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Abstract
The problem of optimal location selection based on reverse k nearest neighbor (RkNN) queries has been extensively studied
in spatial databases. In this work, we present a related query, denoted as a Maximized Bichromatic Reverse Spatial Textual k
Nearest Neighbor (MaxST) query, that finds an optimal location and a set of keywords for an object so that the object is a kNN
object for as many users as possible. Such a query has many practical applications including advertisements, where the query
is to find the location and the text contents to include in an advertisement so that it is relevant to the maximum number of users.
The visibility of the advertisements also has an important role in the users’ interests. In this work, we address two instances
of the spatial relevance when ranking items: (1) the Euclidean distance and (2) the visibility. We carefully design a series of
index structures and approaches to answer the MaxST for both instances. Specifically, we present (1) the Grp- topk approach
that requires the computation of the top-k objects for all of the users first and then applies various pruning techniques to find
the optimal location and keywords; (2) the Indiv- U approach, where we use similarity estimations to avoid computing the
top-k objects of the users that cannot be a final result; and (3) the Index- U approach where we propose a hierarchical index
structure over the users to improve pruning. We show that the keyword selection component in MaxST queries is NP-hard and
present both approximate and exact solutions for the problem.

Keywords Spatial–textual query · Reverse kNN · Efficiency

1 Introduction

The optimal location selection problem is an important task
in making business decisions. As a result, a number of stud-
ies have addressed different instances of this problem, and
queries such as theMaximizedBichromaticReverse k Nearest
Neighbor (MaxBRkNN) queries [20,33,34,43] have received
considerable attention in the spatial database community in
recent years. Given a set of users U and a set of objects O
over a shared spatial dataspace, a bichromatic reverse k near-
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est neighbor (BRkNN) query for an object o ∈ O returns all
the users u ∈ U for which o is a kNN in O . A MaxBRkNN
query finds the optimal region to place a new object, p /∈ O
such that the number of users in the result of the BRkNN query
issued by p is maximized.

A practical application of these queries is to find the loca-
tion of a new business or a new facility that can serve the
maximum number of customers. In the literature, spatial
distance is usually the only relevance criteria considered.
However, customers are generally interested in the products
and services aswell as the location.Therefore, spatial–textual
query is an interesting extension in this setting. The problem
has recently been studied for spatial–textual databases,where
[14] find a set of keywords for an object in a fixed location
such that the object is a kNN of the maximum number of
users w.r.t. both spatial and textual similarities.

Despite significant progress on this problem, there is a
research gap in finding both an optimal location and a key-
word set for an object, which is a natural extension of the
problem. Moreover, as targeted applications become more
practical, physical obstacles must also be factored into the
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solution. For example, visibility can have an important role
in improving advertisement reach, frequency, and impact.
While previous research has explored various visibility-
related queries, no prior work has considered the effect of
visual obstacles in the context of BRkNN problems. Consider
the following example applications that highlight the impor-
tance of these factors.

Example 1 In social media advertising, a user is shown a lim-
ited number of advertisements that are highly relevant to their
location and preferences (top-k relevant advertisements). In
this case, given a set of candidate locations and keyword
choices, the application is to find the location and a limited
number of keywords to include in an advertisement such that
it is displayed to the maximum number of users.

Example 2 Consider a company who wants to place a new
billboard for an advertisement p. An important attribute in
this scenario is the visibility of the billboard for potential
customers in the presence of obstacles, such as buildings
in a city. So given a set of potential locations where a bill-
board can be placed and a set of keywords appropriate for the
advertisement, the problem is to find an optimal location and
a limited number of keywords for p such that p is relevant
and visually unobstructed for as many customers as possible.

In both examples, the underlying problem is to find the
location and text for a specific product or service such that
the product is one of the k most relevant objects of the max-
imum number of users, which is maximizing the size of the
bichromatic reverse kNN of the product. Here, the ranking
is based on both spatial and textual properties. In the first
example, the spatial relevance of an object (advertisement)
is the spatial proximity (Euclidean distance) from a user. In
the second instance, the spatial relevance is the visibility of an
object from a user in the presence of visual obstacles (build-
ings). In contrast to the spatial proximity, the visibility of an
object from a user depends on other objects in the dataset
that are located in between the user and the object.

In this article, a new query variation is presented—the
Maximized Bichromatic Reverse Spatial Textual k Nearest
Neighbor (MaxST) query. Two different instances of spatial
relevance are explored for ranking objects: (i) the Euclidean
distance and (ii) the visibility. A series of carefully designed
indexes and traversal algorithms are proposed to process
MaxST queries for both of the instances.

This article builds on our previous work [8], where the
problem for the first instance (Euclidean distance as spa-
tial relevance) was initially introduced. In that prior work,
the Grp- topk approach was proposed to efficiently find the
best location and keyword set combination that requires the
computation of the top-k objects for all of the users. A new
indexing structure, the MIR-tree, was also introduced. The
Modified IUR-tree (MIUR-tree) was used to index the users

and was motivated by the desire to avoid computing the top-
k objects for users that cannot be in the final result set.

The visibility of an object introduces additional challenges
when computing spatial relevance in this problem, as the vis-
ibility of an object o w.r.t. a user u depends not only on their
own locations, but also on the other objects (visual obstacles)
between o and u. Due to the importance of visibility formany
applications, we extend our MaxST query solutions for visi-
bility, which represents the first work addressing the effect of
visual obstacles on Maximized Bichromatic Reverse Spatial
Textual kNN queries.

In particular, this work extends our prior contributions in
the following aspects—(i) the solutions from prior work [8]
are extended to address the MaxST problem for both unob-
structed space and obstructed space, where the spatial
relevance of an object is based on Euclidean distance and
visibility, respectively. (ii) In addition to the two approaches
(the Grp- topk approach and the Index- U approach) pre-
sented by [8], a new approach is proposed, Indiv- U which
also avoids computing the top-k objects for the users that
cannot affect the final result, and does not require the set
of users to be indexed. (iii) A new index structure, the OIR-

tree, is proposed to support the visibility computation and
extend the approaches for visibility as the spatial relevance in
this problem; and (iv) a comprehensive experimental study
is presented to demonstrate the efficiency of our proposed
techniques and compare relative performance.

For the rest of the article, the phrase “reverse k nearest
neighbor (RkNN)” is used instead of “bichromatic spatial–
textual reverse k nearest neighbor” when the context is clear.
We also use the terms “top-k” and “kNN” interchangeably.

2 Problem formulation

Let D be a bichromatic dataset, whereU is a set of users and
O is a set of objects. Each object o ∈ O is a pair (o.l, o.d),
where o.l is a geo-spatial position (point, rectangle, or poly-
gon) and o.d is a set of keywords (which can be empty). Each
user u ∈ U is also defined as a similar pair (u.l, u.d). For an
object o, let Bo denote the set of users that have o as its kNN
based on a combined spatial and textual relevance score. The
necessary notations are listed in Table 1.

Definition 1 A MaxST query q(p, L,W , ω, k) over D, where
p /∈ O is a specific spatial–textual object, L is a set of spatial
candidate locations (point, line, rectangle, etc.),W is a set of
candidate keywords, ω is a positive integer where ω ≤ |W |,
and k is the number of relevant objects to be considered, finds
a � ∈ L and a set of keywords W ′ ⊆ W , |W ′| ≤ ω such that
if p.l = � and p.d = W ′, the cardinality |Bp| is maximized.
If p has any existing text description, then p.d = (W ′∪ p.d)
and p.l = � combinedly maximize |Bp|.
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Table 1 Basic notation

Symbol Description

O (U ) The set of objects (users)

L (W ) The set of candidate spatial positions (keywords)

ω The maximum number of keywords to select

u+ The super-user

CS(o, u) The combined similarity measure of an object o w.r.t. a user u

SS(o, u) (SS(o, u)) The spatial similarity between o and u as the Euclidean distance (as visibility)

TS(o, u) The textual similarity between o and u

VL(o, u) The visible length of o from u

Rk(u) The similarity value of the kth ranked object of u

Bp The set of users that are RkNN of an object p

B↓
� (B↑

�) The set of users that are definitely (that can be) a reverse kNN of an object with location � based on a lower

(an upper) bound

CS↑(E, u) (CS↓(E, u)) The upper (lower) bound of similarity measure of a node E w.r.t. a user u

CS↑(�, u) (CS↓(�, u)) The upper (lower) bound of similarity measure of an object o with location o.l = � w.r.t. a user u

LOu A min-priority queue to keep the k objects with the best lower bounds w.r.t. u found so far

EU A node of an MIUR-tree of the users

Section 8

ζ A cell of the auxiliary Quadtree

OR(u) The obstructed region of u

OL(ζ ) The users for which ζ is completely inside OR(u)

len↓(E), len↑(E) The minimum (maximum) length of an object stored in the subtree rooted at node E

o.θ The angle of o w.r.t. the Cartesian X-axis

χE,u , χ̂E,u The set of leaf level cells of the Quadtree that are visible (not visible) from u and intersects with at least one

object in node E

VL↓
�(�o.l, u.l), VL↑

�(�o.l, u.l) Minimum (maximum) perceived length of segment �o.l from u.l

	 ↓(�o.l, u.l), 	 ↑(�o.l, u.l) Minimum (maximum) angle between the segment �loco and u.l

	 ↓(�o.l, u+), 	 ↑(�o.l, u+) Minimum (maximum) angle between the segment �loco and any user u from u+

In this work, the problem of MaxST is addressed for the
two instances of the spatial relevance in the ranking of an
object: (i) the spatial proximity (Euclidean distance) w.r.t. a
user and (ii) the visibility from a user in the presence of visual
obstacles. Now we present the similarity measures that are
used in this article.
Combined similarity measure: An object o is ranked based
on a combined score of spatial and textual relevance with
respect to a user u. Without loss of generality, the following
widely adopted linear weighted combination score [9,21] is
used in this article:

CS(o, u) = α · SS(o.l, u.l) + (1 − α) · TS(o.d, u.d) , (1)

where SS(o.l, u.l) is the spatial similarity between the
locations, the textual relevance is TS(o.d, u.d), and the pref-
erence parameter α ∈ [0, 1] defines the importance of one
relevance measure relative to the other. The value of both
measures is normalized within [0, 1]. Here, a higher score

denotes higher relevance. The text similarity and two dif-
ferent spatial similarity measures (proximity and visibility)
used in this article are now presented.

a. Text similarity: An object o is considered similar to a user
u iff o.d contains at least one term t ∈ u.d. Several measures
can be used to compute the similarity between any two text
descriptions [23]. We use the TF·IDF metric [30] for illus-
tration purpose in this work, but our approach is applicable
to any text-based similarity measure.

The term frequency, TF(t, o.d), counts how many times
the term t appears in a document object o.d, and the Inverse
Document Frequency, IDF(t, O) = log |O|

|o∈O,TF(t,o.d)>0|
measures the importance of t w.r.t. all of the documents in
an object collection O . The text similarity of an object o.d
with respect to a user u is

TS(o.d, u.d) =
∑

t∈u.d∩o.d
TF(t, o.d) × IDF(t, O) (2)
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Fig. 1 Visibility measure
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b. Spatial proximity: The spatial proximity of an object o
w.r.t. a user u is measured using the minimum Euclidean
distance, d ↓(o.l, u.l) as:

SS(o.l, u.l) = 1 − d ↓(o.l, u.l)

dmax
, (3)

where dmax is the maximumEuclidean distance between any
two points in D. If the spatial location is any shape other
than points, such as a line or rectangle, then the minimum
Euclidean distance between those two shapes is used to com-
pute the spatial proximity with the same equation.

c. Visibility measure: We now explain the visibility quantifi-
cation for a line as the geometric shape of the spatial data.
For each o ∈ O , o.l is a line for the rest of the article for
visibility, but the calculations are representative of any other
geometric shape. An object o is considered visually relevant
to a user u iff at least one point of o.l is visible from the
user u.l, i.e., there exists a point a over the line segment o.l
such that the straight line connecting a and u.l does not pass
through any other objects in O .

