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Abstract
In this paper, we study the problem of set containment join. Given two collections R and S of records, the set containment
join R ��⊆ S retrieves all record pairs {(r , s)} ∈ R × S such that r ⊆ s. This problem has been extensively studied
in the literature and has many important applications in commercial and scientific fields. Recent research focuses on the
in-memory set containment join algorithms, and several techniques have been developed following intersection-oriented
or union-oriented computing paradigms. Nevertheless, we observe that two computing paradigms have their limits due to
the nature of the intersection and union operators. Particularly, intersection-oriented method relies on the intersection of
the relevant inverted lists built on the elements of S. A nice property of the intersection-oriented method is that the join
computation is verification free. However, the number of records explored during the join process may be large because there
are multiple replicas for each record in S. On the other hand, the union-oriented method generates a signature for each record
in R and the candidate pairs are obtained by the union of the inverted lists of the relevant signatures. The candidate size
of the union-oriented method is usually small because each record contributes only one replica in the index. Unfortunately,
union-oriented method needs to verify the candidate pairs, which may be cost expensive especially when the join result size is
large. As a matter of fact, the state-of-the-art union-oriented solution is not competitive compared to the intersection-oriented
ones. In this paper, we propose a new union-oriented method, namely TT-Join, which not only enhances the advantage of
the previous union-oriented methods but also integrates the goodness of intersection-oriented methods by imposing a variant
of prefix tree structure. We conduct extensive experiments on 20 real-life datasets and synthetic datasets by comparing our
method with 7 existing methods. The experiment results demonstrate that TT-Join significantly outperforms the existing
algorithms on most of the datasets and can achieve up to two orders of magnitude speedup. Furthermore, to support large
scale of datasets, we extend our techniques to distributed systems on top of MapReduce framework. With the help of careful
designed load-aware distribution mechanisms, our distributed join algorithm can achieve up to an order of magnitude speedup
than the baselines methods.
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1 Introduction

Set-valued attributes play an important role in modeling
database systems ranging from commercial applications to
scientific studies. For instance, a set-valued attribute may
correspond to the profile of a person, the tags of a post,
the links or domain information of a webpage, and the
tokens or q-grams of a document. In the literature, there
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has been a variety of interest in the computation of set-
valued attributes, including but not limited to set containment
searches (e.g., [14,24,29,38,39,46,47]), set similarity joins
(e.g., [15,17,19,21,32,42–45]), and set containment joins
(e.g., [18,23,26,27,30,31,33,34,36]).

In this paper, we focus on the problem of set contain-
ment join. Given two collectionsR and S of records, each of
which contains a set of elements, the set containment join,
denoted byR ��⊆ S, retrieves all pairs {(r , s)}where r ∈ R,
s ∈ S, and r ⊆ s. As a fundamental operation on massive
collections of set values, the set containment join benefits
many applications. For instance, companies may post a list
of positions on an online job market Web site, each of which
contains a set of required skills. Let ei denote a skill, Fig. 1a
shows the skills required in four job advertisements in R.
A job-seeker, on the other hand, can submit his/her curricu-
lum vitae to the Web site, which lists a set of his/her skills.
Figure 1b illustrates the skill records of four job-seekers in
S. Naturally, a company would like to consider a job-seeker
if his/her skill set covers all required skills for a position.
We call such a pair of job-seeker and position a containment
match. By executing a set containment join on the positions
and job-seekers, the Web site is able to identify all possible
matches, i.e.,R ��⊆ S, and make recommendations.

An algorithmic challenge is how to perform the set con-
tainment join in an efficient way. A naive algorithm is to
compare every pair of records from R and S, thus bearing
a prohibitively O(nrns) time complexity where nr and ns
denote the number of records in R and S, respectively. In
view of such high cost, the prevalent approach in the past
is to develop disk-based algorithms [26,31,33,34,36] for this
problem. We call these algorithms union-oriented methods
because, as shown in Sect. 3.2, the union is their core oper-
ator. In a high level, each record r ∈ R is assigned with a
signature (e.g., bitmap), where an inverted index onR could
also be built based on the signatures. For each s ∈ S, they
generate all possible signatures by s or any of its subset. By
computing the union of all the corresponding inverted lists,
they obtain a set of candidate recordswithinR, each ofwhich
might be a subset of s. Then, set containment join results are
available after verifying the candidate pairs.

id set
r1 {e1, e2, e3}
r2 {e1, e2, e4}
r3 {e1, e3, e4}
r4 {e2, e5}

(a) R sets

id set
s1 {e1, e2, e3, e5}
s2 {e1, e2, e4}
s3 {e1, e3, e6}
s4 {e2, e4, e5}

(b) S sets

Fig. 1 A motivation example where ei denotes a skill, R consists of
four job advertisements with required skills, and S represents four job-
seekers with their skills

With the development of hardware and distributed com-
puting infrastructure, a recent trend is to design efficient
in-memory set containment join algorithms (e.g., [18,27,
30,31]). It is interesting that the state-of-the-art techniques
follow a very different computing paradigm, namely inter-
section-oriented method, where details are introduced in
Sect. 3.1. In general, an inverted index is constructed based
on every element of each record within S. Then, for a record
r ∈ R, we can identify records s ∈ S with r ⊆ s by the
intersection of the inverted lists built on S for all elements
within r . Following this computing paradigm, instead of pro-
cessing each record r within R individually, three variants
of prefix tree structures are designed in [18,27,30] to share
computation costs among records withinR.

Compared to union-oriented methods, verification free
is the most judicious property of the intersection-oriented
method, especially when the join result size is large. Our
empirical study shows that the state-of-the-art in-memory
union-oriented method [30], which is an extension of previ-
ous disk-basedmethods, has been significantly outperformed
by the state-of-the-art in-memory intersection-oriented tech-
niques. Nevertheless, we show that this benefit is offset by
the fact that every element in s ∈ S contributes to the inverted
index due to the nature of intersection operator; that is, the
ID of each record in S will be replicated in multiple inverted
lists. This inevitably results in a large number of records vis-
ited in the join process, especially for the record r ∈ R with
large size. With the same reason, we show that it is difficult
for intersection-oriented method to exploit the skewness of
the real-life data.

We are aware that there are several algorithms (e.g., [14,
29,42]), which are devised for string similarity search, can
also be utilized to handle set containment join with trivial
modification. Algorithms in this category are called adapted
methods, where the details are introduced in Sect. 3.3.

In this paper, we revisit and design a new union-oriented
method, namely TT-Join, where an efficient set containment
join algorithm is developedbasedon twodifferent prefix trees
built onR and S, respectively. Through comprehensive cost
analysis on simple intersection-oriented and union-oriented
methods in Sect. 4.2, we show that the above two problems
suffered by the intersection-oriented methods can be eas-
ily addressed by a new simple union-oriented method which
uses the least frequent element as the signature. Not surpris-
ingly, the new simple union-oriented method needs to verify
candidates due to the inherent limit of union-oriented com-
puting paradigm. Moreover, its pruning capability is limited
by using only one element as the signature. To circumvent
these limits, we propose a new prefix tree structure based on
the k least frequent elements of the recordswithinR such that
we can (i) enhance the pruning power with a reasonable over-
head and (ii) integrate the intersection semantics to directly
validate a significant number of join results without invok-
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ing the verification. To share the computational cost among
records within S, we also build a regular prefix tree on S.
Then, we develop an efficient TT-Join algorithm to perform
set containment join against two prefix trees.

Due to the limited computational resources (e.g., memory
or CPU), it is often difficult to process large scale real-
life datasets in a single machine. To alleviate this issue, we
extend our techniques on top ofMapReduce framework (e.g.,
Hadoop and Spark), which has attracted lots of interests in
both academia and industry communities due to its high effi-
ciency and scalability for batch processing tasks . The main
challenge here is how to partition the two record collections
such that good load balance on cluster nodes can be achieved
at a small communication cost. To the best of our knowl-
edge, there is no existingwork on computing set containment
join using MapReduce framework. It is worth mentioning
that Kunkel et al. [27] recently propose a parallel algorithm
PIEJoin to compute the set containment join. However, they
achieve parallelization by creating a task thread for each
recursive call of the crucial search function in their approach.
Apparently, this method does not follow MapReduce frame-
workwhich involves two crucial operations,map and reduce,
on partitioning and dispatching the input data.We also notice
that there are a fewworks in the literature onutilizingMapRe-
duce to handle set similarity join (e.g., [13,20,25,35,37,40]).
Nevertheless, due to different nature of the two problems
(i.e., set containment join and set similarity join), their tech-
niques are not promising on processing our problem, which
is verified by our empirical studies in Sect. 6.

In this paper, we propose a novel signature-based dis-
tribution scheme, which dispatch records based on the
aforementioned record signature (i.e., the least frequent ele-
ment). Specifically, we first partition the element domain into
N disjoin intervals, each related to a reduce node. Then, for
a record r ∈ R, we find the interval where its signature
falls and dispatch r to the corresponding reduce node. For
a record s ∈ S, it will be dispatched to all reduce nodes
whose corresponding intervals cover at least one element of
s. With the help of careful designed element domain parti-
tion approaches that are guided by the join cost estimation
on reduce nodes, our signature-based distributionmechanism
can achieve good load balance, low communication cost, and
no duplicate in join results. Experimental results show that
our method can achieve up to an order of magnitude speedup
andmuch less communication cost compared to baseline dis-
tribution schemes.

Contributions Our principle contributions are summarized
as follows.

– We classify the existing solutions into two categories,
namely intersection-oriented and union-oriented meth-
ods, based on the nature of their computing paradigms.

Through comprehensive analysis on two simple intersec-
tion-oriented and union-oriented methods, we show the
advantages and limits of the methods in each category.

– We propose a new union-oriented method, namely TT-
Join. Particularly, we design a k least frequent element-
based prefix tree structure, namely kLFP-Tree, to orga-
nize the records withinR. Together with a regular prefix
tree constructed on records from S, we develop an effi-
cient set containment join algorithm.

– We extend TT-Join on top of MapReduce framework.
Particularly, we propose a signature-based distribution
mechanism, which can achieve good load balance as well
as low communication cost. As far as we know, this is
the first work to extend set containment join system to a
distributed environment.

– Our comprehensive experiments on 20 real-life set-
valued data from various applications and synthetic
datasets demonstrate the efficiency of our TT-Join algo-
rithm. It is reported that TT-Join significantly outper-
forms the state-of-the-art algorithms on most of the
datasets and can achieve up to two orders of magnitude
speedup. On the other hand, our distributed set contain-
ment join algorithm can achieve much better scalability.

Road map The rest of the paper is organized as follows.
Section 2 presents the preliminaries. Section 3 introduces
the existing solutions. Our approach TT-Join is devised in
Sect. 4. Section 5 presents distributed set containment join
algorithm.Extensive experiments are reported inSect. 6. Sec-
tion 7 concludes the paper.

2 Preliminaries

In this section, we introduce basic concepts and definitions
used in the paper. Table 1 summarizes the important mathe-
matical notations used throughout this paper.

In this paper, each record x consists of a set of elements
{e1, e2, . . . , e|x |} fromelement domainE .WeuseX to denote
a relation with a set-valued attribute, i.e., a collection of
records. By default, elements in a record are in decreasing
order of their frequency in X . Following the convention, we
use R (resp. S) to denote the left (resp. right) side relation
(i.e., a collection of records) for the set containment join.
Similar, we use r (resp. s) to denote a record withinR (resp.
S).

Given two records r and s, we say r is contained by s,
denoted by r ⊆ s, if all elements of r can be found in s. That
is, for ∀e ∈ r , we have e ∈ s. In the paper, we also say r is
a subset of s and s is a superset of r if r ⊆ s. For a record
r ∈ R, we use S(r) to denote all records s ∈ S with r ⊆ s.
Similarly,R(s) denotes all records r ∈ R with r ⊆ s.
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Table 1 The summary of notations

Notation Definition

x,X ; r ,R; s,S A record, a set of records

e, E An element, element domain

R(s) All records r ∈ R with r ⊆ s

S(r) All records s ∈ S with r ⊆ s

σ Signature of a record

IR(σ ) Inverted list for signature σ in R
IS(e) Inverted list for element e in S
TR, TS Indexing tree on R / S
v,w A node in TR / TS
v.e, w.e Record element in v / w

v.set, w.set Elements from root to v / w

v.pre f i x, w.pre f i x Elements from root to parent of v / w

v.list, w.list Records stop at v / w

P(e) Frequency distribution of elements

θ(l) Distribution of record cardinality

|x |avg, |r |avg, |s|avg Average size of records in X , R,S
|x |max , |r |max , |s|max Maximal size of records in X , R, S

Definition 1 (Set Containment Join) Given two collections
R and S of records, the set containment join betweenR and
S, denoted by R ��⊆ S, is to find all pairs (r , s), such that
r ∈ R, s ∈ S, and r ⊆ s. That is R ��⊆ S = {(r , s)|r ∈ R,
s ∈ S, and r ⊆ s}.
Example 1 Consider the example in Fig. 1. The result
of set containment join is as follows: R ��⊆ S =
{(r1, s1), (r2, s2), (r4, s1), (r4, s4)}.

