoked. The target
state of a transition becomes active if and only of a true result
is returned. We list the atomMatch function in Algorithm 2.
Subsequently, the ids of all tuples still being active but with-
out any newly created IMI instance (e.g., due to a negative

result of the condition evaluation) are deactivated (lines 11
and 12).

Algorithm 2: atomMatch
Input: a pattern p including an NFA with s states, transition

function δ and a set ϕ of final states;
mi and mi ′, see Section 6.2.4;
a transition tr ;
a non-negative integer numActT up;
a vector is Active of boolean values;
a list result of integers;

Output: boolean;
1 if index Result[tr .atom] = ∅ then query Index(p, tr .atom);
2 id ←− index Result[tr .atom][0].succ;
3 while id > 0 do // loop over tuples with index
results

4 foreach imi ∈ mi[tr .src][id] :
5 imi .last Binding ≺ index Result[tr .atom][id] do
6 if tr .dest ∈ ϕ then
7 deactivate(id); result .append(id);
8 numActT up ←− numActT up − 1;
9 else mi ′[tr .dest][id].insert

10 (imi ∪
{(elem(tr .atom), index Result[tr .atom][id])})

11 id ←− index Result[tr .atom][id].succ;
12 return ¬mi ′.isEmpty;

Note that the version of the algorithm proposed here is
applied for the case of a patternwithout conditions. The other
(more complex) scenario is detailed in Sect. 6.3.3. If the index
result for the atom tr .atom has not yet been determined (nei-
ther in the preprocessing phase nor in an earlier atomMatch
invocation), this has to be done at the beginning.We consider
all tuples with a non-empty index result for tr .atom and a
suitable IMI instance, where such an instance is regarded
as suitable if there are time instants ιimi inside the most
recently added time period of the current binding and ιindex ∈
index Result[tr .atom][id] with ιimi < ιindex , abbreviated
as imi .last Binding ≺ index Result[tr .atom][id].

In case one of the final states becomes active (line 6), i.e.,
the pattern is successfully traversed, a complete match of
the pattern and the currently considered tuple is achieved, so
the latter can be deactivated and appended to the result list.
The function deactivate removes all existing IMI instances
(from mi and mi ′) as well as the entries in the index
result container related to the forwarded tuple id. Otherwise
(line 10), a new IMI instance is created with the binding
from the previous instance imi extended by the time period
retrieved from the index result container and associated to
the current pattern element (denoted by elem(tr .atom)).

6.3.3 Matching with conditions

If the considered pattern contains conditions, the bindings
are applied to compute their results. In order to complete

123

444 F. Valdés, R. H. Güting

an existing binding, we apply Definition 9 and associate the
respective time periods to the existing intermediate variables
(this step is performed after the command in line 10). Also if
a final state becomes active, the binding has to be completed
(line 6).After that,we pass it to the condition evaluation func-
tion that initially replaces all expressions of the form v.α (see
Definition10; for example,X.TMode, Y.Trip, A.time) by
the corresponding value, depending on the applied binding
and the currently considered tuple. The adjusted condition is
then transferred to the Secondo query processor that exe-
cutes it and returns the result whose data type is either bool
or mbool. For example, the first condition of the pattern p′
has the result type bool, because the passes operation has a
constant result. On the other hand, the second condition com-
pares a time-dependent value (the distance operation applied
to an mpoint value and a spatial object yields a result of the
type mreal) to a constant one (theminimum operation com-
putes the constant minimum of an mreal value), hence its
result type is mbool. We extract the time periods with a true
value from the time-dependent condition results and compute
their intersection. If the latter is empty or if at least one of the
constant conditions is evaluated to false, the set of conditions
is not fulfilled. In this case, the atomMatch function contin-
ues with the next available IMI instance. Otherwise, if all
conditions are fulfilled, a complete match of the respective
tuple is detected, and the commands from line 7 are invoked.

6.3.4 Complexity discussion

In the following, we discuss the complexity of the presented
algorithms. Note that for one pattern matching query, Algo-
rithm 1 is executed exactly once. It then invokes Algorithm 2
for every available transition, if there are still active tuples. In
contrast to [47], where repeated negative condition evalua-
tion results could cause severe performance issues, the novel
atomMatch algorithm has to be run only once per NFA tran-
sition. Note that the while loop condition serves only as an
additional stop criterion in order to avoid unnecessary com-
putations for the case that no tuple is active anymore.

