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Abstract
The concept of state and its applications vary widely across big data processing systems. This is evident in both the research
literature and existing systems, such as Apache Flink, Apache Heron, Apache Samza, Apache Spark, and Apache Storm.
Given the pivotal role that state management plays, particularly, for iterative batch and stream processing, in this survey, we
present examples of state as an enabler, discuss the alternative approaches used to handle and implement state, capture the
many facets of state management, and highlight new research directions. Our aim is to provide insight into disparate state
management techniques, motivate others to pursue research in this area, and draw attention to open problems.
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1 Introduction

Big data systems process massive amounts of data efficiently
often with fast response times and are typically characterized
by the 4V’s [1, 2], i.e., volume, variety, velocity, and veracity.
In addition, they are generally classified by their data process-
ing approach, i.e., batch oriented versus stream oriented. In
batch-oriented systems, processing occurs on chunks of large
data files, whereas in stream-oriented systems, processing
happens on continuously arriving data.

One of the first proposals for parallel batch-oriented
data processing (BDP) was MapReduce [3], which became
popularized via Hadoop, an open –source framework, due to
its features, including flexibility, fault-tolerance, program-
ming ease, and scalability. Today, it is widely regarded as
the pioneer for large-scale data analysis. However, despite
its merits, MapReduce has several drawbacks, such as a
low-level programming model and a lack of support for
iterations, which severely affects both the ease of use and
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performance, as well as its inability to deal with data streams.
Consequently, alternatives were proposed to overcome these
limitations. Among themwere the BDP approaches surveyed
by Doulkeridis and Nørvåg [1]. Additionally, novel scalable
stream processing solutions, such as Apache Flink [4, 5] (a
Stratosphere fork [6]), Apache Heron [7, 8], Apache Samza
[9], and Apache Spark [10], arose to meet the needs of an
ever-increasing number of real-time applications demanding
both low latency and high throughput [11].

Big data processing systems encompass a wide range of
concepts, such as data flow operators, distributed scale out,
and fault-tolerance, all of which leverage, manage, and/or
manipulate state. Data analytics programs can be modeled as
directed data flow graphs or trees (in the absence of iterations
or shared results). From this perspective, the analysis results
are the roots, operators are the intermediate nodes, and data
are the leaves. Each operator node performs an operation that
transforms inputs flowing through it into outputs. Data flow
from the leaves through the operator nodes to the roots.

Operators come in two varieties. Stateless operators are
purely functional and they produce output, solely based on
their input. Examples of stateless operators include relational
selection, relational projectionwithout duplicate elimination,
or merging two inputs. In contrast, stateful operators com-
pute their output on a sequence of inputs and potentially use
additional side information, maintained in an internal data
structure called state. Roy and Haridi [12] define state to be
“a sequence of values in time that contain the intermediate
results of a desired computation.” This construct preserves
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Fig. 1 Diverse facets of state management

the history of past operations and affects the processing logic
in subsequent computations. Examples of stateful operators
include sorting, relational joins, or aggregation. Note: We
will introduce our own definition of state later in Sect. 2.

Large-scale BDP frameworks that employ a functional
programming paradigm, such as MapReduce, forbid pro-
grammers from using state explicitly due to their focus on
scale out through parallelism. In particular, iterative compu-
tation suffers from this conceptual limitation, as one cannot
efficiently leverage state reuse among different executions
of a step function (i.e., the function being repeatedly exe-
cuted) during an iteration. Approaches that incorporate state
in a functional model include online MapReduce systems
[13] and Twister [14], “[which] can result in custom, fragile
code and disappointing performance,” as stated by Logo-
thetis et al. [15].

On the other hand, stream processing frameworks incor-
porate state, to discretize continuous data streams and apply
computations on subsets. Researchers have proposed novel
ways to represent, manage, and use state in scalable data
stream processing. For example, windowing is the main
abstraction used to discretize data streams, as reflected by
Matteis and Mencagli [16]. Alternatively, Fernandez et al.
[17] propose using data structures, such as key-value pairs to
represent the various state types (e.g., processing state, buffer
state, routing state). These are discussed later in Sect. 2.2.

State management has received much attention in recent
years. Systems researchers are arduously working on
addressing several key questions, including “How to effi-
ciently handle state in varying scenarios?” and “How can
state be used across applications?” This survey exam-
ines leading research across the foremost publications that
address varying concepts arising in state management and
particular applications that depend on the use of state.
Figure 1 structures state management into five concepts
(i.e., operations, incrementalmaintenance, state sharing, load
balancing and elasticity, and performance) and three applica-
tions of state (i.e., stateful computation, iterative processing,
and fault tolerance), each according to key question they

address. Each of these eight facets is addressed in the subse-
quent sections.

The rest of this survey is structured as follows. In Sect. 2,
the scope of the survey, the varying types of state, and related
work are specified. In Sects. 3 and 4, we present two main
facets of state management (i.e., concepts and applications
of state). In Sect. 5, we introduce integrative optimization,
a cross-cutting topic spanning multiple concepts that is not
explicitly represented in Fig. 1. In Sect. 6, the implementation
of state in today’s leading big data processing frameworks as
well as their limitations are examined. In Sect. 7, promis-
ing new research directions are underscored. And finally, in
Sect. 8, closing remarks are offered.

2 Scope, types of state, and related work

In this section, we specify the scope of the survey and intro-
duce the varying types of state.

2.1 Scope

In computer science, the state of a system arises in vari-
ous domains, including programming languages, compilers,
transfer protocols, formal specification, and data manage-
ment. Given the broad nature of this topic, the scope of this
survey is limited to state in big data management systems,
in particular considering database and distributed systems
centric research that largely focuses on states that may not
necessarily fit into main memory and/or are distributed, par-
titioned, or replicated. With this in mind, we define state to
be “the intermediate value of a specific computation that will
be used in subsequent operations during the processing of a
data flow.” We should note that this definition differs from
its common use in traditional database systems, where state
is a set of relational tables at a specific point in time. In some
big data processing systems, large state sizes can be stored in
either database systems or file systems, such as Cassandra,
RocksDB, GFS, and HDFS.
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Our focus is on the varying statemanagementmethods that
have been published at top-tier venues in the big data domain
over the past years. Our aim is to organize and synthesize the
latest ideas in state management and lay out some promising
research directions in this domain. This survey is designed to
enable readers to quickly grasp the state of the art (SOTA) in
state management, leverage and incorporate existing results
into their own work, and encourage systems researchers to
contribute novel ideas to advance the SOTA.

2.2 Types of state

State has various representations across big data processing
systems. In this section, we describe the types of state, rel-
evant in the survey from varying viewpoints. There is an
operator view, where processing state, buffer state, and rout-
ing state belong. There is a system view, where there are
computation state and configuration state. There is also an
application view, where there are query state and program
state. Lastly, there is a programming view, where there are
variable state and window state. These are all depicted in
Table 1. Next, we delve into each of these views.

Operator View Operator state [17] is the most common
type of state used in big data processing systems. It specifies
the status of an operator and consists of several components,
including processing state, input/output buffer state (a.k.a.,
input/output queue), and routing state. Using efficient data
structures, processing state maintains an internal summary
of the input (e.g., records) history. When necessary, systems
translate processing state into an external serialized format
(e.g., key-value pairs). Buffer state is realized by an oper-
ator’s output buffer, which stores records that have not yet
been processed (i.e., a limited number of output tuples from
the past). In the paperswe surveyed, upstream operatorsmust
cache these tuples, so that downstream operators can repro-
cess themupon failure.Using this cachingmechanism, buffer
state absorbs short-term variations of input rates and network
bandwidth. After dynamic scale out, tuplesmust be delivered
from an output buffer to an exact partitioned downstream
operator. To do so, systems rely on routing state to direct a
single tuple to a suitable partitioned downstream operator via
key mappings.

System View There are other less commonly used def-
initions of state. For example, in ChronoStream [18], the

Table 1 Types of state classified by view

Views of state Types of state

System view Configuration state, computation state

Application view Query state, program state

Programming view Window state, variable state

Operator view Processing state, routing state, buffer state

authors propose two types of state, i.e., computation state
and configuration state. Computation state is “a collec-
tion of application-level data structures that can be directly
accessed and manipulated according to user-defined execu-
tion logic.” Configuration state is “the set of container-level
states that maintains the runtime-relevant parameters.”

Application and Programming Views From the applica-
tion viewpoint, there are query state and program state. In
SEEP [17], query state consists of the state of each query
operator. In GraphLab [19], program state is the compact
representation of the program execution in a directed graph.
From the programming viewpoint, there are window state
and variable state. In S-Store [20], window state contains a
finite, uninterrupted sequenceof streamvalues. InCAPSULE
[21], variable state is a data structure at the programming
language level for specific scenarios (e.g., checkpointing
operator state for passive standby) in streaming applications.
Similar definitions of state can be found in other applications
and programming abstractions.

3 Concepts of state management

In this section, we discuss the five concepts of state manage-
ment that we chose to focus on. That is, operations on state,
state sharing, incremental statemaintenance, load balancing
and elasticity, and performance considerations. Note: Since
some methods address multiple concepts, they are discussed
once again from another perspective in subsequent subsec-
tions.

3.1 Operations

Handling state efficiently presents numerous technical chal-
lenges. For example, state can be migrated among operators
or nodes in a cluster [22, 23] and exposed to programmers for
easier use [17, 18],maintained incrementally [24] to improve
performance, shared among different processes [25] to save
storage, stored remotely or locally, using in-memory [26,
27] or disk spilling [28] techniques and balancing system
load, potentially even geographically distributed [29]. There
are many operations on state, including store, update, purge,
migrate, and expose. In the following subsections, we discuss
each of these operations and their impact on state in greater
detail.

3.1.1 Storing state

Storage solutions for state vary widely, and generally state
size determines where state will be stored. For small sizes,
researchers [27, 30] propose storing state in-memory, which
can accelerate processing [30], but can also impact recov-
ery efforts from machine failures. In this case, replicating
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the state to different machines will be needed, in order to
recover from even transient machine failures. In contrast, for
large sizes, researchers [26, 28, 31] have developed solutions,
where state is kept in persistent storage. However, this incurs
greater overhead. Nonetheless, deciding where to optimally
store state is not always trivial. Next, we discuss three state
handling solutions for large state sizes, i.e., load shedding,
state spilling, and state cleanup delay.

Processing long-running queries (LRQ) over data streams
(i.e., complex queries with huge operator states, such
as multi-joins) can be memory intensive. When system
resources are scarce and processing demands cannot be met
(e.g., due to high throughput and insufficient storage or com-
pute capacity), varying handling methods can be employed.
For example, load shedding [32] preserves just a subset of
the state (e.g., as a sample, synopsis, or by lossy compres-
sion), which reduces workloads and increases performance,
but at the expense of lowering accuracy. Workloads can be
shed permanently or alternatively processed later when com-
puting resources are again available [28].

For those cases where accuracy is paramount, load shed-
ding is not a viable solution. Thus, an alternative approach,
called state spilling, can be employed. This is true in par-
ticular for stateful relational operators (e.g., join variants,
such as Hash-Merge Join [33], XJoin [34], and MJoin [35]),
which temporarily flush states stored in-memory to disks
when memory is at capacity. Yet another option is delaying
state cleanup (i.e., processing states stored on disks) until
resources are readily available. Each of these state handling
solutions achieves both low-latency processing and the accu-
racy of results. Next, we present four approaches for storing
and checkpointing state for fault-tolerance purposes.

The first approach due to Liu et al. [28] addresses the LRQ
problem. Unlike existing solutions, which can only handle a
single state-intensive operator in a data flow, such as a join
operator, their strategies can handle multiple state-intensive
operators. These multiple state-intensive operators arise in
particular in data integration and data warehouse scenarios,
where memory-intensive queries abound. Their state spilling
strategies selectively flush operator states to disks, to cope
with complex queries. By appropriately spilling parts of oper-
ator state to disk at runtime, they avoid memory overflows
and increase query throughput.

In addition, they observe that by exploiting operator inter-
dependencies they can achieve higher performance over
existing strategies. Further, they highlight two classes of data
spilling strategies, namely operator level and partition level.
The operator-level strategy employs a bottom-up approach
and regards all data in an operator state to be similarly
important. In contrast, each of the partition-level data spilling
strategies (i.e., local output, global output, and global output
with penalty) takes input data characteristics into account. In
all of these strategies, when memory is scant, the appropriate

partition to be spilled will need to be selected, to maximize
query throughput.