3 Existing solutions

A brute-force solution for set containment join is to enu-
merate and verify |R||S| pairs of records, which is cost
prohibitive. To improve the efficiency of computation, many
advanced algorithms are proposed in the literature. We
classify them into two categories based on their comput-
ing paradigms, namely intersection-oriented methods [18,
26,27,30,31] and union-oriented methods [23,30,33,34,36].
We also review several methods proposed for set similarity
search [14,29,42].

3.1 Intersection-orientedmethods

Given two record collectionsR and S, the key idea of inter-
section-oriented method is to build inverted index on S and
then apply the intersection operator to calculate R ��⊆ S.
In this paper, we say these algorithms are S-driven methods
because their main index structures are built on S.

Algorithm 1 illustrates a simple intersection-oriented
method [31], namely RI-Join.1 We use IS(e) to denote the
inverted list of an element e built on records inS, which keeps
IDs of the records containing the element e. Figure 2 depicts
the inverted index of S in the example of Fig. 1. Lines 1–2
build the inverted index of S. Then, for each record r ∈ R,
we can immediately identify S(r) (i.e., record s ∈ S with
r ⊆ s) based on the intersection of the inverted lists for ele-
ments within r (Lines 4–6).

Algorithm 1: RI-Join (R, S)
Output : J : join result R ��⊆ S
for each record s ∈ S do1

Update inverted list IS(e) for every e ∈ s;2

J := ∅;3
for each r ∈ R do4

C := ⋂
e∈r IS(e);5

J := J ∪ {(r , s)} for every record s ∈ C ;6

return J7

The dominant cost of Algorithm 1 is the intersection of
the inverted lists (Line 5). We have

Cost(R ��⊆ S) =
∑

r∈R

∑

e∈r
|IS(e)|. (1)

AnalysisA nice property of the intersection-oriented appro-
ach is verification free. On the downside, a significant
drawback is that we need to consider every element of a
record for inverted index construction (Line 2). Thismay lead
to long inverted lists, and hence, a large number of records
accessed during the join process (Line 5).

Below are details of advanced intersection-oriented set
containment join algorithms.

Algorithm PRETTI Jampani et al. [26] propose a method
called PRETTI to improve the performance of intersec-
tion-oriented method. Instead of processing each individual
record inR, a prefix tree TR is built onR to share the com-
putational cost. We define a (regular) prefix tree as follows.

Definition 2 (Prefix Tree) Each node v in the tree (except
root) is associated with an element in E , denoted by v.e.
We use v.set to denote the set of elements associated with
v and its ancestors. Similarly, we denote all elements in its
ancestors by v.pre f i x (i.e., v.pre f i x := v.set \ v.e). We
also use a list, denoted by v.list , to keep the IDs of all records
{x |x = v.set}. Note that elements in each record follow a
global order, and hence, each record is assigned to a unique
tree node.

1 Algorithm 1 is named RI-Join in this paper since there is no index
on R and an inverted index is built on S.
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Algorithm 2: PRETTI(TR, IS )
Input : TR : prefix tree on R,

IS : inverted indexes on S
Output : J : join result R ��⊆ S
J := ∅;1
for each child node v of the root of TR do2

processNode(v, IS(v.e), J );3

return J4

procedure processNode(v, list , J )5
list ← list ∩ IS(v.e);6
for each record r ∈ v.list do7

for each record s ∈ list do8
J ← J ∪ {(r , s)};9

for each child node vi of node v do10
processNode(vi , list , J );11

Fig. 2 Inverted index on S IS(e1)
IS(e2)
IS(e3)
IS(e4)
IS(e5)

s1, s2, s3

s1, s2, s4

s1, s3

s2, s4

s1, s4

IS(e6) s3

Figure 3 shows the prefix tree for the record set R in
Fig. 1a. By utilizing the prefix tree, we can share computa-
tion among records with the same prefix. For instance, the
intersection for inverted lists of IS(e1) and IS(e2) only needs
to be performed once when we compute the superset of r1
and r2.

Algorithm 2 illustrates the details of PRETTI, which tra-
verses the prefix tree on R in a depth-first manner. For each
node v visited, we uses list to denote the intersection of the
inverted lists of the elements in v.pre f i x , which is passed
from its parent node. Based on the intersection of list and the
inverted list of the element v.e IS(v.e) (Line 6), we obtain
the list of records in S each of which contains all elements in
v.set . Lines 7–9 generate the join results regarding the node
v. Then, the join will continue through its child nodes where
the updated list will be passed (Lines 10–11).

Algorithm PRETTI+ To reduce the size of the prefix tree,
Luo et al. [30] introduce an extension of PRETTI, namely
PRETTI+. In particular, PRETTI+ employs a compact prefix
tree, called Patricia trie, to replace the prefix tree in PRETTI.
This new prefix tree is the same as the previous one except
that the nodes along a single path are merged into one node.
The Patricia trie on the records set R in Fig. 1a is shown in
Fig. 4. We omit the details of PRETTI+, which are the same
as PRETTI except that we may need to merge inverted lists
of multiple elements associated with a node.

Algorithm LIMIT+(OPJ) To avoid exploring many inver-
ted lists for the large size records withinR, Bouros et al. [18]

Fig. 3 Prefix tree on R root

e2

e3

{r1} {r2}

{r4}

e5

{r3}

e4

e1

e2

e3 e4

Fig. 4 Patrica trie on R root

e2e5

e3e4

{r1} {r2}

{r4}

e1

e2

{r3}e3 e4

Fig. 5 Limited tree on R root

e2

e3

{r1, r2} {r4}

e5

e1

e2

{r3}

propose a new algorithm, called LIMIT. Instead of building
a complete prefix tree forR, LIMIT only builds a prefix tree
with limited height k; that is, it only considers the prefix of
record with a fixed length. Figure 5 shows a limited prefix
tree with k = 2 for records setR in Fig. 1a.

Based on the limited prefix tree, LIMIT performs the
join process following a two-phase procedurewhich involves
candidates generation and candidates verification. In terms
of algorithm implementation, LIMIT is basically the same
as Algorithm 2 except the generation of join results (Lines 9
in Algorithm 2). Particularly, LIMIT handles this by consid-
ering two scenarios. If |r | ≤ k, we output the record pair
(r , s) directly since the inverted lists of all elements in r par-
ticipate in the intersection. Otherwise, we have to verify the
record pair (r , s). Althoughwe need to verify some candidate
pairs in LIMIT due to the limited tree height, this cost is well
paid off by significantly reducing the number of inverted
lists involved in the intersection. To enhance the compu-
tation performance, the authors propose two optimization
techniques as follows. (i) They dynamically determine the
local height for eachpath of the prefix tree; (ii) the authors fur-
ther propose a newparadigm, termedOrder and Partition Join
(OPJ), which partitions the records in each collection based
on their first contained item, and then process these parti-
tions progressively. Based on these optimization techniques,
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w0, [0,10], root

w1, [1,7], e1

w2, [2,5], e2 w6, [6,7], e3

w3, [3,4], e3

w4, [4,4], e5, {s1}

w5, [5,5], e4, {s2}

w7, [7,7], e6, {s3}

w9, [9,10], e4

w8, [8,10], e2

w10, [10,10], e5, {s4}

Fig. 6 Augmented prefix tree on S

Algorithm 3: PIEJoin(TR, TS )
Input : TR prefix tree on R, TS : prefix tree on S
Output : J : join result R ��⊆ S
J := ∅;1
search(TR.root , TS .root , J );2
return J3

procedure search(v, w, J )4
lookForOutput(v, w, J );5
for each child node vi of node v do6

W ← TS .findNodes(w, vi .e);7
for each child node w j ∈ W do8

search(vi , w j , J );9

procedure lookForOutput(v, w, J )10
if v.list �= ∅ then11

list ← TS .getRecords(w);12
for each record r ∈ v.list do13

for each record s ∈ list do14
J ← J ∪ {(r , s)};15

the advanced algorithms LIMIT(OPJ) and LIMIT+(OPJ) are
devised. As a matter of fact, our empirical studies in Sect. 6.1
show that the two algorithms might achieve different per-
formances under different data structures and programming
languages.

Algorithm PIEJoin Recently, Kunkel et al. [27] propose
a two-tree-based method, called PIEJoin, which aims to
improve the performance of intersection-oriented method by
exploiting advanced index technique on S. PIEJoin builds
two prefix trees TR and TS on relations R and S, respec-
tively, together with auxiliary structures on each tree node.
In particular, for TR, each node is labeled with a preorder
ID (e.g., v0, . . . , v9 in Fig. 3), while for TS , there is a pre-
order interval on each node, which can be utilized to quickly
decide whether a subtree contains a particular element. Fig-
ure 6 shows the augmented prefix tree TS for S in Fig. 1b.

The details of PIEJoin are illustrated in Algorithm 3,
which traverses two prefix trees simultaneously. The search
starts from the root of TR and TS (Line 2). On each tree node
pair v and w, we check whether there are some join pairs
found (Line 5). In particular, if v.list is not empty (Line 11),
then we find all records in the subtree rooted at w and enu-
merate join pairs (Lines 13–15). After collecting results in
current tree node pair,we go further by traversing the children

of v. For each child vi , we find the descendants of w such
that the element contained in these nodes is vi .e (Line 7). We
then recursively conduct the search process for each node
pair vi and w j (Line 9).

Compared to the previous solutions, PIEJoin employs a
tree structure on records in S, instead of the inverted index.
This alleviates the problem of the large size inverted lists for
S. However, some auxiliary structures have to be engaged
to facilitate the node match at Line 7. Note that we need
to find the matches within the whole subtree, which may
be cost expensive. As reported in [27], the performance of
PIEJoin is not competitive compared with LIMIT(OPJ) [18],
which builds inverted index on S, under most of the datasets
evaluated.

3.2 Union-orientedmethods

In general, all methods in this category use signature-based
techniques. Let L denote the domain of the signature values,
we use a hash function h to map a record x into a set of signa-
ture values, denoted by h(x), with h(x) ⊆ L. For instance, in
the partition-based containment join algorithm [36], a record
x will be mapped into a number between 0 and k − 1. These
algorithms are also named R-driven methods because the
main index is built on records inR.

An important property of these signature-based tech-
niques is as below. For any given records r ∈ R and s ∈ S,
we have h(r) ⊆ h(s) if r ⊆ s. This implies that, for a
given record s ∈ S, we can safely exclude a record r ∈ R
from set containment join result if h(r) � h(s). That is,
the signature-based techniques will not introduce any false
negative.

Given two record collections R and S, the key idea of
union-oriented method is to generate candidate records
withinR for each record s ∈ S by the union of the inverted
lists for the relevant signatures. Algorithm 4 illustrates a
framework of simpleunion-orientedmethod. Lines 1–2build
inverted lists for possible signatures on R. For each record
r ∈ R, Line 2 attaches its ID to the inverted list of the corre-
sponding signature σ , denoted by IR(σ ). Then, Lines 4-7
generate containment join result candidates based on the
union of the inverted lists of the signatures. For a record
s ∈ S, we consider the inverted lists of the signatures gener-
ated by s or any of its subsets. Line 8 verifies the candidate
pairs within J to remove the false positives. Note that in the
implementation, we usually do not need to explicitly enu-
merate all subsets of s to generate Ms as shown at Line 5.
Instead, Ms can be generated efficiently by exploiting the
characteristics of the specific signatures used.

The dominant cost of Algorithm 4 is the union of the
inverted lists (Line5) , denotedbyC f ilter , and theverification
cost (Line 8), denoted by Cve f . We have
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Algorithm 4: A framework of simple union-oriented

method(R, S)
Output : J : join result R ��⊆ S
for each r ∈ R do1

σ ← h(r); Update IR(σ );2

J := ∅;3
for each s ∈ S do4

Ms ← all possible signatures can be generated by s or any of5
its subsets;
C ← ⋃

σ∈Ms
IR(σ );6

J := J ∪ {(r , s)} for every record r ∈ C ;7

Verify candidate pairs within J ;8
return J9

Cost(R ��⊆ S) = C f ilter + Cve f

=
∑

s∈S

∑

σ∈Ms

|IR(σ )| + Cve f . (2)

Analysis Compared with the intersection-oriented method
in Algorithm 1, we need to verify the candidate pairs due to
the nature of signature techniques, which usually brings false
positives. Nevertheless, the advantage is that there is only one
signature for each record. This leads to a smaller inverted
index, and hence, a smaller number of records explored dur-
ing the join process (Line 6).