The complexity of Algorithm 2 itself primarily depends
on whether the multi-index has already been queried with the
current pattern atom. If not, this step is executed in line 1,
finding and storing all units of all attributes of all involved
tuples in the worst case. By all means, every index result
temporarily stored in index Result has to be processed for
every imi instance that exists for the current transition and
tuple id. The maximum number of these instances equals the
number of alternative NFA paths from state tr .src, e.g., there
are two different options in state 1 of Fig. 6.

Imagine the case of 100,000 trajectories with three
attributes (types mpoint, mlabel, mint), each of which con-
tains 1000, 100, and 200 units, respectively, for every tuple.
For the sake of clarity, we assume that there are no repetitions

inside a tuple, for example, no street name occurs twice in
a trajectory. Let p be a pattern with four atoms, each with
one specification for every attribute, no alternatives, having a
reasonable selectivity of 1%. Then the atomMatch function
is invoked four times. For each of these calls, an R-tree, a
trie, and a B-tree are queried, producing 10, 1, and 2 results,
respectively, requiring thewhile loop to iterate over 13 tuples.

As a conclusion, the total algorithm is inefficient in the
worst case. However, in a realistic scenario with regard to
the collection of trajectories and the choice of the pattern,
the complexity is reasonable. Most of the actual runtime is
consumed for accessing the persistent index structures.

7 Application example

In this section, we present an application example from the
field of aircraft traffic analysis. The objective ofAircraft Traf-
ficControl (ATC) systems is to optimize air traffic concerning
safety, efficiency, and environmental protection by tracking
and analyzing the movement of aircraft. The ATC dataset
considered in the following contains more than one million
timestamped aircraft position and altitude recordings from
one week in the French airspace in April 2008, resulting in
approximately 53,000 flights after the import into Secondo.
In a further step, we computed an attribute for the cardinal
direction, expressed in the form “W”, “SW”, “S”, etc., and
another one for the names of the traversed regions, e.g., “Bre-
tagne” or “Alsace”. While the former attribute was derived
from the geometric trajectories in a straightforward way, we
determined the latter with the help of a relation containing the
names and shapes of all French regions. Hence, the schema
of the complete relation is

Flights (Id: int, Pos:mpoint, Altitude:mreal, Course:mlabel,
Region: mlabel).

With the help of this dataset, we will now explain the
semantic differences between the previous approach and the
work described in this paper. Consider the following pattern:

X (15:23∼ _ <10300 10500> "NW" "Corse") Y
Z (_ parc _ "N" "Lorraine")
// X.Altitude >= maximum(Z.Altitude)

get_duration(Y.time) > 50 * oneMinute

It matches all flights that traversed the region Corsica in
northwestern direction with an altitude between 10.3 and
10.5 kilometers after 3:23 pm, and later overflew the spatial
object parc6 in the Lorraine region headingNorth. The flight
altitude above Corsica is required to be greater or equal than
the maximum altitude above Lorraine at least once. Finally,

6 The spatial region object parc describes the shape of the ParcNaturel
Régional de Lorraine.

123

A framework for efficient multi-attribute movement data analysis 445

Fig. 9 The trajectories of the three flights matched by the pattern

the time spent between both regions has to exceed a duration
of 50 minutes.

This explanation is valid for the novel framework, and
there are three tuples that are matches by the pattern. How-
ever, if the previous version is executed with the same pattern
(extended by wildcards required in that version to indicate
possible gaps), no matching tuple is found. The main reason
for this behavior is that the old version’s matching decision
is based on the units of the attribute chosen by the user. For
example, if the user selectsRegion asmain attribute, the spec-
ifications in every pattern atom must hold for the duration of
a unit with the contents “Corse” and “Lorraine”, respectively,
which is at least 6 minutes. However, the region object parc
(second pattern atom) is overflown in approximately 2 min-
utes, so it is impossible for this atom to match a tuple during
such a long unit.

In contrast, the newapproach ismuchmoreflexible insofar
as its matching decisions are independent from the temporal
distributions. It simply determines the time period during
which the specified properties hold. The three flightsmatched
by the abovementioned pattern are depicted in Fig. 9. Note
that the object parc is represented by a purple rectangle.

