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Abstract
This paper addresses the problem of matching and clustering users based on their geolocated posts. Individual posts are
matched according to spatial distance and textual similarity thresholds. Then, user similarity is defined as the ratio of their
posts that match each other. Based on these criteria, we introduce efficient algorithms for identifying pairs of matching users in
a large dataset, as well as for computing the top-k matching pairs. We then proceed to identify spatio-textual user clusters. For
this purpose, we use the Louvainmethod for community detection. Our algorithms operate on a user graphwhere edge weights
represent spatio-textual user similarities. Since the exact user similarity graph can be prohibitively expensive to compute, we
exploit our previous algorithms to derive efficient methods that reduce execution time both by avoiding to compute exact
similarity scores and by reducing the number of similarity calculations performed. The presented solution allows a trade-off
between computation time and quality of detected clusters. The proposed algorithms are evaluated using three real-world
datasets.

Keywords Spatio-textual join · Set similarity join · Spatio-textual clustering

1 Introduction

Social networking sites, such as Twitter, Flickr, Facebook,
or Foursquare, attract millions of users generating a multi-
tude of content daily. According to various online statistics
(August 2016), Twitter has more than 300 million monthly
active users, generating more than 500 million tweets per
day. Moreover, more than 80% of these users access Twitter
via a mobile device. This user-generated content comprises
primarily textual information (e.g., status updates, short mes-
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sages, tags). In addition, an increasingly large portion of it
is geotagged, being produced via GPS-enabled devices, or
can be geotagged via available geocoding tools and services.
Combining this textual and spatial information can reveal
valuable insights about user preferences, interests, behaviors,
and habits.

Finding users with similar behavior is fundamental for
various types of analyses. In this work, we focus on identi-
fying similar users based on their spatio-textual “footprint”,
i.e., the location and content of their geotagged posts. Some
users may often visit the same or nearby places but may
be interested in different things; vice versa, other users may
share common topics and interests but may be situated far
apart. Hence, by considering their combined spatio-textual
similarity, we aim at discovering users that match in both cri-
teria, i.e., users that tend to visit the same or nearby locations
and generate similar posts.

An example is presented in Fig. 1. This depicts a set of
8 spatio-textual objects (e.g., geolocated tweets), denoted as
o1 to o8, belonging to 3 different users, u1, u2 and u3. Each
object is associated with a label indicating the user it belongs
to and the keywords it contains. Assume that two posts match
if they contain at least one common keyword and if, addition-
ally, the spatial distance of their locations is below a given
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Fig. 1 Example of geolocated posts by three users

threshold, as illustrated on the map. Users u1 and u2 have
posts in nearby locations (o1, o2), but refer to different topics
(do not share any common keywords). In contrast, users u1
and u3 are more similar spatio-textually, as they have two
pairs of posts, (o1, o3) and (o4, o7), that are both spatially
close and contain a common keyword.

In this work, we do not rely on social links between users
(e.g., friends or followers). This differentiates our problem
setting from works that aim at discovering communities on
the users’ social graph (e.g., [14,21,33]). Instead, the user
graph in our case is based on spatio-textual user similarities
rather than social connections. We consider social relation-
ships among users as an orthogonal criterion. In several
applications, such as in geomarketing, mobile advertisement,
or urban planning, it is important to identify groups of users
with similar spatio-textual characteristics, regardless of the
existence of social relations among them.

We model the users’ posts as spatio-textual objects, each
comprising a location and a set of keywords (e.g., tags
attached to a photograph, hashtags contained in a tweet, or
named entities extracted from a text message). Accordingly,
we represent each user by the set of her geotagged posts.
These may span the whole lifetime of the user or could
be restricted to a specific time period. Based on these, we
define the spatio-textual similarity of two users. Then, we
address two problems: (a) how to efficiently compute pairs of
matching users and (b) how to efficiently partition users into
“communities” according to their spatio-textual similarities.

Queries on spatio-textual data have been extensively stud-
ied, considering several variants, including Boolean range
queries, top-k queries, and k-nearest neighbor queries [12].
A typical application of suchqueries is location-based search,
where the user provides her location and a set of keywords,
and the query returns a set of objects that contain one or more
of these keywords and are filtered or ranked by proximity to
the user’s location. The proposed solutions rely on hybrid
spatio-textual indices. Efficient algorithms for spatio-textual
similarity joins have also been proposed [8]. In this case,
given a dataset of spatio-textual objects, and two thresholds
δ and τ , the join returns those pairs of objects having spa-

tial distance below δ and textual similarity above τ . Typical
applications include, for example,matchingPoints of Interest
from different sources or matching geotagged photographs
from different users. However, all above works match pairs
of spatio-textual objects. Instead, in our setting, each user
is represented by a set of such spatio-textual objects. This
makes the problem more complex and raises the need for
new algorithms to address it efficiently.

We model the task of finding similar users based on
their geotagged posts as a Spatio-Textual Point-Set Simi-
larity Join (STPSJoin) query. First, we present a baseline
algorithm, S-PPJ-C, which extends the PPJ-C algorithm
[8], designed for individual spatio-textual objects, to oper-
ate on sets of such objects. Then, we propose two optimized
algorithms, S-PPJ-B and S-PPJ-F. The former applies
an early termination condition, while the latter uses a filter-
and-refinement strategy to drastically prune the search space.
These algorithms significantly reduce the number of compar-
isons required, both in terms of pairs of users and in terms
of individual spatio-textual objects for each candidate user
pair. Furthermore, we adapt these methods to address the
top-k variant of the STPSJoin query, which returns only
the top-k pairs of users with the highest similarity scores.

Building upon these methods, we proceed to address
the problem of identifying spatio-textual user communities.
We construct a user graph where edge weights represent
spatio-textual user similarity scores. Then, we assign users
to clusters by partitioning the graph in such a way that users
belonging to the same cluster have higher spatio-textual simi-
larity to each other than to users in other clusters. Partitioning
is achieved using the Louvain method, a commonly used
method for extracting communities from large networks [7].
This belongs to a family of algorithms that are based on the
concept of modularity. Given a partitioning of a network,
modularity provides a quantitative measure of its quality
by measuring the density of edges inside communities to
edges outside communities. The partitioning with the high-
est modularity score is the theoretically optimal one. Since
examining all possible partitionings is practically infeasible,
the Louvain method provides a greedy optimization algo-
rithm for that task.

Applying the Louvain method requires as input a user
graph where edge weights represent the importance of links
between users. Unlike a social network graph, where these
links are explicitly known (e.g., friends or followers), in
our case the goal is to detect user communities based on
spatio-textual similarities. Thus, to construct a complete and
exact spatio-textual user graph, the spatio-textual similari-
ties among all pairs of users have to be calculated, which is
impractical for a large number of users. To overcome this
problem, we propose a set of methods that reduce computa-
tion time by avoiding to compute the spatio-textual similarity
of all pairs of users and/or the exact similarity scores. The
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main idea is to compute only a partial and approximate repre-
sentation of the user similarity graph and apply the Louvain
method on it. The goal is to reduce execution time, while the
quality of the detected communities using this partial graph
should still be as close as possible to the quality of those com-
munities computed directly on the complete, exact graph.

The main contributions of our work are as follows.

– We formally define the spatio-textual point-set similarity
join (STPSJoin) query, which extends and generalizes
the spatio-textual similarity join for the case of point sets,
introducing also its top-k variant.

– We address the problem of spatio-textual user matching,
through a series of algorithms for efficiently evaluating
both the threshold-based and the top-k variant of the
STPSJoin query.

– We introduce and formally define the problem of spatio-
textual user clustering,modeling it as a community detec-
tion problem on a spatio-textual user similarity graph.

– We present a series of algorithms that significantly speed
up the computation of user clusters relying on different
approximations of the user graph, while also allowing a
trade-off between the execution time and the quality of
the identified clusters.

– Finally, we perform an extensive experimental evalua-
tion using three large, real-world datasets. For the user
matching problem, the results indicate that the proposed
algorithms improve the execution time by an order of
magnitude or more compared to a baseline method. For
the clustering problem, the proposed techniques manage
to significantly reduce the time required to identify user
clusters, while achieving comparable results in terms of
cluster quality.

This paper is an extension of our earlier work [18], where
we have first introduced the STPSJoin query and the algo-
rithms for its evaluation. Here, we build upon these methods
and extend our approach to address the problem of spatio-
textual user clustering.

The remainder of this paper is structured as follows: Sec-
tion 2 reviews related work. Section 3 formally defines the
user matching and clustering problems, while Sects. 4 and 5
present our algorithms. Section 6 presents the experimental
evaluation of our proposed approaches. Section 7 concludes
the paper.

2 Related work

2.1 Spatio-textual queries

To evaluate spatial keyword queries efficiently, current
research enables the combination of spatial and textual

indexes into hybrid spatio-textual structures. Established spa-
tial indexes, including the R-tree, grid, and space-filling
curves, have been combined with textual indexes, including
inverted files and signature files. Characteristic examples are
the indexes described in [51]. For instance, the R*-tree-IF
is a hybrid structure where the top-level index comprises an
R*-tree with inverted files attached to its leaf nodes. Con-
versely, in the IF-R*-tree the top-level index is an inverted
file, in which the posting lists are indexed by an R*-tree. In
a similar manner, the IR-tree is a hybrid index based on an
R-tree, where each node is enhanced with a reference to an
inverted file indexing the objects contained in the sub-tree
rooted at that node [17,45]. Other combinations have also
been investigated. For example, in [42], inverted files have
been combined with a grid. A similar approach is followed
in [13], but utilizing space-filling curves for spatial index-
ing. In [24], R-trees are combined with signature files, which
are stored internally in the nodes of the tree. In [37], aR-
Trees [34] are combined with inverted files. In the I3 index
[47], a quadtree is used for each individual keyword to spa-
tially index the set of documents containing it. The RCA
approach [48] uses only an inverted index, but maintains two
inverted lists for each keyword. Thefirst is a standard inverted
list which stores the documents containing the keyword in
decreasing order of relevance. The second stores documents
according to the Z-order encoding of their coordinates.

Based on these, it is possible to characterize existing
approaches as “text-first” or “space-first”. A performance
comparison along these lines is presented in [15]. Further-
more, a description of different variants of spatial keyword
queries, including Boolean kNN queries, top-k kNN queries
and Boolean range queries, and a comprehensive survey and
experimental evaluation of existing algorithms can be found
in [12].

Similarly to these works, our algorithms for spatio-textual
point set join make use of hybrid spatio-textual index struc-
tures, in particular a spatial grid enhanced with inverted lists
on its cells.

2.2 Similarity joins

Similarity joins return pairs of objects from given sets that
satisfy a predefined similarity threshold. Next, we consider
relevant types of joins.