Below are details of the existing union-oriented algo-
rithms classified based on their signature techniques.

Partition-based techniques In [36], a partition-based me-
thod is proposed, where the signature of a record x is a
number between 0 and k − 1. For a given record r ∈ R,
the hash function h randomly selects an element e from r
and maps e to an integer value between 0 and k − 1 (Line 2
of Algorithm 4). We use this value as the signature of r . For
a given record s ∈ S, the signature subset Ms (Line 5 of
Algorithm 4) consists of different signatures generated by
all elements of s. Obviously, for two given collectionsR and
S, we can divide the candidate join pairs into k partitions.
Figure 7 shows the partitions for datasets in Fig. 1 where we
assume that k = 4 and an element ei is mapped into the value
(i mod k). Several follow-up studies [33,34] propose more
sophisticated partitioning strategies (i.e., hash function h) to
reduce the number of candidates in the partition pairs.

Bitmap-based techniques Helmer et al. [23] use a bitmap
as the signature of a record x , and a bitmap consists of fixed
b bits. Given two bitmaps b1 and b2, we say b1 ⊆ b2 if
every 1 bit in b1 is also set to 1 in b2. Although comparing
two bitmaps can be efficiently accomplished by basic bit
operators, the task of enumerating all possible signatures by
a record s or any of its subset (Line 5 of Algorithm 4) would
be a bottleneck for the bitmap-based union-oriented method,
since the number of subsets of a signature is exponential to
the number of ’1’s in the bitmap, which is the bitmap length

partition
0
1
2
3

Ri Si

{r2}
{r1}
{r4}
{r3}

{s2, s4}
{s1, s2, s3, s4}
{s1, s2, s3, s4}
{s1, s3}

Fig. 7 Partition-based method

b in the worst case. To avoid such a straightforward way
of enumerating the subsets of a signature, Luo et. al [30]
recently propose a new algorithm, named PTSJ, based on a
trie-based subsets enumeration method. In this method, the
signatures of records inR are stored in a trie, where the leaf
nodes store the record id inR. Then, given a record s ∈ S, it
employs a breath-first search on the trie. For each tree node
v, it stores the bit values 0 and 1 in the left child and right
child, respectively. If the corresponding bit value of h(s) is
0, it only explores the left child. Otherwise, it will visit both
children. Once finishing this traversal, the records in leaf
nodes it accessed are the candidates.

Discussion PTSJ algorithm proposed in [30] is the state-
of-the-art in-memory union-oriented method which signif-
icantly enhances the previous solutions in this category by
advanced signature enumeration method and careful bitmap
length selection. Nevertheless, our empirical study shows
that PTSJ is not competitive compared with other state-
of-the-art intersection-oriented solutions. According to our
analysis in Sect. 4.2.2, PTSJ has two significant drawbacks:
(i) does not utilize the data distribution and (ii) needs to verify
all candidate pairs obtained.

3.3 Apply set similarity-basedmethods

We are aware that existing set similarity search/join algo-
rithms can be applied to support set containment join by
setting specific thresholds. In this paper, we consider three
representative works that support set similarity search with
different thresholds. It is worth mentioning that they are S-
driven methods in the sense that their main index structures
are built on records from S.

Li et al. [29] propose an efficient list merging algorithm,
named DivideSkip, to solve the generalized T -occurrence
query problem. Given a query record Q, T -occurrence prob-
lem is to find the set of record IDs that appear at least T
times on the inverted lists of the elements in Q, where the
inverted lists are built on S. By setting T to the size of Q,
DivideSkip can be immediately employed to process set con-
tainment search. Using a nested loop, DivideSkip can also be
extended to compute set containment join.

Wang et al. [42] propose an adaptive framework for set
similarity search, which adaptively selects the length of
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record prefix to build the inverted index. Since they apply
the overlap similarity to handle different set similarity func-
tions, by setting the overlap threshold T to the size of query
Q, this framework can also be utilized to compute set con-
tainment join.

Agrawal et al. [14] study the problem of error-tolerant set
containment search. To boost the query performance, they
propose an frequent element set-based index structure that
builds inverted index on careful chosen element set. By set-
ting the error-tolerate threshold as 1, this index structure can
also be applied to answer exact set containment query and
therefore is also applicable to set containment join.

4 Our approach

In this section, we introduce a new in-memory set contain-
ment join algorithm, namely TT-Join, based on two tree
structures constructed onR and S, respectively.

4.1 Motivation

Our empirical study suggests that the existing competitive
in-memory set containment join algorithms follow the inter-
section-oriented computing paradigm.However, to enjoy the
nice property of verification free, we need to keep the ID
of a record for each of its elements in the inverted index.
This is an inherent limit of the intersection-oriented method
which may lead to a large number of records explored during
the join processing, especially when the number of inverted
lists involved is large. Although an augmented prefix tree
has been proposed in PIEJoin [27] to alleviate this issue, our
empirical study suggests that the result is unsatisfactory due
to the complicated data structure and expensive search cost
incurred. Moreover, our analysis in Sect. 4.2.2 also suggests
that it is difficult for intersection-oriented methods to exploit
the data distribution.

This motivates us to revisit and design a new union-
oriented approach.Thedrawbacks of existingunion-oriented
methods are twofold: (i) the signature techniques used are
data independent, which cannot better exploit the distribution
of the elements; (ii) they need to verify all candidate pairs.
In this paper, we aim to design a new union-oriented method
which not only enhances the nice property of union-oriented
methods (i.e., small inverted list size) but also effectively
addresses the above two issues.

In Sect. 4.2, we apply the ranked key [46] technique
to use the least significant element as the signature of the
record in the simple union-oriented algorithm (Algorithm 4).
Through comprehensive cost analysis, we show that the per-
formance of the new simple union-oriented method can
significantly outperform that of simple intersection-oriented
method (Algorithm 1) when data become skewed. It is rather

intuitive to further enhance the filtering capacity by using k
least frequent elements. We extend the inverted indexing of
the new simple union-oriented method to accommodate the
k least frequent element- based signature. Nevertheless, we
show that a simple extension of inverted index is not promis-
ing due to the large overhead incurred.

This motivates us to impose a tree structure to accom-
modate the k least frequent element-based signatures. In
Sect. 4.3, we build a prefix tree based on the k least fre-
quent elements of the records in R. By doing so, we can
(i) further reduce the candidate size with a small overhead
and (ii) naturally apply the intersection operator to validate a
large number of candidates and hence reduce the verification
cost. Together with a regular prefix tree constructed on S, we
develop an efficient set containment join algorithm, namely
TT-Join.

4.2 Inverted index-basedmethod

In this section, we introduce a simple union-oriented algo-
rithm in Sect. 4.2.1 which uses the least frequent element
as the signature. Section 4.2.2 conducts cost compari-
son between two simple intersection-oriented and union-
oriented algorithms to reveal their inherent advantages and
limits. Then, Sect. 4.2.3 investigates an extension of the
inverted index to use k least frequent elements as the sig-
nature of a record such that the number of candidate pairs
can be further reduced.

4.2.1 Using the least frequent element (IS-Join)

As shown in Sect. 3.2, different signature techniques are
employed by the existing solutions to improve the perfor-
mance of simple union-oriented method. However, none of
them consider the distribution of the elements. To take advan-
tage of the skewness of the real-life data, we apply the ranked
key [46] technique to use the least significant element (i.e.,
least frequent element) as the signature of the record in the
simple union-oriented algorithm (Algorithm 4). Our new
simple union-oriented method, namely IS-Join,2 is immedi-
ate, based on twominor changes ofAlgorithm4: (1) at Line 2,
the hash function h simply returns the least frequent element
as the signature; (2) at Line 5, Ms is the set of elements in s,
i.e., considering |s| signatures.
AlgorithmcorrectnessFor any result pair (r , s) (i.e., r ⊆ s),
let σ be the signature of r (i.e., the least frequent element),
we have r ∈ I (σ ). Since r ⊆ s, we have σ ∈ s and hence
σ ∈ Ms at Line 5. It is immediate that r ∈ C (Line 6). After
verification at Line 8, IS-Join algorithm can identify the pair
(r , s).

2 The new simple union-oriented method is named IS-Join because an
inverted index is built on R and there is no index on S.
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Fig. 8 Inverted index on R I (e1)

r2, r3

I (e2)
I (e3)
I (e4)
I (e5) r4

r1

Next, we use the running example in Fig. 1 to show
the advantage of our least frequent element-based sim-
ple union-oriented method by comparing with the RI-Join
(Algorithm 1).

Example 2 The inverted index on S and the least frequent
inverted index onR are shown in Figs. 2 and 8, respectively.
According to Eq. 1, we know that the cost for simple intersec-
tion-oriented method is 28, which is obtained by summing
up the size of all inverted list in IS for each record. Similarly,
we have that the candidate size of union-oriented method is 8
according to Eq. 2, whichmeans that the total cost is 8×Tve f ,
where Tve f is the cost to verify a candidate.

The above example shows the candidate set of our union-
oriented IS-Join algorithm is much smaller compared to that
of intersection-oriented RI-Join algorithm. When the veri-
fication cost of IS-Join algorithm is not expensive, it has a
good chance to outperform RI-Join algorithm.

4.2.2 Cost comparison

We now theoretically compare the expected costs of RI-Join
(i.e., a simple intersection-oriented method in Algorithm 1)
and the IS-Join algorithm (i.e., a simple union-oriented
method in Algorithm 4 where the least significant element is
used as the signature), denoted byCRI andCI S , respectively.
We use P(e) to denote the frequency distribution of an ele-
ment e ∈ X . Let θ(l) denote the probability that a record has
l elements with l ∈ [1, |x |max ]where |x |max is the maximum
cardinality of a record inX . In the cost analysis of this paper,
we assume thatR and S have the same distributions in terms
of element frequency and record size. Moreover, we assume
|R|= |S| = n, |r |avg = |s|avg = m, and the distributions are
independent.

Estimating CRI Since each element of any record in S leads
to one entry in the inverted lists IS , we know that the expected
number of entries in the inverted index is |S| × |s|avg where

|s|avg = ∑|s|max
l=1 θ(l)× l is the average size of a record in S.

Therefore, the size of the inverted list IS(e) can be estimated
as follows:

|IS(e)| = P(e) × |S| × |s|avg. (3)

According to Eq. 1, we have

CRI =
∑

r∈R

∑

e∈r
|IS(e)|

= |R| × |r |avg ×
∑

e∈E
P(e)|IS(e)|

= |R| × |r |avg × |S| × |s|avg ×
∑

e∈E
P(e)2

= (nm)2 ×
∑

e∈E
P(e)2. (4)

Equation 4 shows that, when the number of records (n)
and the average size of the records (m) are fixed, RI-Join
will achieve its best performance when all elements have the
same frequency because

∑
e∈E P(e) = 1. This implies that

the skewness of the frequency distribution will deteriorate
the performance of this simple intersection-orientedmethod,
while it is well known that many real-life data are skewed.

Estimating CIS We first estimate the size of inverted list
IR(e) for an element e. Given a record r ∈ R, r is in IR(e)
if and only if e ∈ r and there is no element e′ ∈ r with lower
frequency than e. Thus, the probability that r within IR(e),
denoted by P(r ∈ IR(e)), is

P(r ∈ IR(e)) = P(e) × F(e)|r |−1

=
|r |max∑

l=1

θ(l) × l × P(e) × F(e)l−1, (5)

where F(e) = ∑
e′≺e P(e′) is the cumulative probability

before e where elements are ranked by frequency decreasing
order; that is, F(e) is the probability that a random chosen
element has a higher frequency than e. Note that once an
element e appears within the record r , it will serve as the
signature with probability F(e)|r |−1 due to the independent
assumption. Thus, the expected size of list IR(e) is as fol-
lows:

|IR(e)| =
∑

r∈R
P(r ∈ IR(e))

= |R| ×
|r |max∑

l=1

θ(l) × l × P(e) × F(e)l−1. (6)

According to Eq. 2, we have

CI S =
∑

s∈S

∑

σ∈Ms

|IR(σ )| + Cve f

=
∑

s∈S

∑

e∈s
|IR(e)| + Cve f
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Fig. 10 2 least frequent element-based inverted index on R

= |S| × |s|avg ×
∑

e∈E
P(e) × |IR(e)| + Cve f

(6)= (nm)2 ×
∑

e∈E
P(e)2 × F(e)m−1 + Cve f . (7)

Compared with Eq. 4, it is immediate that the number of
records explored by our union-oriented IS-Join algorithm is
smaller than that of intersection-oriented RI-Join algorithm
since F(e) < 1. Our empirical study below clearly shows
that this gain will eventually pay off the verification cost
(Cve f ) when the skewness of the data increases.