8 Experimental evaluation

This section provides an efficiency evaluation of the pre-
sented framework as well as a comparison between our
previous and current approach.We applied a synthetic dataset
as well as a real dataset of taxi cabs in Rome.

All runtimesmentioned in this sectionwere achievedon an
AMDRyzen 7 1700 8-core computer with amainmemory of
32 GBytes, running openSUSE 42.2. From these resources,
Secondo has been assigned one processor core and half of
the available memory.

8.1 Brinkhoff dataset

With the help of the freely availableBrinkhoff network-based
generator for moving objects [5,6], we created 100,000 geo-

metric trajectories in the administrative district Arnsberg in
Germany. The durations and lengths of the trajectories range
from 5 seconds and 14 meters to 51 minutes and 176 kilome-
ters, with average values of 12 minutes and 33 kilometers,
respectively.

We applied the Brinkhoff generator with the help of the
district’s shape file obtained from theGeofabrikwebsite [19].
The created trajectories were imported into a new Secondo
relation with 100,000 mpoint objects. In order to add further
time-dependent attributes to the dataset, we first constructed
the road network of the Arnsberg district inside Secondo
using OpenStreetMap [36] data provided by [19] and a pub-
licly available Secondo script.7 Subsequently, we computed
the sequence of streets passed by each trajectory via map
matching [32,41], represented by a symbolic trajectory of
the type mlabel for each tuple. For the third attribute, we
downloaded and imported the elevation raster data [30] for
theArnsberg district and then determined the time-dependent
altitude (type mint) for every trajectory. Finally, with the
help of the geographic region data of all counties of the
administrative district (including independent cities) and a
corresponding R-tree, we added an attribute describing for
every tuple the sequence of visited counties, for example,
Dortmund, Hagen, or Märkischer Kreis. Hence, the schema
of the complete relation is as follows:

Brinkhoff (Id: int, Trip: mpoint, Roadname: mlabel, Alti-
tude: mint, County: mlabel)

The relation contains 68 million units (over all attributes)
and occupies almost 8 GBytes of disk space.

We compared the performance of the tmatches2 operator
that has been introduced in this paper to its precursor (opera-
tor tmatches). Both operators were executed with increasing
numbers of tuples as well as different patterns. We pre-
pared the set of experiments by creating four subrelations of
20,000, 40,000, 60,000, and 80,000 tuples from the original
relation, all with the same average tuple size of approxi-
mately 698 units per tuple, in order to eliminate the possible
influence of varying tuple sizes. The creation of the multi-
indexes for the five relations consumed between 50 seconds
for 20,000 tuples and 4 minutes for 100,000 tuples. Hence,
the fact that time intervals instead of unit positions are stored
in the new version of the multi-index does not have a notice-
able effect on the construction time.

We applied the subsequent patterns for the evaluation
(slightly adjusted in order to have similar semantics in the
previous version):

7 The script OrderedRelationGraphFromFullOSMImport.
SEC is located in the directory secondo/bin/Scripts.

123

446 F. Valdés, R. H. Güting

p = [(evening _ “Westfalendamm” _ “Dortmund”) |

(19:35∼22:00 _ _ _ “Unna”)]

q = X (2016-07-01-19:30∼ _ _ _ {“Dortmund”, “Hagen”}) Y

Z (_ _ _ <430 440> {“Hochsauerlandkreis”,

“Märkischer Kreis”})

// not(Y.Roadname passes “Westfalendamm”)

r = A B (2016-07-01-19:00∼ _ “Wittbräucker Straße” _

“Dortmund”)

C D (_ _ _ _ {“Olpe”, “Siegen-Wittgenstein”}) E

// C.Trip passes ruhr, D.start-B.end < 30*oneMinute

For example, the pattern r matches all entities passing the
street Wittbräucker Straße in Dortmund after July 1st, 2016,
7 pm. Later, the trip has to include at least one of the counties
Olpe or Siegen-Wittgenstein, after having traversed the river
Ruhr (represented by the database object ruhr of the type
line), according to the first condition. In addition, the time
spent between Wittbräucker Straße in Dortmund and one of
the other counties must remain below half an hour.