The second approach due to Kwon et al., called SGuard
[31], stores state in a distributed and replicated file system
(DFS), such as the Google File System (GFS) and Hadoop
Distributed File System (HDFS), to save memory for critical
stream processing operations. One of the benefits of these
file systems is that they are optimized for reading and writ-
ing large data volumes in bulk. Since multiple nodes may
write state simultaneously, resolving resource conflicts is a
critical requirement, which is met in SGuard by incorpo-
rating a scheduler into the DFS. The coordination of many
write requests enables the scheduler to reduce both individ-
ual checkpoint times and generally provides good resource
utilization.

Akin to rollback recovery methods [36], SGuard peri-
odically checkpoints state and recovers failed nodes from
their last checkpoints. Unlike previous approaches, however,
SGuard checkpoints asynchronously: While the system is
under execution, SGuard uses a new Memory Management
Middleware to store the operator state. As a consequence,
this asynchronous mechanism can prevent potential inter-
rupts and reduce the overhead incurred by the checkpointing
process.

The third approach due to Nicolae and Cappello [26]
proposes an asynchronous checkpointing runtime approach,
called AI-Ckpt, designed for adaptive incremental state
storing. AI-Ckpt exploits trends in current and past access
patterns and generates an optimal ordering scheme to flush
memory pages to stable storage. In their research paper,
the authors observe that there are memory writing patterns
in iterative applications. Consequently, AI-Ckpt leverages
these patterns and optimizes the system to flush modified
pages with minimum overhead.

Their experiments show that flushing optimally can
considerably improve performance, especially for iterative
applications (e.g., graph algorithms, machine learning) that
exhibit repetitive access patterns. However, this method only
uses the access order to flush pages and omits temporal
aspects. Thus, a promising research direction is the integra-
tion of the time stamps and access order, in order to further
improve the page flushing process.

Lastly, the fourth approach due toAnanthanarayanan et al.
[29], called Photon, is a distributed system that can store
large states across geographically distant locations. It can
join multiple unordered data streams to ensure high scalabil-
ity, low latency, and exactly-once semantics. Without human
involvement, photon can automatically solve infrastructure
breakdowns and server outages. The critical state stored in
the IdRegistry and shared between workers consists of a set
of event identifiers (i.e., identifiers assigned to events), joined
over the last N days, where N is chosen such that it balances
storage costs and drop events. To ensure services are always
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available, the IdRegistry is duplicated synchronously across
multiple datacenters, which may be in different geographical
regions.

3.1.2 Updating state

In this subsection, we turn our attention to four concepts to
update state: that is, incremental state update, fine-grained
update, consistent update, and update semantics.

In the first approach, Logothetis et al. [15] handle continu-
ous bulk processing (CBP), by strictly updating a fragment of
the state to optimize system performance. Similarly, Fegaras
[24] updates state incrementally, via a new stateful opera-
tor, called Incr. Every time the MRQL (pronounced miracle)
streaming system produces a small delta result based on a
data subset (�Si) and involving a homomorphism, it merges
the previous state value and the current delta result; then,
the system can incrementally produce a new state value, i.e.,
state ← state ⊗h(�Si). Figure 2 illustrates this update with
two streaming sources.

In the second approach, Fernandez et al. [37] consider
fine-grained updates to examine how updates can affect
throughput and latency. They compare the update granularity
among several systems to determine which one can support
fine-grained updates. To do this, they vary the window size,
since it depends on the granularity of updates to the state. That
is, the smaller window size leads to less batching and thus
finer granularity. Their experiments show that Naiad [38] can
achieve low latency when using small batch sizes (e.g., 1000
messages) and high throughput for large batch sizes (e.g.,
20,000 messages). This result is due to Naiad’s capability to
configure the batch size, which is independent of the window
size. Stateful dataflow graphs (SDG) [37] handle all window
sizes and achieve higher throughput than Naiad. The over-
head of micro-batching is substantial in other deployments:
Spark Streaming throughput is equivalent to that of a SDG,
but its smallest window size is 250 ms. If this limit is sur-
passed, its throughput will collapse.

In the third approach, Low et al. [19] introduce the
GraphLab framework for graph-parallel computation, to
ensure data consistency when updating program state.
GraphLab represents modifiable program state as a directed

Fig. 2 Incremental updates to state [24]

graph, called a data graph. This state includes user-defined
mutable data and sparse computational dependencies. To
alter the state, an update function transforms the graph into
scopes, which are small overlapping contexts. To preserve
data consistency, GraphLab presents three consistency mod-
els: full, edge, and vertex for update functions (UF).

These models enable the optimization of parallel execu-
tion and select the consistency level needed for correctness.
The full consistency model achieves serializability by ensur-
ing that the scopes of UF do not overlap and that the UF
are executed concurrently. However, this consistency model
limits potential parallelism and thus they propose two other
consistency models to overcome this shortcoming. In the
edge consistency model, each update function can read or
write to its adjacent edges and vertex, but can only read adja-
cent vertices. Finally, all update functions can run in parallel
in the vertex consistency model. As a result, these two con-
sistency models improve parallelism.

Lastly, in the fourth approach, several big data processing
frameworks [6, 39, 40] both explore and compare different
update semantics for state. Basically, there are three types of
semantic guarantees, namely, at-least-once, at-most-once,
and exactly-once, to assess the correctness of state. Systems
with at-least-once semantics fully process every tuple, but
they cannot guarantee duplications in processing and thus
addition of a tuple to the state. In at-most-once semantics,
systems either do not process a tuple at all or execute an oper-
ation and add it to the state exactly once.Unlike at-least-once
semantics, at-most-once semantics do not require the detec-
tion of duplicate tuples. Finally, systems with exactly-once
semantics process tuples once and only once, thereby pro-
viding the strongest guarantee. In Sect. 6, we compare these
semantic guarantees among popular big data frameworks.

3.1.3 Purging state

When systems no longer need a specific piece of data for sub-
sequent operations, state management can purge those data
(e.g., a buffer state removing expired tuples). This subsection
presents three efficient ways to purge state.

In the first approach, Ding et al. [41] propose several join
algorithms that effectively purge state using punctuation on
data attributes. They introduce a stream join operator, called
PJoin, that deletes data, which is no longer useful. The use of
punctuations marks the end of transmission values, thereby
allowing stateful operators to remove state during runtime.
Consequently, this frees memory for other operations and
accelerates the probing process in join operations. Then,
they equip PJoin with two strategies, i.e., eager and lazy
purging. Eager purge immediately purges states whenever
punctuations are observed, to minimize memory overhead
and efficiently probe the state of the join operation. If punctu-
ations arrive too frequently, then eager purge is not applicable
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since the probing cost is less than the cost of scanning the join
state. Therefore, they propose lazy (batch) purge, which can
only initiate purging when the number of newly generated
punctuations from the last purge approaches a given thresh-
old. The number of punctuations between two state purges
determines this threshold value. Eager purge is the special
case of lazy purge when the threshold is set to one. Experi-
ments confirm that the eager strategy is suitable to minimize
the join state, whereas the lazy strategy is applicable for sys-
tems with abundant memory resource.

In the second approach, Tucker et al. [42] propose punctu-
ation semantics as a solution to the following problem:A join
operator will need to maintain states that can grow infinitely
and eventually exceed memory capacity, when continually
joining multiple streams. By injecting punctuations, sys-
tems can explicitly indicate the end of a data subset, thereby
enabling the safe purging of log data that will not affect future
results. In this paper, the authors consider a continuous join
query (CJQ) to be unsafe (and thus not permitted to run),
if it requires an infinite storage. Li et al. [43] introduce the
punctuation graph structure to analyze query safety: that is,
checking whether a CJQ satisfies safety conditions under a
given number of punctuation schemes, in polynomial time.
To do so, they must first formally define the purgeability
condition of a join operator. Then, they classify the safety
verification of a CJQ into two categories: data and punctu-
ation purgeability. The authors consider punctuation to be a
special tuple that enables punctuation purging. Finally, they
also propose a chained purge method to generalize a binary
join to the n-way joins.

In the third approach, Li et al. [44] design a new archi-
tecture for out-of-order processing (OOP) that avoids order
preservation. This is important since stream processing sys-
temsoften impose anorderingof itemsondata streamsduring
execution, which incurs a significant overhead when purging
operator state. OOP uses punctuation or heartbeats to explic-
itly denote streamprogress for purging operators. In addition,
they introduce joint punctuation, a new punctuation used to
reduce delay in join operators. Overall punctuation serves as
a general mechanism or purge state from stateful operators
[41–43].

3.1.4 Migrating state

Dynamic state migration is a crucial operation in particular
for stream processing systems that involve the efficient tran-
sition of state from one node to another, while preserving
the operator semantics during migration. This is particularly
important for operations, such as joins, aggregations, upon
the addition or removal of nodes because workloads, data
characteristics, and resource availabilities may fluctuate.
Ding et al. [22] note that state migration involves two main
problems: (1) How to migrate? That is, selecting a mecha-

nism that reduces the overhead triggered by synchronization
and delaying the production of results during migration,
and (2) What to migrate? That is, determining the optimal
task assignment that minimizes migration costs. Next, we
present five approaches for migrating state.

In the first approach, Zhu et al. [45] introduce dynamic
migration for continuous query plans that contain stateful
operators. They propose two strategies, i.e., moving state
and parallel track that exploit reusability and parallelism
when seamlessly migrating continuous join query plans,
while ensuring the correctness of query results. In the mov-
ing state strategy, there are three key steps: (i) state moving,
(ii) state matching, and (iii) state recomputing. Initially, the
moving state step terminates the current query plan execu-
tion and purges records from intermediate queues. Then, the
next step is matching and moving all records belonging to
the states of the current query plan to the new query plan.
This is necessary to resume the processing of the new query
plan. In the parallel track strategy, state migrates gradually,
by plugging in the new query plan and executing both query
plans at the same time. Thereby, this strategy continues to
produce output records throughout the migration process.
When there are enough computing resources, the moving
state strategy usually completes themigration process sooner
and performs better than the parallel track strategy. In con-
trast, when resources are scarce, the parallel track strategy
has fewer intermediate results and a higher output rate during
the migration process.

In the second approach, Ding et al. [22] migrate states
among nodes within a single operator. Although both SEEP
[17] and StreamCloud [46] propose the idea of operator state
migration, prior to Ding et al., they provide few details. In
contrast, Ding et al describe algorithms that perform both live
and progressive state migration. Consequently, the result-
ing delay prevalent in the migration process is negligible.
Furthermore, they propose a (migration) task assignment
algorithm that computes an optimal assignment, minimizes
migration costs, and balances workloads. Moreover, they
propose a new algorithm that draws on statistics from past
workloads to predict future migration costs. Ding et al. crit-
icize ChronoStream [18], which “claims to have achieved
migration with zero service disruption,” by pointing out that
synchronization issues can affect the correctness of the result.
To overcome this, the proposed mechanism does not migrate
and execute tasks concurrently. It also ensures that all mis-
routed tuples are sent to their correct destinations.

In the third approach, Pietzuch et al. [47] propose a solu-
tion for migration that determines the placement locations,
i.e., the selection of a physical node to manage an opera-
tor. This is indeed challenging due to variations in network
and node conditions over time and the interactions among
streams. In their approach, an optimizer examines the current
placement of local operators and launches the migration of
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operators when the savings in network usage exceed a pre-
defined value. This minimum migration threshold (MMT)
depends on the cost of operator migrations and maintains an
operator at its current location, if the MMT is not exceeded.

In addition, they introduce SBON (a stream-based overlay
network) that efficiently determines the placement loca-
tion and reduces network utilization. The varying conditions
cause SBON to re-evaluate existing placements and trigger
operator migrations in new hosts, if necessary. SBON has
two main components: (1) the data stream processing sys-
tem, which is responsible for operations related to operator
state (e.g., instantiation, migration) and data transfer, and (2)
the SBON layer, which records local performance, handles
the cost space, and triggers migrations.

