
The VLDB Journal (2018) 27:245–269
https://doi.org/10.1007/s00778-018-0496-7

REGULAR PAPER

Efficient provenance tracking for datalog using top-k queries

Daniel Deutch1 · Amir Gilad1 · Yuval Moskovitch1

Received: 21 December 2016 / Revised: 15 November 2017 / Accepted: 31 January 2018 / Published online: 22 February 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Highly expressive declarative languages, such as datalog, are now commonly used to model the operational logic of data-
intensive applications. The typical complexity of such datalog programs, and the large volume of data that they process, call
for result explanation. Results may be explained through the tracking and presentation of data provenance, defined here as
the set of derivation trees of a given fact. While informative, the size of such full provenance information is typically too large
and complex (even when compactly represented) to allow displaying it to the user. To this end, we propose a novel top-k query
language for querying datalog provenance, supporting selection criteria based on tree patterns and ranking based on the rules
and database facts used in derivation. We propose an efficient novel algorithm that computes in polynomial data complexity
a compact representation of the top-k trees which may be explicitly constructed in linear time with respect to their size. We
further experimentally study the algorithm performance, showing its scalability even for complex datalog programs where
full provenance tracking is infeasible.

Keywords Provenance · Datalog · Top-K

1 Introduction

Many real-life applications rely on an underlying database
in their operation. In different domains, such as Declara-
tive Networking [44], Social Networks [54], and Information
Extraction [24], it has recently been proposed to use datalog
for the modeling of such applications.

Consider, for example, AMIE [24], a system for min-
ing logical rules from Knowledge Bases (KBs), based on
observed correlations in the data. After being mined, rules
are then treated as a datalog program (technically, a syn-
tax of Inductive Logic Programming is used there) which
may be evaluated with respect to a KB of facts (e.g., YAGO
[58]) that, in turn, were directly extracted from sources
such as Wikipedia. This allows addressing incompleteness
of KBs, gradually deriving additional new facts and intro-
ducing them to the KB. The datalog program depicted

B Amir Gilad
amirgilad@mail.tau.ac.il

Daniel Deutch
danielde@post.tau.ac.il

Yuval Moskovitch
moskovitch1@post.tau.ac.il

1 Tel Aviv University, Tel Aviv, Israel

in Fig. 1 is composed of rules automatically inferred by
AMIE.

Datalog programs capturing the logic of real-life appli-
cations are typically quite complex, with many, possibly
recursive, rules and an underlying large-scale database. For
instance, AMIE rules are highly complex and include many
instances of recursion andmutual recursion (see againFig. 1).
Furthermore, since AMIE rules are automatically mined,
there is an inherent uncertainty with respect to their validity.
Indeed, many rules mined in such a way are not universally
valid, but are nevertheless very useful (and used in practice),
since they contribute to a higher recall of facts.

In such complex systems, accompanying derived facts
with provenance information, i.e., an explanation of theways
they were derived, is of great importance. Such provenance
information may provide valuable insight into the system’s
behavior and output data, useful both for the application
developers and their users.

Example 1 The binary relation dealsWith includes infor-
mation on international trade relations. For instance, AMIE
has “learned” the following rule, intuitively specifying that
dealsWith is a symmetric relation (ignore for now the num-
bers in parentheses).

r1(0.8) dealsWith(a, b):- dealsWith(b, a)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-018-0496-7&domain=pdf
http://orcid.org/0000-0002-3764-1958

246 D. Deutch et al.

dealsWith(a, b) :- imports(a, c), exports(b, c)
dealsWith(a, b) :- dealsWith(b, a)
dealsWith(a, b) :- dealsWith(a, f), dealsWith(f, b)
hasChild(a, b) :- isMarriedTo(e, a), hasChild(e, b)
hasChild(a, b) :- isMarriedTo(a, f), hasChild(f, b)
isMarriedTo(a, b) :- isMarriedTo(b, a)
isMarriedTo(a, b) :- hasChild(a, c), hasChild(b, c)
influences(a, b) :- influences(a, f),

influences(f, b)
isCitizenOf(a, b) :- wasBornIn(a, f),

isLocatedIn(f, b)
diedIn(a, b) :- wasBornIn(a, b)
dealsWith(a, b) :- exports(a, f), exports(b, f)
dealsWith(a, b) :- imports(a, f), imports(b, f)
directed(a, b) :- created(a, b)
influences(a, b) :- influences(a, f),

influences(b, f)
isPoliticianOf(a, b) :- diedIn(a, f),

isLocatedIn(f, b)
isPoliticianOf(a, b) :- livesIn(a, f),

isLocatedIn(f, b)
isInterestedIn(a, b) :- influences(a, f),

isInterestedIn(f, b)
worksAt(a, b) :- graduatedFrom(a, b)
influences(a, b) :- influences(e, a),

influences(e, b)
isInterestedIn(a, b) :- isInterestedIn(e, b),

influences(e, a)
produced(a, b) :- created(a, b)
isPoliticianOf(a, b) :- wasBornIn(a, f),

isLocatedIn(f, b)

Fig. 1 AMIE program

Manyother ruleswith thedealsWith relationoccurring in
their head were mined by AMIE, including some additional
rules whose validity is questionable: (imports and exports
are additional binary relations)

r2(0.5) dealsWith(a, b):- imports(a, c), exports(b, c)
r3(0.7) dealsWith(a, b):- dealsWith(a, f), dealsWith(f, b)

In this example, when viewing a concrete derived “deal-
sWith” fact, it is thus highly useful to see an explanation
for it, including in particular which rules were used for its
derivation: intuitively, we may trust facts derived via the first
rule but not via the second, unless for a concrete fact the
derivation using the latter appears to “make sense” (e.g., if
the derivation involves a rare product).

A conceptual question in this respect is what consti-
tutes a “good” explanation. There are many different models
defining such explanations through different notions of
provenance. The models greatly vary in the level of detail
that they capture: for instance, provenance may be defined
as the set of input tuples contributing to a tuple derivation
(the lineage model of [6]); the boolean combination thereof
[33]; or their combination using an algebraic structure as in
[30]. Different models are useful for different applications.
In this work, we capture explanations for datalog through the

Table 1 Database

exports

t1: Country Product

France wine

Cuba tobacco

Cuba coffee beans

imports

t2: Country Product

Cuba wine

Mexico wine

Mexico tobacco

France tobacco

dealsWith

Countrya Countryb
Mexico France

notion of derivation trees. A derivation tree of an intensional
fact t , definedwith respect to a datalog program and an exten-
sional database, completely specifies the rules instantiations
and intermediate facts jointly used in the gradual process of
deriving t .

Example 2 As a simple example, consider the datalog pro-
gram consisting of the rules r1, r2, r3 from Example 1 and
the instance presented in Table 1. Figure 2 depicts derivation
trees for the fact dealsWith(Cuba, France).

Derivation trees are particularly appealing as explana-
tions, since unlike boolean provenance or the lineage model,
they do not only include the facts and rules that support a
given fact, but they also describe how they support it, provid-
ing insight on the structure of inference. A single fact may
have multiple derivation trees (alternative derivations), and
the set of all such trees (each serving as “alternative explana-
tion”) is the provenance of that fact. Defining provenance as
the set of all possible derivation trees leads to a challenge: the
number of possible derivation trees for a given program and
database may be extremely large and even infinite in pres-
ence of recursion in the program. This is the main challenge
that we aim to address in this work.

We next outline our approach and main contributions in
addressing this problem, as well as the challenges that arise
in this context.

Novel query language for datalog provenance. We observe
that while full provenance tracking for datalog may be costly
or even infeasible, it is often the case that only parts of the
provenance are of interest for analysis purposes. To this end,
we develop a query language called selPQL that allows
analysts to specify which derivation trees are of interest to

123

Efficient provenance tracking for datalog using top-k queries 247

Fig. 2 Derivation Trees

them. A selPQL query includes a derivation tree pattern,
used to specify the structure of derivation trees that are of
interest. The labels of nodes in the derivation tree pattern
correspond to facts (possibly with wildcards replacing con-
stants), and edges may be regular or “transitive”, matching
edges or paths in derivation trees, respectively.

Example 3 Analysts may be interested in explanations for
a particular dealsWith fact (due of its importance), in all
dealsWith facts involving a particular country, or in expla-
nations for all dealsWith facts (rather than all relations).
The two latter cases may be captured by patterns that involve
wildcards. Beyond specifying facts of interest, analysts may
be interested in specific features of their derivations, e.g.,
viewing derivations that involve integration of data from dif-
ferent sources or ones that rely on particular sources.

Importantly, and since the number of qualifying derivation
trees may still be very large (and in general even infinite), we
support the retrieval of a ranked list of top-k qualifying trees
for each fact of interest. To this end, we allow analysts to
assign weights to the different facts and rules. These weights
are aggregated to form the weights of trees.

Example 4 The weight function may be uniform across all
rules and tuples, in which case concise derivations are prefer-
able to long ones. As another example, AMIE associates
confidence values with rules; these may be aggregated to
form the confidence in a given derivation.

Novel algorithms for selective provenance tracking.We then
turn to the problem of efficient provenance tracking for
datalog, guided by a selPQL query. We observe (and exper-
imentally prove) that materializing full provenance, i.e., a
compact representation of the possible trees, and then query-
ing the provenance, is a solution that fails to scale. Our
solution then consists of twomain steps. The first is to instru-
ment the datalog program P with respect to the tree pattern
p of the selPQL query. We introduce a precise definition of
the output of this instrumentation (see Proposition 1), which
is a new datalog program Pp that “guides” provenance track-
ing based on p. Namely, for each pair of (relation of P , part
of p) we design a novel relation name and corresponding
rules whose body relations together “guarantee” satisfaction

of the pattern part. Then, we show a bottom-up evaluation
algorithm for Pp w.r.t. a database D that generates compact
representation of the top-k qualifying trees. This is done by
first computing the top-1 tree side-by-side with bottom-up
datalog evaluation. We then further design novel algorithms
for computing the top-k derivation trees, by exploring mod-
ifications of the top-1 tree. We show heuristic solutions as
well as a solution that supports diversification of retrieved
trees.

Complexity analysis and experimental study.We analyze the
performance of our evaluation algorithm from a theoreti-
cal perspective, showing that the complexity of computing a
compact representation of selected derivation trees is polyno-
mial in the input database size, with the exponent depending
on the size of the datalog program and the selPQL query;
the enumeration of trees from this compact representation is
then linear in the output size (size of top-k trees). We have
further implemented our solution, and have experimented
with different highly complex and recursive programs. Our
experimental results indicate the effectiveness of our solution
even for complex programs and large-scale data where full
provenance tracking is infeasible.
Note This paper significantly extends [16,17]. Specifically,
our main novel contributions here are as follows:

1. We present full proofs for all theoretical results.
2. We introduce many new examples throughout the paper

(e.g., Examples 12–21, 23).
3. We provide an extensive and complete study (Sect. 5) of

the case of boolean combinations of patterns.We provide
a new algorithm (Algorithm 2) with a correctness proof
(Proposition 3), and new examples (Examples 15–20)

4. We introduce a novel algorithm for computing diverse
top-k trees (in Sect. 6.4).

5. We present new experiments concerning the tracking of
full provenance, diversification, and boolean combina-
tions of patterns, as well as full details including the
patterns and programs used.

2 Preliminaries

We provide an overview of datalog and its provenance using
the notations in Table 2.

2.1 Datalog

We assume that the reader is familiar with standard datalog
concepts [1]. Here we review the terminology and illustrate
it with an example.

123

248 D. Deutch et al.

Table 2 Notations Table

P Datalog program

r Datalog rule

β Body of a rule

D Database

t Fact

P(D) Intensional Database

R idb relation

T edb relation

τ Derivation tree

trees(P, D, t) Derivation trees of t with respect to P,D

trees(P, D) All derivation trees with respect to P,D

p Pattern

v Pattern node

v0 Root of pattern p

p(P, D) Derivation trees in trees(P, D) matching p

Pp Instrumented program (P w.r.t. p)

Rv, Rvt Annotated relation

Definition 1 A datalog program is a finite set of datalog
rules. A datalog rule is an expression of the form:

R1(u1) : −R2(u2) . . . Rn(un), xi �= x j

where Ri ’s are relation names, andu1, . . . , un are sets of vari-
ableswith appropriate arities. R1(u1) is called the rule’shead,
and R2(u2) . . . Rn(un) is called the rule’s body. Every vari-
able occurring in u1 must occur in at least one of u2, . . . , un.
xi and x j are variables or constants occurring in u1, . . . , un

and any assignment to the variables must satisfy the dise-
qualities constrains.

We make the distinction between extensional (edb) and
intensional (idb) facts and relations. An extensional rela-
tion is a relation occurring only in the body of the rules.
An intensional relation is a relation occurring in the head of
some rule. A datalog program is then a mapping from edb
instances to idb instances, whose semantics may be defined
via the notion of the consequence operator. First, the imme-
diate consequence operator induced by a program P maps a
database instance D to an instance D

⋃{A} if there exists an
instantiation of some rule in P (i.e., a consistent replacement
of variables occurring in the rule with constants) such that
the body of the instantiated rule includes only atoms in D and
the head of the instantiated rule is A. Then the consequence
operator is defined as the transitive closure of the immediate
consequence operator, i.e., the fixpoint of the repeated appli-
cation of the immediate consequence operator. Finally, given
a database D and a program P we use P(D) to denote the
restriction to idb relations of the database instance obtained
by applying to D the consequence operator induced by P .

Example 5 Reconsider the datalog program depicted in Fig.
1. Among many others, the idb instance includes the binary
relation dealsWith (an edb “copy” of this relation appears
as well, with a rule to copy its contents that is omitted for
simplification) and the binary edb relations imports and
exports.

