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Abstract
Given a relational table, we study the problem of detecting and repairing erroneous data, as well as marking correct data,
using well curated knowledge bases (KBs). We propose detective rules (DRs), a new type of data cleaning rules that can
make actionable decisions on relational data, by building connections between a relation and a KB. The main invention is
that a DR simultaneously models two opposite semantics of an attribute belonging to a relation using types and relationships
in a KB: The positive semantics explains how its value should be linked to other attribute values in a correct tuple, and the
negative semantics indicate how a wrong attribute value is connected to other correct attribute values within the same tuple.
Naturally, a DR can mark correct values in a tuple if it matches the positive semantics. Meanwhile, a DR can detect/repair
an error if it matches the negative semantics. We study fundamental problems associated with DRs, e.g., rule consistency
and rule implication. We present efficient algorithms to apply DRs to clean a relation, based on rule order selection and
inverted indexes. Moreover, we discuss approaches on how to generate DRs from examples. Extensive experiments, using
both real-world and synthetic datasets, verify the effectiveness and efficiency of applying DRs in practice.

Keywords Data cleaning · Knowledge base · Detective rule · Rule generation

1 Introduction

Nowadays, many enterprises are data driven. However,
extracting actual business value fromdata is hard,where dirty
data are at the core of bad decisions. The classical situation,
garbage in and garbage out, is applicable to any data analyt-
ical task, including: database queries, data mining pipelines,
and machine learning training processes. It is known that
real-world data are dirty, up to 30% of an organization’s data
could be dirty; and it is very expensive, which costs the US
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economy $3 trillion+ in 2016 as reported by Harvard Busi-
ness Review.

There have been many studies in cleaning data using
integrity constraints (ICs) [7,9,10,49,51]. ICs are good at
capturing errors. However, the serious drawback of ICs is
that they cannot precisely tell which value is wrong. Take
functional dependencies (FDs) for example. Consider an FD

country → capital over the relation R(country, capital),
and two tuples t(China, Beijing) and t ′(China, Shanghai).
The FD can identify the existence of errors in t and t ′, but
cannot tell which value is wrong. All FD-based repairing
algorithms use some heuristics to guess the wrong value,
t[country], t[capital], t ′[country], or t ′[capital], and then
repair it.

In contrast, rule-based data repairing explicitly tells how
to repair an error. For instance, fixing rules [55] can specify
that for each tuple, if its country is China and its capital is
Shanghai, then Shanghai is wrong and should be changed
to Beijing. Other rule-based approaches such as editing
rules [23] and Sherlock rules [31] use tabular master data,
to collect evidence from external reliable data sources.

Arguably, both IC- and rule-based methods can make
mistakes when repairing data. However, IC-based tools are
more like black-boxes, while rule-based methods are white-
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boxes. When some mistakes made by the tools are identified,
the latter is more interpretable about what happened. Not
surprisedly, in industries, rule-based repairing methods are
widely adopted, e.g., ETL rules, but IC-based tools are rarely
employed.

Currently, we are witnessing an increased availability of
well curated KBs such as Yago [30] and DBpedia [41].
Also, large companies maintain their own KBs, e.g., Warl-
mart [16], Google and Microsoft. In order to take advantage
of these KBs, we extend prior rule-based cleaning method-
ologies [23,31] to clean relations by collecting evidence from
KBs. The core of our proposal is a new type of data cleaning
rules that build the connections between relations and KBs.
They are rule-based, such that the actions of how to clean
the data are baked in the rules, which rely on neither other
heuristic solutions as those for ICs [7,9,10], nor the domain
experts [11,43].
Motivating examples Perhaps the best way of understanding
our proposal is by examples.

Example 1 Consider a database D of Nobel laureate records,
specified by the following schema:

Nobel (Name, DOB, Country, Prize, Institution, City)

where a Nobel tuple specifies a Nobel laureate in Chemistry,
identified by Name, together with its DOB, Country, Prize,
Institution and City of the institute. Table 1 shows four tuples
t1 − t4. All errors are highlighted, and their correct values
are given between brackets. For instance, consider t1 about
Avram Hershko, a Hungarian-born Israeli biochemist. The
value t1[City] = Karcag is an error, which is the city he was
born in, whose correct value should beHaifawhere he works
at.

Next we discuss, based on the available evidence from
KBs, how to make judgment on the correctness of a relation.

Example 2 Consider an excerpt of a KB Yago [30], as
depicted in Fig. 1. Here, a solid rectangle represents an entity,
e.g., o1 to o7 , a dotted rectangle indicates a class, e.g., coun-
try and city, a shaded rectangle is a literal, e.g., o8, a labeled
and directed edge shows the relationship between entities or
the property from an entity to a literal, and a dotted edge
associates an entity with a class.

Consider tuple t1 in Table 1 and the sample KB in Fig. 1,
both about Avram Hershko. It is easy to see that most val-
ues of t1 appear in Fig. 1. Based on different bindings of
relationships, we can have the following three actions for t1.

(i) Proof positive Based on the evidence in Fig. 1, we
may judge that t1[Name,DOB,Country, Institution] are
correct.
(ii) Proof negative If we know that, t1[City] should be
the city that he works in, and we find from Fig. 1 the
following evidence: Ta
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countryo6: Israel

o5: Karcag

o1: Avram Hershko

o3: Nobel Prize  
in Chemistry

Chemistry 
awards

Nobel laureates  
in Chemistry

o2: Israel Institute 
of Technology

American 
awards

o4: Albert Lasker 
Award for Medicine

organization

o8:1937-12-31

isCitizenOf

wasBornIn

wonPrize
won

Priz
e

bornOnDate

o7: Haifa

city

w
orksA

t

locatedIn
locatedIn

Fig. 1 Excerpt of laureates knowledge bases

(a) Karcag is the city he was born in;
(b) Haifa is the city he works in, via the links Avram
Hershko worksAt Israel Institute of Technology that
in turn locatedIn Haifa; and
(c) Karcag is different from Haifa, we can judge that
t1[City] is wrong.
The way to identity the error in t1[Prize] is similar, if
we know this column should be Chemistry awards
rather than American awards.

(iii) Correction Following (ii), we can draw the value
Haifa from the KB to update t1[City] from Karcag to
Haifa.

Challenges Example 2 shows that we can make different
judgments, based on various evidence from KB. Never-
theless, effectively employing reliable KBs faces several
challenges.

(i) Semantic connections between relations and KBs In
order to collect evidence from KBs and judge on the
relations at hand, it requires to build graphical (seman-
tic) connections between tables and KBs.

(ii) Ambiguity of repairing A typical ambiguity raised by
IC-based approaches is that they cannot tell precisely
which attribute value is to be repaired. Hence, we need
to explicitly specify which attribute is wrong and how to
repair, a departure from traditional ICs that only detect
errors.

(iii) Efficiency and scalability Repairing a relation using
multiple rules by collecting evidence from a large KB
(a graph) is a costly task, which requires efficient and
scalable solutions to execute in practice.

ContributionsOurmain contribution is to propose a new type
of rules to deterministically tell how to repair relations using
trusted KBs. We summarize our contributions below.

(1) We formally define detective rule (DR), to address the
above challenges (i) and (ii).ADRsimultaneouslymod-

els two opposite semantics of an attribute belonging to a
relation using types and relationships in a KB (Sect. 3):
The positive semantics explains how its value should be
linked to other attribute values in a correct tuple, and the
negative semantics indicate how awrong attribute value
is connected to other correct attribute values within the
same tuple. Naturally, a DR canmark correct values in a
tuple if it matches the positive semantics. Meanwhile, a
DR can detect/repair an error if it matches the negative
semantics.

(2) We study several fundamental problems of using DRs
(Sect. 4). Specifically, given a set Σ of DRs, we deter-
mine whether these rules are consistent. We prove that
this problem is coNP-complete. We also study the prob-
lem of whether another DR is implied by Σ , which is
also proved to be a coNP-complete problem.

(3) We devise efficient algorithms for cleaning a relation,
given a set of consistent DRs, by smartly selecting
the right order to apply DRs and by using vari-
ous indexes such as rule indexes and signature-based
indexes (Sect. 5). This is to cope with challenge (iii).

(4) We discuss the problem of generating detective rules
from examples (Sect. 6).

(5) We experimentally verify the effectiveness and effi-
ciency of the proposed algorithms (Sect. 7).We find that
algorithmswith DRs can repair andmark data with high
accuracy. In addition, they scale well with the number
of DRs.

Organization Section 2 discusses related work. Section 3
defines DRs. Section 4 studies its fundamental problems.
Section 5 presents efficient algorithms for applying consis-
tent DRs. Section 6 discusses how to generate DRs from
examples. Section 7 presents experimental findings. Finally,
Sect. 8 concludes this paper.

2 Related work

This work extends our conference version [26] by includ-
ing: (1) a comprehensive analysis of fundamental problems
associated with detective rules, including termination, con-
sistency, determinism and implication (Sect. 4); (2) an
algorithm of multiple-version repairs that a tuple has mul-
tiple versions to be repaired (Sect. 5.3); (3) a method on how
to generate DRs (Sect. 6); and (4) a new empirical evalua-
tion of rule generation techniques (Sect. 7 Exp-3). None of
the detailed proofs of (1) was presented in [26]. We extend
Corollary 2 in [26] and prove that the consistency problem
is PTIME without assuming |R| is a constant in this work.
Besides, we study the implication problem w.r.t. DRs in this
article, which was not discussed in [26]. The algorithm of
(2) about how to support multiple-version repairing was not
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given in [26]. We modify the framework of (3) in the con-
ference article, and the method for rule refinement was not
addressed,which is important for employingDRs.The exper-
imental study of (4) was not given in [26].
Constraint-based data cleaning IC-based heuristic data
cleaning methods have been widely studied [7,12,19] for
the problem introduced in [4]: Repairing is to find another
database that is consistent and minimally differs from the
original database. They compute a consistent database by
using different cost functions for value updates and various
heuristics to guide repairing. However, the consistency may
not be an ideal objective, since the ground truth database is
consistent, but not vice versa. That is, a consistent database
may not be correct, which indicates that the optimal solution
of the above problem does not ensure correctness. In con-
trast, rule-based data cleaning is typically more conservative
and reliable, since it does not use heuristics. DRs only mark
data as correct or wrong, and repair errors when the evidence
is sufficient.
Rule-based data cleaningDifferentmethods exist in the liter-
ature regarding rule-based data cleaning: editing rules [23],
fixing rules [55] and methods to discover fixing rules by
interacting with users [27], and Sherlock rules [31]. Editing
rules [23] use relational master data and interact with users
for trusted repairing. Fixing rules [55] encode constant val-
ues in the rules for automated cleaning. Closer to this work
is Sherlock rules [31] that automatically annotate and repair
data. Along the same line with them, DRs are the research
effort to leverage KBs for data cleaning. The new challenges
of using KBs are remarked earlier in Sect. 1.
Table understanding using KBs Table understanding, includ-
ing identifying column types and the relationship between
columnsusingKBs, has been addressedby several techniques
such as those in [14,34,40,45,50,59,60]. In fact, these tech-
niques are friends, instead competitors, ofDRs.Wewill show
how they can help to discover DRs (Sect. 6).
KB powered data cleaning Katara [11] is a KB and crowd
powered data cleaning system that identifies correct and
incorrect data. The table patterns [11] introduced byKatara
are a way of explaining table semantics in a holistic way.
However, (1) Katara cannot detect errors automatically:
Whenever a mismatch happens between a tuple and a KB
w.r.t. a table pattern, Katara will ask the crowd workers
to identify that such a mismatch is caused by an error in
the tuple, or incompleteness of the KB; and (2) Katara
cannot repair errors automatically: When an error, such as
(China, Shanghai) for relation (country, capital), is identi-
fied by users,Katara cannot tell which value is wrong. One
main difference between DRs and Katara is that DRs can
precisely tell which attribute of a tuple is wrong.
User guided data cleaning Several approaches [23,27,28,43,
57] have been proposed to involve experts as first-class citi-
zen. Involving users is certainly valid and useful for specific

applications. DRs are our attempt to relieve users from the
tedious and iterative data cleaning process. There are some
recent studies that utilize crowdsourcing to clean and inte-
grate the data [8,35,36,39,54].
Machine learning-based data cleaning There are also works
that repair data using machine learning-based methods [44,
56,57]; or more generally, running probabilistic inference to
derive the true values [5,42,46].

