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Abstract With the growing volumes of vehicle trajectory
data, it becomes increasingly possible to capture time-
varying and uncertain travel costs, e.g., travel time, in a road
network. The current paradigm for doing so is edge-centric: it
represents a road network as a weighted graph and splits tra-
jectories into small fragments that fit the underlying edges to
assign time-varying and uncertain weights to edges. It then
applies path finding algorithms to the resulting, weighted
graph.Wepropose a newPAth-CEntric paradigm,PACE, that
targets more accurate and more efficient path cost estimation
and path finding. By assigningweights to paths,PACE avoids
splitting trajectories into small fragments. We solve two fun-
damental problems to establish the PACE paradigm: (i) how
to compute accurately the travel cost distribution of a path
and (ii) how to conduct path finding for a source–destination
pair. To solve the first problem, given a departure time and a
query path, we show how to select an optimal set of paths that
cover the query path and such that the weights of the paths
enable the most accurate joint cost distribution estimation
for the query path. The joint cost distribution models well
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the travel cost dependencies among the edges in the query
path, which in turn enables accurate estimation of the cost
distribution of the query path. We solve the second problem
by showing that the resulting path cost distribution estima-
tionmethod satisfies an incremental property that enables the
method to be integrated seamlessly into existing stochastic
path finding algorithms. Further, we propose a new stochas-
tic path finding algorithm that fully explores the improved
accuracy and efficiency provided by PACE. Empirical stud-
ies with trajectory data from two different cities offer insight
into the design properties of the PACE paradigm and offer
evidence that PACE is accurate, efficient, and effective in
real-world settings.

Keywords Stochastic routing · Routing · Trajectories ·
Road networks · Path cost distributions

1 Introduction

Increasing volumes of vehicle trajectories are becoming
available that contain detailed traffic information. It is of
interest to exploit this data as well as possible to understand
the state of a road network [11,15]. For instance, it is of
interest to know the distributions [4,30] of travel costs (e.g.,
travel times or greenhouse gas (GHG) emissions) of paths
at a given departure time in order to plan travel or to calcu-
late payments for transportation, e.g., in settings where such
services are outsourced.

Consider a scenario where a person wants to reach an
airport within 60min to catch a flight. Figure 1a shows the
travel-time distributions of two alternative paths at a given
departure time. If only considering averages, P2 (with mean
51.5min) is better thanP1 (with mean 52 min). However,P1

is preferable because the probability of arriving at the airport
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Fig. 1 Motivating examples

within 60 min is 1, while with P2, the probability is 0.9. The
example illustrates why being able to compute a distribution
rather than, e.g., a mean, is important.

To enable better routing, a first, natural question is how
to best utilize trajectories to accurately and efficiently derive
a cost distribution for any path at a given departure time.
The next question is how to enable efficient path finding that
utilizes such accurate path cost distributions. These are the
two fundamental problems addressed in this paper.

To solve the first problem, three challenges must be
addressed.
Complex travel cost distributions Travel time [7,37] and
GHG emissions [3,18] vary over time and even vary across
vehicles traversing the same path at the same time. To
exemplify the latter, the bars in Fig. 1b represent the travel
time, derived from GPS trajectories, of a path during the
time interval [8:00, 8:30). Next, distributions do not follow
standard distributions. Figure 1b shows the Gaussian [31],
gamma [35], and exponential [35] distributions obtained
using maximum likelihood estimation, illustrating that the
cost distribution does not follow any of these standard distri-
butions.
Sparseness With enough trajectories that contain a path dur-
ing a particular time interval, we could derive a distribution
during the interval for the path using those trajectories. How-
ever, we report on analyses showing that even with large

volumes of trajectory data, it is practically impossible to
cover all paths in a road network with sufficient numbers
of trajectories during all time intervals—a road network has
a very large number of meaningful paths. We must thus con-
tend with data sparseness.
Dependency The cost distribution of a path can be estimated
by summing up, or convoluting, the cost distributions of its
edges [6,24,30,38]. However, the results are only accurate if
the edge distributions are independent.Weoffer evidence that
this is generally not the case in our setting. To derive accurate
distributions for paths, dependencies must be considered.

The conventional, edge-centric paradigm for path cost
estimation fragments trajectories into pieces that fit the indi-
vidual edges to assign time-varying, uncertain weights to the
edges. Convolution is applied to the uncertain edge weights
to compute the cost distribution of the path [6,21,24,38–
40,42]. This paradigm falls short in addressing the above
challenges and suffers in terms of accuracy because depen-
dencies among different edges are not accounted for and
suffers in terms of efficiency because many expensive con-
volutions must be performed.

We propose a data-driven,PAth-CEntric paradigm,PACE,
that aims to achieve better accuracy and efficiency while
addressing the three challenges. In PACE, weights are
assigned to paths; and path weights are joint distributions
that fully capture the cost dependencies among the edges
in the paths. Further, multi-dimensional histograms are used
to approximate complex distributions accurately and com-
pactly. Given a departure time and a query path, we are then
able to select an optimal set of paths that together cover the
query path and such that the weights of the paths produce
the most accurate joint distribution of the edges in the query
path. The joint distribution can then be transferred into the
cost distribution of the query path. The ability to derive the
distributions of long paths with insufficient trajectories from
the distributions of carefully selected sub-paths with suffi-
cient trajectories addresses the sparseness problem.

Next, we study efficient path finding, a.k.a., routing,
in PACE, i.e., the paper’s second problem. Solving this
problem is also non-trivial because existing pathfinding algo-
rithms, ranging from the classical Dijkstra’s algorithm [10]
to the state-of-the-art algorithms such as contraction hier-
archies [13] and hub labeling [1], are designed for the
edge-centric paradigm. These algorithms operate on edge
weights, which are always disjoint and independent of each
other. In contrast, the paths in PACE may overlap, and thus
the path weights are dependent on each other. This funda-
mental difference indicates that existing edge-centric path
finding algorithms cannot be applied directly in PACE.

We propose two complimentary approaches to enable path
finding inPACE. First, we prove that the path cost distribution
estimation method in PACE satisfies what we call the incre-
mental property, which is existing, edge-centric path finding
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algorithms rely on for their correctness. This suggests that the
method can be integrated seamlessly into existing stochastic
routing algorithms while enhancing the efficiency and accu-
racy of these algorithms. Second, we propose a new path
finding algorithm that fully exploits the characteristics of
PACE thus offering improved accuracy and efficiency.

To the best of our knowledge, this is the first study that
enables path-centric path finding, which offers more accu-
rate and efficient path travel cost distribution estimation
and thus also more accurate and efficient path finding than
edge-centric path finding. In particular, we make four contri-
butions. (1) We propose the PACE paradigm and a method to
instantiate path weights using trajectories (Sect. 3). (2) We
propose an algorithm that identifies an optimal set of paths,
the weights of which enable accurate estimation of the joint
distribution of a query path, which in turn enables deriv-
ing the cost distribution of the query path (Sect. 4). (3) We
show that the proposed path cost distribution estimation algo-
rithm satisfies the incremental property, meaning that it can
be integrated seamlessly into existing path finding algorithms
(Sect. 5.2). (4)Wepropose a newpathfinding algorithmcapa-
ble of fully exploiting the characteristics ofPACE (Sect. 5.3).
(5) We report on empirical studies that demonstrate that the
paper’s proposal is capable of significantly outperforming
existing proposals in terms of both accuracy and efficiency
(Sect. 6).

A preliminary report of this work [8] covers part of
the foundation of PACE by solving the first problem of
computing the travel cost distribution for a path. Here, we
complement PACE by also solving the second problem of
conducting path finding in PACE. Specifically, this includes
(1) showing that the path cost distribution estimation algo-
rithm inPACE satisfies the incremental property; (2) devising
a generic proposal for how to apply existing edge-centric
path finding algorithms in PACE; (3) equipping PACE with
a new path finding algorithm capable of fully exploiting
the characteristics of PACE; (4) reporting on comprehensive
experiments on the efficiency and accuracy of path finding
in PACE.

Paper outline Section 2 covers basic concepts and base-
lines. Section 3 introduces PACE and the method for instan-
tiating path weights. Section 4 presents the algorithms for
estimating the travel cost distribution of a path. Section 5
covers the proposals for conducting path finding in PACE.
Section 6 reports on the empirical study. Related work is
covered in Sects. 7, and 8 concludes.

2 Preliminaries

2.1 Basic concepts

A road network is modeled as a directed graph G = (V, E),
where V is a vertex set and E ⊆ V × V is an edge set. A

(a) (b)

Fig. 2 A road network and trajectories. aRoad network. bTrajectories

vertex vi ∈ V represents a road intersection or an end of
a road. An edge ek = (vi , v j ) ∈ E models a directed road
segment, indicating that travel is possible from its start vertex
vi to its end vertex v j . We use ek .s and ek .d to denote the
start and end vertices of edge ek . Two edges are adjacent if
one edge’s end vertex is the same as the other edge’s start
vertex. Figure 2a shows an example road network.

A path P = 〈e1, e2, . . . , eA〉, A � 1, is a sequence of
adjacent edges that connect distinct vertices in the graph,
where ei ∈ E , ei .d = ei+1.s for 1 � i < A, and the
vertices e1.s, e2.s, . . ., eA.s, and eA.d are distinct. The cardi-
nality of path P , denoted as |P|, is the number of edges
in the path. Path P ′ = 〈g1, g2, . . . , gx 〉 is a sub-path of
P = 〈e1, e2, . . . , ea〉 if |P ′| � |P| and there exists an
edge sequence in P such that g1 = ei , g2 = ei+1, . . ., and
gx = ei+x−1.

Given two paths Pi and P j , we use Pi ∩ P j to denote
the path that is shared by both paths, and we use Pi\P j

to denote the sub-path of Pi that exclude edges in P j . For
instance, we have 〈e1, e2, e3〉 ∩ 〈e2, e3, e4〉 = 〈e2, e3〉 and
〈e1, e2, e3〉\〈e2, e3, e4〉 = 〈e1〉.

A trajectory T = 〈p1, p2, . . . , pC 〉 is a sequence of
GPS records pertaining to a trip [12], where each pi is a
(location, time) pair of a vehicle, where pi .time < p j .time
if 1 � i < j � C . Map matching [29] is able to map GPS
records in a trajectory T to specific locations on different
edge and thus it aligns trajectory T with a path. We call this
path as the path of trajectory T , denoted as PT . A trajectory
T occurred on pathP at time t if and only if pathP is a sub-
path of the path of trajectory PT and the first GPS record
in the first edge in path P is obtained at t . Figure 2b shows
10 trajectories. For example, trajectory T1 occurred on path
〈e1, e2, e3, e4〉 at 8:01.

The travel cost (e.g., travel time or GHG emissions) of
using a path P can be obtained from the trajectories that
occurred on P . Given a trajectory T that occurred on path P
at t , the travel timeof usingP at t is the differencebetween the
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timeof the lastGPS record and the timeof thefirstGPS record
on path P; and the GHG emissions of using P at t can be
computed from the speeds and accelerations when traversing
P , which can be derived from the GPS records on path P ,
and road grades that are available in 3D road networks [23],
using vehicular environmental impact models [16,17].

2.2 Accuracy-optimal cost estimation

Recall that problem (i) is to estimate accurately the travel cost
distribution of a path using trajectories. The most accurate
way of estimating the travel cost distribution of path P at
time t is to employ a sizable set of qualified trajectories.
A trajectory T is qualified if T occurred on P at t ′ and
the difference between t ′ and t is less than a threshold, e.g.,
30min. For instance, if we want to estimate the travel cost
distribution of path 〈e2, e3, e4〉 at 8:05, T1, T2, T5, and T6 are
qualified trajectories, but not T7 (cf. Fig. 2).

A qualified trajectory captures traffic conditions (e.g., the
time it takes to pass intersections, wait at traffic lights, and
make turns at intersections) of the entire path P during the
interval of interest. Thus, no explicitly modeling of complex
traffic conditions at intersections is needed. To ensure an
accurate estimation for a path P at t and to not overfit to
the cost values of a few trajectories, we require the use of
more than β qualified trajectories. The effect of parameter β

is studied empirically in Sect. 6.
We regard this method as an accuracy-optimal baseline,

and we let the resulting distribution DGT (P, t) serve the
role of a ground-truth distribution in our proposal since
DGT (P, t) is the most accurate cost distribution computed
from available trajectories.