Previous work [7,24,42] has defined and used different
metrics to quantify visibility. The metric, called “visual
angle,” used by [7] is the angle formed at the eye of a user
by the extremities of an object viewed, which determines the
perceived length of that object. We adopt this metric as the
measure of visibility in this work. Specifically, the visibility
measure in our work is computed as:

SS(o.l, u.l) = 2arctan(VL(o.l, u.l))

180
(4)

where the maximum possible visual angle is 180◦, which is
used to normalize the value of SS(o.l, u.l) between [0,1], and
VL(o.l, u.l) is the perceived length of o from u.l.

The perceived length of an object mainly depends on the
distance and the viewing angle between the user and the
object. If an object is viewed from an oblique angle, the
perceived length of that object becomes smaller than the orig-
inal length. The perceived length of o also decreases with the
increase in the distance between o and the user u. As dif-
ferent parts of an object always have different distances and
orientationsw.r.t. a user, we use the cumulative approach pre-
sented by [42] to calculate visibility. Specifically, we divide
the line o.l into numerous infinitesimal segments of size at

most ε such that, for each segment, �o.l, the distances and
the orientations of all points on �o.l w.r.t. to a user u can be
considered as visually similar. For example, in Fig. 1, the seg-
ments are shown for an object o, and in Fig. 5, the segments
are shown for a particular object o2.

Let the straight line connecting the midpoint of a line seg-
ment �o.l and the point location of the user u.l creates an
angle 	 (�o.l, u.l) with o.l. Let the minimum distance of
�o.l and the user u.l be d ↓(�o.l, u.l). Then the perceived
length of a segment �o.l w.r.t. u.l is measured as:

VL�(�o.l, u.l) = 	 (�o.l, u.l)

90◦ × len(�o.l)

d ↓(�o.l, u.l)
(5)

Here, if 	 (�o.l, u.l) = 90◦, the perceived length of the
line segment �o.l from a nominal distance is the same as
its original length, len(�o.l). The perceived length of the
entire o.l w.r.t. u.l, VL(o.l, u.l), is obtained by summing up
the perceived lengths of all the small segments �o.l that are
visible from u.l:

VL(o.l, u.l) =
∑

�o.l visible from u.l

VL�(�o.l, u.l)

For example, in Fig. 5, to obtain the visibility of o2,
SS(o2.l, u.l), the perceived length of the segments of o2 that
are visible from u (represented with black) must be individ-
ually computed and summed as VL(o.l, u.l) in Eq. 4 to get
the visibility value of object o2 w.r.t. u.

Algorithm 1: Baseline (O,U , L, p, k, IR-tree)

1.1 Bp ← ∅

1.2 for each u ∈ U do
1.3 Traverse IR-tree to find kNN objects of u
1.4 Rk(u) ← similarity score of the kth ranked object of u
1.5 C ← Set of all combinations of ω keywords from W
1.6 for each � ∈ L do
1.7 for each c ∈ C do
1.8 for each u ∈ U do
1.9 if c ∩ u.d 	= ∅ then

1.10 p′.l = �; p′.d = p ∪ c
1.11 if CS(p′, u) > Rk(u) then Bp′ ← u
1.12 if |Bp′ | > |Bp| then
1.13 p.l ← �; p.d ← p ∪ c
1.14 return p

3 Solution overview

One can think of a straightforward solution for the MaxST

query consisting of the following steps shown inAlgorithm1:
(i) find the top-k spatial–textual objects for all users in U
individually using any of the existing techniques. Let the
relevance score of the kth ranked object of a user u ∈ U
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be Rk(u) (Lines 1.2–1.4). (ii) Generate all possible combi-
nations C of ω keywords from W . (iii) For each candidate
location � ∈ L , and each keyword combination c ∈ C , the
total relevance score of � and p.d ∪ c is computed for the
users u ∈ U , where c ∩ u.d 	= ∅. If this score is greater
than Rk , u is a RkNN of the object p with location � and key-
word set c. We track the 〈�, c〉 with the maximum number of
RkNN and update the location and keywords of p accordingly
(Lines 1.6–1.7). (iv) Finally, p is returned where the location
and the keywords of p are the tuple 〈�, c〉with the maximum
number of RkNNs as the result.

Challenges: The straightforward method is computationally
expensive for several reasons: (i) computing the top-k results
for all users; (ii) iterating over all of the candidate locations;
(iii) generating all combinationsC ofω candidate keywords;
and (iv) computing the relevance scores for all of the can-
didate location tuples, and c ∈ C with respect to each user
u ∈ U . We now show that the candidate selection part of the
MaxST problem is NP-hard by reduction from the Maximum
Coverage problem.

Lemma 1 The MaxST problem is NP-hard.

Proof Given a collection of sets S = {S1, S2, . . . , Sn}, and a
positive integerm, the MaximumCoverage (MC) problem is
to find a subset S′ ⊆ S such that |S′| ≤ m and the number of
covered elements by S′, | ∪Si∈S′ Si | is maximized. The MC
problem is NP-hard [16].

Consider a special case of theMaxST problemwhereα = 1.
Here, the similarity score of the objects that contain at least
one of the user keywords is measured by the spatial proxim-
ity using Eq. 1. Also assume that the number of candidate
locations, |L| = 1 in this special case. So p.l = �, where �

is the only candidate location in L . For each candidate key-
wordw ∈ W , letBw be the set of users that have p as a top-k
object when w is included in p.d. So, a collection of the set
of users exists, one for each w ∈ W . The goal of a MaxST

query is to select at most ω keywords from W , such that the
number of users for which p is a top-k object is maximum.
That is, solving the maximum coverage problem is equal to
finding a subset of the candidate keywords, W ′ ⊆ W , where
|W ′| ≤ ω maximizes | ∪w∈W ′ Bw|.

Again, Bw for each w ∈ W corresponds to each set Si
of the MC problem, where each user u j ∈ Bw corresponds
to the element of Si . Therefore, finding a subset W ′ of the
candidate keywords where |W ′| ≤ ω maximizing | ∪w∈W ′
Bw| is equivalent to solving themaximumcoverage problem.

��
Therefore, scanning all combinations is not practical for a

large number of candidates. To overcome these limitations,
we seek techniques that:

– Efficiently compute the top-k objects for the users;

– Avoid computing the top-k objects for the users that can-
not affect the result; and

– Prune the candidate locations and keywords that cannot
be part of the final result.

A series of approaches to answer the MaxST query are
presented. In each of these approaches, the idea is to avoid
processing the candidates that cannot be a result, avoid com-
puting the top-k objects of the users that do not have any
effect on the final optimal result, share object retrieval costs
among the users, and access the necessary objects only once.
The methods differ in the pruning techniques that are applied
to achieve these goals. In the following, an overview of three
different solutions for MaxST queries is presented from a high
level, with differences between each explained.

– Grp- topk approach: This approach consists of two sep-
arate modules to answer the MaxST problem. First, an
efficient technique to compute the top-k objects for all
users jointly is presented to address the first challenge
mentioned above. Next, several pruning techniques are
applied to discard the candidates that cannot be a result,
where the score of the kth ranked object of the users is
used to facilitate the pruning.

– Indiv- U approach: A limitation of the Grp- topk
approach is that the top-k objects for all of the users must
be computed. Therefore, the Indiv- U approach is pro-
posed to avoid computing the top-k objects for users that
do not affect the final result set. The idea is to estimate the
number of objects that can have a higher similarity than
a candidate for each user u ∈ U with a single traversal of
the objects. This number is used to prune the unpromis-
ing candidates and also the unnecessary users that cannot
be an RkNN of any promising candidate.

– Index- U approach: In the previous approach, the users
are pruned by checking each one individually against the
candidates. So, a new index is proposed, the Modified
IUR-tree (MIUR-tree) to store the users, where the moti-
vation is that a hierarchical index structure over the set of
users may exhibit a higher pruning capacity than check-
ing them individually.

In Sects. 4, 5, 6 and 7, we propose approaches to answer
a MaxST query, where the steps are described using the
Euclidean distance as spatial similarity measure. In Sect. 8,
extension of the solutions is presented to support answering a
MaxST query in obstructed space, where the spatial relevance
is measured as visibility.

4 Index structure

We propose a new index, the Min–Max IR-tree (MIR-tree), to
index the set of objects O to support efficient processing of
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theMaxST query. TheMIR-tree is an extension of the IR-tree [9].
We first give an brief overview of the IR-tree, and then, we
describe how we have extended the IR-tree to construct our
proposed index.

An IR-tree is an R-tree [15] where each node is augmented
with a reference to an inverted file [44] for the documents
in the subtree. Each node R contains a number of entries,
consisting of a reference to a child node of R, the MBR of all
entries of the child node, and an identifier of a text descrip-
tion. If R is a leaf node, this is the identifier of the text descrip-
tion of an object. Otherwise, the text identifier is used for a
pseudo-text description. The pseudo-text description is the
union of all text descriptions in the entries of the child node.
The weight of a term t in the pseudo-document is the maxi-
mumweight of theweights of this term in the documents con-
tained in the subtree. Each node has a reference to an inverted
file for the entries stored in the node. A posting list of a term
t in the inverted file is a sequence of pairs 〈d,w(d, t)〉, where
d is the document id containing t , andw(d, t) is theweight of
term t in d. In this article, theweight of a term t in a document
d is computed using the TF·IDF metric described in Sect. 2.

4.1 Min–Max IR-tree (MIR-tree)

We propose the Min–Max IR-tree (MIR-tree) to index the
objects. The objects are inserted in the same manner as in
the IR-tree. However, unlike an IR-tree, each term is associated
with both the maximum w ↑(d, t) and minimum w ↓(d, t)
weights in each document. The posting list of a term t is a
sequence of tuples 〈d,w ↑(d, t),w ↓(d, t)〉, where d is the
document identifier containing t , w ↑(d, t) is the maximum,
and w ↓(d, t) is the minimum weight of term t in d, respec-
tively. If R is a leaf node, both weights are the same as the
actual weight of the term t ,w(d, t) in the IR-tree. If R is a non-
leaf node, the pseudo-document of R is the union of all text
descriptions in the entries of the child node. The maximum
(minimum) weight of a term t in the pseudo-document is the
maximum (minimum) weight in the union (intersection) of
the documents contained in the subtree. If a term is not in the
intersection, w ↓(d, t) is set to 0.

(a) (b)

Fig. 2 The placement of the objects and the users. aObjects andMBRs,
b objects and users

Fig. 3 Min–max IR-tree (MIR-tree)

Figure 2a shows the locations and the text descriptions of
an example dataset O = {o1, o2, . . . , o7}, and Fig. 3 illus-
trates the MIR-tree for O . Table 2 presents the inverted files of
the leaf nodes (InvFile 1 - 4) and the non-leaf nodes (InvFile 5
- 7) of theMIR-tree for the example objects in Fig. 2a. The tree
structure of the MIR-tree is same as the IR-tree. As a specific
example, themaximum (minimum)weight of term t1 in entry
R4 of InvFile 6 is 2 (1), which is the maximum (minimum)
weight of the term in the union (intersection) of documents
(o6, o7) of the node R4.