We differ from machine-based approaches in that rule-
based approaches are declarative. As discussed and demon-
strated in [47,48], interpretable rules are often preferred by
end users, since they are interpretable, easy to debug, main-
tain, and easy to inject domain knowledge. Not surprisedly,
rule-based cleaning methods have been deployed in indus-
tries for decades, such as ETL rules (see [29] for a survey),
but heuristic methods are rarely deployed in practice.
Data cleaning systems There are more general-purpose data
cleaning systems that can be used to encode any data qual-
ity rules (please see a recent experimental paper [1] that uses
real-world datasets to evaluate different error detectionmeth-
ods) and data cleaning algorithms, such asNADEEF [13] and
BigDansing [33]. In fact, our detective rules can be easily
implemented and incorporated in these systems.

3 Detective rules

We first introduce notations for knowledge bases (KBs)
(Sect. 3.1). We then present the basic concepts of build-
ing connections between relations and KBs (Sect. 3.2). We
close this section by defining detective rules (Sect. 3.3) and
describe the semantics of applying multiple detective rules
(Sect. 3.4).

3.1 Knowledge bases

WeconsiderKBs as RDF-based data, defined usingResource
Description Framework Schema (RDFS).
Classes, instances, literals, relationships, and properties

– A class represents the concept of a set of entities, e.g.,
country.

– An instance represents an entity, e.g., Israel, which
belongs to a class, e.g., type (Israel) = country.

– A literal is a string, a date, or a number. For example, the
birth date of Avram Hershko is 1937-12-31, which is a
literal.

– A relationship is a binary predicate that represents a con-
nection between two instances.

For instance, isCitizenOf(Avram Hershko, Israel) indi-
cates that Avram Hershko is a citizen of Israel, where
isCitizenOf is a relationship defined in a KB. An instance
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can have some properties, e.g., bornOnDate. A property is
a binary predicate that connects an instance and a literal.

Let I be a set of instances, L a set of literals, C a set of
classes, R a set of relationships, and P a set of properties.
RDF graphs An RDF dataset is a set of triples {(s, r , o)},
where s is an instance in I, r is a relationship in R or a
property in P, o is an object in I∪L (i.e., either an instance or
a literal). We model the set of triples {(s, r , o)} as a directed
graph. Each vertex v is either an s or an o from the given
triples. Each directed edge e : (s, o) corresponds to a triple
(s, r , o), with r as the edge label denoted by rel(e) = r .

Please refer to Fig. 1 as a sample RDF graph, which
describes an excerpt of Yago describing Avram Hershko.

Remark In practice, KBs are not 100% accurate. There have
been several efforts that aim at improving the quality and cov-
erage of KBs [16–18]. Nevertheless, KBs are usually more
reliable than the dirty relational data at hand. Hence, in this
work, when applying KBs, we assume that they are correct,
i.e., finding and correcting KB errors is out of the scope
of this work. Moreover, the incompleteness of KBs makes
the case happen that an entity that is in KBs but cannot be
matched. Although we can use approximate graph matching
methods [3] to improve the recall, but will decrease the preci-
sion correspondingly. Which matching strategy to use, exact
or approximate, is up to the end users to decide.

3.2 Schema- and instance-level matching graphs

Given a table D of schema R, and a KB K , next we discuss
how to build connections between them, a necessary step to
collect evidence from K for D. Generally speaking, we need
schema-level matching graphs to explain the schema of D
using K , and instance-level matching graphs to find values
in K that correspond to tuples in D.
Schema-level matching graphs A schema-level matching
graph is a graph GS(VS,ES), where:

1. each vertex u ∈ VS specifies a match between a column
in D and a type in K . It contains three labels:

(a) col(u) : the corresponding column in D;
(b) type(u) : a type in K - either a class or a literal;
(c) sim(u) : a similarity-based matching operation.

2. for two different nodes u, v ∈ VS, col(u) �= col(v).
3. each directed edge e : (u, v) ∈ ES has one label rel(e),

which is a relationship or property in K , indicating how
col(u) and col(v) are semantically linked.

An important issue is to define the matching operation
sim(u) (the above 1(c)) between a column in a relation and
a class in a KB, which will be used later to decide whether
two values match.We can utilize similaritymetrics [32], e.g.,

col: DOB  
type: literal  
sim: =

v2
col: Prize  
type: Chemistry awards  
sim: =

v4

col: Name  
type: Nobel laureates in Chemistry 
sim: =

v1

rel: bornOnDate rel: wonPrize

rel: worksAt rel: isCitizenOf

rel: located
Incol: Institution  

type: organization  
sim: ED, 2

v5
col: Country  
type: country  
sim: =

v3
col: City  
type: city  
sim: =

v6

rel: located
In

Fig. 2 A sample schema-level matching graph

Jaccard, Cosine or edit distance. For example, if string equal-
ity “=” is used, a cell value in column col(u) and an instance
in K with class type(u) refer to the same entity if they have
identical value. If “ED, 2” is used, a cell value in column
col(u) and an instance in K with class type(u) refer to the
same entity if their edit distance1 is within 2. Without loss
of generality, we take string equality and edit distance as
examples.

Example 3 A sample schema-level matching graph for the
Nobel table in Table 1 is given in Fig. 2. Node v1 shows that
column Name corresponds to the class Nobel laureates in
Chemistry in theKB. To match a value in column Name and
a value in the KB with type Nobel laureates in Chemistry,
string equality “=” is used. “ED, 2” is used in node v5 to
tolerate the errors between t[Institution] and an instance
of organization in KB. The directed edge (v1, v2) labeled
bornOnDate explains the relationship between columns
Name and DOB.

By default, we assume that a schema-levelmatching graph
is connected. Naturally, any induced subgraph of a schema-
level matching graph is also a schema-level matching graph.
In other words, a schema-level matching graph is not nec-
essarily a global understanding of the table (see Fig. 2). In
contrast, it is a local interpretation about howpartial attributes
of a table are semantically linked, e.g., Fig. 3a. Please refer
to Fig. 2 for the corresponding node labels.
ConstructionThe schema-levelmatching graph is essentially
the table semantics interpreted by a KB, which has been
widely studied. A basic idea is to connect a column to a type
by matching the cell-value set of the column to the entity set

1 Edit distance of two instances is the minimum number of
edit transformations from one to the other, where the edit oper-
ations include insertion, deletion and substitution. For example
ED(Chemistry,Chamstry) = 2.
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v2

v1

rel: bornOnDate

rel: worksAt

rel: isCitizenOf

v5

v3

v2 (t1[DOB],o8)

v1 (t1[Name],o1)

rel: bornOnDate

rel: worksAt

rel: isCitizenOf

v5 (t1[Institution],o2)

v3 (t1[Country],o6)

(a) (b)

Fig. 3 A sample schema/instance-level matching graph. a Schema-
level and b instance-level

of the type, and we can use existing tools [11,14,40] to build
the schema-level matching graph.
Instance-level matching graph An instance-level match-
ing graph, denoted by GI(VI,EI), is an instantiation of a
schema-level matching graph w.r.t. one tuple t in the rela-
tional table and some instances from the KB. More formally
speaking:

1. For each node ui ∈ VI, there is an instance xi from the
KB such that the types match, i.e., type(ui ) = type(xi );
and the values match, i.e., t[col(ui )] and xi are similar
based on the similarity function sim(ui ).

2. For each edge (ui , u j ) ∈ EI, the correspondingly
matched KB instances xi , x j satisfy rel(ui , u j ) =
rel(xi , x j ), i.e., the two instances xi and x j in theKB have
the relationship required by the schema-level matching
graph.

Example 4 Consider the small schema-level matching graph
shown in Fig. 3a.One instance-levelmatching graph for tuple
t1 in Table 1 is given in Fig. 3b, where the types and relation-
ships of the nodes o1, o2, o6, o8 can be verified from the KB
in Fig. 1.

Limitations Indeed, matching operation is the core of data
cleaning, since one always needs to link different real-world
entities. Historically, many matching operators have been
studied, e.g.,matching dependencies [22] for two tables, keys
for graphs [20] defined on one graph, and Swoosh [6] for
matching two generic objects for entity resolution. When
there is a match, one common usage is to say something is
correct. The main limitation for detecting errors is that, when
there is a mismatch, it cannot tell that something is wrong.
Opportunities If we define some matching operations to
capture negative semantics, intuitively, the errors can be
detected. This observation reveals the opportunity to define
new methods to match (i.e., detect) data errors. For instance,
in Sect. 1 Example 2 Case (ii), if we know the followings:

1. the column City in the table is where he works in;
2. the current value t1[City] is Karcag;
3. he works in Haifa, derived from the KB; and
4. the two values Karcag and Haifa are different, we may

decide that Karcag is an error.

3.3 Detective rules

The broad intuition of our proposal is that, for a column, if
we can simultaneously capture both the positive semantics
of what correct values should look like, and the negative
semantics of what wrong values commonly behave, we can
detect and repair errors.

Consider column City in Table 1. We can discover one
schema-level matching graph to capture the semantics lives
at. Similarly,we canfind another one to capture the semantics
born in. If the user enforcesCity to have the lives at semantics,
and we find that the value in the table maps to the born in
semantics, we know how to repair. Note that some semantics
can be captured by a directed edge, e.g., wasBornIn in Fig. 1
for the born in semantics, while some other semantics needs
to be captured by more than one edge, e.g., putting worksAt
and locatedIn in Fig. 1 together for the lives at semantics.

Let GS
1(V

S
1 ,E

S
1) and GS

2(V
S
2 ,E

S
2) be two schema-level

matching graphs that exist a node p ∈ VS
1 and a node n ∈ VS

2
such that (i) col(p) = col(n) and (i i) the subgraphsGS

1 \{p}
andGS

2 \ {n} are isomorphic, whereGS
1 \ {p} (resp.GS

2 \ {n})
is a subgraph of GS

1 (resp. GS
2) by removing node p (resp.

n) and associated edges. Obviously, both graphs are defined
over the same set of columns in the relation:GS

1 is to capture
their positive semantics andGS

2 is for the negative semantics
of values in column col(n).
Detective rules A detective rule is a graph G(V,E) that
merges the above two graphs GS

1 and GS
2 . Let Ve = GS

1 \
{p} = GS

2 \ {n}. The node set in DR is V = Ve ∪ {p, n}. The
edges E are all the edges carried over from the above two
graphs. Note that col(p) = col(n). We call p the positive
node, n the negative node, and Ve the evidence nodes.
Semantics Let col(Ve) be the columns corresponding to the
evidence nodesVe of a DR, and col(p) = col(n). Let |Ve| be
the cardinality of the set Ve. Consider a tuple t over relation
R and a KB K :
(1) Proof positive If there is an instance-level matching graph
between t and |Ve| + 1 instances in K w.r.t. the nodes Ve ∪
{p}, i.e., the positive semantics is captured, we say that the
attribute values of t[col(Ve) ∪ col(p)] are correct.
(2) Proof negative If there is an instance-levelmatching graph
between t and |Ve|+1 instances in K w.r.t. the nodesVe∪{n},
we say that the attribute values of t[col(Ve)] are correct, but
the value t[col(n)] is potentially wrong, i.e., the negative
semantics is captured. In addition, if we can find another
instance x in K such that if we replace t[col(n)] by x , we
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col: DOB  
type: literal  
sim: =

x2

col: Name  
type: Nobel laureates in Chemistry 
sim: =

x1

rel: bornOnDate

rel: worksAt

col: Institution  
type: organization  
sim: ED, 2

p1
col: Institution  
type: organization  
sim: ED, 2

n1

rel: graduatedFrom

col: Name  
type: Nobel laureates in Chemistry 
sim: =

w1

rel: worksAt

rel: located
In

col: City  
type: city 
sim: =

p2

col: City 
type: city 
sim: =

n2

rel: wasBornIn

col: Institution  
type: organization  
sim: ED, 2

w2
col: Country  
type: country  
sim: =

n3

col: Name  
type: Nobel laureates in Chemistry 
sim: =

z1

rel: bornAt

rel: worksAt

col: Institution  
type: organization  
sim: ED, 2

z2

rel: located
In col: City 

type: city 
sim: =

z3

col: Country  
type: country  
sim: =

p3

rel: located
In

rel: isCitizenOf

col: Name  
type: Nobel laureates in Chemistry 
sim: =

v1

rel: wonPrize

rel: wonPrize

col: Prize  
type: Chemistry awards  
sim: =

p4

col: Prize  
type: American awards  
sim: =

n4

(a) (b) (c) (d)

Fig. 4 Sample detective rules. a Rule ϕ1, b rule ϕ2, c rule ϕ3 and d rule ϕ4

can find the case of proof positive as in (1). At this point, we
confirm that t[col(n)] is wrong.
(3) Correction Following the above case (2), we know the
correct value for t[col(n)] is the new instance x from K .