However, this baseline is not always a practical approach,
as it is very often inapplicable due to data sparseness. Fig-
ure 3 shows that the maximum number of trajectories that
occurred on a path decreases rapidly as the cardinality of the
path increases, based on two large trajectory collections from
Aalborg and Beijing, with no time constraint applied.

2.3 Legacy edge-centric paradigm

To contendwith the aforementioned data sparseness, existing
stochastic route planning uses a graph model that operates at
edge granularity [6,24,31,38], i.e., the edge-centric model.

The model is a weighted graph G = (V, E, WE ) with an
edge weight function WE : E×T → RV , where T is the time
domain of a day and RV denotes a set of random variables.
The weight function takes as input an edge e ∈ E and a time
t ∈ T and returns a random variable that represents the travel
cost distribution of traversing e at t .

A recent study [38] instantiates the edge weight function
WE using the accuracy-optimal baseline on each individ-
ual edge, where sparseness is not likely to be a significant
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Fig. 3 Data sparseness problem. a Aalborg, Denmark. b Beijing,
China

problem. Next, independence is assumed so that a path’s
travel cost distribution is the convolution of the travel costs
distributions of the edges in the path. We denote the result-
ing distribution by DLB(P, t) = 	ei ∈PWE (ei , tei ), where 	
denotes the convolution of two distributions and WE (ei , tei )

denotes the travel cost distribution of edge ei at tei . tei

is the arrival time on edge ei , which may be different
from the departure time t and needs to be progressively
updated according to the travel times of ei ’s predecessor
edges [38].

To examine the effect of dependence on the accuracy of the
result of convolution, we consider 500 paths that each con-
sists of two adjacent edges (i.e., with path cardinality being
2) and on which at least 100 trajectories occurred during
[7:30, 8:00). For each path P , we compute the distribution
DGT using the accuracy-optimal baseline and distribution
DLB using the legacy baseline. If the distributions of the two
edges in a path are independent, DGT and DLB should be
identical. To see if this holds, we compute the KL-divergence
of DLB from DGT , denoted as KL(DGT , DLB). The larger
the KL-divergence, the more different the two distributions
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Fig. 4 Examining the
independence assumption. a
K L(DGT , DL B). b Varying |P|
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are, meaning that the convoluted distribution is less accu-
rate. Figure 4a suggests that most of the adjacent edges are
not independent.

Next, we conduct an experiment on 100 paths with dif-
ferent cardinalities and where each path has at least 30
qualifying trajectories during an interval. We compute DGT

and DLB for each path and then compute the average KL-
divergence values between the two distributions for paths
with varying cardinality. Figure 4b suggests that the more
edges a path has, the more different the convoluted distribu-
tion DLB is from the ground-truth distribution DGT . Hence,
the legacy edge-centric model is likely to yield inaccurate
travel cost distributions, especially for long paths.

3 The PACE model

The analysis of the legacy edge-centric model suggests that
the independency assumption does not always hold and that
explicitlymodeling the dependency among the travel costs of
different edges in a path is needed to achieve accurate results.
This motivates us that when computing the cost distribution
for a path, we should try to use trajectories that occurred
on long sub-paths of the path because they capture the cost
dependencies among different edges.

To this end,wepropose a novelPAthCEntricmodel—the
PACE model G = (V, E, WP ). Instead of having an edge
weight function WE in the legacy edge-centric model, the
PACE model maintains a path weight function WP : Paths×
T → RV , where Paths is a set of paths. Specifically, the path
weight function WP takes as input a path P and a time t and
returns a multi-variate random variable that represents the
joint distribution of path P’s edges’ travel costs. The joint
distribution fully captures the dependency among the travel
costs of different edges in path P . We proceed to describe
how to instantiate WP using trajectories.

3.1 Instantiating WP for unit paths

A unit path consists of a single edge. We partition a day
into a few intervals, where parameter α specifies the finest-
granularity interval of interest in minutes, e.g., 30min. We

let V
I j
〈ei 〉 = p(cei ) denote a random variable that describes the

travel cost distribution on unit path 〈ei 〉 during interval I j .

To derive the distribution of V
I j
〈ei 〉, a set of qualified trajec-

tories that occurred on 〈ei 〉 at t where t ∈ I j is obtained. If
the trajectory set cardinality exceeds threshold β, the same
parameter used in accuracy-optimal baseline in Sect. 2.2, the
travel cost values obtained from the qualified trajectories are

employed to instantiate the distribution of V
I j
〈ei 〉, which is the

ground-truth distribution.
If the set cardinality does not exceed β, the distribution of

V
I j
〈ei 〉 is derived from the speed limit of edge ei to avoid over-

fitting to the limited number of travel costs. We also regard
this as the ground-truth distribution, since based on the avail-
able trajectories, we cannot get a more accurate distribution
for the unit path during the interval. In such cases, distribu-
tions derived from speed limits serve in the role as a ground

truth. Thus, in both cases, V
I j
〈ei 〉 represents the “ground-truth”

distribution of unit path 〈ei 〉 during interval I j .

Representing univariate distributions We proceed to discuss
how to represent a distribution when having more than β tra-
jectories. We represent distributions by histograms because
they enable compact approximation of arbitrary, complex
distributions. In particular, a one-dimensional histogram is
employed to represent a univariate distribution. Gaussian
mixture models are also able to represent non-standard travel
cost distributions [37,38], but are less compact, especially for
representing multi-variate distributions.

From the qualified trajectories,we are able to obtain amul-
tiset of cost values of the form 〈cost, perc〉, representing that
perc percentage of the qualified trajectories took cost cost.
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We call this a raw cost distribution. A histogram then approx-
imates the raw cost distribution as a set of pairs: {〈bui , pri 〉}.
A bucket bui = [l, u) is a range of travel costs, and pri is the
probability that the travel cost is in the range, and it holds
that

∑
i pri = 1.

Given the number of buckets b, existing techniques, e.g.,
V-Optimal [22], are able to optimally derive a histogram
based on a raw cost distribution such that the sum of errors
between the derived histogram and the raw cost distribution
is minimized. However, selecting a global value for b is non-
trivial because the traffic on different edges, and even the
traffic on the same edge during different intervals, may differ
significantly. A self-tuning method is desired so that more
buckets are used for edges or intervals with more complex
traffic conditions.

To this end, we propose a simple yet effective approach to
automatically identify the number of buckets. The procedure
starts with b = 1, i.e., using only one bucket, and computes
an error value Eb. Next, it incrementally increases b by 1 and
computes a new error value Eb. Obviously, as the number of
buckets increases, the error value keeps decreasing.However,
the error values often initially drop quickly, but then subse-
quently drop only slowly. Based on this, the process stops
when the error value of using b does not lead to a significant
decrease compared to the error value of using b − 1. Then,
b − 1 is chosen as the bucket number. This yields a compact
and accurate representation of the raw data distribution.

The error value Eb of using b buckets is computed using
f -fold cross validation [33]. First, the multiset of cost val-
ues is randomly split into f equal-sized partitions. Each
time, we reserve the cost values in one partition, say the
kth partition, and use the cost values in the remaining
f − 1 partitions to generate a histogram with b buckets
using V-Optimal, denoted as Hk

b = {〈bui , pri 〉}. Next, we
compute the raw data distribution of the cost values in the
reserved partition, denoted as Dk = {〈costi , perci 〉}. After
that, we compute the squared error between Hk

b and Dk :
SE(Hk

b , Dk) = ∑
c∈costs(Hk

b [c], Dk[c])2. We repeat the
procedure f times—once for each partition. The error value
of using b buckets, i.e., Eb, is the average of the f squared
errors.

Take the data in Fig. 1b as an example. Figure 5a shows
how the error Eb decreases as the number of buckets b
increases. First, Eb decreases sharply and then slowly (i.e.,
when b > 4). Figure 5b shows the histogram using b = 4
buckets and the original raw data distribution.

3.2 Instantiating WP for non-unit paths

Based on the distributions of unit paths, we employ a bottom-
up procedure to derive joint distributions of non-unit paths,
i.e., paths with cardinalities more than one. In particular, the
joint distributions of paths with cardinalities k, k � 2, are
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computed based on the joint distributions of paths with car-
dinalities k − 1.

Given two paths Pi and P j with cardinalities k − 1,
if they share k − 2 edges and can be combined into a
valid path P = 〈e1, e2, . . . , ek〉 with cardinality k, we
check if a time interval I j exists during which more than
β qualified trajectories occurred on path P . If so, a ran-

dom variable V
I j

P = p(ce1 , . . . , cek ) is instantiated based
on the qualified trajectories. The travel cost distribution
p(ce1 , . . . , cek ) is a ground-truth joint distribution on the k
variables ce1 , . . . , cek . This procedure continues until longer
paths cannot be obtained.

For example, consider two unit pathsPa = 〈ea〉 andPb =
〈eb〉, which can be combined into a valid path P = 〈ea, eb〉.
Figure 6a shows a raw joint distribution. Point A indicates
that 110 trajectories passed ea with cost 50 s and then eb with
cost 80 s.

We use multi-dimensional histograms to describe joint
distributions,where a dimension corresponds to the cost of an
edge. Amulti-dimensional histogram is a set of hyper-bucket
and probability pairs: {〈hbi , pri 〉}. A hyper-bucket hbi =
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〈bu1
i , . . . , bun

i 〉 consists of n buckets that each corresponds
to one dimension. Value pri equals the probability that the
travel costs on multiple edges are in hyper-bucket hbi , and it
holds that

∑
i pri = 1.

To derive a multi-dimensional histogram, we automat-
ically identify the optimal number of buckets for each
dimension using themethod from Sect. 3.1. Next, we employ
V-optimal to identify the optimal bucket boundaries on each
dimension and thus obtain a set of hyper-buckets. Finally, we
compute the probability for each hyper-bucket. For example,
Fig. 6b shows a 2-dimensional histogram that corresponds
to the joint distribution shown in Fig. 6a. The dimension for
cea is partitioned into 3 buckets, and the dimension for ceb

is partitioned into 2 buckets, yielding 6 hyper-buckets in the
2-dimensional histogram.

3.3 Path weight function WP

We let CP be a vector of variables 〈ce1 , ce2 , . . . , cek 〉 that
corresponds to path P = 〈e1, e2, . . ., ek〉. We use p(CP ) =
p(ce1 , ce2 , . . . , cek ) to denote the ground-truth joint distri-

bution of using path P at time t . Following the same idea in
Sect. 2.2, we regard the joint distribution obtained from at
least β qualified trajectories as the ground-truth joint distri-
bution.

Given a set of trajectories, we let Pathsβ be a set of non-
unit pathswhere each path has at leastβ qualified trajectories.
Note that given different sets of trajectories that occurred on
a same road network, Pathsβ may contain different non-unit
paths.

So far, we are able to instantiate path weight function WP

for non-unit paths in Pathsβ and all unit paths. Specifically,
given a path P and a time t ∈ I j , the path weight func-

tion WP (P, t) returns random variable V
I j

P that represents
the travel cost distribution of traversing path P at t . Since

each random variable V
I j

P is obtained by at least β qualified
trajectories (or speed limits for some unit paths), they also
correspond to ground-truth distributions. Thus, we have

WP (P, t) = V
I j

P = p(CP ) =
{

p(cei ), P = 〈ei 〉 is a unit path
p(ce1, ce2 , . . . , cek ), P = 〈e1, e2, . . . , ek〉 ∈ Pathsβ

(1)

where (i) if P is a unit path, the path weight function returns
the ground-truth distribution p(CP ) = p(cei ), represented
as a one-dimensional histogram; (ii) if P is a non-unit path,
the path weight function returns the ground-truth joint dis-
tribution p(CP ) = p(ce1, ce2 , . . . , cek ), represented as a
multi-dimensional histogram.