Both variants of the pattern matching operation were
executed with all three patterns. Each of the runtimes was
determined by starting the corresponding query four times
and computing the median of the resulting runtimes. The
runtimes and selectivities of all queries are listed in Tables 6
and 7. The runtime graphs are depicted in Fig. 10.

In Fig. 10, we observe that all runtime graphs are approx-
imately linear in the number of tuples, which is due to the
initialization and processing cost arising for each (active)
tuple as well as to the number of index results that increases

Table 6 Novel approach: selectivities and runtimes for an increasing
number of tuples

tuples p q r

sel. Time sel. Time sel. Time

20,000 20.08% 0.265 0.52% 0.572 0.11% 0.383

40,000 14.49% 0.465 0.53% 1.388 0.14% 0.991

60,000 16.55% 0.799 0.51% 1.991 0.13% 1.415

80,000 14.05% 1.058 0.4% 2.508 0.14% 2.021

100,000 12.05% 1.407 0.39% 3.175 0.17% 2.612

Table 7 Baseline approach: selectivities and runtimes for an increasing
number of tuples

tuples p q r

sel. Time sel. Time sel. Time

20,000 19.11% 3.84 0.02% 1.856 0.08% 3.47

40,000 13.09% 8.77 0.02% 2.955 0.08% 11.42

60,000 15.01% 13.01 0.02% 5.401 0.08% 15.07

80,000 12.73% 17.62 0.02% 5.775 0.09% 24.41

100,000 10.88% 23.20 0.01% 6.765 0.1% 36.27

20 40 60 80 100
0

1

2

3

∗1000 tuples

ru
nt
im

e
(s
ec
on

ds
)

p
q
r

20 40 60 80 100
0

10

20

30

40

∗1000 tuples

ru
nt
im

e
(s
ec
on

ds
)

p
q
r

Fig. 10 Runtimes related to a growing number of tuples: new (left) and
previous (right) version of the framework

with a growing dataset. The performance gain for the new
version of the framework is a little more than one order of
magnitude, regarding the curves corresponding to the pat-
terns p and r , although the selectivities are lower for the
previous version. Concerning the graphs for q, the perfor-
mance advantage is clearly smaller. However, according to
the selectivities, the number of successfully processed tuples
is between 20 and 40 times larger. The reason for the large
selectivity differences is described in Sect. 7. If there are
more tuples in the result set, the cost for processing them
increases. Hence, considering the huge difference between
the selectivities, the benefit in the performance for q must be
valued higher than only the runtime advantage.

8.2 Taxi dataset

The dataset considered in the following is based on themobil-
ity traces of 320 taxis in the city ofRome,whose timestamped
positions have been recorded for onemonth [4].We imported
them into Secondo and obtained 162,000 geometric tra-
jectories (type mpoint). Similarly to Sect. 8.1, we applied
map matching with OpenStreetMap data in order to create
an mlabel attribute containing the sequence of street names
corresponding to the movement. In addition, we downloaded
the geometries and names of the 15 districts of Rome [42] and
imported them as a Secondo relation. As a consequence, we
were able to add a further attribute of the typemlabel describ-
ing in which of the districts the respective taxi was located
at a certain time. The extended relation has the following
schema:

Cabs (CabId: int, TripId: int, Trip: mpoint, Roadname:
mlabel, District: mlabel)

It contains 17.6 million units (over all attributes), occu-
pying 2.5 GBytes of disk space. Similarly to the previous
section, we compared the performances of the tmatches
and tmatches2 operators with respect to a growing num-

123

A framework for efficient multi-attribute movement data analysis 447

ber of tuples, ranging from 32,000 to 160,000. The runtimes
for creating the corresponding multi-indexes amounted to
16 seconds for the smallest collection and 72 seconds for the
160,000 tuples relation. The datasets were queried with the
following patterns:

s = (2014-02-02∼ _ “Lungotevere dei Sangallo” _)

(_ _ “Corso Vittorio Emanuele II” _) (_ vatican _ _)

t = X (morning _ _ {“Arvalia Portuense”,

“San Giovanni / Cinecitta”}) Y

Z [(_ vatican _ _) | (_ _ _ {“Centro Storico”,

“Parioli / Nomentano - San Lorenzo”})]

