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Abstract
Explaining why an answer is (or is not) returned by a query is important for many applications including auditing, debugging
data and queries, and answering hypothetical questions about data. In this work, we present the first practical approach for
answering such questions for queries with negation (first-order queries). Specifically, we introduce a graph-based provenance
model that, while syntactic in nature, supports reverse reasoning and is proven to encode a wide range of provenance models
from the literature. The implementation of this model in our PUG (Provenance Unification through Graphs) system takes a
provenance question and Datalog query as an input and generates a Datalog program that computes an explanation, i.e., the
part of the provenance that is relevant to answer the question. Furthermore, we demonstrate how a desirable factorization
of provenance can be achieved by rewriting an input query. We experimentally evaluate our approach demonstrating its
efficiency.

Keywords Datalog · Provenance · Missing answers · Semirings

1 Introduction

Provenance for relational queries records how results of a
query depend on the query’s inputs. This type of informa-
tion can be used to explain why (and how) a result is derived
by a query over a given database. Recently, provenance-like
techniques have been used to explain why a tuple (or a set of
tuples described declaratively by a pattern) is missing from
the query result (see [19] for a survey covering both prove-
nance and missing answer techniques). However, the two
problems have been treated mostly in isolation. Consider
the following observation from [24]: asking why a tuple t
is absent from the result of a query Q is equivalent to asking
why t is present in ¬Q (i.e., the complement of the result
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of Q wrt. the active domain). Thus, a unification of why and
why-not provenance is naturally achieved by developing a
provenance model for queries with negation. The approach
for provenance and missing answers from [43] is based on
the same observation.

In this paper, we introduce a graph model for provenance
of first-order (FO) queries expressed as non-recursive Dat-
alog queries with negation1 (or Datalog for short) and an
efficient method for explaining a (missing) answer using
SQL. Our approach is based on the observation that typically
only a part of the provenance, which we call explanation in
this work, is actually relevant for answering the user’s prove-
nance question about the existence or absence of a result.

Example 1 Consider the relation Train in Fig. 1 that stores
train connections. Datalog rule r1 in Fig. 1 computes which
cities can be reached with exactly one transfer, but not
directly. We use the following abbreviations in provenance
graphs: T=Train; n=New York; s=Seattle;
w=Washington DC and c=Chicago. Given the result of
this query, the user may be interested to know why he/she
is able to reach Seattle from New York (WhyQ(n, s)) with

1 or, equivalently, queries in full relational algebra (without aggrega-
tion), formulas in FO logic under the closed-world assumption, and
SPJUD-queries (select, project, join, union, difference).
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Fig. 1 Example train connection database and query

Fig. 2 Provenance graph explaining WhyQ(n, s)

Fig. 3 Provenance graph explaning WhynotQ(s, n)

one intermediate stop but not directly or why it is not pos-
sible to reach New York from Seattle in the same fashion
(WhynotQ(s, n)).

An explanation for either type of question should justify
the existence (absence) of a result as the success (failure) to
derive the result through the rules of the query. Furthermore,
it should explain how the existence (absence) of tuples in the
database caused the derivation to succeed (fail). Provenance
graphs providing this type of justification for WhyQ(n, s)
andWhynotQ(s, n) are shown in Figs. 2 and 3, respectively.
These graphs contain three types of nodes: rule nodes (boxes
labeled with a rule identifier and the constant arguments of
a rule derivation), goal nodes (rounded boxes labeled with a
rule identifier and the goal’s position in the rule’s body), and
tuple nodes (ovals). In these provenance graphs, nodes are
either colored in light green (successful/existing) or dark red
(failed/missing).

Example 2 Consider the explanation (provenance graph in
Fig. 2) for questionWhyQ(n, s). Seattle can be reached from

New York by stopping in Washington DC or Chicago, and
there is no direct connection between these two cities. These
options correspond to two successful derivations using rule
r1 with X=n, Y=s, and Z=w (or Z=c, respectively). In
the provenance graph, there are two rule nodes representing
these derivations of Q(n, s) based on rule r1. A derivation
is successful if all goals in the body evaluate to true, i.e., a
successful rule node is connected to successful goal nodes
(e.g., r1 is connected to g11, the 1st goal in the rule’s body).
A positive (negated) goal is successful if the corresponding
tuple is (is not) in the database. Thus, a successful goal node
is connected to the node corresponding to the existing (green)
or missing (red) tuple justifying the goal, respectively.

Supporting negation and missing answers is challenging,
because we need to enumerate all potential ways of deriving
a missing answer (or intermediate result corresponding to a
negated subgoal) and explain why each of these derivations
has failed. For that, we have to decide how to bound the
set of missing answers to be considered. Using the closed-
world assumption, only values that exist in the database or are
postulated by the query are used to construct missing tuples.
As is customary, we refer to this set of values as the active
domain adom(I ) of a database instance I .

Example 3 Figure3 shows the explanation for Whynot
Q(s, n), i.e., why it is not true that New York is reachable
from Seattle with exactly one transfer, but not directly. The
tuple Q(s, n) is missing from the result because all potential
ways of deriving this tuple through rule r1 have failed. In this
example, adom(I )={c, n, s, w} and, thus, there exist four
failed derivations of Q(s, n) choosing either of these cities
as the intermediate stop between Seattle and New York. A
rule derivation fails if at least one goal in the body evaluates
to false. Failed positive goals in the body of a failed rule are
explained by missing tuples (red tuple nodes). For instance,
we cannot reach NewYork from Seattle with an intermediate
stop in Washington DC (the first failed rule derivation from
the left in Fig. 3) because there exists no connection from
Seattle to Washington DC (tuple node T(s, w) in red), and
Washington DC to New York (tuple node T(w, n) in red).
The successful goal ¬T(s, n) (there is no direct connection
from Seattle to New York) does not contribute to the failure
of this derivation and, thus, is not part of the explanation.

Observe that nodes for missing tuples and successful rule
derivations are conjunctive in nature (they depend on all their
children), while existing tuples and failed rule derivations are
disjunctive (they only require at least one of their children to
be present).
Provenance model By recording which rule derivations jus-
tify the existence or absence of a query result, our model is
suited well for debugging both data and queries. However,
simpler provenance types, e.g., only tracking data depen-
dencies, are sufficient for some applications. For example,
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assume that we record as for each train connection from
which webpage we retrieved information about this train
connection. A user may be interested in knowing based on
which webpages a query answer was computed. This ques-
tion can be answered using a simpler provenance type called
Lineage (semiring Which(X) [18]) which records the set of
input tuples a result depends on. For such applications, we
prefer simpler provenance types, because they are easier to
interpret and more efficient to compute. Importantly, only
minor modifications to our framework were required to sup-
port such provenance types.
Relationship to other provenance models In comparisonwith
other provenance models, our model is more syntax-driven.
We argue that this is actually a feature (not a bug). An impor-
tant question is what is the semantic justification of our
model, i.e., howdowe knowwhether it correctlymodelsDat-
alog query evaluation semantics and whether all (and only)
relevant provenance is captured. First, we observe that our
model encodes Datalog query semantics by construction.We
justify that all relevant provenance is captured indirectly by
demonstrating that our model captures sufficient information
to derive provenance according to well-established models.
Specifically, we demonstrate that our model is equivalent to
provenance games [24]which also support FO queries. It was
proven in [24] that provenance polynomials, the most gen-
eral form of provenance in the semiring model [18,22], for
a result of a positive query can be “read out” from a prove-
nance game. By being equivalent to provenance games, our
provenance model also enjoys this property. We extend this
result to querieswith negation by relating ourmodel to semir-
ing provenance for FOmodel checking [13,39,43].We prove
that, for any FO formula ϕ, we can generate a query Qϕ such
that the semiring provenance annotation of the formula π(ϕ)

according to aK-interpretation π (annotation of positive and
negated literals [13]) can be extracted efficiently from our
provenance graph for Qϕ . Note that non-recursive Datalog
queries with negation and FO formulas under the closed-
world assumption have the same expressive power and, thus,
we use these languages interchangeably.
Reverse reasoning (how to queries) For some applications, a
user may not be interested in how a result was derived, but
wants to understand how a result of interest can be achieved
through updates to the database (see e.g., [30,31,39]). We
extend our approach to support such “reverse reasoning”
by introducing a third possible state of nodes in a prove-
nance graph reserved for facts and derivations whose truth
is undetermined. The provenance graph generated over an
instance with undetermined facts represents a set of prove-
nance graphs—one for each instance that is derived by
assigning a truth value to each undetermined fact.We demon-
strate that these graphs can be used to compute the semiring
provenance of an FO formula under a provenance tracking
interpretation as defined in [39].

Computing explanations We utilize Datalog to generate
provenance graphs that explain a (missing) query result.
Specifically, we instrument the input Datalog program to
compute provenance bottom-up. Evaluated over an instance
I , the instrumented program returns the edge relation of an
explanation (provenance graph).

The main driver of our approach is a rewriting of Data-
log rules (so-called firing rules) that captures successful and
failed rule derivations. Firing rules for positive queries were
first introduced in [23]. We have generalized this concept to
negation and failed rule derivations. Firing rules provide suf-
ficient information for constructing any of the provenance
graph types we support. To make provenance capture effi-
cient, we avoid capturing derivations that will not contribute
to an explanation. We achieve this by propagating informa-
tion from a user’s provenance question throughout the query
to prune derivations that (1) do not agree with the constants
of the question or (2) cannot be part of the explanation based
on their success/failure status. For instance, in the running
example, Q(n, s) is only connected to derivations of rule r1
with X = n and Y = s.

We implemented our approach in PUG [26] (Provenance
Unification through Graphs), an extension of ourGProM [1]
system. Using PUG, we compile rewritten Datalog programs
into relational algebra and translate such algebra expressions
into SQL code that can be executed by a standard relational
database backend.
Factorizing provenance Nodes in our provenance graphs are
uniquely identified by their label. Thus, common subex-
pressions are shared leading to more compact graphs. For
instance, observe that g31(n, s) in Fig. 2 is shared by two
rule nodes. We exploit this fact by rewriting the input pro-
gram to generate more concise, but equivalent, provenance.
This is akin to factorization of provenance polynomials in
the semiring model and utilizes factorized databases tech-
niques [33,34].
Contributions This paper extends our previous work [26]
in the following ways: we extend our model to support
less informative, but more concise, provenance types; we
extend our provenance model to support reverse reason-
ing [13] where the truth of some facts in the database is left
undetermined; we demonstrate that our provenance graphs
(explanations) are equivalent to provenance games [24] and
how semiring provenance and its FO extension as presented
in [39] can be extracted from our provenance model; we
demonstrate how to rewrite an input program to generate a
desirable (concise) factorization of provenance and evaluate
the performance impact of this technique; finally, we present
an experimental comparison with the language-integrated
provenance techniques implemented in Links [9].

The remainder of this paper is organized as follows. We
discuss related work in Sect. 2 and review Datalog in Sect. 3.
We define our model in Sect. 4 and prove it to be equiva-
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lent to provenance games in Sect. 5. We, then, show how our
approach relates to semiring provenance for positive queries
and FO model checking in Sects. 6 and 7, respectively. We
present our approach for computing explanations in Sect. 8,
and factorization in Sect. 9. Section10 covers our implemen-
tation in PUGwhich we evaluate in Sect. 11. We conclude in
Sect. 12.