The random variables {V
I j

P } that are maintained in the
pathweight functionWP are called instantiated random vari-

ables. The rank of a variable V
I j

P is the cardinality of its
path |P|. In the legacy edge-centric model, only random vari-
ables with rank one are considered, and they cannot capture
distribution dependencies among edges, which are found in
trajectories. In contrast, in the proposed PACE model, the
random variables with rank larger than one fully capture the
distribution dependencies among the edges in a path.

4 Path cost distribution computation in PACE

Given any path P and a departure time t , we perform travel
cost distribution estimation using the instantiated PACE, in
two steps. First, the joint distribution of pathP , whichmodels
the travel cost dependency among edges in P , is computed.
Second, the cost distribution of path P , which captures the
cost distribution of traversing the whole path P , is derived
based on the path’s joint distribution.

4.1 The joint distribution of a path

The ground-truth joint distribution of path P = 〈e1, e2, . . .,
en〉 at t is denoted as p(CP ) = p(ce1 , ce2 , . . . , cen ), where
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cei (1 � i � n) is a random variable representing the travel
cost distribution of path 〈ei 〉.

Given a pathP and a departure time t , we aimat estimating
its most accurate joint distribution. If we are lucky, the path
weight function WP (P, t) returns V I

P , where t ∈ I . Since
V I
P corresponds to the ground-truth join distribution p(CP ),

we are done.
In contrast, ifWP (P, t) returns an empty result, thismeans

that there does not exist at least β qualified trajectories on
pathP around t , so it is impossible to obtain its ground-truth
distribution. This case occurs often due to the data sparseness
problem, as shown in Fig. 3, especially for long paths.

To handle this unlucky but common case, we proceed to
propose a method that is able to derive an accurate, esti-
mated joint distribution p̂(ce1, ce2 , . . . , cen ) based on the
ground-truth distributions of path P’s sub-paths, which can
be obtained from the instantiated path weight function WP .
While we may be able to obtain multiple estimations of
joint distributions using different combinations of sub-paths’
distributions, we aim at identifying and deriving the most
accurate one. In the following, we first prove that the com-
bination with the coarsest sub-paths gives the most accurate
estimation, and then we propose an efficient way to identify
the coarsest combination.

4.1.1 Path decompositions

To facilitate the following discussions, we first introduce the
concept of path decomposition. The decomposition of a path
P is a sequence of paths DE = (P1,P2, . . . ,Pk), k > 1,
that satisfies the following spatial conditions:

(1) Each path Pi ∈ DE is a sub-path of P;
(2) All paths in DE together cover P , i.e., P1 ∪ P2 ∪ . . . ∪

Pk = P;
(3) A path Pi is not a sub-path of another path P j , where

1 � i, j � k and i �= j ;
(4) A path Pi appears before another path P j where 1 �

i < j � k if and only if the first edge of Pi appears
earlier than the first edge of P j in path P .

A path P may have more than one decomposition. For
instance, consider path P = 〈e1, e2, e3, e4, e5〉. The follow-
ing path sequences are possible decompositions for the path.
DE1 = (〈e1〉, 〈e2〉, 〈e3〉, 〈e4〉, 〈e5〉),
DE2 = (〈e1, e2, e3〉, 〈e2, e3, e4〉, 〈e5〉),
DE3 = (〈e1, e2, e3〉, 〈e3, e4〉, 〈e5〉).

Next, we introduce a coarser relationship between two
path decompositions DEi and DE j . We define DEi to be
coarser than DE j if for each path Pb ∈ DE j , there is a path
Pa ∈ DEi such that Pb is a sub-path of Pa and at least one
Pb �= Pa .

To illustrate,DE2 is coarser thanDE3 because 〈e1, e2, e3〉,
〈e3, e4〉, 〈e5〉 are sub-paths of paths 〈e1, e2, e3〉, 〈e2, e3, e4〉,
〈e5〉, respectively; and 〈e2, e3, e4〉 fromDE2 is different from
〈e3, e4〉 from DE3. Similarly, DE2 is coarser than DE1 as
well.

4.1.2 Distribution estimation using decompositions

Following the principles of decomposable models [9,26], a
decomposition of path P corresponds to a set of indepen-
dence assumptions among the cost variables in CP . Specifi-
cally, given a decomposition DE = (P1,P2, . . . ,Pk), for
any two paths Pi and P j in the decomposition, where
1 � i, j � k, we have the following cases.

(i) If Pi ∩ P j = ∅, this indicates that the cost variables in
CPi are independent of the cost variables in CP j ;

(ii) If Pi ∩ P j �= ∅, this indicates that the cost variables in
CPi \P j are conditionally independent of the cost vari-
ables in CP j \Pi given the cost variables in CPi ∩P j .

Based on the above, given a decomposition DE, we have a
corresponding independence assumption. Based on the inde-
pendence assumption, we are able to estimate path P’s joint
distributions using the distributions of the paths in DE based
on Bayes’ theorem.

Formally, given adecompositionDE = (P1,P2, . . . ,Pk),
the joint distribution of pathP is estimated according toEq. 3.

p̂DE(CP ) =
∏

Pi ∈PX
p(CPi )∏

P j ∈PY
p(CP j )

, (2)

p̂rDE(CP ) =
∏k

m=1 pr(CPm )
∏k−1

m=1 pr(CPm∩Pm+1)
, (3)

where path set PX = ⋃
1�i�k Pi consists of all paths in DE

and PY = ⋃
2�i�k Pi ∩ Pi−1 consists of the shared paths

between all adjacent paths in DE.
In the running example, DE1 assumes all cost variables

ce1 , ce2 , ce3 , ce4 , and ce5 are independent because no paths
in DE1 intersect. According to Eq. 3, we have p̂DE1(CP ) =
p(ce1) · p(ce2) · p(ce3) · p(ce4) · p(ce5). This corresponds
to the legacy edge-centric model where all cost variables
are independent. Next, DE2 assumes that ce1 is condition-
ally independent of ce4 given ce2 and ce3 because 〈e1, e2, e3〉
∩ 〈e2, e3, e4〉 = 〈e2, e3〉; and ce5 is independent of all the
other cost variables because 〈e5〉 does not intersect with
other paths in DE. Thus, Eq. 3 gives us p̂DE2(CP ) =
p(ce1 ,ce2 ,ce3 )·p(ce2 ,ce3 ,ce4 )·p(ce5 )

p(ce2 ,ce3 )
.

Given a path P , we have more than one path decom-
position. For each decomposition, we are able to derive an
estimated joint distribution according to Eq. 3. The challenge
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is to identify the decomposition that gives the most accurate
estimation.

To measure the accuracy of an estimated distribution with
respect to the true distribution, we employ Kullback–Leibler
divergence of the estimated joint distribution p̂DE(CP ) and
the true joint distribution p(CP ), denoted as KL(p(CP ),
p̂DE(CP )). The smaller the divergence, the better. We pro-
ceed to prove that the coarser a decomposition is, the more
accurate the estimated joint distribution is, i.e., the more
smaller the divergence is.

Theorem 1 If pathP ′ is a sub-path of pathP , we have
∑

CP
p(CP ) log p(CP ′) = −H(CP ′), where H(·) is entropy
function.

Proof Since path P ′ is a sub-path of path P , path P can be
represented as P = Ps ◦ P ′ ◦ Pe, where Ps and Pe are the
possibly empty paths before and after path P ′, and ◦ denotes
concatenation. Thus, the cost variables in CPs , CP ′ , or CPe

must be a subset of the cost variables in CP . In addition, we
have CPs ∪ CP ′∪ CPe = CP . Based on the above, we get

∑

CP

p(CP ) log p(CP ′)

=
∑

CPs ,CP ′ ,CPe

p(CPs ,CP ′ ,CPe ) log p(CP ′)

=
∑

CP ′

⎛

⎝log p(CP ′)
∑

CPs ,CPe

p(CPs ,CP ′ ,CPe )

⎞

⎠

=
∑

CP ′
p(CP ′) log p(CP ′) = − H(CP ′) ��

Theorem 2 Given an estimated joint distribution p̂DE(CP ),
we have KL(p(CP ), p̂DE(CP )) = HDE(CP ) − H(CP ),
where H(CP ) and HDE(CP ) are the entropies of random
variables CP under distributions p(CP ) and p̂DE(CP ),
respectively.

Proof

KL(p(CP ), p̂DE(CP ))

=
∑

CP

p(CP ) log

(
p(CP )

p̂DE(CP )

)

= − H(CP ) −
∑

CP

p(CP ) log p̂DE(CP )

= − H(CP ) −
∑

CP

p(CP )

⎛

⎝
∑

Pi ∈PX

log p(CPi )

−
∑

P j ∈PY

log p(CP j )

⎞

⎠ (due to Eq. 3)

Group(Pi) P(a)
i P(b)

i P(c)
iP1 = 〈e1, e2, e3〉 {〈e1〉, 〈e2〉, 〈e3〉} ∅ 〈e1, e2, e3〉 ∅

P2 = 〈e2, e3, e4〉 {〈e4〉} 〈e2, e3〉 〈e4〉 ∅
P3 = 〈e5〉 {〈e5〉} ∅ 〈e5〉 ∅

Fig. 7 A running example on DE1 and DE2

= − H(CP ) −
∑

Pi ∈PX

⎛

⎝
∑

CP

p(CP ) log p(CPi )

⎞

⎠

+
∑

P j ∈PY

⎛

⎝
∑

CP

p(CP ) log p(CP j )

⎞

⎠

= − H(CP ) +
∑

Pi ∈PX

H(CPi )

−
∑

P j ∈PY

H(CP j ) (due to Th. 1)

= HDE(CP ) − H(CP ) ��

Theorem 3 Given two decompositions DE and DE′, where
DE is coarser than DE′, DE is able to provide a more accu-
rate joint distribution estimation than is DE′.

Proof AssumeDE = 〈P1, . . . ,Pm〉 andDE′ = 〈P ′
1, . . . ,P ′

n〉
where m � n. Since Theorem 2 holds for both DE and
DE′, we need to prove that the entropy difference Δ =
HDE(CP ) − HDE′(CP ) < 0, and we have

Δ =
m∑

i=1

H(CPi ) −
m∑

i=2

H(CPi−1∩Pi )

−
(

n∑

i=1

H(CP ′
i
) −

n∑

i=2

H(CP ′
i−1∩P ′

i
)

)

(due to Eq. 2)

Since DE is coarser than DE′, we are able to partition the
paths in DE′ into groups. For each path Pi ∈ DE, we have
a corresponding group Group(Pi ) = {P ′

j , . . . ,P ′
j+k} such

that the paths in Group(Pi ) are sub-paths of Pi . We use the
example with DE1 and DE2 to illustrate. DE2 is coarser than
DE1 (cf. Sect. 4.1.1 and the group for each path in DE2 is
shown in Fig. 7.