Empirical evaluationToevaluate the impact of the skewness
toward the performance of two algorithms, we conduct a
simple experiment on synthetic datasets. In particular, we
generate datasets where the frequency of the elements follow
the well-known Zipfian distribution with exponent z value
varying from 0.2 to 1. Note that the data skewness increases
when z grows. The number of records and the average record
size are set to 100,000 and 10, respectively.

It is observed in Fig. 9 that intersection-oriented RI-Join
algorithm outperforms our simple union-oriented IS-Join
algorithm when z is small due to the extra verification cost
of IS-Join. However, as z increases, the processing time of
RI-Join continuously grows, while IS-Join can take great
advantage of the skewness.

4.2.3 Extending to k least frequent elements (kIS-Join)

According to the above cost analysis, the least frequent ele-
ment is a promising signature for union-oriented methods.
To enhance the pruning capacity, it is natural to consider k
least frequent elements. Following the existing inverted index
technique, now each record is mapped to k elements (signa-
tures). Figure 10 shows an example of the inverted index on
R in Fig. 1a when k = 2.

Then, for a given record s ∈ S, we count the number of
appearances for the records in C (Line 6 in Algorithm 4).
If a record r ∈ C appears k times (i.e., all k least frequent
elements of r are contained in s), r is a candidate. Other-
wise, we can prune r directly. We use kIS-Join to denote
this algorithm which corresponds to IS-Join algorithm when
k = 1.

EstimatingCkIS Similar to the cost analysis for IS-Join algo-
rithm, we first estimate the size of inverted list IR(e) for an
element e. Note that IR is the inverted index based on the
k least frequent elements of records in R. Given a record
r ∈ R, r is in IR(e) iff e is one of r ’s k least frequent ele-
ments. Thus, the probability that r is in IR(e), denoted by
P(r ∈ IR(e)), is:

P(r ∈ IR(e)) ≈ P(e) ×
k∑

i=1

F(e)l−i

=
|r |max∑

l=1

θ(l) × l × P(e) ×
k∑

i=1

F(e)l−i . (8)

Now, the size of list IR(e) is as follows:

|IR(e)| =
∑

r∈R
P(r ∈ IR(e))

(8)= |R| ×
|r |max∑

l=1

θ(l) × l×P(e)×
k∑

i=1

F(e)l−i . (9)

According to Eq. 2, we have

CkI S =
∑

s∈S

∑

σ∈Ms

|IR(σ )| + Cve f

=
∑

s∈S

∑

e∈s
|IR(e)| + Cve f

= |S| × |s|avg ×
∑

e∈E
P(e) × |IR(e)| + Cve f

(9)= (nm)2 ×
∑

e∈E
P(e)2 ×

k∑

i=1

F(e)m−i + Cve f . (10)

By comparing Eqs. 10 and 7, we know that the later is a
special case of the former when k = 1. Clearly, on one hand,
the pruning cost of CkI S increases with k because kIS-Join
touches more records due to the large inverted index size.
On the other hand, the verification cost Cve f decreases with
k since a larger k can prune more non-promising records.
Therefore, there is a trade-off between these two costs. Our
experimental results in Sect. 6.1.2 show that the performance
gain for Cve f brought by a larger k value usually cannot pay
off the increased pruning costs.
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4.3 Tree-basedmethod (TT-Join)

It is rather intuitive that the pruning power of our simple
least frequent element-based union-oriented method can be
enhanced by increasing k. However, as shown in the above
analysis and empirical study, the overhead cost brought by a
straightforward extension of the inverted index is expensive
and the gain of the enhanced pruning capacity may not be
well paid off. In this subsection, we aim to develop a new
union-oriented algorithmwhich enables us to: (i) enhance the
pruning capacity with small overhead and (ii) output some
join result pairs during the tree traversal without going to the
verification phase. Section 4.3.1 introduces the k-length least
frequent prefix tree structure, namely kLFP-Tree, which is
built on records inR. Together with a prefix tree constructed
on records in S, Sect. 4.3.2 presents our TT-Join algorithm
by traversing two prefix trees simultaneously. Section 4.3.3
conducts performance analysis on the TT-Join algorithm.

4.3.1 k-Length least frequent prefix tree (kLFP-Tree)

The kLFP-Tree is constructed based on the k-length least
frequent prefix of each record, which is defined as follows.

Definition 3 (k-length least frequent prefix) Given a record
x = {e1, . . . , en} where elements are in decreasing order of
their frequency in X , we define {en, . . . , en−k+1} as its k-
length least frequent prefix, denoted by LFPk(x). Note that
LFPk(x) is the reverse of x if |x | ≤ k.

Given a set of k-length least frequent prefixes of the
records inR, the prefix tree (kLFP-Tree) is built up following
Definition 2. Specifically, for each record x , we insert the last
k elements (i.e., k least frequent elements in x) into the pre-
fix tree following the reverse order, and it takes O(1) time to
insert each element as a hash table is used to maintain child
entries for each node in kLFP-Tree. Thus, the time com-
plexity to construct kLFP-Tree is O(|R|k). With the same
time complexity, we may remove a record x in kLFP-Tree
by deleting its k least frequent elements in order. Note that
there is only one replica of a record x , whose ID is kept on
the corresponding node of kLFP-Tree based on LFPk(x).

Example 3 Take the relation R in Fig. 1a as an example.
When k = 2, we have LFPk(r1) = {e3, e2}, LFPk(r2) =
{e4, e2}, LFPk(r3) = {e4, e3}, and LFPk(r4) = {e5, e2}.
Then, the corresponding kLFP-Tree is illustrated in Fig. 11a.

4.3.2 TT-Join algorithm

We use TR to denote the kLFP-Tree built on relation R. To
share computational cost, we also build a regular prefix tree
for records in S following Definition 2, which is denoted by
TS . Figure 11 illustrates the example of TR and TS based

root

{r1} {r2}{r3}{r4}

v1

e3 e5

e2 e3 e2e2

e4v2

(a) kLFP-Tree on R

{s3}{s1} {s2} {s4}

w1
w2

w3

w4

e1
e3e2

e6

e3 e4
e5

e2

e4

e5

root

(b) prefix tree on S

Fig. 11 Tree structures for tree-based method

on the records in Fig. 1. Note that we use a circle (resp.
rectangle) to represent the node of the tree built on R (resp.
S), and each tree node is denoted by vi (resp. wi ).

Algorithm 5 illustrates the details of TT-Join algorithm.
In general, we traverse TS following a depth-first strategy
(Lines 5–13). Lines 5–11 compute the relevant join result for
each visited node w. Specifically, for the record s associated
with w (i.e., s = w.set), we find all records in R(s). Recall
that R(s) denotes the records within R which are a subset
of s. We use R1 to denote those records withinR(s) without
element w.e, and R2 to denote the remaining records. In
the procedure processNode (Lines 5–13), the list passed
from the parent node corresponds to R1 because we have
w.pre f i x ⊂ s and w.pre f i x = s \ w.e. Then, Lines 6–8
identify the records in R2. Particularly, Line 6 finds the node
associated with element w.e in TR. Then, we only need to
continue the search in its subtree because w.e is the least
frequent element in r . As shown in the procedure traverse
(Lines 14–24), for each node v in TR accessed, Line 18 can
immediately validate a record r in v.list if |r | ≤ k (i.e., r is
reportedwithout verification). Otherwise, we need to verify
whether r ⊆ s at Line 20. Specifically, we employ a merge-
sort manner to verify whether the rest of elements of r are
contained in s. This procedure can be stopped earlywhenever
possible and is linear in the record size in the worst case [32].
At Lines 21–23, we continue to find potential records within
R2 if any of the child nodesmatches an element inw.pre f i x .
After all records within R2 are identified, we use the updated
list to keep all records within R1 ∪ R2. Lines 9–11 output the
join results associated with the node w accessed.
Algorithm correctness For any record s ∈ S, s must appear
in one of the tree nodes, say w, in TS . Because we traverse
TS in a depth-first manner, w must be considered during the
traversal. For each record s in w.list , we can find all records
r ∈ Rwith r ⊆ s. Particularly, every record r from R1,which
does not contain element w.e, will be passed from w’s par-
ent node because we have r ⊆ w.set if r ⊆ w.pre f i x and
w.set = w.pre f i x ∪ w.e. For any record r ∈ R2, it must
appear within the subtree rooted at node v with v.e = w.e
(Line 6) becausew.e is the least frequent element in r . Mean-
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Algorithm 5: TT-Join(TR, TS , k)
Input : TR : index tree on R, TS : index tree on S,

k : length of least frequent prefix for R
Output : J : join result R ��⊆ S
J := ∅;1
for each child node w of the root of TS do2

processNode(w, ∅, J );3

return J4

procedure processNode(w, list , J )5
v ← findChild(TR.root, w.e);6
if v �= NULL then7

list ← list ∪ traverse(v, w);8

for each record s ∈ w.list do9
for each record r ∈ list do10

J ← J ∪ {(r , s)};11

for each child node wi of node w do12
processNode(wi , list , J );13

procedure traverse(v, w)14
list ← ∅;15
for each record r ∈ v.list do16

if |r | ≤ k then17
list ← list ∪ {r};18

else19
verify(r , w.set, list);20

for each child node vi of node v do21
if vi .e ∈ w.pre f i x then22

traverse(vi , w);23

return list24

while, none of the record in R1 may appear in this subtree
sincew.e /∈ r for every r ∈ R1. For a record r ∈ R2, we use v

to denote the corresponding node of r in TR with r ∈ v.list .
Since we explore all child nodes vi with vi .e ∈ w.pre f i x in
the procedure traverse, we will eventually reach v and iden-
tify r . On the other hand, becausewe only explore child nodes
vi with vi .e ∈ w.pre f i x , this implies that v.set ⊆ w.set
for every node v accessed in the procedure traverse. Conse-
quently, all results validated at Lines 17–18 are correct. Thus,
the join results on each node are complete and correct.

Example 4 Consider the example in Fig. 1. The index trees on
R and S are shown in Fig. 11a, b, respectively. We traverse
TS in a depth-first manner starting fromw1. We immediately
turn to TR to see whether there is a child node of the root
of TR matching the element of w1 (i.e., e1). The answer is
no. We then continue the traversal processing until at w3

where we find a child node v1 in TR withw3.e = v1.e. Next,
we switch to traverse TR starting from v1 in a depth-first
manner and find that v2 matches w2. At this point, we get
a nonempty list (i.e., r1) in v2, which means that we get a
candidate. We then conduct the verification and find that the
remaining element e1 of r1 is in w3.set . Therefore, r1 is a
subset ofw3. After that, we continue traversing TS and reach

w4 wherewewould get two subsets r1 and r4. In particular, r1
is passed fromw3 and r4 is collected atw4. Since the list ofw4

is not empty, we then generate join pairs, namely (r1, s1) and
(r4, s1). We find the full join results after finishing traversing
TS .

4.3.3 Cost analysis

Next, we analyze the cost of TT-Join, followed by a cost
comparisonwith IS-Join and kIS-Join introduced in Sect. 4.2.

Estimating CTT In TT-Join, we build the inverted index for
the least frequent prefix of each record in R, which means
that the size of the inverted index is fixed at |R|. Besides,
because the inverted index is determined by the least frequent
element of each record inR, we have that the inverted index
size is exactly the same as shown in Eq. 6. On the other
hand, for each least frequent prefix, we have to sequentially
check whether a given record s ∈ S contains the remaining
k − 1 least frequent elements in the worst case. Therefore,
the overall cost of TT-Join is as follows:

CTT =
∑

s∈S

∑

σ∈Ms

|IR(σ )| + Ccheck + Cve f

= (nm)2 ×
∑

e∈E
P(e)2 × F(e)m−1

+ Ccheck + Cve f , (11)

where Ccheck is the overhead to check the least frequent ele-
ments.

Comparison with IS-Join Equations 11 and 7 indicate that
TT-Join and IS-Join have the same pruning cost. However, in
terms of the verification cost, Cve f in Eq. 11 is smaller than
that in Eq. 7, because TT-Join uses k least frequent elements
as the signature of a record to enhance the pruning capacity.
Therefore, with a reasonable checking cost Ccheck , TT-Join
may benefit from increasing k.