The rules r1, r2, r3 from Example 1 form a datalog
program whose evaluation (with respect to the instance pre-
sented in Table 1; the presented table dealsWith is its
edb copy) follows the immediate consequence operator until
convergence. For instance, using rule r2 we may assign
Cuba, France, wine to a, b, c, respectively, obtaining the
new idb fact dealsWith(Cuba, France). Then using rule
r1 we obtain the idb fact dealsWith(France,Cuba), etc.,
until no new fact may be added in such a way.

2.2 Datalog provenance

It is common to characterize the process of datalog evalu-
ation through the notion of derivation trees. A derivation
tree of a fact t with respect to a datalog program and a
database instance D is a finite tree whose nodes are labeled
by facts. The root is labeled by t , leaves are labeled by edb
facts from D, and internal nodes by idb facts. The tree struc-
ture is dictated by the consequence operator of the program:
the labels set of the children of node n corresponds to an
instantiation of the body of some rule r , such that the label
of n is the corresponding instantiation of r ’s head (we refer
to this as an occurrence of r in the tree). Disequalities are
not included in the derivation tree, even if they appear in r .
Given a datalog program P and a database D, we denote
by trees(P, D, t) the set of all possible derivation trees
for t ∈ P(D), and define trees(P, D) = ⋃

t∈P(D) trees
(P, D, t).

A single derivation tree is quite simple to understand and
is even natural to visualize. However, there may be infinitely
many (and exponentially many in the absence of recursion
in P) possible derivation trees of a given fact, and so it is
infeasible to materialize trees(P, D).

Example 6 Three derivation trees for the fact t = deals
With(Cuba, France), basedon theprogramgiven inExam-
ple 1 and the database given in Table 1, are presented in Fig.
2. For instance, τ2 corresponds to the derivation that uses
the edb facts t1 and t2 and the rule r2 to derive the idb fact
dealsWith(France,Cuba), and then, use r1 to derive t .

Already in the small-scale demonstrated example there are
infinitely many derivation trees for t (due to the presence of
recursion in rules); for the full program and database, many
trees are substantially different in nature (based on differ-
ent rules and/or rules instantiated and combined in different
ways).

123

Efficient provenance tracking for datalog using top-k queries 249

(a) Pattern p1 (b) Pattern p2 (c) Pattern p3

(d) Pattern p4

Fig. 3 Tree Pattern Examples

3 Querying datalog provenance

We introduce a query language calledselPQL for derivation
trees, based on two facets: (1) boolean criteria describing
derivations of interest, (2) a ranking function for derivations.

3.1 Derivation tree patterns

Recalling our definition of provenance as a possibly infinite
set of trees, we next introduce the notion of derivation tree
patterns.

Definition 2 A derivation tree pattern is a node-labeled tree.
Labels are either wildcards (*), or edb/idb facts, in which
wildcards may appear instead of some constants. Edges may
be marked as regular (/) or transitive (//), and in the latter
case may be matched to a path of any length.

The boolean operators ¬, ∨ and ∧ can be applied to tree
patterns. Intuitively, given the tree pattern p1 and p2, ¬p1
is used to specify that we are interested in trees that do not
match (see semantics of matching below) p1, p1 ∨ p2 (and
p1 ∧ p2) are used to specify that we are interested in trees
that match p1 or (resp. and) p2.

Example 7 Several tree patterns are presented in Fig. 3. The
pattern p1 specifies interest in all derivations of facts of
the form dealsWith(Cuba, ∗) (any constant may replace
the wildcard). The other patterns further query the struc-
ture of derivation. Specifically, p2 specifies that the analyst
is interested in derivations of such facts that are (directly
or indirectly) based on the fact that Cuba exports tobacco.
The patterns p3 and p4 are relevant when (omitted) rules
integrate two ontologies (YAGO and DBpedia). We use
∗_YAGO() and ∗_DBP()1 to match all relations from YAGO
and DBpedia resp.; then p3 selects derivations of facts
dealsWith(Cuba, ∗) that are based on integrated data from
both sources, and p4 selects derivations that use facts from
YAGO but no fact from DBpedia.

1 This requires a slight change of the definition of patterns, which is
easy to support, to allow * in relation names.

We next define the semantics of derivation tree patterns,
in the spirit of XML query languages with some technical
differences (see below).

Definition 3 Given a derivation tree τ and a derivation tree
pattern p, a match of p in τ is a mapping h from the nodes
of p to nodes of τ , and from the regular (transitive) edges
of p to edges (resp. paths) of τ such that (1) the root of p is
mapped to the root of τ , (2) a node labeled by a label l which
does not contain wildcards, is mapped to a node labeled by
l, (3) a node labeled by a label l which includes wildcards
is mapped to a node labeled by l ′, where l ′ may be obtained
from l by replacingwildcards by constants, (4) a node labeled
by a wildcard can be mapped to any node in τ . (5) If n,m
are nodes of p and e is the directed (transitive) edge from
m to n, then h(e) is an edge (path) in τ from h(m) to h(n)

and (6) for any two edges e1 and e2 in p, their corresponding
edge/path in τ are disjoint.

We next define the semantics of a pattern with respect to
a datalog instance.

Definition 4 Given a (possibly infinite) set S of derivation
trees and a derivation tree pattern p, we define p(S) (“the
result of evaluating p over S”) to be the (possibly infinite)
subset S′ consisting of the trees in S for which there exists a
match of p. Given a pattern p, a datalog program P and an
extensional database D, we use p(P, D) as a shorthand for
p(trees(P, D)).

Example 8 Consider the datalog program P given in Exam-
ple 1, the database instance given in Table 1 and the tree
pattern p2 in Fig. 3b. The set p2(P, D) includes infinitely
many derivation trees, including in particular τ2 and τ3 shown
in Fig. 2.

The boolean operators ¬, ∨ and ∧ can also be applied to
tree patterns, with the expected semantics, i.e., ¬p1 matches
every treewhere there is nomatch of p1, and p1∨p2 (p1∧p2)
matches trees that match p1 or (resp. and) p2. For instance,
the pattern p4 in Fig. 3d specifies that wewish to view deriva-
tions that are based solely on YAGO and do not use DBpedia
fact.

3.2 Ranking derivations

Even when restricting attention to derivation trees that match
the pattern, their number may be too large or even infinite, as
exemplified above. We thus propose to rank different deriva-
tions based on the rules and facts used in them. We allow
associating weights with the input database facts as well as
the individual rules, and aggregating theseweights. Different
choices of weights and aggregation functions may be used,
capturing different interpretations.We support a general class
of such functions via the notion of an ordered monoid, which

123

250 D. Deutch et al.

is a structure (M,+, 0,<) such that M is a set of elements,
+ is a binary operation which we require to be commutative,
associative, and monotone non-increasing in each argument,
i.e., x+ y ≤ min(x, y) (with respect to the structure’s order),
0 is the neutral value with respect to +, and < is a total order
on M .

Definition 5 A weight-aware datalog instance is a triple
(P, D, w) where w, the weight function, maps rules in P
as well as tuples in D to elements of an ordered monoid
(M,+, 0,<). The monoid operation is referred to as the
aggregation function.

Example 9 We demonstrate multiple choices of monoid and
the corresponding applications.

Derivation size To rank derivation trees by their size wemay
use the monoid (Z−,+, 0,<), and set the weight of every
rule to be −1; then the weight of a derivation tree is the
negative of its size.

Derivation (total) confidence Another way to rank deriva-
tions is to associate confidence values with rules. In AMIE,
such confidence values reflect the rules’ support in underly-
ing data. Here we use the monoid ([0, 1], ·, 1,<). This is the
example that will be used in the sequel; rules’ weights are
specified next to them and facts weights are all 1.

Derivation minimal confidence One could alternatively
impose a preference relation on trees based on the confidence
in their “weakest” rule/fact (so that top trees are those whose
least trusted component is best trusted among all trees). This
can be captured by the ([0, 1],min, 1,<) monoid.

Access control Consider the case where each fact/rule is
associated with a different access control credential, e.g.,
one of A = {Top secret (T), Secret (S), Confidential (C),
Unclassified (U)}. We may rank trees based on their over-
all credential (typically defined as the maximum credential
of fact/rule used), so that non-secret trees are preferable as
explanations. Here we use (A,min,U,<), where T < S <

C < U.

We may then define the weight of a derivation tree as the
result of aggregating the weights of facts and derivation rules
used in the tree.

Definition 6 The weight of a derivation tree τ with respect to
a weight-aware datalog instance, denoted, abusing notation,
as w(τ), is defined as

∑
r w(r) + ∑

t w(t) where the sums
(performed in the weights monoid) range over all rules and
tuples occurrences in τ .

Example 10 Setting the weight of every rule to be −1 and
using the monoid (Z−,+, 0,<), the weights of the trees in
Fig. 2 are w(τ1) = −1, w(τ2) = −2 and w(τ3) = −3.

Using the weight function w defined by the confidence
value associated with rules (appearing next to them, in
brackets) and aggregating via multiplication, the weights
of exemplified trees (Fig. 2) are w(τ1) = 0.5, w(τ2) =
0.5 · 0.8 = 0.4 and w(τ3) = 0.7 · 0.8 · 0.5 = 0.28.

Last, we may define top-k problem.

Definition 7 Given a pattern p, a weight-aware datalog
instance (P, D, w) and a natural number k, we use top-
k(p, P, D, w) to denote the set containing for each fact t
in P(D) the k derivation trees of t that are of highest weight
(ties are decided arbitrarily) out of those in p(P, D). We use
TOP-K to denote the problem of finding top-k(p, P, D, w)

given the above input.

Example 11 In general, there are infinitelymanyfinite deriva-
tion trees for the fact dealsWith(Cuba, France) (due to
the recursive rule r1), as well as infinite derivations which
we algorithmically avoid generating (see Sect. 6). The top-2
results w.r.t. the pattern given in Fig. 3b are τ2 and τ3 in Fig. 2
with weights of 0.4 and 0.28, respectively. Note that τ1 does
not match the pattern.

Note that if the database is large then it is unreasonable
(and typically unneeded) to specify a weight for every indi-
vidual tuple; instead, tuples can have a default weight of 1,
which may be augmented by adding custom rules to the dat-
alog program, that copy tuples of interest (e.g., all tuples
of a particular relation or any other selection criteria) to an
auxiliary relation, and assigning the weights to these custom
rules.

Specifying queries in selPQL. Some users may lack suffi-
cient understanding of the structure of the program and the
content of the database, creating a bootstrapping problem
in writing selPQL queries. A possible use case is to first
specify and evaluate a “general” pattern, which, e.g., only
restricts the attention to particular output tuples. Then, after
browsing through relevant explanations, the user may refine
her patterns accordingly.

In the following sections, we propose a two-step algo-
rithm for solving TOP-K, as explained in the Introduction
and depicted in Fig. 4. The algorithm will serve as proof for
the following theorem.

Theorem 1 For any Program P, pattern p and database
D, we can compute the top-k derivation trees for each fact

Instrument P
w.r.t p

Instrumented
program P’ Top-K Top-k

trees
Program P,
Pa�ern p

k

Fig. 4 High-level Framework

123

Efficient provenance tracking for datalog using top-k queries 251

matching the root of p in O(k3 · |D|O(|P|w(p)) + |out |) time
where w(p) is the pattern width (i.e., the maximal number
of children of a node in p) and |out | is the output size.

The worst case time complexity is polynomial in the
database size with exponential dependency on the program
size (which is typically much smaller), and double exponen-
tial in the pattern width (which is typically even smaller), and
linear in the output size. We note that the output size (even
the size of a single derivation tree) may be exponential in the
Database size (though in practice top-k trees are typically
small); the linear dependency on the output size is of course
optimal in this respect.

4 Program instrumentation

We now present the first step of the algorithm for solving
TOP-K, which is instrumenting the program with respect to
a selPQL pattern. We first present an algorithm for a single
pattern instrumentation, and then generalize it to Boolean
combinations of patterns.

4.1 A single pattern

We first define relation names for the output program, and
then its rules.

Newrelation namesWesay that a pattern nodev is a transitive
child if it is connected with a transitive edge to its parent.
For every relation name R occurring in the program and for
every pattern node v we introduce a relation name Rv . If
v is a transitive child we further introduce a relation name
Rvt . Intuitively, derivations for facts in Rv must match the
subpattern rooted by v; derivations for Rvt must include a
subtree that matches the subpattern rooted by v. These will
be enforced by the generated rules, as follows.

New rules We start with some notations. Let v be a pattern
node, let v0, . . . , vn be the immediate children of v. Given an
atom (in the program) atom, we say that it locally matches
v if the label of v is atom, or the label of v may be obtained
from atom through an assignment A mapping variables of
atom to constants or wildcards (if such assignment exists, it
is unique).We further augment A so that a variable x mapped
to a wildcard, is now mapped to itself (Intuitively, this is the
required transformation to the atom so that a match with the
pattern node is guaranteed).

Example 12 The atom dealsWith(a, b) locally matches the
pattern node v0 of the tree pattern shown in Fig. 3b through
the assignment A = {a ← Cuba, b ← ∗}, but doesn’t
locally match v1.

Overloading notation, we will then use A(β), where β is
a rule body, i.e., a set of atoms, to denote the set of atoms
obtained by applying A to all atoms in β.