In the fourth approach, Ottenwalder et al. [48] propose
MigCEP, which plans migration in advance, to minimize
network usage. They introduce an algorithm that generates
a Migration Plan, i.e., a probabilistic data structure that
describes future targets and times for migration. In addition,
they propose another migration algorithm that minimizes
both network usage and latency. It enables multiple oper-
ators to coordinate their migration (e.g., for those that may
require the same mutable state), and this can further improve
network utilization.

Lastly, in the fifth approach, Feng et al. [23] present two
novelmethods, randomized replication representation and an
overloaded replication scheme to address high computational
workloads (e.g., due to monitoring, migrating, replicating,
and backing up states) in stateful stream processing systems.
In the first method, a hashing structure, called an MLCBF
(i.e., a Multilevel Counting Bloom Filter), replicates opera-
tors using minimal resources, to increase the performance of
state migration. In addition, they use dynamic lazy insertion,
an adaptive scheme to reduce the influence of replication, pre-
vent the system from being overloaded, and increase cluster
throughput.

3.1.5 Exposing state

Exposing state in processing systems offers several advan-
tages. For example, it: (1) enables systems to quickly
recover from failures via checkpoints, (2) enables systems
to efficiently reallocate stateful operators across several
newly partitioned operators to provide scale out [17], and
(3) facilitates integrative optimization (discussed later in
Sect. 6). Consequently, researchers [15, 17, 18, 37, 49]
have also opted to externalize state. Next, we discuss four
approaches to expose state.

In the first approach, Logothetis et al. [15] propose a
groupwise processing operator that considers state to be an
input parameter. To handle state explicitly, they develop a
set of flexible primitives for dataflow to perform large-scale
data analysis and graph mining. For example, the translate

operator can access state directly via a powerful group-
wise processing abstraction, which permits users to store
and access state during execution. In addition, this general
abstraction supports other operations, such as insertions,
updates, and removals of state. Lastly, the authors plan to
develop a compiler that translates an upper-layer language
into processing dataflows, to facilitate state access.

In the second approach, Fernandez et al. [17] seek to
externalize internal operator state, so that stream processing
systems can explicitly perform operator state management.
The authors classify state into three types, namely processing
state, buffer state, and routing state. Tomanipulate these three
types of states, they define a set of operators for statemanage-
ment that enables systems to checkpoint, backup, partition,
and restore operator state. These primitives are the minimum
set required for scale out and fault tolerance. It is possible to
build more state primitives to augment the functionality. For
example, the availability of abundant resources enables oper-
ator states to merge [46] for scale in. To deal with large state
sizes, spilling state [28] to disk can free memory for use-
ful computations. Persisting parts of an operator state into
external storage enables the combination of data-at-rest and
data-in-motion [50].

In the third approach, Fernandez et al. [37] make state
explicit for imperative big data processing via the use of
SDG (stateful dataflow graphs). Consequently, this presents
a problem for big data frameworks with imperative machine
learning algorithms, given that fine-grained access to large
state is required. SDG address these challenges by efficiently
translating imperative programs with large distributed state
into a dataflow representation, thereby enabling low-latency
iterative computation. By explicitly differentiating data from
state, SDG use state elements, to encapsulate computation
state and enable translation.

Figure 3 illustrates two distributed ways to represent an
SE. One way would be to partition an SE and divide its
data structure into disjoint parts. Another way would be to
split an SE and partially replicate its internal data structure
into multiple versions to allow for independent updates. Par-
titioning state across nodes can support scalability if it is
possible to fully deploy the computation in parallel. On the
contrary, if it is not the case, a partial SE deploys indepen-
dent computations. Application semantics can then interpret
these computations. The important point concerning SDG is
that their tasks can directly access the distributed mutable
state, allowing SDG to comprehend the semantics of stateful
programs. Fernandez et al. [49] demonstrate this by devel-
oping the JAVA2SDG compiler to translate annotated JAVA
programs to SDG.

Lastly, in the fourth approach, ChronoStream [18] views
operator state from two perspectives, i.e., computation state
or configuration state. Computation state is a set of data
structures (at the application level) that systems can directly
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Fig. 3 Distributed state types in stateful dataflow graphs [37]. a State
element, b partitioned SE, and c partial SE
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Fig. 4 State sharing

access and conform to the user-defined processing logic. Sys-
tems hash-partition the computation state, which is kept in an
operator, into an array of fine-grained computation slices. To
enable load balancing, slices are distributed equally among
resource containers. Every subset of input data corresponds
to an independent slice that generates a corresponding out-
put stream. Configuration state is a collection of states (at the
container level), which is used to maintain runtime parame-
ters. This state is associatedwith each resource container, and
its contents differ among containers. The configuration state
associated with each container comprises three components:
(1) an input routing table, to deliver input events to corre-
sponding slices, (2) an output routing table, to direct output
events to a resource container associated with a downstream
operator, and (3) a thread-control table, to preserve the thread
schedule (at the operating system level) and compute the
upper-layer slices. Generally, configuration state plays a role
as the intermediate connection between parallelism at the
application level and local multithreads at the operating sys-
tem level.

Using the concept of slices, ChronoStream supports hor-
izontal and vertical elasticity by scaling the underlying
computing nodes logically and managing the configuration
states associated with these nodes rather than handling the
computation states at the application level.

3.2 State sharing

State sharing (cf. Fig. 4) denotes using state for several oper-
ations during data flow processing. This is desirable in many
instances. For example, it can reduce data transmission over
networks and thus reduce latency. Table 2 provides a glimpse
into four systems, where state is shared. These are presented
next.

State sharing facilitates optimizing stream processing sys-
tems. For example, Hirzel et al. [11] examine a streaming
application that continuously calculates statistics (e.g., aver-
age stock price) for different time windows (e.g., hours,
days). Since these operations differ only on the timegranular-
ity (e.g., hours vs. days), then it is natural to share the aggrega-
tion window. By doing so, this will increase resource utiliza-
tion (e.g., memory) efficiency among operations. However,
sharing state can lead to some inherent problems, such as
access conflicts, consistency issues, or deadlocks. Therefore,
Hirzel et al. point out three safety conditions requirements.
First, ensuring visibility canmake state visible and accessible
to all operators. Second, prevention of race conditions can
assure state is immutable and/or that synchronization among
processes is properly set. Lastly, safe management of mem-
ory can prevent the early release ofmemory or uncontrollable
expansion, which could lead to memory leaks.

In their paper, Hirzel et al. discuss three forms of state
sharing. The first form involves shared operator state [25],
where state can be arbitrarily complex. In this form, synchro-
nization and memory management present key challenges.
Indeed, sharing memory may introduce conflicts, which are
often resolved usingmutual-exclusion locks. However, when
conflicts are rare, this approach is cost prohibitive (e.g., when
performing concurrency handling). Therefore, an alternative
approach [25] uses software transactional memory to man-
age data sharing. The second form entails shared windows
[51, 52] that enable multiple consumers to utilize the same
window. Window sharing is indeed one of the simplest cases
of state sharing [52]. For example, the continuous query
language (CQL) implements windows by using non-shared
arrays of pointers to reference shared data. This model of
many-to-one pointer reference can allow many windows and
event queues [51] to access a single data item. Lastly, the

Table 2 A characterization of state sharing methods

Common characteristics System Main mechanism Objective

They avoid computation or transmission
redundancies to achieve higher performance.

[11] Focus on safety conditions Discuss multiple forms of sharing

[54] In-network query processing and
multi-subscription optimization

Eliminate unnecessary
computation

[21] Use data structures at the language level Share state across operators

[20] Ensure both correctness and ACID guarantees Target transaction processing
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third form encompasses shared queue [53]. Here, the simul-
taneous access of both producer and consumer to a single
element (i.e., the producer writes a new item and the con-
sumer concurrently reads an old item) can lead to conflicts.
To guarantee synchronization and preserve concurrency,
queues must be able to buffer two data items at a minimum.

In their paper [54], Kuntschke et al. recognize instances
of computational inefficiencies in large-scale data process-
ing that can be eliminated by sharing state. Examples of
these include the unnecessary execution of operators and
data transfers, among other redundancies. By sharing data
streams, we avoid redundant transmissions and save net-
work bandwidth. Another benefit of discarding unnecessary
computation is reducing the execution time, by sharing pre-
viously computed results and early filtering and aggregation
(e.g., the combine function in MapReduce). They propose
two optimization techniques: in-network query processing,
whichdistributes andperforms (newly registered) continuous
queries and multi-subscription optimization, which enables
the reuse and sharing of generated data streams.

In their paper [21], Losa et al. propose CAPSULE, a lan-
guage and system that support state sharing across operators,
using a less structured method than point-to-point dataflows.
It shares variables (a.k.a. states) using a data structure at the
language level. Besides supporting the efficient sharing of
state in distributed stream processing systems, CAPSULE
provides three features: that is (i) custom code generation,
to produce shared variable servers that fit a given scenario
based on runtime information and configuration parameters,
(ii) composability, to achieve suitable levels of scalability,
fault tolerance, and efficiency using shared variable servers,
and (iii) extensibility, to support, for example, additional
protocols, transport mechanisms, and caching methods,
using simple interfaces.

In their paper [20], Meehan et al. introduce S-Store, a
system designed to maintain correctness and ACID guaran-
tees (i.e., atomicity, consistency, isolation, and durability)
that are essential to handle shared mutable state. By employ-
ing shared state, the system achieves high throughput and
consistency for both transaction processing and stream pro-
cessing applications. In this context, the proper coordination
and sharing among successive executions of a window state
differ from other sorts of state (e.g., where state is pri-
vately shared with other transactions). In this way, S-Store
achieves low latency with correctness in stream processing
and high performance with ACID guarantees in transac-
tion processing. Tatbul et al. [55] further explore correctness
criteria, including ACID guarantees, ordered execution guar-
antees, and exactly-once processing guarantees. To support
these three-complementary correctness guarantees, S-Store
provides efficient scheduling and recovery mechanisms.
Although Naiad, SEEP, and Samza all view state as mutable,
they do not inherently support transactional access to shared

state. Thus, Meehan et al. [20] show that the consistency
guarantees offered by S-Store are better than the consistency
guarantees offered by Naiad, SEEP, and Samza.

3.3 Incremental maintenance

Researchers have sought to reduce incremental checkpoint-
ing overhead [56, 57] or maintain state incrementally [24,
58–63] to cope with frequent data updates and avoid costly
full state updates. By generating delta values (cf. Fig. 5),
they can all update persisted state more efficiently, when-
ever inputs vary marginally, and avoid recomputing from
scratch. Table 3 provides a glimpse into seven approaches
thatmaintain state incrementally. Next, we elaborate on these
approaches.

The first approach due to McSherry et al. [61] presents
differential computation, which generalizes existing meth-
ods for incremental computationwith continuously changing
input data. Their method differs from traditional incremen-
tal computations by supporting arbitrarily nested iterative
computations. Akin to the Naiad system, the key innova-
tions come from two factors. First, changes in state adhere
to a partially ordered sequence, instead of a totally ordered
one, which conforms to incremental computation. Second,
an indexed data-structure maintains a set of updates that is
essential to rebuild the state. This second feature is differ-
ent from the other incremental systems, in that updates are
usually discarded after being merged with the current state
snapshot.

The second approach due to Koch [58] employs monoid
algebra to address the incremental view maintenance (IVM)
problem and extends an algebraic structure of a ring of
databases to form a powerful aggregate query calculus. This
calculus inherits the key properties of rings, such as dis-
tributivity and the existence of an additive inverse. Thereby,
this makes the calculus closed under a universal difference
operator that expresses the delta queries of the IVM. These
key properties provide the basis for delta processing and
incremental evaluation. The multilayered IVM scheme can
maintain a view (using a hierarchy of auxiliary materialized
views) and refresh it, whenever there are updates. Further-
more, their findings lay a foundation for subsequent research
[50, 59, 62, 63] in incremental state maintenance.
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Fig. 5 Incremental maintenance of state
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Table 3 A characterization of incremental state maintenance methods

Common characteristics System Main mechanism Targeted computation

N/A, only one system [61] A partially ordered sequence, preserves a set of updates
to rebuild state

Arbitrarily nested iterative computations

Monoid algebra [58] Algebraic rings in databases Aggregate query

[24] Algebraic transformations with lineage tracking and
homomorphisms

Iterative and nested queries, group-by
with aggregation, equi-joins

Delta computations based
on algebra

[50] Recursive finite differencing technique General incremental view maintenance

[62] Matrix factorization Linear algebra program iterations in
machine learning

[63] Derive delta programs to capture changes in the result Queries with nested aggregates

[60] Nested relational calculus Bag computing

The third approach due to Fegaras [24] introduces a pro-
totype, called MRQL Streaming, that returns (at each time
interval) continuous answers, by merging the last material-
ized state and the delta result of the most recent data batches.
The novelty of this approach comes from algebraic transfor-
mation rules that convert queries to homomorphisms.MRQL
Streaming decomposes a non-homomorphic streaming query
q(S) into two functions, a and h, such that q(S)�a(h(S)),
where h is a homomorphism (i.e., h(S +�S)�h(S)⊗h(�S))
and a is a non-homomorphic component of the query that
forms the answer function.Accordingly, state stores the result
of the incremental calculation h, using the current state value
to compute the next h value (i.e., state � state ⊗h(�S)). Ini-
tially, state is either empty or set to h(S), if there are initial
streams. Then, at every interval, �t, the answer to the query
is computed from the state that is equal to h(S +�S).