Index construction cost: In contrast to the IR-tree [9], the space
requirements for the MIR-tree include an additional weight
stored for the minimum text relevance for each term in each
node. Specifically, for a node N , if the number of terms is
M , the additional space is required to store

∑M
i=1 ni weights,

where ni is the number of objects in the posting list of term
ti in node N . The construction time of the MIR-tree is very
similar to the original IR-tree. During tree construction, when
determining the maximum weight of each term in a node,
the minimum weight of that term can be determined concur-
rently. As the split and merge of the nodes are executed in the
same manner as the IR-tree, the update costs of the MIR-tree

are also same as that of the IR-tree.
TheMIR-tree is an extension of the original IR-tree presented

by [9], who also proposed other variants of the IR-tree, such as
the DIR-tree, the CIR-tree, and the CDIR-tree, where both
spatial and textual criteria are considered to construct the
nodes of the tree. The same structures can be used during
the construction of our proposed extension. For example, the
nodes of the MIR-tree can be constructed in the same manner
as theDIR-tree, and the posting lists of each nodewill contain
both the minimum and maximum weights of the terms.

User grouping: Our goal is to access the necessary objects
fromdisk and avoid duplicate retrieval of objects for different
users. We form a group of users, denoted as a “super-user”
(u+), to facilitate the pruning of the objects and the candi-
dates.

The “super-user” (u+) is constructed such that u+.l is the
MBR enclosing the locations of all users, u+.dUni is the
union, and u+.dInt is the intersection of the keywords of all
users, respectively. As an example, Fig. 2b shows the loca-
tions of the usersU = u1, u2, . . . , u7 and the corresponding
text descriptions are presented in Table 3. The location of the
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Table 2 Posting lists for the example MIR-tree

Term InvFile 1 InvFile 2 InvFile 3 InvFile 4 InvFile 5 InvFile 6 InvFile 7

t1 (o1, 1, 1) (o3, 5, 5) (o5, 4, 4) (o6, 1, 1), (o7, 2, 2) (R1, 1, 0), (R2, 5, 0) (R3, 4, 4), (R4, 2, 1) (R5, 5, 0), (R6, 4, 1)

t2 (o1, 4, 4) – (o5, 1, 1) – (R1, 4, 0) (R3, 1, 1) (R5, 4, 0), (R6, 1, 0)

t3 – (o3, 5, 5) – (o6, 1, 1) (R2, 5, 0) (R4, 1, 0) (R5, 5, 0), (R6, 1, 0)

t4 (o2, 1, 1) (o4, 2, 2) – (o7, 3, 3) (R1, 1, 0), (R2, 2, 0) (R4, 3, 0) (R5, 2, 0), (R6, 3, 0)

Table 3 Text description of the users

Term User
u1 u2 u3 u4 u5 u6 u7

t1 1 1 1 1 1 1 1

t2 0 0 0 1 1 0 0

t3 1 1 0 1 0 0 0

t4 1 1 0 0 0 1 1

“super-user,” u+.l is the MBR enclosing the locations of all
the users, shown with a dotted rectangle. Here, the intersec-
tion of the keywords of all the users, u+.dInt, is “t1” and the
union, u+.dUni, is “t1, t2, t3, t4.”

5 Grp-topk approach

In this approach,we assume that the top-k objects for all users
are computed as a first step to answering a MaxST query. In
our earlier work on this problem [8], an efficient technique to
jointly process the top-k object computation for all users inU
using a super-user was presented. Other approaches to effi-
ciently batch process multiple top-k spatial–textual queries
(users) could also be used [6]. Let the similarity score of the
kth ranked object for each user u ∈ U ,Rk(u), and the kth best
lower-bound similarity score with respect to the super-user,
Rk(u+) such that for any user u ∈ U , Rk(u+) ≤ Rk(u). As
the details of an efficient solution to jointly compute the top-
k objects for the users are available as previously described
by [8], we proceed to present our method to efficiently find
the best candidate combinations.

5.1 Candidate selection

As shown in Lemma 1, even when there is only a single
candidate location, the candidate keyword selection process
alone is NP-hard. Therefore, we propose a spatial-first prun-
ing technique to select the best candidate combination of a
location and a set of keywords.

For each candidate location �, the idea is to estimate the
number of users that can be in Bp if p.l = � for the specific
object p. Then the candidates are considered in a best-first
manner so that the most promising candidates are processed

Algorithm2:Select _Candidate(U , L,W , ω, k, p)
2.1 Initialize a max-priority queue QL .
2.2 Bp ← ∅.
2.3 for each � ∈ L do
2.4 if CS↑(�, u+) ≥ Rk(u+) then
2.5 for each u ∈ U do
2.6 if CS↑(�, u) ≥ Rk(u) then
2.7 B↑

� ← u
2.8 if CS↓(�, u) ≥ Rk(u) then
2.9 B↓

� ← u
2.10 Enqueue(QL, �, |B↑

�|)
2.11 while QL 	= ∅ do
2.12 max� ← Dequeue(QL)

2.13 if |B↑max�| < |Bp| then break else if |B↓
max�| ≥ |Bp|

then
2.14 p.l ← max�
2.15 else
2.16 W ′ ← Find best candidate keyword set for max�

using approximate or exact method.
2.17 p′.l = max�; p′.d = W ′
2.18 if |Bp′ | > |Bp| then
2.19 p.l ← max�; p.d ← W ′
2.20 return p

first. Several pruning strategies are used during this process,
which are described now.

Algorithm 2 shows the pseudocode of the steps to select
the candidate location and keywords for the MaxST problem.
The pruning techniques used in this process use an upper-
and a lower- bound estimation of relevance of the candidate
combinations with respect to the users.

Upper-bound estimation: For each � ∈ L , the combined
spatial–textual upper-bound similarity is computed in two
steps: (i) for the super-user u+, denoted as CS↑(�, u+) such
that for any user u ∈ U , the similarity between p and u is at
most the CS↑(�, u+), when p.l = �; and (ii) for each indi-
vidual u ∈ U such that the similarity CS(p, u) is at most
CS↑(�, u), when p.l = �.

When using Euclidean distance for spatial similarity, the
spatial upper-bound SS↑(�, u+) is computed from Eq. 3
using the minimum Euclidean distance between � and u+,
as u+.l is the MBR for all of the users. For text relevance, a
straightforward way is to consider the relevance as 1 (max-
imum), when the score is normalized within [0, 1]. But we
can achieve a tighter bound using the following lemma:
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Lemma 2 Let W ↑ be the set of ω number of keywords of
the highest weights from (u+.dUni ∩W ). The text relevance
between p.d and a user u ∈ U after adding atmostω number
of candidate keywords is always less than or equal to the
score TS((p.d ∪ W ↑), u+.dUni),

TS↑(p, u+) = TS((p.d ∪ W ↑), u+.dUni) .

Proof The text relevance between a user u and p can change
by adding only the keywords that are present in u.d. As
u+.dUni is the union of the text of all the users inU , the text
relevance w.r.t. any user u can be increased only by adding
the candidate keywords that are present in u+.dUni. Let w1

and w2 be two keywords in W ↑ where the weight of w1 is
greater than the weight of w2 and ω = 1. If a user u has both
w1 and w2 in the text description, then from Eq. 2, the text
relevance of p w.r.t. u obtained by adding w1 must be equal
to or greater than the text relevance obtained by adding w2.
Even if a user u does not have all the keywords of W ↑ in
u.d, the lemma still provides an upper-bound estimation of
text relevance that can be achieved by adding ω number of
candidate keywords. ��

So, the upper-bound estimation of relevance of a candidate
location w.r.t. the super-user u+ is

CS↑(�, u+) = α · SS↑(�, u+.l) + (1 − α) · TS↑(p, u+) .

Similarly, an upper-bound estimation of a candidate loca-
tion � w.r.t. any particular user u can be computed as

CS↑(�, u) = α · SS↑(�, u.l) + (1 − α) · TS↑(p, u) .

Here, TS↑(p.d, u.d) = TS(p.d ∪ Wu
↑, u.d), where Wu

↑ is
the set of ω number of keywords of the highest weights from
(u.d ∩ W ).

Lower-bound estimation: For text relevance, the minimum
score is computed from the original text description of p.
The spatial lower bound is computed using the maximum
Euclidean distance. So, the lower-bound estimation of � ∈ L
w.r.t. u+ is:

CS↓(�, u+) = α · SS↓(�, u+.l)

+ (1 − α) · TS↓(p.d, u+.dInt) .

Pruning techniques: We denote the set of users that can be in
Bp for p.l = � asB↑

�, and the set of users that are definitely
in Bp when p.l = � as B↓

�. The number of users that find
p as a top-k object is initialized as an empty set. The steps
and the pruning strategies employed in Algorithm 2 can be
summarized as follows:

– Initialize necessary user lists: As the similarity score of
the kth ranked object for any user u, Rk(u), satisfies the
condition Rk(u+) ≤ Rk(u). Therefore, if CS↑(�, u+) <

Rk(u+), then no user can have p as a top-k object for the
candidate location �. Otherwise, CS↑(�, u) is computed
for each user. If CS↑(�, u) ≥ Rk(u), then u is included
in B↑

�. A list of such users, B↑
�, is obtained for each

candidate location �, (Lines 2.6–2.7). For each �, if the
lower-bound similarity CS↓(�, u) ≥ Rk(u), then u is
added to the corresponding list B↓

� (Lines 2.8–2.9).
– Here, a best-first traversal technique is exploited. Amax-
priority queue QL of candidate locations is maintained
according to the cardinality |B↑

�|, so that the most
promising candidates are processed first. In each iter-
ation, the location, max�, with the maximum |B↑

�| is
selected (Line 2.12).

– As the set B↑
� for the candidates are maintained based

on an upper bound, the cardinality ofB↑
max� is less than

the best |Bp| found so far. So, a better tuple from the
subsequent entries of QL is not possible. Thus, the com-
putation can be early terminated (Line 2.13).

– Since all users inB↓
� have p as a top-k object for p.l =

max�, irrespective of the keyword selection, a check to
see whether |B↓

max�| is greater than the current best |Bp|
can be used to avoid computing the candidate keywords
for this condition (Lines 2.14–2.15).

– Otherwise, the best candidate keyword set, W ′, is deter-
mined for max�. An approximate or an exact method
presented in the following section is used to select W ′
(Line 2.17). p is updated with max� and W ′ accordingly
(Lines 2.19–2.20).

5.2 Candidate keyword selection

Recall that the best candidate keyword W ′ set that provides
the maximum cardinality of Bp has to be determined for
p.l = max� (Line 2.17) in Algorithm 2. As this is an NP-
hard problem, an approximation algorithm is first developed.
An exact method that uses several pruning strategies is also
presented, which can serve as a naive baseline.

5.2.1 Approximate algorithm

The candidate keyword selection problem was shown to be
NP-hard in Lemma 1 using a reduction from the Maximum
Coverage (MC) problem. A greedy algorithm with the best-
possible polynomial time exists with (1 − 1/e) � 0.632
approximation ratio for theMCproblem [10]. Inspired by this
algorithm, we propose an approximate algorithm to select
the candidate keywords in our algorithm when p.l = max�
(Line 2.17 of Algorithm 2). However, the assumption of the
solution in [10] is that the objective function needs to be sub-
modular. As the objective function of MaxST problem, which
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Algorithm 3: Approximate (Bmax�,W , ω, k)
3.1 p′.l = max�; W ′ ← ∅; CU ← ∅

3.2 for each w ∈ W do
3.3 for each u ∈ Bmax� do
3.4 W ↑

w,u ← set of ω highest weighed keywords from
W ∩ u.d and w ∩ W ↑

w,u 	= ∅

3.5 p′.d = W ↑
w,u

3.6 if CS(p′, u) > Rk(u) then
3.7 LWw ← u
3.8 while |W ′| ≤ ω do
3.9 w ← the keyword from W with the maximum |LWw|

3.10 W ′ ← W ′ ∪ w

3.11 CU ← CU ∪ LWw

3.12 W ← W − w

3.13 for each w ∈ W do
3.14 LWw ← LWw − CU
3.15 return W ′

is to maximize the number of RkNNs, is non-submodular, the
approximation ratio of that solution does not hold.Wepresent
the steps of the approximate approach in Algorithm 3 where
some preprocessing is required.

