
The VLDB Journal (2018) 27:421–444
https://doi.org/10.1007/s00778-018-0503-z

REGULAR PAPER

Parallel replication across formats for scaling out mixed OLTP/OLAP
workloads in main-memory databases

Juchang Lee1,2 ·Wook-Shin Han3 · Hyoung Jun Na1 · Chang Gyoo Park1 · Kyu Hwan Kim1 · Deok Hoe Kim1 ·
Joo Yeon Lee1 · Sang Kyun Cha2 · SeungHyun Moon3

Received: 12 September 2017 / Revised: 31 January 2018 / Accepted: 23 March 2018 / Published online: 16 April 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Modern in-memory database systems are facing the need of efficiently supporting mixed workloads of OLTP and OLAP.
A conventional approach to this requirement is to rely on ETL-style, application-driven data replication between two very
different OLTP andOLAP systems, sacrificing real-time reporting on operational data. An alternative approach is to run OLTP
and OLAPworkloads in a single machine, which eventually limits the maximum scalability. In order to tackle this challenging
problem, we propose a novel database replication architecture called HANAAsynchronous Parallel Table Replication (ATR).
ATR supports OLTPworkloads in one primary machine, while it supports heavy OLAPworkloads in replicas. Here, row store
formats can be used for OLTP transactions at the primary, while column store formats are used for OLAP analytical queries
at the replicas. ATR is designed to support elastic scalability of OLAP query performance, while it minimizes the overhead
for transaction processing at the primary and minimizes CPU consumption for replayed transactions at the replicas. ATR
employs a novel optimistic lock-free parallel log replay scheme which exploits characteristics of multi-version concurrency
control (MVCC) to enable real-time reporting by minimizing the propagation delay between the primary and replicas. It
supports adaptive query routing depending on its predefined acceptable staleness range. Through extensive experiments with
a concrete implementation available in a commercial product, we demonstrate that ATR achieves sub-second visibility delay
even for update-intensive workloads, providing scalable OLAP performance without notable overhead to the primary. In
addition, with extension of ATR to eager parallel replication, we demonstrate how the parallel log replay and its log-less
replica recovery mechanisms improve run-time transaction performance under eager replication.

Keywords Database replication · In-memory database · Scaling out · SAP HANA

1 Introduction

Modern database systems need to support mixed workloads
of online transactionprocessing (OLTP) andonline analytical
processing (OLAP) workloads [18,36,37]. OLTP workloads
contain short-lived, light transactions which read or update
small portions of data, while OLAP workloads contain long-
running, heavy transactions which reads large portions of
data. That is, transactional and analytical behaviors aremixed

B Juchang Lee
juc.lee@sap.com

1 SAP Labs Korea, Seoul, Korea

2 Seoul National University, Seoul, Korea

3 Pohang University of Science and Technology, Pohang, Korea

in today’s workloads. Note that row store formats are typi-
cally used for handling OLTPworkloads, while column store
formats are typically used for handling OLAP workloads.

A conventional approach to support such mixed work-
loads is to isolate OLTP and OLAP workloads into separate,
specialized database systems, periodically replicating oper-
ational data into a data warehouse for analytics. Here, we
can rely on an external database tool, such as extraction–
transformation–loading (ETL) [41,42]. However, this ETL-
style, application-driven data replication between two dif-
ferent OLTP and OLAP systems is inherently unable to
achieve real-time reporting. Note that we may run OLTP
and OLAP workloads in a single machine. However, this
approach requires an extremely expensive hardware. Previ-
ous work such as Hyper [18,37] focuses on scaling up mixed
workloads in a single hardware host, which eventually limits
the maximum scalability of analytical query processing.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-018-0503-z&domain=pdf
http://orcid.org/0000-0002-2938-3354

422 J. Lee et al.

From analysis of our various customer workloads, we
notice that one modern server machine can sufficiently han-
dle OLTP workloads, while heavy OLAP workloads need
to be processed in different machines. This architecture can
be realized through database replication. In this situation,
we need to support (1) real-time and (2) scalable reporting
on operational data. In order to support real-time reporting,
we need to minimize the propagation delay between OLTP
transactions and reporting OLAP queries. In order to sup-
port scalable reporting, query processing throughput should
be able to increase accordinglywith the increasing number of
replicas, elastically depending on the volume of the incoming
workloads.

Data replication is a widely studied and popular mech-
anism for achieving higher availability and higher perfor-
mance [2–6,9,10,13,16,17,33,35]. However, to the best of
our knowledge, there is little work on replication from row
store to column store for enhancing scalability of analytical
query processing. Middleware-based replication [4], which
is typically used for replication across different (and hetero-
geneous) DBMS instances, is not directly comparable to our
proposed architecture where both the primary and replicas
belong to the same database schema and common transac-
tion domain. We also notice that the state-of-the-art parallel
log replayer [16] is not scalable due to the contention at the
inter-transaction dependency checking.

In this paper, we propose a novel database replica-
tion architecture called HANA Asynchronous Parallel Table
Replication (ATR). ATR is designed to incur low overhead
to transaction processing at the primary site, while it sup-
ports scalability of the analytical query performance and
shows less CPU consumption for replayed transactions. In
addition, with novel parallel log replay and early log ship-
ping mechanisms, ATR can minimize the propagation (or
snapshot) delay between the primary and replicas under lazy
replication, while ATR improves the primary transaction per-
formance under eager replication.

The contributions included in our earlier paper [24] are
summarized as follows:

– Through deep analysis in design requirements and deci-
sions, we propose a novel database replication architec-
ture for real-time analytical queries on operational data.

– In order to reduce the propagation delay, we propose
a novel optimistic lock-free parallel log replay scheme
which exploits so-called RVID (record version ID) to
apply record-wise partial ordering.

– We propose a novel log-less replica recovery scheme
which exploits characteristics of in-memory column
stores in order to simplify replica recovery and to reduce
logging overhead.

– We propose a framework for adaptive query routing
depending on its predefined max acceptable staleness
range.

– Through extensive experiments with a concrete imple-
mentation available in a commercial product, SAP
HANA [36], we show that ATR provides sub-second
visibility delay even for update-intensive workloads,
achieving scalable, OLAP performance without notable
overhead to the primary.

In addition to the above contributions, we have newly
added the following contributions to this extended paper:

– In Sect. 3.4, we propose a novel optimization, called opti-
mistic interleaving, for maximizing parallelism of log
replay even for high-conflict workloads where multiple
concurrent transactions try to update the same records.
With the additional experiments in Sect. 6.4 (Fig. 12),
we demonstrate the benefit of the proposed optimistic
interleaving scheme.

– In Sect. 7, we propose a novel eager parallel replication
mechanism that exploits the ATR’s parallel log replay,
early log shipping, and log-less replica recovery. With
the eager replication implementation already available in
the productive versions of SAP HANA, we demonstrate
how the proposed parallel log replay contributes to high-
performance transaction processing at the primary under
eager replication (Figs. 15, 16).

– In Sects. 3.5.1 and 3.5.2, we describe how we make ATR
log replayer light-weight.With the additional experiment
in Sect. 6.5 (Fig. 13), we show how the proposed light-
weight replayer contributes to lower CPU consumption
at the replicas and thus to increase the CPU capacity for
more OLAP workloads.

– In Sect. 4, we elaborate the implementation of our novel
log-less replica recovery protocol with additional discus-
sion on the recovery performance.

– Weprovidemore complete description on practical issues
that were addressed while implementing the proposed
replication mechanism in the commercial product. It
includesMVCC and garbage collection at the replicas (in
Sect. 3.5.3), adaptive query routing protocol proposed to
gracefully handle replica-side errors (in Sect. 4.3), and
wait-and-forward scheme proposed to deal with trans-
actional consistency issues arising at lazy replication
(Sect. 5).

– In Sect. 8, we present potential future extensions of ATR.
It includes (1) sub-table replication, (2) various forms
of cross-format replication, (3) semi-multi-master repli-
cation, (4) log forwarding for efficiently handling log
serialization error, (5) advanced replication log buffer
management for reducing contention at the primary, (6)
log compression and (7) online non-disruptive replica

123

Parallel replication across formats for scaling out mixed OLTP/OLAP workloads in main-memory… 423

addition protocol for elastic scaling in cloud environ-
ment.

– Finally, in Sect. 9, we extend the scope of our survey of
related work in order to emphasize the uniqueness and
novelty of the proposed replication mechanism.

The rest of this paper is organized as follows. Section
2 shows the proposed architecture of ATR and its design
choices. Section 3 presents how logs are generated at the
primary and replayed at replicas. In Sect. 4, we present a
post-failure replica recovery mechanism and ATR’s various
implementation issues. Section 5 discusses three particular
transaction consistency issues arising by the nature of lazy
replication architecture. Section 6 presents the results of per-
formance evaluations. Section 7 presents eager replication
implementation. Section 8presents potential future optimiza-
tions of ATR. Section 9 gives an overview of related work.
Finally, Sect. 10 concludes the paper.

2 Architecture and design choices

2.1 Overall architecture

Figure 1 shows the overall architecture of ATR. The ATR
system consists of the primary and one or more replica
servers, each of which can be connected with another by a
commodity network interconnect without any shared storage
necessarily. All write requests are automatically directed to
the primary server by the database client library, embedded
in the application process. During the course of processing a
received write request, the primary server generates a repli-

cation log entry if the write request makes any change to
a replication-enabled table. Note that ATR can be applied
to only a selected list of tables, not necessarily replicating
the entire database. The generated replication log entry is
shipped to the replicas via the network interconnect and then
replayed at the replicas. By replaying the propagated replica-
tion log entries, the in-memory database copies of the replicas
are maintained in a queryable and transactionally consistent
state. The database client library transparently and dynam-
ically routes read-only queries to the replicas if the replica
database state meets the given freshness requirements of the
queries.

Although ATR can also be extended for high availability
or disaster recovery purposes, the main purpose of ATR is to
offload OLAP-style analytical workloads from the primary
server which is reserved for handling OLTP-style transac-
tional workloads. Additionally, by having multiple replicas
for the same primary table,ATR can elastically scale out the
affordable volume of the OLAP-style analytical workloads.
Moreover, by configuring the primary table as an OLTP-
favored in-memory row store while configuring its replicas
as OLAP-favored in-memory column stores in SAP HANA,
ATR canmaximize the processing capability ofOLTP/OLAP
mixedworkloads under the commondatabase schemaand the
single transaction domain.

2.2 Design choices

Under the overall architecture and design goals, Table 1
shows the practical design decisions during the develop-
ment of ATR for the SAP HANA commercial enterprise
in-memory database system. We group these design deci-

Fig. 1 Overall architecture

123

424 J. Lee et al.

Table 1 Summary of ATR design decisions

(a) Common

D1.1 Replicate across formats (including across row store
format and column store format)

D1.2 Decouple and separate the replication log from the
storage-level recovery log

(b) Primary server

D2.1 Tightly couple the replication log generator and
sender within the DBMS engine

D2.2 Log the record-level SQL execution result to avoid
non-deterministic behaviors and the potential
conflict during parallel log replay

D2.3 Ship generated replication log entries as soon as
execution of its DML statement is completed

(c) Replicas

D3.1 Perform parallel log replay in replicas to minimize
visibility delay

D3.2 Enable adaptive query routing depending on its
predefined max acceptable staleness range

D3.3 Make replayer transactions light-weight to spare
more CPU resource for OLAP processing at the
replicas

D3.4 Support efficient post-failure replica recovery

sions into three categories depending on where each decision
is affected to either both primary and replicas (Table 1a), pri-
mary only (Table 1b), and replicas only (Table 1c).

Now, we explain each decision in detail and elaborate its
rationale. First,ATR replicates across different table formats
(D1.1). Given that SAP HANA provides both the OLTP-
favored in-memory row store and the OLAP-favored the
in-memory column store, replicating from a row store to a
column store could be an interesting option for the cases that
require higher OLTP and OLAP performance together. Note
that replication from a column store to a row store is not
yet implemented in SAP HANA because there has been no
specific need for this combination.

Second, we have decoupled and separated the replication
log from the storage-level recovery log that is generated basi-
cally for the purpose of database recovery (D1.2). Because
it has been an important goal to make ATR work across dif-
ferent table formats, it is almost impossible to rely on the
existing SAP HANA recovery log, which is tightly coupled
with the physical format of the target table type (for exam-
ple, differential logging for the row store [21]). There are also
many application cases where replicating only a selected list
of tables is sufficient and efficient, instead of replicating all
the tables in the database. Since the storage-level recovery log
is organized as a single ordered stream for the entire database,
it could generate an additional overhead to extract the redo
logs of a few particular tables from the global log stream.
Moreover, in order to minimize any disruptive change in the

underlying storage engine of SAP HANA, a practical design
decision was made to decouple the newly developed replica-
tion engine from the existing underlying storage engines.