Next, we introduce the path P(b)
i = ∪P ′∈Group(Pi )P ′ that

is the union of the paths in Group(Pi ). Path P(b)
i must be a

sub-path ofPi .Without loss of generality, assume thatPi can
be represented asP(a)

i ∪P(b)
i ∪P(c)

i whereP(a)
i = Pi−1∩Pi

and P(c)
i = Pi ∩Pi+1. It is possible that P(a)

i or P(c)
i or both

are empty. Figure 7 illustrates this using DE1 and DE2.
Based on the above,Δ, i.e., the entropy difference between

HDE(CP ) and HDE′(CP ), can be computed as the sum of m
sub-differences, where each sub-difference Δi corresponds
to the entropy difference between path Pi in DE and the
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paths in Group(Pi ) = {P ′
j , . . ., P ′

j+k}. Formally, we have
Δ = ∑m

i=1 Δi , where

Δi = H(CPi
) −

(

H

(

CP(a)
i

)

+ H

(

CP(c)
i

))

︸ ︷︷ ︸
Due to Eq. 2

−H(Group(Pi ));

H(Group(Pi ) =
⎛

⎝
k∑

d=0

H
(
CP ′

j+d

)
−

k∑

d=1

H
(
CP ′

j+d∩P ′
j+d−1

)
⎞

⎠

︸ ︷︷ ︸
Due to Eq. 2 on Group(Pi )

According to the definition of path P(b)
i , either P(b)

i itself
is the singleton path in Group(Pi ) or the paths in Group(Pi )

are able to form a decomposition of path P(b)
i . No mat-

ter which is the case, according to Theorem 2 and the fact
that a KL-divergence value is always non-negative, we have
H(Group(Pi )) � H(CP(y)

i
). Putting this inequality back to

Δi , we have

Δi � H(CPi ) −
(

H
(
CP(a)

i

)
+ H

(
CP(b)

i

)
+ H

(
CP(c)

i

))

Next, either (1) P(a)
i , P(b)

i , and P(c)
i are able to form a

decomposition of Pi , when P(a)
i or P(c)

i is not empty; or (2)

P(b)
i itself is Pi , when both P(a)

i and P(c)
i are empty. Since

DE is coarser than DE′, case (1) should appear at least once.
According to Theorem 2 and the fact that KL-divergence
values are non-negative (which applies to both case (1) and
case (2)) and a KL-divergence value between two different
distributions is positive (which applies to case (1)), we have
H(CP(a)

i
) + H(CP(b)

i
) + H(CP(c)

i
) � H(CPi ) for every

1 � i � m; and there exist at least one i such that H(CP(a)
i

)+
H(CP(b)

i
) + H(CP(c)

i
) > H(CPi ). This implies that Δi � 0

for every 1 � i � m, and there exists at least one i such that
Δi < 0. This leads to the conclusion thatΔ = ∑m

i=1 Δi < 0.
��

4.1.3 Identifying the coarsest decomposition

According to Theorem 3, the estimated joint distribution
from the coarsest decomposition is the most accurate. Given
a path P and a departure time t , we proceed to identify the
coarsest decomposition for P based on the instantiated ran-
dom variables that are maintained in the path weight function
WP . Specifically, we first identify the random variables that
are spatially relevant to the path P and temporally relevant
to the departure time t ; we then identify the coarsest decom-
position from the relevant variables.

Recall that a random variable maintained in the path

weight function WP is in the form of V
I j

Pi
, which represents

the joint distribution of path Pi during interval I j . A random

variable V
I j

Pi
is spatially relevant to the query path P if the

variable’s path Pi is a sub-path of P . Next, we test whether

a spatially relevant random variable V
I j

Pi
is also temporally

relevant to t .
We distinguish two cases.We first consider the case where

the first edge in the variable’s path Pi is the same as the first
edge in the query path P . This case is simple because the
departure time on P is also the departure time on Pi , as both
paths start from the same edge. Thus, we just need to test
if the departure time t is during I j , i.e., t ∈ I j . The second
case is complicated because the departure time on path Pi is
no longer the original departure time t . We propose a shift-
and-enlarge procedure to progressively update the departure
time to test the variable’s temporal relevance.

We use an example path 〈e1, e2〉 and a departure time
t to illustrate the procedure. Since the travel time on e1 is
uncertain, the departure time on e2 belongs to the interval

[t +V
I j
〈e1〉.min, t +V

I j
〈e1〉.max], where V

I j
〈e1〉.min and V Ii〈e1〉.max

denote theminimum andmaximum travel times of traversing

e1, which are recorded in the random variable V
I j
〈e1〉.

Formally, given a time interval [ts, te] and a random vari-

able V
I j
〈ek 〉, we define the shifted-and-enlarged interval as

SAE([ts, te], V
I j
〈ek 〉) = [ts + V

I j
〈ek 〉.min, te + V

I j
〈ek 〉.max].

Given a sub-path Pi of path P , assume that the first edge
in Pi is the kth edge in P , where 2 � k � |P|. The updated
departure time on Pi based on the original departure time t
is UIk , as defined in Eq. 4.

UIk =
{

SAE([t, t], V
I j
〈e1〉), if k = 2;

SAE(UIk−1, V
I j
〈ek−1〉), otherwise; (4)

Given a spatially relevant random variable V
I j

Pi
, if I j inter-

sects Pi ’s updated departure time interval UIk according to
Eq. 4; then, it is temporally relevant; otherwise, it is not
temporally relevant. For a given sub-pathPi , if multiple vari-

ables V
I j

Pi
, ( j = 1, 2, . . . , m) are temporally relevant, the

one with the largest overlap is selected, i.e., the one where
I j = argmax j∈[1,m]

|I j ∩UIk |
|UIk | .

Having identified all spatially and temporally relevant
variables, we organize them into a two-dimensional candi-
date array. Each row corresponds to an edge ek in query path
P and contains the instantiated random variables whose cor-
responding paths start with edge ek . If more than one variable
exist, the variables are ordered by their rank. An example
candidate array is shown in Table 1.

To identify the coarsest decomposition, we consider the
path of the random variable with the highest rank for each
edge (i.e., the rightmost variable for each row in Table 1). If
one random variable’s path is a sub-path of another random
variable’s path, the former random variable’s path should
be omitted because it otherwise violates spatial condition
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Table 1 Example candidate array

rank = 1 rank = 2 rank = 3 rank = 4

e1 V〈e1〉 V〈e1,e2〉 V〈e1,e2,e3〉 V〈e1,e2,e3,e4〉
e2 V〈e2〉 V〈e2,e3〉 V〈e2,e3,e4〉
e3 V〈e3〉 V〈e3,e4〉
e4 V〈e4〉 V〈e4 ,e5〉
e5 V〈e5〉

(3) (cf. Sect. 4.1.2). The remaining paths constitute the
coarsest decomposition. The procedure is summarized in
Algorithm 1.

To illustrate the procedure, consider the example shown
in Table 1. In the beginning, we consider path 〈e1, e2, e3, e4〉
and add it to DEcoa . Next, since 〈e2, e3, e4〉 and 〈e3, e4〉 are
sub-paths of 〈e1, e2, e3, e4〉, both are omitted. Then, 〈e4, e5〉
is added to DEcoa . Since 〈e5〉 is a sub-path of 〈e4, e5〉, it
is omitted. Finally, the coarsest decomposition is DEcoa =
(〈e1, e2, e3, e4〉, 〈e4, e5〉), which is shown in bold in Table 1.

Algorithm 1: Identify the Coarsest Decomposition
Input : Query Path P , Departure Time t
Output: The Coarsest Decomposition DEcoa

1 Identify a set of random variables STRV that are spatially
relevant to path P from all the instantiated random variables;

2 Eliminate the random variables that are not temporally relevant
to departure time t from STRV ;

3 Organize the spatio-temporally relevant random variables in
STRV in an two-dimensional array;

4 DEcoa ← null;
5 for k = 1; k � |P|; k + + do

6 Identify the random variable V
I j
Pk

with the highest rank from
the k-th row;

7 if Pk is not a sub-path of any path in DEcoa then
8 Append Pk to DEcoa ;

9 return DEcoa ;

Theorem 4 The unique decomposition DEcoa returned by
Algorithm 1 is the coarsest.

Proof We prove the theorem by contradiction. Suppose that
we cannot identify the coarsest decomposition by Algo-
rithm 1. This happens only if the coarsest decomposition,
say DE ′

coa , contains a sub-path P′
k that starts with edge ek

but is not the longest sub-path that starts with edge ek . Other-
wise, it must be identified by Algorithm 1 since it considers
the longest sub-path for each edge in path P .

Following the above assumption, we assume that the
longest sub-path starting from ek is Pk . By replacing P′

k by
Pk , we are able to get a new decomposition DEcoa that is
coarser than DE ′

coa . This contradicts the assumption that
DE ′

coa is the coarsest. ��

4.2 The cost distribution of a path

The coarsest decomposition DEcoa enables accurate estima-
tion of the joint distribution of a path which fully captures
the dependencies among edges in the path. Recall that we are
interested in knowing the cost distribution of a path p(VP ),
whereVP is a univariate randomvariable indicating the travel
cost of pathP .We proceed to derive p(VP ) based on the joint
distribution of a path p̂DEcoa (CP ) using

p(VP = x) =
∑

c1+···+cn=x

p̂DEcoa (ce1 = c1, . . . , cen = cn).

Since the estimated joint distribution of a path p̂DEcoa (CP )

is represented as a multi-dimensional histogram, we need to
transform it to a one-dimensional histogram that represents
the cost distribution of P .

Recall that a multi-dimensional histogram is of the form
{〈hbi , pri 〉}, where hyper-bucket hbi = 〈bu1

i , . . . bun
i 〉 con-

sists of n buckets, each corresponding to one dimension.
For each hyper-bucket hbi = 〈bu1

i , . . . bun
i 〉, we derive a

bucket bui whose upper (lower) bound is the sum of the
upper (lower) bounds of the buckets in the hyper-bucket,
i.e., bui = [∑n

j=1 bu j
i .l,

∑n
j=1 bu j

i .u). Thus, we get a one-
dimensional histogram {〈bui , pri 〉}.

The buckets in the obtained one-dimensional histogram
may overlap. We need to rearrange the buckets such that they
are disjoint and update their corresponding probabilities. We
check each pair of buckets as follows. If two buckets bui

and bu j are disjoint, keep both buckets. If buckets bui and
bu j overlap, range [min(bui .l, bu j .l), max(bui .u, bu j .u))

is split into three buckets according to the increasing order
of bui .l, bu j .l, bui .u, and bu j .u, and each bucket is assigned
an adjusted probability. The one-dimensional histogramwith
the rearranged buckets and the adjusted probabilities repre-
sents the final cost distribution.

Figure 8 shows a running example on the aforementioned
procedure on path P1 = 〈e1, e2〉. The first table in Fig. 8
shows the joint distribution of the path. The upper, left hyper-
bucket 〈[20, 30), [20, 40)〉 has value 0.3, which means that
when going through path P1, the probability that the travel
time on e1 is between 20 and 30 s and the travel time on e2 is
between 20 and 40 s is 0.3. Next, the second table in Fig. 8
shows the corresponding cost distribution after transferring
each hyper-bucket to a bucket. For example, hyper-bucket
〈[20, 30), [20, 40)〉 becomes bucket [40, 70).

Consider the first two (bucket, probability) pairs shown in
the second table, i.e., 〈[40, 70), 0.30〉 and 〈[50, 90), 0.25〉.
Since the two buckets overlap, range [40, 90) is split into
[40, 50), [50, 70), and [70, 90). In a histogram, the probabil-
ity in each bucket is uniformly distributed, so each bucket is
assigned an adjusted probability as follows. Bucket [40, 50)
is given probability |[40,50)|

|[40,70)| · 0.3 = 0.1, bucket [50, 70) is
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ce1 ∈ [20, 30) ce1 ∈ [30, 50)
ce2 ∈ [20, 40) 0.30 0.25
ce2 ∈ [40, 60) 0.20 0.25

[40, 70) [50, 90) [60, 90) [70, 110)
0.30 0.25 0.20 0.25

[40, 50) [50, 60) [60, 70) [70, 90) [90, 110)
0.1000 0.1625 0.2292 0.3833 0.1250

Fig. 8 From joint distribution to final cost distribution

given probability |[50,70)|
|[40,70)| · 0.3+ |[50,70)|

|[50,90)| · 0.25 = 0.325, and

bucket [70, 90) is associatedwith probability |[70,90)|
|[50,90)| ·0.25 =

0.125. Bucket [40, 50) does not overlap with other buckets,
its adjusted probability is the final probability. Since buck-
ets [50, 70) and [70, 90) still overlap with the next bucket
[60, 70), their buckets should be further rearranged and their
probabilities should be adjusted. The final cost distribution
is shown in the third table in Fig. 8.

5 Path finding in PACE

To conduct path finding, or routing, in PACE, we consider
two alternative approaches. First, we show that it is possi-
ble to integrate existing edge-centric stochastic path finding
algorithms seamlessly into PACE. Second, we propose a new
stochastic routing algorithm that fully exploits the foundation
for improved accuracy offered by PACE.

Since both approaches apply a “path + another edge”
pattern to explore candidate paths, a path cost distribution
estimation method must satisfy the so-called “incremental
property” that enables reuse of the cost distribution of a
partial path when computing the cost distribution of a path
that extends the existing path. We proceed to prove that the
path cost distribution estimation method in PACE satisfies
the incremental property in Sect. 5.1 and then detail the two
alternative path finding approaches in Sects. 5.2 and 5.3.