Set similarity joins Set similarity joins identify pairs of
sets, from two given collections, that have high similarity.
This task is computationally challenging. A naive approach
requires the consideration of the similarity between every
possible pair of objects across sets. Due to their wide appli-
cations, set similarity joins have been extensively studied,
especially with respect to textual characteristics, and a series
of optimizations have been proposed. In [38], an inverted
index-based probing method is proposed to reduce the num-
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ber of potential candidates. In [11], it is observed that the
prefixes of potential candidates must satisfy a minimal over-
lap. The ALL-PAIRS algorithm [5] further optimizes the
size of the inverted index by visiting the tokens associated
with every object with respect to their precomputed frequen-
cies while also reducing the size of the indexing prefix by
ordering the objects by their size.More recently, the proposed
algorithms include the Adapt-Join [44] and PPJOIN+
[46]. The latter builds on ALL-PAIRS and introduces a posi-
tional filtering principlewhich exploits the ordering of tokens
and operates on both the prefix and the suffix of the tokens
of objects. Finally, an experimental analysis and evaluation
on string similarity joins are presented in [28].

In our work, we use PPJOIN+ as an internal step of some
of our algorithms,when needed to efficiently compute textual
similarity joins.

Spatial joins Spatial joins return pairs of objects whose
spatial distance is below a given threshold. Data structures
and algorithms for spatial joins have been widely studied in
the literature (see [27] for a survey). Both space partitioning
and data partitioning structures have been applied for spatial
joins. A commonly used algorithm is the one proposed in [9].
It traverses anR-tree starting from the root node and checking
for pairs of child nodes with intersecting ε-extended mini-
mum bounding rectangles (MBRs). An ε-extended rectangle
is obtained by extending an MBR in every dimension by a
given spatial threshold ε. Intersecting nodes are discovered
following the plane sweeping method.

However, the problem of spatial joins over point sets
has not received much attention. Some works have inves-
tigated similarity search for a collection of spatial point-set
objects based on theHausdorff distance [1,2]. Themotivation
behind that work is highly relevant to the STPSJoin query;
however, there are important differences. We consider enti-
ties comprising sets of objects with both spatial and textual
attributes, and we measure the distance among object sets
using a different similarity measure. The Hausdorff distance
measures the maximum discrepancy between two point sets,
whereas in our work we use a measure inspired by the Jac-
card coefficient which focuses on the amount of objects from
different sets that are similar.

Spatio-textual joins Spatio-textual joins have attracted
some attention recently. This process is primarily applied
for duplicate detection, i.e., finding pairs of entities that are
both spatially close and textually similar. The work in [4]
is one of the first examples of spatio-textual join methods.
It proposes the SpSJoin query, following the MapReduce
paradigm for scalable computation of spatio-textual join
queries. Several methods for spatio-textual similarity join
using MapReduce have also been presented in [49]. More-
over, the spatio-textual join query has been studied in the
form of spatial regions associated with textual descriptions
[22,29,30]. Pruning strategies based on spatial and textual

signatures of objects are employed to filter the number of can-
didates. Moreover, in [36], grid- and quadtree-based indexes
are presented to efficiently partition the dataset either in a
local or in a global fashion. This work also explores different
dimensions of the problem, including the use of PPJOIN+
and ALL-PAIRS for text similarity joins, as well as single-
and multi-threaded approaches. The approach in [8] builds
upon PPJ, a baseline method that extends PPJOIN+, to
account for spatio-textual objects. The algorithms PPJ-C
and PPJ-R extend PPJ by leveraging a grid- and an R-
Tree-based index, respectively. These methods provide the
basis for our work; thus, we revisit them when presenting
our algorithms.

Work on spatio-textual joins is highly relevant to our
approach. However, the problem is different. Existing
approaches deal with spatio-textual similarity joins among
individual objects. On the contrary, we address spatio-textual
similarity joins among object sets. The latter is requiredwhen
objects are grouped with respect to a common characteristic.
For example, in our case, this allows us to address the prob-
lem of matching and clustering users based on their sets of
geotagged posts. Hence, the focus is on identifying similar-
ities among groups of objects, rather than single objects.

2.3 Graph partitioning

A plethora of approaches exists for graph partitioning [6,10,
32,39], given thewide applicability of the problem, from road
networks to VLSI design and parallel computing. Perhaps
the most traditional and well-known family of methods is
those based on minimum cut and its variations [39]. These
methods aim at partitioning the graph into subgraphs in away
that the number of edges between partitions is minimized.
These methods work well in applications where the number
of partitions can be determined beforehand and it is desirable
to generate partitions of roughly the same size (e.g., for load
balancing).

Another family of algorithms, which are commonly used
for community detection in graphs, is based on the measure
ofmodularity [31].Modularitymeasures the relative strength
of links between nodes of the same partition as opposed to
links betweennodes of different partitions.Thus,maximizing
the modularity score of the partitioning results in a better
assignment of nodes into communities.

Since iterating over all possible node assignments to find
the one that maximizes the value of modularity is practically
infeasible for realistic size networks, heuristic algorithms
are used. One of these methods, which is the one adopted
in this paper, is the Louvain method [7]. It is a bottom-up
approach. It first merges nodes into small communities by
optimizing modularity locally. Then, it repeatedly merges
smaller communities into larger ones hierarchically until no
more improvement in the modularity score is observed (see
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Sect. 5.1 for more details). Other methods also based on
modularity optimization have been proposed in the literature
[16,35,43]. In our work, we use the Louvain method as it has
been shown to outperform other algorithms in this category
with respect to both execution time and quality of identified
communities [3,7].

More recently, some works have focused on community
detection in networks where the nodes are associated with a
geolocation [14,21,33]. These methods also adopt the mod-
ularity maximization approach, but take into consideration
the factor of spatial proximity as well. This is done by
using spatial distances in edge weights and/or combining
spatial proximity with social links. However, none of these
works addresses the problem of finding user groups based
on a spatio-textual similarity measure. Finally, the work pre-
sented in [23] focuses on spatial-aware community search.
The problem of community search differs from that of com-
munity detection; the latter partitions the entire graph into a
set of communities, whereas the former is a query-dependent
variant where the goal is to find the communities of a given
vertex.

3 Problem definition

We define the STPSJoin query and then introduce the
spatio-textual user matching and clustering problems.

3.1 Spatio-textual point-set join

Assume a collection D of spatio-textual objects (e.g., geo-
tagged tweets or photographs) owned by a set of entities
U (e.g., users). A spatio-textual object o ∈ D is a triple
o = 〈u, loc, doc〉, where u ∈ U is the owner of the object,
loc = 〈x, y〉 is the object’s location, and doc = 〈ψ1, . . . , ψn〉
is a set of keywords describing the object. We refer to the
owner, location, and keyword set of an object o using the
notation o.u, o.loc and o.doc, respectively. In addition, we
use Du to denote the set of objects owned by entity u.

First, we define the spatio-textual similarity join between
individual objects. This is based on two criteria, namely spa-
tial distance and textual similarity. Similar to previous works
[8,12], we define the spatial distance δ(o, o′) between two
objects as the Euclidean distance between their locations,
and the textual similarity τ(o, o′) as the Jaccard similarity of
their keyword sets:

τ
(
o, o′) =

∣∣o.doc ∩ o′.doc
∣∣

|o.doc ∪ o′.doc| (1)

Given a spatial distance threshold εloc and a textual similarity
threshold εdoc, we say that two objects o, o′ ∈ D match if
their spatial distance is below εloc and their textual similar-

ity is above εdoc. Formally, the matching operator between
objects is defined by the function μ:

μ
(
o, o′) =

{
True, if δ

(
o, o′) ≤ εloc&τ

(
o, o′) ≥ εdoc

False, otherwise.

(2)

Notice that this definition corresponds to the spatio-textual
similarity join condition used also in [8].

Next, we need to generalize this matching operator to sets
of spatio-textual objects. The Jaccard similarity cannot be
applied directly, as it measures the portion of common ele-
ments between two sets. Instead, we want to measure the
portion of elements that match between two sets, according
to the matching operator μ defined above. Thus, to define
the similarity between two sets of spatio-textual objects, we
adapt Jaccard similarity to use the spatio-textual matching
operator μ as described below.

We extend functionμ to account for thematching between
an individual object o and a set of objects D ⊆ D. In this
case, we say that there is a match if o matches with at least
one object in D. Formally:

μ(o, D) =
{
True, if ∃ o′ ∈ D : μ

(
o, o′) = True

False, otherwise.
(3)

Furthermore, let D and D′ be two sets of spatio-textual
objects.Weuse functionM(D, D′) to define the set of objects
in D that match with at least one object in D′:

M
(
D, D′) = {o ∈ D : μ

(
o, D′) = True} (4)

We can now use M to define the spatio-textual similarity of
two users.

Definition 1 (Similarity) Given two entities u, u′ associated
with the sets of objects Du and Du′ , respectively, their spatio-
textual similarity is defined as the fraction of the matched
objects from one entity to the other divided by the total num-
ber of objects owned by the two entities, i.e.,

σ
(
u, u′) = |M (Du, Du′)| + |M (Du′ , Du)|

|Du | + |Du′ | (5)

Note that σ(u, u′) is normalized in the interval [0, 1] to
account for the differences in the number of objects owned
by different entities.

Based on the above, we proceed to define the Spatio-
Textual Point-Set Join query (STPSJoin). STPSJoin
identifies all pairs of object sets that have spatio-textual simi-
larity higher than a specified threshold εu . To avoid returning
duplicate pairs, we assume a total ordering over U , denoted
by ≺U . Formally, the STPSJoin query is defined as fol-
lows.
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Definition 2 (STPSJoin Query) Given a collection D of
spatio-textual objects belonging to a set of entities U , an
STPSJoin query Q = 〈εloc, εdoc, εu〉 returns a set R ⊆
U × U containing those pairs (u, u′) such that u ≺ u′ and
σ(u, u′) ≥ εu with respect to the spatial and textual thresh-
olds εloc and εdoc.

3.2 Spatio-textual matching

Given the above,we cannow formulate the problemof spatio-
textual user matching. Assume a set of users U , where each
user owns a set of geotagged posts, represented as spatio-
textual objects, Du .We introduce and address two variants of
the problem, as presented formally below. The first identifies
all pairs of matching users having spatio-textual similarity
above a given threshold. The second is its top-k variant, i.e.,
it retrieves the top-k pairs of users in the dataset having the
highest spatio-textual similarity score.

Problem 1.a (All-pairs User Matching) Let D be a collec-
tion of spatio-textual objects belonging to a set of users U.
The all-pairs spatio-textual usermatching problem is to eval-
uate an STPSJoin query Q = 〈 εloc, εdoc, εu〉 over D and
U.

Problem 1.b (Top-k User Matching) Let D be a collection
of spatio-textual objects belonging to a set of users U. Given
thresholds εloc and εdoc, the problem of finding the top-k
spatio-textual user pairs is to compute the k pairs of users
with the highest similarity score, i.e., a set R ⊆ U ×U such
that |R| = k and for any pair (ui , u j ) ∈ R it holds that
ui ≺ u j and σ(ui , u j ) ≥ σ(ui ′ , u j ′) for any pair (u′

i , u
′
j ) ∈

U ×U\R.