The fourth approach due to Ahmad et al. [50] introduces a
recursive, finite differencing technique, called viewlet trans-
forms, that unifies historical and current data. Their technique
materializes a query and its corresponding views, which sup-
port the mutual incremental maintenance, thereby reducing
the overall viewmaintenance cost. Similarly, Koch et al. [59]
fully describe and experimentally evaluate the performance
of the DBToaster system, using the ring theory. DBToaster
can continuously updatematerialized views, despite frequent
data changes, using an aggressive compilation technique or
a recursive finite differencing technique.

The fifth approach due to Nikolic et al. [62] introduces
the LINVIEW framework and the concept of deltas, which
captures changes to linear algebra programs (LAP) and high-
lights the use of IVM in LAP involving iterations in machine
learning. Linear algebra operations can trigger a ripple effect
(e.g., small input changes can propagate and affect interme-
diate results and the final view). This can negatively affect
the performance of IVM upon re-evaluation. To mitigate this
problem, LINVIEW employs matrix factorization methods
to enable IVM to be suitable and less expensive than recom-
puting from scratch.

The sixth approach due to Nikolic et al. [63] general-
izes the results of Koch et al. and presents recursive and
incremental techniques to handle queries containing nested
aggregates. They compare the performance between tuple
and batch incremental updates to identify scenarios when
batch processing can substantially improve the efficiency
of IVM. Their experimental findings show that single-tuple
execution outperforms generic batch processing in many sit-
uations, thus contradicting the belief that batch processing
outperforms single-tuple processing [64].

Lastly, the seventh approach due to Koch et al. [60] pro-
vides an efficient solution to incrementally compute the
positive nested relational calculus (NRC+) on bags. They
develop a cost model for NRC+ operators that enables them
to calculate the cost of delta computations. A query can be
considered efficiently incrementalizable if the cost of its delta
is strictly lower than that of recomputation from scratch. A
large part of NRC+, called IncNRC+, which satisfies the effi-
cient incrementalization condition is translated from NRC+
without losing its semantics.

3.4 Load balancing and elasticity

System workloads are dynamic and when demands increase
these are typically managed via the concept of load balanc-
ing or elasticity. Load balancing characterizes a computing
system’s ability to redistribute its workload across comput-
ing resources, particularly, when some nodes have heavier
loads than others. For example, when the workload in a
node increases, it can be redistributed to another node to
ensure workload balance, as depicted in Fig. 6a. Elasticity
characterizes a computing system’s ability to provide addi-
tional computing resources in light of increasing workloads.
For example, with increasing workloads, we can allocate
additional resources (i.e., nodes) to share the workload,
as depicted in Fig. 6b. Although handling elasticity and
load balancing in stateless operators is straightforward, it
is challenging for stateful operators due to the complexity
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in managing state. Today’s data-parallel computation frame-
works handle elasticity by maintaining and migrating state,
while jobs are actively running.

To migrate state, the number of parallel channels need
to dynamically adapt (i.e., nodes are added or removed) at
runtime to match the computing resources and workload
availability, which may unexpectedly fluctuate. Thus, in the
presence of workload skew, the states of heavy burdened
nodes are repartitioned and reallocated (cf. Fig. 6) to nodes
that are not burdened. Similarly, when resources are scarce,
the states of tasks that are affected (e.g., job partitions) need
to be reallocated. Hence, we require partitioning methods
that enable systems to scale and achieve workload balance.
These mainly fall into four types, i.e., hash based, partial key
based, statemigration [18], and executor centric [65]. Table 4
characterizes several systems by their respective partitioning
type. Next, we examine varying systems that fall under these
four partitioning types.

Dataflow scalability in streaming systems is limited by
stateful operators. In order for these operators to scale, they
will need to be partitioned (e.g., across a shared-nothing
platform). However, over time, this will lead to load unbal-

7 (a) 

7 (b) 

Fig. 6 State in load balancing and elasticity

Table 4 A characterization of partitioning schemes having the same
objective of distributing workload uniformly across computing nodes

Partitioning type System Main focus

Hash based [66] State partitioning and dataflow
routing

Partial-key based [67] Partition functions

[70] Add aggregation cost to model

[68] Key splitting and local load
estimation

[69] Associate a key to more than two
possible nodes

Executor centric [65] Elastic executors+model-based
scheduler

Migration based [18] Transactional migration protocol
and thread-to-slice mapping

ancing. To resolve this problem, Shah et al. [66] propose
Flux, a dataflow operator that encapsulates adaptive state
partitioning and dataflow routing. Placed between producer
and consumer stages in pipelined dataflows, Flux reparti-
tions stateful operators transparently, without interrupting
the pipeline under execution. Flux provides two mechanisms
to adapt to both short-term and long-term imbalances. In the
short-term case, Flux utilizes a buffer and a reorderingmech-
anism to adjust local imbalances. In the long-term case, Flux
detects imbalances across the entire cluster and allows state
repartitioning in lookup-based operators to manage the prob-
lem.

Gedik [67] devise new partitioning functions to redis-
tribute skewed workloads, which trigger imbalances (e.g.,
memory usage, computation, communication costs across
parallel channels). In addition, they introduce several desir-
able properties that these functions must meet. These proper-
ties include: (1) balance properties (e.g., memory, commu-
nication, and processing balance), (2) structural properties
(e.g., fast lookup, compactness), and (3) adaptation proper-
ties (e.g.,minimalmigration, fast computation). Experiments
show that the proposed partitioning functions possess these
desirable properties over a variety of workloads and thus pro-
vide better load balance than uniform and consistent hashing.
These functions are especially effective for workloads with
large key domains (i.e., the cardinality of the partitioning
key). In this case, they can efficiently balance communi-
cation costs, computation costs, and memory load, yet still
ensure low migration overhead despite workload skew.

Nasir et al. [68] propose a stream partitioning scheme,
called partial key grouping (PKG), to partition the load in
distributed stream processing systems. PKG includes two
main techniques, i.e., key splitting and local load estimation.
The key splitting technique is based on the “power of two
choices” principle, inwhich the system selects twonodes uni-
formly at random and delivers the streaming element into the
one that has the least load. In the local load estimation tech-
nique, each source operator maintains a local load-estimate
vector, which is calculated by using only local information
about the portion of stream sent by each source. Experiments
show that PKG achieves better load balancing than stan-
dard hashing. However, in the case of large deployments,
solely having these two choices is insufficient, since skew is
inversely proportional to the size of the deployment. There-
fore, to remedy this, Nasir et al. [69] propose two streaming
algorithms, calledD-Choices andW -Choices, to enable load
balancing in large deployments. Experiments show that these
two algorithms achieve very low imbalance (i.e., smaller than
0.1%) in large deployments.

Katsipoulakis et al. [70] use a partitioning algorithm to
ship records to computing nodes. However, they integrate
the aggregation cost into the cost model to improve perfor-
mance. In this model, the aggregation combines all of the
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partial results corresponding to the partitioned operations
produced by computing nodes. While previous works focus
only on load imbalance, combining load imbalance and
aggregation cost improves the balance among computing
nodes and therefore reduces the overall latency of the system.
This combined method achieves the best performance over
competing methods when the number of groups (in group-by
operators) is large.

Wang et al. [65] propose the Elasticutor framework to
achieve elasticity by an executor-centric method. Here,
executors are parallel execution instances and play the role
of building blocks for elasticity. Instead of partitioning the
key space of an operator dynamically as in key partition-
ing methods [68, 70], this method partitions the key space
statically, but allocates CPU cores to executors dynamically.
Elasticutor applies optimization at two levels: (1) a scheduler
that assigns CPU cores to executors at the global level, and
(2) a subsystem that allocates workloads to these cores at the
executor level.

ChronoStream [18] takes a different approach to address
the load balancing and elasticity problem. By treating
the internal state as a built-in component, ChronoStream
achieves flexible scalability. That includes horizontal elas-
ticity, where resources vary in all of the computing nodes
and vertical elasticity, where resources vary at a single
node. Consequently, this enablesChronoStream to efficiently
manage both workload fluctuation and dynamic resource
reclamation. For horizontal elasticity, transparent workload
re-allocation is achieved using a lightweight transactional
migration protocol based on the reconstruction of state at
the stage level. To support vertical elasticity, ChronoStream
provides fine-grained runtime resource allocation that maps
an OS-level thread to many application-level computation
slices. A thread-control table stored in the configuration state
can be used to record this thread-to-slice mapping. To scale
vertically, ChronoStream utilizes this table to reschedule the
computation. At any time during the execution, the workload
in each thread can be dynamically reorganized to rebalance
the load (i.e., dynamic repartitioning).

3.5 Performance

Managing state can incur significant overhead, including
increased processing latency and recovery time. Hence,
varying performance optimization techniques have been pro-
posed to reduce the overhead. For example, setting the
intervals among checkpoints when storing and replicating
state for fault-tolerance purposes appropriately can substan-
tially reduce the execution time of an iterative algorithm [71].
The state checkpoint placement problem has been shown to
be NP-complete [72]. The overhead and complexity associ-
ated with state management approaches vary widely. Next,
we discuss some issues related to the performance of state

management, such as the impact of frequent checkpointing
(determined by checkpoint interval calculations), the com-
plexity of optimal state placement, and the complexity of
optimal state assignment.

3.5.1 Impact of frequent checkpointing

In practice, heuristics are often used to decide when to
checkpoint state (e.g., periodic or aperiodic checkpointing).
Periodic checkpointing enables systems to quickly recover
from failure. However, systems will expend resources and
time that could be better used elsewhere. In contrast, ape-
riodic checkpointing leads to longer failure recovery times.
Thus, in recent years, systems researchers [17, 56, 71] have
focused on determining an optimal checkpointing frequency.

Naksinehaboon et al. [56] investigate the optimal place-
ment of checkpoints to minimize the total overhead, i.e.,
both the rollback recovery and checkpointing overhead. By
employing a checkpointing frequency function, they can
derive an optimal checkpointing interval based on a user-
provided failure probability distribution.

Fernandez et al. [17] measure processing latency and
demonstrate that aperiodic checkpointing would generate
varying latencies. Their method reveals that wider intervals
have less impact on data processing, but lengthen the failure
recovery time. Instead, they propose setting the checkpoint-
ing interval, according to the estimated failure frequency and
the query performance requirements.

Sayed and Schroeder [71] evaluate the impact of check-
pointing intervals across methods. They critique ad hoc
periodic checkpointing rules, such as checkpointing every
30 min. They observe that the model due to Young [73]
achieves near-optimal performance and is applicable in prac-
tice. They further investigate more advanced methods that
dynamically change the checkpointing interval. Their find-
ings show that these methods significantly improve over
Young’s model for only a small subset of systems.

3.5.2 Complexity of optimal state placement

Determining when to effectively place checkpoints is yet
another challenging problem. Researchers [72, 74] formally
prove that this problem is NP-complete and propose approx-
imation algorithms to solve this problem in polynomial time.

Robert et al. [74] focus on the complexity of computational
workflow schedulingwith failures that follow an exponential
distribution. They aim to optimize the expected processing
time, processing schedule of independent tasks, and check-
pointing time,which are combinatorial problems. They prove
that this optimization problem is strongly NP-complete and
propose a dynamic programming algorithm that runs in poly-
nomial time.