2 Related work

Our provenance graphs have strong connections to other
provenance models for relational queries and to approaches
for explaining missing answers.
Provenance games Provenance games [24] model the evalu-
ation of a given query (input program) P over an instance I
as a 2-player game in a way that resembles SLD(NF) reso-
lution. By virtue of supporting negation, provenance games
can uniformly answer why and why-not questions. We prove
our approach to be equivalent to provenance games in Sect. 5.
Köhler et al. [24] presented an algorithm that computes the
provenance game for a program P and database I . However,
this approach requires instantiation of the full game graph
(which enumerates all existing and missing tuples) and eval-
uation of a recursive Datalog¬ program over this graph using
the well-founded semantics [10]. In contrast, our approach
directly computes succinct explanations that contain only rel-
evant provenance.
Database provenance Several provenance models for
database queries have been introduced in related work, e.g.,
see [5,22]. The semiring annotation framework generalizes
these models for positive relational algebra (and, thus, pos-
itive non-recursive Datalog). An essential property of the
K-relationalmodel is that the semiringofprovenancepolyno-
mialsN[X ] generalizes all other semirings. It has been shown
in [24] that provenance games generalize N[X ] for positive
queries. Since our graphs are equivalent to provenance games
in the sense that there exist lossless transformations between
both models (see Sect. 5), our graphs also encode N[X ] and,
thus, all other provenance models expressible as semirings
(see Sect. 6.2). Provenance graphs which are similar to our
graphs restricted to positive queries have been used as graph
representations of semiring provenance (e.g., see [7,8,22]).
Both our graphs and the Boolean circuits representation of
semiring provenance [8] explicitly share common subex-
pressions in the provenance. While these circuits support
recursive queries, they do not support negation. Recently,
extension of circuits for semirings with monus (supporting
set difference) have been discussed [38]. The semiringmodel
has also been applied to record provenance of model check-
ing for first-order (FO) logic formulas [13,39,43]. This work
also supports missing answers using the observation made
earlier in [24]. Support for negation relies on (1) translat-

ing formulas into negation normal form (nnf ), i.e., pushing
all negations down to literals, and (2) annotating both pos-
itive and negative literals using a separate set X and X̄ of
indeterminates in provenance expressions where variables
from X are reserved for positive literals and variables from
X̄ for negated literals. This idea of using dual (positive and
negative) indeterminates is an independent rediscovery of the
approach from [6]which applied this idea for FOqueries. The
main differences between these approaches are (1) that the
results from [6] where only shown for one particular semir-
ing (Bool(X ∪ X̄), the semiring of Boolean expressions over
dual indeterminates) and (2) that [6] supports recursion in the
form of well-founded Datalog and answer set programming
(disjunctive Datalog). We prove that our model encompasses
the model from [13]. The notion of causality is also closely
related to provenance.Meliou et al. [29] computed causes for
answers and non-answers. However, the approach requires
the user to specify which missing inputs are considered as
causes for a missing output. Roy et al. [36,37] employed
causality to compute explanations for high or low outcomes
of aggregation queries as sets of input tuples which have a
large impact on the result. Such sets of tuples are represented
compactly through selection queries. A similar method was
developed independently by Wu et al. [41].
Why-not and missing answers Approaches for explaining
missing answers are either based on the query [2–4,40] (i.e.,
which operators filter out tuples that would have contributed
to the missing answer) or based on the instance [20,21] (i.e.,
what tuples need to be inserted into the database to turn
the missing answer into an answer). The missing answer
problem was first stated for query-based explanations in the
seminal paper by Chapman et al. [4]. Huang et al. [21] first
introduced an instance-based approach. Since then, several
techniques have been developed to exclude spurious explana-
tions, to support larger classes of queries [20], and to support
distributed Datalog systems in Y! [42]. The approaches for
instance-based explanations (with the exception of Y!) have
in common that they treat the missing answer problem as
a view update problem: the missing answer is a tuple that
should be inserted into a view corresponding to the query
and this insertion has to be translated as an insertion into
the database instance. An explanation is then one particular
solution to this view update problem. In contrast to these pre-
vious works, our provenance graphs explainmissing answers
by enumerating all failed rule derivations that justify why the
answer is not in the result. Thus, they are arguably a better
fit for use cases such as debugging queries, where in addi-
tion to determining which missing inputs justify a missing
answer, the user also needs to understand why derivations
have failed. Furthermore, we do support queries with nega-
tion. Importantly, solutions for view update missing answer
problems canbe extracted fromour provenance graphs. Thus,
in a sense, provenance graphs with our approach generalize
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some of the previous approaches (for the class of queries sup-
ported, e.g., we do not support aggregation yet). Interestingly,
recent work has shown that it may be possible to generate
more concise summaries of provenance games [11,35] and
provenance graphs [28] that are particularly useful for nega-
tion and missing answers to deal with the potentially large
size of the resulting provenance. Similarly, some missing
answer approaches [20] use c-tables to compactly represent
sets of missing answers. These approaches are complemen-
tary to our work.
Computing provenance declaratively The concept of rewrit-
ing a Datalog program using firing rules to capture prove-
nance as variable bindings of derivations was introduced by
Köhler et al. [23]. They apply this idea for provenance-based
debugging of positive Datalog. Firing rules are also simi-
lar to relational implementations of provenance capture in
Perm [12], LogicBlox [16], Orchestra [17], and GProM [1].
Zhou et al. [44] leveraged such rules for the distributed ExS-
PAN system using either full propagation or reference-based
provenance. The extension of firing rules for negation is the
main enabler of our approach.

3 Datalog

A Datalog program P consists of a finite set of rules ri :
R( �X) :−R1( �X1), . . . , Rn( �Xn) where �X j denotes a tuple of
variables and/or constants. We assume that the rules of a
program are labeled r1 to rm . R( �X) is the head of the rule,
denoted as head(ri ), and R1( �X1), . . . ,Rn( �Xn) is the body
(each Rj( �X j ) is a goal). We use vars(ri ) to denote the set
of variables in ri . In this paper, consider non-recursive Data-
log with negation (FO queries), so goals Rj( �X j ) in the body
are literals, i.e., atoms L( �X j ) or their negation ¬L( �X j ), and
recursion is not allowed. All rules r of a program have to be
safe, i.e., every variable in r must occur positively in r ’s body
(thus, head variables and variables in negated goals must also
occur in a positive goal). For example, Fig. 1 shows aDatalog
query with a single rule r1. Here, head(r1) is Q(X,Y ) and
vars(r1) is {X,Y, Z}. The rule is safe since the head vari-
ables ({X,Y }) and the variables in the negated goal ({X,Y })
also occur positively in the body. The set of relations in the
schema over which P is defined is referred to as the exten-
sional database (EDB), while relations defined through rules
in P form the intensional database (IDB), i.e., the IDB rela-
tions are those defined in the head of rules. We require that P
has a distinguished IDB relation Q, called the answer rela-
tion. Given P and instance I , we use P(I ) to denote the
result of P evaluated over I . Note that P(I ) includes the
instance I , i.e., all EDB atoms that are true in I . For an EDB
or IDB predicate R, we use R(I ) to denote the instance of
R computed by P and R(t) ∈ P(I ) to denote that t ∈ R(I )
according to P .

We use adom(I ) to denote the active domain of instance
I , i.e., the set of all constants that occur in I . Similarly, we
use adom(R.A) to denote the active domain of attribute A of
relation R. In the following, we make use of the concept of a
rule derivation. A derivation of a rule r is an assignment of
variables in r to constants from adom(I ). For a rule with n
variables, we use r(c1, . . . , cn) to denote the derivation that
is the result of binding Xi=ci .We call a derivation successful
wrt. an instance I if each atom in the body of the rule is true
in I and failed otherwise.

4 Provenancemodel

We now introduce our provenance model and formalize the
problem addressed in this work: compute the subgraph of a
provenance graph for a given query (input program) P and
instance I that explains existence/absence of a tuple in/from
the result of P .

4.1 Negation and domains

To be able to explain why a tuple is missing, we have to enu-
merate all failed derivations of this tuple and, for each such
derivation, explain why it failed. As mentioned in Sect. 1,
we have to decide how to bound the set of missing answers.
We propose a simple, yet general, solution by assuming that
each attribute of an IDB or EDB relation has an associated
domain.

Definition 1 (domain assignment) Let S = {R1, . . . ,Rn} be
a database schema where each Ri(A1, . . . ,Am) is a relation.
Given an instance I of S, a domain assignment dom is a
function that associates with each attribute R.A a domain of
values. We require dom(R.A) ⊇ adom(R.A).

In our approach, the user specifies each dom(R.A) as a
query domR.A that returns the set of admissible values for
the domain of attribute R.A. These associated domains fulfill
two purposes: (1) to reduce the size of explanations and (2)
to avoid semantically meaningless answers. For instance, if
there exists another attribute Price in the relation Train
in Fig. 1, then adom(I ) would also include all the values that
appear in this attribute. Thus, some failed rule derivations
for r1 would assign prices as intermediate stops. Differ-
ent attributes may represent the same type of entity (e.g.,
fromCity andtoCity in our example) and, thus, it would
make sense to use their combined domain values when con-
structing missing answers. For now, we leave it up to the user
to specify attribute domains.

When defining provenance graphs in the following,
we are only interested in rule derivations that use con-
stants from the associated domains of attributes accessed
by the rule. Given a rule r and variable X used in this
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rule, let attrs(r, X) denote the set of attributes that vari-
able X is bound to in the body of the rule. In Fig. 1,
attrs(r1, Z)={Train.fromCity,Train.toCity}. We
say a rule derivation r(c1, . . . , cn) is domain grounded iff
ci ∈ ⋂

A∈attrs(r,Xi )
dom(A) for all i ∈ {1, . . . , n}. For a

relation R(A1, . . . ,An), we use Tup(R) to denote the set of
all possible tuples for R, i.e., Tup(R) = dom(R.A1) × . . . ×
dom(R.An).

4.2 Provenance graphs

Provenance graphs justify the existence (or absence) of a
query result based on the success (or failure) to derive it
using a query’s rules. They also explain how the existence
or absence of tuples in the database caused derivations to
succeed or fail, respectively. Here, we present a constructive
definition of provenance graphs that provide this type of jus-
tification. Nodes in these graphs carry two types of labels: (1)
a label that determines the node type (tuple, rule, or goal) and
additional information, e.g., the arguments and rule identifier
of a derivation; (2) the success/failure status of nodes. Note
that the first type of labels uniquely identifies nodes.

Definition 2 (Provenance graph) Let P be a Datalog pro-
gram, I a database instance, dom a domain assignment for I ,
andL the domain of strings. Theprovenance graphPG(P, I )
is a graph (V, E,L,S) with nodes V , edges E , and node
labeling functions L : V → L and S : V → {T, F}
(T for true/success and F for false/failure). We require that
∀v, v′ ∈ V : L(v) = L(v′) → v = v′. The graph PG(P, I )
is defined as follows:

– Tuple nodes For each n-ary EDB or IDB predicate R
and tuple (c1, . . . , cn) of constants from the associated
domains (ci ∈ dom(R.Ai)), there exists a node v labeled
R(c1, . . . , cn). S(v) = T iff R(c1, . . . , cn) ∈ P(I ) and
S(v) = F otherwise.

– Rule nodes For every successful domain grounded
derivation ri (c1, . . . , cn), there exists a node v in V
labeled ri (c1, . . . , cn) with S(v) = T . For every
failed domain grounded derivation ri (c1, . . . , cn) where
head(ri (c1, . . . , cn)) /∈ P(I ), there exists a node v as
above but with S(v) = F . In both cases, v is connected
to the tuple node head(ri (c1, . . . , cn)).

– Goal nodes Let v be the node corresponding to a deriva-
tion ri (c1, . . . , cn) with m goals. If S(v) = T , then for
all j ∈ {1, . . . ,m}, v is connected to a goal node v j

labeled g j
i with S(v j ) = T . If S(v) = F , then for all

j ∈ {1, . . . ,m}, v is connected to a goal node v j with
S(v j ) = F if the j th goal is failed in ri (c1, . . . , cn). Each
goal is connected to the corresponding tuple node.

Our provenance graphs model query evaluation by con-
struction. A tuple node R(t) is successful in PG(P, I )
iff R(t) ∈ P(I ). This is guaranteed, because each tuple
built from values of the associated domain exists as a node
v in the graph and its label S(v) is decided based on
R(t) ∈ P(I ). Furthermore, there exists a successful rule
node r(�c) ∈ PG(P, I ) iff the derivation r(�c) succeeds for
I . Likewise, a failed rule node r(�c) exists iff the derivation
r(�c) is failed over I and head(r(�c)) /∈ P(I ). Figures2 and
3 show subgraphs of PG(P, I ) for the query from Fig. 1.
Since Q(n, s) ∈ P(I ) (Fig. 2), this tuple node is connected
to all successful derivations with Q(n, s) in the head which
in turn are connected to goal nodes for each of the three
goals of rule r1. Q(s, n) /∈ P(I ) (Fig. 3) and, thus, its node is
connected to all failed derivations with Q(s, n) as a head.
Here, we have assumed that all cities can be considered
as start and end points of missing train connections, i.e.,
both dom(T.fromCity) and dom(T.toCity) are defined
as adom(T.fromCity)∪adom(T.toCity). Thus, we have
considered derivations r1(s, n, Z) for Z ∈ {c, n, s, w}.

4.3 Provenance questions and explanations

Recall that the problem we address in this work is how to
explain the existence or absence of (sets of) tuples using
provenance graphs. Such a set of tuples specified as a pat-
tern and paired with a qualifier (Why /Whynot ) is called
a provenance question (PQ) in this paper. The two ques-
tions presented in Example1 use constants only, but we also
support provenance questions with variables, e.g., for a ques-
tionWhynotQ(n, X)we return all explanations for missing
tuples where the first attribute is n, i.e., why it is not the case
that a city X can be reached from New York with one trans-
fer, but not directly. We say a tuple t ′ of constants matches
a tuple t of variables and constants written as t ′ � t if we
can unify t ′ with t , i.e., we can equate t ′ with t by applying a
valuation that substitutes variables in t with constants from
t ′.

Definition 3 (Provenance question) Let P be a query, I an
instance, Q an IDB predicate, and dom a domain assignment
for I . A provenance question ψ is of the formWhy Q(t) or
Whynot Q(t) where t = (v1, . . . , vn) consists of variables
and domain constants (dom(Q.A) for each attribute Q.A). We
define:

Pattern(ψ) = Q(t)

Match(Why Q(t)) = {Q(t ′)|t ′ ∈ P(I ) ∧ t ′ � t}
Match(Whynot Q(t)) = {Q(t ′)|t ′ /∈ P(I ) ∧ t ′ � t ∧ t ′ ∈ Tup(Q)}

In Examples2 and 3, we have presented subgraphs of
PG(P, I ) as explanations for PQs, implicitly claiming that
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these subgraphs are sufficient for explaining these PQs. We
now formally define this type of explanation.