Preprocessing: For each w ∈ W , we generate a list LWw of
the users such that these users can be inBp based on an upper-
bound estimation, where p.d = W ′ and W ′ ∩ w 	= ∅. As
the B↑

max� is already computed based on this upper bound,
only the users in B↑

max� need to be considered for this step.
LetW ↑

w,u be a set of the ω highest weighed keywords from
W ∩ u.d such that W ↑

w,u ∩ w 	= ∅. When p.d = W ↑
w,u

and p.l = max�, a user u can be inBp if CS(p, u) ≥ Rk(u).
Such users are included in the corresponding list, LWw for
each w ∈ W (Lines 3.2–3.3).

Approximating the best candidate keyword set: Recall that
in the MC problem, the objective is to find a subset S′ ⊆ S
such that |S′| ≤ m and the number of covered elements by S′,
|∪Si∈S′ Si | ismaximized. In our case, the collection of the sets
are the collection of LWw for each w andm is ω. The greedy
approach of MC is applied in our problem to find the best set
of candidate keywordsW ′ of size ω such that | ∪w∈W ′ LWw|
is maximized. This set W ′ is returned as the best candidate
keyword set for the location max� (Lines 3.8–3.15).

The approximate approach greedily selects the keyword
with the highest number of uncovered RkNNs in each iteration,
until ω keywords are selected. Thus, the iteration execution
number of the approximate algorithm is ω.

5.2.2 Exact algorithm

The number of candidates can be small in some applica-
tions.Moreover, the search space can be pruned using several
strategies when selecting the candidate keyword set. This
motivates us to develop an exact algorithm for selecting the
best keyword set W ′ of the MaxST query. The pseudocode

Algorithm 4: Exact(U ,max�,B↑
max�,W , ω, k)

4.1 WU ← ⋃

u∈B↑max�

(u.d)

4.2 W ′ ← ∅; best ← 0
4.3 if |W ∩ WU| ≤ ω then
4.4 W ′ ← (W ∩ WU)

4.5 else
4.6 C ← combinations of ω number of keywords from

W ∩ WU.
4.7 p′.l = max�
4.8 for each c ∈ C do
4.9 p′.d = c

4.10 for each u ∈ B↑
max� do

4.11 if CS↓(max�, u) ≥ Rk(u) then
4.12 Bp′ ← u
4.13 else if c ∩ u.d 	= ∅ then
4.14 if CS(p′, u) ≥ Rk(u) then Bp′ ← u
4.15 if |Bp′ | > best then
4.16 W ′ ← c; best ← |Bp′ |
4.17 return W ′

is presented in Algorithm 4, and the pruning techniques are
now explained.

– Pruning users: According to the definition of CS↑(�, u),
only the users in B↑

max� can have p as a top-k object
when p.l = max�. So only the users in B↑

max� must be
considered.

– Pruning candidate keywords: Let the union of the text
description of the users inB↑

max� beWU (Line 4.1).Only
the candidate keywords that are contained in at least one
of those users, W ∩ WU, are necessary.

– Let C be the set of the combinations of ω number of
keywords from W ∩ WU. For a keyword combination
c ∈ C , only those users where c∩u.d 	= ∅ are processed.

– Early termination: If |W ∩ WU| ≤ ω, this is the only
possible candidate keyword set. So the process terminates
and W ∩ WU is returned as the best candidate keyword
set for max� as shown in Lines 4.3–4.4.

– If the lower-bound relevance, CS↓(max�, u) ≥ Rk(u),
then u is included in Bp′ , where p′.l = max� and p′.d
is the candidate keyword combination c currently under
consideration (Lines 4.11–4.12). If the cardinality ofBp′
is greater than that of the current best keyword combina-
tion, the current best is updated (Lines 4.15–4.16).

6 Indiv-U approach

Instead of computing the top-k objects of each of the users as
the Grp- topk approach, the idea of the Indiv- U approach
is to estimate the number of objects with a higher similar-
ity than each candidate w.r.t. each u ∈ U with a single
traversal on the objects. This number is used to prune the
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users and the candidates that cannot affect the result. As the
steps of the algorithm rely on computing the similarity esti-
mations of the objects w.r.t. the users, we first present the
similarity bounds, and then, we present the steps of our algo-
rithm.

6.1 Similarity bounds of anMIR-tree node of
objects

We use each node of the MIR-tree to estimate the similarity
of the objects stored in that node. Here we present an upper
and a lower bound of similarity estimation of a node E of
the MIR-treew.r.t. (i) the super-user and (ii) an individual user
u. These bounds are then used to facilitate the pruning of
the objects nodes and pruning of the users from considera-
tion. The maximum spatial–textual similarity between any
node E of the MIR-tree and the super-user u+ is computed
as

CS↑(E, u+) = α · SS↑(E .l, u+.l)

+ (1 − α) · TS↑(E .d, u+.dUni) ,

where SS↑ is themaximum spatial similarity computed from
the minimum Euclidean distance between the two MBRs
using Eq. 3, and TS↑ is the maximum textual similarity
between E .d and the union of the keywords of the users,
and u+.dUni is computed by

TS↑(E .d, u+.dUni) =
∑

t∈u+.dUni∩E .d

w ↑(E .d, t) ,

where w ↑(E .d, t) is the maximum weight of the term t in
the associated document of node E . As described in Sect. 4,
if E is a non-leaf node, w ↑(E .d, t) is the maximum weight
in the union of the documents contained in the subtree of E .
Otherwise, w ↑(E .d, t) is the weight of term t in document
E .d computed using Eq. 2.

We now present a lemma that enables us to estimate an
upper bound on the relevance between any user u ∈ U , and
any object node E using the super-user u+, where E is a node
of the MIR-tree.

Lemma 3 ∀u ∈ U, CS↑(E, u+) is an upper-bound esti-
mation of CS(E, u). For any object node E, CS(E, u) ≤
CS↑(E, u+).

Proof Recall that the u+.l of u+ is the MBR of the locations
for all of the users in U . For an object node E in the MIR-

tree, SS↑(E, u+) is computed from the minimum Euclidean
distance between the two MBRs of E and u+.l. As the loca-
tion u.l of any user u ∈ U is inside the rectangle u+.l, the
value SS(E, u) must be less than or equal to SS↑(E, u+).
For textual similarity, as u+.dUni = ∪u∈U u.d, the max-
imum textual similarity score between any user u ∈ U ,

Algorithm 5: Indiv- U (O,U , L, p, k, MIR-tree)

5.1 Initialize max-priority queue QL, QE.
5.2 Initialize a min-priority queue LS.
5.3 Initialize an array LOu of min-priority queues for each u ∈ U .
5.4 LU ← U
5.5 for each � ∈ L do
5.6 B↓

� ← ∅; B↑
� ← U

5.7 〈�,W ′〉best ← ∅; E ← MIR-tree(root)
5.8 Enqueue(QE, E,CS↓(E, u+))

5.9 while QE 	= ∅ do
5.10 E ← Dequeue(QE)

5.11 if E is an object then
5.12 if |LS| < k ‖ CS↑(E, u+) ≥ Rk(u+) then
5.13 Enqueue(LS, E,CS↓(E, u+))

5.14 Update Rk(u+)

5.15 for each u ∈ LU do
5.16 next ← true
5.17 if |LOu | < k ‖ CS↑(E, u) ≥ Rk(u) then
5.18 Enqueue(LS, E,CS↓(E, u))

5.19 Update Rk(u)

5.20 for each � ∈ L do
5.21 if u is in B↑

� & |LOu | ≥ k &
CS↑(�, u) < Rk(u) then

5.22 Remove u from B↑
�

5.23 else next ← false
5.24 if next is true then
5.25 Remove u from LU
5.26 else if |LS| < k ‖ CS↑(E, u+) ≥ Rk(u+) then
5.27 for each element e of E do
5.28 for each u ∈ LU do
5.29 if |LOu | < k ‖ CS↑(E, u) ≥ Rk(u) then
5.30 Enqueue(QE, e,CS↓(e, u+))

5.31 break
5.32 for each � ∈ L do
5.33 for each u ∈ B↑

� do
5.34 if CS↓(�, u) ≥ Rk(u) then B↓

� ← u
5.35 Enqueue(QL, �, |B↑

�|)
5.36 Execute Lines 2.11- 2.21 of Algorithm 2.

and any object node E that can be achieved is TS↑(E, u+)

from Eq. 2. Since the spatial–textual score CS(E, u) is the
weighted sumof the corresponding spatial and textual scores,
∀u ∈ U , the score CS(E, u) must also be less than or equal
to CS↑(E, u+). ��

Lemma3 shows thatCS↑(E, u+) is a correct upper-bound
estimation for relevance between a node E of the MIR-tree,
and any u ∈ U . Similarly, a lower-bound relevance can be
computed as: CS↓(E, u+) = α · SS↓(E .l, u+.l) + (1− α) ·
TS↓(E .d, u+.dInt), where SS↓ is computed from the maxi-
mum Euclidean distance between the two MBRs, TS↓ is the
minimum textual relevance between E and u+.dInt is com-
puted using the minimum weights of the terms in E . Similar
to the upper-bound estimation, for the lower bound, the prop-
erty ∀u ∈ U ,CS(E, u) ≥ CS↓(E, u+) always holds.
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6.2 Algorithm

We present our approach that avoids computing the top-k
object for users that do not affect the final result. Here, we
apply a spatial-first strategy as well. Algorithm 5 presents
the pseudocode of the approach. Recall that the set of users
that can be in Bp for p.l = � is denoted as B↑

�, and the set
of users that are definitely in Bp when p.l = � as B↓

�. The
algorithm works as follows:

– Initialization: For a candidate location � ∈ L , B↓
� is

initialized with an empty set and B↑
� is initialized with

the set U (Line 5.6). Let LU be the set of the users that
are in B↑

� of at least one candidate � ∈ L , which is
also initialized with all the users in U . For each user u,
a priority queue LOu is maintained to track the current
top-k objects of u found so far. A separate priority queue
LS is also maintained for the super-user to track k objects
with the best lower-bound similarity found so far.

– Lines 5.11–5.19 show how LS and LOu for each user
u are filled with k objects with the highest lower-bound
similarity values found so far. The actual objects are used
instead of object nodes in LS and each LOu for better rel-
evance estimations. The corresponding values of Rk(u)

and Rk(u+) are also updated.
– Pruning object nodes using the super-user: If the upper-
bound similarity CS↑(E, u+) is less than the current
Rk(u+), then E cannot contain any object that can be
a top-k object for any users inU (Line 5.26). Otherwise,
the upper-bound similarity CS↑(E, u) is computed w.r.t.
each user u ∈ LU.

– Pruning object nodes for individual user: Similarly, if
CS↑(E, u) is less thanRk(u), then E for u does not need
to be considered. If E is not needed for any of the users
currently in LU, the subtree rooted at E can be pruned
from further consideration (Lines 5.27–5.29).

– Pruning users for candidate locations: If the upper-bound
similarity CS↑(�, u) of a candidate �w.r.t. a user u is less
than the currentRk(u), then u cannot be inB↑

� for p.l =
�. If u is discarded from theB↑

� for all of the candidates,
then u is removed from LU as well. Computing the top-k
objects for such users can be avoided (Lines 5.20–5.25).

– The set of users that are definitely an RkNN for p.l =
�, B↓

�, are found using their corresponding Rk(u) and
CS↓(�, u) values (Lines 5.32–5.34).