// avg_speed(X.Trip, wgs) > avg_speed(Y.Trip, wgs)

u = A B (∼10:00 _ _ “Appia Antica”) C

D (morning _ {“Via Giuseppe Zanardelli”,

“Via del Plebiscito”} “Centro Storico”) E

// hour_of(E.end) < 12, not(E.Trip passes tiber)

Note that vatican in pattern t is a region object rep-
resenting the Vatican’s boundary. The Secondo operator
avg_speed computes the average speed of an mpoint object,
in this case, the Trip attribute. Regarding the pattern u, tiber
corresponds to the course of the riverTiber (type line).Hence,
the pattern u matches all tuples passing the district Appia
Antica before 10 am, followed by one of the streets Via
Giuseppe Zanardelli and Via del Plebiscito in the Centro
Storico district, still in themorning.Also the end of the trajec-
tory has to occur before noon according to the first condition,
and finally we require that the Tiber river is not traversed dur-
ing the last section of the movement (after Centro Storico).

The novel patternmatching operation (tmatches2) as well
as the previous onewere executedwith each of these patterns.
We list the runtimes and selectivities of all queries in Tables 8
and 9. The runtime graphs are depicted in Fig. 11.

From these results we can conclude that the patternmatch-
ing framework introduced in this paper outperforms its
precursor by almost an order of magnitude. As mentioned
(Sect. 8.1), this difference would be even larger without the
selectivity gaps.

Table 8 Novel approach: selectivities and runtimes for an increasing
number of tuples

tuples s t u

sel. Time sel. Time sel. Time

32,000 0.05% 0.179 0.83% 0.717 0.14% 3.61

64,000 0.04% 0.442 0.82% 1.602 0.15% 8.53

96,000 0.05% 0.806 0.87% 2.582 0.15% 11.34

128,000 0.06% 1.281 0.93% 3.675 0.15% 14.61

160,000 0.05% 1.703 0.91% 4.777 0.13% 18.57

Table 9 Baseline approach: selectivities and runtimes for an increasing
number of tuples

tuples s t u

sel. Time sel. Time sel. Time

32,000 0.04% 1.226 0.36% 4.34 0.05% 21.11

64,000 0.03% 2.603 0.33% 11.68 0.04% 38.55

96,000 0.03% 4.029 0.34% 19.46 0.05% 67.55

128,000 0.04% 5.633 0.35% 28.62 0.06% 80.67

160,000 0.04% 7.323 0.35% 36.91 0.06% 95.21

32 64 96 128 160
0

5

10

15

20

∗1000 tuples
ru

nt
im

e
(s
ec
on

ds
)

s
t
u

32 64 96 128 160
0

20

40

60

80

100

∗1000 tuples

ru
nt
im

e
(s
ec
on

ds
)

s
t
u

Fig. 11 Runtimes related to a growing number of tuples: new (left) and
previous (right) version of the framework

9 Conclusions and future work

In this paper, we have introduced an efficient framework
that supports pattern matching on datasets having any num-
ber of movement-related attributes of different types. The
proposed approach constitutes as a major extension of the
previous version of the framework [47], which has been
enhanced with respect to several aspects. More precisely,
details of the pattern language and the matching semantics
have been revised, and efficiency gains have been achieved
by changes in data structures and algorithms. According to
the experimental evaluation based on two different datasets,
the approach presented in this paper outperforms its precur-
sor by approximately one order of magnitude.

As stated before, to our knowledge there is no comparable
approach entailing a flexible and expressive pattern language
that is useful for such a variety of application domains. The
proposed framework is fully implemented in the open source
DBMS Secondo.

As a subject of future research, we plan to analyzewhether
a combination of symbolic trajectories [25] corresponding to
the movement of an entity (for example, cardinal directions,
speed categories, and altitudes) can be applied to restore
the geometric trajectory. Moreover, we will create different
distance functions for symbolic trajectories and/or complete
tuples of time-dependent values in order to find similarities
and clusters inside collections of movement data.