Intuitively, a DR specifies how to judge whether a set of
attribute values of a tuple is correct (the above (1)), how to
find a wrong attribute value of the tuple (the above (2)), and
how to repair the identified error (the above (3)). Besides,
note that each node u in DR has a label sim(u). If a cell value
in col(u) can match an instance with type(u) in K based on
sim(u) but not equal, DRwill modify them to identical value,
e.g., t2[Institution] from Paster Institute to Pasteur Institute.

Example 5 Figure 4 shows fourDRs.Wediscuss their seman-
tics w.r.t. t1 in Table 1 and KB in Fig. 1.
(1) Proof positive Consider rule ϕ1. We can find that o1 in
Fig. 1 matches t1[Name] w.r.t. node x1 in ϕ1; o8 in Fig. 1
matches t1[DOB]w.r.t. node x2 inϕ1; and o2 in Fig. 1matches
t1[Institution] w.r.t. node p1 in ϕ1. Moreover, the relation-
ship from o1 to o8 is bornOnDate and from o1 to o2 is
worksAt. That is, both value constraints and structural con-
straints enforced by ϕ1 are satisfied. Consequently, we can
conclude that t1[Name, DOB, Institution] are correct.
(2) Proof negative Consider rule ϕ2. We can find that o1 in
Fig. 1 matches t1[Name] w.r.t. node w1 in ϕ2; o2 in Fig. 1
matches t1[Institution] w.r.t. node w2 in ϕ2; o5 in Fig. 1
matches t1[City] w.r.t. node n2 in ϕ2. Moreover, it can find
a node o7, with value Haifa, in Fig. 1 that satisfies the con-
straints imposed on p2 in ϕ2. Combined with the other edge
relationships from o1 to o2, o2 to o7, and o1 to o5, we can
confirm that t1[City] = Karcag is an error.
(3) Correction Following case (2), we know t1[City] should
be repaired to Haifa.

Other rules will be discussed later in this paper.

Remark There might exist multiple repairs (i.e., multi-
version ground truth) for one error, and each makes sense,
e.g., one country may have multiple capitals and one per-
son may have different nationalities. For the simplicity of

the discussion, we assume that there is only one repair for
this moment, i.e., the corresponding relationship in the KB
is functional. We will present algorithms to handle multiple
repairs in latter sections. Also, we allow only one negative
node n in the rule, which is also to simplify our discussion. It
is straightforward to extend from one negative node (i.e., one
relationship) to a negative path (i.e., a sequence of nodes) in
order to identify an error.

Rule applicabilityApparently,DRs canhandle semantic error
well where the value is replaced with a different one from
a semantically related domain. Also, one can define domain
specific similarity functions in DRs to capture whether two
labels match or not, which may possibly capture typos and
other types of errors, depending on the power of the similarity
functions. Note, however, that when a similarity function is
used, typically, the recall will increase but the precision will
decrease.

3.4 Applyingmultiple detective rules

We will start by discussing how to apply one DR, followed
by using multiples DRs. For simplicity, at the moment, we
assume that each DR will return a single repair.
Applying one rule Consider one DR ϕ : G(V,E), a tuple t ,
and a KB K . Applying ϕ to t has only two cases: (1) Proof
positive: the attribute values t[col(Ve ∪{p})] are correct; (2)
Proof negative and correction: the attribute values t[col(Ve)]
are correct, the attribute value t[col(n)] is wrong, we will
update t[col(n)] using an instance x drawn from the KB K .

We use the symbol “+” to mark a value as positive, which
is confirmed either from the above (1), the evidence attributes
Ve from the above (2), or a wrong value t[col(n)] as in the
above (2) but has been corrected and thus is marked as pos-
itive. The other attributes that are not marked as positive are
those whose correctness is unknown.
Marked tuples A tuple is a marked tuple if at least one of its
attribute values has been marked as positive.
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Example 6 We discuss how to apply rule ϕ2 to tuple t1
by following Example 5 cases (2) & (3). t1[Name] and
t1[Institution] are identified to be correct, and t1[City] is
wrong. After changing t1[City] to Haifa, it will mark t1
as t ′1(Avram Hershko+, 1937-12-31, Israel, Albert Lasher
Award forMedicine, Israel Institute of Technology+,Haifa+).

Applying multiple rules When applying multiple DRs, we
need to make sure that the values that have been marked as
positive cannot be changed anymore by other DRs. Consider
amarked tuple t of relation R that the attributes X have been
marked as positive. We say that a DR ϕ is applicable to t , if
(i) it will not change t[X ]; and (ii) it can mark some values in
t[R \X ] as positive, with (i.e., proof negative and correction)
or without (i.e., proof positive) value updates.
Fixpoint A fixpoint of applying a set of DRs on a tuple t is
the state that no more rules are further applicable.

Example 7 After applying rule ϕ2 to tuple t1 as in Exam-
ple 6, rule ϕ3 is applicable. Applying rule ϕ3 will not
change any value, but will mark the tuple as t ′′1 (Avram
Hershko+, 1937-12-31, Israel+, Albert Lasher Award for
Medicine, Israel Institute of Technology+, Haifa+). Rule ϕ4

will repair t ′′1 [Prize] and rule ϕ1 marks t ′′1 [DOB] as positive.
At the end, tuple t1 ismodified to t ′′′1 (AvramHershko+, 1937-
12-31+, Israel+, Nobel Prize in Chemistry+, Israel Institute
of Technology+, Haifa+). It is a fixpoint, since no more rule
can be further applied.

Multiple-version repairs Although not desired, the case that
there are multiple-version repairs for one error by using one
DR does happen. Note that this is different from IC-based
repair to guess which value is wrong in, e.g., (Netherlands,
Rotterdam) for {country, capital}. Instead, in our case, we
know that Rotterdam is not the capital of Netherlands, and
we find two repairs, Amsterdam and Den Hagg, and both are
correct. In reality,when the user picksDRs (Sect. 6), theywill
pick the ones that semantically, the repair is approximately
functional, e.g., the capital of a country or a nationality of a
person, not a city of a country or a hobby of a person.

When multiple-version repairs happen for applying one
DR to a tuple t , instead of having one marked tuple t ′, we
generate multiple marked tuples T . These tuples T mark
exactly the same set of attributes as positive, and these tuples
are different only on one attribute w.r.t. the negative node in
the givenDR. This can be easily propagated to applymultiple
DRs.

4 Fundamental problems

In this section,we study the fundamental problems associated
with detective rules and establish their complexity.

4.1 Termination

One natural question for rule-based data cleaning processes
is the termination problem that determines whether a rule-
based process will stop.
Termination problemGiven a tuple t over relation R, aKB K
and a setΣ ofDRs, the termination problem is to determine
whether any repairing process leads to a fixpoint.

Note that when applying any rule to t , we have that the
number of marked positive attributes will strictly increase.
That is, up to |R| DRs can be applied to any tuple and the
termination is naturally assured.

4.2 Consistency

Another important problem of applying any data cleaning
rules is to make sure that it makes sense to put these rules
together.
Consistency problem Let Σ be a set of DRs and K a KB.
Σ is said to be consistent w.r.t. K , if given any tuple t ,
all the possible repairs via Σ and K terminate in the same
fixpoint(s), i.e., the repair is unique.

Theorem 1 The consistency problem for detective rules is
coNP-complete, even when the knowledge base K is given.

Proof We first show it is in coNP and then show it is coNP-
hard.
Upper bound The coNP upper bound is verified by providing
an NP algorithm. The algorithm returns ‘Yes’ iff Σ is not
consistent. The NP algorithm works as follows:

(1) Guess a tuple t that draws values from adom, where
adom is the set of all instances in K w.r.t. Σ plus an
additional distinct constant not in adom;

(2) Guess two sequences of rules and check whether t has
the same fixpoint for both sequences. If the answer is no,
return ‘Yes’;

Both step (1) and step (2) run in nondeterministic PTIME,
the consistency problem is in coNP.
Lower bound For the lower bound, we show that the problem
is coNP-hard by a reduction from the 3SAT problem.

An instance of the 3SAT problem is a well-formed
Boolean formula τ = C1 ∧ . . . ∧Cn , where all the variables
in τ are x1, . . . , xp, the clause Ci is of the form li1 ∨ li2 ∨ li3,
and each literal li j is either xk or xk for k ∈ [1, p]. The
3SAT problem is then to determine whether there is a truth
assignment such that τ is satisfied. Given an instance τ of
the 3SAT problem, we define an instance of the consistency
problem for detective rules such that Σ is not consistent iff
τ is satisfiable.
Definition of Relation R and Tuples in R. The relation R has
n + 2 attributes, (X ,C1, . . . ,Cn, B), where each attribute
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col: C1 
type: C1  
sim: =

n1

col:X 
type: X 
sim: =

u1

rel: wrong

col: C1 
type: C1  
sim: =

p1

rel: correct

col: Cn 
type: Cn 
sim: =

nn

col:X 
type: X 
sim: =

un

rel: wrong

col: Cn 
type: Cn  
sim: =

pn

rel: correct

…

col: B 
type: B  
sim: =

nn+1

col: C1 
type: C1
sim: =

v1

rel: wrong

col: B 
type: B  
sim: =

pn+1

rel: correct

col: Cn 
type: Cn
sim: =

vn
col: Ci 
type: Ci
sim: =

vi

… …

rel: correctrel: correct

rel: wrongrel: wrong

col: B 
type: B  
sim: =

nn+2

col: C1 
type: C1
sim: =

v1

rel: correct

col: B 
type: B  
sim: =

pn+2

rel: wrong

col: Cn 
type: Cn
sim: =

vn
col: Ci 
type: Ci
sim: =

vi

… …

rel: wrongrel: wrong

rel: correctrel: correct

(a) (b) (c)

Fig. 5 The set Σ of DRs in 3SAT. a Rule ϕ1 to ϕn , b rule ϕn+1 and c Rule ϕn+2

value of X is p-sized corresponding to the assignment of
variables x1, . . . , xp,Ci corresponds to clauses, and B is used
to check whether there exists conflict. There are 2p tuples.
X contains all the possible combination of truth assignments
for variables x1, . . . , xp, and each cell value in the last n+ 1
attributes is false.
Definition of Classes in The Knowledge Base.There are n+2
classes in the knowledge base: X ,C1, . . . ,Cn, B, where X
corresponds to variables, Ci corresponds to clauses and B is
used to check conflicts.
Definition of Instances in The Knowledge Base. For class
X , its instance is a p-sized entity (true/false, true/false,
. . . , true/false) that corresponds to a combination of vari-
ables x1, x2, . . . , xp. If a tuple can make a clause true,
there exists such an instance; not otherwise. For each class
C1, . . . ,Cn, B, there exist two instances true and false.
Definition of Relationships in The Knowledge Base. There
exist relationships between instances of X and instances of
Ci . If an instance of X makes the clause Ci true, we add a
relationship between the instance of X and the true instance
of Ci , and the relationship label is correct; we also add a
relationship between the instance of X and the false instance
of Ci , and the relationship label is wrong.