Definition 4 (Explanation) The explanation Expl
(P, ψ, I, dom) for a PQ ψ according to P , I , and dom is
the subgraph of PG(P, I ) containing only nodes that are
connected to at least one node inMatch(ψ).

In the following, we will drop dom from Expl(P,

ψ, I, dom) if it is clear from the context or irrelevant for
the discussion. Given this definition of explanation, note that
(1) all nodes connected to a tuple node matching the PQ
are relevant for computing this tuple and (2) only nodes
connected to this node are relevant for the outcome. Con-
sider Q(t ′) ∈ Match(ψ) for a question Why Q(t). Since
Q(t ′) ∈ P(I ), all successful derivations with head Q(t ′)
justify the existence of t ′ and these are precisely the rule
nodes connected to Q(t ′) in PG(P, I ). For Whynot Q(t)
and matching Q(t ′), we have Q(t ′) /∈ P(I )which is the case
if all derivations with head Q(t ′) have failed. In this case, all
such derivations are connected to Q(t ′) in the provenance
graph. Each such derivation is connected to all of its failed
goals which are responsible for the failure. Now, if a rule
body references IDB predicates, then the same argument can
be applied to reason that all rules directly connected to these
tuples explain why they (do not) exist. Thus, by induction,
the explanation contains all relevant tuple and rule nodes that
explain the PQ.

5 Provenance graphs and provenance games

We now prove that provenance graphs according to Def-
inition2 are equivalent to provenance games. Thus, our
model inherits the semantic foundation of provenance games.
Specifically, provenance games were shown to encode Dat-
alog query evaluation. Furthermore, the interpretation of
provenance game graphs as 2-player games provides a strong
justification for why the nodes reachable from a tuple node
justify the existence/absence of the tuple. We show how to
transform a provenance game�(P, ψ, I ) into an explanation
Expl(P, ψ, I ) and vice versa to demonstrate that both are
equivalent representations of provenance. We define a func-
tion Tr�→Expl that maps provenance games to graphs and
its inverse TrExpl→� . Before that, we first give an overview
of provenance games (see [24] for more details).
Provenance games Similar to our provenance graphs, prove-
nance games are graphs that record successful and failed rule
derivations. Provenance games consist of four types of nodes
(e.g., Fig. 4d): rule nodes (boxes labeled with a rule identifier
and the constant arguments of a rule derivation), goal nodes
(boxes labeled with a rule identifier and the goal’s position
in the rule’s body), tuple nodes (ovals), and EDB fact nodes
(boxes labeled with an EDB relation name and the constants

of a tuple). Every tuple node in a provenance game appears
both positively and negatively, i.e., for every tuple node R(t),
there exists a tuple node ¬R(t). Given a program P and
database instance I , a provenance game is constructed by
creating a positive and negative tuple node R(c1, · · · , cn) for
each n-ary predicate R and for all combinations of constants
ci from the active domain adom(I ). Similarly, nodes are cre-
ated for rule derivations, i.e., a rulewhere variables have been
replaced with constants from adom(I ) and each goal in the
body of a rule (similar to Def. 2). In the game, a derivation
of rule r for a vector of constants �c is labeled as r(�c), e.g.,
a derivation Q3hop(s, s) :−T(s, c),T(c, s),T(s, s) of r2 in
Fig. 4a is represented as a rule node labeledwith r2(s, s, c, s).
Finally, EDB fact nodes are added for each tuple in I , e.g.,
rT (s, s) for the tuple (seattle, seattle) in the Train relation
(Fig. 4a). Tuple nodes are connected to the grounded rule
nodes that derive them (have the tuple in their head), rule
nodes to goal nodes for the grounded goals in their body, and
goal nodes to negated tuple nodes corresponding to the goal
(positive goals) or positive tuple nodes (negated goals). Such
a game is interpreted as a 2-player game where the players
argue for/against the existence of a tuple in the result of eval-
uating P over I . The existence of strategies for a player in this
game determines tuple existence and success of rule deriva-
tions. A solved game is one where each node in the game
graph is labeled as either won W (there exists a strategy for
the player starting in this position) or lost L (no such strategy
exists). A tuple node R(t) is labeled as W iff the tuple R(t)
exists.A corollary of this is that a rule is labeled L if the corre-
sponding derivation is successful and W otherwise.2 Given
such a solved game (denoted as �(P, I )), we can extract
a subgraph rooted at an IDB tuple Q(t) as the provenance
of Q(t). Similar to how we derive an explanation for a PQ
with Pattern(ψ) = Q(t) where t may contain variables as
the subgraph of the provenance graph PG(P, I ) containing
all IDB tuple nodes matching t and nodes reachable from
these nodes, we can derive the corresponding subgraph in
the provenance game �(P, I ) and denote it as �(P, ψ, I )
(we call such subgraphs game explanations).
Translating between provenance graphs and provenance
games The translation TrExpl→� of a provenance graph
into the corresponding game and the reverse transforma-
tion Tr�→Expl are straightforward. Thus, we only sketch
TrExpl→� here. EDB tuple nodes are expanded to sub-
graphs ¬R(t) → R(t) → rR(t) for existing tuples and
¬R(t) → R(t) formissing tuples. IDB tuple nodes are always
expanded to subgraphs of the later form. Rule and goal nodes
and their inter-connections are preserved. Goal nodes are
connected to negated tuple nodes (positive goals) and to pos-
itive tuple nodes (negated goals). For positive tuple and goal

2 This follows from the semantics of the type of 2-player game used
here. The details are beyond the scope of this paper.
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(a) (b)

(c)

(d) (e)

(f)

Fig. 4 Transformations exemplified using the provenance graph for Q3hop(s, s). For each graph, we show the structure of the provenance encoded
by this graph and the corresponding semiring annotation where applicable

nodes, we translate T to W (won) and F to L (lost). For
negated tuple nodes and rule nodes, this mapping is reversed,
i.e., T to L and F to W .

Theorem 1 Let P be a program, I a database instance, and
ψ a PQ. We have:

Tr�→Expl(�(P, ψ, I )) = Expl(P, ψ, I )

TrExpl→�(Expl(P, ψ, I )) = �(P, ψ, I )

Proof See our accompanying technical report [27]. 
�
Example 4 Consider rule r2 in Fig. 4a computingwhich cities
can be reached from another city through a path of length 3.
The provenance game and provenance graph for Q3hop(s, s)
are shown in Fig. 4d, e, respectively. In the provenance graph,
goal nodes are directly connected to tuple nodes. In the
game, they are represented as positive and negative tuple
nodes and EDB fact nodes (the lower three levels). That
is, every subgraph ¬T (X,Y ) → T (X,Y ) → rT (X,Y )

in Fig. 4d is equivalently encoded as a single tuple node
T (X,Y ) in Fig. 4e. Both graphs record the 3 paths of length
3 which start and end in Seattle: (1) s → s → s → s, (2)
s → c → s → s, and (3) s → s → c → s.

6 Semiring provenance for positive queries

The semiring annotationmodel [15,18,22] iswidely accepted
as a provenance model for positive queries. An interesting

question is how our model compares to provenance polyno-
mials (semiring N[X ]), the most general form of annotation
in the semiring model. It was shown in [24] that, for pos-
itive queries, the result of a query annotated with semiring
N[X ] can be extracted from the provenance game by apply-
ing a graph transformation. The equivalence shown in Sect. 5
extends this result to our provenance graphmodel. That being
said, we develop simplified versions of our graph model to
directly support less informative provenance semirings such
as Lineage which only tracks data dependencies between
input and output tuples. We now introduce the semiring
annotation framework for positive queries and its use in
provenance tracking and, then, explain our simplified prove-
nance graph types.

6.1 K-relations

In the semiring framework, relations are annotated with
elements from a commutative semiring. A commutative
semiring is a structure K = (K ,+K, ·K, 0K, 1K) over a
set K where the addition and multiplication operations are
associative and commutative and have a neutral element (0K
and 1K, respectively). Furthermore, multiplication with zero
yields zero and multiplication distributes over addition. A
relation annotated with the elements of a semiringK is called
aK-relation. Operators of positive relational algebra (RA+)
forK-relations compute annotations for tuples in their output
by combining annotations from their input using the opera-
tions of the semiring. Intuitively, multiplication represents
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conjunctive use of inputs (as in a join), whereas addition rep-
resents alternative use of inputs (as in a union or projection).
We are interested in K-relations, because it was shown that
many provenance types can be expressed as semiring anno-
tations.

Semiring homomorphisms are important for our purpose
since they allow us to translate between different provenance
semirings and understand their relative informativeness. A
semiring homomorphism h : K1 → K2 is a function from
K1 to K2 that respects the operations of semirings, e.g.,
h(k1 +K1 k2) = h(k1) +K2 h(k2). As shown in [14], if there
exists a surjective homomorphism between one provenance
semiringK1 and another semiringK2, thenK1 is more infor-
mative than K2 (see [18] for the technical details justifying
this argument). We introduce several provenance semirings
below and explain the homomorphisms that link the most
informative semiring (N[X ]) to less informative semirings.
(N[X ],+, ·, 0, 1): The elements of semiring N[X ] are poly-
nomials with natural number coefficients and exponents over
a set of variables X representing tuples. Any polynomial can
be written as a sum of products by applying the equational
laws of semirings, e.g., the provenance polynomial for query
result Q3hop(s, s) is p3+2pqr (Fig. 4a). An important prop-
erty of N[X ] is that there exist homomorphisms from N[X ]
to any other semiring.
(PosBool(X),+, ·, 0, 1): The elements of PosBool(X) are
derived from N[X ] by making both addition and multiplica-
tion idempotent and applying an additional equational law:
x + x · y = x . An element from PosBool(X) can be encoded
as a set of sets of variables with the restriction that every
inner set k is minimal, i.e., there is no other inner set k′
that is a subset of k. For example, the provenance poly-
nomial p3 + 2pqr of Q3hop(s, s) is simplified as follows:
p3 + 2pqr = p + pqr = p.
(Which(X),+, ·, 0, 1): In the Which(X) semiring, addition
is equivalent to multiplication: x + y = x · y for x, y /∈
{0, 1}, and both addition and multiplication are idempotent.
This semiring has sometimes also been called the Lineage
semiring. Alternatively, the semiring can be defined over the
powerset of the set of variables X [5].

Other semirings of interest are (B[X ],+, ·, 0, 1) which
is derived from N[X ] by making addition idempotent (x +
x ≡ x), semiring (Trio(X),+, ·, 0, 1) where multiplication
is idempotent (x · x ≡ x), and (Why(X),+, ·, 0, 1) where
both addition and multiplication are idempotent.

6.2 K-explanations

We now introduce simplified versions of our provenance
graphs that each corresponds to a certain provenance semir-
ing. Given a positive query P , PQ ψ , and database I , we
use ExplK(P, ψ, I ) to denote a K-explanation for ψ . A
K-explanation is a provenance graph that encodes the K-

provenance of all query results fromMatch(ψ), i.e., the set
of answers the user is interested in. In the following, we first
show how to extractN[X ] from our provenance graph. Then,
for each homomorphism implementing the derivation of a
less informative provenance model from a more informative
provenance model in the semiring framework, there is a cor-
responding graph transformation over our provenance graphs
that maps ExplN[X ](P, ψ, I ) to ExplK(P, ψ, I ). The fol-
lowing theorem shows thatwe can reuse the existingmapping
from provenance games to provenance polynomials by com-
posing it with the mapping TrExpl→� .

Theorem 2 LetTrExpl→N[X ] denote the functionTr�→N[X ]◦
TrExpl→� . Given a positive input program P, database
instance I , and tuple t ∈ P(I ), denote by N[X ](P, I, t)
the N[X ] annotation of t over an abstractly tagged version
of I (each tuple t is annotated with a unique variable xt ).
Then,

TrExpl→N[X ](Expl(P, I, t)) = N[X ](P, I, t)

Proof The proof is shown in [27]. 
�
Consider the explanation for WhyQ3hop(s, s) shown in

Fig. 4e. Recall that there are three options for reaching Seat-
tle from Seattle with two intermediate stops corresponding to
three derivations of Q3hop using rule r2. These three deriva-
tions are shown in the provenance graph, e.g., r2(s, s, s, s)
is the derivation that uses the local train connection inside
Seattle three times. Annotating the train connections with
variables p, q, and r as shown in Fig. 4a and ignoring rule
information encoded in the graph, the provenance encoded
by our model is a bag (denoted as [ ]) of lists (denoted as ( ))
of these variables. Each list corresponds to a rule derivation
where variables are ordered according to the order of their
occurrence in the body of the rule. For instance, (q, r, p) cor-
responds to taking a train from Seattle to Chicago (q), then
from Chicago to Seattle (r ), and finally a local connection
inside Seattle (p). We now illustrate the graph transforma-
tions yielding K-explanations from ExplN[X ] based on this
example.
Semiring N[X ] In Fig. 4e, we (1) replace rule nodes with
multiplication (i.e., r2(s, s, s, s) → ·) and (2) replace goal
nodes with addition (e.g., g12(s, s) → +) to generate a
graph that encodes N[X ] as shown in Fig. 4b (denoted as
ExplN[X ]). Applying this transformation, the rule instanti-
ation r2(s, s, c, s) deriving result tuple Q3hop(s, s) can no
longer be distinguished from r2(s, s, s, c), because they are
connected to the same tuple nodes. The only information
retained is which arguments are used how often by a rule
(labeled with ·). To extract N[X ], we (1) replace labels of
leaf nodes with their annotations from Fig. 4a (e.g., T (s, s)
is replaced with p) and (2) replace IDB tuple nodes with
addition.
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Semiring PosBool(X) ExplPosBool(X) (Fig. 4f) is computed
from ExplN[X ] by first collapsing rule nodes if the subgraphs
rooted at these rule nodes are isomorphic and dropping all
the goal nodes. Then, “·” nodes are removed if one or more
subgraphs rooted at children of such a node is isomorphic
to the subgraphs rooted at the children of another “·” node.
Applying this process to our example, after the first step, two
“·” nodes (one connects Q3hop(s, s) to p and the other for
each p, q, and r ) exist in the graph corresponding to p and
p · q · r . In the second step, p · q · r is removed because it
contains p (T(s, s)) as a subgraph.
Semiring Which(X) The semiring Which(X) (aka Lineage)
is reached by collapsing all intermediate nodes and directly
connecting tuple nodes (e.g., Q3hop(s, s)) with other tuple
nodes (e.g., T(s, s)) as shown in Fig. 4c.