If a node E cannot be pruned, the entries of E are retrieved
and placed in the queue. As traversal down the tree contin-
ues, the similarity bounds become closer to the actual values.
When the leaf nodes are reached, the values for the actual
objects are computed instead of nodes that cannot be pruned,
and the objects that can be a top-k object of the necessary
users are found. After the traversal of the MIR-tree, the list of

u1 u2 u3 u4 u7u5 u6

R1 R2

R5 R6

R3 R4

R1 R2 R3 R4

R5 R6

IntUni7 R7

122 2

4 3

IntUni1 IntUni2 IntUni3 IntUni4

IntUni5 IntUni6

ID Int. Union
(t1t2t3t4) (t1t2t3t4)

IntUni1 1 0 1 1 1 0 1 1
IntUni2 1 0 0 0 1 1 1 0
IntUni3 1 0 0 0 1 1 0 1
IntUni4 1 0 0 1 1 0 0 1
IntUni5 1 0 0 0 1 1 1 1
IntUni6 1 0 0 0 1 1 0 1
IntUni7 1 0 0 0 1 1 1 1

Fig. 4 Example of modified IUR-tree (MIUR-tree)

Algorithm 6: Index- U (O, L, p, k, MIR-tree, MIUR-tree)

6.1 Initialize a max-priority queue QL.
6.2 EU ← MIUR-tree(root)
6.3 Compute Rk(EU).
6.4 ROEU ← List of objects o with CS↑(o,EU) ≥ Rk(EU) (using

Algorithm 1 of Choudhury et al. [8])
6.5 for each � ∈ L do
6.6 if CS↑(�,EU) ≥ Rk(EU) then B↑

� ← EU
Enqueue(QL, �, |B↑

�|)
6.7 while QL 	= ∅ do
6.8 max� ← Dequeue(QL)

6.9 if B↑
� 	= ∅ then

6.10 EU ← node in B↑
� with maximum users

6.11 for each eu ∈ EU do
6.12 Update Rk(eu) by executing Lines 2.3 - 2.11 of

Algorithm 2 by Choudhury et al. [8]
6.13 Update ROeu
6.14 for each � ∈ L do
6.15 if B↑

� contains EU ‖ CS↑(�, eu) ≥ Rk(eu)
then B↑

� ← eu
6.16 Update QL
6.17 else
6.18 Execute Lines 5.34- 5.36 of Algorithm 5.

users is obtained, B↑
� and B↓

� for each candidate location,
and then, the rest of the candidate selection process is the
same as the Grp- topk approach (Lines 2.11–2.21 of Algo-
rithm 2).

7 Index-U approach

In the Indiv- U approach presented in the previous section,
the users are pruned by checking them individually against
the candidates and the retrieved objects. In this section, we
propose a new index, the Modified IUR-tree (MIUR-tree) to
store the users, where the motivation is to improve efficiency
by applying the pruning techniques over a hierarchical struc-
ture of the users instead of the individual users.
Modified IUR-tree (MIUR-tree): An MIUR-tree is essentially
an R-tree where each node is augmented with a reference to
the union and the intersection vector of the keywords appear-
ing in the subtree. Each node R contains a number of entries,
each consists of a reference to a child node, the MBR of all
entries of the child node, and an identifier of a vector of key-
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words. If R is a leaf node, this is the identifier of the vector
of the text description of an object o. Otherwise, it has a ref-
erence to the union and intersection of all text descriptions
in the entries of the child node. It also contains the number
of actual objects stored in the subtree rooted at R.

Figure 4 illustrates theMIUR-tree forU = {u1, u2, . . . , u7}
of Fig. 2b, where the MBRs are constructed according to the
IR-tree (not shown in the figure), and the table shows the text
vectors of the nodes for the users presented in Table 3.
Algorithm: The pseudocode of the approach is presented in
Algorithm 6. The root of the MIUR-tree is essentially the same
as the super-user u+ in the previous methods. The MIR-tree of
the objects is traversed for the root node, EU of theMIUR-tree,
to obtain the kth best lower boundRk(EU ) and the list RO of
the object, such that each o ∈ RO , CS↑(o, EU ) ≥ Rk(EU )

(Lines 6.3–6.4). The details of the traversal are explained in
Algorithm 1 of our previous publication [8].

For each � ∈ L , a listB↑
� is maintained, but unlike Algo-

rithm 2, B↑
� may now contain user nodes. In each iteration,

the location max� is selected with the maximum |B↑
�|. If

there is a user node in aB↑
�, the number of actual users stored

in that subtree is used to compute the number of users inB↑
�.

The following steps are executed to access the MIUR-tree-

1. If there is any non-leaf node inB↑
max�, the non-leaf node

EU ∈ B↑
max� is dequeued with the maximum number

of users stored in the subtree.

(a) For each element eu ∈ EU , Algorithm 2 in the work
[8] is executed to update Rk(eu) using the list of
objects RO(EU ) of its parent node. The list RO(eu)

is also updated (Lines 6.13–6.14).
(b) For each � ∈ L including max�, if EU ∈ B↑

�, B↑
�

is updated with the users eu ∈ EU based on the corre-
sponding upper-bound scores. The priority queue QL
is also updated. In this way, a node of the MIUR-tree

must only be accessed at most once.

2. Otherwise, the rest of the algorithm to find the best candi-
date location and keyword set combination of the MaxST

query is same as Lines 5.34–5.36 of Algorithm 5.

In this best-firstmethod, the users that are in the listB↑
� of

the most promising candidates are accessed first. In addition,
the top-k objects are not computed for the users that are not
necessary to determine the result candidate combinations.

8 Adding visibility requirements

In this section, we extend our solutions to support answer-
ing the MaxST query in obstructed space, where the spatial
relevance of an object is its visibility w.r.t. a user.

Challenges with visibility measures: The additional chal-
lenge of the visibility measure is that the visibility of an
object o w.r.t. a user u depends on their locations, and the
locations of the other objects (obstacles) in between them,
where the spatial proximity (e.g., Euclidean distance) of o
w.r.t. u depends only on their own locations. Therefore, to
incorporate the visibility measure in the solutions presented
in Sects. 5, 6, and 7, we seek techniques that:

– Efficiently estimate and calculate the visibility of an
object or a candidate without requiring the retrieval of
other objects whenever possible.

– Pruning of unnecessary objects, candidates, and users
based on visibility.

Visibility extension overview: At the highest level, the fol-
lowing modifications are made in the solutions of Sects. 5, 6,
and 7 to incorporate visibility and achieve the above goals:

1. The MIR-tree is extended, denoted as an OIR-tree, to store
the set of objects O , along with some additional infor-
mation to support visibility computation. Specifically, an
auxiliary Quadtree structure is maintained to identify the
portions of space that are visible to a user and associate
that information with the OIR-tree. A space partitioning
technique is used to construct the auxiliary Quadtree to
facilitate finding the visible segments of an object or a
candidate location.

2. As our proposed solutions rely on estimating the similar-
ity bounds, the visibility estimation bounds of a candidate
and an object o w.r.t. a user (and super-user) using the
nodes of the OIR-tree are presented. These bounds do not
require the retrieval of the other objects in between o and
the user to estimate visibility, which is a major contribu-
tion of this work.

3. Several additional pruning techniques are also presented
which use visibility to prune unnecessary objects, users,
and candidates.

InSect. 8.2, the extensionof our proposed indexes to incor-
porate the visibility measure is presented. The modifications
of the algorithms to answer the MaxST query for visibility are
explored in Sect. 8.3.

8.1 Preliminaries

In this section, the notion of an obstructed region of a user is
presented, which is crucial to measure the visibility.

Definition 2 Obstructed region (OR(u)). Given a set of
obstacles O in space, an obstructed region w.r.t. a user u,
OR(u) consists of all the points in the space such that a

123



Finding the optimal location and keywords in obstructed and unobstructed space 457

u

o2

o3 o4

o5
o1

Fig. 5 Obstructed region

straight line connecting any of these points and u.l passes
through at least one object o ∈ O .

Based on the definition, an important observation is: If an
object is completely inside the obstructed region of a user u,
no point of that object is visible from u. As shown in Fig. 5,
the shaded region is the obstructed region of the user u due to
the presence of the objects o1, . . . , o5. The visible portions
of the objects are represented by black, and the obstructed
portions (the portions that are inside the obstructed region)
are representedwith red.As the object o4 is completely inside
the obstructed region of u, o4 is not visible at all from u.

8.2 Index structure

First we present the construction of the auxiliary Quadtree
and then the details of the modifications to the MIR-tree to
construct a OIR-tree.

8.2.1 Auxiliary Quadtree

Thepurposeof this auxiliary structure is to quicklyfindwhich
part of an object or a candidate is obstructed from a user. To
achieve this goal, the obstructed region OR(u) for each user
u ∈ U is first constructed. The space is then partitioned using
a Quadtree. For each cell ζ of the Quadtree, a list of users,
OL(ζ ), is maintained based on the visibility of ζ from those
users. The idea is that the visibility of an object o w.r.t. any
user can be estimated from the cells with which o.l inter-
sects. Moreover, if an object is completely inside cells that
are obstructed from a user u, that object can be safely dis-
carded from consideration for u.

A top-down approach is used to populate the list of users
OL(ζ ) associated with each cell ζ of the Quadtree. Specifi-
cally,OL(ζ ) consists of the ID of the users, such that for each
user u ∈ OL(ζ ), ζ is completely inside the obstructed region
OR(u). Starting from the root, such users are found and added
in the list OL(ζ ) of the corresponding cell ζ . If a user u is
included in OL(ζ ) of a cell ζ , it implies that all the descen-
dent cells of ζ are also contained inside OR(u). Therefore,
repeatedly storing u for the descendants of that cell ζ is not

u2

u3

u1

1

o1

9 10

11 12

6

7 8

o2

o3

3 4

Fig. 6 Auxiliary Quadtree construction

0

1 2 3 4

9 10 11 12

5 6 7 8

Cell ID OL(c)
c2 u1
c5 u2
c6 u2
c10 u3
c12 u3

Fig. 7 Auxiliary Quadtree partitioning and user list

required. If an additional user u′ is found for which a cell ζ

is completely insideOR(u′), but u′ is not included in anyOL
of the ancestor cells of ζ , only then is u′ included in OL(ζ ).
This is illustrated with the example shown in Figs. 6 and 7.

Example 3 Let the space be partitioned using a Quadtree into
10 cells as in Fig. 6. The list of usersOL(ζ ) for the cells with
at least one entry are shown in the table of Fig. 7. Here, the
cell c10 is completely obstructed from the users u1, u2, u3,
where u3 is stored in the user list of c9, user u2 is stored in
the user list of its parent cell c5, and so on.

Separate from the Quadtree, the information of the
obstructed region (the collection of polygons) for each user
is also stored. Each leaf level cell of the Quadtree is associ-
ated with a pointer to the corresponding obstructed regions
that intersect with the cell. These obstructed regions are later
used to compute the exact visibility of the necessary objects
and candidates.

Auxiliary Quadtree partitioning: The purpose of maintaining
this structure is to efficiently find the visible segments of an
objectw.r.t. a user.As the visibility of an object o is calculated
by taking the summation of the visibility of its small segments
�o.l of length at most ε, this value is used to direct the
partitioning process. Specifically, if a cell ζ intersects with
or contains any object o ∈ O , then ζ is further partitioned
until the diagonal length of the cell ζ is less than or equal to
the threshold ε.
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8.2.2 OIR-tree

The set of objects O needs to be indexed in a way that the
visibility of an object w.r.t. any user can be estimated in an
efficient way. We extend the MIR-tree (Sect. 4) to support the
visibility and textual similarity computation of our problem,
as close-by objects (objects in an MBR) are likely to have
a similar visibility value from a user, and it is efficient to
estimate the distance, and angle (discussed in detail later)
using the MBRs. We refer to this index as an OIR-tree. The
OIR-tree is constructed in a similar manner to the original MIR-

tree, where the MBRs of the line segments of the objects o.l
in O are used to construct the underlying R-tree. In addition,
the following information is maintained:

– Wemaintain a reference to a cell of the auxiliaryQuadtree
with each node E of the OIR-tree, specifically, the cell ζ at
the lowest level such that E is completely inside ζ . The
idea is that if a node E is completely inside a cell ζ of
the Quadtree, that means all of the objects stored in E are
completely obstructed from the users in OL(ζ ) (and the
users stored in theOL of the ancestors of ζ ), so E cannot
contain any top-k object of those users.