There also exist relationships between instances ofCi and
B. There exists a relationship between the true instance inCi

and the true/false instance in B, and the relationship label
is correct/wrong.
Definition of Rules in The Knowledge Base.We define n + 2
rules. The first n rules want to correct Ci based on X , where
column X matches type X . More specifically, consider Ci =
(li1∨li2∨li3), where li j is either xk or xk . The corresponding
ruleϕi dictates that if the value of li j ( j = 1, 2, 3) satisfiesCi ,
the rule should correct the valueofCi to true. Then+1-th rule
ϕn+1 aims to correct attribute B bymatchingC1,C2, . . . ,Cn .
If Ci = true for all i = 1, . . . , n, we should correct B to
value true. The n + 2-th rule ϕn+2 aims to correct attribute

B based by matching C1,C2, . . . ,Cn . If Ci = true for all
i = 1, . . . , n, we should correct B to value false. The rules
are defined in Fig. 5.
3SAT vs Our problem. Assume that τ is satisfiable. That is,
there exists a true assignment ν for each variable xi such that
τ = true. Consider the tuple t = {ν(x1), . . . , ν(xp), false,
. . . , false, false}. Applying ϕ1 to ϕn can update all values
in C1, . . . ,Cn to true. Then, we have that B can have two
different values. Therefore, ϕn+1, ϕn+2 contradict to each
other andΣ is not consistent. Conversely, if τ is not satisfied,
ϕn+1, ϕn+2 will not be applied. It is easy to see that ϕ1 to ϕn

are consistent, because each rule only modifies the attributes
of Ci (i ∈ [1, n]), which has no impact on the other rules.
Thus, Σ is consistent.

Putting the above together, the consistency problem is
coNP-complete. 	


The above consistency problem is hard, since one has to
guess all the tuples that the given rules are applicable in an
arbitrary order. Oftentimes, in practice, we only care about
whether the rules are consistent w.r.t. a specific dataset D.
Fortunately, the problem of checking the consistency when
D is present becomes PTIME. To prove this, let us pause and
present the following proposition.

Proposition 1 The setΣ of DRs is consistent, iff any twoDRs
ϕi and ϕ j in Σ are consistent.

Proof We prove it by contradiction.
⇒ Suppose that the detective rules are pairwise consis-
tent, but when putting together, they are inconsistent. In other
words, they may lead to (at least) two different fixpoints.

We construct two repair processes that end up with two
different final tuples t∗, t ′∗ as follows:
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ρ : t
ϕ1−−−→ t1 . . .

ϕi−−−→ ti . . . tm−1

ϕm−−−→ t∗

ρ′ : t
ϕ′
1−−−→ t ′1 . . .

ϕ′
j

−−−→ t ′j . . . tn−1

ϕn−−−→ t ′∗

Consider the longest equivalent prefixes of ρ and ρ′ such

that ti−1

ϕ

−−−→ ti is the i th step in ρ, t ′j−1

ϕ′
−−−→ t ′j is the j th

step in ρ′, ti−1 = t ′j−1 and ti+k �= t ′j+l(0 � k � m − i, 0 �
l � n− j). We can prove that ϕ and ϕ′ must be inconsistent.
Let us consider two cases: (i) col(p) /∈ col(V′

e ∪ {n′}) and
col(p′) /∈ col(Ve ∪ {n}); (ii) col(p) ∈ col(V′

e ∪ {n′}) or
col(p′) ∈ col(Ve ∪ {n}).

For case (i), we know that rule ϕ will update col(p) of
tuple ti−1. Note that it is impossible that ϕ only marks col(p)
as positive without changing any value, because in this situa-
tion ti and t j−1 will be the longest equivalent prefixes. Since
col(p) /∈ col(V′

e ∪ {n′}), rule ϕ′ can be applied to ti . In the
same way, rule ϕ can be applied to t ′j . The related output will
then be tuples ti+1, t ′j+1, and by construction, ti+1 = t ′j+1.
However, we have assumed that ti−1 and t ′j−1 are the longest
equivalent prefixes, which contradicts to this case.

For case (i i), without loss of generality, we assume that
col(p) ∈ col(V′

e ∪ {n′}). Since ϕ will update col(p) of ti−1

and col(p) ∈ col(V′
e ∪ {n′}), rule ϕ′ can not be applied to

ti . Rule ϕ also can not be applied to t ′j . Then, we have that
ti−1 = t ′j−1 but ti �= t ′j . That is to say, applying ϕ and ϕ′ to
the same tuple in different order will lead to different results.
ϕ and ϕ′ are inconsistent which is against the assumption.

Putting all contradicting cases together, it suffices to see
that we were wrong to assume that Σ is inconsistent.
⇐ Suppose that Σ is consistent, but there exist ϕ and ϕ′ in

Σ that are inconsistent.
For any tuple t that leads to different fixes by ϕ and ϕ′, t ′

and t ′′ are the fixpoints we first apply ϕ and ϕ′, respectively.
Then we can construct the following two fixes ρ and ρ′ on t
by using the rules in Σ :

ρ : t
ϕ,ϕ′

−−−→ t ′
Σ−{ϕ,ϕ′}
−−−→ t∗

ρ′ : t
ϕ′,ϕ

−−−→ t ′′
Σ−{ϕ′,ϕ}
−−−→ t ′∗

Since ϕ and ϕ′ are inconsistent, there must exist an
attribute A that t ′[A] �= t ′′[A]. Without loss of generality,
we assumed that t[A] �= t ′[A] and t ′[A] is annotated as
positive by applying ϕ in ρ. If t ′′[A] is also annotated as
positive, then t∗[A] �= t ′∗[A]. Σ is inconsistent. If t ′′[A]
remains free (t[A] = t ′′[A]), which means ϕ is not applied
in ρ′, there exists an evidence attribute E ∈ col(Ve) that
t ′′[E] �= t[E] = t ′[E]. So t∗[E] �= t ′∗[E] andΣ is inconsis-
tent. In summary, ρ and ρ′ must yield two different fixpoints.
This is contradict that Σ is consistent. 	


Corollary 1 Given an instance D over relation R and a KB
K, the consistency problem for a set Σ of DRs w.r.t. D and
K is PTIME.

Proof Given each tuple t ∈ D over relation R, a set Σ of
DRs, two DRs ϕ, ϕ′ ∈ Σ and a KB K , checking whether ϕ

and ϕ′ is consistent for t is PTIME. Since there are O(|Σ |2)
pairs of DRs in Σ , checking whether Σ is consistent for t is
PTIME. Also, the number of tuples is |D|. Naturally, we can
check whether Σ is consistent for D in PTIME. 	


The above result brings us to the bright side that practically
it is feasible to make sure that a set of DRs is consistent for
the dataset at hand. In our experiments, when a set of rules
are selected, we run them on random sample tuples to check
whether they always compute the same results. If not, wewill
ask users to double check the selected rules. In the following
of the paper, we build our discussion using consistent DRs.

4.3 Determinism

Determinism problem The determinism problem is to decide
whether all terminating cleaning processes end up with the
same repair.

Based on the definition of consistency, we can get that, if a
setΣ of DRs is consistent w.r.t. aKB K , for any tuple t of D,
applyingΣ to t will terminate, and the repair is deterministic.

4.4 Implication

Given a set Σ of consistent DRs, and another DR ϕ that is
not in Σ , we say that ϕ is implied by Σ , denoted by Σ |� ϕ,
if

(1) Σ ∪ {ϕ} is consistent;
(2) for any tuple t ∈ D and KB K , applying Σ or Σ ∪ {ϕ}

on t agrees on the same fixpoint(s).

Condition (1) says that Σ and ϕ must agree with each
other. Condition (2) ensures that for any tuple t , the outputs
of applying Σ or Σ ∪ {ϕ} are the same, which indicates that
ϕ is redundant.
Implication problem The implication problem is to decide
that, given a set Σ of consistent DRs and another rule ϕ,
whether Σ implies ϕ for any tuple and knowledge base.

The implication analysis can help us find and remove
redundant rules from Σ . However, the implication problem
is coNP-complete.

Theorem 2 The implication problem for detective rules is
coNP-complete, even when the knowledge base K is given.

Proof We first prove that the problem is in coNP and then
show it is coNP-hard.
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Upper bound The coNP upper bound is verified by providing
an NP algorithm for its complement problem. The algorithm
returns ‘Yes’ iff Σ � ϕ. The NP algorithm works as follows:

(1) Guess a tuple t that draws values from adom, where
adom is the set of all instances in K w.r.t. Σ ∪ {ϕ} plus
an additional distinct constant not in adom;

(2) Check whether Σ ∪ {ϕ} is consistent. If the answer is
no, return ‘Yes’ (i.e., Σ � ϕ);

(3) Checkwhether t has the same fixpoint byΣ andΣ∪{ϕ}.
If the answer is no, return ‘Yes’;

Step (1)(2) and step (3) run in nondeterministic PTIME.
Hence the implication problem is in coNP.
Lower bound For the lower bound, we show that the problem
is coNP-hard by a reduction from the 3SAT problem.

Given an instance τ of the 3SAT problem, we define an
instance of the implication problem for detective rules such
that Σ � ϕ iff τ is satisfiable. The techniques employed
in Theorem 1 can be applied to construct the instance with
few modifications. Let again R = {X ,C1, . . . ,Cn, B}. X
contains all the possible combination of truth assignments
for variables x1, . . . , xp, and each cell value in the last n+ 1
attributes is false. We also utilize the knowledge base defined
in Theorem 1 to repair R. That is, the definitions of classes,
instances and relationships in KB are all the same. Let Σ

contain ϕ1 to ϕn which are shown in Fig. 5a.We now demon-
strate that τ is satisfiable if and only ifΣ does not imply ϕn+1

which is in Fig. 5b (i.e., Σ � ϕn+1).
Obviously, Σ is consistent, since the application of one

rule has no impact on the other rules. Assume that τ is
satisfiable. That is, there exists a true assignment ν for
each variable xi such that τ = true. Consider the tuple
t = {ν(x1), . . . , ν(xp), false, . . . , false, false}. Applying Σ

to t canmodify all values inC1, . . . ,Cn to true. It is notewor-
thy that Σ ∪ {ϕn+1} is also consistent but applying ϕn+1 to t
will further update B to true. It means that there exists a tuple
t such that t has two distinct fixpoints by Σ and Σ ∪{ϕn+1}.
Thus, Σ � ϕn+1.

Suppose that τ is not satisfiable.Wenext proveΣ |� ϕn+1.
When τ is not satisfiable, B can not be updated by ϕn+1. In
otherwords, for any tuple t ,Σ∪{ϕn+1} is consistent and t has
the same fixpoint by Σ and Σ ∪ {ϕn+1}. Thus, Σ |� ϕn+1,
which indicates that ϕn+1 is redundant for Σ .

In conclusion, the implication problem is coNP-
complete. 	


Although in its general case, checking implication is
coNP-complete, in the special case which both D and K are
available, we are able to checking the implication in PTIME.

Corollary 2 Given an instance D over relation R and a KB
K, the implication problem for a setΣ of consistent DRs and
another DR ϕ /∈ Σ w.r.t. D and K is PTIME.

Algorithm 1: Basic Repair Algorithm
Input: a tuple t , a set Σ of consistent DRs.
Output: a repaired tuple t .