ExplB[X ] and ExplTrio(X) are derived from ExplN[X ] by
collapsing isomorphic subgraphs rooted at rule nodes and by
dropping all the goal nodes, respectively. The combination
of these transformations achieves ExplWhy(X).

7 Semiring provenance for FOmodel
checking

The semiring frameworkwas recently extended for capturing
provenance of first-order (FO) model checking [13,39]. We
now study the relationship of our model to semiring prove-
nance for FO queries. Based on the observation first stated
in [24] (provenance for FO queries and, thus, also FO logic,
naturally supports missing answers), the authors explain
missing answers based on FO provenance [43]. Another
interesting aspect of [13] is that it allows some facts to be left
undetermined (their truth is undecided). This enables how to
queries [31], i.e., given an expected outcome, which possible
world compatible with the undecided facts would produce
this outcome. In this section, we first introduce the model
from [13] and then demonstrate how our approach can be
extended to support undetermined truth values. Finally, we
show how the annotation computed by the approach pre-
sented in [13] for a FO formula ϕ can be efficiently extracted
from the provenance graph generated by our approach for
a query Qϕ which is derived from ϕ through a translation
Tlϕ→Q .

7.1 K-interpretations and dual polynomials

In [18,39], the authors define semiring provenance for for-
mulas in FO logic. Let A be a domain of values. We use ν to
denote an assignment of the free variables of ϕ to values from
A. Given a so-called K-interpretation π which is a function
mapping positive and negative literals to annotations from
K, the annotation of a formula π�ϕ�ν for a given valuation ν

is derived using the rules below. For sentences, i.e., formulas

without free variables, we omit the valuation and write π(ϕ)

to denote π�ϕ�ν for the empty valuation ν. Furthermore, op
is used to denote a comparison operator (either = or �=).

π�R(x)�ν = π(R(ν(x))) π�¬ R(x)�ν = π(¬ R(ν(x)))

π�xopy�ν = if ν(x)opν(y) then 1 else 0 π�¬ϕ�ν = π�nnf(ϕ)�ν

π�ϕ1 ∨ ϕ2�ν = π�ϕ1�ν + π�ϕ2�ν π�ϕ1 ∧ ϕ2�ν = π�ϕ1�ν · π�ϕ2�ν

π�∃x ϕ�ν =
∑

a∈A

π�ϕ�ν[x �→a] π�∀x ϕ�ν =
∏

a∈A

π�ϕ�ν[x �→a]

Both conjunction and universal quantification correspond
to multiplication, and annotations of positive and negative
literals are read from π . This model deals with nega-
tion as follows. A negated formula is first translated into
negation normal form (nnf ). A formula in nnf does not
contain negation except for negated literals. Any formula
can be translated into this form using DeMorgan rules, e.g.,
¬ (∀x ϕ) ≡ (∃x ¬ϕ). By pushing negation to the literal level
using nnf, and annotating both positive and negative literals,
the approach avoids extending the semiring structure with an
explicit negation operation.

Provenance tracking for FO formula has to take into
account the dual nature of the literals. The solution pre-
sented in [13,39] is to use polynomials over two sets of
variables: variables from X and X̄ are exclusively used to
annotate positive and negative literals, respectively. For any
variable x ∈ X , there exists a corresponding variable x̄ ∈ X̄
and vice versa. Furthermore, if x annotates R(a), then x̄
can only annotate ¬ R(a) (and vice versa). The semiring
of dual indeterminate polynomials is then defined as the
structure generated by applying the congruence x · x̄ = 0
to the polynomials fromN[X ∪ X̄ ]. The resulting structure is
denoted byN[X, X̄ ]. Intuitively, this congruence encodes the
standard logic equivalence R(a) ∧ ¬ R(a) ≡ f alse. Impor-
tantly, in a N[X, X̄ ]-interpretation π , we can decide which
facts are true/false and whether to track provenance for these
facts. Furthermore, we can leave the truth of some literals
undetermined. Below, we show all feasible combinations for
annotating R(a) and ¬ R(a) in π and their meaning. For
instance, if we annotate R(a) with 1 or 0, this corresponds
to asserting the fact R(a), but not tracking provenance for it.
By setting R(a) = x and ¬ R(a) = x̄ , we leave the truth of
R(a) undecided. Note that R(a) = 0 and ¬ R(a) = 0 (as
well as R(a) = 1 and ¬ R(a) = 1) are not considered here
since they lead to incompleteness (inconsistency).

π(R(a)) = 1 π(¬ R(a)) = 0 (true, no provenance)

π(R(a)) = 0 π(¬ R(a)) = 1 (false, no provenance)

π(R(a)) = x π(¬ R(a)) = 0 (true, track provenance)

π(R(a)) = 0 π(¬ R(a)) = x̄ (false, track provenance)
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π(R(a)) = x π(¬ R(a)) = x̄ (undetermined)

Consider a sentence ϕ.3 The annotation π(ϕ) computed
for ϕ over π with undetermined facts represents a set of pos-
sible models for ϕ. By choosing for each undetermined fact
R(a) in π(ϕ) whether it is true or not, we “instantiate” one
possible model for ϕ. By encoding a set of possible models,
π(ϕ) allows for reverse reasoning: we can find models that
fulfill certain properties from the set of models encoded by
π(ϕ).

Example 5 Reconsider query r1 from Fig. 1. Assume that we
want to determine what effect building a direct train connec-
tion fromNewYork to Seattle would have on the query result
Q(n, s). Thus, we make the assumption that the database
instance is as in Fig. 1 with the exception that we keep
T(n, s) undetermined. In first-order logic, r1 is expressed
as: only2hop(x, y) ≡ ∃z(T(x, z) ∧ T(z, y) ∧ ¬T(x, y))
and fact Q(n, s) as: ϕ ≡ only2hop(n, s). The database
when keepingT(n, s) undetermined is encoded as aN[X, X̄ ]-
interpretations π which assigns variables to positive literals
as shown in Fig. 1 (the corresponding negated literals are
annotated with 0). π(T (n, s)) = v, π(¬ T (n, s)) = v̄, and
we annotate all remaining positive literals with 0 and nega-
tive literals with 1. Computing π(ϕ) using the rules above,
we get (t · s · v̄) + (u · r · v̄). There are two ways of deriving
the query result Q(n, s)which both depend on the absence of
a direct train connection from New York to Seattle (v̄). Now
if we decide to introduce such a connection, we can evaluate
the effect of this choice by setting v̄ = 0 in the provenance
polynomial above (the absence of this connection has been
refuted), i.e., we get (t · s · 0) + (u · r · 0) = 0. Thus, if we
were to introduce such a connection, then Q(n, s) would no
longer be a result.

7.2 Supporting undeterminism in provenance
graphs

Supporting undetermined facts in our provenance model is
surprisingly straightforward. We introduce a new label U
which is used to label nodes whose success/failure (exis-
tence/absence) is undetermined. To account for this new
label, we amend the rules for determining connectivity and
node labeling as follows:

– For a goal node vg (no matter whether positive or nega-
tive) that is connected to a tuple node vt with S(vt ) = U ,
we set S(vg) = U (goals corresponding to undetermined
tuples are undetermined).

3 We only restrict the discussion to sentences for simplicity. The argu-
ments here also hold for formulas with free variables.

Fig. 5 Provenance graph for WhyQ(n, s) when T (n, s) is left unde-
termined

– A rule node is successful (T ) if all its goals are success-
ful, a rule node is failed if some of its goals are failed
(F), and finally a rule node is undetermined (U ) if at
least one of its goals is undetermined and none of its
goals are failed. Successful rule nodes are connected to
all goals, failed rule nodes to failed and undetermined
goals (these may provide further justification for the fail-
ure), and undetermined rule nodes to all goals (successful
and undetermined goalswill determine success of the rule
nodes under choices).

– An IDB tuple exists (T ) if at least one of its rule derivation
is successful. It is connected to all successful and unde-
termined rule derivations (these may provide additional
justifications under certain choices for undetermined
facts). An IDB tuple is absent (F) if all of its rule deriva-
tions fail. Finally, an IDB tuple is undetermined (U ) if at
least one of its rule derivations is undetermined and none
is successful. Undetermined tuple nodes are connected to
all their rule derivations (failed ones may be additional
justifications for absence, while undetermined ones may
justify either existence or absence).

Example 6 Consider Example5 in our extended provenance
graph model. Let vn,s be the node corresponding to T(n, s).
If we set S(vn,s) = U to indicate that T(n, s) should be
considered as undetermined, then we get the provenance
graph in Fig. 5. Our approach correctly determines that under
this assumption the truth of Q(n, s) is undetermined and that
there are two potential derivations of this result which also
are undetermined, because they depend on existing tuples
as well as the undetermined tuple T(n, s). To evaluate the
effect of choosing T(n, s) to be true or false, we would set
S(vn,s) = T or S(vn,s) = F and propagate the effect of this
change bottom-up throughout the provenance graph.

Importantly, the provenancegraph captured for an instance
with undetermined facts is sufficient for evaluating the effect
of setting any of these undetermined facts to false or true.
That is, just like it is not necessary to reevaluate the semir-
ing annotation of a formula to evaluate the impact of such
a choice, it is also not necessary to recapture provenance in
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Fig. 6 Translating a first-order formula ϕ into a first-order query Qϕ

our model to evaluate a choice. For lack of space, we are not
discussing the details of a corresponding extension for prove-
nance games, but still would like to remark that undetermined
facts correspond to draws in the game (neither player has a
winning strategy). In the type of two-player games employed
in provenance games, draws are caused by cycles in the game
graph. To leave the existence of an EDB tuple undetermined,
we introduce an EDB fact node for the tuple and add a self-
edge to this node which causes the tuple node to be a draw
in the game.

7.3 From first-order formulas to Datalog

We now present a translation Tlϕ→Q from FO formulas ϕ to
BooleanDatalog queries Qϕ . The query generated based on a
formula ϕ is equivalent to the formula in the following sense:
if ϕ evaluates to true for a model, then Qϕ(I ) returns true.
Here, I is the instance that contains precisely the tuples cor-
responding to literals that are true in the model. We assume
that the free variables of a formula (the variables not bound
by any quantifier) are distinct from variable names bound by
quantifiers and that no two quantifiers bind a variable of the
same name. This can be achieved by renaming variables in
a formula that does not fulfill this condition. For example,
(∀x R(x, y)) ∧ (∃y S(y)) does not fulfill this condition, but
the equivalent formula (∀x R(x, y))∧(∃z S(z))does.Wealso
assume an arbitrary, but fixed, total order<Var over variables
that appear in formulas. We use free(ϕ) to denote the list of
free variables of a formula ϕ ordered increasingly by <Var .
For instance, for ϕ := ∀x : R(x, y) we have free(ϕ) = {y}.
Our translation Tlϕ→Q takes as input a formula ϕ and out-
puts a Datalog program with an answer predicate Qϕ . The
translation rules are shown in Fig. 6. Each rule translates one
construct (e.g., a quantifier) and outputs one or more Datalog
rules. The Datalog program generated by the translation for
an input ϕ is the set of Datalog rules generated by applying
the rules fromFig. 6 to all subformulas of ϕ. Here, we assume
the existence of a unary predicate Dom whose extension is
the domain A. Most translation rules are straightforward and
standard. Logical operators are translated into their obvious
counterpart in Datalog, e.g., a conjunction ϕ1 ∧ ϕ2 is trans-
lated into a rule with two body atoms Qϕ1 and Qϕ2 . The

rules generated for a formula ϕ return the formula’s free
variables to make them available to formulas that use ϕ. For
instance, since Datalog does not support universal quantifi-
cation directly, we have to simulate it using double negation
(∀x ϕ is rewritten as ¬∃x ¬ϕ). Disjunctions are turned into
unions. The complexity of the rule for disjunction stems from
the fact that, in ϕ1 ∨ ϕ2, the sets of free variables for ϕ1 and
ϕ2 may not be the same. To make them union compatible,
use free(ϕ) as the arguments of the heads of the rules for
both ϕ1 and ϕ2, and add additional goals Dom to ensure that
these rules are safe.