Comparison with kIS-Join Because both kIS-Join and TT-
Join use the k least frequent elements as signature, Cve f in
Eqs. 10 and 11 are exactly the same. The experimental results
in Sect. 6.1.2 show that the Ccheck is insignificant compared
with the growth of the number of explored records when k
increases. Therefore, compared with kIS-Join, TT-Join can
achieve better trade-off by increasing k within a reasonable
range (e.g., 1 ≤ k ≤ 5 in our empirical study).

4.4 Discussion

In this section, we first discuss the difference between pro-
posed method and the techniques in the existing solutions.
Then, we discuss the difference between proposed method
and a trie-based string similarity algorithm.Lastwe introduce
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how to extend proposed method to the context of selection
predicates.

Comparison of TT-Join and other methods As shown in
Sects. 3.1 and 3.3, both intersection-oriented methods and
three modified similarity-based methods are S-driven where
their main index is built on S. The key of their technique
is, for each record r ∈ R, how to utilize the index structure
on S to find all records in S, each of which contains r . On
the contrary, TT-Join isR-driven since the main index struc-
ture is built onR. Moreover, although all algorithms use the
variants of the inverted index as the main index, we show
in the paper that TT-Join keeps one copy of the ID for each
record in R, while S-driven methods need to maintain mul-
tiple copies of the ID for each record in S. Consequently, the
corresponding join algorithm of TT-Join is different to that
of existing solutions.

Comparison of TT-Join and Trie-Join [41] The proposed
method TT-Join is different from Trie-Join due to the fol-
lowing reasons. (i) Trie-Join uses one trie to index strings
in both R and S, where trie nodes are marked by belonging
to which set, such as R, S, or R ∪ S. (ii) Trie-Join works
only for edit-distance similarity function. That is because
the main technique in Trie-Join is dual subtrie pruning. In
order to efficiently apply this pruning technique, the authors
introduce the key concept of active-node set, where the com-
putation is edit-distance dependent.

Handling the selection predicates In practice, it is useful
to consider selection predicates for set containment join. As
our index structure proposed is built on-the-fly, we can easily
push down the selection predicates by using existing indexing
techniques (e.g., B+tree). That is, we can select the corre-
sponding records based on the given predicates, then apply
our indexing and query processing techniques.

5 Distributed processing

In this section, we aim to support better scalability by deploy-
ing TT-Join on the top of MapReduce framework. We first
review related work on utilizing MapReduce to process set
similarity join problem in Sect. 5.1, followed by the detailed
introduction ofMapReduce framework in Sect. 5.2. Efficient
load-aware distributionmechanism is introduced in Sect. 5.3.

5.1 Related work

To the best of our knowledge, there is no existing work
that extends set containment join to MapReduce framework.
Recently, Kunkel et al. [27] propose a parallel algorithm
PIEJoin to compute the set containment join. Nevertheless,
they achieve parallelization by creating a task thread for each

Algorithm 6: Framework

procedure map(〈key, x〉)1
emit(list(〈nid, x〉));2

procedure reduce(〈nid, list(x)〉)3
split list(x) into two sets R and S;4
compute set containment join between R and S;5
output(〈key, R ��⊆ S〉);6

recursive call of the crucial search function in their approach.
This method does not follow the MapReduce framework
which involves two important operations, namely map and
reduce.

In the past decade, MapReduce has attracted tremendous
interests in both academia and industry communities. Its high
efficiency and scalability for batch processing tasks provides
elegant solutions for many join problems. Here, we focus
on the set similarity join problem in MapReduce, which is
closely related to our set containment join problem. Vernica
et al. [40] propose a prefix-based partition strategy for set
similarity join based on prefix filter, which states that two
records must share at least one common element in their pre-
fixes if they are similar. After constructing the inverted index
on elements of record prefix, records in the same inverted
list are then dispatched to the same task node. Metwally
et al. [35] present V-SMART-JOIN, which similarly builds
inverted index on elements and compute the similarity of
record pairs by sharing the computation in the element level
usingMapReduce. Deng et al. [20] propose a partition-based
framework to solve set similarity join in MapReduce. The
element set of a record is partitioned intoU + 1 disjoint seg-
ments,whereU is a dissimilarity upper bound. Similar record
pairs would be distributed to at least one common task nodes
where they share the same segment. Afrati et al. [13] conduct
theoretical analysis against multiple MapReduce-based sim-
ilarity join algorithms, where they analyze the map, reduce,
and communication cost.

5.2 Framework

Algorithm 6 illustrates the framework of computing set con-
tainment join on MapReduce. In MapReduce framework,
each iteration consists of three phases, namely map phase,
shuffle phase, and reduce phase. In the map phase as shown
in Lines 1–2, eachmap node (i.e., mapper) sequentially reads
record x (i.e., record in R or S) from the file splits on this
node and emits intermediate 〈nid, x〉 pairs, where nid is the
ID of a task. These intermediate 〈nid, x〉 pairs are then shuf-
fled based on the keys (i.e., nid) and transferred to the reduce
nodes (i.e., reducers), where intermediate 〈nid, x〉 pairs with
the same keys are shuffled to the same reduce node. Each
reduce node then receives a key-value pair in the form of
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〈nid, list(x)〉, where list(x) contains a list of records shar-
ing the same nid (Line 3). After dividing the list(x) into
two record sets R and S, local set containment join algo-
rithm is then applied on the reduce node to compute the join
result (Lines 4–6). Note that there might be an extra job to
summarize the join results from all reduce nodes.

Challenges Following the theoretical analysis in [13], we
consider three costs in a MapReduce iteration, which are
map, reduce, and communication cost. The distribution strat-
egy (i.e., Line 2 in Algorithm 6) should be able to handle load
balance between the reduce nodes, since parallel computing
is most important property of a MapReduce system. In the
meanwhile, the communication cost should be as less as pos-
sible because the network bandwould become the bottleneck
for a large cluster with many reduce nodes.

5.3 Distribution scheme

In this section, we present our distribution scheme which is
employed by the mappers to dispatch records in R and S
to relevant reducers for parallel processing. We first discuss
random distribution method which is most straightforward,
followed by a prefix-based method which is extended from
the approach for processing set similarity join. We then
propose a novel and efficient signature-based distribution
method, which is computation load-aware and communica-
tion cost saving. For ease of explanation, we assume that
there are N reduce tasks available for parallel processing.
Our goal is to devise a good distribution scheme for the map-
pers to dispatch records in R and S to the N reduce tasks,
each of which is identified by an ID in the range of [1, N ].
To measure the communication cost, we count the number of
copies emitted to the reduce nodes for each record x , which
is denoted by C(x).

5.3.1 Baseline methods

Random-based distribution A straightforward way to
implement randomdistribution is as follows. For each r ∈ R,
we randomly dispatch r to one of the N reduce nodes, and for
each s ∈ S, we dispatch s to all N reduce nodes. It is evident
this distribution method generates no duplication in the join
results, and the communication costs are Crand(r) = 1 and
Crand(s) = N , respectively. In the following, we present an
advanced random distribution scheme, which can decrease
the communication cost to

√
N and, at the same time, pre-

serve the property of introducing no duplication in the join
results.

We randomly divide records in R into
√
N disjoint sub-

sets. That isR = ∪1≤i≤√
NRi , where for 1 ≤ i �= j ≤ √

N ,
Ri ∩ R j = ∅. Similarly, records in S are also randomly
divided into

√
N disjoint subsets where S = ∪1≤i≤√

NSi .

Then, records in each pair (Ri ,S j ) with 1 ≤ i, j ≤ √
N

will be dispatched to uniquely one of the N reducers since
there are N pairs in total. Apparently, the communication
cost of random distribution is

√
N for records in bothR and

S; that is Crand(x) = √
N . Besides, there is no duplication

in the reduce nodes. That is because, for any given record
pair (r , s), it will only be dispatched to one reducer.

Prefix-based distribution In [40], efficient prefix-based dis-
tribution method is proposed for set similarity join. Given a
record x and overlap similarity threshold T , we can compute
the prefix of x , denoted by Pre f i x(x), which consists of the
first |x |−T +1 elements of x . Then, two records must share
at least one common element in their prefixes if they are sim-
ilar. Given a hash function h, record x is then dispatched
to reduce node with ID h(ei ) for each ei ∈ Pre f i x(x),
where h(ei ) = i mod N + 1 is widely used. This method is
very efficient to process set similarity join because the pre-
fix length is very limited. However, in our set containment
join, the overlap similarity threshold T would be any value
between 1 and |x | since any subset of x forms a set contain-
ment relation with x . Therefore, to make the prefix-based
distribution strategy applicable for set containment join, we
have to consider x itself as its prefix. Thus, we dispatch x
to the reduce nodes corresponding to each element. Now,
we estimate the communication cost as follows. For any
reduce node, the probability that at least one element in x

is dispatched to that node is 1 − (1 − 1

N
)|x |. Therefore, the

communication cost on N reduce nodes is

Cpre = N

(

1 − (1 − 1

N
)|x |

)

. (12)

Note that this method might introduce duplicates in the join
results because a record pair might be dispatched to different
reduce nodes.

5.3.2 Our signature-based approach

Motivation Even though the random distribution enjoys
the nice property of load balance on all reduce nodes, the
corresponding communication cost is high, which renders
this method impractical for large-scale datasets where we
inevitably have to increase the value of N . Prefix-based
method, on the other hand, is not able to handle dataset with
large average record size,which is also verified by our experi-
mental studies. According to Eq. 12, the communication cost
is approaching N when the record size (i.e., |x |) increases.
The above limits of baseline methods motivate us to devise a
new approach such that (i) the communication cost is small
and (ii) the workload on each reduce node is similar. By
extending the idea of least significant element that used by
TT-Join, we propose a signature-based distribution scheme in
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r = {e1, e4, e6} s = {e1, e4, e6, e7} h(ei) = i mod 4 + 1 (r) = e6

r

1 2 3 4

Random

s r

1 2 3 4

Prefix

s r

1 2 3 4

Signature

s

[1,4] [5,8] [9,12] [13,16]

Fig. 12 Example of different distribution schemes

this section. Under the framework of this scheme, we devise
efficient element domain partitioning algorithms in next sec-
tion, which enable our signature-based approach to achieve
the two goals (i) and (ii).

Our signature-based distribution scheme works as fol-
lows. We partition the ordered element domain E =
{e1, e2, . . . , e|E |} into N disjoint intervals, i.e., [el1 , eh1 ],
[el2 , eh2 ], …, [elN , ehN ], where l1 = 1, hN = |E |, and
li+1 = hi + 1 for 1 ≤ i ≤ N − 1. We assume that there
is a one-to-one relationship between element intervals and
reduce nodes. Now, given a record r ∈ R, let σ be the sig-
nature (i.e., the least frequent element) of r . We find the
interval where σ falls and dispatch r to the corresponding
reduce node. For each record s ∈ S, we dispatch s to all
reduce nodes whose corresponding intervals cover at least
one element of s.

Theorem 1 Our signature-based distribution scheme is com-
plete, i.e., it will not miss any join results.

Proof Given any result pair (r , s) (i.e., r ⊂ s), let σ be the
signature of r (i.e., the least frequent element). Suppose σ

falls into the i th signature interval, whichmeans that r will be
dispatched to i th reduce node. Since r ⊂ s, we have σ ∈ s.
Therefore, a copy of s will be dispatched to i th reduce node
as well. After the execution of local join algorithm in i th
reduce node, we get the pair (r , s). ��

Compared to the baseline methods, a key advantage of
signature-based method is that its communication cost is
much lower. Specifically, Csig(r) = 1 for r ∈ R since r
is only transferred to exactly one reduce node. Csig(s) ∈
[1,min(|s|, N )] for s ∈ S because s is only emitted to the
reduce nodes that cover at least one element of s. Note that
the expected value of Csig(s) depends on how we partition
the element domain, which we will discuss in the following
section. Besides, it is evident that signature-based approach
does not generate duplicates in the join results because each
record r ∈ R is emitted to exactly one reduce node. Also,
signature-based scheme can prefilter many unpromising can-
didate pairs by the signature during the distribution phase and
thus reduce the local join cost substantially.

Example 5 Figure 12 shows an example of all the distribution
schemes. Suppose N = 4, E = {e1, e2, . . . , e16}, and two
records r = {e1, e4, e6} and s = {e1, e4, e6, e7}. For random
scheme, r is dispatched to nodes 1 and 2,while s is distributed
to nodes 2 and 4. Note that we apply a round-robin strategy
to ensure that, for any record pair r and s, each of which
will be dispatched to

√
N reduce nodes, and they meet in

exactly one reduce node. For prefix-based scheme, assuming
h(ei ) = i mod N + 1, and therefore h(e1) = 2, h(e4) = 1,
h(e6) = 3, and h(e7) = 4. Thus, r is emitted to nodes 1, 2, 3,
and s is emitted to all 4 nodes. For signature-based method,
we assume that the element domain is evenly partitioned for
ease of explanation. Therefore, r is dispatched to node 2,
and s is dispatched to nodes 1 and 2. Clearly, our signature-
based method introduces no replications and has the lowest
communication cost in this example.