1 pos ← ∅;
2 while ∃ϕ : G(Ve ∪ {p, n},E) ∈ Σ that is applicable to t do
3 if ∃KB instances match Ve∪{p} with t[col(Ve∪{p})] then
4 pos ← pos ∪ col(Ve ∪ {p});
5 else if ∃KB instances I ∪ {xn} that match Ve ∪ {n} with

t[col(Ve ∪ {n})] and ∃ a KB instance xp such that I ∪ {xp}
match Ve ∪ {p} and xp �= xn then

6 t[col(n)] ← xp;
7 pos ← pos ∪ col(Ve ∪ {p});
8 Σ ← Σ \ {ϕ};
9 return t ;

Proof From Corollary 1, we know that checking the consis-
tency of Σ ∪ {ϕ} is PTIME when both D and K are given.
Thus, we just focus on the complexity of checking whether
Σ and Σ ∪ {ϕ} bring to the same final relation D′. From
Sects. 4.1 and 4.3, we already know that every repair over
consistent rules is terminated and deterministic. Given a tuple
t ∈ D, it needs O(|Σ |) times to find an applicable rule,
and applying one rule is PTIME. The above process iter-
ates O(|R|) times until no rule can be applied. As a result,
checking whether t has the same fixpoint by Σ and Σ ∪ {ϕ}
is PTIME. Also, the number of tuples is |D|. Thus, we can
determine whether ϕ is implied by Σ for D in PTIME. 	


5 Detective in action

Given a set of consistent DRs, we first present a basic repair
algorithm (Sect. 5.1), followed by an optimized algorithm to
speed-up the repairing process (Sect. 5.2). Finally, we extend
our methods to support multiple repairs (Sect. 5.3).

5.1 Basic repairing

When a set Σ of DRs is consistent, for any tuple t , applying
Σ to t will get a unique final result, which is also known as
the Church-Rosser property [2]. Hence, the basic solution is
a chase-based process to iteratively pick a rule that can be
applied until a fixpoint is reached, i.e., no rule can be applied.
Algorithm 1 It uses a set to keep track of the attributesmarked
to be positive in t , initialized as empty (line 1). It picks one
rule that is applicable to t in each iteration until no DR can
be applied (lines 2-8). In each iteration, if there exist KB
instances thatmatch the nodesVe∪{p}with t[col(Ve∪{p})],
the attributes col(Ve ∪{p}) are marked as positive (line 3-4).
Otherwise, (i) if there exist KB instances I ∪ {xn}, such that
they match nodes Ve ∪ {n} with t[col(Ve ∪ {n})]; and (ii)
if there also exist KB instances I ∪ {xp} that if we update
t[col(n)] to xp as t ′, I ∪ {xp} match nodes Ve ∪ {p} with
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t ′[col(Ve ∪ {p})], and (iii) if xp �= xn , it will repair this
error by the value xp and mark it as positive (lines 5-7).
Afterward, the rule will be removed from Σ since each rule
can be applied only once (line 8). Finally, a repaired tuple is
returned (line 9).
Complexity The loop (lines 2-8) iterates at most |R| times. In
each iteration, it at most checks |Σ | unused rules to find an
applicable one.Within each loop, the worse case of checking
each rule node u ∈ V is O(|C ||X |) where |C | is the number
of instances belonging to type(u) andO(|X |) is the complex-
ity of calculating the similarity between t[col(u)] and a KB
instance. Checking whether t[col(u)] and t[col(v)] have the
relationship rel(e) for each edge e : (u, v) ∈ E or drawing the
correct value from KB needs O(1) by utilizing a hash table.
Thus, the algorithm runs in O(|Σ ||R| × (|C ||X ||V| + |E|))
time, where |V| is the number of nodes and |E| is the number
of edges in the rule.

Example 8 Consider tuple t3 in Table 1 and four DRs in
Fig. 4. Suppose that the rules will be checked in the order
〈ϕ1, ϕ2, ϕ3, ϕ4〉.

For rule ϕ1, since t3 can match nodes x1, x2, n1 and edges
(x1, x2),(x1, n1), t3[Institution] will be modified to Cornell
University and we have t ′3(Roald Hoffmann+, 1937-07-
18+, Ukraine, National Medal of Science, Cornell
University+, Ithaca). ϕ1 will be removed from Σ , and we
next check ϕ2. As t ′3[Institution] is located in t ′3[City] actu-
ally, we just mark them as positive. Then, ϕ2 will be removed
from Σ . For rule ϕ3, since t ′3 can match nodes z1, z2, z3, n3
and edges (z1, z2),(z2, z3),(z1, n3), t ′3[Country]will bemod-
ified to United States. ϕ3 will be removed from Σ and
ϕ4 repair t ′3[Prize] to Nobel Prize in Chemistry. In the
end, we have Σ = ∅ and t ′′3 (Roald Hoffmann+, 1937-07-
18+, United States+, Nobel Prize in Chemistry+, Cornell
University+, Ithaca+).

In the above example, rule ϕ3 cannot be applied until we
find and apply ϕ1 actually. If we check the rules in order
〈ϕ4, ϕ3, ϕ2, ϕ1〉, ϕ3 will be checked many times in this situa-
tion until it can be applied, which means that a more efficient
repair algorithm is needed.

5.2 Fast repairing

We improve the above algorithm from three aspects.
(1) Rule order selectionNote that in Algorithm 1, when pick-
ing a rule to apply after the tuple has been changed, in the
worst case, we need to scan all rules, even if some rules have
been checked before. Naturally, we want to avoid checking
rules repeatedly in each iteration.

The observation is that applying a ruleϕwill affect another
rule ϕ′ only if ϕ changes some tuple value that ϕ′ needs
to check. More concretely, consider two DRs ϕ : G(V,E)

whereV = Ve∪{p, n}, and ϕ′ : G′(V′,E′)whereV′ = V′
e∪

{p′, n′}. If col(n) ∈ col(V′
e), i.e., the first rule will change

some value of the tuple that can be used as the evidence for
the second rule, then ϕ should be applied before ϕ′.
Rule graph Based on the above observation, we build a rule
graph Gr(Vr,Er) for a set Σ of DRs. Each vertex vr ∈ Vr

corresponds to a rule inΣ . There is an edge from rule ϕ to ϕ′
if col(p) ∈ col(V′

e). Note that a cycle may exist, i.e., there
might also have an edge from ϕ′ to ϕ if col(p′) ∈ col(Ve).

When repairing a tuple,we follow the topological ordering
of the rule graph to check the availability of rules. Note that,
if a cycle exists in the rule graph, it is hard to ensure that the
rules in the cycle can be checked only once. We first treat the
cycle as a single node ṽ to get the global order of Σ . When
checking node ṽ, we first find a rule ϕ in this cycle that can
be applied. Then the edges pointing to ϕ can be removed.

Example 9 Consider the rules in Fig. 4. There are two con-
nected components {ϕ1, ϕ2, ϕ3} and {ϕ4}. The first three
rules should be checked in the order 〈ϕ1, ϕ2, ϕ3〉, since ϕ1

may change attribute Institution that belongs to the evidence
nodes of ϕ2, and in turn ϕ2 may change attribute City that is
in the evidence nodes of ϕ3. Checking ϕ4 is irrelevant of the
other rules, and thus it only needs to be checked once.

(2) Efficient instance matching The node in DR provides a
similarity function to map values between schema R and
KB K . If it is “=” (the cell t[col(u)] must be equal to an
instance with type(u) in KB), we can just find all instances
with type(u) and use a hash table to check whether t[col(u)]
matches one of them. Otherwise, it is time-consuming to cal-
culate the similarity between t[col(u)] and each instance. To
improve the similarity-based matching, we use a signature-
based framework [15,24,37,38,52,53,58]. For each type(u),
we generate signatures for each instance in KB belonging
to type(u). If a cell value in a column col(u) can match an
instance (the similarity is larger than a threshold), they must
share a common signature. In otherwords, for each cell value,
we only need to find the instances that share common signa-
tures with the cell. To this end, we build a signature-based
inverted index. For each signature, we maintain an inverted
list of instances that contain the signature. Given a cell value,
the instances on the inverted list of signatures which also
belong to the cell value are similarity-based matching can-
didates. In this way, we do not need to enumerate every
instance.
(3) Sharing computations on common nodes between differ-
ent rules Note that a node can be used in multiple rules and
it is expensive to check the node for every rule. To address
this issue, we want to check each node only once. Further-
more, we want to build indexes to quickly check that, after
a tuple has been updated, which rules are possibly affected.
After a rule ϕ is applied, it marks attributes col(Ve ∪ {p}) as
positive. The attributes that are marked as positive cannot be
changed by any other rules. Hence, after a tuple is updated
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Algorithm 2: Fast Repair Algorithm
Input: a tuple t , a set Σ of consistent DRs, inverted lists I.
Output: a repaired tuple t .

1 sort Σ in topological ordering;
2 for each ϕ ∈ Σ do
3 for each vertex or edge α ∈ ϕ : G(V,E) do
4 if t matches α then
5 for each (ϕ′, α′) in I(α) do
6 mark the vertex or edge α′ ∈ ϕ′ as already

checked;

7 else
8 for each (ϕ′, α′) in I(α) do
9 Σ ← Σ \ {ϕ′};

10 if ϕ is applicable to t then
11 update or mark t by ϕ;
12 if t[col(p)] is marked as positive then
13 delete rules in Σ that also update col(p);
14 for each α ∈ {p} ∪ {e|edge e connected p} do
15 for each (ϕ′, α′) in I(α) do
16 mark the vertex or edge α′ ∈ ϕ′ as checked;

17 else
18 Σ ← Σ \ {ϕ};
19 return t ;

by ϕ, all the rules ϕ′ satisfying col(p′) ∈ col(Ve ∪ {p}) can
be safely removed. We utilize inverted lists to track these
useless rules and in the meantime, to avoid repeated calcu-
lations that are shared between different rules. Similarly we
can avoid checking the same relationship in different rules
multiple times.

To achieve this, we propose a novel inverted list that can
be used interchangeably for both nodes and relationships.
Inverted lists Each inverted list is a mapping from a key to a
set Ψ of values. Each key is (i) a match between a column
in R and a class in KB with similarity function ≈u or (ii)
a relationship/property in KB that describes the relationship
between two columns. Each value inΨ is a pair (ϕ, α)where
ϕ ∈ Σ and α is either a vertex or an edge in G \ {n}. Each
pair in Ψ satisfies that the vertex (or edge) α must contain
the node (or relationship) in the key. The inverted lists w.r.t.
rules in Fig. 4 are shown in Fig. 6.

We are now ready to present the fast repair algorithm.
Algorithm 2 It first sorts the rules in Σ in topological
ordering (line 1) and then checks the rules in turn (lines
2-18). For each rule, every vertex and edge in a DR ϕ :
G(V,E)will be visited. If it has not been checked, we detect
whether t[col(u)] belongs to type(u) for vertex u or whether
t[col(u)], t[col(v)] have relationship rel(e) for edge e (lines
3-9). If so, we mark this vertex or edge in other rule ϕ′ as
already being checked using I (lines 4-6). Otherwise, we
delete ϕ′ from Σ (lines 8-9). We apply rule ϕ to tuple t
if it is applicable (lines 10-16). Otherwise, rule ϕ is deleted

Name, Nobel laureates in Chemistry, =

Name, worksAt, Institution (ϕ1,(x1,p1)), (ϕ2,(w1,w2)), (ϕ3,(z1,z2))

DOB, literal, =

Prize, Chemistry awards, =

Institution, organization, ED, 2

City, city, =

Country, country, =

Name, wonPrize, Prize

Name, bornOnDate, DOB

Institution, locatedIn, City

Name, isCitizenOf, Country

City, locatedIn,Country

(ϕ1,x1), (ϕ2,w1), (ϕ3,z1), (ϕ4,v1)

(ϕ1,x2)

(ϕ4,p4)

(ϕ1,p1), (ϕ2,w2), (ϕ3,z2)

(ϕ2,p2) ϕ3 z3

(ϕ3,p3)

(ϕ4,(v1,p4))

(ϕ1,(x1,x2))

(ϕ2,(w2,p2)), (ϕ3,(z2,z3))

(ϕ3,(z1,p3))

(ϕ3,(z3,p3))

Fig. 6 Rule indexes

(line 18). If t[col(p)] ismarked as positive, we delete all rules
which also update col(p) from Σ (line 13). Meanwhile, for
each rule ϕ′ that also contains p (as evidence node) or the
edge connected to p, it also should be marked as already
being checked (lines 14-16).
Complexity The complexity of sorting rules is O(|Σ |+|Er|)
where |Er| is the number of edges in the rule graph. Note that
we only need to sort once and apply to all tuples. It is obvious
that the outer loop (lines 2-17) runs at most |Σ | times. For
each DR ϕ : G(V,E), the worst case of checking each vertex
and edge needs O(|C ||X ||V| + |E|) as stated above even
utilizing the similarity indexes. Thus, the algorithm requires
O(|Σ | × (|C ||X ||V| + |E|)).
Example 10 Consider tuple t3 in Table 1, four DRs in Fig. 4,
and the invert lists in Fig. 6. The rules will be checked in the
order 〈ϕ4, ϕ1, ϕ2, ϕ3〉. Let checkedϕ denotes the set storing
the vertexes and edges in ϕ that have been checked to be
matched with tuple t .