5.1 Incremental property

Consider a pathP = 〈e1, e2, . . . , ek〉 and a pathP ′ = 〈e1, e2,
. . . , ek, ek+1〉 that extends P by edge ek+1. The incremental
property requires that the cost distribution of path P ′ can be
computed by reusing the cost distribution of path P rather
than having to be re-computed from scratch.

We proceed to prove that PACE satisfies the incremental
property. Consider path P = 〈e1, e2, . . . , ek〉 and suppose
that its coarsest decomposition is DE = 〈P1,P2, . . . ,P j 〉,
where k � j . Then, the estimated cost of path P is

p̂DE (CP ) =
∏ j

i=1 p(CPi )
∏ j

i=2 p(CPi−1∩Pi )
(cf. Sect. 4.1.2).

Having extended path P with edge ek+1, we get path
P ′ = 〈e1, e2, . . . , ek, ek+1〉. Suppose that its corresponding

coarsest decomposition is DE ′ and thus has estimated cost
p̂DE ′(CP ′). The incremental property amounts to requiring
that p̂DE ′(CP ′) can be computed based on p̂DE (CP ). In
order to show the incremental property, we distinguish three
cases.
Case 1 There does not exist an instantiated random variable
VP� whose corresponding path P� covers both ek and ek+1.
In this case, we append unit path P∗ = 〈ek+1〉 to DE to get
DE ′. Thus, we have DE ′ = 〈P1,P2, . . . ,P j , P∗〉. Conse-
quently, we have

p̂DE ′(CP ′) = p̂DE (CP ) · p(CP∗)

Here, path P’s cost distribution p̂DE (CP ) can be reused.
Case 2 There exists an instantiated random variable VP�

whose path P� covers both ek and ek+1. Further, P� cov-
ers the last path P j in DE . In this case, by replacing P j by
P�, we get DE ′ = 〈P1,P2, . . . ,P j−1,P�〉. Then we have

p̂DE ′ (CP ′ ) =
(∏ j−1

i=1 p
(
CPi

)) · p(CP∗ )
(∏ j−1

i=2 p
(
CPi−1∩Pi

)) · p
(
CP j−1∩P∗

)

=
(∏ j

i=1 p
(
CPi

)) · p(CP∗ ) · p
(
CP j ∩P j−1

)

(∏ j
i=2 p

(
CPi−1∩Pi

)) · p
(
CP j−1∩P∗

) · p
(
CP j

)

= p̂DE (CP ) · p(CP� ) · p
(
CP j ∩P j−1

)

p
(
CP j−1∩P�

) · p
(
CP j

)

Again, path P’s cost distribution p̂DE (CP ) can also be
reused.
Case 3 An instantiated random variable VP� exists whose
pathP� covers both ek and ek+1. However,P� does not cover
the last pathP j in DE . In this case, by simply appendingP�

to DE , we get DE ′ = 〈P1,P2, . . . ,P j ,P�〉.
Thus, we have

p̂DE ′(CP ′) = p̂DE (CP ) · p(CP� )

p(CP�∩P j )

Once again, path P’s cost distribution p̂DE (CP ) can be
reused.

Examples Consider a path P = 〈e1, e2, e3, e4, e5〉
and assume that the coarsest decomposition is DE =
〈〈e1, e2, e3〉, 〈e3, e4〉, 〈e4, e5〉〉. We have the following esti-
mated path cost distribution based on DE :

p̂DE (CP ) =
∏ j

i=1 p
(
CPi

)

∏ j
i=2 p

(
CPi−1∩Pi

)

= p
(
C〈e1,e2,e3〉

) · p
(
C〈e3,e4〉

) · p
(
C〈e4,e5〉

)

p
(
C〈e3〉

) · p
(
C〈e4〉

)
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Cases VP∗ DE′ p̂DE′(CP′)

1 V〈e6〉 〈〈e1, e2, e3〉, 〈e3, e4〉, 〈e4, e5〉, 〈e6〉〉 p(C〈e1,e2,e3〉)·p(C〈e3,e4〉)·p(C〈e4,e5〉)·p(C〈e6〉)
p(C〈e3〉)·p(C〈e4〉)

=p̂DE(CP) · p(C〈e6〉)

2 V〈e4,e5,e6〉 〈〈e1, e2, e3〉, 〈e3, e4〉, 〈e4, e5, e6〉〉 p(C〈e1,e2,e3〉)·p(C〈e3,e4〉)·p(C〈e4,e5,e6〉)
p(C〈e3〉)·p(C〈e4〉)

=p̂DE(CP) · p(C〈e4〉)·p(C〈e4,e5,e6〉)
p(C〈e4,e5〉)·p(C〈e4〉)

3 V〈e5,e6〉 〈〈e1, e2, e3〉, 〈e3, e4〉, 〈e4, e5〉, 〈e5, e6〉〉 p(C〈e1,e2,e3〉)·p(C〈e3,e4〉)·p(C〈e4,e5〉)·p(C〈e5,e6〉)
p(C〈e3〉)·p(C〈e4〉)·p(C〈e5〉)

=p̂DE(CP) · p(C〈e5,e6〉)
p(C〈e5〉)

Fig. 9 Examples of the incremental property

We extend pathP with an edge e6 to get pathP ′ = 〈e1, e2,
e3, e4, e5, e6〉. We show examples for the above three cases
in Fig. 9.

So far, we have shown the incremental property—when
extending a path P with an edge to get a new path P ′, the
cost distribution of path P ′ can be incrementally computed
by reusing the cost distribution of path P . The incremental
property enables integration of existing stochastic routing
algorithms intoPACE, whichwe explain in detail in Sect. 5.2.

5.2 Approach 1: integrating existing stochastic routing
algorithms into PACE

5.2.1 General procedure

Stochastic routing algorithms, e.g., stochastic fastest rout-
ing [24], probabilistic top-k routing [20], and stochastic
skyline routing [38], aim to identify a path or a set of paths
whose cost distributions satisfy given conditions, e.g., iden-
tifying the path(s) with the highest probability of arriving
within 60min. Despite the different specific conditions that
are applied in different algorithms, these algorithms gener-
ally follow the procedure shown in Algorithm 2.

Algorithm 2: General Procedure
Input : Source s, Destination d, Road network G,

Additional Condition AC;
Output: Path(s) that satisfy AC;

1 Candidate Path Set CP ← ∅;
2 According to source s, identify all unit-paths whose starting
vertices are s;

3 Add each such unit-path, with its cost distribution, to the
candidate path set CP;

4 while CP is not empty do
5 Remove the most promising path P from CP according to

AC;
6 u ← the last vertex in P;
7 for each edge (u, v) that extends from u do
8 Extend P with edge (u, v) to get path P ′;
9 Compute the cost distribution of path P ′;

10 Add path P ′ together with its cost distribution to CP;

Specifically, these algorithms often need to explore many
candidate paths, and they use different strategies to choose
and extend the most promising candidate path to obtain

new candidate paths. When identifying promising candi-
date paths, the algorithms need to compare the candidate
paths’ cost distributions. To enable such comparison, when-
ever a newcandidate pathP ′ is generated, existing algorithms
employ the legacy, edge-centric path cost distribution com-
putation method to compute the cost distribution of path P ′.
This occurs in line 9 of Algorithm 2.

By using the path cost distribution computation method
based onPACE, rather than existing legacymethods, in line 9,
existing stochastic routing algorithms can easily be integrated
into PACE. The remaining mechanisms in the different algo-
rithms, e.g., the different strategies for identifying the most
promising candidate paths, are simply kept unchanged.

The running time of a stochastic routing algorithm is
dominated by

∑
P∈CP RT(P, method), where CP contains

the candidate paths whose cost distributions need to be
evaluated. Thus, CP differs among stochastic routing algo-
rithms that have different strategies for selecting candidate
paths. Function RT(P, method) refers to the running time
of computing the cost distribution of path P using a spe-
cific method, method, e.g., a legacy method or the method
based on PACE. Although the cost distribution computation
method in PACE has the same worst case asymptotic com-
plexity as the state-of-the-art legacy edge-centric baseline,
we offer empirical evidence (in Sect. 6) that computing the
cost distribution of a path using PACE is more efficient than
using the legacy edge-centric baselines, i.e.,RT(P ,PACE) ≤
RT(P , legacy_baseline). We have also shown that the accu-
racy of the cost distributions estimated by PACE is higher
than that of the legacy baseline. Thus, integration of existing
stochastic routing algorithms into PACE is able to improve
the accuracy and efficiency of these algorithms.

5.2.2 A concrete algorithm

We show a concrete example of integrating an existing
stochastic routing algorithm for solving a probabilistic
threshold path finding problem [20] into PACE. A concrete
example of the problem is “Which path enables a professor
to travel from the university to the airport within 45min with
a probability of at least 90%?”

Given a source s, a destination d, a travel time budget
B, and a probabilistic threshold τ , a probabilistic threshold
path finding problem returns a path from s to d for which the
probability that its travel time is smaller than the time budget
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B is at least τ . Here, the additional condition AC, as part of
the input to Algorithm 2, consists of the time budget B and
probability threshold τ .

This problem can be solved by a depth first search (DFS)
based algorithm proposed in an existing study [20]. Algo-
rithm 3 demonstrates how the DFS based algorithm can be
integrated into PACE. In particular, in lines 18–20, when
extending a path P with edge ek+1 to a new path P ′, the
travel cost distribution of the new path, i.e., p̂DE ′(CP ′), is
computed based on the travel cost distribution of pathP , i.e.,
p̂DE (CP ), using the incremental property. In contrast, the
original algorithm employs the legacy method to compute
the cost distribution of P ′.

Algorithm 3: DFS-based Stochastic Routing
Input : Source s, Destination d, Travel Time Budget B,

Probability threshold τ , Road network G
Output: A path P satisfying t with probability at least τ

1 S ← ∅; /* S is a stack of vertices */
2 Q ← ∅; /* Q is a queue of (path, path cost
distribution) pairs */

3 for each vertex u adjacent to s do
4 S.push(u);
5 Use path P to denote path 〈(s, u)〉;
6 Estimate the travel cost distribution of path P , i.e.,

p̂DE (CP ), using the paper’s proposal;
7 if the probability that P’s travel time is smaller than B

exceeds τ then
8 if P ends with d then
9 return P;

10 else
11 Q.add(P, p̂DE (CP ));

12 Set s as visited;
13 while S �= ∅ do
14 u ← S.pop();
15 for each path (P, p̂DE (CP )) ∈ Q do
16 if the last edge of P ends with u then
17 for each unvisited vertex v that is adjacent to u do
18 ek+1 ← (u, v);
19 P ′ ← P ◦ 〈ek+1〉;
20 Estimate the travel cost distribution of P ′, i.e.,

p̂DE ′ (CP ′ ), according to the incremental property
based on p̂DE (CP );

21 if the probability that P ′’s travel time is smaller
than B exceeds τ then

22 if P ′ ends with d then
23 return P ′;
24 else
25 Q.add(P ′, p̂DE (CP ′ ));

26 Remove (P, p̂DE (CP )) from Q;

27 Set u as visited;
28 for each unvisited vertex w that is adjacent u do
29 S.push(w);

30 return null;

Algorithm 3 exemplifies how an existing stochastic rout-
ing algorithm can be integrated seamlessly into the PACE.
We believe that all stochastic routing algorithms known to us,
such as [20,24,38], can be accommodated in a similar way,
thus improving the efficiency and effectiveness of existing
stochastic routing algorithms.

5.3 Approach 2: new stochastic routing algorithms in
PACE

5.3.1 Pruning strategies

As discussed, stochastic routing algorithms typically need to
explore many candidate paths. To ensure efficiency, existing
edge-centric algorithms normally employ an early pruning
strategy to avoid exploring uncompetitive candidate paths.

Specifically, at an intermediate vertex, if there is more
than one path from the source to the intermediate vertex, the
algorithms only keep the best path(s) and prune all remain-
ing paths. Here, the goodness of a path is defined differently
according to the specific conditions used in different stochas-
tic routing algorithms. However, existing pruningmay not be
safe in PACE. There is thus a need for new stochastic routing
algorithms that take this into account such that the accurate
travel cost distribution offered by PACE can be utilized fully.