5.3.3 Load-aware partitioning

Our signature-based method makes use of a partition of the
element domain. To find a good partition, a straightforward
way is to partition E into N intervals evenly. However, as
suggested by our experimental results, this method yields
very poor performance. This is because many real-life data
are skewed, and therefore, the records will be dispatched
to the reduce nodes unevenly. In this section, we propose
a judiciously designed cost model which takes local join
computation cost into consideration to guide the partition
of element domain, such that the reduce nodes can take simi-
lar workload. We first devise a dynamic programming-based
optimal partition method, which bears a time and space com-
plexity of O(N |E |2). The high time and space complexity
of this method is not suitable to dataset with large element
domain size (i.e., |E |). Consequently, we then resort to a
heuristic partition algorithm, which is linear to the element
domain size (i.e.,O(|E |)) for both time and space complexity.

Optimal partition In Sect. 4, given two collectionsR andS,
we conduct cost analysis for different join algorithms based
on the element frequency distribution P(e) and record length
distribution θ(l). Now, we are interested in analyzing the cost
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on each interval given a specific local join algorithm. First,
we define an element partition instance as follows:

Definition 4 An element partition instance, denoted by
P(el , eh, n), defines a partition which splits the element
range [el , eh] into n disjoint intervals, where each interval
is represented by [eli , ehi ] for i ∈ [1, n], assuming l1 = l
and hn = h.

Note that a single interval [el , eh] is a partition instance with
n = 1, i.e., P(el , eh, 1).

Estimating Cost(P(el, eh, 1)) Given a single interval
[el , eh], we now aim to estimate the join cost on the cor-
responding reduce node against a given join algorithm. For
ease of explanation, we use RI-Join algorithm to conduct the
analysis because it has the simplest cost model as shown in
Eq. 4. Clearly, in order to estimate Cost(P(el , eh, 1)), we
need to know the record collections received by the corre-
sponding reduce node. ByR(el , eh) andS(el , eh), we denote
the record sets fromR and S, respectively. First, we consider
the unit intervals; that is el = eh = ei . Based on the distri-
bution scheme of our signature-based approach, R(ei , ei )
contains all records with ei as their least frequent element,
where the size is shown in Eq. 6. On the other hand, S(ei , ei )
consists of the records which contain ei , where the size is
shown in Eq. 3. According to Eq. 4, we have:

Cost(P(ei , ei , 1)) =
∑

r∈R(ei ,ei )

∑

e j∈r
|IS(ei ,ei )(e j )|

= |R(ei , ei )| × |r |avg ×
∑

j≤i

P(e j )|IS(ei ,ei )(e j )|

(6)= |R| ×
|r |max∑

l=1

θ(l) × l × P(ei ) × F(ei )
l−1

× |r |avg ×
∑

j≤i

P(e j )|IS(ei ,ei )(e j )|

(3)= |R| ×
|r |max∑

l=1

θ(l) × l × P(ei ) × F(ei )
l−1

× |r |avg ×
∑

j≤i

P(e j )
2 × |S| × P(ei ) × |s|2avg

= |R| × |S| × |r |2avg × |s|2avg × P(ei )
2

× F(ei )
l−1 ×

∑

j≤i

P(e j )
2. (13)

Since the inverted index size is linear to the data size received
by the corresponding reduce node, it is implied that the join
cost over an interval [el , eh] can be decomposed into the
summation of the join cost over each unit interval [ei , ei ],
where ei ∈ [el , eh]. That is:

Cost(P(el , eh, 1)) =
∑

l≤i≤h

Cost(P(ei , ei , 1)). (14)

Algorithm 7: Optimal partition
Input : E = {e1, e2, . . . , e|E|}: element domain to be

partitioned; N : number of intervals
Output : P∗(e1, e|E|, N ): optimal partition
for 1 ≤ i ≤ j ≤ |E| do1

Compute f (P∗(ei , e j , 1)) by Cost(P(ei , e j , 1));2

for 2 ≤ n ≤ N − 1 do3
for n ≤ i ≤ |E| do4

Compute f (P∗(e1, ei , n)) based on Eq. 16;5

Compute f (P∗(e1, e|E|, N )) based on Eq. 16;6
return P∗(e1, e|E|, N )7

Before presenting our partition algorithm, we first define a
function f overP(el , eh, n) to compute themaximal interval
cost among n intervals as follows:

f (P(el , eh, n)) = max
∀[eli ,ehi ]∈P(el ,eh ,n)

Cost(P(eli , ehi , 1)).

(15)

Since the overall performance of the system is affected by
the slowest reduce node, our goal is to find an instance
P(e1, e|E |, N ) such that f (P(e1, e|E |, N )) is minimized. We
denote the optimal solution that minimizes f (P(el , eh, n))

by P∗(el , eh, n). Then, our goal is equivalent to finding
P∗(e1, e|E |, N ). To solve this problem,wepropose a dynamic
programming algorithm based on the following key observa-
tion:

f (P∗(el , eh, n)) = min
l+n−2≤i<h

{max{ f (P∗(el , ei , n − 1)), f (P∗(ei+1, eh, 1))}}. (16)

This observation indicates that the optimal partition of size
n can be computed by enumerating the rightmost boundary
of the optimal partition of size n − 1.

Algorithm 7 illustrates our dynamic programming- based
optimal partition method. Lines 1–2 compute the cost of sin-
gle intervals based on Eq. 14. Lines 3–5 iteratively compute
the optimal partition for a range with n intervals based on
Eq. 16.

Time and space complexity Based on Eq. 14, it is easy
to show that Cost(P(ei , e j , 1)) can be computed in O(1)
time if we compute and store the value ofCost(P(e1, e j , 1))
for 1 ≤ j ≤ |E | in advance. Note that this can be done in
O(|E |) time. Thus, Lines 1–2 can be finished in O(|E |2)
time. The cost of Lines 3–5 is O(N |E |2). Therefore, the time
complexity of our optimal partition is O(N |E |2). Evidently,
the space complexity is O(N |E |2) as well because we have
to maintain a three- dimensional array for the cost of each
instance P(el , eh, n).

Heuristic partition The dynamic programming- based me-
thod canfind the optimal partition.Nevertheless, its high time
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Algorithm 8: Heuristic partition
Input : E = {e1, e2, . . . , e|E|}: element domain to be

partitioned; N : number of intervals
Output : P(e1, e|E|, N ): a partition instance
l ← h ← 1;1
μ ← Cost(P(e1, e|E|, 1))/N ;2
i ← 1;3
while i < N do4

if Cost(P(el , eh, 1)) < μ then5
h ← h + 1;6

else7
Add interval [el , eh] into P(e1, e|E|, N );8
l ← h ← h + 1;9
μ ← Cost(P(el , e|E|, 1))/(N − i);10
i ← i + 1;11

Add interval [el , e|E|] into P(e1, e|E|, N );12
return P(e1, e|E|, N )13

and space complexities make it unsatisfactory for datasets
with considerably large element domain size (e.g., |E | is in
millions). This motivates us to devise heuristic method to
partition the element domainwith linear time and space com-
plexities regarding the element domain size.

Based on the cost function shown in Eq. 15 and the defini-
tion of optimal partitionP∗(e1, e|E |, N ), it is evident that our
goal is to find a partition such that the cost on each interval
is as even as possible. Formally,

Theorem 2 If there exists an element partition instance
P(e1, e|E |, N ), such that each interval is with the same cost;
that is, ∀i, j ∈ [1, N ],Cost(P(eli , ehi , 1)) = Cost(P(el j ,
eh j , 1)), then P(e1, e|E |, N ) is an optimal partition.

Proof It is easy to show that Cost(P(el , eh, 1)) is mono-
tonic with respect to [l, h]; that is, if l ′ ≤ l and h′ ≥ h,
thenCost(P(el ′ , eh′ , 1)) ≥ Cost(P(el , eh, 1)). For simplic-
ity, assume we only have two intervals, which are [el1 , eh1 ]
and [el2 , eh2 ], respectively. Suppose Cost(P(el1 , eh1 , 1)) >

Cost(P(el2 , eh2 , 1)). Then,we can keep decreasing the value
of h1 and hence decreasing that of l2 to reduce the value of
Cost(P(el1 , eh1 , 1)) and increase that ofCost(P(el2 , eh2 , 1)),
until we reach Cost(P(el1 , eh1 , 1)) = Cost(P(el2 , eh2 , 1)).
At this point, we obtain the optimal partition since Cost
(P(e1, e|E |, N )) = max{Cost(P(el1, eh1 , 1)),Cost(P(el2 ,
eh2 , 1))}. This proof generalizes to arbitrary N . ��

The main idea of our heuristic method is that we sequen-
tially generate the intervals one by one from e1 to e|E |. In
particular, to generate the i th interval Pi , we fix the starting
value li and keep increasing the ending value hi until the cost
of Pi is no less than the value Cost(P(eli , e|E |, 1))/n, where
n is the number of intervals to partition for the rest of element
range {eli , . . . , e|E |}. The intuition behind this method is that
we use the cost of single interval on remaining element range
as an estimation for each of the n intervals. Every time after

splitting an interval off from it, we then re-estimate the cost
for rest n − 1 intervals.

Algorithm 8 depicts the details of our heuristic method.
Lines 4–11 iteratively generate the N intervals. Note that,
before generating a new interval, we first compute the mean
cost for the rest partitions, as shown in Line 2 and Line 10.

Time and space complexity It is evident that the number
of iterations (Lines 4–11) in Algorithm 8 is bounded by |E |
since h is increased by 1 in each iteration. Meanwhile, the
time complexity to compute Cost(P(el , e|E |, 1)) is O(1) as
shownbefore. Therefore, the time complexity of our heuristic
partition method is O(|E |). On the other hand, the space
complexity is O(|E |) as well because we have to store |E |
values of Cost(P(e1, e j , 1)) for 1 ≤ j ≤ |E |.

6 Experimental studies

6.1 Centralized evaluations

In this section, we empirically evaluate the performance of
TT-Join in a single machine. All experiments are conducted
on PCs with Intel Xeon 2x2.3 GHz CPU and 128 GB RAM
running Debian Linux.

6.1.1 Experimental setup

Algorithms In the experiment, we evaluate the following
algorithms.

– TT-Join Our approach proposed in Algorithm 5 in
Sect. 4.3, where kLFP-Tree and a regular prefix tree are
built on R and S, respectively. By default, we set k = 3
under all settings.

– LIMIT(OPJ) Intersection-oriented algorithmwith opti-
mization proposed in [18] (Sect. 3.1).

– PIEJoin Intersection-oriented algorithm proposed in
[27] (Sect. 3.1).

– PRETTI+ Intersection-oriented algorithm proposed in
[30] (Sect. 3.1).

– PTSJ Union-oriented algorithm proposed in [30] (Sect.
3.2).

– DivideSkip Adapted algorithm proposed in [29] (Sect.
3.3).

– Adapt Adapted algorithm proposed in [42] (Sect. 3.3).
– FreqSet Adapted algorithm proposed in [14] (Sect. 3.3).