Third, we have decided to log the record-level SQL exe-
cution result (called record-level result logging) instead of
logging the executed SQL operation itself (called operation
logging) (D2.2). If we log the executed SQL string as it is,
it becomes very difficult to keep the replica database state
consistent with the primary because of the non-deterministic
SQL functions or because of the dependency on the database
state at the time of log replay. For example, the execution
order of the following two update statements is important
depending on the parameter value of the first statement, but
it will require a more complicated comparison method to
infer that these two statements have a dependency with each
other or will lead to restrictive parallelism during log replay.
In contrast to the operation logging, the record-level result
logging is free from such non-deterministic behaviors, and
the potential conflict between two different log entries is eas-
ily detected by usingRVID, which will be explained in more
detail in Sect. 3.3.

update table1 set col1 = ? where col2 = ‘B’;
update table1 set col3 = ‘C’ where col1 = ‘A’;

Fourth, although ATR supports both lazy (or asyn-
chronous) replication and eager (or synchronous) replication
[9], we have chosen the lazy replication as the default mode
in order to minimize the latency overhead to the write trans-
actions running at the primary. In the lazy replication, a
transaction can commit without waiting for its replication
log propagation to the replicas. As a side effect, it could hap-
pen that a query executed at the replicas may refer to an
outdated database state. Although such a visibility delay is
unavoidable under the lazy replication, we have made addi-
tional design decisions to minimize the visibility delay at
the lazy replicas especially for the OLAP applications which
require the real-time reporting for operational data.

– In-database replicationThe replication log generator and
sender are tightly embedded inside the DBMS engine
(D2.1) instead of relying on an external application-
driven replicator like ETL tool [42] or middleware-based
database replication [4] that can involve an additional net-
work round trip to replicate from one database to another.

– Early log shippingATR early ships the generated replica-
tion log entry as soon as its DML statement is completed
(D2.3) even before the transaction is completed, differ-
ently from [16]. As illustrated in Fig. 2, this is especially
important for reducing the visibility delay of multi-
statement transactions. Note that, under the early log
shipping, if the primary transaction is aborted later, then
the replica changes made by the replication log entries
should be rolled back as well. However, compared to

123

Parallel replication across formats for scaling out mixed OLTP/OLAP workloads in main-memory… 425

Fig. 2 Early log shipping versus post-commit log shipping

database systems employing the Optimistic Concurrency
Control [45], SAPHANAcan show relatively lower abort
ratios because it relies on pessimistic write locks for con-
currency control among the write transactions. Notice
that the read queries in SAP HANA do not require any
lock based on the MVCC implementation [26].

– Parallel log replay ATR performs parallel log replay
in replicas to minimize visibility delay (D3.1). As SAP
HANAis typically deployed to the shared-memorymulti-
processor architecture, the replication log entries can be
generated frommultipleCPUcores at the primary. There-
fore, without the parallel log replayer, the replicas may
not catch up with the log generation speed of the pri-
mary which can eventually lead to high visibility delay.
To achieve full parallelism during the log replay, we pro-
pose a novel lock-free parallel log replay scheme which
is explained in Sect. 3.

Fifth, together with the above approaches for reducing the
visibility delay, ATR allows users to specify the maximum
acceptable staleness requirements of individual queries by
using a query hint like “select …with result lag (x seconds)”
(D3.2). When a commit log is generated at the primary, the
current time is stored in the commit log entry which is prop-
agated to the replicas. Additionally, at the replica side, when
the commit log is replayed, the stored primary commit time
is recorded as the last commit-replay time. Based on the
last commit-replay time maintained at the replica and the
staleness requirement specified in the executed query, it is
determinedwhether or not the query is referring to a database
snapshot that is too old. If it is, then the query is automatically
re-routed to the primary in order to meet the given visibil-
ity requirements. While the primary is idle, a simple dummy
transaction is periodically created and propagated to replicas
to maintain the last commit-replay time more up to date.

Sixth, we have also paid attention to reducing CPU con-
sumption of the replayer transactions (D3.3). If the replayer
transactions just repeat the same amount of work as the
primary write transaction, then the same amount of CPU
resource will be needed to replay the write transaction. How-

ever, ATR reduces the CPU consumption of the replayer
transactions by the following design decisions.

– To find the target record at the replica for a given replica-
tion log entry, ATR log replayer performs a simple hash
operation with the 8-byte RVID, instead of involving the
primary key search operation or any other predicate eval-
uation. It is also another benefit of the record-level result
logging (D2.1).

– ATR log replayer skips locking and unlocking operations
based on its lock-free parallel log replay scheme (D3.1).
More detail is explained in Sects. 3.3 and 3.4.

– ATR log replayer skips constraint checks because it was
already done at the primary. More detail is explained in
Sect. 3.5.1.

– ATR log replayer also performs light-weight commit
operations, which is explained in Sect. 3.5.2.

Such saved CPU resources at the replicas can eventually
lead to more capacity for more OLAPworkloads at the repli-
cas.

Seventh and finally, as a consequence of lazy replication,
if a failure is involved during replication, a number of repli-
cation log entries could be lost before they are successfully
applied to replicas. In order to deal with this situation, ATR
supports a post-failure replica recovery with an optimization
especially leveraging the characteristics of in-memory col-
umn store (D3.4), which will be explained in Sect. 4.1.

3 Log generation and replay

After describing the structure of the replication log entries
(Sect. 3.1), this section presents how they are generated by
the primary server (Sect. 3.2) and then replayed by the replica
server in parallel (Sect. 3.3).

3.1 Log records

Each replication log entry has the following common fields.

– Log type Indicates whether this is a DML log entry or a
transaction log entry. The transaction log is again classi-
fied into a pre-commit log entry, a commit log entry, or
an abort log entry.

– Transaction ID Identifier of the transaction that writes the
log entry. This is used to ensure the atomicity of replayed
operations in the same transaction.

– Session ID Identifier of the session to which the log gen-
erator transaction is bound. Transactions are executed in
order within the same session sharing the same context.
Session ID is used to more efficiently distribute the repli-

123

426 J. Lee et al.

cation log entries to the parallel log replayers, which will
be explained in more detail in Sect. 3.3.

In particular, theDML log entries have the following addi-
tional fields.

– Operation type Indicates whether this is an insert, update,
or delete log entry.

– Table ID Identifier of the database table towhich thewrite
operation is applied.

– Before-update RVID Identifier of the database record to
which the write operation is applied. In SAP HANA
employing MVCC, even when a part of a record is
updated, a new record version is created instead of over-
writing the existing database record. Whenever a new
record version is created, a new RVID value, which is
unique within the belonging table, is assigned to the cre-
ated record version. Since RVID has 8 bytes of length,
its increment operation can be efficiently implemented by
an atomic CAS (compare-and-swap) instruction without
requiring any lock or latch. Note that the insert log entry
does not require Before-update RVID.

– After-update RVID While Before-update RVID is used
to quickly locate the target database record at replica,
After-update RVID is applied to keep the RVID values
identical across the primary and the replicas for the same
record version. Then, on the next DML log replay for the
record, the record version can be found again by using
the Before-update RVID of the DML log entry. For this,
RVID fields of the replica-side record versions are not
determined by the replica itself but filled by After-update
RVID of the replayed log entries. Note that the delete log
entry does not require its own After-update RVID.

– Data Concatenation of the pairs of the changed column
ID and its new value. Note that the column values have a
neutral format that can be applied to either of the HANA
row store or theHANAcolumn store so that, for example,
a DML log entry generated from a row store table can
be consumed by the corresponding column store table
replica.

3.2 Log generation

Figure 3 shows the architecture of the replication log gen-
erator and sender. After a DML statement is successfully
executed, the corresponding DML log entries are gener-
ated from the record-level change results together with their
Before-update RVID and After-update RVID values. The
generated DML log entries are directly appended to a shared
log buffer without waiting for the completion of the trans-
action. There can exist multiple threads which are trying to
append to the single shared log buffer, but the log buffer can

Fig. 3 Log generator and sender

be efficiently implemented by a lock-free structure using an
atomic CAS instruction.

The transaction log entries are generated after the corre-
sponding transaction’s commit or abort is decided, but before
their acquired transaction locks are released. Such gener-
ated transaction log entries are also appended to the same
log buffer as DML log entries. Together with the single log
sender thread which multicasts the appended log entries to
the corresponding replicas in order, it can be concluded that
all the generated replication log entries are ordered into a
single log stream in the log buffer and delivered to each of
the replicas, ensuring the following properties.

– The transaction log entries are placed after their preced-
ing DML log entries in the replication log stream.

– A later committed transaction’s commit log is placed
after its earlier committed transaction’s commit log in
the replication log stream.

Note that, in the current ATR implementation, the mul-
ticast operation is implemented by using repeated network
send calls to different target hosts, but we do not exclude the
option of using faster network-level multicast operation in
the future.

3.3 Parallel log replay

The basic idea of the ATR parallel log replayer is to paral-
lelize the DML log replay while performing the transaction
commit log replay in the same order with the primary.
Here, in order to reduce unnecessary conflict and mini-
mize the visibility delay, we propose the novel concepts of
the SessionID-based log dispatch method and the RVID-
based dynamic detection of serialization error, which will
be detailed below.

As illustrated in Fig. 4, after receiving a chunk of repli-
cation log entries, the log dispatcher dispatches the received
log entries depending on their log type. If the encountered
log entry is a commit log, then it is dispatched to the global
transaction log queue. If the encountered log entry is a DML
log, a pre-commit log, or an abort log entry, then it is dis-
patched to one of DML log queues basically by the modulo
operation with Session ID stored in the log entry. Since a

123

Parallel replication across formats for scaling out mixed OLTP/OLAP workloads in main-memory… 427

Fig. 4 Parallel log replay

transaction is bound to a single session, all the log entries
generated from the same transaction are dispatched to the
same DML log queue. For the session which repeatedly
accesses the same set of database objects with different trans-
actions, the SessionID-based log dispatchmethod can reduce
unnecessary conflict among the parallel replayers than a plain
TransactionID-based dispatch method. We have not chosen
the TableID-based dispatch method because it can limit the
parallelism for the skewed update workloads to a particular
table. Note that, although it is not yet fully implemented,
it is also considered to combine the SessionID-based dis-
patch method with a dynamic adjustment method for better
load balancing across the available queues by monitoring the
length of each queue.

The log entries distributed tomultiple queues are dequeued
and replayed by the log replayer dedicated to each log queue.
The replay algorithm for each log type is presented in Algo-
rithms 1, 2, 3 and 4. The trickiest part in the log replay
algorithm is how to ensure replaying DML log entries in
their generation order on the same database records while
replaying the transactions in parallel by multiple DML log
replayers. For example, in case of the parallel log replay
algorithm suggested in [16], the transaction replay order
is determined by using a central run-time inter-transaction
dependency tracker which may subsequently become a
global contention point. Unlike the pessimistic approach in
[16], ATR does not maintain any run-time inter-transaction
dependency graph nor any additional lock table. Instead,
ATR follows an optimistic lock-free protocol. After finding
the target database record for the log replay, theATR replayer
checks whether or not the database change happened before
the current log entry is already applied. If not, we call it a log
serialization error and retry the log replay with re-reading
the target database record (lines 9–15 and 17–23 in Algo-
rithm 1).

In order to correctly detect the log serialization error,ATR
exploits the characteristics of the MVCC implementation of

Algorithm 1 Replay a DML log entry (α, β, and τ denote
After-update RVID, Before-update RVID, and TableID,
respectively.)
Require: A DML log entry L .
1: Find the transaction object T for L.TransactionI D.
2: if T is empty then
3: Create a transaction object for L.TransactionI D.
4: end if
5: if L.OperationT ype = I nsert then
6: Insert L.Data into the table L.τ .
7: Set the inserted record’s RV I D as L.α.
8: else if L.OperationT ype = Delete then
9: while true do
10: Find the record version R whose RV I D equals
11: to L.β in the table L.τ .
12: if R is not empty then
13: Delete R. return
14: end if
15: end while
16: else if L.OperationT ype = Update then
17: while true do
18: Find the record version R whose RV I D equals
19: to L.β in the table L.τ .
20: if R is not empty then
21: Update R with L.Data and L.α. return
22: end if
23: end while
24: end if

Algorithm 2 Replay a pre-commit log entry
Require: A pre-commit log entry L .
1: Find the transaction object T for L.TransactionI D.
2: Mark T ś state as pre − committed.