To better explain why the pruning in existing edge-
centric algorithms may not be safe, consider the example
in the introduction, which is a stochastic on-time arrival
problem [30,32,35]. Given a source s, a destination d, a
travel-time budget B, we aim at finding the path from s to
d that has the largest probability of arriving within the time
budget B.

Consider the road network in Fig. 10, where vA and vE are
the source and the destination, respectively. Two paths exist
from source vA to an intermediate vertex vD: P1 = 〈e1, e2〉
and P2 = 〈e3, e4〉.

Assume that the probability that P1 takes travel time t
exceeds that of P2, meaning that P1 has a better distribution

Fig. 10 A road network and non-unit paths
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than P2. Then, in the legacy, edge-centric paradigm, P2 can
be pruned safely and we need not consider any path that is
extended from P2. This is because, for any path P2 ◦ P that
is extended from P2 by path P , the alternative path P1 ◦ P
that is extended from P1 by the same path P , has a better
distribution.

For example, consider path P5 = 〈e3, e4, e5〉 that is
extended from P2 by path 〈e5〉. The alternative path is
P4 = 〈e1, e2, e5〉 that is extended from P1 by the same
path 〈e5〉. Since existing stochastic routing algorithms use
the legacy, edge-centric method to compute the distributions
of candidate paths, we have p(CP5) = p(CP2) 	 p(C〈e5〉)
and p(CP4) = p(CP1) 	 p(C〈e5〉), where 	 denotes con-
volution. This means that the distribution of path P5 is the
convolution of distributions of paths P2 and 〈e5〉 and the
distribution of path P4 is the convolution of distributions of
paths P1 and 〈e5〉. Further, since P1 has a better distribution
than P2, after performing convolution with the same distri-
bution, i.e., the cost distribution of path 〈e5〉, path P4 should
have a better distribution than path P5. Formal proofs of the
above intuition can be found elsewhere [32,35].

In contrast, in PACE, we can only apply such pruning
at some intermediate vertices, but not at all intermediate
vertices. For example, assume that a PACE maintains path
weights for P1 = 〈e1, e2〉 and P3 = 〈e2, e5〉, as shown in
Fig. 10. Then,we cannot apply pruning at intermediate vertex
vD .

The reason is as follows. Still assuming thatP1 has a better
distribution than P2, we cannot guarantee that for any path
that is extended from P2, we always have a corresponding
path that is extended from P1 that has a better distribu-
tion. For example, consider paths P4 and P5, and recall that
PACE maintains path weights forP1 andP3. Thus, in PACE,
the cost distribution of P4 = 〈e1, e2, e5〉 is computed as
p(CP1 )·p(CP3 )

p(C〈e2〉) , i.e., from the cost distributions ofP1,P3, and

〈e2〉; and the cost distribution of P5 = 〈e3, e4, e5〉 is com-
puted as p(CP2) · p(C〈e5〉), i.e., from the cost distributions of
P2 and 〈e5〉. This suggests thatP4’s distribution is computed
as the product of P1’s distribution and a term that involves
the distributions of P3 and 〈e2〉. Further, P5’s distribution is
computed as the product of P2’s distribution and a term that
involves the distribution of 〈e5〉. Although we know that P1

has a better distribution than P2, P4’s distribution may not
be better than that of P5 since the two terms are no longer
the same.

5.3.2 Vertex categorization

We categorize vertices as safe or unsafe. Recall that, in
Sect. 3.3, the path weight function WP maintains weights
for non-unit paths in Pathsβ and all unit paths. Given a ver-
tex u, if a non-unit path P ∈ Pathsβ exists such that path P
covers vertex u and vertex u is not the starting vertex of the

first edge of path P and is also not the ending vertex of the
last edge of path P , vertex u is unsafe. Otherwise, u is safe.

For example, consider the PACE graph in Fig. 10, where
Pathsβ consists of non-unit paths P1 and P3. Then, vertex
VB is unsafe due to P1 and vertex VD is unsafe due to P3.
All remaining vertices are safe.

Based on this categorization, we formulate two princi-
ples for designing stochastic routing algorithms in the PACE
paradigm:

(1) At a safe vertex, pruning can be applied, which is analogs
to the legacy case. Assume that two paths P1 and P2

meet at a safe vertex and P1 has a better distribution
than P2. No matter which edge is extended, path P ′

1
that is extended from P1 always has a better distribu-
tion than path P ′

2 extended from P2. This is because the
distributions of path P ′

1 and P ′
2 are computed from the

distributions path P1 and P2 using the same term.
(2) At an unsafe vertex, pruning cannot be applied. Assume

that two paths P1 and P2 meet at an unsafe vertex and
P1 has a better distribution than P2. Path P ′

1 extended
from P1 may not have a better distribution than path P ′

2
extended from P2. This is because the distributions of
path P ′

1 and P ′
2 are computed from the distributions of

path P1 and P2 using different terms. Thus, pruning can-
not be applied at unsafe vertices.

5.3.3 New algorithms

Based on the vertex categorization and the two principles, we
propose a new algorithm, shown in Algorithm 4, for solving
the stochastic on-time arrival problem. Algorithms for other
stochastic routing problems can be devised similarly.

The new algorithm employs two data structures—a pri-
ority queue Q and a hash table H . The priority queue Q
maintains a collection of items of the form (u, P , PRB),
where u is a vertex, P is a path that is from the source to ver-
tex u, and PRB is the probability that the travel time of P is
less than the time budget B. The priority queue is prioritized
on the PRB field. The hash table H associates each vertex u
with a set of items of the form (P , p̂DE (CP )), where P is
a path from the source to the vertex u and p̂DE (CP )) is the
travel cost distribution of path P .

The algorithm starts from the source vertex s. We insert
s along with an empty path 〈〉 and 1 as its probability into
the priority queue, and we associate the source vertex s with
an empty path and 0 as its travel cost in the hash table. In
addition,we usemaxProb to record themaximumprobability
of arriving within the time budget among all the paths that
have been explored so far, and we use matPath to record the
corresponding path. In the beginning, maxProb and matPath
are initialized to −∞ and null.
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Algorithm 4: New Stochastic Routing for PACE
Input : Source s, Destination d, Travel Time Budget B,

Road network G;
Output: A path P with the highest probability of arrival within t ;

1 Initialize a Priority Queue Q and a Hash Table H;
2 maxProb ← −∞; maxPath ← null;
3 Insert (s, 〈〉, 1) into Q;
4 H[s] ← (〈〉, 0);
5 while Q is not empty do
6 (u, P , PRB) ← Q.ExtractMax();
7 if Path P reaches destination d, i.e., u = d then
8 if PRB > maxProb then
9 maxProb ← PRB; maxPath ← P;

10 else
11 if PRB > 0 then
12 return maxPath;

13 else
14 return null;

15 for each edge (u, v) from u do
16 if v does not appear in P then
17 ek+1 ← (u, v);
18 Relax(Q, H, v, P , ek+1);

Next, we iterate on all items in the priority queue. In each
iteration, we first identify the item (u, P , PRB) with the
maximum priority, i.e., the item with the largest PRB. If path
P has already reached the destination d and its probabil-
ity of arriving within the time budget PRB is larger than
the best probability of all the paths that have been explored,
maxProb, we update maxProb and keep exploring paths that
are extended from P . Otherwise, path matPath is the path
with the largest probability of arrivingwithin the time budget.

To consider the paths that are extended from path P , we
consider the edges whose starting vertex is u. In particular,
for each edge (u, v), where v has not already appeared in
P , we may extend P with edge (u, v). However, it is not
always beneficial to extend P with edge (u, v), e.g., if there
already exists another path that also leads to u has a better
travel cost distribution. To checkwhether it is worth to extend
P with edge (u, v), we call function Relax(), described in
Algorithm 5.

In the Relax() function, we extend P with edge ek+1 =
(u, v) to get pathP ′ = P◦〈ek+1〉.We compute the cost distri-
bution of P ′ based on the travel cost distribution of P using
the incremental property. Then, we consider the following
three cases to decide whether we should keep considering
the extended path P ′.

Case 1 H[v] is empty. This means that P ′ is the first path
to reach vertex v. Thus, we should keep considering the paths
that are extended from P ′. We add P ′ to bothQ andH[v]—
we add vertex v along with path P ′ and its expected path
cost to Q and associate vertex v with path P ′ and its path
cost distribution toH (lines 12–13).

Algorithm 5: Relax Operation
Input : PriorityQueue: Q, HashTable: H, Vertex v, Path P ,

Edge ek+1;
1 P ′ ← P ◦ 〈ek+1〉;
2 Estimate the travel cost distribution of P ′, i.e., p̂DE ′ (CP ′ ),
according to the incremental property based on p̂DE (CP );

3 Boolean notDominated ← true;
4 if H[v] is not empty ∧ v is a safe vertex then
5 for each path P∗ in H[v] do
6 if P ′ dominates P∗ then
7 Remove the items with P∗ from both H[v] and Q;

8 if P∗ dominates P ′ then
9 notDominated ← false;

10 break;

11 if notDominated then
12 H[v] ← H[v] ∪ (P ′, p̂DE ′ (CP ′ ));
13 Insert (v,P ′, E X P( p̂DE ′ (CP ′ ))) into Q;

Case 2 H[v] is not empty and v is safe (lines 4–10).
According to existing studies [32,35], we need to check the
stochastic dominance [2,35] relationship between path P ′
and each path P∗ inH[v]. In particular, if P ′ dominates P∗,
we remove the corresponding items for P∗ from bothQ and
H[v].

IfP∗ dominatesP ′, we need not considerP ′ further. This
is because for any path P ′ ◦ P that is extended from P ′, we
always have another pathP∗◦P that dominatesP ′ ◦P . Thus,
no matter what cost budget is considered, P∗ ◦P always has
a larger probability of satisfying the cost budget than does
P ′ ◦ P .

If no path in H[v] can dominate P ′, we should consider
paths that are extended from P ′. Thus, we add P ′ to both Q
and H[v].
Case 3 when H[v] is not empty and v is unsafe. We cannot
apply pruning and thus must consider paths that are extended
from P ′. Thus, we add P ′ to both Q and H[v].

6 Empirical study

6.1 Experimental setup

Road networks Two road networks are used. The Aalborg
road network N1 has 20,195 vertices and 41,276 edges, and
the Beijing road network N2 has 28,342 vertices and 38,577
edges. Road network N1 is obtained from OpenStreetMap
and contain all roads, while road network N2 is obtained
from the Beijing traffic management bureau, which contains
only highways and main roads.
Trajectories Two GPS data sets are used. The first, D1, con-
tains 37 million GPS records that occurred in Aalborg from
January 2007 to December 2008. The sampling rate is 1 Hz
(i.e., one record per second). The second, D2, contains more
than 50 billion GPS records that occurred in Beijing from
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Table 2 Parameter settings

Parameters Values

α (min) 15, 30, 45, 60, 120

β 15, 30, 45, 60

|Pquery| 5, 10, 15, 20, 40, 60, 80, 100

B (min) 15, 20, 25, 30

d (km) 1, 2, 3, 4, 5

r (%) 20, 40, 60, 80, 100

September 2012 to November 2012. The sampling rate is at
least 0.2 Hz. We apply a well-known method [29] to map
match the GPS records.
Travel costs We consider two time-varying, uncertain travel
costs—travel time and GHG emissions.
Parameters Table 2 shows important parameters used in the
experiments, where default values are shown in bold. In par-
ticular, when instantiating the PACE from trajectories, we
vary the finest time interval α and the qualified trajectory
count thresholdβ.When studying the accuracy and efficiency
of PACE based path cost distribution computation method,
we vary the cardinality of a query path |Pquery|. When study-
ing the stochastic routing algorithms based onPACE, we vary
the time budge B, the Euclidean distance between source and
destination d, and percentage of instantiated, high-rank ran-
dom variables r .
Implementation details All algorithms are implemented in
Python 2.7 under Linux Ubuntu 14.04. All experiments are
conducted on a modern server with 512 GB main memory
and 64 2.3 GHz 8-core AMD Opteron(tm) 6376 CPUs.