Among the 8 algorithms,DivideSkip andAdapt are imple-
mented in C++, where the source codes are obtained from
the authors of [29] and [42], respectively. The rest 6 algo-
rithms are all implemented in Java, and the JVM maximum
heap size is set to 32 GB. For LIMIT(OPJ) and PIEJoin,
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Table 2 Characteristics of real-life datasets for evaluating main-memory algorithms

Dataset Abbr Type Record Elements #Records AvgSize #Elements z-value

Amazon [1] AMAZ Rating Product Rating 1,230,915 4.67 2,146,057 0.52

AOL [2] AOL Text Query Keyword 10,054,183 3.01 3,873,246 0.68

BMS [18] BMS Sale Transaction Product 515,597 6.53 1657 1.07

Bookcrossing [3] BOOKC Rating Book User 340,523 3.38 105,278 0.6

Delicious [4] DELIC Folksonomy User Tag 833,081 98.42 4,512,099 0.56

Discogs [5] DISCO Affiliation Artist Label 1,754,823 3.02 270,771 0.75

Enron [6] ENRON Text Email Word 517,431 133.57 1,113,219 0.65

Flickr-london [18] FLICKR-L Folksonomy Photo Word/Tag 1,680,490 9.78 810,660 0.75

Flickr-set [30] FLICKR-S Folksonomy Photo Word/Tag 3,546,729 5.36 618,970 0.63

Kosarak [18] KOSRK Interaction User Link 990,001 8.10 41,269 0.9

Lastfm [7] LAST Interaction User Song 1,084,620 4.07 992 0.51

Linux [8] LINUX Interaction Thread User 337,509 1.78 42,045 0.81

Livejournal [9] LIVEJ Affiliation User Group 3,201,203 35.08 7,489,073 0.62

Netflix [18] NETFLIX Rating Movie Rating 480,189 209.25 17,770 0.33

Orkut [30] ORKUT Interaction User Community 1,853,285 57.16 15,293,693 0.13

Stack [10] STACK Rating User Post 545,196 2.39 96,680 0.54

Sualize [11] SUALZ Folksonomy Picture Tag 495,402 3.63 82,035 0.95

Teams [12] TEAMS Affiliation Athlete Team 901,166 1.52 34,461 0.39

Twitter [30] TWITTER Interaction Partition User 371,586 65.96 1318 1.4

Webbase [30] WEBBS Web Page Outlink 168,707 463.64 15,146,263 0.04

we obtain the source codes from the authors of [27] since
the source code of LIMIT(OPJ) is implemented in C++
and the authors of [27] re-implement LIMIT(OPJ) in Java.
For completeness, we also re-implement LIMIT+(OPJ) in
Java which uses the adaptive model trained in C++ in [18].
Nevertheless, the experiment results show that LIMIT(OPJ)
outperforms LIMIT+(OPJ) on most cases which justifies the
failure for LIMIT+(OPJ) to outperform LIMIT(OPJ) under
different data structures and programming language. This
issue has also been confirmed by the authors. Therefore, we
choose LIMIT(OPJ) to evaluate for experimental compari-
son since its main competitors are implemented in Java. For
PRETTI+ and PTSJ, we obtain the source code from the
authors of [30]. We implement FreqSet in Java, where FP
growth [22] method is employed to compute the frequent
sets. Among the 4 state-of-the-art algorithms, PIEJoin and
PRETTI+ are parameter free. For LIMIT(OPJ), we follow
the same strategy adopted by authors of [27], where param-
eter tuning is carried out manually and individually for each
dataset. Particularly, for datasets used in [27], we use the
parameters tuned in [27], and for the rest datasets, we tune
the best values individually. For PTSJ, we follow the strategy
proposed by the authors, which show that a suitable signature
length is between 16 and 32 times of the average length of
records. In the experiments, we apply the middle value 24
for PTSJ. It is demonstrated in [27] that the frequency order
of elements in records had a huge impact for LIMIT(OPJ),

PIEJoin, and PRETTI+. Therefore, we follow their empiri-
cal conclusion to apply infrequent sort order for LIMIT and
PIEJoin, and frequent sort order for PRETTI+, which are
stated optimal for the corresponding algorithms. It is also
worth mentioning that the Intersection-oriented methods,
including LIMIT(OPJ) and PRETTI+, involve the procedure
of computing the intersection of inverted lists. The source
code of LIMIT(OPJ) is well implemented by using a hybrid
method which switches between a merge-sort approach and
a binary-search-based approach [16]. We re-implement the
list intersection of PRETTI+ by following this approach.
Among the three adapted algorithms, DivideSkip and Adapt
are parameter free. For FreqSet, the frequency threshold a is
set to 1000.

Datasets We employ both real-life and synthetic datasets to
evaluate our algorithms. Note that a collection of records
can be regarded as a relation with one attribute. Same as the
previous studies, we evaluate the self set containment join on
each dataset.

Real-life datasets We deploy 20 real-life datasets selected
from different domains with various data properties. The
detailed characteristics of the 20 datasets are shown in
Table 2. For each dataset, we show the type of the dataset,
what the record and element represent, the number of records
in the dataset, the average record size, and the number of
unique elements in the dataset. We also report the z-value
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Table 3 Statistics of synthetic datasets for evaluating main-memory
algorithms

Parameter Values

Number of records 0.2M, 0.4M, 0.6M, 0.8M, 1M

Average record size 10, 20, 30, 40, 50

Number of elements 1K, 10K, 100K, 1M, 10M

z-value of elements 0.5, 0.8, 1.0, 1.2, 1.5

(skewness) of the top 500 most frequent elements on each
dataset by assuming that data follow Zipfian distribution.
The datasets cover all datasets deployed in the state-of-the-
art algorithms. In specific, Flickr-set, Orkut, Twitter, and
Webbase are used in [30] to evaluate PRETTI+ and PTSJ
algorithms, while BMS, Flickr-london, Kosarak, and Netflix
are used in [18] to evaluate LIMIT(OPJ) algorithm. All of
the eight datasets (with bold font in Table 2) are employed
in [27] to evaluate PIEJoin.

Synthetic datasets We generate synthetic datasets with
respect to 4 aspects, including (i) the number of records, (ii)
the average record size, (iii) the number of distinct elements,
and (iv) the z-value (skewness) of elements. Table 3 sum-
marizes the experimental parameters together with default
values (in bold). Note that, when generating one set of
datasets, we fix the rest parameters by using the correspond-
ing default values.

6.1.2 Performance tuning

To better evaluate the impact of k value as well as the advan-
tage of kLFP-Tree compared with the inverted index, we
also implement an algorithm, namely IT-Join, which is an
extension of kIS-Join algorithm where records in S are orga-
nized by a regular prefix tree. The traversal of the prefix tree
is exactly the same as TT-Join (Algorithm 5) and the pro-
cess of each visited node is based on kIS-Join algorithm in
Sect. 4.2.3.

We choose four representative datasets from Table 2,
including DISCO, KOSRK, NETFLIX, and TWITTER,
which cover different types of dataset, various values of the
average record size, as well as different z values. Note that,
besides TT-Join and IT-Join, we also report the performance
of IT-Join with k = 1 to see whether the increase in k value
in TT-Join and IT-Join algorithms got paid off.

Figure 13 reports the running time of three algorithms on
the above four datasets with k increasing from 1 to 100. It
is observed that IT-Join can only benefit from very small k
values, such as 1 and 2, which implies that the performance
gain from large k value cannot pay off the growth of filtering
costs, i.e., the increase in the number of records explored on
the inverted index. On the contrary, TT-Join performs much

better than IT-Join when k increases in the range from 1 to
5. In particular, it can continuously benefit from the growth
of k on KOSRK, while achieves the best performance when
k = 4, k = 2, and k = 3 on DISCO, NETFLIX, and TWIT-
TER, respectively. This behavior verifies our cost analysis
in Sects. 4.2 and 4.3 that the overhead of a straightforward
extension of inverted index is expensive and the gain may
not be well paid off, while TT-Join can achieve a much better
trade-off. Since the performance of IT-Join is fully domi-
nated by TT-Join under all datasets, it is excluded from the
following experiments. By default, we set k = 3 for TT-Join
algorithm for all datasets.

6.1.3 Comparison with existing algorithms

In this section, we compare our TT-Join algorithm with four
state-of-the-art algorithms LIMIT(OPJ), PIEJoin, PRETTI+,
and PSTJ as well as three modified algorithms DivideSkip,
Adapt, and FreqSet on both real-life and synthetic datasets.

Processing Time on real-life datasets The experiment
results in terms of processing time are reported in Fig. 14.
Besides the set containment join time, the processing time
also includes the index construction time because the indexes
of all algorithms are generated on the fly. It is reported that
our TT-Join algorithm outperforms all state-of-the-art algo-
rithms on all datasets, except that it is slightly outperformed
by LIMIT(OPJ) on NETFLIX. Among the existing algo-
rithms, LIMIT(OPJ) achieves the best performance except
on LINUX and SUALZ. The performance of PIEJoin is
quite stable on all datasets, but it is always suppressed by
LIMIT(OPJ) except on LINUX and SUALZ. The processing
time of PRETTI+ and PTSJ is quite sensitive to the record
length [30]. It is observed that PRETTI+ favors datasets
with small record size, such as AMAZ, DISCO, LINUX,
SUALZ, and TEAMS. However, PRETTI+ is extremely
slow on datasets with relatively large record size, such as
DELIC, ENRON, LIVEJ, NETFLIX, and TWITTER. It
takes more than 10 h on NETFLIX in which the aver-
age record size is 209. As reported in [30], PTSJ, on the
other hand, cannot efficiently handle datasets with small
record size. For example, it takes hours for PTSJ to pro-
cess AOL, while TT-Join spends less than 2 min. Generally,
PTSJ has the worst overall performance. The reasons are
twofold. First, PTSJ is a bitmap-signature-based method,
which is data independent and does not make use of the
distribution of the elements. Second, it considers records in
S individually, which means there is no computation share
between records, even for identical records. The results show
that DivideSkip significantly outperforms other two adapted
algorithms. Interestingly,DivideSkip evenbeats two state-of-
the-art algorithms PRETTI+ and PTSJ on several datasets,
such as AOL, DELIC, ENRON, FLICKR-L, LIVEJ, and

123



490 J. Yang et al.

100

101

102

103

104

1 2 3 4 5 10 100

R
un

ni
ng

 T
im

e 
(s

)

Value of k (log scale)

IT-Join (k=1)
IT-Join

TT-Join

101

102

103

104

105

1 2 3 4 5 10 100

R
un

ni
ng

 T
im

e 
(s

)

Value of k (log scale)

IT-Join (k=1)
IT-Join

TT-Join

101

102

103

104

105

1 2 3 4 5 10 100

R
un

ni
ng

 T
im

e 
(s

)

Value of k (log scale)

IT-Join (k=1)
IT-Join

TT-Join

101

102

103

104

105

1 2 3 4 5 10 100

R
un

ni
ng

 T
im

e 
(s

)

Value of k (log scale)

IT-Join (k=1)
IT-Join

TT-Join

(a) DISCO (b) KOSRK (c) NETFLIX (d) TWITTER

Fig. 13 Effect of k on running time
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ORKUT. The reason is that DivideSkip uses the same index
strategy as PRETTI+, but DivideSkip can take advantage of
the careful processing of long and short inverted lists in dif-
ferent ways. It is reported that Adapt and FreqSet are not
competitive under all datasets. In particular, FreqSet fails to
return results on half of the 20 datasets (we set allowed run-
ning time to be 10 h).

As reported in Fig. 14, TT-Join has the best overall perfor-
mance on 20 real-life datasets and significantly outperforms
other competitors on the majority of the datasets. This is
because TT-Join not only enhanced the nice properties of the
union-oriented approach, e.g., exploited the skewness of the
data and had less number of records explored, but also can
directly validate a significant number of pairs, which are ver-
ification free. In particular, TT-Join beats other algorithms
by at least around one order of magnitude on datasets with
large z-values, such as DISCO, KOSRK, LINUX, SUALZ,
and TWITTER. This is because union-oriented TT-Join can
effectively exploit the skewness of the data distribution. It
is very interesting that TT-Join can also significantly outper-
form other competitors on ORKUT and WEBBS although
they are not skewed, with z values 0.13 and 0.04, respec-
tively. For instance, TT-Join outperforms other algorithms

on WEBBS by one order of magnitude. We observe that
there are a large number of distinct elements in ORKUT
and WEBBS, and the average size of the records is large,
which favor the least frequent element-based signature tech-
nique. For somedatasetswithmoderate or small z-value, such
as AMAZ, LAST, and TEAMS, TT-Join can also achieve a
superior performance, at least 2 times faster than the sec-
ond ranked algorithm. The reason is that the kLFP-Tree
enables us to increase the filtering capacity with small over-
head and validate a significant number of join results without
explicitly invoking the verification during the join process-
ing. NETFLIX is the only dataset in which TT-Join is slightly
outperformed by other competitors. We observe that it is
not skewed (z = 0.33) and the number of distinct ele-
ment (|E | = 17,770) is small compared to the dataset size
(n = 480,189 and m = 209), both of which are not in favor
of TT-Join.

Memory usage Figure 15 reports the memory usage of 8
algorithms. Same as [30], the used memory is measured
by the difference between the total memory and free mem-
ory of JVM after indexes are constructed for algorithms
implemented in Java. For algorithms implemented in C++,
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Fig. 16 Test on synthetic datasets

we measure the maximum amount of used memory. It is
observed that DivideSkip consumes the smallest amount of
memory under all datasets. Under most of the datasets, PTSJ
and Adapt consume the second smallest amount of mem-
ory because PTSJ only builds Patricia trie index onR, while
Adapt only builds inverted list on S. They are followed by
TT-Join and PRETTI+. The memory usage of LIMIT(OPJ)
and PIEJoin are similar and relatively larger than that of the
other algorithms. This is because both of them use compli-
cated index structures. Particularly, besides the prefix trees
on both R and S, PIEJoin also needs some auxiliary data
structures to speed up the join processing.