Algorithm 3 Replay a commit log entry
Require: A commit log entry L .
1: Find the transaction object T for L.TransactionI D.
2: Wait until T ś state becomes precommitted .
3: Increment the transaction commit timestamp of the replica server

by marking the T ś generated record versions with a new commit
timestamp value.

Algorithm 4 Replay an abort log entry
Require: An abort log entry L .
1: Find the transaction object T for L.TransactionI D.
2: Abort T with undoing the changes made by the transaction T .

SAPHANA.The update and delete log entries checkwhether
there exists a record version whose RVID equals to Before-
updateRVID. If such a record version is not yet visible to the
replaying transaction (that is,when R is empty in line 12 or 20
of Algorithm 1), it means that the preceding DML operation
for the same record has not yet been replayed. For example,
imagine that there are three transactions which have inserted
or updated the same database record in order, as illustrated in
Fig. 5 (T1 inserted, T2 updated, and then T3 updated the same
record). Then, the version space at the primary and the cor-
responding log entries can be populated as in Fig. 5. Under

123

428 J. Lee et al.

Fig. 5 Parallel log replay example

this scenario, after replaying log entries L1 and L2, L5 can be
encountered by a DML replayer before L3 is replayed. How-
ever, while trying to replay L5, the DML replayer recognizes
that there is no record version whose RVID is equals to L5’s
Before-update RVID, 02 and thus, it will encounter the log
serialization error and retry the DML replay operation (after
some idle time, if necessary).

By this proposed RVID-based dynamic detection of seri-
alization error, the DML log entries can be dispatched and
replayed to multiple queues freely without restriction (for
example, without TableID-based dispatch), and it is one of
the key reasons why ATR can significantly accelerate the
log replay and thus minimize the visibility delay between
the primary and the replicas.

3.4 Optimistic interleaving for high-conflict
workloads

By the parallel log replay scheme explained in Sect. 3.3,
DML log entries are replayed in parallel without having any
central run-time inter-transaction dependency tracker which
could be a potential contention point. However, the scheme
itself does not parallelize the transactions which updated the
same database record at the primary. For example, if replayer
transactions follow the two-phase locking protocol, then the
log entry L3 can be replayed only after T1 finally commits
and releases its acquired record lock in the scenario of Fig. 5.
In order to overcome such a parallelism limitation under
high-conflict workloads, we propose the so-calledOptimistic
Interleaving scheme which is seamlessly combined with the
parallel log replay scheme proposed in Sect. 3.3.

Our optimistic interleaving scheme consists of two parts.
One is about handling write-write collisions, and the other
is about handling read-write collisions. First, regarding the
write-write collision, unlike any locking protocol, the DML
replay operation does not acquire any record lock. It is pos-
sible because there is no other concurrent write transaction
in the replica except the other DML log replayers, and the
transaction serialization is ensured by checking the RVID
visibility among the DML log replayers as explained in
Sect. 3.3. Second, regarding the read-write collision, when

(a)

(b)

Fig. 6 Replay of two inter-conflicting transactions (Li (a) denotes a
DML log entry for a database record a which is replayed by transaction
Ti .Ci denotes the commit log entry of transaction Ti . The arrows denote
the inter-operation dependency implicitly imposed by the given replay
algorithm). aWhen optimistic interleaving is not applied. bWhen opti-
mistic interleaving is applied

theDMLreplayer reads theRVIDvalue of the target database
record at replica, it directly reads not-yet-committed changes
instead of following the read-committed semantics. Note
that, in our initial implementation of ATR, the replay trans-
actions still followed the read-committed semantics of the
snapshot isolation. As a result, even though they do not
acquire any record locks, lines 10 and 18 of Algorithm 1
have to wait until the preceding DML operation’s transaction
finally commits. On the other hand, in our latest implemen-
tation, lines 10 and 18 immediately read the RVID values of
not-yet-committed changes instead of following the conven-
tional read-committed semantics. Remark that, to enable this
optimization, it is ensured that the RVID value is updated at
the last step of the DML replay operation.

Optimistic Interleaving brings the benefit of further
increasing the parallelism of replayed transactions even for
high-conflictworkloads. Figure 6 illustrates the benefit of this
optimistic interleaving implementation. In Fig. 6a, L2(a) can
start its replay operation after waiting for C1’s replay opera-
tion. On the other hand, in Fig. 6b where the optimization is
in place, L2(a) can start right after waiting for L1(a). Note
that, in Fig. 6, ordering between C1 and C2 is ensured by
the single commit-replay queue, as explained in Sect. 3.3.
In addition to the benefit of increased parallelism for high-
conflict workloads, Optimistic Interleaving also helps reduce
the CPU cost of each replay transaction since replayer trans-
actions skip record lock and unlock operations. Note that the
benefit of Optimistic Interleaving is also shown experimen-
tally in Sect. 6.4.

Optimistic Interleaving does not break any data consis-
tency at the replica tables because (1) for the same database
record, DML operations are still replayed in their initial
execution order at the primary system (by the RVID-based
parallel log replay scheme), and thus the record versions are
created in their initial execution order; (2) the commit log

123

Parallel replication across formats for scaling out mixed OLTP/OLAP workloads in main-memory… 429

replay is performed in the same order as the primary based on
single commit log queue even for the inter-conflicting trans-
actions; (3) following MVCC, each DML replay creates its
own record versions which become visible only when the
replay transaction finally commits; and (4) the to-be-aborted
replay transaction does not affect any log serialization depen-
dency at the replicas because any After-update RVID value
of an aborted transaction cannot be referred to as a Before-
update RVID value of the next executed write transaction at
the primary side.

3.5 Further optimizations and implementation
issues

3.5.1 DML replay with skipped constraint checks

In Algorithm 1, the DML replay operation skips the integrity
constraint check because it was already done at the primary.
Due to the skipped integrity check and the skipped locking
during parallel log replay, it is possible that uncommitted
duplicate records that have the same unique key values co-
exist tentatively (for example, when a record at the primary is
inserted, deleted and then inserted again by transactions T1,
T2, and T3, replaying their DML log entries in the order of T1,
T3, and T2 at a replica can lead to such a situation). However,
this does not lead to any real problem because the result of
DML replay is not directly visible to the queries executed at
the replica but visible only after the corresponding commit
replay is completed and also because the commit log entries
are replayed strictly in the same order as the primary.

3.5.2 Light-weight commit replay

We have paid special attention to the implementation of the
commit log replay not to make it as a bottleneck point in
theATR parallel log replay scheme. The key idea is rather to
break down the transaction commitwork into three parts, pre-
commit, commit, and post-commit, and then delegate the pre-
commit work to the parallel DML log replayers by using the
pre-commit log entry and delegates the post-commit work to
asynchronous background threads. As a result, the serialized
part of the transaction commit operation is made short and
light-weight.

The pre-commit log entry plays the role of marking that
all DML log entries of the transaction have been successfully
replayed and of informing the commit log replayer by using
the transaction state information maintained in the transac-
tion object, as shown in Algorithm 2. The important role of
the commit log replay is to mark the generated record ver-
sions by the transaction’s DML replay as committed and thus
to make the record versions visible to the queries executed
at the replica server, as shown in Algorithm 3. Right after
finishing the commit operation of a commit log entry, the

commit log replayer processes the next commit log entry in
the queue while delegating the remaining post-commit work
of the transaction to other background threads.

3.5.3 MVCC at replicas

The insert (line 6), delete (line 13) and update (line 21) opera-
tions inAlgorithm 1 create their own records versions instead
of performing in-place updates. The record versions created
by the same transaction are associated as a group by point-
ing to the same so-called TransContext object. At the time
of replaying its transaction commit operation (Algorithm 3),
the commit timestamp value is determined for the commit-
ting transaction, and the value is written to the TransContext
object. Then, the commit timestamp value becomes immedi-
ately visible to all related record versions of the committing
transaction.

The garbage collection [26] at replicas can be performed
independently of the primary’s garbage collection because
it is not allowed that a single query accesses both of the
primary and its replica during its execution. Also, because
a single query is not allowed to access multiple replicas of
the same table during its execution, the garbage collection
operations of the replicas do not need to synchronize with
each other.

Overall, the replicas also follow the sameMVCC protocol
with the primary, which is described in more detail in [26].

3.5.4 Query processing at replicas

Queries running at the replicas just follows the existing visi-
bility rule of MVCC in SAP HANA. When a query starts at
a replica, it takes its snapshot timestamp (or read timestamp)
from the replica commit timestamp which is incremented by
the commit log replayer as in Algorithm 3. Then, during its
query processing, the query judges which record versions
should be visible to itself by comparing the record versions’
creation timestamp values with the query’s snapshot times-
tamp. Again, the visibility decision protocol for the queries
is also described in more detail in [26].

3.5.5 Handling DDL operations

Following the SAP HANA distributed system architecture
[23], the replica server does not maintain its own meta-
data persistency but caches the needed metadata entities on
demand by reading from the primary. Therefore, if a DDL
transaction is executed at the primary, it does not generate a
separate DDL log entry but it invalidates the corresponding
metadata entities at the replicas. This invalidation operation
is performed at the time when the DDL transaction commits
after waiting until its preceding DML log entries for the table
are replayed.

123

430 J. Lee et al.

4 Replica recovery

4.1 Log-less replica recovery

By the nature of the lazy replication, if a failure is involved
during log propagation or log replay, a series of replication
log entries could be lost before they are successfully applied
to the replica database. In order to deal with this problem, a
typical approach under the lazy replication is the so-called
store-and-forward method. The generated log entries are
stored persistently within the primary transaction boundary
and then propagated to the replicas lazily. Then, by main-
taining a watermark at the replayer side, the lost log entries
can be easily identified and resent from the persistent store.
Althoughwe do not exclude the store-and-forward approach,
we propose a novel efficient replica recovery method that
does not rely on the persistent replication log store, in order
to further reduce the overhead to the primary transaction exe-
cution and simplify the replica recovery protocol.

The key idea is to detect the discrepancy between the
primary table and its replica table by comparing the RVID
columns of the two tables, as presented in Algorithm 5. Two
sets of the RVID values are collected from the latest record
versions of the primary and the corresponding replica tables.
And then, depending on the result of the relative comple-
ments of the two sets, the database records existing only in
the primary table are re-inserted to the replica and the records
existing only in the replica table are deleted.

Algorithm 5 Recover a replica table
Require: P , a set of RVID values from the primary table.
Require: R, a set of RVID values from the replica table.
1: Delete the records R\P from the replica.
2: Insert the records P\R into the replica

In the example of Fig. 7, P = {r1, r3, r5, r9} is collected
from the primary table and R = {r1, r2, r4, r8} from the
replica table. Then, since R\P = {r2, r4, r8} and P\R =
{r3, r5, r9}, the replica records matching with {r2, r4, r8} are
deleted, and the primary records matching with {r3, r5, r9}
are re-inserted to the replica.

Comparison of two RVID columns is implemented by
a merge-join-style algorithm where two RVID columns are
compared after being collected from each table in a sorted
order. Although comparing the entire RVID columns of two
tables looks expensive at first glance, we took this approach
especially considering the characteristics of SAP HANA in-
memory column store. Since the RVID column values of the
entire table are stored on a contiguous memory in a com-
pressed form [36] in SAP HANA column store, scanning the
entire RVID column values of a column store table can be
done rapidly. Moreover, the column scan performance can

Fig. 7 Post-failure replica recovery

be further accelerated by exploiting SIMD-based vectoriza-
tion and parallelization as explained in more detail in [46].
For example, Figure 16 of [46] shows 2.4GB/s of full table
scan performance even without any parallelization, which
means that 1 billion RVID column values can be scanned
in a few seconds in the tested hardware configuration. Note
that the core part of SAP Business Warehouse Accelerator
(BWA) used for the experiment of [46] is incorporated in
SAP HANA column store [30].