123



A survey of state management in big data processing systems 859

Bouguerra et al. [72] examine the computational com-
plexity of checkpoint scheduling with failures that follow
arbitrary probability distributions. They note that both costs
among checkpoints and the processing time for data blocks
vary. Therefore, they develop a new complexity analysis
to exploit relationships among failure probabilities, check-
point overhead, and a computational model. Additionally,
they introduce a new mathematical formulation to optimize
checkpoint scheduling in parallel applications. They prove
that checkpoint scheduling is NP-complete and propose a
dynamic programming algorithm to determine the optimal
times for checkpointing.

3.5.3 Complexity of optimal state assignment

Determining an effective strategy to partition tasks efficiently
is a challenging problem, given that the size of the search
space is exponential. Ding et al. [22] calculate the opti-
mal task assignment to minimize state migration costs (i.e.,
the total storage size of all the operator states transferred
among nodes) and meet load balancing conditions. Adher-
ing to their notation, let the output of partitioning function
f to input record r be an integer f (r), with 1≤ f (r)≤m.
Each node Ni (1≤ i≤n) is assigned an interval Ii=[Ii.lb,
I i.ub), 1≤ lbi≤ubi≤m, called the task interval of Ni. Given
a threshold τ , a task assignment is considered to be load
balancing if and only if the workload Wi for each node
Ni satisfies this condition Wi≤(1+τ )W /n. In other words,
this condition means that each node does not have too high
workload when comparing to the average value of the per-
fect case where every node shares exactly the same amount
of work W /n. The optimal task assignment includes two
consecutive steps: dividing all tasks into n

′
separate task

intervals and then allocating these task intervals to n
′
dif-

ferent nodes.
To address the task partitioning problem, the researchers

split it into numerous subproblems, then solve each sub-
problem using Simple_SSM, a proposed basic solution with
O(m2n2n

′2) possible subproblems. Simple_SSM incurs a
space complexity of O(m2n2n

′2) and time complexity of
O(m3n3n

′2). To improve upon this, they propose another
solution that exploits optimizations and gradually improves
the space and time complexity over time. The best solution
uses only O(mn

′
) space and O(m2n

′
) time, which is a signif-

icant reduction over the basic solution.

4 Applications of state

This section presents three applications of state. This includes
the use of state in stateful computation, iterative processing,
and fault tolerance.

A B 

state 

Fig. 7 State in stateful computation

4.1 Stateful computation

Naturally, state serves to enable stateful computations dur-
ing data stream processing. Computation on records of a
data stream can either be stateless or stateful. In stateless
operators (e.g., filtering), there is no record of previous com-
putations. Instead, each computation is purely functional,
handled entirely based on the current input. By definition,
stateful operators (e.g., aggregations over time windows or
some other stream discretization) interact with earlier com-
putations or data observed in the recent past. Thus, since
state represents prior computational results or previously
seen data, it must be persisted (cf. Fig. 7) for subsequent use.
This is evident in today’s popular data stream processing
frameworks, such as Flink, Spark, Storm, Storm+Trident,
and Heron, each of which supports stateful operators.

Despite commonalities among frameworks, there are con-
trasting views on how to best implement state. For example,
early versions of Storm focused on stateless processing and
required state management at the application level. Storm+
Trident (an extensionofStorm) enables statemanagement via
an API. Samza manages large states using a local database
to enable persistence. Spark Streaming enables state compu-
tation via DStream (i.e., discretized streams). Finally, Flink
treats state as a first-class citizen, which eases stateful appli-
cation development. The implementation of state across four
frameworks is discussed in greater detail in Sect. 11. Table 5
captures the characteristics of stateful computation methods
across four systems. Next, we discuss representative papers
centered on stateful computation.

In the late 2000s, bulk data processing systems, like
MapReduce,were growing in popularity.However, theywere
criticized for not offering data indexing, which as a form
of efficient state access could conceivably increase perfor-
mance. These findings lead Logothetis and Yocum [75] to
devise a data indexing scheme to support stateful groupwise
processing. They observe that by offering access to persis-
tent state, operations, such as reduce, could cope with data
updates and circumvent the need to recompute from scratch.
Additionally, that indexing can avoid expensive sequential
scans and grant groupwise processing random access to state.

Logothetis et al. [17] discuss two (suboptimal) solutions
for stateful bulk processing. One solution requires running
the entire dataflow once again, whenever new data arrive. In
contrast, the other solution requires programmers to employ
data-parallel programs, to incorporate and use state. How-
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Table 5 A characterization of
stateful computation methods

Common characteristics System Main mechanism Objective

Batch processing [75] Indexing Avoid a sequential scan

[15] State as explicit input Minimize data movement

Stream processing [67] Partitioned stateful operators Balance the load

[16] Parallel patterns Increase parallelism

ever, due to limitations in frameworks, such as MapReduce,
this will be difficult. Instead, they propose an alternative
approach by treating state as an explicit input that can store
and retrieve as new data arrive. Moreover, by employing a
stateful groupwise operator (i.e., translate), data movement
is minimized and state is smoothly integrated into a data-
parallel processing framework.

Gedik [67] exploit partitioning functions for stateful data
parallelism in stream processing systems to improve applica-
tion throughput. They note that partitioned stateful operators
(PSO) such as streaming aggregation, one-way join, and
progressive sort are well suited for data parallelism and
demonstrate that these can hold state on partitioning-key
defined sub-streams. Furthermore, they indicate that for PSO,
hash functions must be employed “to ensure that tuples with
the same partitioning key value are routed to the same par-
allel channel.” In conclusion, they reiterate that partitioning
functions enable adequate memory load balance, communi-
cation, and computation, while concurrently maintaining the
migration overhead low under a variety of workloads.

Matteis and Mencagli [16] address parallelism chal-
lenges involving stateful operators arising in modern stream
processing engines (e.g., Spark Streaming, Storm) by algo-
rithmic skeletons. Algorithmic skeletons (a.k.a. parallelism
patterns) are a high-level parallel programming model for
parallel and distributed computing. They are useful in hid-
ing the complexity parallel and distributed applications. They
present four parallel patterns for window-based stateful oper-
ators ondata streams:window farming, key partitioning,pane
farming, and window partitioning.

The window farming pattern (WFP) applies each compu-
tation (e.g., a function) to a window, and the corresponding
results will be independent of one another. The key parti-
tioning pattern extends the WFP by adding a constrained
assignment policy. In this policy, the same worker processes
windows originating from the common sub-stream sequen-
tially; however, this limits the parallelism.

The pane farming (PF) pattern splits each window into
non-overlapping partitions called panes. This fine-grained
division increases throughput and decreases latency by shar-
ing the results of overlapping panes. Finally, the window
partitioning pattern requires multiple workers to process
each individual window. Akin to PF, this pattern improves
throughput and reduces latency. However, this latency reduc-

F 

state 

F

state

Fig. 8 State in iterative processing

tion depends on the total number of workers, in contrast to
the pane farming pattern, which does not.

5 Iterative processing

State can be used to efficiently enable iterative processing
(IP) in big data frameworks (BDF) (cf. Fig. 8). IP contin-
uously applies a user-defined function (often called a step
function) to a data collection until a convergence criterion
(e.g., a fixed point, a fixed number of iterations) is met. This
type of operation is of paramount importance for large-scale
data analysis since most machine learning and graph mining
algorithms are iterative in nature. Yet, they are ill-suited for
BDF, such as MapReduce [3], since they incur a large over-
head, in particular for many graph or social network analysis
algorithms. These often times needlessly reload and repro-
cess data during iterations; even though they leave large parts
of the data unchanged [2]. Additionally, each iteration is exe-
cuted as a separate job [76], which prevents optimizations
across iterations. These drawbacks lead to the development of
iterative mechanisms and their integration into data-parallel
processing systems [77, 78]. In his vision paper [79], Markl
affirms that the native support of state in iterative data anal-
ysis programs is a key design for future platforms.

Iterative computations come in two varieties, namely bulk
and incremental. In bulk iterations, each step produces an
entirely different intermediate computation in contrast to the
(final) result. Examples of bulk iteration include machine
learning algorithms, such as batch gradient descent [80] and
distributed stochastic gradient descent [81]. In incremen-
tal iterations, the result of a current iteration (at time step
i) slightly differs from the result of the previous iteration
(at time step i −1). As discussed in [76], the elements of
the intermediate computations exhibit “sparse computational
dependencies.” That is, changes in one element solely affect
a few other elements. For example, in the connected compo-
nents algorithm, an update to a single vertex impacts only its
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Table 6 A characterization of
iterative processing methods Common characteristics System Main mechanism Objective

Integrate with
incrementalization

[77] Exploit sparse computational
dependencies

Improve performance

[24] Lineage tracking and homomorphism Reduce state size

Occurs transparently in
the background

[76] Use algorithmic compensations Achieve fast recovery

[84] Unblocking mechanism for checkpointing

surrounding neighbors. Table 6 lists varying systems classi-
fied by their common characteristics. Next, we discuss four
papers/systems and their proposed approaches for iterative
processing involving state.

The first approach, due to Ewen et al. [77], overcomes
some performance issues in existing dataflow systems,which
treat incremental iterations as bulk iterations. As a result,
some iterative algorithms perform poorly. To resolve this,
the authors devise a method that integrates incremental iter-
ations into parallel dataflow systems, by exploiting sparse
computational dependencies that are intrinsic in many iter-
ative algorithms. Rather than creating a specialized system,
their method facilitates expressing analytical pipelines in a
unified manner and disregards the need for an orchestration
framework. As a proof-of-concept, the authors [78] illustrate
the implementation, compilation, optimization, and execu-
tion of iterative algorithms in Stratosphere.

The second approach due to Fegaras [24], called MRQL
Streaming, improves iterative processing performance over
the two earlier approaches. It relies on two techniques,
namely lineage tracking [82] and homomorphisms, to reduce
the state size. In the lineage tracking technique, attributes
in join and group-by clauses are moved to query outputs,
to establish connections between the input data and query
results. In contrast, the homomorphism-based technique
combines the current state value with new input data to
generate new output. To apply these two methods, MRQL
Streaming automatically converts a SQL query to an incre-
mental, distributed program that runs on a stream processing
engine. Then, it derives incremental programs by storing a
small state during the query evaluation process and using a
novel incremental evaluation technique that merges the cur-
rent state value and the latest data.

The third approach, due to Schelter et al. [76], utilizes state
to address fault recoveryduring the iterative processingoffix-
point algorithms, which are common in machine learning. In
their paper, the authors introduce a mechanism based on the
principle of algorithmic compensations to achieve optimistic
recovery. Algorithmic compensations concern the exploita-
tion of a fixpoint algorithm property, namely the ability to
converge to the solution from several intermediate consistent
states. Optimistic recovery concerns resuming computation
from the latest iteration, in contrast to rollback recovery,
where computation starts from scratch. Using their ideas,

the authors are able to rebuild state, using a user-defined,
algorithm-dependent compensation function. Furthermore,
their approach outperforms rollback recoverymethods, since
state checkpointing occurs in the background, independent
of and not interfering with the processing of data. Addition-
ally, they show how their method can be employed in three
areas: factorizingmatrices, performing linking and centrality
computations in networks, and identifying paths in graphs.
Lastly, Dudoladov et al. [83] demonstrate the efficiency of
the optimistic recovery mechanism for both the Connected
Components and PageRank algorithms in Apache Flink.

The fourth approach, due to Xu et al. [84], introduces the
concepts ofhead and tail state checkpointing, to lower check-
pointing costs and reduce failure recovery time. Head (tail)
checkpointing writes checkpoints at the beginning (end) of a
step (i.e., each iteration in the iterative computation). In their
approach, they use an unblockingmechanism to write check-
points, transparently in the background without requiring
the program to interrupt. This avoids the overhead associ-
ated with delayed execution at checkpoint creation time. By
injecting checkpoints directly into dataflows, this method
takes advantage of both low-latency execution (by disregard-
ing pipeline process interrupts) and the seamless integration
into existing systems. Furthermore, the use of local log files
on each node circumvents the need to recompute from scratch
upon failure and yields a faster (or confined) recovery.