For rule ϕ4, t3[Name] can match node v1. We main-
tain checkedϕ4 = {v1}. Besides, by utilizing the inverted
lists, we have checkedϕ1 = {x1}, checkedϕ2 = {w1}
and checkedϕ3 = {z1}. The negative node n4 can also be
matched, thus t3[Prize] will be updated to Nobel Prize in
Chemistry. Tuple t3 becomes t ′3(Roald Hoffmann+, 1937-
07-18, Ukraine, Nobel Prize in Chemistry+, Columbia
University, Ithaca).

Then for rule ϕ1, since t ′3 can match nodes x1, x2, n1 and
edges (x1, x2),(x1, n1), t ′3[Institution] will be modified to
Cornell University and we have t ′′3 (Roald Hoffmann+, 1937-
07-18+, Ukraine, Nobel Prize in Chemistry+, Cornell
University+, Ithaca). We can expand checkedϕ2 = {w1, w2,

(w1, w2)} and checkedϕ3 = {z1, z2, (z1, z2)} by utilizing the
inverted lists.

When considering rule ϕ2, we only need to check
the negative and positive nodes based on checkedϕ2 . As

123



510 S. Hao et al.

Algorithm 3: Multiple Repair Algorithm
Input: a tuple t , consistent Σ in topological ordering, inverted

lists I.
Output: a set S of repaired tuples.

1 if Σ is empty then S ← S ∪ {t}; return
2 ϕ ← the first DR in Σ ;
3 for each vertex or edge α ∈ ϕ : G(V,E) do
4 if t matches α then
5 mark the vertexes or edges as already checked;

6 else
7 Σ ← delete the rules in Σ that contains α;

8 if ϕ is applicable to t then
9 T ← update or mark t by ϕ;

10 if t[col(p)] is marked as positive then
11 Σ ′ ← delete rules in Σ that update col(p);
12 for each α ∈ {p} ∪ {e|edge e connected p} do
13 mark the vertexes or edges as checked;

14 for each t ′ ∈ T do
15 MultipleRepairAlg(t ′,Σ ′, I);

16 else
17 Σ ′ ← Σ \ {ϕ};
18 MultipleRepairAlg(t,Σ ′, I);

19 put the deleted rules back to Σ ;
20 delete the marks on vertexes or edges of DRs;

t ′′3 [Institution] is actually located in t ′′3 [City]. We have
t ′′′3 (Roald Hoffmann+, 1937-07-18+, Ukraine, Nobel Prize
in Chemistry+, Cornell University+, Ithaca+). Meanwhile,
checkedϕ3 = {z1, z2, z3, (z1, z2), (z2, z3)}

Based on checkedϕ3 , we only need to examine the neg-
ative and positive nodes. Since tuple t ′′′3 matches node n3
and the relationship (z1, n3), t ′′′3 [Country]will be updated to
United States by applying ϕ3. Tuple t ′′′′3 (Roald Hoffmann+,
1937-07-18+, United States+, Nobel Prize in Chemistry+,
Cornell University+, Ithaca+) is a fixpoint.

5.3 Multiple-version repairs

We can extend our methods to support multiple-version
repairs. Different from single-version repair, there might
exist multiple ways to modify an error. Thus, instead of hav-
ing only one updated tuple, we need to keepmultiple repaired
results based on backtracking techniques. The property of
consistency still holds, which means that, all the possible
orders of repairs via Σ terminate in the same fixpoints.
Algorithm 3 At first, we need to check whether Σ is empty,
which means that whether we have scanned all DRs. If Σ =
∅, t will be added into S and this procedure can be returned
(line 1). If Σ is not empty, we take the first DR ϕ out of Σ

(line 2) and check whether ϕ can be applied to tuple t (lines
3-7). Every vertex and edge in ϕ : G(V,E) will be visited,
which is the same as our fast repair algorithm. We apply rule
ϕ to t if it is applicable (lines 8-15). Otherwise, we delete ϕ

fromΣ (line 17) and call this multiple repair algorithm again
to go over the remaining DRs (line 18). Applying rule ϕ to t
may generate multiple-version repairs, and we use a set T to
keep all intermediate results (line 9). If t[col(p)] is marked
as positive, we delete all rules which also update col(p) from
Σ (line 11). Meanwhile, for other rules that also contains p
(as evidence node) or have edges connected to p, they also
should be marked as already being checked (lines 12-13).
Then, for each tuple t ′ ∈ T , this multiple repair algorithm
will be executed again for further repair (lines 14-15). In the
end, we put the deleted rules back to Σ and delete the marks
on DRs (lines 19-20), so that the generation of one version
repair will not affect another.
ComplexityLet |S|denote the number of possible repairs. The
fast repair algorithm for multiple repairs runs in O(|S||Σ |×
(|C ||X ||V| + |E|)) times.

Example 11 Consider tuple t4 in Table 1, four DRs in Fig. 4.
The rules will be checked in the order 〈ϕ4, ϕ1, ϕ2, ϕ3〉.

Rule ϕ4 will not repair any value but mark t4[Name]
and t4[Prize] as positive. As for rule ϕ1, tuple t4 matches
nodes x1, x2, n1 and edges (x1, x2), (x1, n1), so ϕ1 can be
applied. From the KB, we know that Melvin Calvin worked
in two institutions {UC Berkeley, University of Manchester}.
Thus, t4 can be repaired in two ways: t ′4(Melvin Calvin+,
1911-04-08+, United States, Nobel Prize in Chemistry+,
UC Berkeley+, St. Paul) and t ′′4 (Melvin Calvin+, 1911-04-
08+, United States, Nobel Prize in Chemistry+, University
of Manchester+, St. Paul). At this time, T = {t ′4, t ′′4 } and
Σ ′ = {ϕ2, ϕ3}.

As for t ′4, rule ϕ2 will update t ′4[City] to Berkeley from
St. Paul and ϕ3 marks t ′′4 [Country] as positive. All four rules
have been checked (Σ = ∅), and t ′′′4 (Melvin Calvin+, 1911-
04-08+, United States+, Nobel Prize in Chemistry+, UC
Berkeley+, Berkeley+) is a fixpoint. Thus, we get one result
S = {t ′′′4 }.

Then t ′′4 will be taken out from T for further repair and rule
ϕ2, ϕ3 need to be checked again. Rule ϕ2 will update t ′′4 [City]
to Manchester from St. Paul and ϕ3 marks t ′′4 [Country] as
positive. t ′′′′4 (Melvin Calvin+, 1911-04-08+,United States+,
Nobel Prize in Chemistry+, University of Manchester+,
Manchester+) is another fixpoint. Finally, we have two valid
repair S = {t ′′′S4, t ′′′′4 }.

6 Rule generation from examples

Our next goal is to study methods for generating detective
rules. Actually, it is rather hard to generate high-quality DRs
because (1) the knowledge bases are rather large and there are
manyways to build connections between a table and aKB; (2)
it is hard to decide which attributes act as evidence nodes and
positive/negative node. Usually, the user has to be involved
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to identify the validity of DRs before they could be applied.
Our aim is to make the user’s life easier, by automatically
computing a set of DRs to be verified. We first describe how
to generate candidate DRs from positive/negative examples
(Sect. 6.1). We then discuss the refinement of detective rules
(Sect. 6.2).

6.1 Generating candidate DRs by examples

We propose to generate rules by examples. Let D be a table
of relation R and K a KB. We only discuss how to generate
rules for one attribute A ∈ R, and the rules for the other
attributes can be generated similarly. Let P be a set of positive
tuple examples, i.e., all values are correct. Let N be a set of
negative examples,where only A-attribute values (i.e., values
in attribute A) are wrong.
Candidate DR generation algorithm We describe our algo-
rithm below.
S1 [Schema-levelmatching graphs for P .]We use an existing
solution [11] to compute a set G+ of schema-level matching
graphs using the KB K , for the positive examples P . These
correspond to the positive semantics of the table.

In a nutshell, given a set of correct tuples, the algorithm
will map tuple values to KB instances to find their types
and relationships. For instance, given two tuples with correct
values as t(China, Beijing) and t ′(Japan, Tokyo), the algo-
rithm can find out that the first (resp. second) column has
class country (resp. city) and their relationship is country
hasCaptial city.

Then, we can ask experts to select the best schema-level
matching graphG+ fromG+, which is the best understanding
of the semantics of R.
S2 [Schema-level matching graphs for N .] We also compute
a set G− of schema-level matching graphs for the negative
examples N . As for N , the schema-level matching subgraph
of attributes R \ A must be the same as G+. What we need
to do is just decide the negative semantics of attribute A.

Given a negative example t ∈ N , we can map t[A] to sev-
eral instances in theKB K whose class can then be extracted,
and the relationship between t[A] and t[A′] (A′ ∈ R \ A)

from K can also be retrieved. Since not all combinations of
type(t[A]) and rel(t[A], t[A′]) make sense in practice, we
need a scoring function to rank them for human validation.
For instance, given a tuple with wrong value as t(China,
Shanghai ). We have known that the first column has class
country from the above step. Meanwhile, we find that the
second column has two classes city and film in K , and their
relationship is locatedIn. Obviously, city is more suitable
for the relationship locatedIn, so city as a candidate class of
attribute A should get higher score than film. Now, it is time
to introduce our scoring model.

Note that we have confirmed the corresponding class of
t[A′] in the KB K , i.e., P(type(t[A′])=c′) = 1. The score

P(rel(t[A], t[A′]) = r) is:

P(

rel(t[A], t[A′]) = r |type(t[A′]) = c′)

= P(

rel(t[A], t[A′]) = r ∩ type(t[A′]) = c′)

P(type(t[A′]) = c′)

= |I ns(r) ∩ I ns(c′)|
|I ns(c′)|

where I ns(c′) is the set of instances in K which belong to
class c′, and I ns(r) is the set of instances that appear in the
subject (resp. object) of relationship r in K if t[A′] is the
subject (resp. object) of r .

The score of type(A) is:

P(type(t[A]) = c|rel(t[A], t[A′]) = r)

= P(rel(t[A], t[A′]) = r ∩ type(t[A]) = c)

P(rel(t[A], t[A′]) = r)

= |I ns(c) ∩ I ns(r)|
|I ns(c) × P(rel(t[A], t[A′]) = r)|

Each relationship between A and A′ ∈ R\Awill be bounded
with the most compatible type of attribute A. LetRc denotes
the set of relationships bounded with class c, then Rc will be
used to construct the schema-level matching graph G− with
c. The score of G− is the score of type c plus the sum score
of Rc:

P(G−) =
∑

r∈Rc

P(type(t[A]) = c|rel(t[A], t[A′]) = r)

+
∑

r∈Rc

P(rel(t[A], t[A′]) = r)

Moreover, when different negative examples have the
same schema-level matching graph G−, we will add up as
the score of G−.
S3 [Candidate DR Generation.] For each graph G− ∈ G−,
G+ and G− have only one different node, that is, p ∈ G+
and n ∈ G− are different and the two graphs G+ \ {p} and
G− \ {n} are isomorphic. We merge G+ and G− as one DR,
where p (resp. n) becomes the positive (resp. negative) node
of the generated DR, and the score of this DR is the same
with the score ofG−, e.g., one canmerge the outputs from S1
and S2, the positive semantics country hasCaptial city and
the negative semantics city locatedIn country, to generate
one DR.