4.2 Redo and undo logging at replicas for recovery
and transaction abort

During the DML log replay, the recovery redo log entries
are generated for the recovery of the replica server. They are
asynchronously flushed to the persistent log storage, and even
the commit replay does not wait for the log flush completion
because the lost write transactions on any failure at a replica
can be re-collected from the primary database as explained
in Sect. 4.1. The undo log entries are also generated during
the DML log replay because the not-yet-committed replica-
tion log entries can be replayed for early log shipping, as
explained in Sect. 2.2. When a transaction is aborted and its
replication log entries has already been shipped to any of its
replicas, then its abort log entry is generated and shipped. At
the replica side, the change made by the transaction’s DML
replay is rolled back as in Algorithm 4.

4.3 Adaptive query routing for handling replica
errors

When a particular replica becomes unavailable due to crash
or run-time error such as an out-of-memory exception, it is
desirable to continue the overall query service without dis-
rupting or throwing errors to the end users. For this, ATR
incorporates an adaptive query routing scheme which con-
sists of the following query routing rules.

– If a replica-side query encounters an error, then the query
is implicitly aborted and retries. And, if it turns out that
the replica is not available after checking the process sta-

123

Parallel replication across formats for scaling out mixed OLTP/OLAP workloads in main-memory… 431

Fig. 8 A simplified view of a multi-replica replication scenario

tus or after waiting for a predefined time period, then the
query is retried with being forwarded to the primary or
another available replica. Because the forwarding mech-
anism happens automatically and implicitly by the client
library, this type of error does not need to be handled at
the application or user side.

– If a replica is marked as unavailable, then the replica
status is also notified to the primary metadata. Then, the
next incoming queries exclude the replica during their
query compilations until it is marked as available again.

5 Handling additional transaction
consistency issues

In this section, we discuss three particular transaction con-
sistency issues arising from the nature of lazy replication
architecture and present a practical way of dealingwith them.

5.1 Ensuring transactional consistency among
multiple replicas with wait-and-forward scheme

When a table has more than one replica, it is an impor-
tant issue to ensure transactional consistency amongmultiple
replicas of the same table. A simple solution is to perform an
atomic multi-node commit operation, like two-phase com-
mit, for the replayer transaction of the multiple replicas in
order to keep the replicas in the same database state. How-
ever, it is not a desirable approach in terms of the replay
performance because each commit log replay may involve
a cross-node synchronization overhead. To avoid this prob-
lem, we propose the so-called wait-and-forward scheme for
ensuring transactional consistency across multiple replicas
of the same table. In this wait-and-forward scheme, each
replica commits independently with each other but applies
the following special query routing rules.

– First, the query plan generator does not allow a single
query to access more than one replica of the same table
in its generated query plan. That is, a single query can

access at most only one replica for a given table during
its query execution.

– Second, each database sessionmaintains the last commit-
replay timestamp of the last accessed replica node in the
session and stores it as the last snapshot timestamp of
the session. And then, when a newly accessed replica
node has an older commit-replay timestamp than the last
snapshot timestamp of the current session, then the query
execution at the replica node is postponed until the last
commit-replay timestamp of the replica node becomes
equivalent to or higher than the last snapshot timestamp
of the session. If the waiting time at the replica becomes
larger than a predefined time threshold, the query is
automatically forwarded to the primary node or other
available replica nodes.

In the example of Fig. 8, a database session S1 is executing
two queries Q11 and Q12 in order. After executing Q11 at
the replica 1, S1 caches 99 as its last snapshot timestamp.
And then, when executing Q12 at the replica 2, it detects
that the replica 2 has an older database state than its last
executed replica by comparing its last snapshot timestamp
(99) with the replica 2’s last commit-replay timestamp (97).
Then, Q12’s execution is postponed until the replica 2 gets a
sufficiently high last commit-replay timestamp.

Note that, in the wait-and-forward scheme, read queries
that are executed in a database session established only to
a particular replica do not need to involve any waiting or
forwarding.

5.2 Ensuring read-your-write consistency for read
queries in a write transaction

If a transaction tries to read its own earlier DML result and
the read operation is routed to the replica, then the replica-
routed query may not see its own change result yet. In the
terminology of [44], it corresponds to so-called read-your-
writes consistency. In order to guarantee the read-your-writes
consistency with ATR, we have considered two practical
solutions. First, the primarymaintains additional watermarks
incremented on every DML, and then the replica-routed
query checks whether the sufficient number of DML logs
are already replayed at the replica. In the second solution,
each database session maintains the changed table list for
the currently active transaction and then directly routes such
detected read-your-write queries to the primary. In the current
production version of ATR, the second approach is available
for the simplicity of implementation. In the example of Fig. 9,
R1(a) is routed to the primary.

Note that the read-your-write consistency issue can arise
for already committed changes. In the example of Fig. 9,
if W1(a) or C1 is not yet replayed at a replica, a replica-
routed query R2(a) is unable to see the latest updated result

123

432 J. Lee et al.

Fig. 9 Read-your-writes example ((Wi (a) denotes a write operation for
a database object a by transaction Ti . Ri (a) denotes a read operation for
a database object a by transaction Ti . Ci denotes the commit operation
of transaction Ti)

of the same session at the replica yet. The read-your-write
consistency for already committed changes can be ensured by
extending the wait-and-forward scheme of Sect. 5.1. When
a transaction makes changes at the primary, the transaction’s
primary commit timestamp is also stored as the last snapshot
timestamp of the session. Then, in the example of Fig. 9,
R2(a) is executed after waiting until C1 is replayed at the
replica.

5.3 Ensuringmonotonic read consistency for
consecutive read queries

Let us say that a database session performs two read queries
in order where the first one is routed to the primary but the
second one to a replica. In this scenario, some database state
that was visible to the first querymay not be visible to the sec-
ond replica-routed query by the nature of the lazy replication
of ATR. Again, in the terminology of [44], it corresponds to
so-called monotonic read consistency.

The monotonic read consistency for repeated read queries
in a database session is also achieved by further extending
the wait-and-forward scheme of Sect. 5.1. When a query
is executed at the primary, the query’s snapshot timestamp
value is stored as the last snapshot timestamp of the session
and then compares it with the replica’s last-replay timestamp
value on the next query execution in the session.

6 Experiments

In this section, with the following experiment goals, we eval-
uate the performance of ATR implemented in SAP HANA:

– The optimistic parallel log replay scheme of ATR shows
superior multi-core scalability over the primary-side
transaction processing or another pessimistic parallel
log replay scheme which relies on a run-time inter-
transaction dependency tracker (Sect. 6.2).

– Based on its optimistic parallel log replay, ATR shows
sub-second visibility delay in the given update-intensive
benchmark (Sect. 6.3).

– Regardless of transaction conflict ratio,ATR log replayer
constantly shows higher throughput than the primary or
a pessimistic algorithm (Sect. 6.4).

– The proposed optimistic interleaving optimization con-
tributes higher parallelism under high contention situa-
tion (Sect. 6.4).

– The overhead of ATR at the primary is not significant in
terms of primary-side write transaction throughput and
CPU consumption (Sect. 6.5).

– ATR log replayer consumes fewer CPU resources than
the primary-side transaction processing for the same
amount of workloads, which results in higher capacity
for OLAP workloads at the replicas (Sect. 6.5).

– Finally, with the increasing number of replicas, ATR
shows scalableOLAPperformancewithout notable over-
head to the OLTP side (Sect. 6.6).

6.1 Experimental setup

ATR has been successfully incorporated in the SAP HANA
production version since its SPS 10 (released in July 2015)
[22,25] and under continuous evolution. For the compara-
tive experiments in this paper, we have used the most recent
development version of SAP HANA at the time of writing
and modified it especially to make the log replayer switch-
able between the original ATR optimistic parallel replayer
and another pessimistic parallel log replayer [16].

To generate a OLTP and OLAP mixed workload, we used
the same TPC-CH benchmark program as the one used in
[37]. The benchmark program runs both TPC-C and TPC-
H workloads simultaneously over the same data set, after
initially populating 100 warehouses as in [37]. Whenever
a transaction starts, each client randomly chooses its ware-
house ID from the populated 100 warehouses. Depending
on the purpose of the experiments in this section, we also
used only a subset of the TPC-CH benchmark which will
be explained in more detail in the next subsections. All the
tables used in the TPC-CH benchmark are defined as in-
memory column store tables. Due to legal reasons as in [37],
the absolute numbers for the TPC-CH benchmark are not
disclosed but normalized by undisclosed constants, except
for the micro-benchmark results conducted in Sects. 6.4 and
6.5.

We have used up to six independent machines which are
connected to each other via the same network switch. Each
machine has four 10Gbit NICs which are bonded to a sin-
gle logical channel aggregating the network bandwidth up to
40Gbit/s. Each machine has 1TB of main memory, 60 phys-
ical CPU cores (120 logical cores with hyper-threading), and
local SSD devices for storing the HANA recovery log and
checkpoint files. In the experiment of Sect. 6.6, we scale up
to four replica servers with one primary server and one client
machine, while the other experiments focus on single-replica
configuration.

123

Parallel replication across formats for scaling out mixed OLTP/OLAP workloads in main-memory… 433

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 20 30 40 50 60

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of threads

Primary
KuaFu replayer

ATR replayer

Fig. 10 TPC-C throughput over the number of threads (normalized by
the 64-thread ATR replayer throughput)

6.2 Multi-core scalability with parallel log replay

To seemulti-core scalability of theATR parallel log replayer,
we first generated theATR log entries from the primarywhile
running TPC-C benchmark for one minute of the warm-up
phase and five minutes of the high-load phase. Then, after
loading all the pre-generatedATR log entries intomainmem-
ory of a replica, we measured the elapsed time for the ATR
log replayer to process all the pre-generated and pre-loaded
log entries with varying the number of replayer threads at the
replica. To compare the log replay throughput of the replica
with the log generation throughput of the primary, we also
measured TPC-C throughput at the primary with varying the
number of TPC-C clients.

Figure 10 shows the experimental results. The normalized
throughput was calculated by dividing the number of trans-
actions included in the pre-generated log by the elapsed time,
and then normalized by the 64-thread ATR replayer through-
put. ATR showed scalable throughput with the increasing
number of replayer threads and constantly higher through-
put than the primary transaction throughput. This means that
the log received from the primary could be processed at the
replica without any queuing delay.

Furthermore, to compare the optimistic parallel log replay
algorithm of ATR with a pessimistic parallel replay algo-
rithm that relies on an inter-transaction run-time dependency
tracker,we have implemented aKuaFu-style parallel replayer
based on our best understanding of their paper [16]. For
fair comparison, we used the same ATR log format for
the KuaFu implementation. At the primary side, the gen-
erated log entries are accumulated until the transaction’s
commit time (as explained in Fig. 2) since theKuaFu replayer
assumes that log entries generated from the same transaction
appear consecutively in the log stream. In KuaFu, the so-
called barrier[16] plays the role of synchronizing the parallel
log replayers to provide a consistent database snapshot to the

replica queries, but we avoid using the barrier in order to see
the theoretically maximum replay throughput of KuaFu.

The experiment result with the KuaFu implementation is
included in Fig. 10. The KuaFu-style replayer also showed
higher throughput than the primary but its throughput was
saturated when the number of replayer threads is higher
than 16. According to our profiling analysis, the critical sec-
tion used in the global inter-transaction dependency tracker
turned out to be a dominant bottleneck point as the number of
the replayer threads increases. Note that [16] also describes
that the log replay throughput under a TPC-C-like workload
is saturated at 16CPUcores “due to the high cost of inter-cpu-
socket locks”. Compared to a pessimistic parallel replayer
like KuaFu, ATR does not require any global dependency
tracker which could be a single point of contention. This is
an important reason why ATR shows better multi-core scal-
ability and can outperform the other approach against higher
workloads at the primary.

6.3 Visibility delay

To determine whether ATR can achieve real-time replication
with the proposed optimistic parallel log replay algorithm
under the early log shipping protocol, we measure the
commit-to-commit visibility delay at the replica side. While
running the TPC-C benchmark at the primary side, the
replayer periodically measures the average visibility delay
every 10s. After synchronizing the machine clocks between
the primary and the replica, the replayer calculates the vis-
ibility delay by subtracting the primary transaction commit
time recorded in the replayed commit log entry from the cur-
rent time at the time of the commit log replay. Note that this
visibility delay measurement method is also used when we
enable the adaptive query routing based on its acceptable
staleness range, as described in Sect. 2. We also measure the
visibility delay with different number of concurrent TPC-C
connections to see the impact of the volume of the primary
transaction workloads. Note that the number of replayers is
dynamically configured to be the same number as the number
of TPC-C clients.