Algorithm 1: Instrumentation w.r.t. tree pattern
input : Weighted Program P and a pattern p
output: “Instrumented” Program Pp

1 foreach pattern node v ∈ p do
2 Let v0, . . . , vn be the immediate children of v;
3 foreach rule [R(x0, . . . , xm) : −β] in P do
4 if R(x0, . . . , xm) locally matches v through partial

assignment A then
5 Let (y0, . . . , ym) := A(x0, . . . , xm);
6 if v is a leaf then
7 Add [Rv(y0, . . . , ym) : −A(β)] to Pp;

8 else
9 foreach β ′ ∈ ex(A(β), {v0, . . . , vn}) do

10 Add [Rv(y0, . . . , ym) : −β ′] to Pp;

11 if v is a transitive child then
12 foreach β ′ ∈ tr − ex(β, v) do
13 Add [Rvt (x0, . . . , xm) : −β ′] to Pp;

14 foreach rule [Rv(y0, . . . , ym) : −β] for transitive v do
15 Add [Rvt (y0, . . . , ym) : −β] to Pp;

16 HandleEDB ();

17 Clean failed rules in Pp ;
18 return the union of rules in P and Pp;

Algorithm 1 then generates a new program, instrumented
by the selPQL pattern, as follows. For brevity we do not
specify the weight of the new rules: they are each simply
assigned the weight of the rule from which they originated,
or 0 (neutral value of the monoid) if there is no such rule.
The algorithm traverses the pattern in a top–down fashion,
and for every pattern node v it looks for rules in the program
whose head locally matches v (lines 3–4). For each such rule
it generates a new rule as follows: if v is a leaf (lines 6–7),
then intuitively this “branch” of the pattern is guaranteed to
be matched and we add rules which are simply the “special-
izations” of the original rule, meaning that we apply to their
body the same assignment used in the match.

Otherwise (lines 8–10), we need derivations of atoms
in the body of the rule to satisfy the subtrees rooted
in the children of v. To this end we define the set of
“expansions” ex(atoms, {v0, . . . , vn}) as follows. Consider
all one-to-one (but not necessarily onto) functions f that
map the set {v0, . . . , vn} to the set atoms = {a0, . . . , ak}.
Each such function defines a new set of atoms obtained
from atoms by replacing atom ai = R(x0, . . . , xm) by
Rv j (x0, . . . , xm) if f (v j) = ai and v j is not a transitive

child, or by Rvtj (x0, . . . , xm) if v j is a transitive child (atoms
to which no node is mapped remain intact). We then define

123

252 D. Deutch et al.

ex(atoms, {v0, . . . , vn}) as the set of all atoms sets obtained
for some choice of function f .

Example 13 Consider the set of atoms in the body of r3, and
the pattern given in Fig. 3bwith the transitive node v1. The set
ex({dealsWith(a, f), dealsWith(f , b)}, {v1}) consists of
{dealsWith(a, f)v

t
1, dealsWith(f , b)} and {dealsWith

(a, f), dealsWith(f , b)v
t
1}

In line 10 the algorithm generates a rule for each set out of
these sets of atoms. Intuitively, each such rule corresponds to
alternative “assignment of tasks” to atoms in the body, where
a “task” is to satisfy a subpattern.

The algorithm thus far deals with satisfaction of the
subtree rooted at v, by designing rules that propagate the sat-
isfaction of the subtrees rooted at the children of v to atoms
in the bodies of relevant rules. However, if the current pattern
node v is transitive (lines 11–13), thenmore rules are needed,
to account for the possibility of the derivation satisfying the
tree rooted at v only in an indirect fashion.A possibly indirect
satisfaction is either through a direct satisfaction (and thus for
every rule for Rv(. . .)wewill have a copy of the same rule for
Rvt (. . .), lines 14–15), or through (indirect) satisfaction by an
atom in the body. For the latter, we define tr − ex(atoms, v)

as the set of all atoms sets obtained from atoms by replacing
a single atom R(x0, . . . , xm) in atoms by Rvt (x0, . . . , xm)

(and keeping the other atoms intact), and add the correspond-
ing rules (line 13). Then the functionHandleEDB adds rules
for nodes that locallymatch edb facts, copyingmatching facts
into the new relations T v(. . .) and T vt (. . .). The final step of
the algorithm is “cleanup” (line 17), removing unreachable
rules. These rules have no derivation, i.e., each derivation
requires use of at least one idb relation for which there is
no rule in Pp (this may be done in a bottom-up fashion). In
addition, new rules that are added by the algorithm and are
not reachable from the rules added for the root node of the
pattern (i.e., rules for Rv0(. . .)) are deleted. This can be done
in a top–down fashion. The algorithm returns a new program
consisting of the set of newly generated rules together with
the original rules.

Example 14 Consider the program P consisting of the rules
r1, r2 and r3 given in Example 1, and the tree pattern shown
in Fig. 3b, where v0 is the root node in p2 and v1 is the leaf.

Since all rules in P locally match v0 through the assign-
ment A = {a ← Cuba, b ← ∗}, v0 is not a leaf and
{dealsWithvt1(b,Cuba)} is the only β ′ obtained for rule r1
and ex(A(dealsWith(b, a)), v1), we have that in line 10 the
algorithm adds the rule
dealsWithv0(Cuba,b):-dealsWithvt1(b,Cuba)
Similarly, the rules

dealsWithv0(Cuba, b):- imports(Cuba, a), exportsvt1(b, c)

dealsWithv0(Cuba, b):- importsvt1(Cuba, a), exports(b, c)

dealsWithv0(Cuba, b):- dealsWithvt1(Cuba, f),
dealsWith(f, b)

dealsWithv0(Cuba, b):- dealsWith(Cuba, f),

dealsWithvt1(f, b)

are generated using the rules r2 and r3
Next, the algorithm adds the rules for v1. Since, exports

(. . .) is an edb relation, there are no rules in P that locally
matches it and no new rules are added in lines 3–11. v1 is
a transitive node and thus in line 13 the following rules are
added

dealsWithvt1(a, b):- dealsWithvt1(b, a)

dealsWithvt1(a, b):- importsvt1(a, c), exports(b, c)

dealsWithvt1(a, b):- imports(a, c), exportsvt1(b, c)

dealsWithvt1(a, b):- dealsWithvt1(a, f), dealsWith(f, b)

dealsWithvt1(a, b):- dealsWith(b, f), dealsWithvt1(f, b)

Finally, since the edb relation exports(a, b) locally
matches v1 through the assignment A = {a ← Cuba, b ←
tobacco}, the function HandleEDB adds the rules

exportsv1(Cuba, tobacco):- exports(Cuba, tobacco)

exportsvt1(Cuba, tobacco):- exports(Cuba, tobacco)

Intuitively, derivations for facts in dealsWithv0(. . .)

must match the subpattern rooted by v0. Then derivations
for facts in dealsWithvt1(. . .) must include a subtree that
matches the subpattern rooted by v1, and generated rules
for dealsWithvt1(. . .) enforce that (since a dealsWith atom
cannot satisfy v1) one of the atoms in the body of a used rule
will be derived in a way eventually satisfying v1.

The algorithm then performs a “cleanup” of atoms for
which there is no derivation, in this example the idb relation
importsvt1(. . .) has no rule in P ′ thus the derivation rules
that use it such as

dealsWithvt1(a, b):- importsvt1(a, c), exports(b, c)

are deleted. In addition the relation exportsv1(. . .) is not
reachable from the derivation rules fordealsWithv0(. . .) and
thus the derivation rule added for it is deleted. Finally the
output program is:

dealsWith(a, b):- dealsWith(b, a)
dealsWith(a, b):- imports(a, c), exports(b, c)
dealsWith(a, b):- dealsWith(a, f), dealsWith(f, b)

dealsWithv0(Cuba, b):-dealsWithvt1(b, Cuba)

dealsWithv0(Cuba, b):- imports(Cuba, a), exportsvt1(b, c)

dealsWithv0(Cuba, b):- dealsWithvt1(Cuba, f),
dealsWith(f, b)

dealsWithv0(Cuba, b):- dealsWith(Cuba, f),

dealsWithvt1(f, b)

dealsWithvt1(a, b):- dealsWithvt1(b, a)

dealsWithvt1(a, b):- imports(a, c), exportsvt1(b, c)

dealsWithvt1(a, b):- dealsWithvt1(a, f), dealsWith(f, b)

dealsWithvt1(a, b):- dealsWith(b, f), dealsWithvt1(f, b)

exportsvt1(Cuba, tobacco):- exports(Cuba, tobacco) [r’]

The instrumented program satisfies the following funda-
mental property. Given an atom R(. . .), Rv(. . .) or Rvt (. . .)

123

Efficient provenance tracking for datalog using top-k queries 253

we define its origin to be R(. . .), i.e., the atom obtained by
deleting the annotation v or vt (if exists). For a derivation tree
τ we define origin(τ) as the tree obtained from τ by replac-
ing each atom by its origin and pruning branches added due
to the function HandleEDB (“copying” edb facts). We now
have:

Proposition 1 Let Pp be the output of Algorithm 1 for input
which is a program P and pattern p with root v0. For every
database D, we have that:

trees(P, D) =
⋃

τ∈trees(Pp,D)

origin(τ) (1)

p(P, D) =
⋃

t=Rv0 (...)

⋃

τ∈trees(Pp,D,t)

origin(τ) (2)

w(origin(τ)) = w(τ) ∀τ ∈ trees(Pp, D) (3)

Proof 1. Since P ⊆ Pp, every τ ∈ trees(P, D) is also
in trees(Pp, D) and it holds that origin(τ) = τ , thus
trees(P, D) ⊆ ⋃

τ∈trees(Pp,D) origin(τ).
In addition, recall that every node in a derivation tree
τ ∈ trees(Pp, D) corresponds to a derivation rule
in Pp. From the construction of the new rules in Pp,
the set of rules obtained by removing the annotations
from relation names in Pp is exactly the set of rules
in P (possibly with repetitions), and the rules added
by HandleEDB. origin(τ) is obtained by removing
the annotation from τ and pruning branches added
due to the function HandleEDB, thus every node in
origin(τ) corresponds to a derivation rule in P , therefore
trees(P, D) ⊇ ⋃

τ∈trees(Pp,D) origin(τ), namely

trees(P, D) =
⋃

τ∈trees(Pp,D)

origin(τ)

2. Let p|v be the subpattern of p rooted at v. We prove by
induction on the height of the pattern p|v that for every
pattern node v it holds that

p|v(P, D) =
⋃

t=Rv(...)

⋃

τ∈trees(Pp,D,t)

origin(τ)

Base case: v is a leaf. There are two possible cases:

– v locally matches an edb fact T (. . .). In this case for
each τ ∈ p|v(P, D), τ is simply an edb atom, and
the function HandleEDB adds rules that copy the
relevant tuple from the database into the new rela-
tion T v(. . .) (and T vt (. . .)). The derivation tree τ of
T v(. . .) (and T vt (. . .), in the case where v is a tran-
sitive node) consists of two nods, a root, T v(. . .) (or
T vt (. . .)), and a leaf, T (. . .), and origin(τ) is simply
T (. . .) in this case.

– v locally matches an idb atom R(. . .) through partial
assignment A. In this case, in line 7 the algorithmadds
anew rule for each rule in P if its head locallymatches
v (i.e., t = R(. . .) ∈ P(D) ⇔ Rv ∈ Pp(D)). The
relations in the body of each such rule are not anno-
tated and thus the derivation trees of facts in the body
are derivation trees in trees(P, D). Derivation trees
τ of Rv(. . .) consist of one of the rules added in line
7 and the derivation trees of each fact in the rule’s
body. Therefore, origin(τ) is the tree obtained by
removing the annotation v, and it is a derivation tree
in trees(P, D).
For the case where v is transitive, the algorithm adds
two types of derivation rules for Rvt , (i) the rules
added in line 13 and (ii) in line 15. Recall that (when
v is a leaf) τ ∈ p|vt (P, D) ⇔ (1) the root of τ locally
matches v (in this case τ ∈ p|v(P, D)) or (2) there
exists a node (not the root) in τ that locally matches
v. The rules added in line 15 capture case (1) and this
case is similar to the case where v is not transitive.
The rules added in line 13 capture case (2). Note that
the body of such rules contains exactly one annotated
relation name Svt (. . .)while the rest are facts in P(D)

and thus their derivation trees are in trees(P, D). We
can thus show by induction that the proposition holds
for Svt (. . .). A derivation tree τ that contains type (i)
rulesmust contain a derivation rules of type (ii) (since
initially there are no annotated facts in the
database). If Svt (. . .) is derived using type (ii) rule,
then clearly, by removing the annotations we obtain
a derivation tree in trees(P, D).

Suppose that the proposition holds for all v s.t. the p|v
is with height < k. Let v be a pattern node where p|v is
with height k, with children v0, . . . , vn .

– If v is not transitive, then a derivation tree τ ∈
p|v(P, D) ⇔ the root of τ locally matches v and
∀v j ∃u s.t. u is a child of the root in τ and for the
subtree rooted at it τ j it holds that τ j ∈ p|v j (P, D).
Observe that the last derivation step in any deriva-
tion tree τ ∈ p|v(P, D) can be done by a derivation
rule r added by the algorithm in line 10. To see this,
consider the root of τ . The root must locally match
v so the algorithm adds a labeled rule with the par-
tial assignment A that make them locally match. This
labeled rule is r . The body of the rule β can consist
of both annotated and non-annotated atoms. Deriva-
tion trees of atoms that are not annotated are trees
in trees(P, D). For annotated relation it holds that
τ j ∈ p|v j (P, D) and since p|v j are at depth k − 1 in
the tree by the induction hypothesis it holds that

123

254 D. Deutch et al.

τ ∈ p|v j (P, D) =
⋃

t=Rv j (...)

⋃

τ∈trees(Pp,D,t)

origin(τ)

Therefore, the derivation tree obtained by replac-
ing Rv(. . .) with R(. . .) and replacing each subtree
τ ′ rooted at the children of the root of τ with
origin(τ ′) is origin(τ) and it holds that origin(τ) ∈
p|v(P, D)

3. The weights of the new rules added by the algorithm are
assigned the weights of the rules from which they origi-
nated, and rules added due to the function HandleEDB
are added with weight 0 (i.e., the natural with respect
to + in the monoid). In addition, the set of edb facts
occurring in τ is exactly the set of edb facts occurring in
origin(τ) (due to the construction of the rules added by
HandleEDB). Therefore, we have:

w(τ) =
∑

r∈τ

w(r) +
∑

t∈τ

w(t)

=
∑

r∈origin(τ)

w(r) +
∑

t∈origin(τ)

w(t)

= w(origin(τ))

��
We refer to v and vt in Rv(. . .) and Rvt (. . .) as annota-

tions. Intuitively, the first part of the proposition means that
for every database, Pp defines the same set of trees as P if we
ignore the annotations (in particular we generate the same set
of facts up to annotations); the second part guarantees that by
following the annotations we get exactly the derivation trees
that interest us for provenance tracking purposes; and the
third part guarantees that the weights are kept. This will be
utilized in the next step, where we evaluate the instrumented
program while retrieving relevant provenance.