Example 4 In Fig. 6, let the minimum bounding rectangle of
the object o3 be a node of the OIR-tree. This node intersects
with the cells c7 and c8, but the cell c2 is the lowest level
cell for which this node is completely inside. Therefore, the
reference to cell c2 is associated with this node.

– The maximum and the minimum of the lengths of the
objects stored in the subtree rooted at node E , denoted
as len↑(E) and len↓(E), respectively, are stored.

Angle lookup table: A lookup table is maintained with the
angle of each object o ∈ O w.r.t. the Cartesian X-axis,
denoted as o.θ . This angle is later used to derive the angle of
an object w.r.t. any user in query time.

8.3 Visibility bounds

Herewe present an upper and a lower bound of visibility esti-
mation of an object w.r.t. a user and the super-user using the
node of the OIR-tree. Similar to the previous instance of MaxST

with Euclidean distance as spatial similarity, these bounds
are used to limit the number of top-k object computations of
the necessary users and facilitate the pruning of the candi-
dates. We also present bounds for the candidates to apply in
the algorithms. The maximum (minimum) textual similarity
TS↑(E .d, u.d) (TS↓(E .d, u.d)) is computed from the max-
imum (minimum) TF-IDF value of the terms in E .d ∩ u.d in
the same way as described in the previous sections.

8.3.1 Visibility bounds of anOIR-tree node of objects

Here, we present how to compute the maximum (minimum)
visibility value of any object in a node E of the OIR-tree w.r.t.

a user u such that ∀o ∈ O,SS
↑
(E .l, u.l) ≥ SS(o, u)

(SS
↓
(E .l, u.l) ≤ SS(o, u)).

Upper-bound visibility for a user: If a node E is completely
inside the obstructed region of a user u, all the objects in E
are also completely obstructed from u. Such a node E cannot
contain any top-k object of u. As the visibility of an object
depends on its visible length, distance, and angle w.r.t. a user,
a straightforward approach to compute the upper-bound vis-
ibility of a node E for u is to use the maximum length of any
object stored in E , VL↑(E .l, u.l) = len↑(E) as the visible
length. TheminimumEuclidean distance between u and E is
used, and the angle is 90◦ (the angle for which the perceived
length of any object is maximum). Although this bound is
easy to compute, it is a loose bound, as the actual maxi-
mum visible length of any object in E can be very different
from len↑(E) as a result of object obstruction. Thereby, our
techniques to compute a upper bound that estimates a tighter
visible length are now presented.

From the reference of the Quadtree cell associated with
E , first the leaf level cells of the Quadtree that intersect with
E are found. Recall that a cell ζ is completely obstructed
from the users in OL(ζ ) and the users in the lists OL of the
ancestors of ζ . Let χE,u be the set of the leaf level cells of the
Quadtree that are both visible from u and intersects with at
least one object in E . The angle lookup table that keeps the
angle o.θ of each object o with the Cartesian x-axis is used
to compute tighter upper-bound estimations as follows:

– First o.θ is used to better estimate themaximum length of
a segment �o.l that is contained in a cell xi ∈ χE,u . The
process is demonstrated in Fig. 8a. Let the length of the
larger side of cell xi be τ . As the length of a line segment
with a slope inside a rectangle is maximum when it goes
through a corner of a larger side of xi , the maximum
length of �o.l can be calculated as

�o.l = τ/ cos o.θ.

o.l

(a)

m

d
(u

,m
)

perpendicular 

distance

u
(b)

m

perpendicular 

distance

u+

(c)

Fig. 8 Upper-bound calculation using angle. a Length, b angle, c angle
w.r.t. u+
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– Now, a tighter upper bound of the angle between o.l and
u is estimated instead of using 90◦. Recall Sect. 8.1, the
small segments �o.l of size ε are partitioned such that
the orientations of all points on �o.l w.r.t. to a user u
can be considered as visually similar. Therefore, a point
over�o.l is chosen,m. The midpoint of the line segment
might be chosen, assuming that it goes through a corner
of a larger side of xi , but choosing any other point will
have an insignificant visual difference. Then, the angle
β = 	 (�o.l, u.l) can be calculated as

sin β = d⊥(u.l, o.l)/d ↓(u.l, o.l).

The calculation is shown in Fig. 8b, where the perpen-
dicular distance of o.l from u is d⊥(u.l, o.l).

– Finally, the minimum Euclidean distance between cell xi
and u.l is used instead of the distance between E and u,
the value of β as the upper bound of 	 (�o.l, u.l), and the
value of �o.l is computed to get VL↑

�(�o.l, u.l) for an
individual segment. TheVL↑(E, u) is obtained by taking
the summation of these values from the cells χE,u . If this
summation value is greater than the maximum length of
an object in E , len↑(E), then len↑(E) is taken as the
upper-bound visible length.

Upper-bound visibility for the super-user: As the algorithms
to answer MaxST rely on the bounds of a node of objects
for u+ to filter the objects and candidates efficiently, the
steps to compute the upper-bound visibility of a node E

w.r.t. u+, SS↑
(E .l, u+.l) such that ∀u ∈ u+, ∀o ∈ E ,

SS
↑
(E .l, u+.l) ≥ SS(o.l, u.l) are now presented.

Let χE,u+ be the set of the leaf level cells of the Quadtree
that intersectwith at least oneobjecto ∈ E andvisible fromat
least one user u ∈ u+. The upper boundw.r.t. u+ is computed
in a similarmanner usingχE,u+ . To calculate the upper bound
of the angle w.r.t. the super-user, the angle is computed using
the same technique mentioned above for each of the four
corner points of the MBR of u+. Let the maximum of these
angles be β = 	 ↑(o.l, u+), where β is between 0◦ and 90◦.
The angle of a line segment �o.l from any user location u
inside the MBR of u+ will be less than 	 ↑(o.l, u+). This
upper-bound calculation of angle is illustrated in Fig. 8c.
The maximum visible length, the angle upper bound, and the
minimum Euclidean distance are used to compute the final
upper bound w.r.t. the super-user.
Lower-bound visibility: Let χ̂E,u be the set of the leaf level
cells that areobstructed fromu and intersectswith at least one
object o ∈ E . The maximum length of a segment �o.l that
is contained inside a cell x̂i ∈ χ̂E,u is computed in the same
manner as the upper- bound calculation. As these segments
are obstructed, the sum of themaximum lengths of�o.l from
χ̂E,u represent the maximum length of o.l obstructed from
u. Therefore, if this maximum obstructed length of o.l is

subtracted from len↓(E) (the minimum length of any object
in E), a lower bound of the visible length of o.l is obtained. If
this value becomes negative for any o ∈ E , the lower-bound

visibility of E , SS
↓
(E .l, u.l), is taken as 0. Otherwise, to get

a lower bound on the angle, first the angle β = 	 (�o.l, u.l)
is computed for the object o that intersects with a cell xi ∈
χE,u as above. If multiple objects intersect with xi , then the
minimum of their angles, 	 ↓(�o.l, u.l), is used. The lower
bound of the visible length, the angle 	 ↓(�o.l, u.l), and the
maximum Euclidean distances between E and u are used to
compute lower-bound visibility with Eqs. 5 and 4.

Lower-bound visibility for the super-user: This bound is cal-
culated in the same way as for an individual user, except that
the calculation is done using the set χ̂E,u+ of the leaf level
cells that are obstructed from at least one user u ∈ U , and
intersecting with at least one object o ∈ E .

8.3.2 Visibility bounds of the candidates

Similar to the unobstructed instance of theMaxST problem, the
upper (lower) bound of a candidate is computed by assuming
themaximum (minimum) text similarity that can be achieved
from the candidate keyword set and the keyword constraints.
Now we present the techniques to calculate the upper- and
the lower-bound visibility of a candidate location � ∈ L w.r.t.
a user u and the super-user.

Upper-bound visibility: Let the set of the leaf level cells that
intersect with � and visible from u be χ�,u . Note that the
diagonal length of these cells can be larger than ε. Unlike
the upper-bound calculation for an object, the length of �

inside each cell xi ∈ χ�,u can be easily calculated using the
techniques to find the intersection points of a line segment
and a rectangle. For each xi , the length of � inside xi , the
minimum distance between xi and u, and the actual angle
between the portion of � inside xi and u are used to calculate
an upper bound of the visible length of that portion of �.
Finally, the sumof the upper bounds of visible lengths is taken
to get the upper bound of the visibility of �w.r.t. u usingEq. 4.

To calculate the upper-bound visibility w.r.t. u+, similar
to the calculation for an object, the set χ�,u+ of the leaf level
cells that intersect with � and visible from at least one user
u ∈ U are obtained. Similarly, the upper bound of the angle is
the maximum of the angles calculated from the four corner
points of u+. Then, the exact length of � inside each cell
xi ∈ χ�,u+ is computed. These values and the minimum
distance between � and u+ are used to get the upper-bound
visibility of a candidate w.r.t. the super-user.

Lower-bound visibility: Let χ̂�,u be the set of the leaf level
cells that are obstructed from u and intersect with the can-
didate �. The length of � that are contained inside each cell
x̂i ∈ χ̂�,u is computed. These obstructed lengths are sub-
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tracted from the actual length of � to find the visible length
of � w.r.t. u. Then, the lower bound is calculated using the
maximum Euclidean distance and the actual angle between
� and u. For the lower bound w.r.t. the super-user, the cal-
culation is done similarly, but using the set of the leaf level
cells that are obstructed from at least one user u ∈ U .
Computing the final visibility of a candidate: If a candidate
line cannot be pruned using the bounds, the actual visibility
w.r.t. some users may need to be computed. Recall from the
construction of the auxiliaryQuadtree that each leaf level cell
is associated with a pointer to the corresponding obstructed
regions (the collection of polygons) that intersect with the
cell. If the diagonal length of a cell xi ∈ χ�,u is greater than
ε, the obstructed regions of u are retrieved that intersect with
xi by following the pointer to find the segments of � that are
actually visible from u.

9 Experimental evaluation

In this section, the experimental evaluation for our three pro-
posed algorithms is presented, (i) Grp- topk, (ii) Indiv- U,
and (iii) Index- U approach to process the MaxST query for
the two instances of spatial relevance in the ranking of an
object: (i) the Euclidean distance and (ii) the visibility. We
also compare our approacheswith a straightforward baseline,
where the top-k objects of each user is computed individually,
and after some basic filtering, all the possible combination of
the candidates are checked against the users to find the best
candidate combination (Sect. 3).
Datasets and query generation: All experiments were con-
ducted on three real datasets: (i) the Flickr dataset,1 (ii) the LA

dataset,2 and (iii) the Yelp dataset.3

The LA dataset contains the 2D footprint of 542, 310
buildings in Los Angeles. The text description of 31, 526
POIs is collected from Foursquare for this area, and each
text description is assigned to the corresponding building of
that POI.

For the Flickr dataset, a total of 1 million images that are
geotagged and contain at least one user-specified tag were
extracted from the collection. The locations and tags are
used as the location and keywords of the objects. For the
experiments on visibility, the point locations are converted
to rectangles (representing building footprints), where the
distributions of the size of the rectangles follow the same
distribution of the LA dataset.