Example 7 Consider a directed graph encoded as its edge
relation R. The formula ϕ := ∀x ∃y R(x, y) checks whether
all nodes in the graph have outgoing edges. Let ϕ1 =
∃y R(x, y) and ϕ2 = R(x, y). Translating this formula, we
get:

Qϕ() :− ¬Qϕ′ () Qϕ′ () :− Dom(x),¬Qϕ1(x)

Qϕ1(x) :− Dom(y), Qϕ2(x, y) Qϕ2(x, y) :−R(x, y)

7.4 From graphs to FO semiring provenance

Given a formula ϕ in negation normal form (nnf) and
a N[X, X̄ ]-interpretation π , we now demonstrate how to
extract π�ϕ�ν from the subgraph of the provenance graph
generated based on π over Tlϕ→Q(ϕ) rooted at the tuple
node Qϕ(ν(free(ϕ))). First, we apply Tlϕ→Q(ϕ) to com-
pute Qϕ . Then, we generate an instance Iπ where the
existence of a tuple corresponding to a literal R(a) is deter-
mined based on the truth value of this literal encoded by its
annotation π(R(a)). A tuple R(a) exists in Iπ if π(R(a)) = x
or π(R(a)) = 1 and π(¬R(a)) = 0, the tuple is missing if
π(¬R(a)) = x̄ or π(¬R(a)) = 1 and π(R(a)) = 0, and
the tuple’s existence is undetermined if π(R(a)) = x and
π(¬R(a)) = x̄ . Note that this corresponds to the truth value
according to the 5 cases we have discerned in Sect. 7.1.

Next, we generate the provenance graph PG(Qϕ, Iπ ). If
the formula has free variables, then the provenance graphwill
contain multiple tuple nodes Qϕ(ν(free(ϕ))), one for each
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Fig. 7 Provenance graph for query Qϕ based on ϕ :=∀x ∃y R(x, y)
when R(a, a) is true (π(R(a, a)) = x and π(¬R(a, a)) = 0) and
R(b, a) is left undetermined (π(R(b, a)) = y and π(¬R(b, a)) =

ȳ). Note that ϕ1 :=∃y R(x, y) and ϕ2 := R(x, y). The result of
TrExpl→N[X,X̄ ] shown besides the nodes encodes the dual polynom-
inal π(ϕ) = x · y

valuation ν of the free variables, and the subgraph rooted at
one such tuple node encodes π�ϕ�ν . By applying a function
TrExpl→N[X,X̄ ] (defined in the following), we translate the
subgraph rooted at tuple Qϕ(ν(free(ϕ))) in PG(Qϕ, Iπ )

into π�ϕ�ν .
The function TrExpl→N[X,X̄ ] replaces nodes in the prove-

nance graph with nodes labeled as “+”, “·”, and annotations
of literals. The polynomial π�ϕ�ν can then be read from
the graph generated by TrExpl→N[X,X̄ ] through a top-down
traversal. Intuitively, the translation can be explained as fol-
lows. Datalog rules are a conjunction of atoms and, thus,
are replaced with multiplication. There may exist multiple
ways that derive an IDB tuple through the rules of query.
That is, IDB tuple nodes represent addition. The exception
is IDB tuples that are used in a negated fashion which are
replaced with multiplication, because, for the goal to suc-
ceed, all derivations of the tuple have to fail. Note that a
tuple is used in a negated way if there is an odd number of
negated goals on the path between the root of the provenance
graph and IDB tuple node. In a program produced by our
translation rules, this can only be the case for tuples that cor-
respond to head predicate of a rule computing the ¬∃ part
of the translation of a universal quantification.

TrExpl→N[X,X̄ ] consists of the following steps:

1. Replace tuple nodes Dom(x) with 1.
2. Agoal node connected to anEDB tuple node representing

a literal R(a) is replaced by π(R(a)) if the goal is positive
and π(¬R(a)) otherwise.

3. Next, all EDB tuple nodes are removed leaving the goal
nodes formerly connected to EDB tuple nodes to be the
new leaves of the graph.

4. Rule nodes are replaced with multiplication (·).
5. Next all remaining goal nodes are replaced with addition

(+).
6. Finally, nodes vt corresponding to IDB tuples are

replaced with addition with the exception of IDB tuples
corresponding to the head predicate (Qϕ′ ) of the sec-

ond rule of a translated universal quantification which
are replaced with multiplication (·).

Example 8 Consider the formula and query from Example 7.
Assume that A = {a, b} and consider that interpretation π

which tracks provenance for edge (a, a), keepsR(b, a) unde-
termined, and sets all other positive literals to false without
provenance tracking, i.e., π(R(a, a)) = x , π(¬R(a, a)) =
0, π(R(b, a)) = y, π(¬R(b, a)) = ȳ, and for all other R(a)
we haveπ(R(a)) = 0 andπ(¬R(a)) = 1. That is, in Iπ , tuple
R(a, a) exists, tuple R(b, a)’s existence is undetermined, and
all other tuples are missing. Figure7 shows the provenance
graph PG(Qϕ, Iπ ). The truth of the universal quantification
in ϕ is undetermined, because while there exists no a ∈ A
such that ¬ϕ1 for ν :=(x = a) is true (there is an outgo-
ing edge starting at a), the truth of ¬ϕ1 is undetermined
for ν :=(x = b) (the existence of edge R(b, a) is undeter-
mined). The truth of ∃y R(a, y) and ∃y R(b, y) is justified by
the existing tuples R(a, a) and R(b, a), respectively. Apply-
ing the translation TrExpl→N[X,X̄ ], we get graph with node
labels shown in Fig. 7 which corresponds to the polynomial
1 · x · 1 · 1 · y = x · y = π(ϕ).

We are now ready to state the main result of this sec-
tion: our provenance graphs extended for undetermined facts
can encode semiring provenance for first-order (FO) model
checking. For simplicity, we only consider sentences, i.e.,
formulasϕ without free variables, but the result also holds for
formulaswith free variables by only translating a subgraph of
the provenance rooted at the IDB tuple node Qϕ(ν(free(ϕ)))

which corresponds to the formula ν(ϕ).

Theorem 3 Let ϕ be a formula, π a N[X, X̄ ]-interpretation,
Q :=Tlϕ→Q(ϕ), and Iπ the instance corresponding to π as
defined above. Then

TrExpl→N[X,X̄ ](PG(Q, Iπ )) = π�ϕ�ν
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Proof We prove the theorem by induction over the structure
of the input formula ϕ for a given valuation ν of free(ϕ).
For the full proof, see [27]. 
�

8 Computing explanations

We now present our approach for computing explanations
using Datalog. Our approach generates a Datalog program
GPP,ψ by rewriting a given query (input program) P to
return the edge relation of the explanation Expl(P, ψ, I )
for a provenance question (PQ) ψ . Recall that a PQ is a pat-
tern describing existing/missing outputs of interest and that
an explanation for a PQ is a subgraph of the provenance
which contains the provenance of all tuples described by the
pattern.

Our approach for computing GPP,ψ consists of the fol-
lowing steps that we describe in detail in the following
subsections: (1) we unify the input program P with the PQψ

by propagating constants from ψ top-down to prune deriva-
tions of outputs that do not match the PQ; (2) we determine
for each IDB predicate whether the explanation may contain
existing, missing, or both types of tuples from this predicate.
Similarly, for each rule we determine whether successful,
failed, all, or no derivations of this rule may occur in the
provenance graph; (3) based on restricted and annotated ver-
sion of the input program produced by the first two steps, we
then generate firing ruleswhich capture the variable bindings
of successful and failed derivations of the input program’s
rules; 4) the result of the firing rules is a superset of the set
of relevant provenance fragments. We introduce additional
rules that enforce connectivity to remove spurious fragments;
5) finally, we create rules that generate the edge relation of
the explanation. This is the only step that depends on what
provenance type (e.g., Fig. 4) is requested.

In the following, we will illustrate our approach using the
provenance question ψn,s = WhyQ(n, s) from Example1,
i.e., why New York is connected to Seattle via train with one
intermediate stop, but there is no direct connection.

8.1 Unifying the programwith the PQ

The node Q(n, s) in the provenance graph (Fig. 2) is only
connected to derivations which return Q(n, s). For instance,
if variable X is bound to another city x (e.g., Chicago) in a
derivation of the rule r1, then this rule cannot return the tuple
(n, s). This reasoning can be applied recursively to replace
variables in rules with constants. That is, we unify the rules in
the program top-downwith the PQ. This process corresponds
to selection pushdown for relational algebra expressions. We
may create multiple partially unified versions of a rule or
predicate. For example, to explore successful derivations of
Q(n, s), we are interested in both train connections fromNew

York to some city (T(n, Z)) and from any city to Seattle
(T(Z , s)). Furthermore, we need to know whether there is
a direct connection from New York to Seattle (T(n, s)). We
store variable bindings as superscripts to distinguishmultiple
copies of a rule generated based on different bindings.

Example 9 Given the question ψn,s , we unify the single rule
r1 using the assignment (X=n,Y=s):

r (X=n,Y=s)
1 : Q(n, s) :−T(n, Z),T(Z , s),¬T(n, s)

This approach is correct because if we bind a variable in
the head of rule, then only rule derivations that agree with
this binding can derive tuples that agree with this binding.
Based on this unification step, we know which bindings may
produce fragments ofPG(P, I ) that are relevant for explain-
ing the PQ (the pseudocode for the algorithm is presented
in [25]). For an input P , we use PUni f ied to denote the result
of this unification.

8.2 Add annotations based on success/failure

For Why Q(t) (Whynot Q(t)), we are only interested in
subgraphs of the provenance rooted at existing (missing)
tuple nodes for Q. With this information, we can infer restric-
tions for the success/failure state of nodes in the provenance
graph that are directly or indirectly connected to PQ node(s)
(belong to the explanation). We store these restrictions as
annotations T , F , and F/T on heads and goals of rules and
use these annotations to guide the generation of rules that
capture derivations in step 3. Here, T (F) indicates that we
are only interested in successful (failed) nodes, and F/T that
we are interested in both.

Example 10 Continuing with our running example question
ψn,s , we know that Q(n, s) is in the result (Fig. 1). This
implies that only successful rule nodes and their success-
ful goal nodes can be connected to this tuple node. Note that
this annotation only indicates that it is sufficient to focus on
successful rule derivations since failed ones cannot be con-
nected to Q(n, s).

r (X=n,Y=s),T
1 : Q(n, s)T :−T(n, Z)T ,T(Z , s)T ,¬T(n, s)T

We now propagate the annotations of the goals in r1 through-
out the program. That is, for any goal that is an IDBpredicate,
we propagate its annotation to the head of all rules deriving
the goal’s predicate and, then, propagate these annotations to
the corresponding rule bodies. Note that the inverted anno-
tation is propagated for negated goals (e.g., ¬T(n, s)T ). For
instance, if T would be an IDB predicate, then we would
annotate the head of all rules derivingT(n, s)with F , because
Q(n, s) can only exist if T(n, s) does not exist.
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Partially unified atoms such as T(n, Z) may occur in both
negative and positive goals. We annotate such atoms with
F/T . The algorithmgenerating the annotation consists of the
steps shown below (the pseudocode is presented in [25]). We
use PAnnot to denote the result of this algorithm for PUni f ied

(input to this step).

1. Annotate the head of all rules deriving tuples matching
the question with T (why) or F (why-not).

2. Repeat the following steps until a fixpoint is reached:

(a) Propagate the annotation of a rule head to goals in the
rule body as follows: propagate T for T annotated heads
and F/T for F annotated heads.

(b) For each annotated positive goal in the rule body, we
propagate its annotation (F , T , or F/T ) to all rules that
have this atom in the head. For negated goals, we prop-
agate the inverted annotation (e.g., F for T ) unless the
annotation is F/T in which case we propagate F/T .

8.3 Creating firing rules

To compute the relevant subgraph of PG(P, I ) (the expla-
nation) for a PQ, we need to determine successful and/or
failed rule derivations. Each derivation paired with the infor-
mation whether it is successful over the given database (and
which goals are failed in case it is not successful) is sufficient
for generating a fragment of PG(P, I ). Successful deriva-
tions are always part of PG(P, I ) for a given query (input
program) P , whereas failed rule derivations only appear if
the tuple in the head failed, i.e., there are no successful
derivations of any rule with this head. To capture the vari-
able bindings of successful/failed rule derivations, we create
“firing rules”. For successful rule derivations, a firing rule
consists of the body of the rule (but using the firing version
of each predicate in the body) and a new head predicate that
contains all variables used in the rule. In this way, the firing
rule captures all the variable bindings of a rule derivation.
Furthermore, for each IDB predicate R that occurs as a head
of a rule r , we create a firing rule that has the firing version
of predicate R in the head and firing version of the rules r
deriving the predicate in the body. For EDB predicates, we
create firing rules that have the firing version of the predicate
in the head and the EDB predicate in the body.