4.2 Complexity and output size

Given a datalog program P of size |P| and a pattern p, the
algorithm traverses the pattern, and for each node v ∈ p iter-
ates over the program rules. Let w(p) be the width of p, i.e.,
the maximal number of children of a node in p. The maximal
number of new rules the algorithm adds is O(|P|w(p)). The
exponential dependency on the pattern width is due to the
need to consider all “expansions”. Note that the exponential
dependency is on the pattern width, which is expected to be
small in practice. Furthermore, we next show that a polyno-
mial dependency on the program and pattern is impossible
to achieve.

Proposition 2 (Lower Bound) There is a class of patterns
{p1, . . .} and a class of programs {P1, . . .}, such that
w(pn) = O(n), |Pn| = O(n) and there is no program I Pn
of size polynomial in n that satisfies the three conditions of
Proposition 1 with respect to Pn, pn.

Proof Consider the following datalog program Pn
(a1, . . . , an are constants):
R(x1, x2,…, xn):- R1(x1), ... Rn(xn)
R1(x):-B(x)
...

Rn(x):-B(x)
and the pattern pn :

Both the pattern width and program size are polynomial in
n (the pattern width w(pn) is n and the program Pn consists
of n + 1 rules). We claim that every instrumented program
Pi satisfying the conditions of Proposition 1 must include at
least n! rules. To observe that this is the case, first note that
to satisfy the proposition’s condition (1), Pi must include a
relation Rv0 , with rules that are “copies” of the first rule of
Pn (we say that a rule r ′ is a copy of a rule r if r may be
obtained from r ′ by replacing every relation name in r by
its origin. We note that in fact our algorithm generates the
following n! “copies”:
r1: Rv0(x1, x2, . . . ,xn):- Rv1

1 (x1), ... Rvn
n (xn)

...
Rv0(x1, x2, . . . ,xn):- Rvn

1 (x1), ... Rv1
n (xn)

For each R
v j
i , there is a rule of the form R

v j
i (a j) : −B(a j).

We then observe that Pi must include these rules (up to
renaming) as well. First, without loss of generality, assume
that Pi includes all of the above rules except for the rule
r1. For the database D that contains the facts B(ai) for
1 ≤ i ≤ n, the derivation tree τ /∈ trees(Pi , D), although
origin(τ) ∈ trees(Pn, D), thus violating the proposition’s
condition (2).

Alternatively, if Pi “groups” two relation names (w.l.o.g.
say Rv1

1 and Rv2
1) together (say using relation name Rv12

1),
and then, e.g., generates the two rules Rv12

1 (a1) : −B(a1)
and Rv12

1 (a2) : −B(a2) (and “groups together” the corre-
sponding rules for R) to allow sub-derivations involving R1

to either use a1 or a2 (the “extreme case” would go back
to the original program, thus allowing any constants to be

123

Efficient provenance tracking for datalog using top-k queries 255

used in conjunction with R1. Then, we obtain a deriva-
tion τ2 ∈ trees(Pi , D, t), for t = Rv0(. . .), although
origin(τ2) /∈ pn(Pn, D), where τ2 follows the same struc-
ture of τ having two occurrences of B(a2) and no occurrence
of B(a1), again violating the equality in the proposition’s
condition (2). It is then easy to observe that no other alterna-
tive program can satisfy the conditions. ��

5 Boolean combinations of patterns

Algorithm 1 allows intersection of a single patternwith a pro-
gram. We next explain how to account for selPQL queries
that involve boolean combinations of patterns, i.e., negation,
conjunction, and disjunction. The time complexity and out-
put program size remain polynomial in the size of the original
program, with exponential dependency on the width of the
pattern (the exponent is multiplication of the individual size
of patterns, in the case of conjunction).

5.1 Negation

The algorithm for intersecting a negation of a pattern is sim-
ilar to Algorithm 1 with some modifications, as follows. We
use relation names R¬v and R¬vt for every relation name
R in the program and for every pattern node v. Derivations
for R¬v should not match the subpattern rooted by v and
derivations for R¬vt should not include a descendant that
matches the subpattern rooted by v. If the root of the pattern
is labeled v0, derivations of facts in annotated relations R¬v0

are derivations that satisfy the negated pattern (i.e., does not
match the pattern).

We then extend the idea of “expansion set” to define neg-
ex(atoms, {v0, . . . , vn}) where atoms is a set of atoms and
the vi ’s are pattern nodes as follows: if |atoms| ≥ n, then
neg-ex(. . .) is a set of n + 1 atoms sets where the i’th
set is the set obtain from atoms by replacing every atom
R(x0, . . . , xm) by R¬vti (x0, . . . , xm), if vi is a transitive child
and by R¬vi (x0, . . . , xm) otherwise. If |atoms| < n then
neg-ex(. . .) is the set that contains only the set atoms. If the
root of the pattern is labeled v0, we track all rules whose head
is labeled by ¬v0.

Example 15 Consider the set of atoms in the body of
r3, and the pattern given in Fig. 5. Intuitively, this pat-
tern matches all derivation trees that does not contain the
derivation tree τ2 shown in Fig. 2 as subtree. The set neg-
ex({dealsWith(Frnace, f), dealsWith(f ,Cuba)}, {v′

3,

v′
4}) consist of {dealsWith(Frnace, f)¬v′

3 , dealsWith(f ,

Cuba)¬v′
3} and {dealsWith(Frnace, f)¬v′

4 , dealsWith
(f ,Cuba)¬v′

4}.

Furthermore, given a pattern node v, and a rule in the pro-
gram r = R(x1, . . . , xm):-β, we define the set mis(v, r) as

Fig. 5 Negation of a Pattern

follows. If R(x1, . . . , xm) does not locally match v (i.e., v

cannot be obtain by any assignment) then mis(v, r) = {β}.
If R(x1, . . . , xm) locally matches v through a partial assign-
ment A, then mis(v, r) consist of β, xi �= σi for each
{xi ← σi } ∈ A. Note that mis(v, r) may be empty (e.g.,
when R(x1, . . . , xm) locallymatches vwith an empty assign-
ment).

Example 16 Consider the rule r2 given in Example 1, and
the pattern node v′

2 of the negated tree pattern shown in Fig.
5. dealsWith(a, b) locally matches v′

2 through the assign-
ment {a ← France, b ← Cuba} thusmis(v′

1, r2) consist of
{dealsWith(b, a), a �= France} and {dealsWith(b, a), b
�= Cuba}.

Let v be a node in the pattern p, we define Tr(v) to be
the last transitive node on the path from the root of p to v

(including v if it is transitive). In the case where no such node
exists Tr(v) = ⊥.

Example 17 For thenegatedpattern shown inFig. 5,Tr(v′
0) =

⊥ and Tr(v′
i) = v′

1 for 1 ≤ i ≤ 4.

Finally, given a set of atoms atoms and a node v we define
tr -neg(atoms, v) as the set of atoms obtained from atoms
by replacing each atom R(. . .) in atoms by R¬vt (. . .). Addi-
tionally, we define tr -neg(atoms,⊥) = atoms.

Algorithm 2 generates a new program, instrumented by a
negated pattern, as follows. We use the notation v∗ to denote
vt if v is transitive and v otherwise. Similarly to Algorithm
1, we do not specify the weight of the new rules. The algo-
rithm traverses the pattern in a top–down fashion and starts
by generating rules using mis(. . .) (lines 4–5). Intuitively,
for a given node v and rule r = R(x1, . . . , xm):-β, if v is not
transitive then for any rule in R¬v(. . .):-β ′ ∈ mis(v, r) either
R(. . .) does not locally match v, or it does locally match v

through a partial assignment A, and β ′ contains the disequal-
ity xi �= σi for some {xi ← σi } ∈ A. In both cases, any
derivation of R¬v(. . .) cannot match the subpattern rooted
by v, and thus we avoid derivations that match it. Recall that
derivations for R¬vt should not include a descendant that
matches the subpattern rooted by v, thus we use tr -neg(. . .)
to ensure that the derivation tree does not include any descen-
dant that matches the subpattern of the last transitive node

123

256 D. Deutch et al.

Algorithm 2: Instrumentation w.r.t. negated tree pattern
input : Weighted Program P and a negated pattern p
output: “Instrumented” Program Pp

1 foreach pattern node v ∈ p do
2 Let v0, . . . , vn be the immediate children of v;
3 foreach rule [r = R(x0, . . . , xm) : −β] in P do
4 foreach β ∈ mis(v, r) do
5 Add [R¬v∗

(. . .):-tr -neg(β, Tr(v))] to Pp;

6 if R(x0, . . . , xm) locally matches v, and v is not a leaf
then

7 Let A be the partial assignment that cause the match
and (y0, . . . , ym) := A(x0, . . . , xm);

8 foreach β ′ ∈ neg-ex(A(β), {v0, . . . , vn}) do
9 Add [R¬v∗

(y0, . . . , ym):-β ′] to Pp;

10 HandleEDBneg ();
11 Clean failed rules in Pp ;
12 return the union of rules in P and Pp;

on the path from the root to v. Intuitively, derivation trees the
use the rules for R¬v∗

(. . .)match the subpattern that includes
all the nodes from the root to v and the last derivation step
“breaks” thematch for the rest of the pattern, but we still need
to avoid derivations that match the subpattern rooted at the
last transitive node. If there is no such transitive node, then
any derivation that uses the rules generated in line 5 does not
match the pattern.

Example 18 Reconsider the program P consisting of the
rules r1, r2 and r3 given in Example 1, and the negation of
the tree pattern shown in Fig. 5. The rules
dealsWith¬v′

2(a, b):-dealsWith¬v′
1
t
(b, a), a �= France

dealsWith¬v′
2(a, b):-dealsWith¬v′

1
t
(b, a), b �= Cuba

are added in line 5 due to the node v′
2 and the rule r2, and

since Tr(v′
2) = v′

1.

Then, in the casewhere R(. . .) locallymatches v through a
partial assignment A and v is not a leaf (line 6), in addition to
the above rules, we further consider derivations that contain
the partial assignment A that causes the match. In this case,
a derivation that does not match a subpattern rooted by v,
either has less than n children in the derivation, where n is
the number of the children of v, or the derivation rooted by
at least one of R(. . .)’s children does not match one of the
children of v, which is captured by the neg-ex(. . .) set. Thus
we add for each β ′ ∈ neg-ex(A(β), {v0, . . . , vn}) the rule
R¬v∗

(y0, . . . , ym) : −β ′ in lines 8–9. If v is not a leaf, any
derivation that contains the partial assignment Amatches the
subpattern and thus we do not add rules in this case.

Example 19 R(a, b) locally matches v′
2 through the assign-

ment {a ← France, b ← Cuba}, and v′
2 is not a leaf, thus

the rules

dealsWith¬v′
2(France, Cuba):-dealsWith¬v′

3(France, f),

dealsWith¬v′
3(f, Cuba)

dealsWith¬v′
2(France, Cuba):-dealsWith¬v′

4(France, f),

dealsWith¬v′
4(f, Cuba)

are added in line 9 by the algorithm to capture derivations
that contain the partial assignment.

Finally, instead of adding rules for edb atoms that
locally match v, the function HandleEDBneg in line 10
adds the rules T¬v(x0, . . . , xm) : −T (x0, . . . , xm) and
T¬vt (x0, . . . , xm) : −T (x0, . . . , xm) for each edb atom
T (x0, . . . , xm) that does not locally matches v. For edb
atom T (x0, . . . , xm) that locally matches v through a partial
assignment A, the function adds the rules T¬v(x0, . . . , xm) :
−T (x0, . . . , xm), xi �= σi and T¬vt (x0, . . . , xm) : −T (x0,
. . . , xm), xi �= σi for each xi ← σi pair in the assignment A.

Example 20 The edb atom imports(. . .) does not locally
match v′

4 and thus the rules
imports¬v′

4(a, b):-imports(a, b)

imports¬v′ t
4(a, b):-imports(a, b)

are added by HandleEDBneg. In addition, the function
HandleEDBneg adds the rules

imports¬v′
3(a, b):-imports(a, b), a �= France

imports¬v′ t
3(a, b):-imports(a, b), a �= France

imports¬v′
3(a, b):-imports(a, b), b �= tobacco

imports¬v′ t
3(a, b):-imports(a, b), b �= tobacco

Proposition 3 Let Pp be the output of Algorithm 2 for input
which is a program P and negated pattern p with root v0.
For every database D, we have that:

trees(P, D) =
⋃

τ∈trees(Pp,D)

origin(τ) (1)

p(P, D) =
⋃

t=R¬v0 (...)

⋃

τ∈trees(Pp,D,t)

origin(τ) (2)

w(origin(τ)) = w(τ) ∀τ ∈ trees(Pp, D) (3)

Proof 1. Clearly trees(P, D) ⊆ ∪τ∈trees(Pp,D)origin(τ)

based on the same reasoning of Proposition 1 (P ⊆ Pp).
For the opposite containment, consider the derivation tree
τ formed from a rule generated by the algorithm. Rules
generated by the algorithm may differ from the original
rules in two ways: (1) an annotated original body and
therefore removing the annotation from τ will result in
a tree from trees(P, D), (2) adding disequalities to the
bodywhich further restrict the trees generated by the rule,
so these rules lead to the creation of a subset of derivation
trees, and thus if such a rule participated in τ , then surely
origin(τ) ∈ trees(P, D)

2. Let p|v be the subpattern of p rooted at v. We prove by
induction on the height of the pattern p|v that for every
pattern node v it holds that

123

Efficient provenance tracking for datalog using top-k queries 257

p|v(P, D) =
⋃

t=R¬v(...)