6.2 Instantiating PACE

We conduct experiments to obtain insight into different
aspects of the instantiated random variables that are main-
tained in the PACE’s weight function WP and also describe
how to tune parameters α and β. To highlight the random
variables that are instantiated from trajectories, random vari-

ables derived from speed limits are excluded unless stated
otherwise.
Tuning α We vary α from 15 to 120min. A large α suggests
that more trajectories may become qualified trajectories,
which instantiates more random variables. We use E ′ to
denote the set of edges that are covered by the instantiated
random variables and E ′′ to denote the set of edges that has
at least one GPS record. Coverage is defined as the ratio
between |E ′| and |E ′′|. Figure 11a shows that as α increases,
the coverage increases as well on both data sets. However,
the coverage ratio remains below 85% for α = 120. This is
because the GPS data is skewed—some edges have only few
GPS records.

Although a large α enables more instantiated random
variables, they may be inaccurate since traffic may change
significantly during a long interval, e.g., 2h. We report the
average entropies of the instantiated random variables when
varyingα; see Fig. 11b.We only show the results on D2 as the
results on D1 exhibit similar trends. According to Theorem2,
variables with smaller entropy lead to more accurate joint
distribution estimates. Figure 11b shows that using α = 30
does not significantly increase the entropy compared to using
α = 15. Figure 11a shows that α = 30 gives a clear increase
in the number of instantiated random variables compared to
α = 15. This suggests that α = 30 provides a good trade-off
between the accuracy of the random variables and the num-
bers of random variables. Thus, we use α = 30 as the default
value.
Tuning β Intuitively, we prefer a large β since having more
qualified trajectories enables instantiated random variables
that are more accurate. However, Fig. 12 shows that as β

increases, the number of instantiated randomvariables drops.
This occurs because a large β requires more qualified tra-
jectories in order to be able to instantiate WP . We choose
β = 30 as the default because the number of instantiated
random variables is only slightly less than than for β = 15,
while achieving more accurate variables.
Varying dataset sizes We use 25, 50, 75, and 100% of the
trajectories in D1 and D2, respectively. Figure 13 shows that

Fig. 11 Effect of α. a
Coverage. b Entropy
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Fig. 13 Varying dataset sizes

the number of instantiated random variables increases as the
number of trajectories increases. The number of instantiated
random variables with large rank also increases steadily. This
occurs because the more trajectories, the more likely it is to
find long paths with more than β qualified trajectories, thus
resulting in random variables with large rank. It also shows
that the instantiated random variables are typically insuffi-

cient to enable the accuracy-optimal baseline for arbitrary
paths—the sizes of variables with high rank (e.g., greater
than 4) are small.

Note that since we do not study accuracy here, there is
no need to distinguish between training and testing data. In
Sect. 6.3.1, we use separate training and testing data when
studying accuracy.
Histogram approximation We evaluate the accuracy and
space savings of the histogram representations of the instan-
tiated random variables. Recall that our method is able to
automatically identify the number of buckets per dimension
(cf. Sect. 3.1). We call this method Auto. We first compare
Auto with methods using standard distributions including
Gaussian, Gamma, and exponential distributions. Figure 14a
shows the KL divergences between the raw data distribution
and the distributions represented by different methods. The
results of using exponential distributions are not shown since
their KL divergences exceed 1.0 and are significantly worse
than the other ones. The results clearly suggest that Auto
provides the most accurate estimation and that travel-time
distributions typically do not follow standard distributions.
Auto adaptively determines the bucket count for each dimen-
sion and then optimally selects the bucket boundaries, thus
being able to represent arbitrary distributions. We compare
Auto with a static histogram approach that uses a fixed num-
ber of buckets per dimension. Themethod that uses b buckets
per dimension is called Sta-b. Figure 14b shows theKLdiver-
gences between the raw distribution that is obtained from the
trajectories’ travel costs and the different histograms. As the
number of buckets increases, Sta-b produces a smaller KL-
divergence value because the more buckets a histogram has,
the better accuracy it can achieve. Auto is able to achieve as
good accuracy as Sta-4. This suggests that the Auto method
is effective.

We evaluate the space savings achieved by the histogram
representation. Intuitively, the more buckets a histogram has,
the more storage it needs. We report the space saving ratio
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1 − SH
SR

, where SH and SR represent the storage required
by the histograms and the underlying raw data distribu-
tion, respectively. The raw data distribution is of the form
(cost, frequency). The higher the ratio, the better space sav-
ings are achieved by the histograms. Figure 14c shows that
Auto has a better compression ratio than Sta-4 has. This sug-
gests that Auto achieves a good trade-off between accuracy
and space saving.
Total memory usage As the size of the trajectory data set
grows, the memory use of recording the instantiated random
variables also grows, as shown in Fig. 15.

Since we use histograms to represent the distributions
of instantiated random variables, the memory use is small
such that the PACE’s weight function WP can be accommo-
dated in main memory. In particular, the instantiated random
variables, including the ones that are derived from speed lim-
its, for Aalborg and Beijing occupy around 1.8 and 4.2GB,
respectively.
Run-time Since deriving the instantiated random variables is
an off-line task, the run-time is not critical. The procedure can
be parallelized in a straightforwardmanner. Using the default
parameter setting, it takes less than 2min with 48 threads to
learn the random variables from D1, and takes around 45min
with 48 threads to learn random variables from D2. This
also suggests that when receiving new trajectories regularly;
the procedure can be conducted periodically to efficiently
instantiate random variables.

6.3 Path cost distribution computation with PACE

We consider four methods. (a) OD: the proposed method for
PACE using the optimal (i.e., coarsest) decomposition. (b)
LB [38]: the legacy baseline as described in Sect. 2.3. LB is
regarded as one of the state-of-the-art approaches used in the
conventional paradigm. In our setting, LB only considers the
randomvariableswith ranks one. (c)HP [20] assumes that the
joint distributions for every pair of edges in a path are known

and then computes the joint probability distribution of the
path taking these into account. In our setting, this means that
HP only considers random variables with ranks two. (d) RD
computes an estimated distribution using a randomly chosen
decomposition rather than the coarsest decomposition.
6.3.1 Accuracy

Accuracy evaluation with ground truth We select 100 paths
where each path has more than β = 30 trajectories during
an interval of α = 30min. We use these trajectories to com-
pute the ground-truth distribution using the accuracy-optimal
baseline. Next, we exclude these trajectories from the trajec-
tory data set. Thus, we have the data sparseness problem, and
the accuracy-optimal baseline does not work.

First, we consider a concrete example shown in Fig. 1b.
The distributions estimated using OD, LB, HP, and RD are
shown in Fig. 16a–d. It is clear that OD captures the main
characteristics of the ground-truth distribution. The convo-
lution based estimation LB seems to approach a Gaussian
distribution (cf. the Central Limit Theorem). However, it is
clear that a Gaussian distribution is unable to capture the
ground-truth distribution, and LB is inaccurate. The distri-
bution computed by HP is inaccurate either, which suggests
that the dependencies among the edges in a path cannot be
fully captured by only considering the dependencies between
adjacent edges. Method RD suggests that a randomly chosen
decomposition provides a less accurate estimation compared
to the estimation based on the optimal decomposition.

Next, we report results using all 100 selected paths, which
have different cardinalities. Specifically, the cardinality of
a path |Pquer y | varies from 5 to 20. Figure 17 shows the
KL-divergence values KL(p, p̂), where p is the ground-truth
distribution derived by the accuracy-optimal baseline and p̂
is the estimated distribution using OD, LB, RD, and HP. As
the number of edges in a path increases, the benefits of using
the proposed OD becomes more significant. In particular,
the KL-divergence values of OD grow slowly, while the KL-
divergence values of LB grow quickly. This is not surprising
because LB assumes independencies, and the longer a path
is, the more likely it is that the edges in the path are not inde-
pendent. Next, OD is also better than RD, which suggests
that the optimal decomposition produces the most accurate
estimation. Further, HP is better than LB because HP con-
siders the correlation between adjacent edges. However, HP
always has larger KL-divergence values than do RD and OD.
This is because coarser random variable sets have smaller
KL-divergence (cf. Theorem 3).

In summary, Fig. 17 suggests that the proposed OD is
able to accurately estimate travel cost distributions and that
it outperforms the other methods, especially for long paths.
Accuracy evaluation without ground truth We consider long
paths which do not have corresponding ground-truth distri-
butions.We randomly choose 1000 paths for each cardinality
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Fig. 16 Accuracy comparison
on a particular path. a O D. b
L B. c H P . d R D
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Fig. 17 Accuracy comparison
with the ground truth. a D1. b
D2
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with an arbitrary departure time and report average values;
and vary the path cardinality from 20 to 100. Figure 18 shows
that OD produces the least entropy, which is consistent with
the design of identifying the optimal decomposition. This
suggests that the proposed method is able to accurately esti-
mate the distribution of a path.

6.3.2 Efficiency

Figure 19 reports the run-times of the different methods.
We also consider the methods that use instantiated random
variables with ranks at most 2, 3, and 4, denoted as OD-2,
OD-3, and OD-4, respectively. As the cardinality of a query
path increases, the run-time also grows. HP and LB have

to consider at least |Pquery| instantiated random variables to
compute the joint distribution, yielding higher running times
than for the remaining methods. In contrast, OD, OD-x, and
RD exploit instantiated random variables with higher ranks.
Thus, they use significantly fewer instantiated random vari-
ables and are faster thanHP and LB.OD uses coarser random
variables than does RD, and it is able to use fewer instanti-
ated random variables, making it faster than RD. Following
the same reasoning, OD-x is faster than OD-y if x > y.
Figure 19 clearly shows that OD is the most efficient.

To further investigate the run-time of OD, a detailed anal-
ysis of the three major steps in OD is reported in Fig. 20 for
paths with cardinality 20 and using differently sized subsets
of trajectories.
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Fig. 18 Entropy comparison. a
D1. b D2
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Fig. 19 Efficiency. a D1. b D2
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Fig. 20 Run-time analysis

Three steps are involved in OD. First, the optimal decom-
position is identified, denoted by OI. Thanks to Theorems 4,
this part is very efficient. Second, the joint distribution is com-
puted, denotedby JC. This is themost time-consumingpart as
it goes throughmanyhyper-buckets of the histograms to com-
pute the joint distributions according to Eq. 3. However, with
more trajectories, there are more instantiated random vari-
ables with higher ranks, which improves the run-time of JC.

Thus, as data volumes increase, the performance improves.
Third, deriving the cost distribution (denoted by MC) is also
very efficient.

6.4 Stochastic routing with PACE

Weconsider two stochastic routing problems—PB1: a proba-
bilistic threshold path finding problem, andPB2: a stochastic
on-time arrival problem. These are covered in Sects. 5.2
and 5.3, respectively. For each problem, we consider two
aspects—effectiveness and efficiency.

6.4.1 Effectiveness

Accurate path cost distributions are essential for achieving
accurate, high-quality stochastic routing [20,24,38]. If the
computed path cost distributions are inaccurate, the returned
paths can deviate from the “correct” paths, thus adversely
affecting the service quality.

In the following, we exemplify the quality effect of using
accurate path cost distributions as offered by PACE, and then
we report on experiments that aim to quantify the quality
effect at a larger scale.
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(a) (b)

(c) (d)

(e) (f)

Fig. 21 Effectiveness of accurate travel-time distributions. a Example.
b pGT (C〈e1〉). c pGT (C〈e2〉). d pGT (CP1 ). e pGT (CP2 ). f pL B(CP1 )

Consider the example in Fig. 21a, where two paths from
source S to destination D exist:P1 = 〈e1, e2〉 andP2 = 〈e3〉.
Assume that more than β trajectories occurred on 〈e1〉,
〈e2〉, P1, and P2. Thus, we are able to derive the ground-
truth distributions pGT (C〈e1〉), pGT (C〈e2〉), pGT (CP1), and
pGT (CP2), which are shown in Fig. 21b–e, respectively.
These distributions are maintained in PACE.

In contrast, in the edge-centric paradigm, only the ground-
truth distributions for individual edges, i.e., unit paths, are
maintained. To obtain the distribution of non-unit path P1,
the legacy baseline computes the convolution of pGT (C〈e1〉)
and pGT (C〈e2〉), denoted as pL B(CP1), which is shown in
Fig. 21f.