3.3 Spatio-textual clustering

Next, our goal is to identify clusters of similar users, where
user similarity is defined according to the spatio-textual sim-
ilarity measure introduced above. To that end, we assume
a spatio-textual user similarity graph, where edges connect
pairs of users having a nonzero spatio-textual similarity
score. Formally, this spatio-textual user similarity graph is
defined as follows.

Definition 3 (Similarity Graph) Given a collection D of
spatio-textual objects belonging to a set of users U , and
thresholds εloc, εdoc, the spatio-textual user similarity graph
is an undirected, weighted graph G = (V , E,W ), where
V = U and E = {(u, u′) ∈ U × U : σ(u, u′) > 0}, i.e., E
contains those user pairs that belong to the result set of an
STPSJoin query Q = 〈εloc, εdoc, 0〉. Each edge eu,u′ ∈ E
is assigned a weight W (u, u′) = σ(u, u′).

Given the above graph G, computing user clusters cor-
responds to computing a partitioning of G. The goal is to

identify a set of partitions such that the similarities between
users within the same cluster are higher than the similarities
between users in different clusters. A formal measure of par-
tition quality is provided by the concept of modularity [31].
This is a commonly used criterion for community detection,
which has been applied in several domains, from networks
on the Web to networks in biology. Given a partitioning of a
network, modularity is a scalar value between −1 and 1 that
measures the density of links inside partitions as opposed to
links across partitions. Higher values indicate more cohesive
partitions.

Following [16], the modularity of a partitioning P of a
weighted graph G is formally defined as:

mod(G, P) = 1

2 wtotal

∑

u,u′

[
wu,u′ − wu wu′

2 wtotal

]
δ (cu, cu′)

(6)

where

– wu,u′ is the weight of the edge between vertices u and u′;
– wu = ∑

u′ wu,u′ is the weighted degree of vertex u, i.e.,
the aggregate similarity between u and every other adja-
cent vertex u′;

– cu denotes the cluster to which u is assigned according
to the partitioning P;

– δ(cu, cu′) is a function that returns 1 if cu = cu′ , and 0
otherwise;

– wtotal = 1
2

∑
u,u′ wu,u′ is the sum of all the weights in

the network.

Based on the above, we can formally state the spatio-
textual user clustering problem as follows.

Problem 2 (UserClustering)Given a collectionD of spatio-
textual objects belonging to a set of users U, and thresholds
εloc, εdoc, the spatio-textual user clustering problem is to
compute a partitioning P of the corresponding spatio-textual
user similarity graph G that maximizes the modularity
mod(G, P).

4 Spatio-textual user matching

Wefirst address the all-pairs variant and then adapt our meth-
ods to the top-k problem.

4.1 All-pairs algorithms

4.1.1 Algorithm S-PPJ-C

Our goal is to find all pairs of userswhose spatio-textual simi-
larity score σ exceeds a given threshold εu . A straightforward
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(a) PPJ-C traversal.
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(b) PPJ-B traversal.

Fig. 2 The grid traversal strategies of PPJ-C (a) and PPJ-B (b)

algorithm is to compute, for each pair of users (u, u′), their
sets of matching objects, M(Du, Du′) and M(Du′, Du), and
then check whether the resulting similarity score σ exceeds
εu . For each user pair (u, u′), the problem is cast as a spatio-
textual similarity join query, ST-SJOIN(D, εloc, εdoc), where
D = Du ∪ Du′ [8]. This query returns all pairs of objects
(o, o′) ∈ D×D such that δ(o, o′) ≤ εloc and τ(o, o′) ≥ εdoc.
From this result, we can derive the sets M(Du, Du′) and
M(Du′, Du) and, subsequently, the similarity score σ .

To efficiently compute ST-SJOIN(D, εloc, εdoc), the
PPJ-C algorithm [8] can be used. PPJ-C partitions the
space by constructing a grid at query time, with cells hav-
ing an extent in each dimension equal to the spatial distance
threshold εloc. Cell ids are assigned bottom-up, in a row-wise
order. Objects in each visited cell c need to be joined only
with those in c and in the adjacent cells with ids lower than
c. Thus, for each cell, one self-join and four non-self-joins
are executed. These are performed using the PPJ algorithm,
that extends the set similarity join algorithm PPJOIN [46] by
including an additional check on the spatial distance.

Figure 2a illustrates an example. A spatial grid is con-
structed over a set of objects of two different users, u
(depicted as squares) and u′ (depicted as diamonds). The
algorithm visits the cells sequentially according to the dis-
played ids. When cell c15 is reached, join operations are
executed with the objects in cells c9, c10, c14 and c15. Objects
that have been found to match so far are displayed in black,
whereas those that do not match are displayed in white.
Objects for which the search has not yet concluded are col-
ored in gray.

Using PPJ-C as basis, we can derive a baseline algorithm
for our problem, denoted as S-PPJ-C (Set-PPJ-C). In our
case, the input to each execution ofPPJ-C is the union of the
object sets of two users, Du∪Du′ .Wemaintain the following
additional information during the construction of the grid:

1. For each cell c, we maintain in separate lists the objects
belonging to each user.Wedenote by Dc

u the set of objects
of user u that are contained in c.

2. For each user u, wemaintain a list of cellsCu that contain
objects belonging to u. Each list Cu is sorted according
to cell ids in ascending order.

Algorithm 1: S-PPJ-C
Input: D, U , εloc, εdoc, εu
Output: Pairs of matched users R

1 R ← ∅
2 selectedUsers ← ∅
3 G ← createGridIndex(D,U , εloc)

4 foreach u j ∈ U do
5 foreach ui ∈ selectedUsers do
6 M(Dui , Du j ), M(Du j , Dui ) ←

PPJ–C(Dui ∪ Du j , εloc, εdoc)

7 σ ←
(|M(Dui , Du j )| + |M(Du j , Dui )|) / (|Dui | + |Du j |)

8 if σ ≥ εu then
9 R.add(〈ui , u j 〉)

10 selectedUsers.add(u j )

11 return R

S-PPJ-C is presented in Algorithm 1. It loops through
all pairs of users (lines 4–5), taking into consideration the
total ordering≺U of the user setU . For each pair, it executes
an adapted, non-self-join version of the PPJ-C algorithm
(line 6), matching only pairs of objects belonging to different
users, based on the lists Cui and Cu j . The results of PPJ-C
are used to compute the similarity score σ for that user pair
and to check whether it exceeds the given threshold, in which
case it is added to the result (lines 7–9).

4.1.2 Algorithm S-PPJ-B

S-PPJ-Cperforms several unnecessary computations, since
for each pair of users it needs to find all their match-
ing objects. Next, we describe a more efficient algorithm,
S-PPJ-B (B stands for bound), which stops the computa-
tion as soon as it can determine that the similarity is below
the required threshold εu .

S-PPJ-B replaces the execution of PPJ-C (line 6 in
Algorithm 1) with a modified process, denoted as PPJ-B, as
described next. PPJ-B uses an upper bound on the allowed
number of unmatched objects to prune the search on the
grid. While examining two users, it uses the user similar-
ity threshold εu and the number of objects belonging to each
user to compute an upper bound on the number of allowed
unmatched objects between the two users, above which the
user similarity cannot exceed εu .

For a pair of users (u, u′), let βu,u′ denote the number of
objects from user u and user u′ that do not match with the
other user, i.e.,

βu,u′ = |Du | + |Du′ | − |M (Du, Du′)| − |M (Du′ , Du)| (7)

We compute an upper bound for βu,u′ as indicated by the
following lemma.
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o3 = u3 , {shop, market} 

spatial threshold

o1 = u1 , {shop, jeans} 

o2 = u2 , {football, match, stadium} 

o8 = u2 , {football, derby} 

o5 = u2 , {hurry, tube, time} 

o6 = u3 , {thames, bridge} 

o4 = u1 , {tube, ride} 

o7 = u3 , {bus, ride} 

Cell

Keywords Users

shop u1

jeans u1

football u2

Users Objects
u1
u2
u3

o1
o2
o3

match u2

stadium u2

market u3

derby u2

u3

o8

Fig. 3 Spatio-textual index structure used by S-PPJ-F

Lemma 1 For a pair of users (u, u′), if βu,u′ > (1 − εu) ·
(|Du | + |Du′ |) then σ(u, u′) < εu.

Proof The proof is derived from the definition of the simi-
larity score between two users, as follows:

σ
(
u, u′) ≥ εu ⇒ |M (Du, Du′)| + |M (Du′ , Du)|

|Du | + |Du′ | ≥ εu

⇒ |Du | + |Du′ | − βu,u′

|Du | + |Du′ | ≥ εu

⇒ 1 − βu,u′

|Du | + |Du′ | ≥ εu

⇒ βu,u′ ≤ (1 − εu) · (|Du | + |Du′ |)

��
To exploit this bound more efficiently, PPJ-B employs a

modified grid traversal strategy. While traversing each row
bottom-up, it treats odd and even rows differently (consid-
ering the bottom row as 1). If a cell ci, j belongs to an odd
row, the contained objects are matched with objects from
all surrounding cells, except the cell directly on the right.
Otherwise, objects are matched only with the cell that is on
the left. With this modification, as illustrated in Fig. 2, when
cell c15 is reached, PPJ-B has determined the state of all
objects in cells up to c15, while PPJ-C only those up to cell
c10. Once PPJ-B examines the last cell of an odd row, it
has considered every potential match for any object it has
encountered up to that point. Then, it checks whether the
number of unmatched objects exceeds the bound β, and, if
so, the search stops.

4.1.3 Algorithm S-PPJ-F

S-PPJ-B still needs to iterate over all pairs of users. Next,
we present the S-PPJ-F algorithm, which further increases
efficiency by following a filter and refine strategy. S-PPJ-F
uses a spatio-textual index structure constructed at run-
time, as illustrated in Fig. 3. It is a dynamic grid enhanced
with two inverted indexes in each cell. The first maps key-
words to users having objects with that keyword in the

Algorithm 2: S-PPJ-F
Input: D, U , εloc, εdoc, εu
Output: Pairs of matched users R

1 R ← ∅
2 G ← initialiseSTGridIndex(D, εloc)

3 foreach u ∈ U do
4 Cu[u′], Cu′ [u] ← Filter(u,G)
5 foreach u′ ∈ Cu .keys() do
6 Refine(u, u′)
7 G.insert(Du)

8 return R
9

10 Procedure Filter(u,G)
11 foreach c ∈ Cu do
12 T ← getKeywords(u, c)
13 foreach c′ ∈ G.getRelevantCells(c) do
14 foreach t ∈ T do
15 foreach u′ ∈ G.getUsersWithKeyword(c′, t)

do
16 Cu[u′].add(c), Cu′ [u].add(c′)

17 return Cu[u′], Cu′ [u]
18
19 Procedure Refine(u, u′)
20 σ̄ ← computeBound(u, u′)
21 if σ̄ ≥ εu then
22 σ ← PPJ–B(Du ∪ Du′ , εloc, εdoc, εu)
23 if σ ≥ εu then
24 R.add(〈u′, u〉)

cell. The second maps users to their objects located in that
cell.