5.1 Fault tolerance

State can be used to enable failure recovery and thereby
facilitate fault tolerance. It is persisted in reliable storage
and updated periodically. When failure occurs, big data pro-
cessing systems restore the state to another node, thereby
recovering the computation from the last checkpoint (cf.
Fig. 9). Fault tolerance, in general, requires redundancy,
which can be achieved in severalways.One approach enables
the redundant storage (or replication) of computations. A
second approach enables the redundant storage of the compu-
tational logic, which involves a variant of state called lineage
(e.g., prevalent in Spark). Alternatively, a third approach
employs redundant computation [76], which exploits algo-
rithmic properties and does not use state.

According to Hwang et al. [36], there are three fault-
tolerance mechanisms: passive standby, active standby, and
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Fig. 9 State in fault tolerance

Table 7 A characterization of independent checkpointing methods

System Main mechanism Objective

[85] Maximal connected
subgraphs (MCS)

Checkpoint MCS
independent of one
another

[31] Checkpoint asynchronously Partitioning state, ensure
consistency

[57] Use control tuples to
represent the partial state
of operators

Use single persistence
for operator and
output queues

upstream backup. In the case of passive standby, only the
modified part of the state is backed up periodically. In the case
of active standby, redundant execution enables each backup
server to receive and process the same input from upstream
servers, in parallel, as its primary server. Lastly, in the case
of upstream backup, each primary server retains its output,
while the backup is still inactive. If a primary server fails,
the backup restores the primary server’s state by reprocess-
ing tuples stored at upstream servers.

Each method has its own advantages, in terms of network
usage, recovery latency, recovery semantics, and system
performance [36]. Most researchers prefer passive standby
(or checkpointing), to achieve fault-tolerance because it is
effective in addressing more configuration and workload
needs than the alternative approaches [85]. Additionally, this
method reduces the overall recovery overhead, since each
checkpoint can be restored in parallel. Orthogonal to the
taxonomy of Hwang et al. [36], we classify fault-tolerance
methods into three key categories, i.e., independent, depen-
dent, and incremental. These categories are determined via
the state handling approach employed, as a classification cri-
terion.

5.1.1 Independent checkpointing

In the research literature, there are two types of (node) fail-
ures, namely independent failures and correlated failures.
The assumption is that failures are either independent of one
another or occur simultaneously, i.e., correlated. Table 7 sum-
marizes varying independent checkpointingmethods by their
shared characteristics. Next, we discuss three methods for
independent checkpointing.

Hwang et al. [85] introduce the concept of a maximal
connected subgraph, which they regard as an atomic (i.e., a

high-availability or HA) unit for independent checkpointing.
These units can be checkpointed onto independent servers
at varying times since they have no interdependencies and
thus avoid inconsistent backup checkpoints. Consequently,
spreading out independent checkpoints to multiple servers
can reduce the checkpointing overhead. Comparably, Kwon
et al. [31] split state into partitions that can independently
checkpoint states, while ensuring consistency in the event
of node failures.

Sebepou and Magoutis [57] produce independent partial
checkpoints asynchronously, by splitting operator state
into disparate parts. Represented as control tuples, these
independent checkpoints contain the partial state of an
operator and combined with normal tuples, which contain
the actual data in operator output queues. As a consequence,
this enables us to use a single persistent architecture for
both the operator and output queues. This approach follows
the upstream backup mechanism by persisting the output
queue to stable storage. In the event of node failures, an
operator’s input queue can be rebuilt by fetching tuples from
an upstream operator’s output queue.

5.1.2 Correlated checkpointing

Correlated failure events involve the simultaneous failure of
multiple nodes. They generally occur, whenever switches,
routers, or electrical power fail. Indeed, when failures occur,
varying coping strategies [86–91] have been proposed.
Table 8 summarizes varying systems by shared character-
istics. Next, we dive into seven approaches for correlated
checkpointing.

Balazinska et al. [92, 93] propose a fault tolerance
approach to dealwith node failures, network failures, and net-
work partitions in the Borealis distributed stream processing
system [94]. It is a replication-based method because dis-
tinct nodes run multiple copies of the same query network
to ensure availability (i.e., deliver results within a specified
time threshold). This method can tolerate n−1 simultaneous
node failures, if each node has n replicas. It also employs the
upstream backup mechanism by buffering the tuples at the
data sources. In thisway,when failures occur, these tuples can
be reprocessed to rebuild the operator’s state. This method
tries to ensure uninterrupted processing, despite failures, by
continuing to process tentative tuples (i.e., tuples that belong
to an input subset). These tentative tuples will be corrected
later when failures heal, to produce a consistent result.

Chen and Dongarra [86] checkpoint the entire system in
order to ensure consistency. They employ scalable coding
strategies to simultaneously handle multiple node or link
failures. Unlike traditional fault tolerance schemes (i.e., per-
forming a restart from a checkpoint), in this framework,
applications are not aborted. Instead, they keep all of their
surviving processes and adapt to the failures. Furthermore,
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Table 8 A characterization of
correlated checkpointing
methods

Common characteristics System Main mechanism Objective

Uninterrupted processing [92, 93] Replication and upstream
backup

Availability and
consistency

[86] Adapts to failures Improve scalability

[91] Injects tokens into streams Not interrupt operator

Employ multiple
checkpointing methods

[89] Combines passive and
active checkpoints

Save resources (storage)

[90] Uses varying fault tolerance
techniques for distinct
operators

Adapt to operator
properties

Optimized storage [87] Computes an optimal
number of checkpoints
and levels

Avoid exhaustive search

[88] Utilization of solely
relevant information

Minimize stored
information

they introduce several checkpoint encoding algorithms to
improve scalability, such that “the overhead to survive k
failures in p processes does not increase as the number of
processes p increases.”

Wang et al. [91] propose the Meteor Shower stream
processing system, which utilizes tokens when checkpoint-
ing. As a first step, source operators initiate the flow of
tokens throughout a streaming graph. Then, when an opera-
tor obtains these tokens, the system checkpoints the operator
state. Meteor Shower is comprised of three techniques: (1)
source preservation, to avoid the cost of handling redundant
tuples in previous checkpointing mechanisms [31, 36, 85],
(2) parallel and asynchronous checkpointing, to enable oper-
ators to keep running during the checkpointing process, and
(3) application-aware checkpointing that can both adapt to
changes to an operator’s state size and checkpoint whenever
the state size attains a minimum value. This method can han-
dle both single and network failures.

Su and Zhou [89] develop a passive and partially active
(PPA) scheme, to overcome weaknesses in fault tolerance
methods (FTM). For example, active FTM require extra
resources and passive FTM have a costly recovery pro-
cess. The PPA scheme employs passive checkpointing for all
tasks and partially active checkpointing for a selected num-
ber of tasks, since resources are limited. Consequently, their
scheme provides very fast recovery for a selected number
of tasks that use active fault tolerance and tentative output
for those tasks that exploit passive fault tolerance. Although
the tentative output is less accurate than the exact output, its
accuracy improves when more data are available. To gener-
ate the maximum quality of the tentative outputs, the PPA
scheme employs a bottom-up dynamic programming algo-
rithm to optimize the replication plan for correlated failures.

Upadhyaya et al. [90] propose using varying fault-
tolerance techniques for distinct operators that correspond to
a single query plan. Incidentally, such a strategy will require

a cost-based optimization plan to achieve fault tolerance.
Thus, the authors introduce a fault tolerance optimizer, called
FTOpt, to automatically pair each operator with the most
suitable technique in a query plan. FTOpt aims to reduce
the execution time of the entire query despite failures. Their
approach, like the PPA scheme, does not limit checkpointing
to a single method. However, it is better thanPPA, in terms of
the quality of the result, since FTOpt produces exact output,
as opposed to tentative output. Furthermore, this method can
handle various kinds of failures (i.e., from process failures to
network failures).

Hakkarinen and Chen [87] propose an alternative
approach, i.e., an N-level diskless checkpointingmethod that
minimizes fault tolerance overhead, to cope with concurrent
processor failures. In comparison with a one-level scheme,
layering diskless checkpointing can enable failure tolerance
up to a maximum of N processes and considerably reduces
the runtime. In addition, the authors develop and verify an
analytical costmodel for diskless checkpointing. Lastly, their
checkpointing scheme can also calculate the optimal number
of checkpoints and levels, to avoid an exhaustive search.

Koldehofe et al. [88] propose a novel method that can
survive multiple simultaneous node failures without using
persistent checkpoints. They observe that “at certain points
in time, the execution of an event-processing operator solely
depends on a distinct selection of events from the incoming
streams, which are reproducible by predecessor operators.”
This leads them todesign amethod that preserves the operator
state in savepoints, instead of checkpoints. Consequently,
the operator state solely requires the information necessary
for the incoming streams and the relevant selection events.
Their proposed savepoint recovery system can: (1) identify
an empty operator state, (2) capture and replicate savepoints
and ensure the reproducibility of corresponding events, and
(3) tolerate multiple simultaneous operator failures.
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Table 9 A characterization of
incremental checkpointing
methods

Common characteristics System Main mechanism Objective

Divide-and-conquer
strategy

[85] Checkpoint a small
fragment of query graph

Efficient checkpointing and
failure recovery

[57] Split operator state into
control tuples

Balance recovery and running
time

[18] Split states into slice units Fast recovery

Adapts to computing
environments

[26] Utilize the similarity of
access patterns

Adapt to scarce memory

[96] multi-level checkpointing
with delta compression

Adapt to I/O and network
bandwidth

N/A, only one system [56] Compute the optimal
number of incremental
checkpoints

Reduce checkpointing
overhead

N/A, only one system [95] Inject barriers into data Minimize space requirements

5.2 Incremental checkpointing

The approaches discussed in Sects. 3.1 and 3.2 depend on the
periodic checkpointing of state (PCoS) for failure recovery.
However, Carbone et al. [95] discuss two key drawbacks.
First, the PCoS often interrupts the overall computation,
which slows down the data flow processing speed. Second,
they greedily persist all tuples jointly with the operation
states, thereby resulting in larger than expected state sizes.
Thus, to overcome these drawbacks, researchers propose
methods based on incremental checkpointing [18, 57, 85],
which only checkpoint changes to the state (not the entire
state). By capturing the delta of the state (i.e., the latest
changes in content, since the last checkpoint), these meth-
ods considerably reduce the checkpoint overhead and yield
smaller state sizes. Table 9 contains a characterization of
seven incremental checkpointing (IC) methods across sys-
tems. Next, we highlight the seven IC methods developed
for use in the event of node failure.

Hwang et al. [85] propose a fine-grained checkpointing
method that employs a divide-and-conquer strategy. In their
scheme, the entire dataflow graph is divided into several sub-
graphs, each of which is then allocated to a different backup
server. By employing a so-called delta-checkpointing tech-
nique, each server checkpoints a small fragment of its query
graph. To guarantee state consistency, changes to state are
incrementally checkpointed to backup servers. When failure
occurs, query fragments are collectively recovered in paral-
lel, thereby achieving fast failure recovery and experiencing
a small runtime overhead.

The continuous eventual checkpointing (CEC) method
due to Sebepou andMagoutis [57] guarantees fault tolerance
by employing incremental state checkpoints continually,
while minimizing interruptions to operator processors. To
achieve this, operator state is split into parts and inde-
pendently checkpointed, as needed. These partial state

checkpoints are expressed as control tuples that contain the
partial state of an operator. Unlike traditional schemes, in the
CEC approach, checkpoints are updated incrementally and
continuously. Consequently, the CEC method can efficiently
handle continuous incremental state checkpoints and adjust
checkpoint intervals to strike a balance between recovery
time and running time.

Also employing a divide-and-conquer strategy, Wu and
Tan [18] propose ChronoStream, which splits states into
a collection of fine-grained slice units. Comparable to the
recently mentioned subgraph to backup server assignment
scheme [85], units can be selectively distributed and check-
pointed into specific nodes. Upon failure, ChronoStream
transparently rebuilds the distributed slice units and thus
incurs small overhead. In comparison with other methods
[57, 85], ChronoStream models application-level internal
states differently.