The above process will generate a set of candidate DRs.
Indeed, the number is not large so the user can manually
pick. Our claim is that, compared with asking the user to
do the eyeballing exercise to write DRs manually, the above
algorithm is simple but useful in practice.

Example 12 Suppose that we have known the correct values
of the tuples in Table 1, then these repaired tuples t1 to t4 can
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Fig. 7 Rule generation from example. a G+, b G− and c candidate DR

be used as positive examples P . And the best schema-level
matching graph G+ for P is shown in Fig. 7a. Tuple t3 can
generate one negative example t ′3(RoaldHoffmann, 1937-07-
18, Ukraine , Nobel Prize in Chemistry, Cornell University,
Ithaca). From KB, we find out that the relationship between
Roald Hoffmann and Ukraine is bornAt, but Ukraine has 8
classes such as country, member states of United Nations
and Ukrainian_speaking countries. country is more suit-
able for relationship bornAt with the instances belong
to Nobel laureates in Chemistry. Thus, the schema-level
matching graph G− for t ′3 which has the highest score is
shown in Fig. 7b. G+ and G− can be merged to be one can-
didate DR which is shown in Fig. 7c.

6.2 Detective rule refinement

The candidate DRs generated following Sect. 6.1 can be
applied to modify the tuple of which only one attribute is
wrong, since other attributes are all utilized in evidence nodes
to detect the error. When there are more than one incorrect
attributes in a tuple, no candidate DRs can be applied. Hence,
what we should do next is to refine candidate DRs, i.e., pick
out the indispensable evidence nodes and remove unneces-
sary ones from candidate DRs.

Intuitively, all evidence nodes in DR ϕ which connect
directly with the positive node and negative node may ought
to be reserved to detect error and guide repair, as well as
the relationships between them. On the contrary, other evi-
dence nodes in DR which have no relationship with positive
and negative node are not so important for repair and can be
removed. Let V p

e , V n
e denote the sets of these evidence nodes

that connect with positive node and negative node, respec-
tively, and V̂e = V p

e ∪ V n
e . Then, we focus on the following

two questions.
(1) Whether all evidence nodes in V̂e should be reserved? If
the positive/negative node only connects with one evidence
node (|V p

e | = 1/|V n
e | = 1), there is no doubt that this node

is essential. If the positive/negative node links with more
than one evidence nodes, we need to make sure that V p

e and
V n
e are minimal which means that no subset of V p

e and V n
e

can determine how to repair the error exactly. Therefore, in
each step, we try to remove one evidence node u from V p

e

and check whether in KB the positive value determined by
V p
e \ {u} is always equal to the value determined by V p

e . If
so, u can be removed from V p

e and we continue to check
whether V p

e \ {u} is a minimal set. This strategy can also be
applied to V n

e .
(2) Whether all evidence nodes in Ve \ V̂e can be removed?
In general, the detective rule which has V̂e as evidence nodes
can be applied to repair the tuple. However, if errors exist in
col(V̂e), this DRmay inject error into col(p) and meanwhile
mark col(V̂e ∪{p}) as positive with the result that other DRs
also cannot revise the mistakes. For example, if we apply
the refined DR which is in Fig. 8b to tuple t4 in Table 1,
this rule will mark t4[Name], t4[City] and t4[Country] as
positive. Then, t4[City] cannot be modified to Berkeley ever.
Therefore, we need to make sure that a DR cannot be applied
when col(V̂e) have errorous. To this end, suppose that there
is another DR ϕ′ that col(p′) ∈ col(V p

e ), we can merge the

nodes in V p′
e to DR ϕ as evidences. Then, rule ϕ can be

applied only after col(p′) satisfy the positive semantic.

Example 13 Consider the candidate DR in Fig. 8a, V p3
e =

{v1, v6} and V n3
e = {v1}. Since |V n3

e | = 1, node v1 is indis-
pensable. We only need to make sure that V p3

e is minimal.
We find that inKB the country where oneworks is not always
his mother country and vice versa. That is to say, only v1 or
only v6 can not decide how to repair Country. Thus, V p3

e has
been minimal, and the refined DR is shown in Fig. 8b.

Then, let us consider rule ϕ2 in Fig. 4 that col(p2) ∈
col(V p3

e ). Since V p2
e = {w2}, we merge w2 to the DR in

Fig. 8b and complement the relationships aboutw2. The final
detective rule is shown in Fig. 8c.
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rel: isCitizenOf

col: Name 
type: Nobel laureates in Chemistry 
sim: =

v1

col: City  
type: city  
sim: =

v6
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p3
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col: Name 
type: Nobel laureates in Chemistry 
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v1

col: City  
type: city  
sim: =

v6
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sim: ED,2

v5

col: Country  
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sim: =

p3
rel: located

In
col: Country  
type: country  
sim: =

n3

rel: bornAt

col: DOB  
type: literal  
sim: =

v2

rel: bornOnDate rel: wonPrize

rel: worksAt rel: isCitizenOf
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In

col: Prize 
type: Chemistry awards  
sim: =

v4

col: Name 
type: Nobel laureates in Chemistry 
sim: =

v1

col: City  
type: city  
sim: =

v6
col: Institution  
type: organization  
sim: ED,2

v5
col: Country  
type: country  
sim: =

p3

rel: located
In

col: Country  
type: country  
sim: =

n3

rel: bornAt

(a) (b) (c)

Fig. 8 Rule refinement. a candidate DR, b DR with V̂e and c DR

7 Experimental study

7.1 Experimental setup

DatasetsWe used two sets of small Web tables, a real-world
dataset and a synthetic dataset. Note that we used the datasets
that are covered by general purpose KBs.

(1) WWT. This dataset contains 37 Web tables2, with the
average number of tuples 44. Each table has 3 attributes
on average.

(2) WEX. We chose 20 Web tables from original WEX
dataset3, which have lots of attributes covered by KBs.
Each table has 184 tuples on average, with the average
number of attributes 6.

(3) Nobel. It contains 1069 tuples about Nobel laureates,
obtained by joining two tables from Wikipedia: List of
Nobel laureates by country4 and List of countries by
Nobel laureates per capita5. We tested this case to see
how our approach performs for personal information, an
important topic considered in many applications.

(4) UIS. It is a synthetic dataset generated by the UIS
Database Generator6. We generated 100K tuples.

Knowledge bases We used Yago [30] and DBpedia [41] for
our experiments. It is known that both Yago and DBpedia
share general information of generating a structured ontol-
ogy. However, the difference is that Yago focuses more on
the taxonomic structure, e.g., richer type/relationship hier-

2 https://www.cse.iitb.ac.in/~sunita/wwt/
3 http://wiki.freebase.com/wiki/WEX
4 https://en.wikipedia.org/wiki/List_of_Nobel_laureates_by_country
5 https://en.wikipedia.org/wiki/List_of_countries_by_Nobel_
laureates_per_capita
6 http://sherlock.ics.uci.edu/data.html

Table 2 Datasets (aligned classes and relations)

Yago DBPedia

#-class #-relationship #-class #-relationship

WWT 42 30 51 30

WEX 67 45 78 39

Nobel 5 4 5 4

UIS 5 5 5 4

archies. This indeed makes the experiment more interesting
to see how taxonomic structure plays the role for mapping
the information between relations and KBs. The number of
aligned classes and relations of testing datasets are given in
Table 2.We retrieved the classes and relationships by issuing
SPARQL queries to a KB.
NoiseWe did not inject noise to Web tables because they are
dirty originally. Noises injected to Nobel and UIS have two
types: (i) typos; (ii) semantic errors: The value is replaced
with a different one from a semantically related attribute.
Errors were produced by adding noises with a certain rate
e%, i.e., the percentage of dirty cells over all data cells.
Detective rules The DRs were generated as described in
Sect. 6, verified by experts. For WWT and WEX, we totally
generated 50 DRs and 45 DRs, respectively. For Nobel and
UIS, we generated 5 DRs for each table.
Algorithms We implemented the following algorithms: (i)
bRepair: the basic repair algorithm (Sect. 5.1); (ii) fRepair:
the fast repair algorithm (Sect. 5.2); (iii) rule generation algo-
rithm (Sect. 6) to generate candidateDRs and refinedDRs.
For comparison, we have implemented KATARA [11], which
is also a KB-based data cleaning system. We also compared
with two IC-based repairing algorithms: Llunatic [25] and
constant CFDs [21].
Measuring qualityWe used precision, recall and F-measure
to evaluate the repairing quality: precision is the ratio of
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correctly repaired attribute values to the number of all the
repaired attributes; and recall is the ratio of correctly repaired
attribute values to the number of all erroneous values; and F-
measure is the harmonic mean of precision and recall. We
manually repaired Web tables and regarded them as ground
truth. There are few cases that multi-version repairs appear
in our experiments. In this case, if one of the repairs matches
the ground truth value, we treat it as a correct repair. Besides,
knowledge bases cannot cover the whole tables. For the other
tables, we mainly evaluated the tuples whose value in key
attribute (e.g., Name w.r.t. Nobel or State w.r.t. UIS) have
corresponding entities in KBs.
Experimental environmentAll methods were written in Java,
and all tests were conducted on a PC with a 2.40GHz Intel
CPU and 64GB RAM.

7.2 Experimental results

We tested DRs from four aspects. Exp-1: The comparison
with other KB-based data cleaning methods. Exp-2: The
comparison with IC-based cleaning on tables. Exp-3: Effec-
tiveness of detective rule generation. Exp-4: Efficiency and
scalability of our solutions.
Exp-1: comparison with KB powered data cleaningWe com-
pared with KATARA [11], the most recent data cleaning
system that is powered by KBs and experts in crowdsourc-
ing. Although KATARA can mark data as correct, it cannot
automatically detect or repair errors. In fact, KATARA relies
on experts to manually detect and repair errors.