⋃

τ∈trees(Pp,D,t)

origin(τ)

Base case: v is a leaf and τ is a derivation tree. There are
two possible cases:

– v is not transitive. τ ∈ p|v(P, D) iff one of the
following holds: (1) the root of τ does not have
the same relation name as v or (2) the root of τ

contains different constants than v. Given the pat-
tern p, the algorithm produced a rule with the head
relation labeled by ¬v for every rule that does
not locally match v. Therefore, in case (1) τ ∈⋃

t=R¬v(...)

⋃
τ∈trees(Pp,D,t) origin(τ). In case (2),

let A be the assignment that makes the root of τ

locally match v through the rule r . For every pair
x ← σi ∈ A the algorithm adds a labeled rule r ′ with
the same head and body relations but adding the dis-
equality x �= σi . This way, the labeled rules are never
assigned with the same constants that make the root
of τ and v locally match. Similarly, if the relation of v
is edb, for case (1) we would add all rules of the form
T¬v(. . .) : −T (. . .) if v does not have the relation T
and for case (2) we also add rules with disequalities.

– v is transitive. Now τ ∈ p|v(P, D) iff (1) or (2)
from the previous case holds and (3) no node of τ

satisfies v. In this case Tr(v) = v and thus in the
rules added by the algorithm the atoms in the body
are annotated by ¬vt (using tr -neg(. . .) in line 5).
Note that since v is a leaf, every rule added by the
algorithmwhere the head is annotatedwith¬vt , must
be added in line 5 and thus the every atom in the body
of such rule must be annotated with ¬vt as well, or
by the function HandleEDBneg. Those rules are
added only for relation (and assignments) that does
not satisfy v, and thus every derivation that use such
rule clearly can not satisfy the pattern. Clearly, for
every derivation tree τ that use thus rules origin(τ) ∈
trees(P, D)

Suppose that the proposition holds for all v s.t. p|v has
height < k. Let v be a pattern node where p|v has height
k, with children v0, . . . , vn .

– v is not transitive. Let τ ∈ p|v(P, D). This means
that at least one of the following holds: either the
root of τ does not satisfy v or a subtree of τ does not
satisfy a subpattern rooted at one of the children of
v. In the former case, the proposition can be proven
similarly to the base case of the induction. The lat-
ter case holds iff (1) the number of children of v in
the pattern is greater than the number of children of

the root of τ or (2) ∃p j ∀u s.t. u is the child of the
root of τ and for the subtree rooted at it, τ j it holds
that τ j ∈ p|¬v j (P, D). By the induction hypothesis,
τ j ∈ ⋃

t=R¬v j (...)

⋃
τ∈trees(Pp,D,t) origin(τ) for all

τ j who are rooted at the children of v. There are
two kinds of rules added by the algorithm. Cases
(1) and (2) are captured by neg − ex(. . .) and thus
the appropriate rules are added by the algorithm.
Hence, the last derivation step in τ can be done using
a labeled rule r because either the head of r does
not locally match v or a subtree of τ does not sat-
isfy a subpattern rooted at v. So the last derivation
step in τ must by done by a rule r produced by
the algorithm. Therefore, the derivation tree obtained
by replacing R¬v(. . .) with R(. . .) and replacing
each subtree τ ′ rooted at the children of the root
of τ with origin(τ ′) is origin(τ) and it holds that
τ ∈ ⋃

t=R¬v(...)

⋃
τ∈trees(Pp,D,t) origin(τ).

– The case where v is transitive is similar to the case of
a transitive leaf.

3. This is immediate given Proposition 1, as the new rules
have the same weights as the original ones. ��

5.2 Disjunction and conjunction

Disjunction and conjunction of patterns may be performed
by repeatedly applying Algorithm 1. In the following we
refer a single (may be negated) tree pattern as a simple pat-
tern and pattern that is composed using disjunctions and/or
conjunctions of simple patterns as a combined pattern.

Given a program P and a combined pattern p, Pp can be
computed using the following procedure: If p = p1 ∨ p2,
and pi (i = 1, 2) is a simple pattern, use Algorithm 1 (or
Algorithm 2) to intersect P with pi and obtain Ppi . If pi
is combined recursively apply the same procedure to obtain
Ppi , and return P2 = Pp1∪Pp2 . If p = p1∧p2, first computes
Pp1 to obtain Pp1 (either by using Algorithms 1 or 2 for a
simple pattern, or by a recursive call if p1 is combined), then
instrument Pp1 with p2 (using Algorithms 1 or 2) to obtain
Pp.

Example 21 Recall the program P composed of r1, r2, r3
shown in Example 1, and consider the combined patten
p = p2 ∧ p′ where p2 is shown in Fig. 3b and p′ is the
negated pattern depicted in Fig. 5. The procedure for com-
bined patterns instrumentation first computes the program
Pp2 as shown in Example 14. Then it intersects the program
Pp2 with the pattern p′ using Algorithm 2. The rules in Pp2 p′
may consist of annotation fromboth pattern. For instance, the
rules

123

258 D. Deutch et al.

dealsWithv0¬v′
1(Cuba, France):-

dealsWithvt1¬v′
2(France, Cuba)

dealsWith¬v′
1(Cuba, b):-dealsWith¬v′

2(b, Cuba),
b �= France

dealsWithv0¬vt1(Cuba, b):-dealsWithvt1¬vt1(Cuba, a)

are generated by the algorithm using the node v′
1 in p′ and

the annotated rule
dealsWithv0(Cuba, b):-dealsWithvt1(b, Cuba)

which is obtained in the first instrumentation and thus is part
of Pp2 . Derivations of facts with the annotation v0¬v′

0 are
derivations that match the combined pattern.

6 Finding top-k derivation trees

The second step of the algorithm is finding top-k derivation
trees that conform to theselPQL query pattern, based on the
instrumented program and now also the input database. We
next describe the algorithm for top-k; then we will present a
heuristic optimization.

The algorithm operates in an iterative manner. We start
by explaining the algorithm for finding the top-1 derivation.
The generation of the top-1 qualifying tree is done alongside
with bottom-up standard (provenance-oblivious) evaluation
of the datalog program with respect to the database. We then
extend the construction to top-k for k > 1.

6.1 Top-1

Algorithm 3 computes the top-1 derivation
in a bottom-up manner. Each entry in the data structure

DTable represents the top-1 derivation tree of a fact t , and
contains the fact itself, its top-1 derivation weight, and point-
ers to the entries in the table corresponding to the derivation
trees of the “children” of t in the derivation. Starting with a
set of all edb facts (with empty trees) in DTable (line 1), in
each iteration, the algorithm finds the set of facts that can be
derived via facts in DTable using a single application of a
rule in P (line 3). For each such candidate we compute its
best derivation out of those using facts in DTable and a sin-
gle rule application (this is done by a procedure called Top).
The fact for which the maximal (in terms of weight) such
derivation is found is added to DTable (Line 4). Finally, the
algorithm returns the entries in DTable of facts that match
the root node v0 of the pattern.

Example 22 Consider the program given in Example 14, and
the database D shown in Table 1. Algorithm 3 first initial-
izes DTable with the edb atoms from D, each with its
weight (in this case all weights are 1). Then, in lines 2–
4, the algorithm finds the set of facts that can be derived
via the facts in DTable. In the first iteration the fact
t3 = exportsvt1(Cuba, tobacco) can be derived with weight

1 using the edb fact t1 = exports(Cuba, tobacco) and
the rule denoted r ′ in Example 14. Other facts can be
derived in the first iteration but t3 is the fact with maximal
weight. The algorithm thus adds (t3, 1, {∗t1}) to DTable,
where ∗t1 is a pointer to the entry of t1 in DTable. In
the next iteration, the algorithm can derive the fact t4 =
dealsWithvt1(France,Cuba) using t3 and the edb fact
t2 = imports(France, tobacco) with overall weight of
0.5. When t4 is selected in Line 4 (other facts may be
chosen due to ties), the algorithm adds (t4, 0.5, {∗t2, ∗t3})
to DTable. After t4 is added to DTable, the fact t5 =
dealsWithv0(Cuba, France) can be derived with overall
weight of 0.5 · 0.8 = 0.4, and (t5, 0.4, {∗t4}) is added to
DTable.

Algorithm 3: Top-1
input : Weighted Datalog Program P , Database D
output: Top-1 tree for facts of the form Rv0 (. . .)

1 Init DTable with (t, 0, null) for all t ∈ D;
2 while DTable changes do
3 Let Cand be the set of all facts derived via facts in DTable

and are not in it;
4 Add [argmaxt∈Cand Top(t, DTable, P)] to DTable

5 return the entries of all e ∈ DTable s.t. the fact t of e is of the
form Rv0 (. . .);

Complexity. The algorithm adds in each iteration a new fact.
The number of facts that can be derived is polynomial in the
Database size, thus this is an upper bound on the number of
iterations. Lines 3 and 4 are both polynomial in the Database
size, and therefore the overall time complexity and output
size of Algorithm 3 are polynomial in the Database size.

6.2 Top-K

The algorithm for TOP-K computes the top-i derivations for
each fact t ∈ Pp(D) in a bottom-up manner for 2 ≤ i ≤ k.
For each i it essentially repeats the procedure of Algorithm 3,
but starting with DTable consisting of the top-(i − 1) trees,
i.e., τ

j
t for all t ∈ Pp(D) and j < i . A subtlety is that

different trees in Pp(D) may have the same origin in P(D),
thus computing top-k using the instrumented program should
be done carefully in order to avoid generating the same tree
(up to annotations) over and over again.

To this end, we say that a derivation tree τt for a fact
t is a top-i candidate, if one of the following holds: (i) τt
uses at least one “new” fact that was added in the i’th iter-
ation or (ii) the last derivation step in τt is different from
the last derivation step in τ

j
t for all 1 ≤ j < i , such that

origin(τt) �= origin(τ
j
t). Given the top-(i − 1) derivation

trees, to compute i’th best tree for each fact we compute in a

123

Efficient provenance tracking for datalog using top-k queries 259

bottom-up manner top-i candidates that can be derived from
facts in DTable using a single rule application. Then we
select the candidate τt with maximal weight (out of candi-
dates computed for all facts) and add it to a new entry t i in
DTable. The step of computing the i’th best tree terminates
when there are no more new facts to add to DTable. To find
the top-k derivations we may simply compute the top-i for
each 1 ≤ i ≤ k. After the k’th iteration DTable contains a
compact representation the top-k derivation trees. The enu-
merate of top-k trees for each fact may then simply be done
by pointer chasing.

Complexity. The algorithm for TOP-K computes for each
1 ≤ i ≤ k the top-i derivation trees for each fact. For
each i , the computation of the top-i trees consists of at
most DTable iterations, each polynomial in DTable with
exponent |P|w(p). A subtlety is in the verification that two
compactly represented trees do not have the same origin: we
note that a recursive such comparison may be performed in
time that is polynomial in DTablewith the exponent depend-
ing on the maximal tree width (maximal number of children
of a tree node), which in turn depends only on the program
size. Next, DTable contains at most k entries for each fact
t ∈ Pp(D) where Pp is the instrumented program given the
program P and pattern p. The number of facts t ∈ Pp(D) is

at most |D||Pp | = |D|(|P|w(p)), where |D| is the extensional
database size, thus on the i’th step, the size of DTable is
bounded by i · |D|(|P|w(p)). Therefore, the time complexity
of the i’th step is O(i2 · |D|O(|P|w(p))). The complexity of
computing the top-k derivation trees is therefore
k∑

i=1

O(i2 · |D|O(|P|w(p))) = O(k3 · |D|O(|P|w(p)))

Finally, generating the top-k trees from DTable is linear in
the output size, and thus the overall complexity of TOP-K is
O(k3 · |D|O(|P|w(p)) + |out |), where |out | is the output size.

6.3 Alternative heuristic top-k computation

An alternative approach for finding top-k derivations is based
on ideas of the algorithm for k shortest paths in a graph [20].
The basic idea is to obtain the i’th best derivation tree of a
fact t by modifying one of the top-(i − 1) derivation trees of
t . Each node u with children u0, . . . , um in a derivation tree
τ for a fact t ∈ Pp(D), corresponds to an instantiation of a
derivation rule r in Pp. Given a node u ∈ τ , amodification of
u in τ is using a different instantiation to derive u, i.e., using
different derivation rule r ′ ∈ Pp or a different assignment
to the variables in r s.t. for the obtained tree τ ′ it holds that
origin(τ) �= origin(τ ′). We say that two modifications are
different if for their results τ1 and τ2 satisfy origin(τ1) �=
origin(τ2).

Given a derivation tree τ , we denote by τu,r ,σ the deriva-
tion tree obtained by modifying u in τ using r and σ . We
define δ(u, r , σ) = w(τ) − w(τu,r ,σ). Intuitively, δ(u, r , σ)

is the “cost” of themodification. Note that the i’st best deriva-
tion tree can be obtained by a modification of any one of the
top-(i−1) trees. Given the top-(i−1) derivation trees for the
fact t , the next best derivation can be computed as follows:
traverse each one of the top-i trees τ in a top–down fashion,
compute the cost of all possible differentmodifications (with-
out recomputing trees that were already considered; this can
be done by tracking the rules and assignment used for each
modification), and find themodification ofminimal cost. The
algorithm for top-k computes, for each output fact, the top-k
derivation trees as described above, and terminates when we
find top-k derivation orwhen there are nomoremodifications
to apply on the trees found by the algorithm. Note that the
consideration of modifications can be done without materi-
alizing the derivation trees, but rather only using DTable. A
subtlety is that a fact t may have multiple occurrences in a
derivation tree τ ; however, it appears only once in DTable.
Thus, modifying the entry of t in DTable would result in
modifying the subtrees rooted at all occurrences of t (instead
of modifying a subtree rooted at one occurrence of t). To
avoid these modifications, we generate a new copy of all the
facts in the path from the root of τ to t (including t) for each
modification of t’s subtree.