Example 11 Consider the annotated program in Example10
for the question ψn,s = WhyQ(n, s). We generate the fir-
ing rules shown in Fig. 8. The firing rule for r (X=n,Y=s),T

1
(the second rule from the top) is derived from the rule r1 by
adding Z (the only existential variable) to the head, renaming
the head predicate as Fr1,T , and replacing each goal with its
firing version (e.g., FT,T for the two positive goals and FT,F

for the negated goal). Note that negated goals are replaced

Fig. 8 Example firing rules for WhyQ(n, s)

with firing rules that have inverted annotations (e.g., the goal
¬T(n, s)T is replaced with FT,F (n, s)). Furthermore, we
introduce firing rules for EDB tuples (three rules at the bot-
tom).

We, now, extend firing rules to support queries with negation
and capture missing answers. To construct a PG(P, I ) frag-
ment corresponding to a missing tuple, we need to find failed
rule derivations with the tuple in the head and ensure that no
successful derivations with this head exist (otherwise, we
may capture irrelevant failed derivations of existing tuples).
In addition, we need to determine which goals are failed for
a failed rule derivation because only failed goals are con-
nected to the node representing the failed rule derivation in
the provenance graph. To capture this information, we add
additional Boolean variables—Vi for goal gi—to the head
of a firing rule that record for each goal whether it failed or
not. The body of a firing rule for failed rule derivations is
created by replacing every goal in the body with its F/T fir-
ing version, and adding the firing version of the negated head
to the body (to ensure that only bindings for missing tuples
are captured). Firing rules capturing failed derivations use
the F/T firing versions of their goals because not all goals
of a failed derivation have to be failed and the failure status
determines whether the corresponding goal node is part of
the explanation. A firing rule capturing missing tuples may
not be safe, i.e., it may contain variables that only occur in
negated goals. These variables should be restricted to the
associated domains for the attributes the variables are bound
to. Recall that associated domain dom(R.A) for an attribute
R.A is given as an unary query domR.A. We use these queries
in firing rules to restrict the values a variable is bound to.
Thus, we ensure that only missing answers formed from the
associated domains are considered and that firing rules are
safe.

Example 12 Consider the question WhynotQ(s, n) from
Example1. The firing rules generated for this question are
in Fig. 9. We exclude the rules for the second goal T(Z , n)

and the negated goal ¬T(s, n) which are analogous to the
rules for the first goal T(s, Z). New York cannot be reached
from Seattle with exactly one transfer, i.e., Q(s, n) is not
in the result. Thus, we are only interested in failed deriva-
tions of rule r1 with X=s and Y=n. Furthermore, each
rule node in the provenance graph corresponding to such
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Fig. 9 Example firing rules for WhynotQ(s, n)

a derivation will only be connected to failed subgoals. Thus,
we need to capture which goals are successful or failed for
each such failed derivation. We model this using Boolean
variables V1, V2, and V3 (one for each goal) that are set to
true iff the tuple corresponding to the goal exists. The firing
version Fr1,F (s, n, Z , V1, V2,¬ V3) of r1 returns all vari-
able bindings for derivations of r1 such that Q(s, n) is the
head (i.e., guaranteed by adding FQ,F (s, n) to the body), the
rule derivations are failed, and the tuple corresponding to
the i th goal exists for this binding iff Vi is true. The fail-
ure status of the i th goal is Vi for positive goals and ¬Vi
for negated goals. To produce all these bindings, we need
rules capturing successful and failed tuple nodes for each
subgoal of the rule r1. We annotate such rules with F/T
and use a Boolean variable (true or false) to record whether
a tuple exists (e.g., FT,F/T (s, Z , true) :−FT,T (s, Z) is one
of these rules). Similarly, FT,F/T (s, n, f alse) represents the
fact that tuple T(s, n) (connection from Seattle to NewYork)
is missing. This causes the third goal of r1 to succeed for
any derivation where X=s and Y=n. For each unified EDB
atom annotatedwith F/T , we create four rules: one for exist-
ing tuples (e.g., FT,T (s, Z) :−T(s, Z)), one for the failure
case (e.g., FT,F (s, Z) :− domT.toCity(Z),¬T(s, Z)), and
two for the F/T version. For the failure case, we use pred-
icate domT.toCity to only consider missing tuples (s, Z)

where Z is a value from the associated domain.

Algorithm1 takes as input the program PAnnot produced
by step 2 and outputs a program PFire containing firing
rules. The pseudocode for the subprocedures is presented
in [25]. The algorithm maintains a queue todo of anno-
tated atoms that have to be processed which is initialized
with Pattern(ψ), i.e., the provenance question atom. Fur-
thermore, we maintain a set done of atoms that have been
processed already.Variables todo,done, and PFire are global
variables that are shared with the subprocedures of this algo-
rithm. For each atom R(t)σ (line 8) from the queue (here
σ is the annotation of the atom, e.g., F), we mark the atom
as done (line 9). We then consider two cases: R is an EDB
atom or an IDB atom in which case we have to create fir-

Algorithm 1 Create Firing Rules
1: procedure CreateFiringRules(PAnnot , ψ)
2: PFire ← []
3: state ← t ypeof (ψ)

4: Q(t) ← Pattern(ψ)

5: todo ← [Q(t)state]
6: done ← {}
7: while todo �= [] do � create rules for a predicate
8: R(t)σ ← pop(todo)
9: insert(done, R(t)σ )

10: if isEDB(R) then
11: CreateEDBFiringRule(PFire, R(t)σ )
12: else
13: CreateIDBNegRule(PFire, R(t)σ )
14: rules ← getRules(R(t)σ )

15: for all r ∈ rules do � create firing rule for r
16: args ← args(head(r))
17: args ← args :: (args(body(r)) − args(head(r)))
18: CreateIDBPosRule(PFire, R(t)σ , r, args)
19: CreateIDBFiringRule(PFire, R(t)σ , r, args)
20: return PFire

ing rules for the predicate (relation) and the rules deriving
it. The firing rules for EDB predicates check whether the
tuples do or do not exist. These rules allow us to determine
the success or failure of goals corresponding EDB predicates
in rule derivations. For IDB predicates, we create firing rules
that determine their existence based on successful or failed
rule derivations captured by firing rules for the rules of the
program. Consider a given program P with two rules: (1)
r1 : Q(X) :−R(X,Y ),Q1(Y ) and (2) r2 : Q1(Y ) :−S(Y, Z)

where R and S are EDB relations and Q and Q1 are IDB
predicates. To capture provenance for the predicate Q(X), we
create firing rules for R and S to check existence or absence
of tuples matching t in R and S. Moreover, we also generate
firing rules for rules r1 and r2 to explain how derivations of
Q(X) through these rules have succeeded or failed. The firing
rule for r1 uses the firing rule for IDB predicate Q1 which
in turn uses the firing rule for r2 since head(r2) = Q1. We
describe these two cases in the following.
EDB atoms (line 13) For an EDB atom R(t)T , we use pro-
cedure createEDBFiringRule to create one rule FR,T (t)
:− R(t) that returns tuples from relation R that match t . For
missing tuples (R(t)F ), we extract all variables from t (some
arguments may be constants propagated during unification)
and create a rule that returns all tuples that can be formed
from values of the associated domains of the attributes these
variables are bound to and do not exist in R. This is achieved
by adding goals dom(Xi ) as explained in Example12.
IDB atoms (lines 13–19) IDB atoms with F or F/T anno-
tations are handled in the same way as EDB atoms with
these annotations. If the atom is R(t)F (line 13), we cre-
ate a rule with ¬FR,T (t) in the body using the associated
domain queries to restrict variable bindings. Similarly, for
R(t)F/T , the procedure called in line 13 adds two additional
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rules as shown in Fig. 9 (5th and 6th rule) for EDB atoms.
Both types of rules only use the positive firing version for
R(t) and domain predicates in their body. Thus, these rules
are independent of which rules derive R. Now, for any R,
we create positive firing rules that correspond to the deriva-
tion of R through one particular rule. For that, we iterate
over the annotated versions of all rules deriving R (lines
14+15). For each rule r with head R(t), we create a rule
FR,T (t) :−Fr,T ( �X) where �X is the concatenation of t with
all existential variables from the body of r .
Rules (line 15–19) Consider a rule r : R(t) :− g1( �X1), . . . ,

gn( �Xn). If the head of r is annotated with T , then we create
a rule with head Fr,T ( �X) where �X = vars(r) (stored in
variableargs, lines 16+17) and the samebodyas r except that
each goal is replaced with its firing version with appropriate
annotation (e.g., T for positive goals). For rules annotated
with F or F/T , we create one additional rule with head
Fr,F ( �X , �V ) where �X is defined as above, and �V contains Vi
if the i th goal of r is positive and¬ Vi otherwise. The body of
this rule contains the F/T version of every goal in r ’s body
plus an additional goal FR,F to ensure that the head atom is
failed. As an example for this type of rule, consider the third
rule from the top in Fig. 9.

Theorem 4 (correctness of firing rules) Let P be an input
program, r denote a rule of P with m goals, and PFire be the
firing version of P. We use r(t) |� P(I ) to denote that the
rule derivation r(t) is successful in the evaluation of program
P over I . The firing rules for P correctly determine existence
of tuples, successful derivations, and failed derivations for
missing answers:

– FR,T (t) ∈ PFire(I ) ↔ R(t) ∈ P(I )
– FR,F (t) ∈ PFire(I ) ↔ R(t) /∈ P(I )
– Fr,T (t) ∈ PFire(I ) ↔ r(t) |� P(I )
– Fr,F (t, �V ) ∈ PFire(I ) ↔ r(t) �|� P(I ) ∧ head(r(t)) /∈

P(I ) and for i ∈ {1, . . . ,m} we have that Vi is false iff
i th goal fails in r(t).

Proof We prove Theorem4 by induction over the structure
of a program. For the proof, see [26] or [27]. 
�

8.4 Connectivity joins

To be in the result of a firing rule is a necessary, but not
sufficient, condition for the corresponding rule node to be
connected to a node Q(t ′) ∈ Match(ψ) in the explanation.
Thus, we have to check connectivity of intermediate results
explicitly.

Example 13 Consider the firing rules for ψn,s shown in
Fig. 8. The corresponding rules with connectivity checks
are shown in Fig. 10. All rule nodes corresponding to

Fig. 10 Example firing rules with connectivity checks

Fr1,T (n, s, Z) are guaranteed to be connected to the node
Q(n, s) (corresponding to the only atom in Match(ψn,s)).
Note that connectivity joins are also required for negative fir-
ing rules (e.g., Fr1,F (s, n, Z , V1, V2,¬ V3) in Fig. 9 is used
for Whynot ). For sake of example, assume that instead of
using T, rule r1 uses an IDB relation R which is computed
using a rule r2 : R(X,Y ) :−T(X,Y ). Consider the firing rule
Fr2,T (n, Z) :−T(n, Z) created based on the 1st goal of r1.
Some provenance fragments computed by this rule may not
be connected to Q(n, s). A tuple node R(n, c) for a constant
c is only connected to the node Q(n, s) iff it is part of a suc-
cessful binding of r1. That is, for the node R(n, c), there has
to exist a tuple R(c, s). Connectivity is achieved by adding
the head of the firing rule for r1 to the body of the firing rule
for r2 as shown in Fig. 10 (the 3rd and 4th rule).

Our algorithm traverses the query’s rules starting from PQ
atom(s) to find all combinations of rules ri and r j such that
the head of r j can be unified with a goal in ri ’s body. For
each such pair (ri , r j ) where the head of r j corresponds to
the kth goal in the body of ri , we create a rule FCrj,rki,T(

�X)

as follows. We unify the variables of the kth goal in the firing
rule for ri with the head variables of the firing rule for r j .
All remaining variables of ri are renamed to avoid name
clashes.We add the unified head of ri to the body of r j . These
rules check whether rule nodes in the provenance graph are
connected to nodes inMatch(ψ).

8.5 Computing the edge relation

The program created so far captures sufficient information
for generating the edge relation of the explanation for a PQ
(which is used when rendering graphs). We make this step
part of the program to offload this work to database backend.
To compute the edge relation, we use Skolem functions to
create node identifiers. An identifier records the type of the
node (tuple, rule, or goal), variables assignments, and the suc-
cess/failure status of the node, e.g., a tuple node T(n, s) that
is successful would be represented as f TT (n, s). Each rule fir-
ing corresponds to a fragment ofPG(P, I ). For example, one
such fragment is shown in Fig. 11 (left). Such a substructure
is created through a set of rules:
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Fig. 11 Fragment of an explanation corresponding to a derivation of
rule r1 (left) and the rules generating the edge relation for such a frag-
ment (right)

– One rule creating edges between tuple nodes for the head
predicate and rule nodes

– One rule for each goal connecting a rule node to that goal
node (only failed goals for failed rules)

– One rule creating edges between each goal node and the
corresponding EDB tuple node

Example 14 Consider the firing rules with connectivity joins
from Example13. Some of the rules for creating the edge
relation of the explanation sought by the user are shown in
Fig. 11 (right). For example, each edge connecting the tuple
node Q(n, s) to a successful rule node r1(n, s, Z) is created
by the topmost rule, and the 2nd rule creates an edge between
r1(n, s, Z) and g11(n, Z). Edges for failed derivations are cre-
ated by considering the corresponding node identifiers and a
failure pattern (e.g., Fr1,F (s, n, Z , V1, V2,¬ V3)).