S-PPJ-F is outlined in Algorithm 2. First, the grid is
constructed, with the inverted indexes in the cells being
empty (line 2). Then, the algorithm iterates over the users
(line 3). For each visited user u, it first executes a filtering
step (line 4) to identify potential matches among the pre-
viously seen users. For each of those, a refinement step is
executed (line 6) to determine whether there is an actual
match. Finally, the objects of u are inserted in the index
(line 7), so that u itself is considered as a candidate in the
subsequent iterations. The filtering and refinement steps are
detailed below.

When a user u is selected, the algorithm examines each
cell c ∈ Cu and retrieves the set of keywords T appearing
in the respective objects (lines 11–12). This is utilized to
populate a list of candidate matching users extracted from c
and its relevant adjacent cells (lines 13–16). These are users
with objects that appear in one of these cells and contain at
least one keyword from T . For each candidate matching user
u′, two lists are maintained: Cu[u′], holding those cells that
contain objects of u that potentiallymatch (both spatially and
textually) with objects of u′, and, Cu′ [u], vice versa (line 16).
Then, for each user u′, an upper bound σ̄ of the similarity
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score between u and u′ is calculated (line 20), assuming that
all of their objectswhich are contained in the sameor adjacent
cells match:

σ̄
(
u, u′) =

∑
c∈Cu [u′]

∣∣Dc
u

∣∣ + ∑
c′∈Cu′ [u]

∣∣
∣Dc′

u′
∣∣
∣

|Du | + |Du′ | (8)

If σ̄ (u, u′) < εu , then this pair can be safely pruned. Other-
wise, a refinement step follows, where PPJ-B is executed to
calculate the exact similarity score and accordingly add this
pair to the results (lines 21–24).

4.2 Top-k algorithms

4.2.1 Algorithm TOPK-S-PPJ-F

TOPK-S-PPJ-F is a direct adaption of S-PPJ-F. It is out-
lined in Algorithm 3. The main modifications relate to the
maintenance of intermediate results and the update of the
user similarity threshold. Results are stored in a fixed capac-
ity priority queue of size k, which is updated whenever a
pair that is better than the kth pair in the queue is found. The
user similarity threshold εu is set to the similarity score of
the kth best pair in the queue and is updated accordingly.
It is then used in the filtering phase in a similar manner to
S-PPJ-F. TOPK-S-PPJ-F examines users in ascending
order of the size of their object sets (line 4). The reason for
this is that users with larger object sets require more com-
putations than users with fewer objects. Thus, by the time
the algorithm reaches the most computationally demanding
users, a higher user similarity threshold may have been com-
puted.

4.2.2 Algorithm TOPK-S-PPJ-S

TOPK-S-PPJ-S operates similarly to TOPK-S-PPJ-F,
but uses a heuristic strategy to decide the order in which
users are evaluated. User objects are placed in a spatial grid.
Then, each cell c is assigned a score indicating how many
users have objects located in c or in its adjacent cells. Users
are then assigned a score by summing, for every object o
belonging to them, the score of the cell that o is located in.
This prioritizes users with objects in “popular” cells, as they
are more likely to match with other users. The goal is to
identify high scoring pairs more quickly. The score of a cell
c is calculated as:

score(c) = ∣∣∪c′∈G.getRelevantCells(c)G.getUsers
(
c′)∣∣ (9)

where G is the spatial grid, c is a cell in the grid,
G.getUsers(c) returns the users with objects in c, and
G.getRelevantCells(c) returns the cells that are adjacent to

Algorithm 3: TOPK-S-PPJ-F
Input: D, U , εloc, εdoc, k
Output: Top-k user pairs R

1 R ← ∅
2 G ← initialiseSTGridIndex(D, εloc)

3 εu ← −1
4 foreach u ∈ sorted(U ) do
5 Cu[u′], Cu′ [u] ← Filter(u,G) // same as in

Algorithm 2
6 foreach u′ ∈ Cu .keys() do
7 Refine(u, u′)
8 G.insert(Du)

9 return R
10
11 Procedure Refine(u, u′)
12 σ̄ ← computeBound(u, u′)
13 if σ̄ ≥ εu then
14 σ ← PPJ–B(Du ∪ Du′ , εloc, εdoc, εu)
15 if σ > εu then
16 R.update(〈u′, u〉)
17 if |R| = k then
18 εu ← R.get(k).score

c (including c). Accordingly, users are assigned scores as
follows:

score(u) =
∑

o∈Du

score(oc) (10)

where oc denotes the cell that object o is located in.

4.2.3 Algorithm TOPK-S-PPJ-P

TOPK-S-PPJ-P introduces an additional filtering step.
Similarly to TOPK-S-PPJ-F, users are visited in ascend-
ing order of the size of their object sets. For every user u,
the algorithm computes an upper bound on the similarity
score between u and any other user u′ that has been pre-
viously examined. This is done by identifying the objects
in Du that match with any object in DU ′ , where the latter
is the union of the objects of all users examined up to that
point. We denote this set as Mu,U ′ . This computes an upper
bound on σ(u, u′) for every user u′ that has been visited prior
to u:

σ̄u =
∣∣Mu,U ′

∣∣ + maxu′∈U ′ |Du′ |
|Du | + maxu′∈U ′ |Du′ | (11)

The following lemma shows that if the users are visited in
ascending order of the size of their object sets, then σ̄u is an
upper bound on the similarity score between u and any user
u′ encountered before it.
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Lemma 2 Assume a user u and a set of users U ′, such that
|Du′ | ≤ |Du | for any u′ ∈ U ′. Then, it holds that σ(u, u′) ≤
σ̄u.

Proof Let mu = |Mu,U ′ |, mu,u′ = |M(Du, Du′)|, du = |Du |
and dmax = maxu′∈U ′ |Du′ |. Then, since mu ≥ mu,u′ and
du ≥ mu , it holds that:

mu + du′

du + du′
≥ σ

(
u′, u

)
.

Thus, it suffices to show that:

σ̄u = mu + dmax

du + dmax
≥ mu + du′

du + du′
.

Indeed:

mu + dmax

du + dmax
<

mu + du′

du + du′

⇒ mu · du + mu · du′ + dmax · du + dmax · du′

< mu · du + mu · dmax + du′ · du + du′ · dmax

⇒ mu · du′ + dmax · du < mu · dmax + du′ · du
⇒ (dmax − du′) · du < (dmax − du′) · mu

⇒ du < mu

which is false. ��
To avoid computing exact similarity scores among objects

and to speed up the bound calculation, we utilize again the
spatio-textual index shown in Fig. 3 and we place in Mu,U ′
all objects with a keyword that appears (due to a previously
selected user) in the same or adjacent cell. This allows a fast
estimation of the σ̄u bound. Since this process overestimates,
the resulting score is still an upper bound on the actual user
similarity score and can be used to prune the search space.

5 Spatio-textual user clustering

In the following, we extend our approach to address the
spatio-textual clustering problem.As defined in Sect. 3.3, our
aim is to compute a partitioning of the spatio-textual user sim-
ilarity graph. The quality of a given partitioning is measured
by the modularity score (see Eq. 6). However, examining
all possible network partitionings is clearly infeasible for
realistic size graphs. Nevertheless, several greedy optimiza-
tion algorithms have been studied in the literature, which
employ heuristics to significantly speed up computation time,
while still discovering partitions with high modularity value.
Next, we present some preliminaries, outlining how the
Louvain method [7] works, which is a commonly used algo-
rithm for this purpose. Then, we introduce our approach and

algorithms, which combine the Louvain method and our pre-
viously presented algorithms for computing spatio-textual
similarities between users.

5.1 Preliminaries

The Louvain method is a greedy algorithm for commu-
nity detection in graphs based on the concept of modularity
optimization. It comprises two stages, which are applied
repeatedly.

During the first stage, the algorithm iterates over the nodes
of the graph. Initially, each node is assigned to its own com-
munity. For each node, the algorithmcalculates the difference
in modularity that would result by moving this node from its
current community to any of the communities of its adja-
cent nodes. This difference in modularity by reassigning u
to another community c can be calculated as follows:

Δmod(u, c) =
[

wc
in + wc

u

2wtotal
−

(
wc + wu

2wtotal

)2
]

−
[

wc
in

2wtotal
−

(
wc

2wtotal

)2

−
(

wu

2wtotal

)2
]

(12)

wherewc
in is the sum of the weights of the edges inside c,wc

is the sum of the weights of the edges adjacent to the nodes
in c, and wc

u is the sum of the weights of the edges from u to
nodes in c.

If any of these candidate reassignments has a positive
effect, i.e., Δmod(u, c) > 0, the one achieving the high-
est increase is executed. Otherwise, the node remains in its
current community. The process is repeated until a complete
pass over all nodes ends without any reassignments occur-
ring.

In the second stage, the resulting communities are used
to construct a new, higher-level graph. This is derived by
aggregating nodes of the same community into a single node,
aggregating edges between communities into edges between
the new nodes, and aggregating edges inside communities
into self-loops. Edgeweights in this new graph are calculated
by the sum of the weights of the corresponding edges from
which they are derived. Then, the first stage is executed using
this graph as input.

The process is repeated, until an execution of the first stage
completes without having performed any reassignments.

5.2 Approach

A straightforward solution to the spatio-textual user clus-
tering problem is to combine the STPSJoin query and
the Louvain method in a two-phase process: the first phase
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computes the spatio-textual user similarity graph, while the
second computes a partitioning of this graph. This provides
a generic process for solving the spatio-textual clustering
problem as outlined in Algorithm 4.

Specifically, in the first phase, which comprises the func-
tion ComputeUserGraph(), an STPSJoin query Q =
〈εloc, εdoc, 0〉 is executed over the set of users U and objects
D to compute the spatio-textual user similarity graph. In
what follows, we refer to this graph as the exact graph
G. In the second phase, which comprises the function
ComputeClusters(), the Louvain method is executed
on G to compute a partitioning P that assigns users to clus-
ters.

Due to its greedy heuristic, the Louvain method can
achieve relatively low execution time even for quite large
graphs. Thus, the execution time of the whole process is
dominated by the time needed to compute the STPSJoin
query for generating the exact graph G. This is true even
when exploiting our more efficient algorithms for this pur-
pose (in particular, S-PPJ-F), which reduce execution time
by one or more orders of magnitude. Indeed, our experi-
ments showed that, in the two largest considered datasets,
the time spent by the Louvain method was less than 1% of
the total execution time. Consequently, the computation of
the exact graph G constitutes the bottleneck in the whole
process.