To exploit the similarity of access patterns, among writes
to memory in iterative applications, Nicolae and Cappello
[26] propose the Adaptive Incremental Checkpointing (AI-
Ckpt) approach for iterative computations under memory
limitations. Under the assumption that “first-time writes to
memory generate the same kind of interference as they did
in past iterations,” the AI-Ckpt method enables the predic-
tion of future memory accesses for subsequent iterations.
Consequently, this prediction leverages both current and his-
torical access trends for flushing memory pages to stable
storage in an optimal order. This asynchronous checkpoint-
ing approach is well suited for computing environments with
limited memory resources. It can dynamically adapt to vari-
ous applications, utilize access pattern history, and minimize
the intervention of the checkpointing process running in the
background.

Since the I/O and network bandwidth to distant storage
heavily influences the checkpointing execution time (for
large-scale systems), Jangjaimon and Tzeng [96] propose
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Table 10 A characterization of
integrative optimization
methods that utilize state to
address multiple problems
simultaneously

System Main mechanism Multipurpose

[100] Differential dataflow Incremental and iterative computation

[38, 61] Timely dataflow Incremental, iterative computation, high
throughput, and low-latency processing

[17] Upstream backup Fault tolerance and scalability

[18] Transactional migration protocol
and thread-to-slice mapping

Fault tolerance, scalability, and elasticity

[67] Partition functions Load balancing and operator migration

[98] Reuse checkpoints for load
balancing

Fault tolerance, state migration, and load
balancing

[99] Mixed-integer linear programs Load balancing and scalability

the adaptive incremental checkpointing (AIC) method. This
approach reduces the state size, to use bandwidth more effi-
ciently, lowers the overhead, and improves performance.
It employs multiple cores to perform adaptive multi-level
checkpointing with delta compression, which can signifi-
cantly minimize the incremental checkpoint file size. The
authors also introduce a newMarkovmodel to predict the per-
formance of a multi-level concurrent checkpointing scheme.
In comparison with checkpointing schemes employing fixed
checkpoint intervals, the AIC method substantially reduces
the expected running time (e.g., by 47%), when evaluated
against six SPEC benchmarks.

Using a cost model, the incremental checkpointing (IC)
method due to Naksinehaboon et al. [56] computes the
optimal number of incremental checkpoints between two
full checkpoints. Consequently, it reduces the checkpointing
overhead, in comparison with full checkpoint (FC) models.
Improving upon the IC approach, Paun et al. [97] extend it
to include theWeibull failure distribution case. Their experi-
ments show that the overheadof the ICmethod is significantly
smaller than that of the FC method.

To minimize space requirements in dataflow execution
engines, Carbone et al. [95] devise the Asynchronous Bar-
rier Snapshotting (ABS) algorithm, which is suited for both
acyclic and cyclic dataflows. On acyclic topologies, stage
barriers, injected into data sources by a coordinator, can
trigger the snapshot of current state. The algorithm solely
materializes operator states in acyclic dataflows. On the other
hand, on the cyclic execution graphs, ABS solely stores a
minimal set of records on cyclic dataflows. Upon failure,
the ABS algorithm reprocesses logged records to recover the
system. Experiments show that ABS can achieve linear scal-
ability and performs well with frequent state captures.

6 Integrative optimization

Thus far, state has been shown to be effective in sev-
eral isolated application scenarios (i.e., fault tolerance, load

balancing, elasticity). However, state can also be used to
simultaneously address multiple scenarios simultaneously
(e.g., scalability, fault tolerance [17, 18, 67, 98, 99]). It is
in this scenario that multi-objective or integrative optimiza-
tion (IO) arises. For otherwise optimizing independently (per
each scenario) would yield a suboptimal solution. Inciden-
tally, IO spans numerous facets, as reflected in Table 10
(under multipurpose).

Often, a single system alone cannot meet all process-
ing requirements, such as high-throughput batch processing,
low-latency stream processing, and efficient iterative and
incremental computations. Therefore, multiple systemsmust
be employed to achieve coverage. However, the use of a
federation of platforms brings numerous problems, includ-
ing inefficiency, complexity, and maintenance challenges.
Hence, new systems are being developed with these multiple
objectives in mind. Next, we discuss the varying IO methods
prevalent across varying systems.

McSherry et al. [100] propose a newcomputationalmodel,
called differential dataflow, which supports both incremen-
tal and iterative computation. Extended from batch-oriented
models (e.g., MapReduce, DryadLINQ), their model enables
arbitrarily nested fixed-point iteration and simultaneously
supports the efficient, incremental updates to inputs. Rather
than using the entire temporal order, changes to collections
are described in terms of the partial order. This allows the
collections to evolve and eliminate the need to restart the
computation to reflect changes.

Due to McSherry et al., Naiad [38, 61] is a distributed
system for dataflow programs that is developed to satisfy
all three of earlier referenced requirements in a single frame-
work. Naiad supports both iterative and interactive queries on
data streams and generates up-to-date and consistent results
that can be incrementally updated, as new data arrive contin-
uously. Furthermore, in [38, 61], McSherry et al. present a
novel computational model, called timely dataflow, to boost
the parallelism prevalent across various classes of algorithms
(e.g., iterative, graph based, tree based).
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To describe the logical points during execution, Naiad
employs timestamps to enhance dataflow computation. Time
stamps are essential in supporting an efficient and lightweight
coordination mechanism. This is due to three features,
namely structured loops for feedback, stateful dataflow
vertices for records processing (without using global coor-
dination), and notifying vertices when all tuples have been
received by the system for a specific input or iteration round.
While the first two features support low-latency iterative and
incremental computation, the third feature ensures the result
is consistent.

Fernandez et al. [17] develop a unified approach based on
stateful dataflow graphs (SDG) for dynamic scalability and
failure recovery, to parallelize stateful operators (whenwork-
loads fluctuate) and achieve fast recovery times (with low
overhead). In their approach, they use the upstream backup
to periodically checkpoint stateful operators. Their system
detects bottlenecks in operators and enables them to scale by
automatically allocating new machines, consequently repar-
titioning the state, accordingly. In the event of a failure, the
checkpointed state will need to be rebuilt on a new machine
and tuples will need to be reprocessed to recover the failed
operators. To achieve these goals, the proposed system: (i)
uses a well-defined interface to allow for the easy access to
operator state, (ii) reflects information about the exact set of
processed tuples by an operator in its state, and (iii) preserves
operator semantics using a key attribute to partition the state.

Wu andTan’sChronoStream [18] concurrently offers fault
tolerance, scalability, and elasticity. Their low-latency stream
processing system provides transparent workload reconfig-
uration in a unified model, by separating application-level
parallel computation (i.e., computation states) fromOS-level
execution concurrency. As a result, ChronoStream achieves
transparent elasticity, fault tolerance, and high availability
without having to sacrifice performance. This is due to the
reduction in the overhead triggered by state synchronization.
The slice-reconstruction approach in ChronoStream is akin
to the state-migration approach in SEEP [17]. Furthermore,
both Wu and Tan’s ChronoStream and SDG [37] support
dynamic reconfiguration at runtime. However, state reparti-
tioning incurs high state migration costs in both SEEP and
SDG.

We revisit the method of Gedik [67] to address both load
balancing and operator migration. Recall that their solu-
tion employs a partitioning function, to achieve improved
load balance (auto-fission) and low migration costs. The
structure of the partitioning function is a hybrid involving
an explicit map and a consistent hash. Consequently, this
compact hash function can balance the workload uniformly
and adapt accordingly, even under high skew. Furthermore,
they construct algorithms and metrics to build and assess
the partitioning functions, to determine whether these can
achieve goodbalance and efficientmigration.More precisely,

they define load imbalance to be the proportion of the dif-
ference between the maximum and minimum loads to the
maximum permissible load difference. Data items in the par-
tially constructed partitioning function have their migration
costs normalized based on the ideal migration cost. The util-
ity function combines the relative imbalance metric and the
migration costmetric, to assign the items to parallel channels.

Madsen and Zhou [98] reuse the checkpoints meant for
failure recovery, to efficiently improve the dynamic migra-
tion of the state, like Fernandez et al. [17]. As a first step, they
formally define a checkpoint allocation problem with some
constraints. Then, they propose a practical (i.e., efficient)
algorithm to reuse the checkpoints for effective load balanc-
ing. If the workload is increasingly skewed at key groups,
then the system must transfer many checkpoints, for groups
of keys in A, where A is a set of key groups, to nodes with
lighter loads in advance, to quickly react to fluctuations. To
increase the chance of this availability, the checkpoints of
the key groups in A must be allocated to the nodes with
key groups that are “as negatively as possible correlated
with the key groups of A.” Due to the relationship between
fault tolerance and migration, checkpointing can be viewed
as proactive load balancing, i.e., utilizing checkpoints for
state migration to help balance the load.

Lastly, Madsen et al. [99] model load balancing, oper-
ator instance placement, and horizontal scaling, jointly, to
enable low-latency processing, optimize resource usage, and
minimize communication costs. They integrate horizontal
scaling and load balancing using mixed-integer linear pro-
grams (MILP) to arrive at a feasible solution. This model is
suitable when the placement of operator instances does not
considerably affect communication costs. By using theMILP
approach and linear program solvers, they improve the load
balance over existing heuristic approaches. Yet, using the
so-called Autonomic Load Balancing with Integrated Col-
location (ALBIC) solution enables them to further achieve
gains over the MILP-based approach. Using ALBIC, they
can: (i) generate an improved operator instance collocation,
(ii) balance the load, and (iii) lower the overhead. This holds
because ALBIC gradually improves the placement at run-
time, while still satisfying load balance constraints.

7 Implementations of state and limitations

In this section, we survey the implementations of state in
five popular open-source big data processing frameworks,
i.e., Storm, Heron, Samza, Spark, and Flink. Table 11 sum-
marizes some of the characteristics corresponding to each
of these frameworks. Next, we examine the varying system
implementations and highlight some of their limitations.

Storm solely supports stateless processing and imple-
ments state management at the application level, to enable
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Table 11 Implementation of state across systems

Systems State
management

Fault tolerance Guarantees

Storm Not native Tuples acknowledge At least once

Storm+Trident Specific
operators

Tuples acknowledge Exactly once

Heron Stateful
topologies

Tuples acknowledge At least once

Samza Stateful
operators

Log of updates At least once

Spark State DStream RDD lineage Exactly once

Flink Stateful
operators

State checkpoint Exactly once

fault tolerance and scalability in stateful applications. It is
not equipped with any native mechanism to manage state. To
overcome this limitation, an abstraction layer called Trident
that extends Stormhas been proposed. It is amicro-batch sys-
tem that adds statemanagement and guarantees exactly -once
semantics using its own API designed for fault tolerance. It
not only inherits Storm’s acknowledgement mechanism, it
can prevent data loss and ensure that each tuple is processed
only once.

Currently, there are two state management alternatives
supported in Storm. The first alternative keeps information
about both the order of the most recent batch and the current
state; however, it may block execution. The second alterna-
tive overcomes the previously stated shortcoming; however,
it incurs more overhead, by also maintaining the last known
state. To ensure correct semantics, it is vital to maintain the
order of state updates. Storm provides at-least-once guaran-
tees by re-emitting tuples from a spout (i.e., a data source)
in the event of failure. It uses an upstream backup technique
and tuple acknowledgements to reprocess tuples in the event
of failure. In contrast, Storm+Trident provides exactly-once
guarantees by writing topologies with required semantics.
To achieve these semantics, Trident uses three primitives:
(1) Tuples are processed in small batches, (2) each batch is
assigned a unique id called the transaction id, unless the batch
is being replayed, in which case the batch is given the same
id, and (3) state updates are ordered among batches, i.e., state
updates for batch i+1 must wait until the state updates for
batch i are complete. However, Trident is ill-suited for big
states, for otherwise, it would incur severe delays.

Stormhas a number of limitations. First, it is hard to debug.
Second, it requires a special hardware allocation, which lim-
its its scalability. Finally, it requires the manual isolation of
machines whenmanaging provisioning. Thus, Kulkarni et al.
[7] proposed Heron to overcome these limitations. Heron
uses stateful topologies comprised of spouts and processing
elements (i.e., bolts). In these topologies, every component,
both spouts and bolts store their statewhen processing tuples.

LikeStorm,Heronuses tuple acknowledgements for fault tol-
erance (i.e., each tuple in the system is acknowledged, once
it is fully processed by downstream components). Heron can
deliver at most once guarantees (without acknowledgement)
or at least once guarantees (when employing acknowledge-
ment).