8.6 K-explanations

To compute one of the K-explanation types introduced in
Sect. 6.2, we only have to adapt the rules generating the edge
relation. As an example, we present the modifications for
computing ExplWhich(X) (e.g., Fig. 4c). Recall that semir-
ing Which(X) models provenance as a set of contributing
tuples and we encode this as a graph by connecting a head
of a rule derivation to the atoms in its body. That is, for the
ExplWhich(X), we create only one type of rule that connects
tuple nodes for the head predicate to EDB tuple nodes. We
use GP

Which(X)
P,ψ to denote the program generated in this way

for an input program P , and a PQ ψ .

Example 15 Consider the graph fragment for r1 in Fig. 11
(left) without rule and goal nodes. The rule that creates the
edge between Q(n, s) and T(n, Z) is

edge( f TQ (n, s), f TT (n, Z)) :−Fr1,T (n, s, Z)

For each successful derivation of result Q(n, s) using rule r1,
a subgraph replacing Z with bindings from the derivation is
included in ExplWhich(X).

8.7 Correctness

We now prove that our approach is correct.

Theorem 5 Let P be a program, I be a instance, andψ a PQ.
Program GPP,ψ evaluated over I returns the edge relation
of Expl(P, ψ, I ).

Proof To prove Theorem5, we have to show that (1) only
edges from PG(P, I ) are in GPP,ψ (I ) and (2) the pro-
gram returns precisely the set of edges of explanation
Expl(P, ψ, I ). The full proof is presented in [26] and in
our accompanying report [27]. 
�
Theorem 6 Let P be a positive program, I be a database
instance, and ψ a PQ. The result of program GP

Which(X)
P,ψ is

the edge relation of ExplWhich(X)(P, ψ, I ).

Proof We prove Theorem6 by induction over the structure
of a program as in the proof of Theorem4. The full proof is
presented in our technical report [27]. 
�

9 Factorization

For provenance polynomials, we can exploit the distribu-
tivity law of semirings to generate factorizations of prove-
nance [33] which are exponentially more concise in the best
case. For instance, consider a query r3 returning the end
points of paths of length 2 evaluated over the edge-labeled
graph in Fig. 12a. The provenance polynomial for the query
result Q2hop(d) using the annotations from Fig. 12a is shown
in Fig. 12d. Each monomial in the polynomial corresponds
to one of the derivations of the result using r3. Each of these
2 · (22) (we have two options as starting points and, for
each hop, we have two options) derivations corresponds to
one path of length 2 ending in d. When generating prove-
nance graphs for provenance polynomials, we create “·”
nodes for rule derivations and “+” nodes for IDB tuples.
Figure12b shows the factorized representation of this poly-
nomial. We can exploit the fact that our approach shares
common subexpressions to produce a particular factoriza-
tion. This is achieved by rewriting the input program to
partition a query by materializing joins and projections as
new IDB relations which can then be shared. We first review
f-trees and d-trees as introduced in [34] which encode pos-
sible nesting “schemas” for factorized representations of
provenance (or query results), the size bounds for factor-
ized representations based on d-trees proven in [34], and
how to choose a d-tree for a query that results in the opti-
mal worst-case size bound for the factorized representation
of the provenance according to this d-tree. Then, we intro-
duce a query transformation for conjunctive queries which,
given an input query and the d-tree for this query, generates
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(a)
(b)

(c) (d)

Fig. 12 Factorized and flat provenance graphs (N[X ]) explaining WhyQ2hop(d) and two d-trees for r4

a rewritten query which returns a provenance graph factor-
ized corresponding to this d-tree. We employ this rewriting
to produce more concise provenance in PUG (experiments
are shown in Sect. 11).
Factorized representations In [33,34], a factorized represen-
tation (f-rep for short) of a relation is defined as an algebraic
expression constructed using singleton relations (one tuple
with one value) and the relational operators union and prod-
uct. Any f-rep over a set of attributes from a schema S can
be interpreted as a relation over S by evaluating the alge-
braic expression, e.g., {(a)} × ({(b)} ∪ {(c)}) is a factorized
representation of the relation {(a, b), (a, c)}. Following the
convention from [33], we denote a singleton {(a)} as a. Fac-
torization can be applied to compactly represent relations and
query results as well as provenance (e.g., Fig. 12b). We will
factorize representations of provenance which encode vari-
ables of provenance polynomials as the tuples annotated by
these variables and show how to extract provenance polyno-
mials from provenance graphs generated in this way.
F-trees for F-reps Olteanu et al. [34] introduced f-trees to
encode the nesting structure of f-reps. At first, let us con-
sider only f-trees which encode the nesting structure of
a Boolean query [33]. An f-tree for a Boolean query Q
(e.g., r4 in Fig. 12a) is a rooted forest with one node for
every variable of Q.4 An f-rep according to an f-tree T
nests values according to T : a node labeled with X cor-
responds to a union of values from the attributes bound
to X by the query. The values of attributes bound to chil-
dren of a node X corresponding to a single value x bound
to X are grouped under x . If a node has multiple children,
then their f-reps are connected via ×. For example, consider

4 In [34], relational algebra is used to express queries and nodes of
f-trees represent equivalence classes of attributes which in Datalog cor-
respond to query variables.

an f-tree T with root X and a single child Y for a query
Q() :−R(X,Y ). An f-rep of Q according to T would be of
the form x1× (y11 ∪ . . .∪ yn1)∪ . . .∪ xm × (y1m ∪ . . .∪ ynm ),
i.e., the Y values co-occurring with a given X value x are
grouped as a union and then paired with x . An f-tree encodes
(conditional) independence of the variables of a query in the
sense that the values of one variable do not depend on the
values of another variable. For instance, two siblings X and
Y in an f-tree have to be independent since a union of X val-
ues is paired (cross product) with a union of Y values. This
is only correct if the values of X and Y are independent. The
independence assumptions encoded in an f-tree may not hold
for every possible query with the same schema as the f-tree.
Thus, only some f-trees with a particular schema may be
applicable for a query with this schema. It was shown in [34]
that a query has an f-rep over an f-tree T for any database iff
for each relation in Q the variables assigned to attributes of
this relation (these variables are called dependent) are on the
same root-to-leaf path in the f-tree. This is called the path
condition. Note that multiple references to the same relation
in a query are considered as separate relationswhen checking
this condition. For instance, consider the Boolean query r4
in Fig. 12a which checks if there are paths of length 2 ending
in the node d. Figure12c shows two f-trees T1 and T2 for
this query (ignore the sets on the side of nodes for now). An
f-rep according to T2 for r4 would encode a union of Y values
paired (×) with a union of Z values for this Y value. Each
Z value nested under a Y value is then paired with a cross
product of L1 and L2 values.
D-trees for D-reps The size of a factorized representation can
be further reduced by allowing subexpressions to be shared
through definitions, i.e., using algebra graphs instead of trees.
In [34], such representations are called d-representations (d-
rep). Analogous to how f-trees define the structure of f-reps,
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d-trees were introduced to define the structure of d-reps. A
d-tree is an f-tree where each node X is annotated with a
set key(X), a subset of its ancestors in the f-tree on which
the node and any of its dependents depend on. The f-rep of
the subtree rooted in X is unique for each combination of
values from key(X). That is, if key(X) is a strict subset of
the ancestors of X , then the same d-rep for the subtree at
X can be shared by multiple ancestors, reducing the size of
the representation. In Fig. 12c, the set key is shown beside
each node, e.g., in T2, the variable L2 depends only on Z ,
but not on Y . An important result proven in [34] is that, for
a given d-tree T for a query Q, the size of d-rep of Q over
a database I is bound by |I |s↑(T ) where s↑(T ) is a rational
number computed based on T alone (see [34] for details of
how to compute s↑(T )). This bound can be used to determine
the d-tree for a query Q which will yield the d-rep of worst-
case optimal size by enumerating the valid d-trees for Q and,
then, choosing the one with the lowest value of s↑.

Example 16 Consider the d-rep for r4 (Fig. 12a) over the
example instance of relation H (Fig. 12a) according to d-
tree T2 (Fig. 12c). Variable Y at the root of T2 is bound to
the attribute S from the first reference of H, i.e., the starting
point of paths of length 2 ending in d. There are two such
starting points a and b. Now each of these are paired with
the only valid intermediate node c on these paths (variable
Z ). Finally, for this node, we compute the cross product of
the L1 and L2 values connected to c. Since the L2 values
only depend on Z , we share these values when the same Z
value is paired with multiple Y values. The final result is
(a × c × (l1 ∪ l2) × l↑) + (b × c × (l3 ∪ l4) × l↑) where
l↑ :=(l5 ∪ l6).

Factorization of provenance For the provenance of a con-
junctive query Q that is not a Boolean query, i.e., it has
one or more variables in the head (e.g., r3 in Fig. 12a), we
have to compute a provenance polynomial for each result
of Q. We would like the factorization of the provenance of
Q to clearly associate each result tuple with its provenance
polynomial. That is, we want to avoid factorizations where
head variables of Q are nested below variables that store
provenance (appear only in the body) since reconstructing
the provenance polynomial for t would require enumeration
of the full provenance from the factorized representation in
the worst case. For example, consider a query with head vari-
able X and body variable Y . If Y is the root of a d-tree T ,
then the d-rep of Q according to T would be of the form
y1×(x11+. . .+xn1)+. . .+ym×(x1m +. . .+xnm ). To extract
the provenance polynomial for a result xi , we may have to
traverse all y values since there is no indication, for which y
values, xi appears in the sum x1i + . . . + xni . We ensure this
by constructing d-trees which do not include the head vari-
ables, but treat those as ancestors of every node in the d-tree
when computing key for the nodes. For instance, to make T1

(Fig. 12c) a valid d-tree for capturing the provenance of r3
(Fig. 12a), we treat the head variable X as a virtual ancestor
of all nodes and get key(Z) = {X} and key(L2) = {Z , X}.
Furthermore, if we are computing an explanation to a prove-
nance question (PQ)ψ that binds one or more head variables
to constants, then we can propagate these bindings before
constructing a d-tree for the query. For example, to explain
Q2hop(d), we would propagate the binding X = d result-
ing in rule r4 (Fig. 12a). Thus, any d-tree for r4 can be used
to create a factorized ExplN[X ] graph for the user question
Why (Q2hop(d)).
Rewriting queries for factorization We now explain how,
given a d-tree T for a conjunctive query Q and positive PQ
ψ :=Why Q(t), to generate a Datalog query Qrewr such
that, for any database I , we have thatExplN[X ](Qrewr , ψ, I )
encodes N[X ](Qrewr , I, t) for each t ∈ Match(ψ) factor-
ized according to T . We first unify the query with the PQ as
described in Sect. 8.1. Given a unified input query Q and a
d-tree T , we compute Qrewr as follows.

1. Assume a total order among the variables of Q (e.g., the
lexicographical order). For every node X with children
Y1, …, Yn in the d-tree T , we generate

rX : QX(key(X)) :−QY1(key(Y1)), . . . ,QYn(key(Yn))

2. Now for every atom R(Z1, . . . , Zm) in the body of Q, we
find the shortest path starting in a root node that contains
all nodes Z1 to Zm . Let Y = Zi for some i be the last
node on this path. Then, we add atom R(Z1, . . . , Zm) to
the body of rule rY created in the previous step.

3. Let X1,…, Xn be the roots of the d-tree T (being a forest,
a d-treemay havemultiple roots). Furthermore, letY1,…,
Ym denote the head variables of the unified input query
Q with the PQ. We create

rQ : Q(Y1, . . . , Ym) :−QX1 (key(X1)), . . . ,QXn (key(Xn))

The rewriting above creates a factorization according to a
d-tree T . However, it may contain rules which cannot poten-
tially lead to reuse and, thus, result in overhead that could
be avoided if we were able to identify such rules. We now
present an optimization that removes such rules to further
reduce the size of the generated provenance graphs. Con-
sider two nodes X and Y in a d-tree where Y is the only child
of X , i.e., key(Y ) = key(X)∪{X}. We would generate rules

rX : QX(key(X)) :−QY(X ∪ key(X))

rY : QY(X ∪ key(X)) :− . . .

In this case, the intermediate result QY does not lead
to further factorization (we have a union of unions). Thus,
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we can merge the rules by substituting the atom QY(X ∪
key(X)) in rX with the body of rY . A similar situa-
tion may arise with the rule rQ deriving the final query
result. In general, we can merge any rule of the form
Q1(X1, . . . , Xn) :−Q2(X1, . . . , Xn) with the rule deriving
Q2 (in our translation, there will be exactly one rule with
head Q2).