Figure 11 shows the result. When the ATR parallel log
replayer is used, the visibility delay is maintained mostly
under 1 millisecond over time regardless of the volume of
concurrent TPC-C workloads at the primary. On the other
hand, the KuaFu-style parallel log replayer shows higher vis-
ibility delay and, especially when the number of concurrent
TPC-C workloads increases to 64 to see the impact of more
update-intensive workload, the length of the log replayer
queue started growing up and eventually ended up with high
visibility delay (more than 10s) due to the performance mis-
match between the primary log generation and the replica
log replay, as also indicated by Fig. 10.

123

434 J. Lee et al.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350 400

V
is

ib
ili

ty
 d

el
ay

 (s
ec

. i
n

lo
g

sc
al

e)

Time (sec.)

KuaFu (TC=32)
KuaFu (TC=64)

ATR (TC=32)
ATR (TC=64)

Fig. 11 Visibility delay at the replica in log scale while running TPC-C
benchmark at the primary (TC denotes the number of TPC-C clients)

6.4 Impact of inter-transaction conflict

To see whether the superior throughput of ATR over the pri-
mary is sustained regardless of the inter-transaction conflict
ratio, we have measured the log replay throughput with vary-
ing the conflict ratio. To emulate the conflict ratio, we have
chosen the ORDERLINE table from the TPC-CH bench-
mark, and let 100 clients concurrently run update transactions
on top of the table while varying the initial table size from
1000 to 1 million records. Consistently with the other exper-
iments, the number of replayers is configured to be the same
as the number of the primary-side clients, which is 100 in
this case. Each update transaction commits after repeating
the following update statement 10 times.

UPDATE ORDERLINE SET OL_DELIVERY_D=?
WHERE OL_W_ID=? and OL_D_ID=? and OL_O_ID=?;

The 10 primary keys used for each transaction are picked
up randomly from the key range of the initially populated
data and then assigned in a monotonic order within the trans-
action to avoid any unnecessary deadlock. In ORDERLINE
table, OL_W_ID, OL_D_ID, and OL_O_ID comprise the
primary key. Note that we have used this single-table micro-
benchmark to generate more severe inter-transaction conflict
situation since the performance variation is not notable when
we varied the conflict ratio by changing the number of ware-
houses in the original TPC-CH benchmark. Remark that, in
[24], we performed this experiment with 40 clients and 40
replayers, but we increased these numbers to make the inter-
transaction conflict situation more severe and thus to clearly
see the gain of the optimistic interleaving optimization.

Figure 12 shows the experimental results.ATR constantly
shows higher throughput than the primary or our KuaFu
implementation regardless of the conflict ratio. In addition,
to see the benefit of the optimistic interleaving optimiza-
tion, we have additionally measured the throughput of the
ATRreplayerwith turningoff the optimistic interleaving.The

Fig. 12 Micro-benchmark throughput over the conflict ratio (O/I
denotes optimistic interleaving)

result shows that the proposed optimistic interleaving brings
notable gain as the conflict ratio gets higher (for example,
when the populated table size is less than 40K records).

In Fig. 12, compared to Fig. 10, the gap between the ATR
replayer and the primary is smaller since Fig. 10 was mea-
sured with the TPC-C benchmark consisting of read/write
workloads, while Fig. 12 was measured with the write-only
micro-benchmark. Because only the write statements are
propagated to the replica, the replica in theTPC-Cbenchmark
handles fewer replay workloads compared to the designed
write-only micro-benchmark.

6.5 Replication overhead

To evaluate the overhead incurred by ATR at the primary
side, we have measured the primary transaction throughput
while replicating the generated log entries to its replica. To
highlight the overhead, we have run the same update-only
single-tablemicro-benchmark as Sect. 6.4while populating 1
million records initiallywith 40 clients and40ATR replayers.
Also, differently from Sect. 6.4 where the replayers run with
the pre-generated replication log, we measured the actual
performance with the log replicated from the primary online.

Table 2 shows the result. When the replication is turned
off, the primaryprocessed3046 transactions per secondwhile
showing 25.76%CPU consumption at the primary.When the
replication is turned on, the primary processed 2948 transac-
tions per second while showing 26.19% CPU consumption
at primary. It means that the primary throughput dropped by
only 3.2% with ATR enablement. The CPU consumption at
the primary increased by 1.6% (the third column in the table)
or by 5.0% in terms of the normalized CPU consumption by
the throughput (the fifth column in the table). According to
our CPU profiling analysis, the additional CPU consumption
was mainly contributed to by replication log generation, log
buffer management, and network operations, as expected.
Note, however, that most of the replication operations at

123

Parallel replication across formats for scaling out mixed OLTP/OLAP workloads in main-memory… 435

Table 2 Micro-benchmark
throughput and CPU
consumption of each site

Primary
throughput
(tps)

Primary
CPU (%)

Replica
CPU (%)

Primary CPU
normalized
by throughput

Replica CPU normalized
by throughput

Repl. Off 3046 25.76 N/A 8.46 N/A

Repl. On 2948 26.19 15.60 8.88 5.29

the primary (except the log generation itself) are executed
asynchronously by background threads without delaying the
primary transaction execution, and thus the impact to the
primary transaction throughput is negligible.

In addition to the primary overhead analysis, we have also
measured the replica-side CPU consumption as in Table 2.
The replica showed only 60.6% of CPU consumption com-
pared to the primary-side execution of the same transaction
(= 15.60/25.76) or 62.5% in terms of the normalized CPU
consumption (= 5.29/8.46).

To explain the low CPU consumption at the replica, we
profiled the CPU consumption of the primary and the replica,
as shown in Fig. 13.According to this CPUprofiling analysis,
the following three factors contributed to the low CPU con-
sumption at the replica, compared to the CPU consumption
at the primary.

– “lookup”: RVID-based record lookup at the replica is the
major contributor to such CPU cost savings. While the
target record at the primary is searched by the primary key
value consisting ofOL_W_ID,OL_D_ID, andOL_O_ID
in this update-only micro-benchmark, the target record at
the replica is found by a simple hash index lookup with
the 8-byte Before-Update RVID value.

– “lock/unlock”: The skipped record locking/unlocking
during the log replay (Sect. 3.4) contributed to some
extent, albeit small. Note that the gain from the skipped
integrity constraint check is not visible at all in Fig. 13
because this experiment is performed with the non-
key-field update workloads which will not involve any
constraint check even at the primary.However, depending
on the workload type and the involved integrity con-
straints at the primary, there is a high chance that the
CPU cost savings at the replica gets bigger.

– “rest”: In Fig. 13, the rest of CPU consumption is simply
classified to “rest" because it is not our focus. Never-
theless, beside “lookup" and “lock/unlock", we observed
that the reduced depths of function call stacks during the
log replay also contribute to the CPU cost savings in the
“rest" part. In addition, the cost relevant to the session
management for remote database clients at the primary
is replaced by simpler network channel management at
the replica because it is sufficient to handle only the repli-
cation log stream.

Fig. 13 CPU consumption breakdown from the same experiment with
Table 2

Such saved CPU resources at the replicas can eventually
lead to more capacity for OLAP processing at the replicas,
which will be shown in more detail in Sect. 6.6.

6.6 Multi-replica scalability under mixed OLTP/OLAP
workload

Finally, we show the performance scalability of OLAP
queries under OLTP/OLAP mixed workload by using the
TPC-CH benchmark. We measured both TPC-C throughput
(in terms of transactions per second) and TPC-H through-
put (in terms of queries per second) varying the number of
replicas from 0 to 4. As the number of replicas increases,
we have increased the number of TPC-H clients propor-
tionally since the overall OLAP capacity increases with
the number of replicas. While the number of TPC-C client
is fixed to 32, 120 TPC-H clients are added per replica
server. The number of clients has been chosen so that
a single HANA database server can be fully loaded in
terms of CPU consumption. Note that SAP HANA pro-
vides so-called intra-statement parallelism for OLAP-style
queries, where a single OLAP query execution is par-
allelized by using multiple available CPU cores at the
time of its execution. However, throughout this experi-
ment, the intra-statement parallelism was disabled to see
more deterministic behavior with the varying number of
TPC-H clients. All the tables in the TPC-CH schema have
been replicated to all the available replica servers. All
the TPC-C transactions are directly routed to the primary

123

436 J. Lee et al.

 0

 1

 2

 3

 4

 5

 6

0 1 2 4

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of replicas

1.00

2.09

3.06

4.93
OLAP qps
OLTP tps

1.00 0.99 0.94 0.95

Fig. 14 TPC-CH throughput for varying the number of the replicas
and TPC-H clients (normalized by the 0-replica throughput numbers
respectively; N -replica configuration means that there are in total N+1
database servers including the primary)

while the TPC-H queries are evenly routed across all the
available HANA database servers including the primary
server. Note that each TPC-H client communicates with
a designated database server and thus the delay by wait-
and-forward, explained in Sect. 5.1, is not involved in this
experiment.

Figure 14 shows the normalized throughput of OLTP and
OLAP with the different number of replicas. N replicas
denote that there are N+1 database servers including the pri-
mary. The normalized throughput was calculated by dividing
the measured throughput by the throughput without repli-
cation. Although the OLTP throughput decreases slightly
with the increasing number of replicas, theOLAP throughput
increases almost linearly. This result confirms that ATR can
offer scalable OLAP performance without creating notable
performance overhead to OLTP workloads. Note that the
OLAP throughput also shows slightly super-linear scalabil-
ity when the number of replicas is 1 or 2. This is because
the replayed transaction consumes less CPU compared to
its original execution at the primary by the proposed light-
weight log replay mechanism while the number of TPC-CH
clients are configured so that the system is over-loaded. As
a result, each replica has a larger OLAP capacity than the
primary in terms of available CPU resources.

7 Eager parallel replication

7.1 Implementation

ATR can be extended to perform eager replication where it
is ensured that the primary and its replicas have the same
database state at the time of a query execution. However,
under the eager replication, it is inevitable to pay additional
performance overhead either at the write transaction side

(writer-pays-cost approach) or at the replica-executed query
side (reader-pays-cost approach).

In the writer-pays-cost approach, the primary write trans-
action commits after all of its changes are successfully
applied to its replicas and thus the writer transaction’s com-
mit processing time can increase. In the reader-pays-cost
approach, we let the read queries coming to the replicas
pay the cost. The primary write transactions commits with-
out waiting for its log application to replicas, following the
commit protocol of the lazy replication. However, when a
query is dispatched to a replica, it first reads its transaction
snapshot timestamp at the primary by making an additional
network round trip and then executes the query processing at
the replica after waiting until the replica’s last commit-replay
timestamp equals to or becomes higher than the transaction
snapshot timestamp read at the primary. In this approach,
while the writer transaction’s commit processing time does
not increase, the replica-routed queries’ execution time can
increase due to the additional network round trip to acquire
the primary-side transaction snapshot timestamp. In the cur-
rent productive versions of SAP HANA (since HANA SPS
12 which was officially released in May 2016), the writer-
pays-cost approach is incorporated but we do not exclude
offering the reader-pays-cost approach alternatively in the
near future.

Our writer-pays-cost eager replication inherits most of the
ATR lazy replication implementationwith adjusting its trans-
action commit protocol so that the primary transaction can be
committed only after it is ensured that all of its DML changes
are applied to the replica.With this approach, the eager repli-
cation implementation inherits the benefits of the proposed
parallel log replay and the early log shipping mechanisms.
Also, we avoided the expensive two-phase commit protocol
by exploiting the proposed log-less replica recovery mech-
anism. That is, since we can still recover the eager replica
contents by referring to their primary copies by using the
algorithm presented in Sect. 4.1, the primary write transac-
tion does not need to wait for the redo-logging at the replicas,
which can be performed asynchronously in the background.
Remark that the eager replication can co-exist in the same
system with the lazy replication, meaning that some replica
for a table can be defined as a lazy replica and another replica
for the same table can be defined as a eager replica.

7.2 Experimental evaluation

To demonstrate the impact of the proposed parallel log replay
under eager replication, we have compared (1) the primary
running without any replica (labeled as no-replica), (2) the
primary running with a lazy replica (labeled as lazy), and (3)
the primary running with a eager replica (labeled as eager),
in terms of TPC-C transaction throughput, as in Fig. 15. All

123

Parallel replication across formats for scaling out mixed OLTP/OLAP workloads in main-memory… 437

Fig. 15 TPC-C throughput with varying the number of the replayer
threads and TPC-C clients (normalized by the 64-client no-replica
throughput number)

the hardware and client configurations are identical to the
ones described in Sect. 6.1.