Samza can manage large states (e.g., GBs in each parti-
tion) by preserving state in local storage and using Kafka to
duplicate state changes. Kafka stores the log of state updates
and can easily restore state. By default, Samza uses a key-
value store to support stateful operators. However, alternative
storage systems are also available, if richer querying capa-
bilities are required. Like Storm, Samza offers at-least-once
guarantees in the event of failure by re-emitting messages.

Spark implements state management using the concept of
a DStream (i.e., a discretized stream), which updates opera-
tions via transformations. Distributed immutable collections
or RDDs (resilient distributed datasets) are key concepts of
Spark. Fault tolerance in Spark is achieved using lineage [40],
to avoid checkpointing overhead. State in Spark streaming
plays the role of another micro-batching stream. For this rea-
son, during micro-batch processing, Spark uses an old state
to generate another micro-batch result and a new state.

Specifically, the transform function separates state from
the output, enabling programmers to call RDD functions
on micro-batches. Then, they can use functions, such as
RDD.join(), to combine the statewith incoming tuples. Spark
achieves exactly-once semantics in one of two ways, i.e.,
either idempotent writes or transactional writes. In idempo-
tent writes (i.e., multiple writes that produce the same data),
messages are stored in a database, according to a unique
key without duplication. In transactional writes, messages
are written to storage within a single transaction. Due to this
atomic operation, transaction rollbacks eliminate duplicated
messages.

Flink employs a single-pass algorithm that superim-
poses global snapshotting to normal execution [95], to
support exactly-once semantics. This approach is akin to
the Chandy–Lamport algorithm, which uses markers. How-
ever, unlike the Chandy–Lamport algorithm, which assumes
a strongly connected distributed system, this Flink-specific
algorithmalso applies toweakly connected execution graphs.
To checkpoint state, Flink offers a wide range of configurable
state backends, with various levels of complexity and persis-
tence.

Currently, Flink keeps state in memory (i.e., holds state
internally as objects on the JAVA heap), backs up state in a
file system (e.g., HDFS), or persists state in RocksDB. Flink
also introduces the concept of queryable state [101], which
enables real-time queries to directly access event-time win-
dows, thereby avoiding the overhead associated with writing
to key/value stores. Consequently, with these enhancements
to state, Flink can also supportmany other operations, such as
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software patches, testing, and system upgrades. Like Spark,
Flink uses idempotent and transactional writes to support
exactly-once semantics [101].

Although the implementations of state differ in these
frameworks, in terms of their representation and storage
solutions, they all lack support for adaptive checkpointing.
As of the time of the writing of this survey, these frame-
works solely support periodic checkpointing (e.g., hourly
checkpointing). Some researchers [71] prove that aperi-
odic checkpointing can improve performance over periodic
checkpointing. Thus, one appealing research direction is to
extend these frameworks to support adaptive checkpointing
(i.e., determine when to optimally checkpoint adaptively as
opposed to checkpointing periodically). We can calculate
these optimal moments using the checkpointing (and recov-
ery) costs at the time checkpoints happen. These costs, in
turn, depend on the probability that failures occur. Conse-
quently, this cost-based adaptive checkpointing model must
integrate the anticipation of failure probability as an impor-
tant parameter. Additionally, devising an efficient represen-
tation of state (e.g., approximate, compressed, incrementally
updateable) that enables iterative algorithms to runmore effi-
ciently is yet another opportunity for further research.

8 Open discussions

We conclude this survey by motivating new research direc-
tions in state management. This includes novel approaches
to: (1) integrate state management into big data frameworks,
(2) enable state management for iterative algorithms, (3) use
state to support hybrid systems, and (4) evaluate state man-
agement methods.

8.1 Integrating state management into big data
frameworks

Current big data frameworks can be further extended to
incorporate existing techniques for state management at
varying abstraction levels, ranging from low level (e.g.,
operator primitives, calculus algebra) to high level (e.g.,
language level or platform level). Next, we discuss each
level in greater detail.

At the lowest level, primitive operators can be further
extended, beyondwhatwasdiscussed inSect. 3.1.5.By incor-
porating leading state management solutions into the current
frameworks, managing state will be far easier to do and lead
to greater efficiencies.

At the calculus level, researchers [102–104] focus on
incremental state computation using algebra. Cai et al. [102]
introduce a new mathematical theory (i.e., the theory of
changes and derivatives) for incremental computation. Ham-
mer et al. [104] usefirst-class names as the essential linguistic

characteristic for efficient incremental computation. Fegaras
[103] usesmonoid homomorphisms as the underlying mech-
anism to propose an algebra for distributed computing.
Consequently, at the algebraic level, we can extend the
incremental change of state to support additional functions,
beyond those discussed in this survey.

At the high-language level, some researchers [105, 106]
devise novel declarative languages for big data processing.
Silva et al. [106] propose a language to allow users to eas-
ily define and parameterize checkpointing policies. In this
framework, language annotations are used to apply fault
tolerance policies in streaming applications. Further, this
approach combines language primitives with code genera-
tion to facilitate checkpointing per user specification.Beyond
fault tolerance, language annotation extensions (LAE) can
specify parts of an application that should be actively versus
passively (e.g., PPA scheme [89]) fault tolerant. Addition-
ally, LAE may be used to declare which operators should be
made public (e.g., for users) versus private (e.g., for internal
operator use only). Furthermore, Alexandrov et al. [105] pro-
pose the Emma language, which deeply embeds APIs into a
host language (e.g., Scala) for complex data analysis. Emma
can be further extended to integrate state management meth-
ods at the language level, thereby enabling declarative state
management.

At the high platform level, Rheem [107, 108] introduce
multilayer (i.e., platform, core, and application) data pro-
cessing and a storage abstraction to support both platform
independence and interoperability across platforms. They
envision that a data processing abstraction based on user-
defined functions can achieve two purposes. First, users can
solely focus on the logic of their data analytics tasks. Second,
applications can be independent from data processing plat-
forms. Rheem decomposes a complex analytic into smaller
subtasks to leverage diverse processing platforms. This divi-
sion allows a single task to run over multiple platforms to
boost performance. Moreover, we can further extend Rheem
to build a state management system that eases deployment
on various platforms, achieves independence and interoper-
ability among platforms, and improves performance.

In this subsection, many perspectives were presented.
Some researchers have already begun to incorporate high-
level support for declarative big data analysis. However,
determining how to combine the strengths of each of these
individual systems, in order to support state management
declaratively remains a challenging research problem.

8.2 Enabling state management for iterative
algorithm-based applications

Many machine learning algorithms such as PageRank, K-
Means, and its variants [109] require iterative steps to
converge to thefinal solution.Due tobig state sizes, some iter-
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ative algorithms use approximate statewith small sizes [110,
111] or approximate algorithms with fewer iterative steps
[112–115] to boost performance. Usually, these approximate
algorithms sacrifice accuracy for performance. However,
some researchers [116, 117] develop solutions that ensure
both precision and performance. These approaches investi-
gate mechanisms to represent state in an approximate form,
approaches for optimizing approximate algorithms, and the
development of exact iterative algorithms. Ultimately, these
solutions focus on increasing performance with minimal
impact result quality.

Seamlessly and efficiently incorporating approximate
state representations into the exact algorithms is another chal-
lenging problem. Once this has been achieved, we can then
compare the approximate and exact algorithms, in terms of
precision and performance to determine how state approxi-
mation can help boost latency and/or throughput.

For emerging application scenarios, such as the Internet
of Things (IoT), continuous data streams must be pro-
cessed with very short delays. Determining how to use state
efficiently in these applications to satisfy the abovemen-
tioned requirement is a challenging problem. For example,
Hochreiner et al. [118] propose a platform for stream pro-
cessing in the IoT, where they use synchronized state across
all computing nodes. They also provide a toolkit for devel-
opers to manage shared state.

8.3 Using state management for hybrid systems

While batch data provide comprehensive and historical views
of data, real-time streaming data provide fresh and up-to-
date information. Some researchers [20, 119, 120] propose
hybrid systems to process these two types of data on a sin-
gle platform. These hybrid systems handle both historical
information and the most recent data.

The Lambda architecture [121] tries to process both batch
and streaming data by providing a software stack including:
(1) a batch layer (e.g., implemented in Hadoop) to process
batch data, (2) a speed layer (e.g., implemented in Storm)
to process streaming data, and (3) a serving layer to index
batch views and enable them to be queried in low latency.
This mixture of multiple systems is hard to configure, man-
age, and maintain due to their diversity and heterogeneity.
Moreover, many data analysis tasks generally involve both
layers, thereby limiting optimization opportunities. Thus, we
cannot process data as efficiently as a single unified system.

To partially overcome this weakness in the Lambda archi-
tecture, Jay Kreps proposes the Kappa architecture [122],
which removes the batch layer and only uses a single stream
processing engine. However, Kappa is not a perfect replace-
ment for Lambda, especially in situations, where batch
and streaming algorithms have differing outputs (e.g., for
machine learning). Other researchers [20, 119, 120] pro-

pose hybrid systems that integrate multiple data types (e.g.,
real time with batch or streaming with OLAP). Boykin
et al. [119] propose Summingbird to combine online and
batch MapReduce computations into a single framework. To
fuse stream and transaction processing into a single system,
Meehan et al. [20] built S-Store, initially, startingwith a com-
pletely transactional OLTP database system, then integrating
additional streaming functionality. This enables S-Store to
simultaneously and seamlessly support OLTP and stream-
ing applications. Meehan et al.’s [120] BigDAWG tightly
integrates stream and batch processing, to enable seamless
and high-performance querying capability over both new and
historical data. The effectiveness of BigDAWG in practical
applications is discussed in Elmore et al. [123].

Systems such as S-Store and Summingbird do not directly
focus on combining batch and streaming data in a single
system. Consequently, future research can encapsulate the
entire functionality of a Lambda architecture into a sin-
gle system to take advantages of both batch and streaming
worlds. Then, devising novel state checkpointing methods
is an essential requirement for stateful hybrid applications.
Moreover, proposing new ways to manage state in incre-
mental computations for both batch and streaming data in a
single framework is an intriguing research problem. Batch
and streaming data have specific characteristics. Thus, addi-
tional research will need to be conducted to develop novel
methods for efficient statemanagement that meets both batch
and streaming data requirements.

8.4 Evaluating state management methods

Evaluating state management methods is of paramount
importance. However, deciding which evaluation criteria or
standards to use is still an open problem. There are numer-
ous state management methods, but no universal benchmark
(with associated datasets, metrics, and workloads) that are
widely accepted. As a starting point, we propose the follow-
ing four dimensions to consider.

• Efficiency State management methods should have low
latency and high performance, particularly, when consid-
ering state updates, state migration, and state purging. For
example, this could be attained by efficient algorithms that
exploit compression or approximate/incomplete storage.
Performancemetrics may include state size, accuracy, and
precision when using approximate state during computa-
tions, and traditional performance metrics, such as latency
and throughput.

• Ease of use/management APIs that use and access state
must be simple and easy to use. They should cover most
application scenarios and provide richer functions and
encapsulations. This will help to reduce the human latency
cost in deploying and using big data frameworks in the
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future. User studies could serve as an evaluation method
to assess the expressiveness and effectiveness of stateman-
agement APIs for a variety of problem domains.

• Functionality Evaluating the functionality and adequate-
ness of state management for a particular application
is another important dimension. For example, state can
efficiently support iterative algorithms in many differ-
ent domains, such as artificial intelligence and machine
learning. For efficiency, it may have to support multiple
consistency guarantees and allow users to choose which
consistency level to use during a given iteration. This type
of functionality may not be supported by certain state
management APIs. Comparing and relating different func-
tionalities may guide a user to select the appropriate state
management systems and methods.

• Seamless integrationNewmethods should easily integrate
into existing, ongoing, and future frameworks for big data
processing. The integration must be effective, i.e., not
requiring too much effort to modify existing, underlying
platforms and not imposing any impedance mismatch.

9 Conclusion

In this survey, we have analyzed and surveyed state man-
agement research in big data processing systems from two
perspectives (i.e., concepts and applications of state). Fur-
thermore, we have compared state implementation among
five popular frameworks.Unfortunately, none of these frame-
works has addressed all of the abovementioned issues. Thus,
reducing the complexity, lowering processing latency, and
enabling fast recovery remain active research areas. We hope
this survey will pave the way for subsequent state manage-
ment research in big data processing systems.
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