To overcome this problem, the main idea of our approach
is to replace the computation of the exact graph G with that
of an approximate graph G∗, on which then the partitioning
can be performed. For that purpose, this approximate graph
G∗ should have the following properties:

– computing G∗ should bemuch faster than computing G;
and

– the user clusters obtained viaG∗ should have comparable
quality to those obtained via G.

The latter is measured as follows. Let P denote the parti-
tioning computed onG, whereas P ′ the one computed onG∗.
For both partitionings, we calculate their modularity when
applied onG, i.e.,mod(G, P) andmod(G, P ′), respectively.
Then, an approximate graph G∗ is effective, if it results in a
mod(G, P ′) that is close to mod(G, P).

Moreover, a desirable property is that the method allows
a trade-off between execution time and quality of results, by
controlling how coarse-grained or fine-grained the approxi-
mate graph G∗ is with respect to the exact graph G.

Motivated by these, in the next section we present several
methods that elaborate on the steps of the generic process to
derive more efficient algorithms for solving the problem.

Algorithm 4: Generic Process for the Spatio-Textual
User Clustering Problem

Input: D, U , εloc, εdoc
Output: Partitioning P assigning users to clusters

1 G ← ComputeUserGraph(D, U, εloc, εdoc)
2 P ← ComputeClusters(G)
3 return P

5.3 Algorithms

As explained above, the main idea for speeding up the com-
putation of the user clusters is to compute an approximate
graph G∗ instead of the exact graph G. In the exact case, the
ComputeUserGraph() function (line 1 in Algorithm 4)
executes an STPSJoin query Q = 〈εloc, εdoc, 0〉 over U
and D, returning all matching pairs of users and their exact
similarity scores. Based on these, it builds the exact user sim-
ilarity graph G = (U , EG,WG), where:

– EG contains the pairs returned by the STPSJoin query
Q = 〈εloc, εdoc, 0〉

– WG(u, u′) = σ(u, u′).

Accordingly, producing an approximate graph G∗ can be
accomplished by:

– partially computing the set of edges of the graph; or
– partially computing (i.e., approximating) the edgeweights.

Following that, we present below two sets of methods for
this purpose.

5.3.1 Methods based on partial edge computation

The first two presented strategies rely on computing only a
selection of top-k edges of the graph, either globally (i.e., on
the whole graph), or locally (i.e., per user). In both cases, the
trade-off between computation time and quality of results is
determined by the respective parameter k, which controls the
number of edges that are computed.

Top-k user similarity graph (G∗-TOPK) Our first strat-
egy is motivated by the fact that, to identify clusters, we
are primarily interested in the strongest connections among
users, i.e., those edges having the highest similarity scores.
This can be done by computing the top-k spatio-textual user
pairs.

In this case, the ComputeUserGraph() function exe-
cutes any of the algorithms presented in Sect. 4.2 for this
purpose and uses the returned results to produce the approx-
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imate graph G∗. We refer to this variant of the approximate
graph as G∗-TOPK. It is a graph that contains only k edges,
with the exact weight set on each edge.

More specifically,G∗-TOPK= (U , ETOPK,WTOPK),where:

– ETOPK contains the pairs corresponding to the top-k
results of the STPSJoin query Q = 〈εloc, εdoc, 0〉

– WTOPK(u, u′) = σ(u, u′).

Hence, ETOPK ⊆ EG and WTOPK(u, u′) = WG(u, u′).
Afterward, the ComputeClusters() function exe-

cutes the Louvain method on G∗-TOPK to assign users to
clusters.

A drawback of this strategy is that many users may not
appear in any of the top-k edges. These users will have no
connections to other users in theG∗-TOPK graph; hence, they
will be left out of the produced clusters. A workaround is to
assign these users to clusters by explicitly computing their
similarities to other users in those clusters. However, the
overhead of such an additional step eventually negates the
previous gains in execution time. Moreover, some connec-
tions may be important locally but not globally and hence
will be missed. Finally, since the total number of edges is not
known (given that avoiding performing a full join is exactly
the purpose here), it is not straightforward how to select a
reasonable value for k.
kNN user similarity graph (G∗-KNN) Our second strategy
attempts to address the aforementioned drawbacks. It has a
similar motivation to the previous one, i.e., it is also biased
toward computing edges with high similarity scores. How-
ever, instead of identifying the most similar pairs of users
overall, it identifies for each user its k-nearest neighbors. We
refer to the resulting graph in this case as G∗-KNN. In this
graph, each user u will have (at most) k edges, linking it to
its k-nearest neighbors. The weights on these edges are exact
similarity scores.

Formally, G∗-KNN = (U , EKNN,WKNN), where:

– EKNN contains the pairs corresponding to the results of
executing a kNN query for each user

– WKNN(u, u′) = σ(u, u′).

Hence, EKNN ⊆ EG and WKNN(u, u′) = WG(u, u′).
Next, we describe an algorithm, called KNN-S-PPJ-F,

that can be used to efficiently execute a kNN query for
each user. The process is outlined in Algorithm 5 and is an
adaptation of the TOPK-S-PPJ-F algorithm presented in
Algorithm 3. Contrary to TOPK-S-PPJ-F, at the begin-
ning of the process all users are inserted in the spatio-textual
grid index (lines 3–4). The k-nearest neighbors for each user
are then identified in a fashion similar to TOPK-S-PPJ-F.
There are two main differences. First, the priority queue

Algorithm 5: KNN-S-PPJ-F
Input: D, U , εloc, εdoc, k
Output: A map R containing, for each user, its k-nearest

neighbors
1 G ← initialiseSTGridIndex(D, εloc)

2 J ← ∅
3 foreach u ∈ (U ) do
4 G.insert(Du)

5 foreach u ∈ U do
6 Ru ← ∅
7 εu ← −1
8 G.remove(Du)

9 Cu , Cu′ ← Filter(u,G)
10 foreach u′ ∈ Cu .keys() do
11 Refine(u, u′)
12 G.insert(Du)

13 R.addAll(Ru)

14 return R
15
16 Procedure Refine(u, u′)
17 σ̄ ← computeBound(u, u′)
18 if σ̄ ≥ εu then
19 if 〈u′, u〉 /∈ J .keys() then
20 σ ← PPJ–B(Du ∪ Du′ , εloc, εdoc, εu)
21 J [〈u′, u〉] ← σ

22 else
23 σ ← J [〈u′, u〉]
24 if σ > εu then
25 Ru .update(〈u′, u〉)
26 if |Ru | = k then
27 εu ← Ru .get(k).score

now holds pairs for the user evaluated in the current loop.
Upon termination of the process for this user, the results are
appended to the overall results (line 13) and the priority queue
is cleared (line 6). Second, the map J is used to maintain the
results of executed exact joins (line 21). This is useful in order
to avoid the duplicate execution of the join operation for pairs
that have already been evaluated in previous iterations (line
23).

Thus, in this method, the ComputeUserGraph()
function invokes the KNN-S-PPJ-F process to produce
the approximate graph G∗-KNN. Afterward, the function
ComputeClusters() executes the Louvain method on
G∗-KNN to identify user clusters.

5.3.2 Methods based on partial edge weights computation

In the following, we present three methods that rely on a
different rationale, in particular on computing approximate
values for the user similarities. The idea in this case is to
reduce execution time during the calculation of edgeweights,
by replacing the computation of exact similarity scores with
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respective bounds,which can be upper, lower, or combination
of both.

These methods involve two main operations. The first one
concerns the construction of the approximate graph and is
performed by the ComputeUserGraph() function. The
second concerns the refinement of (some of) the edgeweights
in order to improve the accuracy of the results. Thus, it pro-
vides a means to adjust the balance between execution time
and quality of results. This operation takes place during exe-
cution of the function ComputeClusters().

First, we describe how the approximate graph is con-
structed in each of the three methods.

Upper-bound user similarity graph (G∗-UB) We have
already seen in the S-PPJ-F algorithm (Sect. 4.1.3), how a
spatio-textual index can be exploited to efficiently compute
an upper bound σ̄ (u, u′) on the similarity between two users
u and u′. Here, we leverage this to derive an approximate
graph, called G∗-UB, where edge weights are upper bounds
of similarity scores rather than exact ones.

Specifically, G∗-UB = (U , EUB,WUB), where:

– EUB contains those pairs for which σ̄ (u, u′) > 0
– WUB(u, u′) = σ̄ (u, u′).

Hence, EUB ⊇ EG and WUB(u, u′) ≥ WG(u, u′).
In this method, the function ComputeUserGraph()

executes a process similar to the S-PPJ-F algorithm (see
Algorithm 2). The only difference is that, in this case,
the procedure Refine() returns as soon as the function
computeBound() finishes (line 20), without invoking the
much more costly process of PPJ-B.

Lower-bound user similarity graph (G∗-LB) This method
works analogously to the one presented above, but instead it
computes a lower bound on the similarity score between two
users.

We first describe how this lower bound is computed. The
process is again similar to the S-PPJ-F algorithm, utilizing
its spatio-textual index. For each user u, we search for can-
didate matches exclusively in the cells which are occupied
by this user’s objects. We filter candidate pairs by selecting
every other user u′ having at least one object in one of these
cells with a token that also appears in one of the objects of u
from the same cell. For each pair of users that qualifies this
filtering step, we execute a modified version of PPJ-B. This
applies a textual join operation for the objects in cells shared
by both users. Although a join operation is performed in this
case, the computation is much faster since it is limited only to
the objects contained in the same cell instead of considering
all adjacent cells too.

The result of this step is the calculation of the lower bound
of the similarity of the two users, since objects are considered
to bematching only if they occupy exactly the same cell. This

lower bound σ̂ (u, u′) of the similarity between two users u
and u′ is formally defined as:

σ̂ = ∀c∈Cu∩Cu′
∣∣M

(
Dc
u, D

c
u′

)∣∣ + ∣∣M
(
Dc
u′ , Dc

u

)∣∣

|Du | + |Du′ | (13)

Based on the results, we derive a graph G∗-LB = (U , ELB,

WLB), where:

– ELB contains those pairs for which σ̂ (u, u′) > 0
– WLB(u, u′) = σ̂ (u, u′).

Hence, ELB ⊆ EG and WLB(u, u′) ≤ WG(u, u′).
Therefore, here the function ComputeUserGraph()

computes the graph G∗-LB by calculating lower bounds on
the similarity between users as explained above.