123

448 F. Valdés, R. H. Güting

References

1. Alvares, L.O., Bogorny, V., Kuijpers, B., de Macêdo, J.A.F., Moe-
lans, B., Vaisman, A.: A model for enriching trajectories with
semantic geographical information. In: ACM GIS, pp. 22:1–22:8
(2007)

2. Andrienko, G.L., Andrienko, N.V., Heurich, M.: An event-based
conceptual model for context-aware movement analysis. Int. J.
Geograph. Inf. Sci. 25(9), 1347–1370 (2011)

3. Bogorny, V., Renso, C., de Aquino, A.R., de Lucca Siqueira, F.,
Alvares, L.O.: Constant—a conceptual data model for semantic
trajectories of moving objects. Trans. GIS 18(1), 66–88 (2014)

4. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R.,
Rabuffi, A.: Crawdad dataset roma/taxi. http://crawdad.org/roma/
taxi/20140717 (2014). Accessed 23 Oct 2018

5. Brinkhoff, T.: A framework for generating network-based moving
objects. GeoInformatica 6(2), 153–180 (2002)

6. Brinkhoff, T.: Network-based generator of moving objects. http://
iapg.jade-hs.de/personen/brinkhoff/generator (2002). Accessed
23 Oct 2018

7. Cai, G., Lee, K., Lee, I.: Discovering common semantic trajectories
from geo-tagged social media. In: IEA/AIE, pp. 320–332 (2016)

8. Camossi, E., Villa, P., Mazzola, L.: Semantic-based anoma-
lous pattern discovery in moving object trajectories. CoRR
arxiv:1305.1946 (2013)

9. Chang, J.W., Song,M.S.,Um, J.H.: TMN-tree: new trajectory index
structure for moving objects in spatial networks. In: CIT, pp. 1633–
1638 (2010)

10. Damiani, M.L., Issa, H., Güting, R.H., Valdés, F.: Hybrid queries
over symbolic and spatial trajectories: a usage scenario. In: MDM,
pp. 341–344 (2014)

11. Damiani, M.L., Issa, H., Güting, R.H., Valdés, F.: Symbolic trajec-
tories and application challenges. SIGSPATIAL Spec. 7(1), 51–58
(2015)

12. Database Systems for New Applications, Fernuniversität Hagen.
http://dna.fernuni-hagen.de/Secondo.html. Accessed 23 Oct 2018

13. de Almeida, V.T., Güting, R.H., Behr, T.: Querying moving objects
in Secondo. In: MDM, pp. 47–51 (2006)

14. du Mouza, C., Rigaux, P.: Multi-scale classification of moving
objects trajectories. In: SSDBM, pp. 307–316 (2004)

15. du Mouza, C., Rigaux, P.: Mobility patterns. GeoInformatica 9(4),
297–319 (2005)

16. Erwig, M., Güting, R.H., Schneider, M., Vazirgiannis, M.: Spatio-
temporal data types: an approach tomodeling and queryingmoving
objects in databases. GeoInformatica 3(3), 269–296 (1999)

17. Fileto, R., May, C., Renso, C., Pelekis, N., Klein, D., Theodor-
idis, Y.: The baquara2 knowledge-based framework for semantic
enrichment and analysis of movement data. Data Knowl. Eng. 98,
104–122 (2015)

18. Forlizzi, L.,Güting,R.H.,Nardelli, E., Schneider,M.:Adatamodel
and data structures for moving objects databases. In: ACM SIG-
MOD, pp. 319–330 (2000)

19. Geofabrik GmbH and OpenStreetMap Contributors: Open-
streetmap data extracts. http://download.geofabrik.de (2007).
Accessed 23 Oct 2018

20. Gryllakis, F., Pelekis, N., Doulkeridis, C., Sideridis, S., Theodor-
idis, Y.: Searching for spatio-temporal-keyword patterns in seman-
tic trajectories. In: Advances in Intelligent Data Analysis, pp.
112–124 (2017)

21. Gryllakis, F., Pelekis, N., Doulkeridis, C., Sideridis, S., Theodor-
idis, Y.: Spatio-temporal-keyword pattern queries over semantic
trajectories with hermes@neo4j. In: EDBT, pp. 678–681 (2018)

22. Güting, R.H., Behr, T., Düntgen, C.: Secondo: a platform for mov-
ing objects database research and for publishing and integrating

research implementations. IEEE Data Eng. Bull. 33(2), 56–63
(2010)

23. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos,
N.A., Schneider, M., Vazirgiannis, M.: A foundation for represent-
ing and querying moving objects. ACM TODS 25(1), 1–42 (2000)

24. Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan
Kaufmann, Los Altos (2005)

25. Güting, R.H., Valdés, F., Damiani, M.L.: Symbolic trajectories.
ACM TSAS 1(2), 7:1–7:51 (2015)

26. Hadjieleftheriou, M., Kollios, G., Bakalov, P., Tsotras, V.J.: Com-
plex spatio-temporal pattern queries. In: PVLDB, pp. 877–888
(2005)

27. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to
Automata Theory, Languages, and Computation, 2nd edn.
Addison-Wesley-Longman Publishing, Reading (2001)

28. Issa, H., Damiani, M.L.: Efficient access to temporally overlaying
spatial and textual trajectories. In: MDM, pp. 262–271 (2016)

29. Liu, H., Xu, J., Zheng, K., Liu, C., Du, L., Wu, X.: Semantic-
aware query processing for activity trajectories. In: International
Conference on Web Search and Data Mining, WSDM, pp. 283–
292 (2017)

30. NASA,NGA: Shuttle radar topographymission. https://lta.cr.usgs.
gov/SRTM1Arc (2000). Accessed 23 Oct 2018

31. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings—
Practical On-Line Search Algorithms for Texts and Biological
Sequences. Cambridge University Press, Cambridge (2002)

32. Newson, P., Krumm, J.: Hidden markov map matching through
noise and sparseness. In: ACM SIGSPATIAL, pp. 336–343. ACM
(2009)

33. Nguyen-Dinh, L., Aref, W.G., Mokbel, M.F.: Spatio-temporal
access methods: part 2 (2003–2010). IEEE Data Eng. Bull. 33(2),
46–55 (2010)

34. Nogueira, T.P., Braga, R.B., de Oliveira, C.T., Martin, H.:
Framestep: a framework for annotating semantic trajectories based
on episodes. Expert Syst. Appl. 92, 533–545 (2018)

35. Openclipart: https://openclipart.org/ (2018). Accessed 23 Oct
2018

36. OpenStreetMap Foundation: Openstreetmap. http://www.
openstreetmap.org (2004). Accessed 23 Oct 2018

37. Parent, C., Spaccapietra, S., Renso, C., Andrienko, G.L.,
Andrienko, N.V., Bogorny, V., Damiani, M.L., Gkoulalas-Divanis,
A., deMacêdo, J.A.F., Pelekis,N., Theodoridis,Y.,Yan, Z.: Seman-
tic trajectories modeling and analysis. ACM Comput. Surv. 45(4),
42 (2013)

38. Pelekis,N., Frentzos, E., Giatrakos,N., Theodoridis, Y.:HERMES:
a trajectory DB engine for mobility-centric applications. IJKBO
5(2), 19–41 (2015)

39. Pelekis, N., Theodoridis, Y.: Mobility Data Management and
Exploration. Springer, Berlin (2014)

40. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in
query processing for moving object trajectories. In: VLDB, pp.
395–406 (2000)

41. Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-
matching algorithms for transport applications: state-of-the art and
future research directions. Transp. Res. Part C Emerg. Technol.
15(5), 312–328 (2007)

42. Sistemi Territoriali: Roma capitale, mappa dei municipi. http://
www.datiopen.it/en/opendata/Municipi_di_Roma_Capitale
(2012). Accessed 23 Oct 2018

43. Spaccapietra, S., Parent, C., Damiani, M.L., de Macêdo, J.A.F.,
Porto, F., Vangenot, C.: A conceptual view on trajectories. Data
Knowl. Eng. 65(1), 126–146 (2008)

44. Valdés, F., Damiani, M.L., Güting, R.H.: Symbolic trajectories in
SECONDO: pattern matching and rewriting. DASFAA 2, 450–453
(2013)

123

http://crawdad.org/roma/taxi/20140717
http://crawdad.org/roma/taxi/20140717
http://iapg.jade-hs.de/personen/brinkhoff/generator
http://iapg.jade-hs.de/personen/brinkhoff/generator
http://arxiv.org/abs/1305.1946
http://dna.fernuni-hagen.de/Secondo.html
http://download.geofabrik.de
https://lta.cr.usgs.gov/SRTM1Arc
https://lta.cr.usgs.gov/SRTM1Arc
https://openclipart.org/
http://www.openstreetmap.org
http://www.openstreetmap.org
http://www.datiopen.it/en/opendata/Municipi_di_Roma_Capitale
http://www.datiopen.it/en/opendata/Municipi_di_Roma_Capitale