Example 17 Consider the question WhyQ2hop(d) over the
query r3 from Fig. 12a. Unifying the query with this question
yields r4 (below r3 in the same figure). To rewrite the query
according to the d-tree T1 from Fig. 12c, we apply the above
algorithm to create rules:

rQ2hop : Q2hop() :−QZ() rZ : QZ() :−QL1 (Z),QL2 (Z)

rL1 : QL1 (Z) :−QY(Z , L1) rY : QY(Z , L1) :−H(Y, L1, Z)

rL2 : QL2 (Z) :−H(Z , L2, d)

Applying the optimizations introduced above, we merge the
rules rQ2hop with rZ (the head QZ is the body of rQ2hop ).
Since key(Y ) = key(L1) ∪ {L1} and L1 has only one child,
we merge rY into rL1 . The resulting program is shown as
rules r5, r5′ and r5′′ in Fig. 12a.

Factorized explanations To generate a concise factorization
of provenance for a PQ ψ over a conjunctive query Q, we
first find a d-tree T with minimal s↑ among all d-trees for Q
(such a d-tree T guarantees worst-case optimal size bounds
for the generated factorization). Then, we rewrite the input
query according to T (explained above) and use the approach
in Sect. 8 to generateExplN[X ](Qrewr , ψ, I ) encoding the d-
rep of N[X ](Qrewr , I, t) for each t ∈ Match(ψ).

Example 18 Continuing with Example 17, assume we com-
pute the N[X ] explanation using the rewritten query (r5, r5′ ,
and r5′′ ). The result over the example database is shown in
Fig. 12b. The topmost addition andmultiplication correspond
to the successful derivation using rule r5 (using c as an inter-
mediate hop from some node to d). The left branch below
the multiplication encodes the four possible derivations of
QL1(c) (s1 + s2 + t1 + t2) and the right branch corresponds
to the two derivations of QL2(c) (u1 + u2). The polynomial
captured by this graph is (s1 + s2 + t1 + t2) · (u1 + u2). That
is, there are 4 ways to reach c from any starting node and
two ways of reaching d from c leading to a total of 4 · 2 = 8
paths of length 2 ending in the node d.

10 Implementation

We have implemented the approach presented in this paper
in a system called PUG (Provenance Unification through
Graphs). PUG is an extension of GProM [1], a middle-
ware that executes provenance requests using a relational

Fig. 13 PUG implementation in GProM

database backend (shown in Fig. 13). We have extended the
system to support Datalog enriched with syntax for stating
provenance questions. The user provides a why or why-not
question and the corresponding Datalog query as an input.
Our system parses and semantically analyzes this input.
Schema information is gathered by querying the catalog of
the backend database (e.g., to determine whether an EDB
predicate exists). Modules for accessing schema information
are already part of the GProM system, but a new semantic
analysis component had to be developed to support Datalog.
The algorithms presented in Sect. 8 are applied to create the
programGPP,ψ for the input program P and the provenance
question ψ which computes Expl(P, ψ, I ) (analogously,
ExplK(P, ψ, I ) forGP

K
P,ψ ). This program is then translated

into relational algebra (RA). The resulting algebra expres-
sion is translated into SQL and sent to the backend database
to compute the edge relation of the explanation for the ques-
tion. Based on this edge relation, we render a provenance
graph. For examples and installation guidelines see: https://
github.com/IITDBGroup/PUG. While it would certainly be
possible to directly translate the Datalog program into SQL
without the intermediate translation into RA, we choose to
introduce this step to be able to leverage the existing heuristic
and cost-based optimizations for RA expressions provided
by GProM [32] and use its library of RA to SQL transla-
tors. Our translation of first-order queries (a program with
a distinguished answer relation) to RA is mostly standard.
See [26] for details and an example.

11 Experiments

We evaluate the performance of our solution over a co-
author graph relation extracted from DBLP (http://www.
dblp.org) as well as over the TPC-H benchmark dataset
(http://www.tpc.org/tpch/default.asp). We mainly evaluate
three aspects: (1) we compare our approach for computing
explanations (Expl) with the approach introduced for prove-
nance games [24]. We call the provenance game approach
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Fig. 14 DBLP and TPC-H queries for experiments

Direct Method (DM), because it directly constructs the
full provenance graph; (2) we compare our approach for
Lineage (ExplWhich(X)) to the language-integrated approach
developed for the Links programming language [9]; (3) we
evaluate the performance impact of rewriting queries to pro-
duce factorizedprovenance (Sect. 9).Wehave created subsets
of the DBLP dataset with 100, 1K, 10K, 100K, 1M, and
8M co-author pairs (tuples). For the TPC-H benchmark, we
used database sizes 10MB, 100MB, 1GB, and 10GB. All
experiments were run on a machine with 2× 3.3GHz AMD
Opteron 4238 CPUs (12 cores in total) and 128GB RAM
running Oracle Linux 6.4. We use the commercial DBMS
X (name omitted due to licensing restrictions) and Postgres
as a backend (DBMS X is the default). Unless stated other-
wise, each experiment was repeated 100 times (we stopped
executions that ran longer than 10min) and we report the
median runtime. Computations that did not finish within the
allocated time are omitted from the graphs.
Workloads We compute explanations for the queries in
Fig. 14. For DBLP datasets, we consider: only2hop (r1)
which is our running example query in this paper;
XwithYnotZ (r2) that returns authors that are direct co-
authors of a certain personY , but not of “Svein Johannessen”;
only3hop (r3) that returns pairs of authors (X,Y ) that are
connected via a path of length 3 in the co-author graph where
X is not a co-author or indirect co-author (2 hops) of Y . For
TPC-H, we consider: ordPriority (r4) which returns for
each customer the priorities of her/his orders; ordDisc (r5)
which returns customers and the discount rates of items in
their orders; partNotAsia (r6) which finds parts that can
be supplied from a country that is not in Asia; suppCust
(r7) returns nations having both suppliers and customers.

Fig. 15 Runtime of DM in seconds. For entries with ‘−’, the computa-
tion did not finish within 10min

(a) (b)

(c)

(d) (e)

(f)

Fig. 16 Why questions: DBLP (top), TPC-H (bottom)

Implementing DM DM has to instantiate a graph with
O(|adom(I )|n) nodes where n is the maximal number of
variables in a rule. We do not have a full implementation
of DM, but compute a conservative lower bound for the run-
time of the step constructing the game graph by executing a
query (n-way cross product over the active domain).Note that
the actual runtime will be much higher because (1) several
edges are created for each rule binding (we underestimate the
number of nodes of the constructed graph) and (2) recursive
Datalog queries have to be evaluated over this graph using
thewell-founded semantics. The results for different instance
sizes and number of variables are shown in Fig. 15. Even for
only 2 variables, DM did not finish for datasets of more than
10K tuples within the allocated 10min timeslot. For queries
with more than 4 variables, DM did not even finish for the
smallest dataset.
Why questions The runtime of generating explanations for
why questions over the queries r1, r2, r4, and r5 (Fig. 14) is
shown in Fig. 16. For the evaluation, we consider the effect
of different binding patterns on performance. Figure16c, f
shows which variables are bound by the provenance ques-
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(a) (b)

(c)

Fig. 17 Why-not questions over the DBLP dataset

tions (PQs). Figure16a, b shows the runtime for DBLP
queries r1 and r2, respectively.We also provide the number of
rule nodes in the explanation for each binding pattern below
the X axis. If only variable X is bound (BindingX), then
the queries determine authors that occur together with the
author we have bound to X in the query result. For instance,
the explanation for only2hop with BindingX explains
why persons are indirect, but not direct, co-authors of “Tore
Risch.” If both X and Y are bound (BindingXY), then the
provenance for r1 and r2 is limited to a particular indirect
and direct co-author, respectively. The runtime for generating
explanations grows roughly linear in the dataset size and out-
performs DM even for small instances. Furthermore, Fig. 16d,
e (for r4 and r5, respectively) shows that our approach can
handle queries with many variables (attributes in TPC-H)
where DM times out even for the smallest dataset we have
considered. Binding one variable (BindingY) in queries
r4 and r5 expresses a condition, e.g., Y = ‘1-URGENT’ in
r4 requires the order priority to be urgent. If both variables
are bound, then the PQ verifies the existence of orders for
a certain customer (e.g., why “Customer16” has at least one
urgent order). Runtimes exhibit the same trend as for the
DBLP queries.
Why-not provenance We use queries r1 and r2 from Fig. 14
to evaluate the performance of computing explanations
for failed derivations. When binding all variables in the
PQ (BindingXY) using the bindings from Fig. 17c, these
queries check if a particular set of authors do not appear
together in the result. For instance, for only2hop (r1), the
query checks why “Tore Risch” is either not an indirect co-
author or is a direct co-author of “Svein Johannessen.” The
results for queries r1 and r2 (DBLP) are shown in Fig. 17a,
b, respectively. The number of tuples produced by the prove-
nance computation (the number of rule nodes is shown below
the X axis) is quadratic in the database size resulting in a
quadratic increase in runtime. DM only finishes within the
allocated time for very small datasets, while our approach
scales to larger instances.

(a) (b)

(c)

Fig. 18 Why questions for queries with negation

Queries with negation Recall that our approach also han-
dles queries with negation. We choose rules r3 (multiple
negated goals) and r6 (one negated goal) from Fig. 14 to eval-
uate the performance of answering why questions over such
queries. We use the bindings shown in Fig. 18c. The results
for r3 and r6 are shown in Fig. 18a, b, respectively. These
results demonstrate that our approach efficiently computes
explanations for such queries. When increasing the database
size, the runtimes of PQs for these queries exhibit the same
trend as observed for other why (why-not) questions and sig-
nificantly outperform DM. For instance, the performance of
partNotAsia (Fig. 18b), which contains many variables
and negation exhibits the same trend as queries that have no
negation (i.e., r4 and r5 in Fig. 16d, e, respectively).
Comparison with links In this experiment, we compare the
runtime of computing ExplWhich(X) (e.g., Fig. 4c) with com-
putation of Lineage in LinksL from [9]. We show relative
runtimes where PUG is normalized to 1. For this partic-
ular evaluation, we use Postgres as a backend since it is
supported by both PUG and Links. Note that ExplWhich(X)

contains a full description of each tuple unlike LinksL which
returns tuple identifiers (OIDs in Postgres). To get a nuanced
understanding of the system’s performance, we show three
runtimes for Links: (1) Links is the actual implementation
in Links which computes Lineage (only OIDs) and where the
runtime includes the construction of in-memory Links types
from the provenance fetched from Postgres; (2) LinksQ is
the runtime of the queries that Links uses to capture Lineage;
and 3) LinksQasEXPL which joins the output of LinksQ
with the base tables (i.e., as informative asExplWhich(X)).We
choose two queries from [9]. The query Q7 applies a range
condition to the result of a two-way join. QF3 is a self-join
on equality with an additional inequality condition (see [9]
for more details). The queries are expressed over two tables
dept and emp. The number of departments is varied from 4
to 2048 (by powers of 2 to replicate the setting from [9]), and
each department has 100 employees on average. The relation
dept consists of one attribute (department name), and emp
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(a) (b)

Fig. 19 Comparing Which(X) in PUG with Links

(a) (b)

Fig. 20 Explanations versus factorized explanations

has three attributes (department name, employee name, and
salary). QF3 can be written in Datalog as:

QF3(N1, N2) :−emp(_, D, N1, S),emp(_, D, N2, S), N1 �= N2

The runtimes of queriesQ7 andQF3 are shown in Fig. 19a,
b, respectively. Links performs better on smaller instances.
The gap between Links and PUG shrinks with increasing
dataset size. PUGoutperformsLinks andLinksQasEXPL
on larger datasets.
Factorized explanations We now compare the performance
of generating provenance for a query (EXPL) and a factor-
ized representation of provenance (Fact) by rewriting the
input query (Sect. 9). Factorization techniques perform best
for many-to-many joins (e.g., the query r7 in Fig. 14). The
rewritten version of suppCust (r7) producing factorized
provenance is shown below.

r8 : suppCust(N ) :−supp(N ),cust(N )

r8′ : supp(N ) :−SUPPLIER(A, B,C, N , D, E, F)

r8′′ : cust(N ) :−CUSTOMER(G, H, I, N , J, K , L , M)

For this experiments, we use a 15-min time-out. The run-
times for r7 (yellow bars) and r8 (red bars) are shown in
Fig. 20a. We show the total result size in bytes below the
X axis. The runtime of Fact grows roughly linear unlike
EXPL whose growth is quadratic in dataset size. We also
evaluate query r5 which includes one-to-many joins to see
how Fact performs for a query (Fig. 20b) where factoriza-
tion only reduces size by a constant factor. This is confirmed
by the measurements: the performance of Fact for r5 is
∼ 30% that of EXPL independent of dataset size.

12 Conclusions

We present a provenance model and unified framework for
explaining answers and non-answers over first-order queries
expressed in Datalog. Our efficient middleware implemen-
tation generates a Datalog program that computes the expla-
nation for a provenance question and compiles this program
into SQL. We prove that our model is expressive enough to
encode a wide range of provenance models from the litera-
ture and extend our approach to produce concise, factorized
representations of provenance. In future work, we will inves-
tigate summarization of provenance (we did present a proof
of concept in [28]) to deal with the large size of explanations
for missing answers. We plan to also support query-based
explanations [2–4,40] and more expressive query languages
(e.g., aggregation).
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