Upper–lower-bound user similarity graph (G∗-ULB) Both
methods relying on G∗-UB and G∗-LB reduce computation
time by avoiding the costly operations for computing exact
edge weights. However, both of them also have some draw-
backs. In the former, the set of edges that are produced
contains false positives, since there may exist a potentially
large number of user pairs (u, u′) for which σ̄ (u, u′) > 0 but
σ(u, u′) = 0. This also implies an additional overhead for
the execution of the Louvain method. Inversely, in the latter
case, the set of edges contains false negatives, since there
may exist many user pairs (u, u′) for which σ̂ (u, u′) = 0
but σ(u, u′) > 0. This means that the generated graph
lacks certain links, which may be important for identifying
more accurate clusters. An additional drawback of the upper-
bound-based method is the following. The way the upper
bound is computed is rather optimistic, since it assumes that
all the objects located in the same or in any of the adja-
cent cells match. Thus, in many cases, this upper bound is
not very tight. Accordingly, using this value as edge weight
instead of the exact similarity score implies that in many
cases the weight of the link among two users may be largely
overestimated. This, in turn, leads to wrong decisions when
reassigning users to clusters during the first stage of the Lou-
vain method.

Consequently, our final strategy attempts to address the
above shortcomings by using both upper and lower bounds
for producing the approximate graph G∗. The procedures
for computing each type of bound, as described above, are
combined and performed together in a single pass. In fact,
a simplifying modification can be made because, as shown
below, the process only needs to identify the pairs of users
(u, u′) having σ̄ (u, u′) > 0, without computing the actual
value of σ̄ (u, u′). This process computes the lower bound of
the similarity scores among candidate user pairs, but it also
returns all user pairs having an upper similarity bound greater
than zero.
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As a result, we construct a graph G∗-ULB = (U , EULB,
WULB), where:

– EULB contains those pairs for which σ̄ (u, u′) > 0
– WULB(u, u′) = σ̂ (u, u′) if σ̂ (u, u′) > 0, otherwise

WULB(u, u′) = θ , where θ is a very small (close to zero)
positive number.

In this method, the function ComputeUserGraph()
computes the graph G∗-ULB. Essentially, G∗-ULB enhances
G∗-LB by introducing the additional edges found in G∗-UB,
thus addressing the problem ofmissing edges inG∗-LB. Nev-
ertheless, it relies on lower bounds as edgeweights, assigning
a very small value θ to compensate for thosemissing (i.e., for
those introduced byG∗-UB), thus addressing the problem that
the upper bounds are typically looser than the lower bounds.

Edge refinement In all three methods presented above, the
accuracy of the generated graph can be improved by refining
the edge weights, i.e., computing the exact similarity scores.
Such a refinement can be performed by executing thePPJ-B
algorithm on the corresponding user pair and updating the
edge weight with the returned exact similarity score. Given
that we want to refine only a subset of the edges (to keep
execution time low), the goal is to prioritize edge refinements,
so that those performed are the ones that are more likely to
contribute in improving the quality of the identified clusters.
Next, we present a method for this purpose.

According to the definition of modularity, the assignment
of a node u to a cluster c depends on how the weights of the
edges between u and the nodes in c compare to the weights of
edges between u and the nodes of other candidate clusters.
In the three methods using the graphs G∗-UB, G∗-LB, and
G∗-ULB, these decisions are based on edge weights that are
upper/lower bounds instead of exact similarity scores, thus
introducing errors in cluster assignments. The goal of edge
refinement is to identify and correct suchwrong assignments.
Otherwise, if after refining the weights of a node’s edges this
node still remains in its former cluster, there has been little
gain from these refinements.

The intuition for the method presented next is based on
the above observation. Specifically, the higher the difference
between the modularity gain of the current assignment and
that of the second best candidate assignment, the more likely
it is that the current assignment will remain valid even after
the weights of this node’s edges have been refined.

To formalize this criterion, assume a node u, and let Cad j
denote the set of clusters to which its adjacent nodes belong,
which are also the candidate clusters for assigning u. Recall
that, during its first stage, the Louvain method computes for
each one of these candidate clusters c ∈ Cad j the modularity
gain Δmod(u, c), and assigns u to the one with the maxi-
mum gain, assuming that it is positive. Thus, we can assume

Algorithm 6: Procedure ComputeClusters for
G∗-UB, G∗-LB and G∗-ULB with edge refinement

Input: Approximate graph G∗, ρ
Output: Partitioning P assigning users to clusters

1 P ← InitializeClusters(G∗) // singleton
clusters

2 P ← Louvain(G∗, P) // with stability
computations

3 Sort(U) // in ascending order of stability
4 refinedEdges = 0
5 while refinedEdges < ρ · |EG∗ | do
6 u ← U .getNext()
7 foreach e ∈ u.getUnrefinedEdges() do
8 G∗ ← RefineEdgeWeight(G∗, e)
9 refinedEdges++

10 ApplyLinearRegression(RefinedEdges,
RemainingEdges)

11 P ←Louvain(G∗, P)
12 return P

that the clusters in Cad j are sorted in descending order of
their modularity gain, in which case Cad j [0] corresponds to
the candidate that is selected and Cad j [1] corresponds to the
second best option. Then, we can define the following value
for u:

stab(u) = Δmod
(
u, Cad j [0]

) − Δmod
(
u, Cad j [1]

)
(14)

which is a heuristic measure indicating the stability or confi-
dence of assigning u to the best candidate cluster compared
to the second best one.

Once a pass over all nodes has been completed, the nodes
are sorted in ascending order of their stability, and edge
refinement is performed on the edge weights of each node
following this order, up to a specified maximum number of
assignments. The latter can be defined as a portion ρ ∈ [0, 1]
of the total number of edges in the graph.

In the methods using the graphs G∗-UB, G∗-LB, and
G∗-ULB, when no edge refinements are allowed, the func-
tion ComputeClusters() simply executes the Louvain
method on the constructed graph. Instead, if edge refinements
are allowed, the function ComputeClusters() applies
the procedure outlined in Algorithm 6. This performs a first
execution of the Louvain method, during which the stability
scores of the nodes are also calculated as explained above
(line 2). These are used to prioritize the nodes and refine
edge weights accordingly (lines 3 & 8). After refinement,
the Louvain method is executed again on the refined graph
to compute the user clusters (line 11).

The above process refines only a small subset of the graph
edges in order to limit the extra computational cost incurred
by these refinements. Still, it is possible to leverage the initial
refinements to also adjust the edge weights of all the rest of
the edges accordingly. This can be simply accomplished by
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Table 1 Datasets used in the
experiments

Dataset Obj. Users Distinct Loc. Kwd/Obj Obj/Kwd Obj/User

GeoText 166K 9.5K 32K 1.6 3.5 18

Flickr 1.1M 11.3K 360K 8 26.4 99

Twitter 9.7M 40K 6.8M 2.1 6.3 243

using linear regression [25], where the observations are the
lower or upper bounds (or both) and the dependent variable
is the actual similarity. Specifically, using the results of the
refined edges in the first iteration, a linear regression model
is fitted, and it is applied on the rest of the edges to predict the
weights based on the known upper/lower bounds (line 10).

6 Experimental evaluation

In this section, we present the experimental evaluation of our
methods. First, we describe the datasets used in the exper-
iments. Then, we present the results for each of the two
problems addressed, i.e., spatio-textual user matching and
clustering.

6.1 Datasets

In our experiments, we have used three real-world datasets
containing different types of geotagged posts made by users.
These include the following.
GeoText This dataset is a corpus of geotagged microblogs
available online1 [20]. It comprises 377,616 geotagged posts
by 9,475 different users within the USA.
Flickr This is derived from the Flickr Creative Commons
dataset provided by Yahoo [41]. The whole dataset con-
tains about 99.3 million images, about 49 million of which
are geotagged. For our experiments, we have used a subset,
containing geotagged photographs with coordinates within
a bounding box covering the area of Greater London, UK.
This resulted in a dataset containing 11,306 users associated
with 1,116,348 geotagged photographs.
Twitter This dataset is a collection of geotagged tweets from
the geographical area of Greater London, UK. It is part of the
dataset used by [19]. It contains 9,724,579 tweets belonging
to 40,000 different users.

For each dataset, we used the NLTK toolkit2 to extract
named entities from the text of the posts. These were then
combined with any other keywords (e.g., tags, hashtags)
already attached to each post to derive the keyword set asso-
ciated with each respective spatio-textual object.

The characteristics of the three datasets are summarized
in Table 1. For each dataset, the table shows the total number

1 http://www.ark.cs.cmu.edu/GeoText/.
2 http://www.nltk.org/.

of objects and users it comprises. It also shows the number of
distinct locations, as well as the average number of keywords
per object, objects per keyword, and objects per user. As
can be seen, these datasets differ significantly in size, with
GeoText being the smallest and Twitter being the largest one.
Moreover, they differ in the characteristics of the objects and
the users. For instance, in Flickr, the number of keywords per
object as well as the number of objects per keyword is overall
much higher. On the other hand, in Twitter, the number of
objects per user is considerably higher. Hence, the selection
of these datasets for the experiments allows us to test and
evaluate our proposed algorithms both in terms of scalability
and with respect to different dataset characteristics.

6.2 Results for spatio-textual user matching

First, we evaluate the performance of our algorithms pro-
posed for addressing the spatio-textual user matching prob-
lem. The purpose of this evaluation is to compare the
efficiency of the proposed algorithms in terms of execution
time in different settings. All algorithms were implemented
in Java. This set of experiments was executed on a machine
with an Intel Core i5 2400 CPU and 16GB RAM, running
on Ubuntu Linux. During the experiments, 15GB of memory
were allocated to the JVM. In the following, we present the
results for each one of the investigated problems.

6.2.1 Comparison for similarity join

We compare the execution time of the three algorithms
S-PPJ-C, S-PPJ-B, and S-PPJ-F with respect to the
following parameters: (a) the dataset size N in terms of num-
ber of users, and (b) the query thresholds for spatial distance
(εloc), textual similarity (εdoc), and user similarity (εu).
Effect of dataset size For the first set of experiments, i.e., for
testing the scalability of the algorithms, we extract from each
dataset a set of smaller subsets, with progressively increasing
sizes. Each one of these comprises approximately N × 103

users, where N = [4, 6, 8, 10] for GeoText and Flickr, and
N = [10, 20, 30, 40] for Twitter.

Moreover, we set the thresholds εloc, εdoc and εu to default
values, as shown in Table 2 (note that εloc is measured in
decimal degrees, whereas εdoc and εu are ratios). This table
also shows, for these default threshold values and each one of
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Table 2 Default threshold values and resulting number of matches

Default thresholds Number of matches

εloc εdoc εu N1 N2 N3 N4

GeoText 0.001 0.3 0.3 15 23 34 36

Flickr 0.001 0.6 0.6 24 43 72 139

Twitter 0.001 0.4 0.4 5 11 15 23

the dataset subsets, the size of the result set, i.e., the resulting
number of matching user pairs.