Example 23 Reconsider the output program of the algo-
rithm in Example 14. The top-2 derivation trees for the fact
dealsWith(Cuba, France) are shown in Fig. 6a, and we
next partially illustrate the computation process using the
alternative approach. The top-1 derivation tree τ 1 of the fact
dealsWith(Cuba, France) is depicted in Fig. 6. The nodes
u and u0 correspond to the derivation rule
[r] dealsWithv0(Cuba, b):- dealsWithvt1(b, Cuba)

(a) Top-1

(b) Top-2

Fig. 6 Top-2 Derivation Trees (with annotations)

123

260 D. Deutch et al.

with the assignment σ = {b ← France}. The weight of τ 1

is 0.4. By replacing r with

[r ′] dealsWithv0(Cuba, b):- dealsWithvt1(Cuba, f),
dealsWith(f,b)

and the assignment σ ′ = {b ← France, f ← Mexico},
we obtain the top-2 derivation tree τ 1

δ(u,r ′,σ ′) = τ 2. The

weight of τ 2 is 0.28 and δ(u, r ′, σ ′) = 0.12. origin(τ 1) and
origin(τ 2) are shown in Fig. 2 (as τ2 and τ3, respectively).

6.4 Diversification

Consider the Datalog program of our running example. The
following tree is the top-3 derivation tree w.r.t. the pattern
given in Fig. 3b, which contains the top-1 tree as subtree.

Our paradigm may be adapted to support diversification,
and avoid such derivations, by intersecting the program with
the negated top-i result before computing the top-(i + 1)
result.

For instance we may intersect the program with a negated
pattern consisting of a new root labeled by a wildcard, con-
nected by a transitive edge to a copy of the i’th result (denoted
by gen(τi) for the top-i derivation tree τi); thiswillmake sure
that the i’th tree will not appear as a subtree in the (i + 1)
result. This approach is manifested in Algorithm 4 which
iteratively computes the top-i trees as follows. It first instru-
ments the programusingAlgorithm1with the pattern to form
the new program (line 1). The algorithm then iterates k times
to computes the top-i tree, τi using Algorithm 3 and the cor-
responding general pattern gen(τi) (lines 3 – 4). In the final
step of the iteration at line 5, it builds a new program by inter-
secting the negated general pattern gen(τi) with the current
program to generate the program computing the top-(i + 1)
result.

Example 24 We exemplify Algorithm 4with the input k = 2,
the program consisting of the rules r1, r2, r3 taken from the
program depicted in Fig. 1 as P0, the database presented in
Fig. 2 as D and the pattern depicted in Fig. 3c as p0. At the
first step, we instrument P0 with the pattern p0 to receive
the instrumented program P1 from Example 14 (line 1). We
then assign to τ1 the output of Algorithm 3 with p1 and
D as input (line 3). In this case, τ1 is the tree depicted in
Fig. 6a. We conclude the first iteration by assigning to p1

Algorithm 4: Top-K
input : Integer k, Weighted Datalog Program P0, Database D,

Pattern p0
output: Top-k tree for facts of the form Rv0 (. . .)

1 P1 ← I nstrumentation(P0, p0);
2 for i = 1, . . . , k do
3 τi ← Top − 1(Pi , D);
4 pi = ¬gen(origin(τi));
5 Pi+1 ← I nstrumentationWithNegation(Pi , pi);

6 return τi for all i = 1, . . . , k;

the pattern ¬gen(τ1) (line 4) and we use the instrumentation
algorithm with adaptation for negation (line 5) to compute
the instrumented program P2 partially depicted in Examples
18, 19, 20 and 21. We then employ Algorithm 3 again with
the input P2 and D to receive the tree τ2 depicted in Fig. 6b
and finally we assign p2 the pattern ¬gen(τ2). Concluding
the run of the algorithm, in line 6, we return the trees τ1, τ2
depicted in Fig. 6.

7 Implementation and optimizations

We have implemented a system prototype called selP (for
“selective provenance”), demonstrated in [17]). selP serves
both for demonstrating the usefulness of our solution and
for conducting the experimental study detailed in the next
section. The system is implemented in JAVA and runs on
Windows 7. Its architecture is depicted in Fig. 4. The imple-
mentation extends and modifies the implementation of IRIS
[32], a JAVA-based system for datalog evaluation. We start
by describing the general architecture of selP, then detail
some important optimizations.

The user feeds the system with a datalog program (as
text) and is provided with dedicated interfaces for writing
selPQLqueries: weights can be attached to rules in the
text (assigning weights to tuples can be simulated through
rules, see discussion in Sect. 3.2), and patterns (as defined
in Sect. 3.1) may be drawn using a dedicated screen (shown
in Fig. 7). Then, the evaluation proceeds by generating the
instrumented program using the appropriate algorithm based
on the selPQLquery structure (Algorithm 1, Algorithm 2,
or their variants described in Sect. 5.2). The instrumented
program along with an input database is fed to the TOP-K
component, that includes an implementation of Algorithm 4
(which involves invocations of Algorithms 3 and 2).

Unsurprisingly, we have observed that the most important
factor affecting the system’s performance is the complexity
of the instrumented program. Specifically, two features of the
programwere crucial: the number of rules, and the generality
of the program in terms of the existence of constants. To
improve performance in practice, we employ optimizations

123

Efficient provenance tracking for datalog using top-k queries 261

Fig. 7 Input Screen

that simplify the instrumented program (without violating
correctness in the sense of Propositions 1 and 3), thereby
reducing the time of the top-k computation that follows. We
next explain the optimizations; see discussion of the practical
effect on the execution time in Sect. 8.
Use of constants. Recall that the instrumentation algorithms
may assign constants in generated rules, when such constants
appear in the pattern. In this case, a subset of the resulting
rules, namely those generated for “direct satisfaction” (see
Sect. 4) will include variables that, by definition can only be
assigned a constant (for every database). The optimization is
then to “propagate” the assignment of constants in a bottom-
up manner (i.e., instantiating the appropriate constants in the
rules of the parent node, based on the constants in the rules of
the child node), thus generating rules that are more specific
and reduce the workload in the top-k computation process.

Avoiding redundant rules. Several components of our solu-
tions may generate, in different circumstances, rules that are
redundant in the sense that they may be omitted and Propo-
sitions 1 and 3 continue to hold. We next detail 4 such cases
and their treatment.

First, rules generated for direct satisfaction (either non-
transitive parent, or the direct satisfaction rules for the
transitive case) of leaves labeled by edb facts are redundant.
For a parent node vp of such a leaf vl , Algorithm 1 generates
rules that contain an atom in the body with the same relation
name as in the rules generated for vl . As a result, every deriva-
tion using these rules will also use the atom corresponding
to the leaf. We therefore avoid generating those rules.

Second, Algorithm 2 may produce annotated rules whose
sole purpose is to copy a relation from the original program
(lines 4, 5). These rules can be discarded, and the rules using
their annotated head can be changed back to the original
relation.

Furthermore, some of the rules generated by Algorithm 2
may be instantiations of other rules where the variables are

replaced by specific constants, and these can also be safely
omitted.

Finally, recall that Algorithm 4 iteratively intersects a
programwith boolean combination of patterns. In each itera-
tion, rules that were generated in the preceding iteration may
become redundant and can be safely removed. For example,
consider executing Algorithm 4 with k = 3. In the third iter-
ation of the loop, rules whose head is annotated with v0¬v′

0
are redundant since the pattern can only be derived from rules
whose head is annotated with v0¬v′

0¬v′′
0 .

8 Experiments

We next describe the dedicated benchmark (including both
synthetic and real data) developed for the experiments, and
then the experimental results.

8.1 Evaluation benchmark

We have used the following datasets, each with multiple
selPQL queries (different number of requested results and
different patterns, varying in size and structure), and for
increasingly large output databases. The weights in the
reported results are all elements of the monoid ([0, 1], ·,
1,<); we have experimented with all other monoids given in
Example 9, but omit the results for them since the observed
effect of monoid choice was negligible.

1. IRIS We have used the non-recursive datalog program
and database of the benchmark used to test IRIS per-
formance in [32]. The program consists of 8 rules and
generates up to 4.26M tuples; weights have been ran-
domly assigned in the range [0,1]. The program is:

ra(A,B,C,D,E) :- p(A),p(B),p(C),p(D),p(E)
rb(A,B,C,D,E) :- p(A),p(B),p(C),p(D),p(E)
r(A,B,C,D,E) :- ra(A,B,C,D,E), rb(A,B,C,D,E)
q(A) :- r(A,B,C,D,E)
q(B) :- r(A,B,C,D,E)
q(C) :- r(A,B,C,D,E)
q(D) :- r(A,B,C,D,E)
q(E) :- r(A,B,C,D,E)

2. AMIE We have used the recursive datalog program pre-
sented in Fig. 1 consisting of rules mined by AMIE [24].
These rules were automatically translated into datalog
syntax; the weights were also assigned to the rules by
AMIE and reflect the confidence of each of the rules.
The underlying input database is that of YAGO [58], and
the program generates up to 1.2M tuples.

3. Explain We have used a the following variant of the
recursive datalog program described in [3], as a use case

123

262 D. Deutch et al.

(a) p1 (b) p2 (c) p3 (d) p4

Fig. 8 Example Patterns for IRIS

(a) p5 (b) p6 (c) p7 (d) p8 (e) p9

(f) p∗
6 (g) p∗

7 (h) p∗
8 (i) p∗

9

Fig. 9 Example Patterns for AMIE

for the “explain” system (aggregation and arithmetics
omitted):
b_o_m(Part, C) :- subpart_cost(Part, SubPart, C)
subpart_cost(Part, Part, Cost) :-

basic_part(Part, Cost)
subpart_cost(Part, Subpart, Cost) :-

assembly(Part, Subpart, Quantity),
b_o_m(Subpart, TotalSubcost),

The database was randomly populated and gradually
growing so that the output size is up to 1.17M tuples,
and weights have been randomly assigned in the range
[0,1].

4. Transitive Closure Last, we have used a recursive
datalog program consisting of 3 rules and computing
Transitive Closure in an undirected weighted graph. The
databasewas randomly populated to represent undirected
fully connected weighted graphs, yielding output sizes of
up to 1.7M tuples.

Size of input instances. We have experimented with an
increasing database size for each of the datasets. We list
below the sizes of the input instances, per dataset.

1. IRIS: 11, 12, 13, 14, 15, 16, 17.
2. AMIE: 67314, 75318, 85449, 98787, 117661, 142677,

177718, 231916, 338642, 626799.
3. Explain: 156, 306, 456, 606, 756, 905, 1051, 1201, 1351,

1504, 1655.
4. Transitive Closure: 101, 201, 301, 401, 501, 601, 701,

801, 901, 1001, 1101, 1201, 1301.

Patterns. The selPQL patterns used in our experiments are
shown in Figs. 8, 9, 10 and 11. For theAMIE, TC andExplain
datasets, the program is recursive and so the patterns select
out of an infinite set of trees. For IRIS, the selectivity of all
4 patterns is as follows: denoting the size of the relation p
by |p|, all patterns select |p|4 derivation trees out of 8 · |p|5
derivation trees overall.

8.2 Baselines: no provenance tracking and full
provenance tracking

To our knowledge, no solution for evaluation of top-k
queries (or tree patterns) over datalog provenance has been
previously proposed. To nevertheless gain insight on alter-
natives, we have compared, in terms of incurred time and
space, our solution to two possible extremes: (1) standard,
seminaive evaluation with no provenance tracking, using
IRIS implementation; and (2) compact representation of full
provenance. In this respect, recall that our proposed solu-
tion is based on the idea of having the user specify selPQL
patterns before the execution of the datalog program, and
instrumenting the program to generate only relevant prove-
nance. An alternative approach, and one that is pursued
in different contexts in previous work [34,36], is to track
full provenance information, and then visualize and/or allow
users to query it. In the context of datalog, previous work
[3,19,30] has proposed full provenance tracking methods;
specifically [19] has proposed a circuit-based construction
to reduce the provenance size. However, we observe that

123

Efficient provenance tracking for datalog using top-k queries 263

(a) p10 (b) p11 (c) p12 (d) p13

Fig. 10 Example Patterns for TC

(a) p14 (b) p15 (c) p16

Fig. 11 Example Patterns for Explain

for complex recursive datalog programs, full provenance
size grows rapidly with respect to the provenance-oblivious
output database size, and so such solutions fail to scale.
Specifically, we have implemented the (boolean) circuit-
based approach of [19] in an iterative fixpoint algorithm,
which is executed, similarly to our solution, along side with
standard seminaive evaluation. The overhead of full prove-
nance generation done in this way is exemplified in Fig. 14.
In addition, we note that a compact circuit-based representa-
tion is highly complex and evenwhen it can be realized, it can
only serve as an internal intermediate step toward answering
queries over provenance rather than be directly visualized.

All experimentswere executed onWindows 7, 64-bit,with
8GB of RAM and Intel Core Duo i7 2.10 GHz processor.

8.3 Experimental results

Figure 12 presents the execution time of standard seminaive
evaluation and of selective provenance tracking for the four
datasets and for different selPQL queries of interest (fixing
k = 3 for this experiments set). Full provenance tracking has
incurred execution time that is greater by order of magnitude
and is thus omitted from the graphs and only described in text.

InFig. 12a, the results for the IRISdataset are presented for
the 4 different patterns depicted in Fig. 8: (p1) binary tree pat-
tern with three nodes without transitive edges and (p2) with
two transitive edges, (p3) three nodes chain pattern with two
transitive edges, and (p4) six-node pattern with three levels
and four transitive edges. The pattern width and structure
unsurprisingly has a significant effect on the execution time,
but the overhead with respect to seminaive evaluation was
very reasonable: 38% overhead w.r.t. the evaluation time of
seminaive even for the complex six-node pattern and only

3–21% for the other patterns. The absolute execution time
is also reasonable: 56–65 s for the different patterns and for
output database of over 4.2M tuples (note that for this output
size, the execution time of standard seminaive evaluation is
already 53 s. In contrast, generation of full provenance was
infeasible (in terms of memory consumption) beyond output
database of 1.6M tuples, taking over 5 min of computation
for this size.