In order to have a fair comparison by removing the expert
sourcing factor, we revised KATARA by simulating expert
behavior as follows. When there was a full match of a tuple
and the KB under the table pattern defined by KATARA,
the whole tuple was marked as correct. When there was a
partial match, we revised KATARA by marking the mini-
mally unmatched attributes as wrong. For repairing, since
KATARA also computes candidate repairs, as presented
in [11], we picked the one from all candidates that minimizes
the repair cost.
(A) Data repairWefirst compared with KATARA about data
repairing accuracy, using the datasets reported in Table 2. For
Nobel and UIS, the error rate was 10%.
Precision Table 3 shows the results of applying DRs and
using KATARA for data repairing. DRs were carefully
designed to ensure trusted repair. Hence, not surprisedly, the
precisionwas always 1. This is always true if theDRs are cor-
rect. KATARA, on the other hand, relies on experts to make
decisions. Once experts are absent, KATARA itself cannot
decide how to repair, which result in relatively low precision
as reported in the table.
Recall As shown in Table 3, for Web tables, DRs had lower
recall than KATARA. It is because some of Web tables have
few number of attributes. This is not enough to support the

Table 3 Data annotation and repair accuracy

Precision Recall F-measure #-POS

WWT

DRs

Yago 1 0.38 0.55 1469

DBpedia 1 0.43 0.60 1326

KATARA

Yago 0.73 0.40 0.52 864

DBpedia 0.78 0.46 0.58 752

WEX

DRs

Yago 1 0.49 0.66 4857

DBpedia 1 0.42 0.59 3924

KATARA

Yago 0.52 0.50 0.51 2972

DBpedia 0.54 0.42 0.47 2105

Nobel

DRs

Yago 1 0.70 0.82 1543

DBpedia 1 0.54 0.70 715

KATARA

Yago 0.74 0.68 0.71 396

DBpedia 0.64 0.49 0.56 189

UIS

DRs

Yago 1 0.73 0.84 77001

DBpedia 1 0.63 0.77 57703

KATARA

Yago 0.67 0.77 0.72 35084

DBpedia 0.63 0.57 0.60 25152

modifications of DRs. For example, considering the schema
(Author, Book), when t[Author] and t[Book] do not satisfy
the relationshipwrote, it is hard to judge that which attribute
is wrong. So ourmethods would not repair this kind of tables,
in a conservative way. Meanwhile, since DRs depend on
some attributes as evidences to ensure trusted repair, if those
attribute values in a tuple are not completely covered byKBs,
DRs would still not make any action. It is noteworthy that
DRs can achieve similar recall in WEX with KATARA. This
is because more evidences that covered by KBs can be used
to indicate which attribute is wrong. For Nobel and UIS, the
recall of our algorithms were higher than KATARA. The
reason is that KATARA does not support fuzzy matching.
In order to find proper modifications, at least one attribute
must be correct. Meanwhile, semantic errors would mislead
KATARA to repair a tuple.
F-measure Our method had higher F-measure than
KATARA, because ourmethod had higher precision and sim-
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ilar recall. Taken the explanations above, it is easy to see that
DRs had comparable F-measure with KATARA for WWT,
and better F-measure in WEX, Nobel and UIS, as shown in
Table 3.
(B) Data annotation KATARA can also mark correct data,
when a given tuple can find a full match in the givenKB, rel-
ative to the table pattern they used. Note that in their paper,
KATARA can mark wrong data. However, each wrong value
has to bemanually verified by experts. For comparison, given
a tuple and a KB, if a partial match is found by KATARA,
one way is to heuristically mark the matched part as correct
and the unmatched part as wrong. This will cause both false
positives and false negatives. Hence, in order to have a rela-
tively fair comparison, we favor KATARA by only checking
the full matches that they mark as correct.

Table 3 gives the results of both DRs and KATARA in
marking data, listed in the last column #-POS. The results
show that, even by ignoring the ability of data repairing,
DRs can automatically mark much more positive data than
KATARA.These information is extremely important for both
heuristic and probabilistic methods, since the main reason
they make false positives and false negatives is that they can-
not precisely guess which data are correct or wrong.
Exp-2: comparison with IC-based repair In this group of
experimental study, we compared with IC-based repairing
algorithms. Llunatic [25] involves different kinds of ICs and

different strategies to select preferred values. For Llunatic,
we used FDs and chose its frequency cost-manager.Metric0.5
was used to measure the repair quality (for each cell repaired
to a variable, it was counted as a partially correct change).
For constant CFDs, they were generated from ground truth.
We simulated the user behavior by repairing the right hand
side of a tuple t based on a constant CFD, if the left side values
of t were the same as the values in the given constant CFD.
In this case, constant CFDs will make mistakes if the tuple’s
left hand side values are wrong.

Also, since there is notmuch redundancy in theWeb tables
that IC rely on to find errors (or violations), we tested using
only Nobel and UIS datasets. We first evaluated the accuracy
of repair algorithm over different error rates. We then varied
the percentage of error types in Nobel and UIS to get better
insight into the strong and weak points of DRs, compared
with other IC-based approaches.
(A) Varying error rate For Nobel and UIS, we studied the
accuracy of our repair algorithm by varying the error rate
from 4 to 20%, and reported the precision, recall and F-
measure in Fig. 9. The rates of different error types, i.e.,
typos and semantic errors, were equal, i.e., 50–50.

We can see that ourmethods had stable performancewhen
error rates increased. However, the precision and recall of
Llunatic moderately decreased, since whenmore errors were
injected, it became harder to detect errors and link relevant
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Fig. 9 Effectiveness (varying error rate). a Precision (Nobel), b recall (Nobel), c F-measure (Nobel), d precision (UIS), e recall (UIS) and f
F-measure (UIS)
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tuples for heuristic repair algorithm. The precision and recall
of constant CFDs also decreased because there were more
chances that errors happened on the left hand side of constant
CFDs.

From Fig. 9b, we see that our algorithms did not have
higher recall. This is because: (i) KBs cannot cover all
attribute values in Nobel and UIS, e.g., some City can find
corresponding resource with property locatedIn to repair the
attribute State but some cannot. Thus, some errors cannot
be detected; (ii) to ensure the precision, we would not repair
errorswhen the evidencewasnot sufficient; and (iii) if seman-
tic errors were injected into the evidence nodes of DRs, we
cannot detect and repair them. On the contrary, the other two
methods would repair some potentially erroneous heuristi-
cally, which may increase their recall.
(B) Varying typo rate We fixed the error rate at 10% and
varied the percentages of typos from 0 to 100% (semantic
errors from 100 to 0% corresponding) to evaluate the ability
of capture typos and the semantic error. The experimental
results are shown in Fig. 10.

Figure 10 shows that Llunatic and our methods behaved
better with typos than with semantic error. The reason is that
they all chose to repair an error to the most similar candi-
date, which for typos are more likely to be correct value. On
the contrary, if the semantic errors were added to the evi-
dence nodes of DRs or left hand of FDs, none of us can detect
that errors.Meanwhile, more lluns (unknown defined in Llu-

natic) were introduced to make the table consistent. Constant
CFDs do not support fuzzy matching. Thus, it is hard to say
which type of errors it can detect better. These errors can
be detected only when they are injected to the right hand of
constraints.
Exp-3: effectiveness of detective rule generation We also
evaluated the effectiveness of detective rule generation
described in Sect. 6, including candidate rule generation and
rule refinement. For Nobel and UIS, we generated 5 candi-
date DRs and 5 refined DRs for each table. We varied the
error rate from 10 to 50%, and reported the precision, recall
and F-measure in Fig. 11. The rates of different error types,
i.e., typos and semantic errors, were equal, i.e., 50–50.

From Fig. 11, we can see that candidate DRs can achieve
good precision and recall already. However, along with the
increase in error rate, the recall of candidate DRs decreased.
On the contrary, refined DRs can have more stable recall
without losing any precision, and certainly higher F-measure.
The reason is that, to repair an error in one attribute, can-
didate DRs need all other attributes as evidences to detect
the error. As error rate increased, it was more likely that a
tuple had more than one incorrect attributes. Candidate DRs
cannot repair these errors in this case. Refined DRs only con-
tain essential evidence nodes, so they can repair more errors.
Furthermore,KBs cannot cover all attributes of a tuple some-
times. In other words, candidate DRs was not easy to be
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Fig. 10 Effectiveness (varying typo rate). a Precision (Nobel), b recall (Nobel), c F-measure (Nobel), d precision (UIS), e recall (UIS) and f
F-measure (UIS)

123



Distilling relations using knowledge bases 517

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50

P
re

ci
si

on

Error Rate(%)

candidateDR(Yago)
refinedDR(Yago)

candidateDR(DBpedia)
refinedDR(DBpedia)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50

R
ec

al
l

Error Rate(%)

candidateDR(Yago)
refinedDR(Yago)

candidateDR(DBpedia)
refinedDR(DBpedia)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50

F-
m

ea
su

re

Error Rate(%)

candidateDR(Yago)
refinedDR(Yago)

candidateDR(DBpedia)
refinedDR(DBpedia)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50

P
re

ci
si

on

Error Rate(%)

candidateDR(Yago)
refinedDR(Yago)

candidateDR(DBpedia)
refinedDR(DBpedia)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50

R
ec

al
l

Error Rate(%)

candidateDR(Yago)
refinedDR(Yago)

candidateDR(DBpedia)
refinedDR(DBpedia)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50

F-
m

ea
su

re

Error Rate(%)

candidateDR(Yago)
refinedDR(Yago)

candidateDR(DBpedia)
refinedDR(DBpedia)

(a) (b) (c)

(d) (e) (f)

Fig. 11 Effectiveness of detective rule generation. a Precision (Nobel), b recall (Nobel), c F-measure (Nobel), d precision (UIS), e Recall (UIS)
and f F-measure (UIS)
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Fig. 12 Efficiency (varying #-rule). a Time (WWT), b time (WEX), c time (Nobel) and d time (UIS)

satisfied. That is why refined DRs was better than candidate
DRs even when error rate was low.
Exp-4: efficiency study We evaluated the efficiency of our
repair algorithms usingWWT,WEX, Nobel and UIS. We first
varied the number of DRs to measure the performance of
bRepair and fRepair. Then we studied the scalability of the
algorithms utilizing the UIS Database Generator.
(A) Varying #-RuleWe varied the number of rules from 10 to
50 by a step of 10 for WWT, from 9 to 45 by a step of 9 for
WEX and varied from 1 to 5 by a step of 1 for Nobel and UIS.
The execution time were reported in Fig. 12. The error rate
of Nobel and UIS was fixed at 10%, and we generated 20K
tuples for UIS. To better represent the impact of indexes, we
did not sum the time of reading and handling KBs.

There is no doubt that with the growing size of ruleset,
fRepair was more efficient than bRepair. For example, when
there were 5 DRs to repair UIS utilizing DBpedia, bRepair
ran 1323s, while fRepair only ran 217s. For WWT, fRepair
was not so faster than bRepair. It is because the extra cost of
sorting rules and keeping inverted lists became unnegligible
when only a few of DRs were used for repairing a few tuples.
(B) Varying #-Tuple In this part of experiment, we evalu-
ated the scalability of our methods and compared with the
other three repair algorithms: KATARA, Llunatic and con-
stant CFDs.Weutilized theUISDatabaseGenerator andvaried
the number of tuples from20 to 100Kby a step of 20K, fixing
the error rate at 10%. The experimental result was reported
in Fig. 13. Note that the time of reading and handling KBs

was included in this part of experiments.
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Figure 13 indicates that the impact of indexes became
more andmore remarkablewith the growing the data size. For
example, when there were 100K tuples to repair, the bRepair
algorithm utilizing Yago ran 1216s, while fRepair only ran
152s. The fRepair algorithm always ran faster than Llunatic,
and the time cost of Llunatic increased faster along with the
number of tuples grew. The reason is that Llunatic needed to
consider multiple tuples to detect violations and holistically
consider multiple violations to decide a repair strategy. Our
methods also ran faster than KATARA especially for DBpe-
dia, because KATARA needed to list all instance graphs and
find the most similar one for each tuple. Note that constant
CFDs use only instances, thus it can repair 100K tuples within
1s.
Summary of experimental findingsWefind the followings. (1)
DRs are effective in using KBs for cleaning relations. With-
out experts being involved, DRs are more accurate than the
state-of-the-art data cleaning systemKATARA that also uses
KBs (Exp-1). (2) DRs are more effective than IC-based data
cleaning (Exp-2). Note that we did not compared with other
rule-based algorithms that are also ensured correctness if the
rules are correct. The only reason is that existing rule-based
methods do not rely onKBs but on expert knowledge or mas-
ter tables. Though similar, we focus on how to design rules
for trusted cleaning using KBs, which cannot be achieved
by existing rule-based systems. (3) We can generate valid
DRs from positive examples and negative examples, and the
reduction strategy is effective (Exp-3). (4) It is efficient and
scalable to apply DRs (Exp-4), since repairing one tuple is
irrelevant to any other tuple, which is thus naturally paral-
lelizable.

8 Conclusion

In this paper, we have proposed detective rules. Given a rela-
tion and aKB, DRs tell us that which tuple values are correct,

which tuple values are erroneous, and how to repair them if
there is enough evidence in theKB, in a deterministic fashion.
We have studied fundamental problems associatedwith DRs,
such as consistency analysis.We have proposed efficient data
repairing algorithms including multiple optimization strate-
gies and data structures. We have discussed how to generate
DRs. Finally, we have experimentally verified the effective-
ness and efficiency of DRs.
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