Evaluation on synthetic datasets We finally evaluate TT-
Join on the synthetic datasets. FreqSet is excluded from the
evaluation because it fails to give response within allowed
time on most of experimental settings. Figure 16a shows the
effect of number of records. It is reported that the running
time of the algorithms grow steadily as the number of records,
and the performance rank of algorithms remains the same
under most settings. Figure 16b reports the running time of
algorithms by varying the average size of record. Interest-
ingly, the running time increases quite slowly with respect to
the average size of record for all algorithms except PRETTI+,
which implies that PRETTI+ is more suitable for datasets
with small record size. Figure 16c shows that the running
time of all algorithms decreases as the number of distinct
elements grows, which implies that the matching pairs are
easier to recognize when the records contain more different
elements. The experimental results of varying the z-value
of elements are reported in Fig. 16d, which shows that TT-
Join performs much better than its competitors when z-value
increases. It is interesting that PTSJ is very insensitive to the
z-value, which verifies our claim in Sect. 3.2 that the tradi-
tional union-oriented method (e.g., PTSJ) does not utilize
the data distribution.

6.2 Distributed evaluations

In this section,we evaluate the performance of our distributed
set containment join algorithm.

6.2.1 Experimental setup

We implement algorithms with both Hadoop 2.7.2 and
Spark 2.0.0. By default, we run our experiments on Spark.
All experiments are conducted on a 10-node (one namen-
ode/master and nine datanodes/slavers) cluster. Each node in
the cluster is a Debian 6.0.10 server that has 3.4 GHz Intel
Xeon 8 cores CPU, 16 GB RAM, and gigabit Ethernet inter-
connect. For Hadoop, we allocate a JVM heap space of 4
MB for each mapper and reducer, and we allow at most 3
reducers running concurrently in each machine. We use the
default block size 64 MB in HDFS and set the data repli-
cation factor of HDFS to 1. For Spark, we use standalone
model and allocate 14 GB memory for each executor. On
each executor, we allocate at most 3 cores. In the experi-
ments, we evaluate two metrics, namely running time and
communication/shuffle cost.
Algorithms We compare the following three distribution
schemes.

– SIGNATUREOur signature-baseddistribution approach
proposed in Sect. 5.3.2, where, by default, we apply the
heuristic partition strategy proposed in Sect. 5.3.3.

– RANDOMAdvanced randomdistribution approach pro-
posed in Sect. 5.3.1.

– PREFIX Prefix-based distribution approach proposed in
Sect. 5.3.1.

In the following experiments, we employ TT-Join as the local
join algorithm, since it achieves the best overall performance
as demonstrated in our centralized evaluation (Sect. 6.1).

Datasets We employ both real-life and synthetic datasets to
evaluate our algorithms.

Real-life datasets Two real-life datasets are deployed to
evaluate the algorithms. TWEETS is collected from Twitter,
containing 74.6M tweets with an average number of terms
being 6.3. MEMES is obtained from Memetracker [28],
which tracks the quotes and phrases that appear most fre-
quently over time across the entire online news spectrum.
The quotes and phrases used in this paper are collected in
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Table 4 Statistics of real-life datasets for evaluating distributed meth-
ods

Datasets TWEETS MEMES

#Records 74.6M 41.6M

#Elements 953K 2.4M

Average record size 6.3 14

Size in GB 2.7 2.7

Table 5 Statistics of synthetic datasets for evaluating distributed meth-
ods

Parameter Values

Number of records 2M, 4M, 6M, 8M, 10M

Average record size 10, 20, 30, 40, 50

Number of elements 10K, 100K, 1M, 10M, 100M

z-value of elements 0.5, 0.8, 1.0, 1.2, 1.5

The default values are shown in bold

April 2009, where we consider each meme as a record. The
statistics of two datasets are summarized in Table 4.

Synthetic datasets Similar to the way that we generate
synthetic datasets for evaluating main-memory algorithms,
synthetic datasets here are generated by considering the 4
aspects as well; that is, (i) the number of records, (ii) the
average record size, (iii) the number of distinct elements, and
(iv) the z-value (skewness) of elements. Table 5 summarizes
the details.

6.2.2 Performance tuning

We start the experiments by tuning the performance of our
approach SIGNATURE.

Compare partition strategies In Sect. 5.3.3, we propose
two element domain partition methods. Recall that the opti-
mal partition has a time complexity of O(N |E |2) which is
impractical on datasets with large element domain size. We
therefore choose NETFLIX in Table 2, where the element
domain size is 17,770, to conduct the experiments. Note that
we also implement the even partition strategy, where the
element domain is evenly partitioned into N intervals. As
reported in Fig. 17a, our heuristic partition method, denoted
by HEURISTIC, can achieve comparable performance as
optimal partition method, denoted by OPTIMAL, in terms
of running time, while even partition method, denoted by
EVEN, is always beaten by other methods. That is because
both OPTIMAL and HEURISTIC take the computation cost
into consideration such that reduce nodes can take similar
workload. It is interesting that all three methods have the
similar communication cost under all settings as shown in
Fig. 17b. The reason is that the communication cost is mainly
determined by the distribution scheme and the number of
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Fig. 18 Vary number of intervals (N )

intervals N . By default, we use HEURISTIC as the element
domain partition method.

Effect of number of partitions In this experiment, we eval-
uate the effect of number of intervals N to our approach
SIGNATURE against the two datasets in Table 4, namely
TWEETS andMEMES,where the number of intervals is var-
ied from 200 to 1800. Figure 18a reports that SIGNATURE
can continuously benefit from growth of N on TWEETS
regarding the running time, while it runs the fastest when
N = 1000 on MEMES. On the other hand, it is shown in
Fig. 18b that the communication cost increases gradually
when N increases. The reason is obvious because as N grows,
we need to distribute records to more reduce nodes after map
phase. Taking both running time and communication cost
into consideration, we set N = 1000 for SIGNATURE for
all datasets in the following experiments.

6.2.3 Performance evaluation

Scalability test In this set of experiments, we evaluate the
scalability of 3 approaches. For each datasets, we randomly
sample 20, 40, 60, 80, 100% of records from the original
dataset and conduct experiment on each sampled dataset.
It is worth mentioning that we also tune the best number
of partitions for RANDOM and PREFIX. In particular, for
RANDOM, the numbers of partitions are set to 12, 14, 16, 18,
20 on both R and S under the 5 settings, while the number
of intervals for SIGNATURE and PREFIX is set to 200, 400,
600, 800, 1000, correspondingly.

It is reported in Fig. 19 that our approach SIGNATURE
performs the best under all settings with respect to both run-
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Fig. 19 Vary number of records on Spark

0

1000

2000

3000

4000

20% 40% 60% 80% 100%

R
un

ni
ng

 T
im

e 
(s

)

SIGNATURE
RANDOM

PREFIX

0

20

40

60

80

100

20% 40% 60% 80% 100%

C
om

m
un

ic
at

io
n 

C
os

t (
G

B
)

SIGNATURE
RANDOM

PREFIX

0

500

1000

1500

2000

2500

20% 40% 60% 80% 100%

R
un

ni
ng

 T
im

e 
(s

)

SIGNATURE
RANDOM

PREFIX

0

40

80

120

160

20% 40% 60% 80% 100%

C
om

m
un

ic
at

io
n 

C
os

t (
G

B
)

SIGNATURE
RANDOM

PREFIX

TWEETS TWEETS MEMES MEMES(a) (b) (c) (d)

Fig. 21 Vary number of records on Hadoop
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Fig. 20 Vary number of slave nodes on Spark

ning time and communication cost. We also observe that
SIGNATURE can scale much better than RANDOMdoes on
TWEETS, and both RANDOMand PREFIX do onMEMES.
Taking TWEETS for instance (Fig. 19a), when dataset size
is 20%, SIGNATURE and RANDOM have comparable per-
formance and finish in 200 and 244 s, respectively. However,
when dataset size grows to 100%, these numbers become 357
and 4493, which means that SIGNATURE is more than one
order of magnitude faster than RANDOM. We have similar
conclusion in terms of communication cost. Interestingly, it
is also observed from Fig. 19 that PREFIX has very differ-
ence performance on the two datasets. In particular, PREFIX
achieves much better performance on TWEETS (Fig. 19a,
b) than it does on MEMES (Fig. 19c, d). Taking the running
time for example, it is only slightly beaten by SIGNATURE
on TWEETS, while significantly outperformed by SIGNA-
TURE on MEMES, where it is even marginally beaten by
RANDOM when dataset size is less than 80%. The rea-
son is that PREFIX is not suitable for dataset with large
record size because it uses the entire record as prefix to build
inverted index. Since the average record sizes of TWEETS
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Fig. 22 Vary number of slave nodes on Hadoop

and MEMES are 6.3 and 14, respectively, this explains why
PREFIX performs better on TWEETS.

Effect of number of slave nodes In this experiment, we eval-
uate the effect of number of slave nodes by varying it from 5
to 9. Note that we only show the running time for this experi-
ment since the shuffle cost is the same for an algorithm under
different numbers of slave nodes. The experiment results are
shown in Fig. 20.When the number of slave nodes increases,
the running time of all algorithms decreases steadily. Fig-
ure 20a, b shows that SIGNATURE is more than one order of
magnitude faster than RANDOM on TWEETS, and 5 times
faster than both RANDOM and PREFIX on MEMES under
all settings, respectively.

Evaluations on Hadoop Figures 21 and 22 report the per-
formance of the algorithms running on Hadoop, which show
similar behaviors as they do on Spark shown in Figs. 19 and
20. That is, the processing time increases when the number of
records increases, while decreases with the growth number
of slave nodes.
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Fig. 23 Test on synthetic datasets

Interestingly, it is observed that the performance gap
between SIGNATURE and other algorithms narrows on
Hadoop. Take Figs. 19a and 21a for example. At the set-
ting where the number of records is 100%, it takes 357 and
4493 s for SIGNATURE and RANDOM to finish on Spark.
However, the numbers become 779 and 4058 on Hadoop.
The reason is that SIGNATURE applies a two-stage strategy
to compute the set containment join. In the first stage, we
compute the element distribution, and based on that, we can
find a good element domain partition. In the second stage,
we distribute the records to reduce nodes according to the
well-partitioned element intervals and compute set contain-
ment join locally on each reduce node. On the other hand,
bothRANDOMandPREFIXonly consist of one stage. Since
Spark stores data in memory, it is more efficient for process-
ing multiple-stage jobs. Therefore, SIGNATURE performs
better on Spark than it does on Hadoop.

Test on synthetic datasetsFigure 23 reports the performance
of the algorithms running against the synthetic datasets. The
result is empty for PREFIX at some settings because it takes
too long time. Figure 23a shows that SIGNATURE beats
other methods under most experiment settings. In particular,
the performance margin is getting larger as the number of
records increases, which implies that SIGNATURE achieves
better scalability. Figure 23b depicts the result in terms of
average record size. It is reported that SIGNATURE can
steadily outperform other methods, while PREFIX cannot
efficiently handle datasets with large record size, which veri-
fies our claim inMotivation of Sect. 5.3.2. Figure 23c reports
the running time of the methods under different element
domain size. It is interesting that both SIGNATURE and
RANDOMconsume less time onmedia element domain size
(i.e., 100,000), while PREFIX prefers large element domain
size. Figure 23d shows the experiment results when varying
the data skewness. From the result, we see that SIGNA-
TURE achievesmuch better performance than othermethods
when the data become skewer. For example, when z = 1.5,
SIGNATURE only spends 211 s to give the answer, while
RANDOM needs 847 s and PREFIX fails to respond in
allowed time.

7 Conclusion

In this paper, we study the problem of set containment join.
Several in-memory set containment join algorithms have
been developed in the literature. Based on the computing
paradigms, we classify them into two categories, namely
intersection-oriented and union-oriented methods. Through
a comprehensive analysis, we show the advantages and lim-
its of the algorithms in each category. Then, we propose a
new union-oriented method, namely TT-Join, which can take
advantage of both union-oriented and intersection-oriented
approaches. Extensive experiments on 20 real-life set-valued
datasets from a variety of applications and synthetic datasets
demonstrate the superior performance of TT-Join compared
with the state-of-the-art techniques. Furthermore, to sup-
port large scale of datasets, we extend our techniques to
distributed systems on top of MapReduce framework. With
the help of careful designed load-aware distribution mecha-
nisms, our distributed join algorithm can scale out well.
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