As explained above, the program we have considered for
the AMIE dataset is much larger and more complex. Full
provenance tracking was completely infeasible in this com-
plex settings, failing due to excessive memory consumption
beyond output database of 100K tuples. Of course, the com-
plex structure leads to significantly larger execution time also
for seminaive and selective provenance tracking. It also leads
to a larger overhead of selective provenance tracking, since
instrumentation yields an even larger and more complex pro-
gram. Still, the performance was reasonable for patterns of
the flavor shown as examples throughout the paper. We show
results for the AMIE dataset and 9 different representative
patterns that are presented in Fig. 9. Five patternswithout any
constants (only wildcards): (p5) a single node pattern, (p6) a
2-node pattern with a regular edge and (p7) with a transitive
edge, (p8) a binary 3-node pattern with regular edges, and
(p9) with one transitive edge. The other 4 patterns are (p∗

i)
for all 6 ≤ i ≤ 9, where each (p∗

i) has the same nodes and
edges of (pi), but with half of the wildcards replaced by con-
stants. The results are shown in Fig. 12b. We observe that the
“generality” of the pattern, i.e., the part of provenance that
it matches, has a significant effect on the performance. For
the “specific” patterns p∗

i , the computation time and over-
head was very reasonable: the computation time for 1.2M
output tuples was only 44.5 s (1.3 times slower than semi-

123

264 D. Deutch et al.

0

20

40

60

80

0.0 M 1.0 M 2.0 M 3.0 M 4.0 M

Ti
m

e[
Se

c]

Output DB size

Seminaive
P1
P2
P3
P4

(a) IRIS

0

40

80

120

160

200

0.0 M 0.3 M 0.6 M 0.9 M 1.2 M

Ti
m

e[
se

c]

Output DB Size

Seminaive P5 P6 P7 P8 P9 P6* P7* P8* P9*

(b) AMIE

0

20

40

60

80

0.0 M 0.5 M 1.0 M 1.5 M

Ti
m

e[
se

c]

Output DB Size

Seminaive
P10
P11
P12
P13

(c) Transitive Closure

0

80

160

240

320

0.0 M 0.4 M 0.8 M 1.2 M
Ti

m
e[

se
c]

Output DB Size

Seminaive

P14

P15

P16

(d) Explain

Fig. 12 Heuristic top-3: time of computation as a function of DB size

0
20
40
60
80

100
120
140
160
180
200
220

0.0 M 1.0 M 2.0 M 3.0 M 4.0 M

Ti
m

e[
Se

c]

Output DB size

Seminaive
P1
P2
P3
P4

(a) IRIS

0
100
200
300
400
500
600
700
800
900

1000

0.0 M 0.3 M 0.6 M 0.9 M 1.2 M

Ti
m

e[
se

c]

Output DB Size

Seminaive P5
P6 P7
P8 P9
P6* P7*
P8* P9*

(b) AMIE

0

50

100

150

200

250

0.0 M 0.5 M 1.0 M 1.5 M 2.0 M

Ti
m

e[
se

c]

Output DB Size

Seminaive
P10
P11
P12
P13

(c) Transitive Closure

0

80

160

240

320

400

480

560

0.0 M 0.4 M 0.8 M 1.2 M

Ti
m

e[
se

c]

Output DB Size

Seminaive

P14

P15

P16

(d) Explain

Fig. 13 Diverse top-3: Time of computation as a function of DB size

123

Efficient provenance tracking for datalog using top-k queries 265

0.0 M

2.0 M

4.0 M

6.0 M

8.0 M

10.0 M

12.0 M

14.0 M

0.00 K 0.01 K 10 K 15 K 20 K 25 K 30 K

Si
ze

 o
f p

ro
ve

na
nc

e

Size of output DB

Fig. 14 Full provenance size (AMIE dataset)

naive) for p∗
6 . For p

∗
7 and the same number of output tuples

it took 62 s (less than 2 times slower than seminaive), 44.6
s (1.3 times slower than seminaive) for p∗

8 and 105 s (3.2
times slower than seminaive) for p∗

9 . The patterns containing
only wildcards lead to a larger instrumented program, which
furthermore has more eventual matches in the data, and so
computation time was greater (but still feasible). The com-
putation time for 1.2M output tuples was less than a minute
(and 61% overhead w.r.t. seminaive in average) for p5, less
than 2 min (3.5 times slower than seminaive) for p6, 2.6 min
(4.8 times slower) for p7, and less than 2 and 2.9 min (3.6
and 5.4 times slower) for p8 and p9, respectively.

In Fig. 12c, we present the results for the TC dataset and 4
different patterns: (p10) a single node, (p11) 3-nodes binary
tree pattern with regular edges, (p12) 3-nodes chain pattern
with 2 transitive edges, and (p13) binary tree pattern with
three nodes and 2 transitive edges. All of these patterns are
shown in Fig. 10.We observe a non-negligible but reasonable
overhead with respect to seminaive evaluation (and the exe-
cution time is generally smaller than for the AMIE dataset).
The execution time for 1.7M output tuples for p10 was 31
s (and 56% overhead with respect to seminaive in average),
33 s for p11 (1.8 times slower than seminaive in average),
74 s for p12 (4 times slower) and 82 s for p13 (4.5 times
slower than seminaive). Here full provenance tracking was
extremely costly, requiring over 6.5 hours for output database
size of 1.7M tuples.

Figure 12d displays the results for the “explain” dataset.
We considered 3 different patterns: (p14) a single node, (p15)
a 3-nodes binary tree pattern with regular edges and (p16)
a 2-node pattern with a transitive edge (see Fig. 11). The
computation time for 1.16M output tuples was less than 3.2
min (7% overhead w.r.t seminaive) for p14, 3.3 min (10%
overhead w.r.t seminaive) for p15 and 4.4 min (85% over-
head w.r.t seminaive) for p16. Full provenance tracking has
required over 2 h even for an output database size of 115K.

From top-1 to top-k So far we have shown experiments with
a fixed value of k = 3. In Fig. 15 we demonstrate the effect
of varying k, using the TC dataset and fixing the pattern to

0

10

20

30

40

0.0 M 0.5 M 1.0 M 1.5 M 2.0 M

Ti
m

e[
se

c]

Output DB Size

Top-1

Top-3

Top-5

Top-7

Fig. 15 Varying K (TC dataset)

0

50

100

150

200

250

300

350

400

0.0 M 0.3 M 0.6 M 0.9 M 1.2 M

Ti
m

e[
se

c]

Output DB Size

Seminaive P5
P6 P7
P8 P9
P6* P7*
P8* P9*

Fig. 16 Boolean combination of patterns (AMIE dataset)

be p10. The overhead due to increasing k is reasonable, due
to our optimization using the heuristic algorithm for TOP-K
(after top-1 trees were computed): about 6%, 13%, and 21%
average overhead for top-3, top-5 and top-7, respectively,
with respect to top-1 execution time. Similar overheads were
observed for other patterns and for the other datasets. Our
optimizationwas indeed effective in this respect, outperform-
ing the non-optimized version with a significant gain, e.g.,
average of 64% for k = 3, 77% for k = 5 and 82% for k = 7
(and again the trend was similar for the other patterns and
datasets).

Full provenance trackingW̃e have highlighted throughout the
section the infeasibility of full provenance tracking for the
various settings. To illustrate the size overhead, we show in
Fig. 14 the size of full provenance as a function of the output
size, for the AMIE dataset. Observe the huge overhead of
full provenance tracking, leading to failure of the solution
beyond 25K output tuples.

Boolean combinations of patterns A näive way to exam-
ine Algorithm 2 is to input a negated pattern and program
and use the instrumented program as input to Algorithm 3
which will derive the top-k trees (by one of the approaches
described in this paper). However, intersecting a program
with a negated pattern (especially a selective one, contain-
ing constants) results in a complex program that is designed
to track almost the full provenance, which we have demon-

123

266 D. Deutch et al.

strated to be infeasible. Another possibility is to examine its
performance over a boolean combination of patterns which
involves a conjunction of a regular pattern and a negated pat-
tern of the form p1∧¬p2. That is, runningAlgorithms 1 and 2
on the input program (in that order) and then inputting the
instrumented program to Algorithm 3. This approach results
in a program focused on deriving trees that match p1 but
do not match p2. Specifically, we have examined the case
where p2 is a pattern that only contains constants. Figure 16
shows the results for all the patterns in the AMIE dataset.
Runtimes for the patterns p5, p6, p7, p8, p9, p∗

6 , p
∗
7 , p

∗
8 , p

∗
9

are 164, 161.4, 157.4, 157.9, 382.8, 82.3, 82.8, 85.1, 84.2 s,
respectively, for 1.2M output tuples. As expected, there is an
overhead to the evaluation as opposed to the evaluation of a
program which was intersected with a single regular pattern,
even when using the heuristic approach to find the top-3 (Fig.
12b).

Performance of Algorithm 4˜Figs. 13a–c, and Fig. 13 show
the results for Algorithm 4 for the aforementioned programs
and patterns with k = 3. The instrumentation step is negligi-
ble in terms of runtime (for both Algorithms 1 and 2), thus,
most of the runtime is spent during the evaluation of the
instrumented program. The overhead of the algorithm w.r.t
seminaive is higher than in the heuristic approach described
above since in the heuristic approach, Algorithm 3 runs once
and then the top-1 tree , while duringAlgorithm 4, Algorithm
3 runs 3 times: first, for the intersected programwith the orig-
inal pattern, P1; second, for P2 which is P1 intersected with
the negated derivation tree obtained in the first iteration; and
third, for P3 which is P2 intersected with the negated deriva-
tion tree obtained in the second iteration. The patterns in
the IRIS dataset had reasonable performance times of 102.6,
166.4, 136.6, 197.9 s, for patterns p1, p2, p3, p4, respectively.
The results for the AMIE dataset is depicted in Fig. 13. For
1.2M output tuples, the execution times for p5, p6, p7, p8,
p9 were 521.6, 533.9, 526.9, 551.5, 861.4 s, respectively.
Execution times for the more selective patterns p∗

6 , p
∗
7 , p

∗
8 ,

p∗
9 were unexpectedly faster taking 313, 303.2, 304.1, 391.2

s, respectively, for 1.2M output tuples. For the TC dataset
and patterns p10, p11, p12, p13 the results are 97.2, 209.8,
120.1, 198.4 s, respectively, for 1.7M output tuples. Finally,
patterns p14, p15, p16 of the Explain dataset had the follow-
ing runtimes: 530.7, 415.2, 398.5. Interestingly, the runtimes
for p15, p16 (three-node and two-node pattern, respectively)
were faster than for the pattern p14 (a single node pattern).

Effect of optimizations Recall that the algorithm consists of
two steps: program instrumentation and top-k evaluation.
The instrumentation step is extremely fast (less than 1 s in
all experiments), since it is independent of the database. A
crucial factor affecting the performance of the top-k step is
the complexity of the obtained instrumented program, which
in turn is highly dependent on the size and complexity of

the pattern and of the original program. As observed in the
experiments, “simple” patterns (small, containing constants
rather than wildcards) lead to smaller programs and good
performance, while more complex patterns can lead to meet-
ing the lower bound of Proposition 2, and consequently to a
greater overhead (yet, unlike full provenance tracking, exe-
cution time was still feasible even for the complex programs
and patternswe have considered). The optimizations outlined
in Sect. 7 played a vital role in reducing the top-1 and top-k
overheads. For instance, for the AMIE dataset, the computa-
tion time has improved by 22% to 50%. Specifically, for p8,
the computation time for 1.2M output tuples has improved
by 50% and the time has decreased from 3.9 min to less than
2 min. For p9, the improvement was more than 45% and
the running time has decreased from 5.4 min to less than 3
min. As for TC dataset, the computation time for 1.7M out-
put tuples decreased from 108 to 82 s (24% improvement) for
p13 and from 48 to 33 s (30% improvement) for p11. Overall,
the optimizations outlined in Sect. 7 have indeed improved
the algorithm’s performance by as much as 50%, by reduc-
ing the number of rules, and restricting the generality of the
programs.

Effect of patterns. The input cases which we have measured
also evaluate the effect of “hardness” of the patterns on the
computation. Specifically, the patterns chosen tomeasure the
performance on the AMIE dataset and are shown in Fig. 9
can be divided into two sets. Patterns p5− p9 are designed to
show the system’s performance in extreme situations. This
was achieved by using very general (non-selective) patterns
that in particular contain only wildcards. On the other hand,
the pattern p∗

i has an identical tree structure as the pattern pi
for all 5 ≤ i ≤ 9, respectively. However, p∗

i contains more
constants than pi and thus is more specific. The performance
of the patterns of the form p∗

i is much better (unfortunately it
is not possible to set a precise notion of selectiveness, since
the pattern “selects” out of an infinite set of trees; and so
we simply experiment with a large set of different patterns).
These experiments are depicted in Fig. 12b. For example,
the computation time for 1.2M output tuples for the partially
instantiated patterns for the AMIE program is 40%–65% bet-
ter.

9 Related work

Data provenance models Data provenance has been stud-
ied for different data transformation languages, from rela-
tional algebra to Nested Relational Calculus, with different
provenance models (see, e.g., [6,7,11,21,25,29,37,52]) and
applications [27,45,46,55,59], and with different means for
efficient storage (e.g., [5,9,21,50]). In particular, semiring-
based provenance for datalog has been studied in [30], and a

123

Efficient provenance tracking for datalog using top-k queries 267

compact way to store it, for some class of semirings, was
proposed in [19]. [14] introduces a theoretical model for
justifications/explanations for datalog with negation. How-
ever, no notion of selective provenancewas proposed in these
works. As we have experimentally shown, tracking full dat-
alog provenance fails to scale.