The result shows that the primary transaction through-
put is not affected by the replayer performance under the
lazy replication, while the primary transaction throughput
under the eager replication significantly drops as the degree
of the replayer parallelism decreases. However, when suffi-
cient number of replayer threads is assigned (16 or higher for
TC = 32; 32 or higher for TC = 64), the eager replication
does not show any notable performance drop compared to
the lazy replication. According to our analysis, the following
three factors contributes to such good performance of our
eager replication implementation.

– First andmost importantly, theparallel log replaymecha-
nismproposed in this paper plays the key role as indicated
by Fig. 15. If a replica is not able to catch up with the
transactionprocessing throughput of the primary, then the
replication requests will keep being delayed and it will
end up with higher transaction commit time because a
transaction cannot commit until its preceding DML oper-
ations are fully applied to the replicas.

– Second, the eager log shipping mechanism proposed in
this paper is another important contribution factor. Since
the DML log replay operations become overlapped with
the next operations of the same transaction (as illustrated
in Fig. 2), the amount of work that needs to be waited at
the time of transaction commit processing can be signif-
icantly reduced.

– Third, with the log-less replica recoverymechanism pro-
posed in this paper, the implemented eager replication
involves only a single network round trip with its eager
replica at the time of transaction commit differently from
the expensive two-phase commit.

Fig. 16 Transaction commit latency measured during the same exper-
iment with Fig. 15

To see the internal behavior of the eager replication, we
also measured the transaction commit latency during the
same experiment. Figure 16 shows the result measured at the
client side. With eager replication, the transaction commit
time itself significantly increased, compared to lazy replica-
tion: for example, 549us at no-replica (TC = 32), 562us at
lazy (TC = 32), and 1223us at eager (TC = 32). However,
considering that a single transaction in our TPC-C bench-
mark consists of multiple client-server interactions, where
each database query involves a network round trip between
a client and the primary server, such increase at the com-
mit time did not significantly affect the overall transaction
processing throughput.

Even though our client-server benchmark configuration is
to emulate a typical application-to-database configuration in
SAP systems, remark that the increase of the commit latency
by eager replication can turn into more notable performance
drop particularly for the transactions written in stored pro-
cedures, which will be executed fully inside the database
engine. In addition, note that the primary transaction per-
formance under eager replication can be affected by the
network latency between the primary and its replicas, dif-
ferently from lazy replication. In order to further reduce the
inevitable network delay occurring at the eager replication,
using RDMA [28] is another considerable practical option,
but it goes beyond the scope of this paper.

8 Potential future optimizations and
extensions

In this section, we describe ongoing or potential future
extensions of ATR and the technical issues that need to be
addressed for them. Note that, at the time of writing this
paper, most of the extensions discussed in this section are
not yet fully incorporated in SAPHANAproductive versions

123

438 J. Lee et al.

but we present them to highlight flexibility and potentials of
ATR.

8.1 Sub-table replication

So far, we have discussed ATR with assuming that the entire
records and columns of a designated table are replicated. In
addition to it, we are considering two additional levels of
sub-table replication: vertical and horizontal sub-table repli-
cation. In vertical sub-table replication, only a few selected
columns are replicated to replicas. In this configuration, repli-
cas still maintain RVID values which are assigned per record.
Using this RVID column, thematching replica records can be
uniquely identified. The column filter is added to the primary
side to exclude out unnecessary data during ATR log gener-
ation. On the other hand, in horizontal sub-table replication,
only when the new after-update record image meets a pre-
defined predicate (or called record filter), the corresponding
ATR log entry is generated. In this configuration, the record
filter should be applied also when a replica is initialized or
recovered. Note that the vertical sub-table replication and the
horizontal sub-table replication can be used together for the
same table.

8.2 Replication across formats

In Sects. 2 and 3.1, we already presented that ATR can be
used for replication across the OLTP-favored row store and
the OLAP-favored column store based on the ATR’s logical
representation of the changed data set. By further leverag-
ing the ATR’s format-independent expressiveness, we can
consider additional forms of cross-format replication config-
urations as follows.

First, ATR enables the primary table and its replicas to
have different table partitioning schemes. For example, the
primary table can be a non-partitioned row store table, and its
replica table can be a range-partitioned column store table.
Then, the incoming OLTP transactions can be processed
without the additional partition-pruning overhead, while the
OLAP queries can be processed (or parallelized) on its par-
titioned replica table more efficiently. Moreover, it is also
possible that the partitions of a replica table is distributed to
multiple nodes for leveraging more CPU resource for OLAP
queries on the replica table. It can be also considered another
form of multi-replica configuration compared to the config-
uration of having multiple redundant replicas of a primary
table.

Second and similarly, ATR enables the primary table and
its replicas to have different set of secondary indexes or dif-
ferent database configuration such as different checkpoint
interval or different merge interval [11,20] from its delta stor-
age to main storage.

Third, replication to a volatile temporary table is another
thinkable extension option of ATR. With this option, even
at a database node that does not necessarily have its own
persistent storage volume, we can maintain a replica of a
table and then use for scalable query processing.

8.3 Write workload scalability and
semi-multi-master replication

The replicationmechanism discussed so far falls intomaster-
slave replication where a single primary server handling all
the incoming write transactions which are again replicated
to all the read-only replicas. This has been so far a preferred
configuration of ATR due to the following reasons compared
tomulti-master replicationwhere each replica can server not
only read workloads but also write workloads.

– In order to make all the replicas execute the write
transactions in the same order even against conflicting
transactions, the multi-master replication may need to
involve a complex consensus protocol or the increased
possibility of multi-node deadlocks [13].

– The “scale-up” approach rather than the “scale-out”
approach is selected for a high volume of OLTP work-
loads. For example, a large-scale ERP customer is
running SAP HANA on top of a single hardware host
having 16 CPU sockets.

– The “scale-out” approach for the OLTP workloads is still
an option, but, in this case, careful table placement is
needed to avoid the two-phase commit overhead incurred
by multi-node write transactions.

Even though ATR basically takes the master-slave repli-
cation architecture due to the above reasons, it also offers
the option of placing the master copies of tables in different
database nodes. Still, write transactions for a particular table
are directed to a particular database node, but write transac-
tions for another table can be processed in a different database
node in order to distribute write workloads to multiple nodes
overall. We call this architecture semi-multi-master replica-
tion to distinguish from the plain forms of multi-master or
master-slave replication architecture.

In this semi-multi-master replication of ATR, there is a
possibility of multi-node deadlock, but it is automatically
detected by using the existing multi-node deadlock detector
of SAP HANA [23]. In addition, to automatically suggest
optimal table placement for a given workload, we are also
developing a workload-driven replication suggestion tool,
similarly to [7]. By exploiting the SAP HANA Capture and
Replay feature [40], the tool analyzes the captured workload
and finds out whether the overall system performance (in
terms of query performance, two-phase commit overhead,
load balancing, and memory consumption) can be improved

123

Parallel replication across formats for scaling out mixed OLTP/OLAP workloads in main-memory… 439

with adjusting the primary table location and/or adding repli-
cas to particular tables.

8.4 An alternative to handling log serialization
error: log forwarding with out-of-order log
replay

Whena log serialization error is encountered, the correspond-
ing DML replayer waits until the log serialization error is
resolved, as described with Algorithm 1. Alternatively, it is
also possible to forward the waiting-state log entry to a sep-
arate waiter queue in order to keep processing the next log
entries in the normal DML queue. In this case, if a DML log
entry of a transaction is forwarded to a waiter queue and then
the next DML log entry of the same transaction is replayed
in the original normal DML queue, then the DML operations
of the same transaction can be replayed in a different order
than their original execution order. However, with the pro-
posed parallel log replay mechanism, this does not lead to
any issue because the RVID-based record-level serialization
holds even among the DML operations of the same transac-
tion. If two DML operations of the same transaction touch
the same database record and the earlier one is under the
waiting status, then the next DML log entry will be also for-
warded to the waiter queue. Remark that, in this scheme, the
commit processing should be performed after it is ensured
that all the DML log entries distributed to the waiter queue
are replayed. It can be simply implemented by maintaining
a reference counter per replayed transaction.

8.5 Replication log buffer management for better
scalability at the primary

The proposed mechanism introduces a few new critical sec-
tionswhich are implemented by a lock-free structure using an
atomicCAS instruction. The replication log buffer (Sect. 3.2)
and the per-table RVID generator (Sect. 3.1) are such cases at
the primary. Although a CAS operation might still be prob-
lematic on multi-socket hardware, it has been a practical and
viable design choice considering that there are already sev-
eral pre-existing critical sections such as recovery log buffer
and commit timestamp generator [26]. In addition, even the
per-table RVID generator pre-existed in SAP HANA for
more efficient query processing.

In spite of this, in the future, if the multi-socket synchro-
nization overhead of CAS operation becomes a more visible
issue (as the number of hardware sockets increases), it is
another option to create multiple DML log buffers (one per
hardware socket, for example) also at the primary side, sim-
ilarly to the DML log buffers maintained for parallel replay
at the replica. Together with these parallel DML log buffers
at the primary, a single commit log buffer might still be nec-
essary to enforce the strict ordering of transaction commit

log entries, but, by combining with the pre-existing group
commit scheme, the access frequency to the shared commit
log buffer can be further reduced.

8.6 Log size reduction

In order to reduce the size of the log that needs to be shipped,
two potential optimizations can be considered. First, the dis-
cussed sub-table replication (Sect. 8.1) not only reduces the
memory footprint required for the replica tables but also
reduces the size of the replication log that needs to be shipped.
Second, applying a loss-less data compression technique
is another thinkable option to reduce the physical network
usage between the primary and the replicas. To reduce the
CPU consumption involved for compression and decom-
pression, exploiting hardware-accelerated data compression
technique can be applied as programmable NIC and FPGA
are now widely deployed in datacenter-scale [27,38].

8.7 Transaction-consistent online replica creation

In order to deal with dynamic variation of incoming work-
loads, it is a desirable property to add or remove replicas
without service downtime at run time. Particularly, with
increasing demands of cloud computing and multi-tenant
database systems, such elasticity [12,14,15,34,43] is becom-
ing an essential requirement for modern database systems.

To enable adding replicas online and in a transaction-
consistent manner, the following protocol is possible with
ATR. For initializing the target replica table, the primary
creates a table snapshot (or checkpoint) image and copies it
to the replica system. And, for the new changes occurred dur-
ing the snapshot creation and copy operation, a replication
log generator is activated right before creating the snapshot.
At the replica side, if the After-Update RVID of a replica-
tion log entry is smaller than or equal to the current RVID
value of the target replica record, then the replication log
entry is abandoned because its contained change is already
available at the replica side. After the table copy operation
completes, the metadata manager is notified of the existence
of new replica. Then, on the next query execution to the cor-
responding table, the newly added replica becomes a possible
candidate that is considered during query compilation.

In the current implementation of ATR in SAP HANA,
the snapshot creation is performed by a normal transaction
which follows the snapshot isolation consistency level. It
means that the created snapshot contains only the committed
database images.As a result, if therewas an active transaction
at the time of creating the table snapshot and the transaction
had already performed update operations without ATR log
generation, then those previous update operations are not
reflected in any of the created table snapshots or the ATR log
entries. To avoid this problem, when the snapshot creation

123

440 J. Lee et al.

Fig. 17 Replica creation optimization under 1-to-n replication config-
uration

transaction gets its transaction snapshot timestamp (or read
timestamp), a short-term table lock is acquired to disallow the
running of any concurrentwrite transaction on the same table.
Remark that the table lock is released as soon as the snapshot
timestamp is acquired, even before the snapshot image of
the table is created. Even though the described protocol is
already implemented in SAP HANA productive version, we
are in the course of eliminating another coarse-grained lock
unnecessarily acquired by a pre-existing legacy code which
physically copies the table snapshot, at the time of writing
this paper.

8.8 Non-disruptive replica creation under 1-to-n
replication

When there is already an active replica in the system, the table
snapshot can be created not necessarily from the primary but
from one of the existing replicas. Even though the existing
replica can provide an outdated state of the table snapshot
compared to the primary’s, the gap can be filled by running
the RVID-based recovery procedure of Algorithm 5 between
the primary and the new replica as the next step, which is also
illustrated in Fig. 17. With this optimization, we can save
CPU and network resources of the primary system during
the online replica addition and also we can minimize the
interference to the active write transactions running at the
primary.