The reason for not using the same default values across all
three datasets is to account for their different characteristics
in terms of size, spatial distribution of objects and distribution
of keywords. Essentially, wewish to select default values that
are both intuitive and produce result sets that are neither too
small nor too large.Thus,we set lower thresholds forGeoText
in order to avoid empty result sets, whereas higher thresh-
olds are set for Flickr to avoid returning too many matches.
The reason that lower thresholds in Flickr tend to produce
a much higher number of matches compared to the other
two datasets can be attributed to the fact that the spatial and
the textual dimensions tend to be more highly correlated in
the case of photographs than in the case of tweets or other
posts. In other words, usually there is a stronger association
between the location of a photograph and its tags compared
to that between the location of a tweet and its textual con-
tent. Consequently, in the case of the Flickr dataset, users that
are more similar in one of these dimensions tend to be also
more similar in the other, thus resulting in an overall higher
spatio-textual similarity score.

Using the above setting, Fig. 4 shows the performance of
the compared algorithms for the different dataset sizes. In all
cases, execution time increases as the dataset size increases.
However, the results clearly show that S-PPJ-F outper-
forms all other methods by several orders of magnitude, and
this result is consistent for all datasets, irrespective of size.
This significantly better performance ofS-PPJ-F compared

to the other approaches is attributed to the effect of the filter
and refinement scheme, in combination with the suitability
of the dynamic grid partitioning over the objects. The grid
partitioning is tailor made to the spatial threshold parameter
εloc, which allows the search for matching objects to be lim-
ited exclusively in adjacent cells. Additionally, the inverted
lists maintained within each cell of the grid allow the effec-
tive filtering of candidate user pairs associated with spatially
similar, but textually diverse, objects.

Regarding the rest of the algorithms, the execution of
S-PPJ-B is significantly higher than that of S-PPJ-F, as
already pointed out. This result is expected since S-PPJ-F
builds on S-PPJ-B by leveraging the filter and refine-
ment scheme. Nevertheless, we can observe that S-PPJ-B
achieves a non-negligible improvement over baseline algo-
rithm S-PPJ-C. This allows to assess the benefits of the
early termination strategy, aswell as the traversalmechanism,
that differentiate S-PPJ-B from S-PPJ-C. The results
indicate that S-PPJ-B offers a consistent improvement in
execution time compared to S-PPJ-C, confirming that the
proposed techniques manage to prune the search space for
similarity search among two point sets.
Effect of similarity thresholdsAsalreadydiscussed, the selec-
tion of the similarity thresholds affects the number ofmatches
among users. In turn, this may also affect the performance of
the algorithms. Hence, in the second set of experiments, we
evaluate the performance of the proposed algorithms when
varying the values of the spatial, textual, and user similarity
thresholds εloc, εdoc, and εu . Similar to the scalability exper-
iments, different ranges in threshold values are used across
datasets. This set of experiments is performed using the fol-
lowing subsets of the three datasets: GeoText-6K, Flickr-6K,
and Twitter-20K. The mean and standard deviation of the
result set sizes for the various combinations of threshold val-
ues are as follows: 18 (36.9) for GeoText, 326 (633.89) for
Flickr, and 14.14 (9.98) for Twitter.

The results are shown in Fig. 5. We observe that the dom-
inant parameter is the spatial threshold εloc. Higher values of

Fig. 4 Comparison of the spatio-textual user join algorithms w.r.t. dataset size
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Fig. 5 Comparison of the spatio-textual user join algorithms w.r.t. varying similarity thresholds

εloc result in significantly higher execution times. This is par-
ticularly obvious for the Flickr and Twitter datasets, which
also contain significantly larger amounts of objects.When the
spatial distance threshold reaches the scale of metropolitan
level distances, the majority of the objects fall into adja-
cent partitions. Consequently, the filtering step of S-PPJ-F
returns a high number of candidates. In these cases, the
overhead imposed by the additional indexing maintained by
S-PPJ-F is apparent.

On the other hand, this does not seem to apply forGeoText,
mainly due to the fact that the objects in GeoText are scat-
tered in the significantly larger area of thewhole ofUSA. The
results in this case show that the proposed pruning strategies
are highly functional in combination with a grid-based par-
titioning scheme. Again, S-PPJ-F outperforms the other
methods in every scenario, and its performance appears to
have low sensitivity with respect to the parameter values.

6.2.2 Comparison for top-k matches

Next, we compare the performance of TOPK-S-PPJ-F,
TOPK-S-PPJ-S, and TOPK-S-PPJ-P, while varying the
values of the parameter k. The spatial distance and textual
similarity thresholds, εloc and εdoc, are set to their default
values as shown in Table 2. The results of the experiments
are shown in Fig. 6.

Overall, the execution time of all algorithms increases as
k increases. Moreover, we can see that TOPK-S-PPJ-F,
although simpler, is competitive and in fact it even outper-
forms the others in the Flickr dataset. Compared to that, the
higher execution time of TOPK-S-PPJ-S indicates that
the statistical approach it employs for ordering the users
incurs more overhead compared to any potential benefits,
thus requiring overall more time than in the case of the sim-
ple ordering of the users based exclusively on the size of
their object sets, used by the other algorithms. On the other
hand, TOPK-S-PPJ-P exploits an additional pruning step,
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Fig. 6 Comparison of the top-k user pairs algorithms w.r.t. k

which helps to achieve better performance in the cases of
GeoText and Twitter. Even in the case of Flickr, where it is
outperformed by TOPK-S-PPJ-F, it remains competitive.
This difference observed in the case of the Flickr dataset is
attributed to the fact that it contains objects with higher simi-
larity overall, as already discussed previously. Subsequently,
in this case the additional filtering step of TOPK-S-PPJ-P
does not manage to disqualify large numbers of user pairs.

6.3 Results for spatio-textual user clustering

6.3.1 Illustrative examples

Before delving into the detailed comparison of the proposed
methods, we present in Fig. 7 some illustrative examples of
the discovered user groups to assess the results. Note that we
do not perform a formal evaluation regarding the accuracy
of identified user communities. This would require the avail-
ability of corresponding ground truth data for comparison
and it also depends on other processing steps, in particu-
lar data preprocessing and cleaning with NLP and semantic
extraction techniques, which are orthogonal to our method
and thus beyond the scope of this paper. Moreover, the num-
ber of resulting clusters in each case largely depends on the
values selected for the spatial distance and textual similarity
thresholds. For the default values used in our experiments,
the number of identified clusters was 371 for GeoText, 74 for
Flickr, and 319 for Twitter; however, only few of them (about
10–15 in each case) contain more than 10 users. Neverthe-
less, even without much emphasis on data preprocessing and
parameter tuning, the presented examples below show that
the proposedmethod has the potential to discovermeaningful
user groups in the input data.

Figure 7 shows four user groups extracted from the Flickr
dataset which contains about 1M geotagged photographs
from about 10K users in the area of Greater London. The first
group (C1—top left) appears to correspond to football fans,
having posts with keywords such as football, Arsenal, and

Premiership, in locations around Wembley Stadium (north-
west), Emirates Stadium (north), BoleynGround (northeast),
and Crystal Palace Park (south). The second group (C2—top
right) appears to refer to users attending tennis events; the
posts contain keywords such as tennis,Wimbledon, and ATP
and are concentrated around Queen’s Club (northwest) and
Wimbledon Park (southwest). The third group (C3—bottom
left) appears to comprise tourists that visit various attractions
in the center of London, with posts containing keywords such
as St Paul’s,Westminster, and Hungerford Bridge and being
located around these well-known landmarks as well as other
ones such asBigBen andTrafalgar Square. Finally, the fourth
group (C4—bottom right) involves users that appear to have
some cultural interests, containing posts with keywords such
as architecture,museum, and statue in locations including the
British Museum, the British Library, the London Transport
Museum, and the Greenwich Park.

6.3.2 Method comparison

Having examined some illustrative cases of the resulting user
clusters, we proceed with the comparison of our proposed
algorithms for this task. The experiments presented nextwere
executed on an Intel Xeon E5-2420 v2 CPU with 2.20 GHz
processor and 64GB RAM running Ubuntu. The spatial dis-
tance and textual similarity thresholds, εloc and εdoc, are set
to the same default values used previously (see Table 2).

For brevity, we distinguish between the compared meth-
ods by indicating the type of graph they use. For example,
we refer to the method generating the approximate graph
G∗-TOPK and then applying theLouvainmethod on it, simply
asG∗-TOPK.Moreover, for thosemethodswhere edgeweight
refinement is applicable, we indicate the type of refinement
used (if any). For example, G∗-LB (R1) indicates the method
that generates the graph G∗-LB and then, during cluster com-
putation, utilizes edge weight refinement according to the
method R1, as outlined in Algorithm 6.
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Fig. 7 Illustrative example showing the spatial footprint and top keywords for four identified user groups

In the evaluation, we compare the performance of the
methods relying on the approximate graphs G∗ as opposed
to that of the exact method, which fully computes the spatio-
textual user similarity graphG and then executes the Louvain
method over it.We denote as Tex ,Mex , andCex , respectively,
the execution time of the exact method, the modularity score
of the clusters it produces, and the set of these clusters. For
each approximate method, we measure, on the one hand,
its efficiency compared to Tex , and, on the other hand, its
quality compared to Mex and Cex . In particular, for the qual-
ity comparison, we use two criteria. The first is based on
the modularity scores of the resulting partitions. For each
approximate method, we apply the resulting partitions on the
exact graph G and compare the obtained modularity score to
Mex . This shows to what extent each method can success-
fully identify a community structure in the original graph. It
is possible for two sets of partitions to have similar modular-
ity scores while being quite different (i.e., there may be more

than one relatively good ways to group together users into
communities). Thus, we use in addition a second measure
that indicates how similar the partitions are. In particular,
we compute the normalized mutual information (NMI) [40]
between the set of clusters obtained by each method and the
set of clusters computed on the exact similarity graph.

Finally, we study the trade-off provided by each method
between execution time and quality of results.

6.3.3 Baseline

In addition to comparing our proposed methods, we also
examine the performance of a baseline method, where the
idea is to quickly approximate user similarities based on
dimensionality reduction. First, we map all objects to a set
of discrete locations. Specifically, we use k-means to cluster
objects according to their coordinates, and then, wemap each
object to the centroid of the cluster it is assigned to. Next,
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Fig. 8 Comparison of the proposed methods for spatio-textual user clustering

we transform the keywords of each post to spatio-textual
“words”, by prefixing them with the identifier of the respec-
tive cluster centroid. Finally, we apply Twitter-LDA [50], an
adaptation of LDA formicroblogs, to extract a set of τ spatio-
textual “topics” and represent each user with a vector in this
τ -dimensional space.