Selective provenance for non-recursive queries. There are
multiple lines of work on querying data provenance, where
the provenance is tracked for non-recursive queries (e.g., rela-
tional algebra or SQL). Here there are two approaches: one
that tracks full provenance and then allows the user to query it
(as in [34,36]), and one that allows on-demand generation of
provenance based on user-specified criteria. A prominent line
of work in the context of the latter is that of [26,28], where
the system (called Perm) supports SQL language extensions
to let the user specify what provenance to compute. Three
distinct features in our settings are (1) our support of recur-
sion, (2) the use of tree patterns to query derivations (which is
natural for datalog), and (3) the support of ranking of results.
These differences lead to novel challenges and consequently
required novel modeling and solutions (as explained in the
Introduction and in the description of the technical content).

Explanation for deductive systems. There is a wealth of work
on explaining executions for deductive DBMSs [3,41,56],
and some of them (e.g., [41]) compute explanations by aug-
menting the program with new rules. However, in contrast
to our work, these works focus on tracking full provenance
(either of the full program or of a given module as in [3]) and
then analyzing it (e.g., using CORAL queries [3]) or visu-
alizing through it using a dedicated interface. As we have
shown, tracking full provenance is infeasible for large-scale
data and complex programs. For instance, experiments in
[3] are reported only for a relatively small-scale data (up to
30K rule instantiations). A feature that is present in [56] and
absent here is the ability to query missing facts, i.e., explore
why a fact was not generated. Incorporating such feature is an
intriguing direction for futurework. Finally, we note that [42]
defines preference relations for datalog which allows to dis-
card subsumed tuples on thefly, thus effecting thederivations.
However, the efficient storage or presentation of provenance
is not discussed.

Program slicing. In [10,51] the authors study the notion of
program slicing for a highly expressive model of functional
programs and for Nested Relational Calculus, where the idea
is to trace only relevant parts of the execution. Our focus here
is on supporting provenance for programs whose output data
is large. Ranking and top-k queries are also absent from this
line of work.

Workflow provenance. Different approaches for capturing
workflow provenance appear in the literature (e.g., [2,13,
15,22,31,47,57]); however, there the focus is typically on

the control flow and the dataflow between process modules,
treating the modules themselves and their processing of the
data as black boxes. A form of “instrumenting” executions in
preparation for querying the provenance is proposed in [4],
but again the data is abstracted away, the queries are limited
to reachability queries and there is no ranking mechanism.

Context Free Grammars. Analysis of Context Free Gram-
mars (CFGs) has been studied in different lines of work. For
instance, in [40] the author proposes an algorithm for finding
the top-1 weight of a derivation in a weighted CFG; in [12]
the authors study the problem of querying parse trees of a
given probabilistic context free grammar. There are techni-
cal similarities between datalog and CFGs; but a significant
conceptual difference is that in datalog there is a separa-
tion between the program and the underlying data, which
has no counterpart in CFGs. This means that no counter-
part of our novel instrumentation algorithm appears in these
works. Then, the top-k trees computation requires again a
novel algorithm and subtle treatment of different cases.

Probabilistic XML. Multiple works have studied models
and query languages for probabilistic XML (see, e.g.,
[38,39,43]), including top-k queries [8,43,48]. A technical
similarity is in the use of tree patterns for querying a com-
pactly represented set of trees, each associated with a weight
(probability). However, our different motivation of querying
datalog provenance is then reflected in many technical dif-
ferences, including the separation between the program and
the underlying data; the use of general weights rather than
probabilities; their aggregation (summation over all possible
worlds) in the context of probabilistic XML rather than the
retrieval of individual top-k trees; and the resulting complex-
ity.

Markov Logic Networks and other probabilistic models. The
combination of highly expressive logical reasoning and prob-
ability has been studied in multiple lines of work. These
include Markov Logic Networks [35,49,53] and probabilis-
tic datalog (e.g., [18,23]). However, the focus in these lines
of work is on probabilistic inference; to our knowledge, no
counterparts of our query language or techniques were stud-
ied in these contexts.

10 Conclusion

We have presented selPQL, a top-k query language for
datalog provenance, and an efficient algorithm for tracking
selective provenance guided by a selPQL query. There are
many intriguing directions for future work, including further
optimizations, additional criteria for ranking trees, different
notions of diversification, and the incorporation of user feed-
back.

123

268 D. Deutch et al.

Acknowledgements This research has been partially funded by the
Israeli Science Foundation (978/17, 1636/13) and the Blavatnik Inter-
disciplinary Cyber Research Center (TAU ICRC). The contribution of
Yuval Moskovitch is part of Ph.D. thesis research conducted at Tel Aviv
University.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases.
Addison-Wesley, Boston (1995)

2. Ailamaki, A., Ioannidis, Y.E., Livny, M.: Scientific workflowman-
agement by database management. In: SSDBM (1998)

3. Arora, T., Ramakrishnan, R., Roth, W.G., Seshadri, P., Srivastava,
D.: Explaining program execution in deductive systems. In: DOOD
(1993)

4. Bao, Z., Davidson, S.B., Milo, T.: Labeling recursive workflow
executions on-the-fly. In: SIGMOD (2011)

5. Bao, Z., Köhler, H., Wang, L., Zhou, X., Sadiq, S.: Efficient prove-
nance storage for relational queries. In: CIKM (2012)

6. Benjelloun, O., Sarma, A., Halevy, A., Theobald, M., Widom, J.:
Databases with uncertainty and lineage. VLDB J. 17, 243 (2008)

7. Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness
of implicit provenance in query and update languages. ACMTrans.
Database Syst. 33(4), 1 (2008)

8. Chang, L., Yu, J.X., Qin, L.: Query ranking in probabilistic XML
data. In: EDBT (2009)

9. Chapman, A.P., Jagadish, H.V., Ramanan, P.: Efficient provenance
storage. In: ACM SIGMOD, SIGMOD ’08 (2008)

10. Cheney, J., Ahmed, A., Acar, U.A.: Database queries that explain
their work. In: CoRR, abs/1408.1675 (2014)

11. Cheney, J., Chiticariu, L., Tan,W.C.: Provenance in databases:why,
how, and where. Found. Trends Databases 1(4), 379 (2009)

12. Cohen, S., Kimelfeld, B.: Querying parse trees of stochastic
context-free grammars. In: ICDT (2010)

13. Cohn, D., Hull, R.: Business artifacts: a data-centric approach to
modeling business operations and processes. IEEE Data Eng. Bull.
32(3), 3 (2009)

14. Damásio, C.V., Analyti, A., Antoniou, G.: Justifications for logic
programming. In: Logic Programming andNonmonotonicReason-
ing (2013)

15. Davidson, S.B., Freire, J.: Provenance and scientific workflows:
challenges and opportunities. In: SIGMOD (2008)

16. Deutch, D., Gilad, A., Moskovitch, Y.: Selective provenance for
datalog programs using top-k queries. PVLDB 8(12), 1394 (2015)

17. Deutch, D., Gilad, A., Moskovitch, Y.: selp: selective tracking and
presentation of data provenance (demo). In: ICDE (2015)

18. Deutch, D., Koch, C., Milo, T.: On probabilistic fixpoint and
markov chain query languages. In: PODS (2010)

19. Deutch,D.,Milo, T., Roy, S., Tannen,V.: Circuits for datalog prove-
nance. In: ICDT (2014)

20. Eppstein, D.: Finding the k shortest paths. SIAM J. Comput. 28(2),
652 (1998)

21. Fink, R., Han, L., Olteanu, D.: Aggregation in probabilistic
databases via knowledge compilation. PVLDB 5(5), 490 (2012)

22. Foster, I., Vockler, J., Wilde, M., Zhao, A.: Chimera: a virtual data
system for representing, querying, and automating data derivation.
In: SSDBM (2002)

23. Fuhr, N.: Probabilistic datalog:a logic for powerful retrieval meth-
ods. In: SIGIR (1995)

24. Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.M.: Amie:
association rule mining under incomplete evidence in ontological
knowledge bases. In: WWW (2013)

25. Geerts, F., Poggi, A.: On database query languages for k-relations.
J. Appl. Logic 8(2), 173–185 (2010)

26. GlavicB.,Alonso,G.: Perm: processing provenance and data on the
same data model through query rewriting. In: ICDE, pp. 174–185
(2009)

27. Glavic, B., Alonso, G., Miller, R.J., Haas, L.M.: TRAMP: under-
standing the behavior of schema mappings through provenance.
PVLDB 3(1), 1314–1325 (2010)

28. Glavic, B., Miller, R.J., Alonso, G.: Using sql for efficient gener-
ation and querying of provenance information. In: In Search of
Elegance in the Theory and Practice of Computation. Springer
(2013)

29. Glavic, B., Siddique, J., Andritsos, P., Miller, R.J.: Provenance for
data mining. In: Tapp (2013)

30. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings.
In: PODS (2007)

31. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li,
P., Oinn, T.: Taverna: a tool for building and running workflows of
services. Nucleic Acids Res. 34, W729 (2006)

32. http://www.iris-reasoner.org
33. Imieliński, T., Lipski Jr., W.: Incomplete information in relational

databases. J. ACM 31(4), 761 (1984)
34. Ives, Z.G., Haeberlen, A., Feng, T., Gatterbauer, W.: Querying

provenance for ranking and recommending. In: TaPP (2012)
35. Jha, A.K., Suciu, D.: Probabilistic databases with markoviews.

PVLDB 5(11), 1160 (2012)
36. Karvounarakis, G., Ives, Z.G., Tannen, V.: Querying data prove-

nance. In: SIGMOD (2010)
37. Kenig, B., Gal, A., Strichman, O.: A new class of lineage expres-

sions over probabilistic databases computable in p-time. In: SUM,
pp. 219–232 (2013)

38. Kimelfeld, B., Kosharovsky, Y., Sagiv, Y.: Query evaluation over
probabilistic XML. VLDB J. 18(5), 1117 (2009)

39. Kimelfeld, B., Sagiv, Y.: Matching twigs in probabilistic XML. In:
VLDB (2007)

40. Knuth, D.E.: A generalization of Dijkstra’s algorithm. Inf. Process.
Lett. 6(1), 1 (1977)

41. Köhler, S., Ludäscher, B., Smaragdakis, Y.: Declarative datalog
debugging for mere mortals. In: Datalog in Academia and Industry
(2012)

42. Köstler,G.,Kießling,W., Thöne,H.,Güntzer,U.: Fixpoint iteration
with subsumption in deductive databases. J. Intell. Inf. Syst. 4(2),
123 (1995)

43. Li, J., Liu, C., Zhou, R., Wang, W.: Top-k keyword search over
probabilistic XML data. In: ICDE (2011)

44. Loo, B.T. et al.: Declarative networking: language, execution and
optimization. In: SIGMOD (2006)

45. Meliou, A., Gatterbauer, W., Suciu, D.: Reverse data management.
PVLDB 4(12), 1490 (2011)

46. Meliou, A., Suciu, D.: Tiresias: the database oracle for how-to
queries. In: SIGMOD (2012)

47. Missier, P., Paton, N., Belhajjame, K.: Fine-grained and efficient
lineage querying of collection-based workflow provenance. In:
EDBT (2010)

48. Ning, B., Liu, C., Yu, J.X.: Efficient processing of top-k twig
queries over probabilistic XML data. World Wide Web 16(3), 299
(2013)

49. Niu, F., Zhang, C., Re, C., Shavlik, J.W.: Deepdive: Web-scale
knowledge-base construction using statistical learning and infer-
ence. In: VLDS, pp. 25–28 (2012)

50. Olteanu, D., Zavodny, J.: Factorised representations of query
results: size bounds and readability. In: ICDT (2012)

51. Perera, R., Acar, U.A., Cheney, J., Levy, P.B.: Functional programs
that explain their work. In: SIGPLAN (2012)

52. Prov-overview, w3c working group note. http://www.w3.org/TR/
prov-overview/ 2013

53. Richardson, M., Domingos, P.: Markov logic networks. Mach.
Learn. 62(1–2), 107 (2006)

123

http://www.iris-reasoner.org
http://www.w3.org/TR/prov-overview/
http://www.w3.org/TR/prov-overview/

Efficient provenance tracking for datalog using top-k queries 269

54. Ronen, R., Shmueli, O.: Automated interaction in social networks
with datalog. In: CIKM (2010)

55. Roy, S., Suciu, D.: A formal approach to finding explanations for
database queries. In: SIGMOD (2014)

56. Shmueli, O., Tsur, S.: Logical diagnosis of LDL programs. New
Gener. Comput. 9(3/4), 277 (1991)

57. Simhan, Y.L., Plale, B., Gammon, D.: Karma2: provenance man-
agement for data-driven workflows. Int. J.Web Serv. Res. 5(2), 317
(2008)

58. Suchanek, F.M.,Kasneci, G.,Weikum,G.:Yago: a core of semantic
knowledge. In: WWW (2007)

59. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases.
Synthesis Lectures onDataManagement.Morgan&Claypool Pub-
lishers (2011)

123

	Efficient provenance tracking for datalog using top-k queries
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Datalog
	2.2 Datalog provenance

	3 Querying datalog provenance
	3.1 Derivation tree patterns
	3.2 Ranking derivations

	4 Program instrumentation
	4.1 A single pattern
	4.2 Complexity and output size

	5 Boolean combinations of patterns
	5.1 Negation
	5.2 Disjunction and conjunction

	6 Finding top-k derivation trees
	6.1 Top-1
	6.2 Top-K
	6.3 Alternative heuristic top-k computation
	6.4 Diversification

	7 Implementation and optimizations
	8 Experiments
	8.1 Evaluation benchmark
	8.2 Baselines: no provenance tracking and full provenance tracking
	8.3 Experimental results

	9 Related work
	10 Conclusion
	Acknowledgements
	References