9 Related work

9.1 Database replication

Database replication is a widely studied and popular concept
for achieving higher availability and higher performance.
There are a number of different replication techniques
depending on their purposes or application domains.

Cross-datacenter system replication is an option for
increasing high availability against datacenter outages [6,33,

39]. For such a high availability purpose, even SAP HANA
provides another different replication option, called HANA
System Replication[39], which basically focuses on repli-
cating entire database contents across data center. On the
contrary, HANA ATR focuses on load balancing and scal-
able read performance by replicating a selected list of tables
within a single data center although we do not exclude the
possibility of extending ATR for the purpose of high avail-
ability or geo-replication.

When we need to allow the replication system to span
heterogeneous database systems while decoupling the repli-
cation engine from the underlying DBMS servers or to
transform the extracted source data as in ETL processing,
middleware-based database replication has been another
practical technique [2,4,10,35,41,42]. However, differently
from those techniques, HANA ATR embeds the replication
engines inside the DBMS kernel aiming at the real-time
replication between HANA systems without making any
additional hop during the replication.

Depending on where the incoming write workloads can
be processed, there are two replication options: master-slave
replication and multi-master replication. In the multi-master
replication [2,3,10,17], each replica can serve both read and
write workloads. However, in order to make all the repli-
cas execute the write transactions in the same order even
against conflicting transactions, the multi-master replica-
tion may need to involve a complex consensus protocol
or the increased possibility of multi-node deadlocks [13].
Like [9,16,35],ATR takes themaster-slave replication archi-
tecture, simplifying the transaction commit protocol and
avoiding the danger of multi-master deadlocks. However,
in contrast to [9,16,35], ATR employs the transparent and
automatic routing protocol as explained in Sect. 2 so that the
application developer need not be concerned about the loca-
tion of the primary copy of a particular table. Additionally,
based on its table-wise replication feature, ATR offers the
option of the semi-multi-master replication as discussed in
Sect. 8.3.

9.2 Lazy replication

Compared to [17] which relies on eager (or synchronous)
replication, ATR basically follows lazy (or asynchronous)
replication to reduce the overhead at the primary-side trans-
action execution as in [3,5,9,10,16,35]. However, differently
from those other lazy replication techniques, ATR is opti-
mized to reduce the visibility delay between the primary and
its replicas by employing a couple of optimizations such as
early log shipping and parallel log replay. Note that [2,35]
discuss techniques to achieve stronger consistency under lazy
replication by letting the replica-side read queries wait until
certain conditions are met. It is similar to the eager replica-
tion option basedon the reader-pays-costmodel, discussed in

123

Parallel replication across formats for scaling out mixed OLTP/OLAP workloads in main-memory… 441

Sect. 7.Regarding the early log shipping, [32] also proposed a
similar idea and showed how immediate update propagation,
which does not wait for the commit of the write transaction,
improves data freshness.

As also described in [44], lazy (or asynchronous) repli-
cation can be seen as a form of eventual consistency. [44]
discusses about variations of eventual consistencymodel and
[1] discusses about providing expected bounds on data stal-
eness under eventual consistency model.

9.3 Parallel replication

For parallel replay under lazy replication, [16] relies on a
run-time inter-transaction dependency tracker, which may
become a contention point as shown in Sect. 6.2. Compared
to such a pessimistic parallel log replay approach, ATR
employs an optimistic lock-free parallel log replay algorithm
by leveraging the record version ID of MVCC implemen-
tation. In [16], transactions belonging to the same barrier
group can be committed out of order, but their changes
become visible to the replica queries after all the transac-
tions in the barrier group are replayed and committed. As a
result, the barrier length can affect the log replay through-
put and the visibility delay; for example, if the length of
a barrier increases, the log replay throughput can increase,
but the visibility delay may increase. In ATR, all the com-
mit log replay operations are serialized by the single queue
and single replayer, and the committed transaction results
become immediately visible to the replica queries. In addi-
tion to the optimistic lock-free parallel log replay algorithm,
with careful separation of the serialized portion of commit
operations from the other parallelizedDML, pre-commit, and
post-commit operations,ATR achieves both high-throughput
parallel log replay and shorter visibility delay.

9.4 Cross-format replication

The idea itself of scaling out mixed OLTP/OLAP workloads
with replication is not a new one. For example, [31] extends
Hyper [18] to achieve scalable analytics performance with a
master-slave replication. Particularly, [31] takes a different
approach than ATR in that [31] multicasts the redo log gener-
ated at the primary node,whileATRdecouples the replication
log from the redo log.

Most recently, [28] proposed BatchDB where OLTP and
OLAP replicas can have different storage layouts to effi-
ciently handle hybrid OLTP and OLAP workloads. In spite
of having similar goals, ATR is clearly distinguished from
BatchDB in its internal mechanisms. One of the key ideas
of BatchDB is to enqueue OLAP queries at replicas and
then execute at a time in batches to implicitly share the
resource among the executed queries. Although BatchDB
also uses RowID for fast application of updates to replicated

records, there is no deeper discussion on parallel replica-
tion based on RVID or log-less replica recovery. In addition,
while BatchDB focuses only on lazy replication, ATR is
extended also to high-performance eager parallel replication
enabled byATR’s optimizations for minimizing the propaga-
tion delay between the primary and its replicas. Remark that
ATR implementation has been already available in produc-
tive versions of SAPHANA since its SPS 10 (released in July
2015) [22,25].While both of [28,31] also discuss about repli-
cating from a row store to a column store, we have extended
the possible replication configurations into more dimensions
as in Sect. 8.2.

Conventional logical logging mechanisms can also meet
the need of cross-format replication naturally. However, as
described in Sect. 2.2, SAP HANA recovery log format
is tightly coupled with the physical format of the target
table type. Additionally, changing the recovery log format of
already deployed productive systems was not an easy practi-
cal option. Under this given background, we have decided to
decouple and separate the replication log from the storage-
level recovery log and then, it led to several subsequent
unconventional-but-practical design choices like early log
shipping, RVID-based parallel log replay and RVID-based
log-less replica recovery.

Compared to such conventional logical logging mech-
anisms, there might be concern about maintaining two
different code paths. However, especially based on the pro-
posed log-less replica recovery mechanism, the storage-level
recovery log of the primary system becomes the single point
of truth for not only primary recovery but also replica recov-
ery, which excludes the possibility of logical conflict or
divergence between the primary and the replica during recov-
ery.

9.5 Pub/sub-style logical replication

Databus [8] is a source-agnostic change data capture sys-
tem, which provides ways of capturing data change events
from a source system in a transaction-consistent order. For
this, it relies on Trigger or a parser of binary-format recovery
log (in case that the format is interpretable). With this inher-
ent decoupling between the source system and the change
capture system, Databus can also be used to offer the cross-
format logical replication.However, our proposed replication
mechanism is differentiated from [8] in the following aspects.

• Contrasted to ATR’s in-database replication (Sect. 2.2),
[8] uses an external process (called replay process) to
capture changes from the primary database (by Trigger
of by parsing the recovery log). In this sense, as pointed
out in Sect. 2.2, the approach in [8] can involve an addi-
tional network round trip for replication, compared to the
proposed ATR mechanism.

123

442 J. Lee et al.

• Contrasted to push-based replication inATR, [8] pulls the
changes from the primary database first by the replay pro-
cess and then again by the replication consumers (called
subscripotion clients).

• Differently from ATR that relies on RVID for parallel
log replay with record-wise partial ordering, [8] relies
on a total ordering based on global commit timestamp to
enforce the transactional ordering during replication. In
addition, [8] does not discuss about any parallelism dur-
ing replay. Moreover, because the commit timestamp is
determined at the time of the transaction commit, it can-
not take the advantage of the early log shipping proposed
in this paper.

In a summary, [8] has a different design criteria fromATR
in that it is designed primarily for focusing on reducing the
propagation delay between the primary and its replicas.

Kafka [19] is another well-known pub/sub messaging-
based replication system. From the authors’ perspectives,
Kafka is orthogonal to what we propose with ATR. Com-
pared to Kafka which provides an intermediate store with
producer and subscriber APIs, ATR is more about (1) how
to generate change logs from a source database system for
replication and about (2) how to replay the generated repli-
cation logs for a target database system. In that sense, it is
not impossible to combine ATR with a messaging system
like Kafka. The generated ATR log entries can be stored in
a remote messaging system and then, replicas can be regis-
tered to the messaging system as subscribers. The replicas,
instead of receiving the ATR log entries directly from the
primary system, can receive the ATR log entries by using the
messaging system’s consumer API. After receiving them, the
proposed ATR parallel replay scheme can be applied at the
subscriber side for better efficiency.

9.6 ETL

Althoughwe have already comparedwith conventional ETL-
based replication approach in Sect. 1, it is worth mentioning
that ETL is not only for replication but also for data transfor-
mation which helps accelerate reporting queries. However,
contrasted to this conventional ETL-based OLAP system
management, SAP has been pursuing a different vision and
principle of having a common physical database schema
across OLTP and OLAP systems without relying on interme-
diate data transformation layers between them [30,36]. This
new architecture paradigm is beneficial not only for reduc-
ing the data propagation delay between OLTP and OLAP
systems, but also for eliminating the application-side burden
of maintaining the transformation rules between the physi-
cal database schema and the corresponding reporting queries
used by BI tools. For more systematic and consistent map-
ping between the physical database schema and BI tool,

SAP HANA has also offered to create a layered architecture
of database views on top of the common database schema,
instead of ETL-based application-managing data transfor-
mation, as described in more detail in [29,30]. Note that it is
already possible to additionally create database views on top
of the ATR replicas.

10 Conclusion

In this paper, we presented an efficient and scalable replica-
tion architecture called ATR in SAP HANA.We empirically
showed that ATR enables real-time replication with sub-
second visibility delay even for update-intensive workloads,
showing scalable OLAP performance without notable over-
head to the primary.

We first proposed the novel replication architecture for
scaling out mixed workloads of OLTP and OLAP along with
important design choices made. We then proposed an effi-
cient, scalable log generation and parallel replay scheme.
Here, the log buffer at log generation is implemented by a
lock-free structure using an atomic CAS instruction, while
a parallel log replayer exploits a novel, optimistic lock-free
scheme by exploiting characteristics of MVCC. Specifically,
we proposes two novel concepts of (1) the parallel log replay
with RVID-based record-wise partial ordering and (2) the
so-called optimistic interleaving technique for higher par-
allelism under high-conflict workloads. In order to support
full-fledged replication in a commercial in-memory database
system, we next proposed the RVID-based log-less post-
failure replica recovery mechanism and presented various
implementation issues including how to handle various trans-
actional consistency issues under the proposed replication
architecture.

Through extensive experiments with a concrete imple-
mentation available in a commercial main-memory DBMS
product, we showed that ATR achieves sub-second visibility
delay even for update-intensive workloads, providing scal-
able, OLAP performance without notable overhead to the
primary. In addition, with extending to eager replication,
we demonstrated how the ATR’s parallel log replay and
its log-less replica recovery mechanisms improve run-time
transaction performance under eager replication.

Overall, we believe that we proposed a modern, practi-
cal, and production-grade replication architecture and also
our comprehensive study for replication across formats lays
a foundation for future research in scale-out in-memory
database systems.

Acknowledgements The authors would like to acknowledge Hyejeong
Lee, Deok Koo Kim, Kyungyul Park, Christian Bensberg, Martin Hei-
del, JoernSchmidt,MichaelMuehle,MihneaAndrei,AlexanderBoehm
and many other colleagues in HANA development team who supported
and helped ATR development. Also, the authors would like to deeply

123

Parallel replication across formats for scaling out mixed OLTP/OLAP workloads in main-memory… 443

thank anonymous VLDB Journal reviewers who provided invaluable
comments and suggested ideas to improve the contents.