The Yelp dataset contains information about businesses
in 10 cities. For each business, three types of information

1 http://webscope.sandbox.yahoo.com/catalog.php?datatype=i&did
=67
2 http://egis3.lacounty.gov/dataportal/2011/04/28/countywide-build
ing-outlines
3 http://www.yelp.com.au/dataset_challenge

are available: business location, business attributes, and user
reviews on businesses. The attributes and reviews for each
business are combined as the text description of that business.
Similar to the Flickr dataset, the point locations are converted
to building footprints for the visibility experiments. Table 4
lists the properties of the datasets.

We used the above datasets to generate the set of queries
as follows. First, an area of a percentage of the dataspace
size (here, 4%) was chosen, and |U | number of objects in
that area are taken randomly. Let this set of objects be Ou .
The locations of the objects were used as the locations of the
users. Then, keywords with the highest TF-IDF score were
selected from Ou as the set of the user keywords, whereUW
was the number of unique user keywords. These keywords
were distributed among the users such that each user had
|UL| number of keywords following the same distribution of
keywords of Ou . In this work, we generated 50 such sets of
users and reported the average performance.

Setup: All indexes and algorithmswere implemented in Java.
The experiments were ran on a 24 core Intel Xeon E5−2630
running at 2.3 GHz using 256GB of RAM, and 1TB 6G SAS
7.2K rpm SFF (2.5-inch) SC Midline disk drives running
Red Hat Enterprise Linux Server release 7.2 (Maipo). The
Java Virtual Machine Heap size was set to 4GB. All index
structures are disk resident. The number of postings in the
inverted lists was set to 128, and the page size was fixed at
1kB for both indexes.

As multiple layers of cache existed between a Java appli-
cation and the physical disk, we report simulated I/O costs
in the experiments instead of physical disk I/O costs. The
number of simulated I/O operations is increased by 1 when
a node of a tree is visited. When an inverted list is loaded,
the number of simulated I/O operations is increased by the
number of blocks contained in the list. In the experiments,
the performance was evaluated using cold-start queries.

9.1 Performance evaluation

In this section, we evaluate and compare the performance of
the approaches by varying several parameters. The perfor-
mance evaluation of our proposed approaches consists of the
following two components:

– Computing the top-k objects for the users, where (i) the
baseline (BL) approach computes the top-k objects for
all of the users individually; (ii) theGrp- topk approach
groups the users and computes the top-k objects of all
the users jointly (GRP); and (iii) the Indiv- U approach
that uses the same joint processing techniques of the
Grp- topk approach, but uses the candidates to avoid
computing the top-k object for some users (Indiv).

– Finding the best combination of the location and the
keywords from the given set of candidates, where we
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Table 4 Description of dataset Property Flickr LA Yelp

Total objects 1,000,000 542,310 61,185

Total unique terms 166,317 52,731 266,869

Avg unique terms per object 6.9 8.5a 398.7

Total terms in dataset 6,936,385 274,577 77,838,026

aThe avg unique terms of the objects (buildings) that are associated with a text description

Table 5 Parameters

Parameter Range

k 5, 10, 20, 50, 100

α 0.1, 0.3, 0.5, 0.7, 0.9

No. of keywords per user, UL 1, 2, 3, 4, 5, 6

No. of total unique keywords of users, UW 5, 10, 20, 30, 40

Users’ MBR as latitude × longitude, Area 1, 2, 4, 8, 16

No. of candidate locations, |L| 1, 20, 50, 100, 300

ω 1, 2, 3, 4, 5, 6, 7, 8

No. of users, |U | 100, 500, 1K , 2K , 4K

compare the performances of the exact (E) and the
approximate (A) methods.

As the top-k object computation and the candidate selec-
tion steps are interleaved in the Index- U approach, the
performance of the Index- U is reported as the total cost
when varying the number of users at the end of this section.

The parameter ranges are listed in Table 5 where the val-
ues in bold represent the default values. In all experiments,
a single parameter is varied while keeping the rest as the
default settings to study the impact on: (i) the mean runtime
per user (MRPU) to compute the top-k objects; (ii) the mean
I/O cost per user (MIOPU) to compute the top-k objects; (iii)
the total runtime of selecting the best candidate; and (iv) the
approximation ratio of the approximate and the exact meth-

ods. This value is the ratio between the number of RkNN users
of the best candidate returned by the approximate method,
over the number of RkNN users of the best candidate returned
by the exact method. Scalability is evaluated by varying the
total number of users and by reporting (i) the total runtime
and (ii) the total I/O cost for computing the top-k objects,
instead of the mean values. We also evaluate the approaches
for both the Euclidean distance and the visibility (V) as the
spatial relevance in the MaxST problem. The runtime of all
experiments is reported in milliseconds (ms).

Varying k: Figures 9 and 10 show the mean costs of com-
puting the top-k objects of the users for Flickr and LA
datasets, respectively. Since theGrp- topk and the Indiv- U
approaches use several pruning strategies and avoid visiting
any pagemultiple times, the costs are significantly lower than
the baseline (BL). Both the mean I/O costs and the mean run-
time per user are slightly less for the Indiv- U approach than
the Grp- topk approach, as the Indiv- U approach prunes
some users as well, where theGrp- topk approach computes
the top-k objects for all users jointly.

The costs in the LA dataset are much higher than the costs
in the Flickr dataset for the same settings, as half a million
data points are densely located in LA, whereas the Flickr
dataset contains 1 million data points scattered all over the
world. Therefore, many objects in the LA dataset have very
close similarity values for a user compared to the other dataset
and must be retrieved in the process.
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Fig. 11 Candidate selection runtime and approximation ratio trade-off for varying k. a Candidate selection runtime and approx. ratio (for visibility),
b runtime versus approx. ratio (for Euclidean distance)

Although the trend of the changes in the costs is similar
for the Euclidean distance and the visibility, the mean run-
time per user for visibility is much higher than the Euclidean
distance metric, as there are additional calculations required
(finding the visible segments of a node/object and calculating
angle bounds) for visibility.

Figure 11a and b demonstrates the trade-off between the
runtime and the quality of the approximation to select the
best candidate combinations for visibility and the Euclidean
distance, respectively, in all three datasets. For both cases, the
runtime of the exact (E) method does not vary much for k as
it uses only basic pruning techniques and exhaustively com-
putes all candidate combinations. The approximation ratio
of the exact method is shown as 1 (the best ratio) to help
compare with the approximate method. The runtime and the
accuracy of the approximation increase with k, as more can-
didates are eligible to be included in the answer of the MaxST

query. For all three datasets, the approximate method (A)
selects the candidate combination of keywords greedily and
thus requires around 3 orders of magnitude less computa-
tional time than the exact method.

Varying α: A higher value of α indicates more preference
toward spatial similarity. As shown in our previous work [8],
as theMBR of the users’ locations and the union of the users’
keywords remain the same, the cost of the top-k computation
of our proposed approaches remains almost constant when α

is varied. Figure 12 shows the runtime and the approximation
quality when varying α. The runtime of each method does
not vary much w.r.t. α.

The approximation ratio in the LA dataset is compara-
tively low for lower values of α, but rapidly increases as α

increases. The reason is that as the location density of the
objects in LA dataset is very high, the visibility scores (spa-
tial similarity) for most of the relevant objects are usually
very low. Therefore, the total similarity score of an object is
more sensitive to the textual score (thereby, the choice of the
candidate text) in the LA dataset when compared to the other
datasets. Therefore, the accuracy of the approximate method
increases rapidly as α increases for the LA dataset when a
higher weight is given to the spatial similarity.

Varying UL: We now vary the number of keywords per user
and present the effect on performance in Figs. 13 and 14

123



Finding the optimal location and keywords in obstructed and unobstructed space 463

1

10

100

1K

10K

100K

0.1 0.3 0.5 0.7 0.9

R
un

tim
e 

(m
s)

α

F-E
LA-E

Y-E

F-A
LA-A

Y-A

1

10

100

1K

10K

100K

0.1 0.3 0.5 0.7 0.9

R
un

tim
e 

(m
s)

α

F(V)-E
LA(V)-E

Y(V)-E

F(V)-A
LA(V)-A

Y(V)-A

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.3 0.5 0.7 0.9

R
at

io

α

F(V)
LA(V)

Y(V)

F
LA

Y

(a) (b) (c)

Fig. 12 Effect of varying α on candidate selection. a Runtime for Euclidean distance, b runtime for visibility, c approximation ratio
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Fig. 14 Effect of varying UL for LA dataset. a Runtime for finding top-k, b I/O cost for finding top-k

for the Flickr and LA datasets, respectively. The cost of the
baseline increases proportionally with the increase in UL
for the Euclidean distance metric, as more objects become
relevant to each user. The increase in the costs of the baseline
is not that prominent for the visibility, as those additional
objects may not be visible to that user. The mean costs of
our proposedGrp- topk and Indiv- U approaches,where the
users are grouped together as a super-user, do not vary much.

The reason is that although UL increases, the total number
of unique keywords in the group (UW) remains constant, so
the number of objects retrieved remains unchanged as well.

Figure 15 shows the runtime and the approximation ratio
to find the result candidate combination. Here, the number
of users that are a reverse kNN of the result increases with the
increase of UL for both exact and approximate methods, and
the approximation quality increases as well.
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Varying UW : Figure 16 shows the effect on performance
when varying the total number of unique keywords for the
group of the users in the Flickr dataset. Here, a lower value
indicates that the queries share more keywords. As theGrp-
topk and the Indiv- U approaches exploit shared I/Os among
users, it outperforms the baseline, and the benefit is greater
as overlap increases.

Figure 17a and b shows the runtime of the exact and the
approximate approaches for selecting the candidate in all
three datasets for the Euclidean distance and the visibility as
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Fig. 15 Selection runtime and approximation ratio trade-off for varying
UL

spatial relevance, respectively. As the set of keywords UW is
also the set of candidate keywords, the runtime of candidate
selection increases for both methods. As the exact method
checks all possible combinations of keywords after apply-
ing some basic pruning, the runtime for the exact method
increases rapidlywhen compared to the approximatemethod.
The runtime for visibility metric is more than that of the
Euclidean distance for the same settings, as each visibil-
ity calculation is more computationally costly than a single
Euclidean distance calculation.

Figure 17a shows the effect on the approximation ratio
when varying UW for all three datasets and for both spatial
relevances. As UW increases, the number of combinations of
the candidate keywords also increases. Therefore, the accu-
racy of the approximate method is very high for lower values
of UW (almost 1) and decreases gradually as UW increases.

Varying ω: The performance when varying the number of
candidate keywords to select ω is shown in Fig. 18. As
the number of keyword combinations increases with ω, the
runtime of both the exact and the approximate approach
increases for both spatial similarity metrics (Fig. 18a, b).
As the number of combinations to check in the exact method
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Fig. 19 Effect of varying |L| for candidate selection. a Runtime for Euclidean distance, b runtime for visibility, c approximation ratio

increases exponentially with the increase of ω, the benefit
of the approximate approach is higher as ω increases. The
number of users that are a reverse kNN of the result candidate
combination increases as ω increases, and the accuracy of
the approximate method gradually drops. Figure 18c demon-
strates this scenario for all of the datasets.

Varying |L|: Figure 19a and b shows the runtime when vary-
ing the number of candidate locations |L| for the twodifferent
spatial similarity metrics, respectively. As the top-k process-
ing of the users does not depend on |L|, we have only shown
the performance of the exact and the approximate meth-
ods. As the total number of possible candidate combinations
increases with the increase of |L|, the runtime increases pro-
portionally with |L| for both methods. As the visibility needs
to be calculated for each qualifying candidate location, the
runtime for visibility is higher than that for the Euclidean dis-
tance. The accuracy of the approximation increases slightly
for a higher value of |L|, as more candidate locations become
potential results.

Varying Area: The performance of the approaches does not
vary much with the change in the area of the users’ loca-

tions, which is similar to our prior finding [8] for Euclidean
distance. The graphs are omitted for brevity.