Using these user vectors, we have investigated two meth-
ods for computing user groups. The one is a straightforward
approach where locality-sensitive hashing (LSH) [26] is
applied to map similar users to “buckets”. This approach
allows to group together users very quickly (in the order
of milliseconds); however, in our experiments, the resulting
partitions had very low quality. Measuring the modularity
of the obtained partitions on the exact user similarity graph,
the resulting values were very low (close to zero or even
negative), which indicates that the method fails to identify
communities in the graph. Therefore, we also investigate a
second alternative that operates in a similarmanner as the rest
of our proposed algorithms (i.e., it constructs a user similarity
graph and executes the Louvain method to identify commu-
nities), with the difference that in this case the similarity
between a pair of users is computed by simply calculating
the cosine similarity of their respective vectors, as opposed
to performing a detailed comparison of their spatio-textual
objects. In the experiments presented in the next section, we
refer to this baseline approach as HASH. Note that, for this
baseline, the measured execution time does not include the
time needed to cluster locations using k-means and to extract

spatio-textual topics using Twitter-LDA. These are consid-
ered as preprocessing steps that are executed offline.

6.3.4 Overall comparison of methods

The first set of experiments provides an overview regarding
how the different proposed methods compare to each other
in terms of both execution time and quality of discovered
clusters. In this experiment, for G∗-TOPK, we set the param-
eter k to 4000 for GeoText, 10,000 for Flickr, and 40,000 for
Twitter, to account for their differences in size and complex-
ity. For G∗-KNN, we set the parameter k to 5. More detailed
results with varying values of these parameters are presented
in Sect. 6.3.5. Moreover, for the baseline method, we set
the number of location clusters and topics to k = 100 and
τ = 100, respectively. The results are shown in Fig. 8.

All methods, exceptG∗-KNN, require only a fraction of the
execution time Tex of the exact method. This is particularly
evident in the case of the largest dataset (Twitter). In that
case, the execution time required by G∗-TOPK and G∗-KNN
is around 20 and 60% of Tex , respectively. This reduction
is even higher for the methods based on G∗-UB, G∗-LB, and
G∗-ULB, which manage to reduce the execution time to less
than 5% of Tex . We observe similar results for the Flickr
dataset for almost all algorithms. G∗-TOPK requires 37% of
Tex , whereas G∗-UB, G∗-LB, and G∗-ULB achieve execution
times less than 8% of Tex . However, G∗-KNN exhibits poor
performance, even exceeding Tex in the case of GeoText and
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Fig. 9 Comparison of sizes of the generated graphs, and of the time spent for computing clusters in each one

Flickr. This can be attributed to the fact that, since the exe-
cution of the kNN query has to be done for each individual
user, eventually this results in many repeated computations
accumulating an overhead that negates any benefits of the
pruning performed within each individual iteration. Overall,
focusing on the two most demanding datasets, Flickr and
Twitter, we can conclude that the most efficient method is
G∗-LB. Still, the baseline method executes faster than any
other algorithm. This is expected, since in this case user
similarities are measured by simply computing the cosine
similarities between the respective vectors that have been
constructed offline. However, as shown next, this method
identifies clusters of lower quality.

In terms of quality, G∗-LB and G∗-ULB achieve the best
results overall. The modularity of the clusters they produce
is comparable to Mex in GeoText and Twitter and also quite
close to Mex in Flickr. Interestingly, G∗-KNN also produces
clusters of equally good quality in Flickr, but, as discussed
above, at a much higher cost.When examining the respective
results for the normalized mutual information, a difference
can be observed in the behavior of the G∗-ULB algorithm.
The scores in this case are quite low, which indicates that
G∗-ULB partitions the user graph in a different manner than
G; however, as seen above, this partition still seems to be
of high quality, as indicated by the high modularity score.
Instead, G∗-LB achieves a high score both in modularity and
in normalized mutual information, indicating that the pro-
duced partitioning more closely matches that of G. Finally,
the baseline method exhibits poor results, in terms of both
modularity and normalized mutual information, except from
the GeoText dataset. Notice that these scores remained low
even when testing different values of the parameters k and τ .

Overall, G∗-LB and G∗-ULB achieve the best com-
bined performance in efficiency and effectiveness. G∗-ULB
achieves marginally higher modularity scores, although it

appears to identify different user groups, whereas G∗-LB
has marginally lower execution time, while also finding user
groups that are more similar to the one discovered on the
exact user graph. This outcome is attributed to the effective-
ness of G∗-LB in more closely approximating the exact user
similarity graph. G∗-ULB requires slightly more time to com-
pute, but it also introduces additional edges which aremissed
in G∗-LB. It appears that some of these edges, even with their
very small weight θ , contribute to deriving better clusters.
On the other hand, although G∗-UB has a comparable per-
formance to G∗-LB and G∗-ULB in terms of execution time,
it fails to produce clusters of high quality. This is attributed
to the fact that the upper bound is a quite loose approxima-
tion of the actual similarity score. The outcome is similar
for G∗-TOPK. Despite the reduction in execution time, the
resulting clusters turn out to have poor quality. This shows
that focusing only on the top-k connections is not sufficient.

To delve into some more detail regarding the graphs gen-
erated by each method, we measure the size of each one (in
terms of the number of edges) as well as the time needed for
computing the clusters over it. The results are shown in Fig. 9.
In the case of G∗-TOPK and G∗-KNN, the number of produced
edges is explicitly controlled by the respective parameter k;
thus, we focus more on the other methods. G∗-LB generates
a graph that has fewer edges than G, whereas the number of
edges in the graph generated by G∗-UB (and, consequently,
also by G∗-ULB) is considerably higher. This indicates the
ratio of false positive and false negative edges in the respec-
tive methods. Subsequently, it results in more time required
for graph partitioning in G∗-UB and G∗-ULB compared to
G∗-LB, in particular for Flickr and Twitter. The behavior
of the baseline method is also close to that of G∗-UB and
G∗-ULB. Still, this difference has negligible impact on the
overall execution time, since the time spent on graph parti-
tioning remains a small fraction of it. The latter is shown in
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Table 3 Graph partitioning time
to total execution time

G (%) G∗-TOPK (%) G∗-KNN (%) G∗-UB (%) G∗-LB (%) G∗-ULB (%)

GeoText 15.6 9.1 5.55 17 15 12

Flickr 0.03 0.1 0.01 7.5 1 14

Twitter 0.12 0.6 0.04 8.3 3 10

Fig. 10 Performance of G∗-TOPK and G∗-KNN while varying k

more detail in Table 3. Even in the cases of the larger graphs
G∗-UB andG∗-ULB, the time spent on graph partitioning does
not exceed 17% of the total execution time. This observation
advocates in favor of strategies that focus on reducing the
time required by the first phase of the process, namely the
graph generation,which involves the costly set similarity join
operations.

6.3.5 Effect of parameter k (G∗-TOPK and G∗-KNN)

In the G∗-TOPK and G∗-KNN algorithms, the respective
parameter k allows for ameans to control the balance between
execution time and quality of results. In the next experi-
ment,we investigate this behavior. Specifically, forG∗-TOPK,
we vary k from 2000 to 8000 for GeoText; from 10,000 to
70,000 for Flickr; and from 40,000 to 160,000 for Twitter.
For G∗-KNN, we vary k from 5 to 35. The results are shown
in Fig. 10.

In the GeoText dataset, the resulting differences in execu-
tion time are not very noticeable; however, the execution time
in this dataset is relatively small. In contrast, when examin-

ing the Flickr and Twitter datasets, the execution time clearly
increases as k increases. Interestingly, in Twitter, G∗-KNN
achieves lower execution times than Tex for smaller values
of k, but in all other cases it exhibits poor performance, as
already observed previously. Examining the modularity of
the produced clusters, we can also observe a clear increase
in its score as the value of k increases. This shows that as the
threshold on the number of edges to be computed is relaxed,
the quality of the identified clusters is improved, thus validat-
ing the trade-off between efficiency and accuracy. The same
holds for the normalized mutual information. Nevertheless,
both methods manage to achieve comparable modularity to
Mex only when k reaches higher values, in which case the
execution time has also reached levels comparable to Tex .

6.3.6 Effect of edge refinement (G∗-UB, G∗-LB, G∗-ULB)

Our final set of experiments investigates the performance of
themethods based onG∗-UB,G∗-LB, andG∗-ULB, when edge
weight refinement is enabled. In this case, an initial graph
partitioning is first computed. Then, the algorithm selects
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Fig. 11 Performance of G∗-UB, G∗-LB, and G∗-ULB with edge weight refinement

and refines a (small) subset of the graph edges, prioritized
according to the stability heuristic. Moreover, it leverages
these refined results to accordingly adjust the weights of the
rest of the edges, through the application of a linear regres-
sionmodel. Afterward, it executes again the Louvain method
to compute a new partitioning on the refined graph. These
steps of edge refinement and graph partitioning are applied
iteratively, up to a maximum number of iterations or until
the process converges. In this experiment, we evaluate the
performance of each method while varying the percentage
of edges that are refined.

The results are shown in Fig. 11. Overall, we can observe
that in the case of G∗-LB, applying edge weight refine-
ment gradually increases the execution time,without offering
a corresponding increase in the quality of the produced
clusters. Nevertheless, as we have already seen, the mod-
ularity scores and the normalized mutual information scores
achieved by G∗-LB even without any edge refinement are
already comparable to those achieved when operating on
the exact user similarity graph. On the other hand, when
edge weight refinement is applied on G∗-UB and G∗-ULB, the
increase in execution time is accompanied by some increase
in cluster quality. This is especially truewhen considering the
impact of applying edge refinement on G∗-UB, in particular
on the Flickr dataset. In that case, modularity is drastically
improved, reaching the levels of G∗-LB, although at the cost
of a higher execution time. The benefits of edge refinement
can also be observed when applied to G∗-ULB, in which case

it increases its modularity scores to even higher values than
G∗-LB, while still retaining reduced execution times, around
70–90% of Tex . The impact of edge refinement is less notice-
able on the Twitter dataset, where some improvements are
still observed when refining 4–5% of the edges.

7 Conclusions

In this paper, we have addressed the problem of spatio-
textual user matching and clustering, where each user is
associated with a set of spatio-textual objects. For user
matching, we have presented several algorithms that rely on
spatio-textual indexing and pruning techniques to process
an STPSJoin query efficiently. We have also extended and
adapted these algorithms to the top-k variant of the problem.
User clustering is then based on generating and partitioning
a spatio-textual user similarity graph. To speed up this pro-
cess, our proposed techniques rely on building a partial and
approximate similarity graph instead.All algorithms are eval-
uated experimentally on three real-world datasets comprising
geolocated user posts and photographs. For the matching
problem, the results indicate that S-PPJ-F performs best,
while TOPK-S-PPJ-P achieves the best performance for
the top-k variant in the majority of the experiments. For the
clustering problem, our methods relying on the G∗-LB and
G∗-ULB approximate graphs are the most effective, dras-
tically reducing the execution time while still producing
clusters of high quality.
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Our future work focuses on two main directions. The first
is to focus more on the quality of the produced user clusters,
investigating different community detection algorithms. The
second is to further improve the efficiency and scalability of
ourmethods by proposing parallel and distributed algorithms
for these problems.
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