References

1. Bailis, P., Venkataraman, S., Franklin, M.J., Hellerstein, J.M., Sto-
ica, I.: Quantifying eventual consistencywith PBS. VLDB J. 23(2),
279–302 (2014)

2. Bornea, M.A., Hodson, O., Elnikety, S., Fekete, A.: One-copy seri-
alizability with snapshot isolation under the hood. In: Proceedings
of the 27th IEEE ICDE Conference, pp. 625–636 (2011)

3. Breitbart, Y., Komondoor, R., Rastogi, R., Seshadri, S., Silber-
schatz, A.: Update propagation protocols for replicated databases.
In: Proceedings of the ACM SIGMOD Conference, pp. 97–108
(1999)

4. Cecchet, E., Candea, G., Ailamaki, A.:Middleware-based database
replication: the gaps between theory and practice. In: Proceedings
of the ACM SIGMOD Conference, pp. 739–752 (2008)

5. Chairunnanda, P., Daudjee, K., Özsu, M.T.: Confluxdb: multi-
master replication for partitioned snapshot isolation databases.
PVLDB 7(11), 947–958 (2014)

6. Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman,
J.J., Ghemawat, S., Gubarev, A., Heiser, C., Hochschild, P., et al.:
Spanner: Googles globally distributed database. ACMTrans. Com-
put. Syst. 31(3), 8 (2013)

7. Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: a workload-
driven approach to database replication and partitioning. Proc.
VLDB Endow. 3(1–2), 48–57 (2010)

8. Das, S., Botev, C., Surlaker, K., Ghosh, B., Varadarajan, B.,
Nagaraj, S., Zhang, D., Gao, L., Westerman, J., Ganti, P., et al.:
All aboard the databus!: Linkedin’s scalable consistent change data
capture platform. In: Proceedings of the Third ACM Symposium
on Cloud Computing, p. 18. ACM (2012)

9. Daudjee, K., Salem, K.: Lazy database replication with snapshot
isolation. In: Proceedings of the VLDB Conference, pp. 715–726
(2006)

10. Elnikety, S.,Dropsho, S.G., Pedone, F.: Tashkent: uniting durability
with transaction ordering for high-performance scalable database
replication. In: Proceedings of the EuroSys Conference, pp. 117–
130 (2006)

11. Färber, F., May, N., Lehner, W., Große, P., Müller, I., Rauhe, H.,
Dees, J.: The SAP HANA database—an architecture overview.
IEEE Data Eng. Bull. 35(1), 28–33 (2012)

12. Galante, G., de Bona, L.C.E.: A survey on cloud computing elas-
ticity. In: 2012 IEEE Fifth International Conference on Utility and
Cloud Computing (UCC), pp. 263–270. IEEE (2012)

13. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of repli-
cation and a solution. ACM SIGMOD Rec. 25(2), 173–182 (1996)

14. Heinze, T., Jerzak, Z., Hackenbroich, G., Fetzer, C.: Latency-aware
elastic scaling for distributed data stream processing systems. In:
Proceedings of the 8th ACM International Conference on Dis-
tributed Event-Based Systems, pp. 13–22. ACM (2014)

15. Herbst, N.R., Kounev, S., Reussner, R.H.: Elasticity in cloud com-
puting: what it is, and what it is not. In: ICAC, pp. 23–27 (2013)

16. Hong,C., Zhou,D.,Yang,M.,Kuo,C., Zhang, L., Zhou, L.:KuaFu:
closing the parallelism gap in database replication. In: Proceedings
of the 29th IEEE ICDE Conference, pp. 1186–1195 (2013)

17. Kemme, B., Alonso, G.: Don’t be lazy, be consistent: Postgres-R,
a new way to implement database replication. In: Proceedings of
the 26th VLDB Conference, pp. 134–143 (2000)

18. Kemper, A., Neumann, T.: Hyper: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots. In:
Proceedings of IEEE ICDE Conference, pp. 195–206 (2011)

19. Kreps, J., Narkhede, N., Rao, J., et al.: Kafka: A distributed mes-
saging system for log processing. In: Proceedings of the NetDB,
pp. 1–7 (2011)

20. Krueger, J., Kim,C., Grund,M., Satish,N., Schwalb,D., Chhugani,
J., Plattner, H., Dubey, P., Zeier, A.: Fast updates on read-optimized
databases using multi-core CPUs. PVLDB 5(1), 61–72 (2011)

21. Lee, J., Kim, K., Cha, S.K.: Differential logging: a commutative
and associative logging scheme for highly parallel main memory
database. In: Proceedings of the 17th IEEE ICDE Conference, pp.
173–182 (2001)

22. Lee, J., Kim, K.H., Na, H.J., Park, C.G., Lee, H.: Rowid-based data
synchronization for asynchronous table replication.USPatentApp.
14/657,938 (2015)

23. Lee, J., Kwon, Y.S., Färber, F., Muehle, M., Lee, C., Bensberg,
C., Lee, J.Y., Lee, A.H., Lehner, W.: SAP HANA distributed
in-memory database system: transaction, session, and metadata
management. In: Proceedings of the 29th IEEE ICDE Conference,
pp. 1165–1173 (2013)

24. Lee, J.,Moon, S., Kim,K.H., Kim,D.H., Cha, S.K., Han,W.S.: Par-
allel replication across formats in SAPHANAfor scaling outmixed
OLTP/OLAP workloads. PVLDB 10(12), 1598–1609 (2017)

25. Lee, J., Park, C.G., Na, H.J., Kim, K.H.: Transactional and paral-
lel log replay for asynchronous table replication. US Patent App.
14/657,948 (2015)

26. Lee, J., Shin, H., Park, C.G., Ko, S., Noh, J., Chuh, Y., Stephan,
W., Han, W.S.: Hybrid garbage collection for multi-version con-
currency control in SAP HANA. In: Proceedings of the ACM
SIGMOD Conference, pp. 1307–1318 (2016)

27. Li, B., Ruan, Z., Xiao, W., Lu, Y., Xiong, Y., Putnam, A., Chen,
E., Zhang, L.: KV-direct: high-performance in-memory key-value
store with programmable NIC. In: Proceedings of the 26th Sympo-
sium on Operating Systems Principles, pp. 137–152. ACM (2017)

28. Makreshanski, D., Giceva, J., Barthels, C., Alonso, G.: BatchDB:
efficient isolated execution of hybrid OLTP + OLAP workloads
for interactive applications. In: Proceedings of the ACM SIGMOD
Conference, pp. 37–50 (2017)

29. May, N., Böhm, A., Block, M., Lehner, W.: Managed query
processing within the SAP HANA database platform. Datenbank-
Spektrum 15(2), 141–152 (2015)

30. May, N., Bohm, A., Lehner, W.: SAP HANA—the evolution of
an in-memory DBMS from pure OLAP processing towards mixed
workloads. Datenbanksysteme für Business, Technologie undWeb
(BTW 2017) (2017)

31. Mühlbauer, T., Rödiger, W., Reiser, A., Kemper, A., Neumann, T.,
et al.: Scyper: a hybrid OLTP& OLAP distributed main memory
database system for scalable real-time analytics. In: BTW, pp. 499–
502 (2013)

32. Pacitti, E., Simon, E.: Update propagation strategies to improve
freshness in lazy master replicated databases. VLDB J. 8(3–4),
305–318 (2000)

33. Patterson, S., Elmore, A.J., Nawab, F., Agrawal, D., El Abbadi, A.:
Serializability, not serial: concurrency control and availability in
multi-datacenter datastores. PVLDB 5(11), 1459–1470 (2012)

34. Perez-Sorrosal, F., Patiño-Martinez, M., Jimenez-Peris, R.,
Kemme, B.: Elastic SI-Cache: consistent and scalable caching in
multi-tier architectures. VLDB J. 20(6), 841–865 (2011)

35. Plattner, C., Alonso, G.: Ganymed: Scalable replication for trans-
actional web applications. In: Proceedings of the ACM USENIX
Middleware Conference, pp. 155–174 (2004)

36. Plattner, H.: A common database approach for OLTP and OLAP
using an in-memory column database. In: Proceedings of the ACM
SIGMOD Conference, pp. 1–2. ACM (2009)

37. Psaroudakis, I., Wolf, F., May, N., Neumann, T., Böhm, A., Ail-
amaki, A., Sattler, K.U.: Scaling up mixed workloads: a battle of
data freshness, flexibility, and scheduling. In: Technology Confer-

123

444 J. Lee et al.

ence on Performance Evaluation and Benchmarking, pp. 97–112.
Springer (2014)

38. Putnam, A., Caulfield, A.M., Chung, E.S., Chiou, D., Constan-
tinides, K., Demme, J., Esmaeilzadeh, H., Fowers, J., Gopal, G.P.,
Gray, J., et al.: A reconfigurable fabric for accelerating large-scale
datacenter services. In: 2014 ACM/IEEE 41st International Sym-
posium onComputer Architecture (ISCA), pp. 13–24. IEEE (2014)

39. SAP: high availability for SAP HANA. https://archive.sap.com/
documents/docs/DOC-65585

40. SAP: SAP HANA capture and replay tool. https://blogs.sap.com/
2016/06/14/introducing-the-new-sap-hana-capture-and-replay-
tool-available-with-sap-hana-sps12/

41. SAP: SAP LT (SLT) replication server. http://www.sap.com/
community/topic/lt-replication-server.html

42. Simitsis, A., Vassiliadis, P., Sellis, T.: Optimizing ETL processes
in data warehouses. In: Proceedings of the 21st IEEE ICDE Con-
ference, pp. 564–575 (2005)

43. Sousa, F.R., Machado, J.C.: Towards elastic multi-tenant database
replication with quality of service. In: Proceedings of the 2012
IEEE/ACM Fifth International Conference on Utility and Cloud
Computing, pp. 168–175. IEEE Computer Society (2012)

44. Vogels, W.: Eventually consistent. Commun. ACM 52(1), 40–44
(2009)

45. Weikum, G., Vossen, G.: Transactional Information Systems: The-
ory, Algorithms, and the Practice of Concurrency Control and
Recovery. Elsevier, Amsterdam (2001)

46. Willhalm, T., Popovici, N., Boshmaf, Y., Plattner, H., Zeier, A.,
Schaffner, J.: SIMD-scan: ultra fast in-memory table scan using
on-chip vector processing units. Proc. VLDB Endow. 2(1), 385–
394 (2009)

123

https://archive.sap.com/documents/docs/DOC-65585
https://archive.sap.com/documents/docs/DOC-65585
https://blogs.sap.com/2016/06/14/introducing-the-new-sap-hana-capture-and-replay-tool-available-with-sap-hana-sps12/
https://blogs.sap.com/2016/06/14/introducing-the-new-sap-hana-capture-and-replay-tool-available-with-sap-hana-sps12/
https://blogs.sap.com/2016/06/14/introducing-the-new-sap-hana-capture-and-replay-tool-available-with-sap-hana-sps12/
http://www.sap.com/community/topic/lt-replication-server.html
http://www.sap.com/community/topic/lt-replication-server.html

	Parallel replication across formats for scaling out mixed OLTP/OLAP workloads in main-memory databases
	Abstract
	1 Introduction
	2 Architecture and design choices
	2.1 Overall architecture
	2.2 Design choices

	3 Log generation and replay
	3.1 Log records
	3.2 Log generation
	3.3 Parallel log replay
	3.4 Optimistic interleaving for high-conflict workloads
	3.5 Further optimizations and implementation issues
	3.5.1 DML replay with skipped constraint checks
	3.5.2 Light-weight commit replay
	3.5.3 MVCC at replicas
	3.5.4 Query processing at replicas
	3.5.5 Handling DDL operations

	4 Replica recovery
	4.1 Log-less replica recovery
	4.2 Redo and undo logging at replicas for recovery and transaction abort
	4.3 Adaptive query routing for handling replica errors

	5 Handling additional transaction consistency issues
	5.1 Ensuring transactional consistency among multiple replicas with wait-and-forward scheme
	5.2 Ensuring read-your-write consistency for read queries in a write transaction
	5.3 Ensuring monotonic read consistency for consecutive read queries

	6 Experiments
	6.1 Experimental setup
	6.2 Multi-core scalability with parallel log replay
	6.3 Visibility delay
	6.4 Impact of inter-transaction conflict
	6.5 Replication overhead
	6.6 Multi-replica scalability under mixed OLTP/OLAP workload

	7 Eager parallel replication
	7.1 Implementation
	7.2 Experimental evaluation

	8 Potential future optimizations and extensions
	8.1 Sub-table replication
	8.2 Replication across formats
	8.3 Write workload scalability and semi-multi-master replication
	8.4 An alternative to handling log serialization error: log forwarding with out-of-order log replay
	8.5 Replication log buffer management for better scalability at the primary
	8.6 Log size reduction
	8.7 Transaction-consistent online replica creation
	8.8 Non-disruptive replica creation under 1-to-n replication

	9 Related work
	9.1 Database replication
	9.2 Lazy replication
	9.3 Parallel replication
	9.4 Cross-format replication
	9.5 Pub/sub-style logical replication
	9.6 ETL

	10 Conclusion
	Acknowledgements
	References