Varying |U |: We evaluate the scalability of our proposed
approaches by varying the number of users |U |. We show
the runtime and the I/O costs of computing the top-k objects
instead of the mean values for the LA dataset in Fig. 20.
Similar to our previous finding in [8], as the number of users
increases, the cost of the baseline increases proportionally as
BL processes the users one by one. As the I/Os are shared
among users, the advantage of our proposed approaches
becomesmore prominent when the number of users is higher.

Figure 21 shows the performance of the Indiv- U and the
Index- U approaches as the total runtime of answering a
MaxST query, including both the top-k object computation and
the candidate selection time of the approximate approach.
Both approaches apply pruning techniques to avoid comput-
ing the top-k objects of the unnecessary users, where the
Indiv- U approach applies the techniques over individual
users, and the Index- U approach finds them using a MIUR-

tree index of the users. In all cases, the Index- U approach
outperforms Indiv- U, as a hierarchy of the users helps to
prune branches of the index (multiple users together), thus
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Fig. 20 Effect of varying |U |
for LA dataset. a for finding
top-k b I/O cost for finding top-k
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reducing overall time. The benefit of the Index- U approach
slightly improves with the increasing value of |U |.
Efficiencyversus approximation quality trade-off: Figure 22a
and b shows the efficiency versus the approximation qual-
ity trade-off for varying the number of users for visibility
and Euclidean distance, respectively. Figure 22a presents
the trade-off in the LA dataset, and Table 6 presents the
performance of the approaches for visibility in all of the
three datasets. Clearly, the approximate approach is about
3–4 orders of magnitude faster than the exact method, as the
approximate approach selects the candidate combination of
keywords greedily.

In Fig. 22a, the approximation ratio in the LA dataset is
comparatively low for lower values of |U |, but the approx-
imation ratio does not vary much for the other two datasets
(Table 6). This can be explained similarly when the value of
α is varied using Fig. 12c. As the LA dataset is highly dense,
the visibility score for most of the relevant objects is usually
very low, and thus, the total similarity score of an object is
more sensitive to the textual score for the default value of
α (0.5) than the other datasets. As |U | increases, the greedy
selection of the candidate keywords can increase relevance
with more users. The advantage of approximation in both
efficiency and quality is more prominent as |U | increases.
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Table 6 Performance of approximate approach for varying |U | (visi-
bility as spatial relevance)

Dataset |U |
100 200 400 800 1600

Flickr Runtime (E) 52K 82K 121K 180K 190K

Runtime (A) 59.9 73.4 99.9 121.3 145.3

Ratio (A) 0.99 0.98 0.98 0.95 0.97

TR (E) 0.86 0.78 0.68 0.53 0.50

TR (A) 1.00 0.99 0.99 0.97 0.99

LA Runtime (E) 48K 81K 120K 161K 192K

Runtime (A) 69.0 84.4 120.2 150.4 191.9

Ratio (A) 0.60 0.68 0.79 0.79 0.84

TR (E) 0.87 0.79 0.69 0.58 0.50

TR (A) 0.80 0.84 0.90 0.90 0.92

Yelp Runtime (E) 36K 67K 100K 164K 189K

Runtime (A) 56.7 69.5 85.5 91.3 128.4

Ratio (A) 0.93 0.94 0.97 0.97 0.96

TR (E) 0.90 0.82 0.73 0.57 0.50

TR (A) 0.96 0.97 0.98 0.98 0.98

To better comprehend the trade-off between efficiency and
the approximation quality, we present a trade-off score TR,
where the runtime and the approximation ratio are combined
by a linear weighted function. Specifically,

TR = γ × T + γ × Ratio,

where T is the runtime normalized between [0, 1]. We show
the trade-off scores for both exact and approximate methods
in Table 6 for γ = 0.5, i.e., equal weight on both values.

10 Related work

10.1 Spatial databases

Relevant work from the spatial database domain can be
categorized mainly as Maximizing Bichromatic Reverse k
Nearest Neighbor (MaxBRkNN) and location selection queries.
MaxBRkNN queries: Wong et al. [33] introduced theMax-
Overlap algorithm to solve the MaxBRkNN problem. The
algorithm iteratively finds the intersection point of the Near-
est Location Circles (NLCs) that are covered by the largest
number of NLCs. The optimal region is the overlap of
these NLCs. This work also supports �-MaxBRkNN queries
to find the � best regions. In a later work, [34] extended
the MaxOverlap algorithm to support the L p-norm and
three-dimensional space. However, the scalability of Max-
Overlap is an issue, as the computation of the intersection
points for the NLCs is expensive.

Other work exists that overcome the limitations ofMax-
Overlap. Zhou et al. [43] introduced the MaxFirst algo-
rithm which iteratively partitions the space into quadrants
and used the NLCs to prune the quadrants that cannot be a
part of the result. Liu et al. [20] present the MaxSegment
algorithm that transforms the optimal region search problem
to the optimal interval search problem. They use a variant of
plane sweep to find the optimal interval.

Approximate solutions have also been proposed to
improve the efficiency. Lin et al. [18] proposed OptRegion
where each NLC is approximated by the minimum bound-
ing rectangle (MBR) and a sweep-line technique is used to
find the overlapping NLCs. An estimation of the number of
overlapping NLCs is computed using the MBRs to prune
the intersection points. Alternately, Yan et al. [38] propose a
grid-based approximation algorithm called FILM. Since the
algorithm is approximate, the solution requires an order of
magnitude less computation time than MaxOverlap. The
authors extended FILM to answer the related problem of
locating k new services that collectively maximize the total
number of users.

These previous studies focus solely on spatial proper-
ties such as the intersection of geometric shapes [33,34],
space partitioning [43], or sweep-line techniques [18,20] in
the query processing methods. Therefore, it is not straight-
forward to extend these solutions to support the textual
component of the MaxST query.

Location selection queries: The work [27,41] explores opti-
mal location queries, which find a location for a new facility
that minimizes the average distance from each customer to
the closest facility. Zhang et al. [41] propose theMDOL prog
algorithm which partitions space to find an optimal location.
Qi et al. [27] maintain the influence set of a potential location
p that includes the customers for whom the nearest facility
distance is reduced if a new facility is established at p. A
similar problem was presented in other work [1,28,39,40]
which finds a location for a new server such that the maxi-
mumdistance between the server and any client isminimized.
Papadias et al. [26] find a location that minimizes the sum
of the distances from the users. The optimal location query
is also explored for road network distance [2,5,36]. The pro-
posed approaches exploit the assumption that the location of
the objects is confined by the underlying road network and
thus reduce the number of computations significantly than
the approaches proposed for Euclidean distance.

A maximal influence query ([4,17,19,31,35]) finds the
optimal location to place a new facility such that the influence
of that facility is maximized. Here, the influence of a location
c represents the cardinality of customers whose correspond-
ing nearest facility will be c if a new facility is established
in c. These queries focus on an aggregation over distances
from the query location, such as the average or the minimum
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distance. These works do not directly address the problem of
this article, maximizing the reverse kNN users.

10.2 Spatial–textual databases

In the literature of spatial–textual queries, the reverse spatial–
textual kNN (RSTkNN) and the maximizing reverse spatial–
textual kNN (MaxST) are the most relevant to our problem.
RSTkNN: Given a dataset D of spatial–textual objects, a
target query object q, an RSTkNN query finds all the objects
in D that have q in their list of top-k relevant objects. The
ranking of the objects uses an objective function which com-
bines both spatial proximity and text relevancy. Lu et al. [21]
proposed the Intersection-Union R-tree (IUR-tree) index and
later presented a cost analysis for RSTkNN queries [22]. Each
node of an IUR-tree consists of an MBR and two textual vec-
tors: an intersection vector and a union vector. The weight
of each term in the intersection (union) textual vector is the
minimum (maximum) weight of the terms in the documents
that are contained in the corresponding subtree. Each non-
leaf node is also associated with the number of objects in the
subtree rooted at that node.

In their proposed solution, an upper- and a lower-bound
similarity are computed between each node of the IUR-tree and
the kth most similar object. A branch-and-bound algorithm
is then used to answer the RSTkNN query. In this work, the
computation of the bounds and the algorithm are designed
for the monochromatic case only since both the data objects
and the query objects belong to the same type, and the nodes
of the tree store only one type of object.

MaxRSTkNN:Given a set of users and a set of facilities, [14]
address the problem of selecting at most ω keywords as the
text description of a specific facility, such that the facility will
appear in the top-k results of the maximum number of users.
An extension of this problem is studied in our earlier work
([8]), where the problem is to select both the location and
the text description to establish a facility so that the reverse
spatial–textual kNN of that facility from the set of users will
be maximum.

A recent work by [37] independently proposes a solution
of a subproblem of this article, where, given a set of key-
words, the query is to find a region in space to establish a
facility such that the facility will be a top-k spatial–textual
object of the maximum number of users. They present both
an exact and an approximate solution based on Voronoi dia-
grams to find such regions.

10.3 Visibility queries

Visibility problems studied in spatial databases usually
involve finding the kNN [25,32] or RkNN [11–13] objects
for a given query point, where the shortest path between two

points without crossing any obstacle is taken as the distance
measure, denoted as the obstructed distance.

Masud et al. [24] propose the k maximum visibility query
that finds top-k locations from a set of query locations with
the maximum visibility of a target object T in the presence of
obstacles. Choudhury et al. [7] present an efficient approach
to construct a Visibility ColorMap (VCM), where each point
in the space is assigned a color value denoting the visibility
measure of a query target. Rabban et al. [29] study the prob-
lemof constructing aVCMfor amoving target. In general, all
of these approaches use the concept of an obstructed region
to find the parts of the space that are visible from the query
location(s) and then calculate the visibility value of the visi-
ble part of the target object.

Visual–textual queries: Zhang et al. [42] study the problem
of finding the top-k objects based on the visibility and the
textual similarity with respect to a query location and a set
of query keywords. They propose a two-pass method on the
IR-tree where (i) the first pass iteratively explores the region
around the query location to determine the obstructed and
the visible region w.r.t. the query, and (ii) the second pass is
used to calculate the visibility and textual similarity of the
visible objects in a best-first manner.

Our approach to answer the MaxST query for visibility
metric also follows a similar principle, where the obstructed
regions are pre-computed and indexed, and then, an OIR-tree

is used to compute the visibility of the necessary objects and
the candidates.

11 Conclusion

In this work, we presented solutions to efficiently answer a
Maximized Bichromatic Reverse Spatial Textual k Nearest
Neighbor (MaxST) query, which finds an optimal location and
a set of keywords for an object so that the object has the
maximum number of RkNNs. We proposed three different
solutions to answer the MaxST query for the spatial–textual
data, and we presented the necessary calculations for the
approaches using two different spatial similarity metrics: (i)
the Euclidean distance and (ii) the visibility. In all of our
proposed methods, we improved the overall efficiency by
pruning the candidates, sharing the processing and I/O costs
of the multiple users, and avoiding multiple retrievals of the
same object, even for visibility, where the visibility calcu-
lation of an object requires the location of the other objects
as well. We also proposed an approximate solution for the
keyword selection component of the problem.

Through extensive experiments using three publicly avail-
able datasets, we compared the performance of our proposed
approaches in different settings. In summary, we find that
the approximate algorithm, which greedily selects the key-
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words, is around 2–3 orders ofmagnitude faster than an exact
method. The Grp- topk approach that groups the users and
finds the top-k objects of the users jointly performs about 2–3
times better than the baseline, and the benefit increases when
using a visibility metric. As the Indiv- U approach prunes
users as well, the performance of the Indiv- U approach is
close to or better than the Grp- topk approach in all set-
tings tested. The Index- U performs slightly better than the
Indiv- U approach, at the cost of maintaining an additional
index for the users, but the benefits increase as the number
of users increases.
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