A framework for efficient multi-attribute movement data analysis 449

45. Valdés, F.,Güting,R.H.: Index-supported patternmatching on sym-
bolic trajectories. In: ACM SIGSPATIAL, pp. 53–62 (2014)

46. Valdés, F., Güting, R.H.: Efficient multi-attribute analysis for tra-
jectories: a case study for aircraft. In: ACM SIGSPATIAL, pp.
88:1–88:4 (2017)

47. Valdés, F., Güting, R.H.: Index-supported pattern matching on
tuples of time-dependent values. GeoInformatica 21(3), 429–458
(2017)

48. Valdés, F., Güting, R.H., Ossi, F.: Efficient trajectory analysis for
several time-dependent attributes: a case study for roe deer. In:
MDM, pp. 337–340 (2016)

49. Vazirgiannis, M., Theodoridis, Y., Sellis, T.K.: Spatio-temporal
composition and indexing for large multimedia applications. ACM
Multimed. Syst. 6(4), 284–298 (1998)

50. Vieira, M.R., Bakalov, P., Tsotras, V.J.: Querying trajectories using
flexible patterns. In: EDBT, pp. 406–417 (2010)

51. Vieira, M.R., Bakalov, P., Tsotras, V.J.: Flextrack: a system for
querying flexible patterns in trajectory databases. In: SSTD, pp.
475–480 (2011)

52. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar mul-
tidimensional trajectories. In: ICDE, pp. 673–684 (2002)

53. Yan, Z., Chakraborty, D., Parent, C., Spaccapietra, S., Aberer, K.:
Semantic trajectories: mobility data computation and annotation.
ACM TIST 4(3), 49 (2013)

54. Zhang, C., Han, J., Shou, L., Lu, J., La Porta, T.F.: Splitter: mining
fine-grained sequential patterns in semantic trajectories. PVLDB
7(9), 769–780 (2014)

55. Zheng, K., Shang, S., Yuan, N.J., Yang, Y.: Towards efficient search
for activity trajectories. In: ICDE, pp. 230–241 (2013)

56. Zheng, K., Zheng, B., Xu, J., Liu, G., Liu, A., Li, Z.: Popularity-
aware spatial keyword search on activity trajectories. World Wide
Web 20(4), 749–773 (2017)

57. Zheng, Y., Xie, X., Ma, W.: Geolife: a collaborative social net-
working service among user, location and trajectory. IEEE Data
Eng. Bull. 33(2), 32–39 (2010)

58. Zheng, Y., Zhou, X. (eds.): Computing with Spatial Trajectories.
Springer, Berlin (2011)

123

	A framework for efficient multi-attribute movement data analysis
	Abstract
	1 Introduction
	1.1 Insight into pattern language
	1.2 Contributions
	1.3 Paper organization

	2 Related work
	2.1 Semantic trajectories
	2.2 Pattern matching languages
	2.3 Indexing movement data

	3 Preliminaries
	3.1 Symbolic trajectories and pattern matching
	3.2 Representation of time-dependent data types
	3.3 The DBMS Secondo
	3.4 Pattern matching on tuples of time-dependent values
	3.5 Running example

	4 Advanced concepts for multi-attribute movement data analysis
	4.1 Patterns
	4.2 Variables
	4.3 Patterns with conditions

	5 Language comparison
	6 Implementation concepts and details
	6.1 Overview of the matching process
	6.2 Data structures
	6.2.1 NFA
	6.2.2 Multi-index
	6.2.3 Index result container
	6.2.4 Exact matching support

	6.3 Algorithms
	6.3.1 Filtering phase
	6.3.2 Traversal of the NFA
	6.3.3 Matching with conditions
	6.3.4 Complexity discussion

	7 Application example
	8 Experimental evaluation
	8.1 Brinkhoff dataset
	8.2 Taxi dataset

	9 Conclusions and future work
	References