It is clear that the cost distribution of P1 based on the
legacy method pLB(CP1) is different from the ground-truth
cost distribution pGT (CP1). A small difference like this may
result in significantly different stochastic routing results. For
instance, suppose that we consider the stochastic on-time
arrival problem of choosing the path with the highest proba-
bility of arriving at d within 65min. When using the legacy
method, P1 has probability 0.96 according to pLB(CP1),
and P2 has probability 0.90 according to pLB(CP2), which
is the same as pGT (CP2) since P2 is a unit-path. Thus,
P1 is returned. However, when using the method based on
PACE, P2 is returned. This is because P1 has probability
0.80 according to pGT (CP1), which is maintained as a path
weight in PACE; and P2 still has probability 0.90, according
to pGT (CP2). This example shows that the legacy method
may return paths that are significantly different from the cor-
rect paths, which PACE is able to identify.

To evaluate the impact of using more accurate path cost
distributions at a larger scale, we consider stochastic queries
for both PB1 and PB2. For each problem, we randomly gen-
erate 100 queries for each of road networks D1 and D2.
PB1 Given a source s, a destination d, a departure time t , a
time budget B, and a probabilistic threshold τ , a query returns
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Fig. 22 Path difference ratios a PB1. b PB2

a path that enables arrival at destination d within time budget
B with probability at least τ .
PB2 Given a source s, a destination d, a departure time t , and
a time budget B, a query returns a pathP that enables arrival
at d with the largest probability.

ForPB1, we consider two algorithms,PB1-Alg1 andPB1-
Alg2, based on the DFS-based stochastic routing algorithm.
When evaluating path cost distributions, PB1-Alg1 uses the
legacy paradigm, and PB1-Alg2, i.e., Algorithm 3 proposed
in Sect. 5.2.2, uses PACE.

For the same query, suppose thatPB1-Alg1 returnsP1 and
PB1-Alg2 returns P2. If P1 and P2 are different, the more
accurate path cost distributions employed by PB1-Alg2 have
a significant impact on the outcome of the stochastic routing.

To quantify the significance of the impact, we calculate
the path difference ratio χ between Pi and P2, where χ =
|P1∩P2|
|P1∪P2| ×100%,P1∩P2 is the set of edges that appear in both

paths, andP1 ∪P2 is the set of edges that appear in eitherP1

or P2. The smaller χ is, the more the two paths differ, giving
us a measure of the significance of the difference between
the results.

We vary the travel-time budget B and show the distribu-
tions of the difference ratios in Fig. 22a. In this experiment,
we set τ = 1, i.e., identifying a path that guarantees that a
person arrives at destination d within time budget B.

The results show that as time budget B grows, the dif-
ferences between the paths returned by the two algorithms
increase. For example, consider the case where χ is less than
20% for PB1, meaning that the two paths are very different.
When B = 15, around 5% of the queries fall into this cate-
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Fig. 23 Effect of B. a PB1. b
PB2
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gory; and when B = 30, more than 10% of the queries fall
into this category. Next, consider the case where χ exceeds
80%, meaning that the two paths are quite similar. When
B = 15, around 30% of the queries fall into this category;
and when B = 30, below 15% of the queries fall into this
category. A similar trend occurs for PB2. As B changes from
15 to 30, the χ values that exceeds 80% reduces from 10%
to 5%. In contrast, the χ values below 20% increases from
around 10% to more than 20%.

Next, we consider PB2. As before, we consider two algo-
rithms: PB2-Alg1 uses the legacy paradigm, and PB2-Alg2,
i.e., Algorithm 4 proposed in Sect. 5.3.3, uses PACE, to eval-
uate path cost distributions. In addition, PB2-Alg2 applies
the pruning strategy on safe vertices according to the vertex
categorization, while PB2-Alg1 applies pruning on all ver-
tices.

Figure 22b shows the difference ratios between the paths
returned by PB2-Alg1 and PB2-Alg2. We observe similar
trends as for PB1—as time budget B increases, the dif-
ferences between the paths returned by the two algorithms
increase.

This set of experiments suggests that the two different
routing approaches based on PACE are likely to yield signif-
icantly different paths compared to the paths that are returned
by existing routing algorithms based on the legacy paradigm.
As PACE based path cost estimation is more accurate than
estimation based on legacy baseline, the returned paths are
also more accurate.

6.4.2 Efficiency

Next, we consider the running time efficiency of the differ-
ent routing algorithms. We vary the travel-time budget B,
the Euclidean distance d between the source and the destina-
tion, and the percentage r of instantiated, high-rank random
variables according to Table 2.

Following the setup used in the effectiveness experiments,
for PB1, we consider two algorithms PB1-Alg1 and PB1-
Alg2, and for PB2, we consider two algorithms PB2-Alg1
and PB2-Alg2.
Effect of B For each road network, we randomly choose
100 source–destination pairs. We consider travel-time bud-
gets B1 = 10 mins, B2 = 20 mins, and B3 = 30 mins.

The average running times for PB1 are reported in
Fig. 23a, which shows that the algorithm based on PACE,
i.e., PB1-Alg2, is faster. This indicates that the first approach
of using PACE, where the legacy paradigm is replaced by
the PACE paradigm, is able to accelerate existing stochastic
routing algorithms.

Next, Fig. 23b shows that algorithm PB2-Alg2, which is
based on PACE and applies pruning only on safe vertices,
is faster than PB2-Alg1. This suggests that the two different
approaches to using the PACE paradigm are able to provide
more efficient stochastic routing.
Effect of d To gain insight into the effect of the distance
between source and destination, we vary parameter d. The
results are shown in Fig. 24a for PB1 and Fig. 24b for PB2.

As the distance d increases, more candidate paths needs
to be explored, meaning that the numbers of path cost dis-
tribution computations and comparisons increase. Thus, the
running time also increases. Nevertheless, both Fig. 24a, b
show the benefits of the algorithmsbased onPACE over exist-
ing stochastic routing algorithms. First, the running times of
PB1-Alg2 and PB2-Alg2 are consistently lower than those
of PB1-Alg1 and PB2-Alg1, suggesting that incorporating
PACE improves efficiency. Second, as d increases, the run-
ning time differences between the algorithms with and with-
out using PACE, i.e., PB1-Alg2 vs. PB1-Alg1 and PB2-Alg2
versus PB2-Alg1, become more significant, indicating that
the PACE-based algorithms scale better w.r.t. parameter d.
Effect of r To study the effect of the number of instantiated,
high-rank (above 2) random variables, we gradually reduce
the number of instantiated random variables. In particular,
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Fig. 24 Effect of d. a PB1. b
PB2
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Fig. 25 Effect of r . a PB1,
PB1-Alg2. b PB2, PB2-Alg2
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we use different percentages of instantiated random variables
on networks D1 and D2, where r1 = 20%, r2 = 40%, r3 =
60%, r4 = 80%, and r5 = 100%. Since only the algorithms
based on PACE employ the instantiated random variables,
we only consider PB1-Alg2 and PB2-Alg2. The run-times
are reported in Fig. 25.

As r increases, the running time decreases for both
problems. This indicates that the more instantiated random
variables that PACE maintains, the better the acceleration
achieved by PACE. This is because the availability of more
instantiated random variables improves the efficiency of path
cost distribution computation based on PACE. This means
that asmore trajectories are collected,more randomvariables
can be instantiated, and thus PACE based stochastic routing
algorithms become more efficient. This is a very appealing
characteristic in real-world applications.
SummaryThe empirical study can be summarized in four key
observations.

(1) In realistic settings with sparse data, the proposed path
cost distribution estimation method based on PACE, i.e.,
OD, is the most accurate and efficient method and is
scalable w.r.t. the path cardinality, meaning that it is able
to support long paths.

(2) OD is able to approximate arbitrary raw cost distribu-
tions well using limited space, making it possible to fit
the instantiated random variables into main memory.

(3) OD is scalable w.r.t. the number of trajectories. First, as
random variable instantiation can be parallelized easily,
it is possible to periodically re-instantiate random vari-
ables when new trajectories are received. Second, more
trajectories yield more random variables with higher
ranks, which improves the efficiency and accuracy of
the approach.

(4) ThePACE paradigm can accommodate existing stochas-
tic routing algorithms using two different approaches,
with the effect of improving their efficiency and accu-
racy.

We conclude that the proposed PACE paradigm success-
fully address the challenges caused by data sparseness,
complex distributions, and dependencies. In particular, the
PACE based path cost distribution computation method is
able to efficiently provide accurate travel cost distribution
computation, thus enabling efficient and accurate stochastic
routing algorithms based on PACE.
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7 Related work

Wefirst review recent studies on estimating deterministic and
uncertain path costs, respectively. Then, we review literature
on stochastic routing.
Estimating deterministic path costs Most studies in this cate-
gory focus on accurate estimation of travel costs of individual
edges using trajectory data and loop detector data, based on
which the travel cost of a path is then computed as the sum
of the travel costs of its edges.

In many cases, the available trajectory data is unable to
cover all edges in a road network. To address data sparseness,
somemethods [21,34,40,42] transfer the travel costs of edges
that are covered by trajectories to edges that are not cov-
ered by trajectories. However, these methods do not support
travel cost distributions, and they do not model dependencies
among edges. Therefore, they do not apply to the problem
we consider.

When all edges have travel costs, the travel cost of any path
can be estimated by summing up the travel costs of the edges
in the path [21,40,42]. However, using the sum of travel
costs of edges as the travel cost of a path can be inaccurate
because it ignores hard-to-formalize aspects of travel, such
as turn costs. Thus, a method [34] is proposed to identify
an optimal set of sub-paths that can be concatenated into a
path. The path’s travel cost is then the sum of the travel costs
of the sub-paths. This method does not support travel cost
distributions, and it assumes independence among sub-paths.

Another study explicitly models turn costs [14], and the
path cost is the sum of costs of edges and the costs of turns.
However, the studymodels turn costs based onmany assump-
tions, e.g., maximum turning speeds, not on real-world traffic
data, and the accuracy of the modeling is unknown. In con-
trast, we do not explicitly model turn costs but use the joint
distributions of paths to capture such hard-to-formalize fac-
tors. Further, the study [14] does not consider time-dependent
and uncertain costs.
Estimating path cost distributions Studies exist that model
the travel cost uncertainty of a path. However, they make
assumptions that do not apply in our setting.

First, some studies assume that travel cost distributions
follow a standard distribution, e.g., a Gaussian distribution.
However, the travel cost distribution of a road segment often
follows an arbitrary distribution, as shown in recent stud-
ies [4,37,38] exemplified in Fig. 1b in Sect. 1 and indicated
in Fig. 14a in Sect. 6. We use multi-dimensional histograms
to represent arbitrary distributions.

Second, some studies assume that the distributions on
different edges are independent of each other [6,24] or
conditionally independent given the arrival times at differ-
ent edges [38], thus mirroring the LB approach covered in
Sect. 6. The independence assumption often does not hold
(cf. Sect. 2), and our approach outperforms LB, as shown in

Table 3 Stochastic routing

Single cost Multiple costs

Time-homogeneous [2,6,20,31] [36]

Time-varying [2,28,35] [5,18,27,38]

Sect. 6. Further, with the exception of one study [38], all the
above studies use synthetic distributions in empirical evalu-
ations; we use large, real trajectory data.

The most advanced method, the HP [20] approach cov-
ered in Sect. 6, does not make the independence assumption.
Rather, it assumes that the travel costs of pairs of adjacent
edges are dependent, but it does not consider dependencies
among multiple edges in a path. We propose a more generic
model that employs joint distributions to fully capture the
dependencies among all the edges in a path. In addition,
we identify distributions from real-world trajectory data and
support time-varying distributions, while the HP approach
employs synthetically generated distributions and does not
support time-varying distributions.

Although two recent studies [19,41] employ histograms to
represent travel cost distributions, they consider travel cost
distributions on individual edges and assume that distribu-
tions are independent.
Stochastic routing Compared to regular routing algori-
thms [10,25] that assume deterministic travel costs, stochas-
tic routing algorithms extend to travel costs that are uncertain.
Given a source, a destination, a departure time, and some
other parameters, e.g., a time budget or a probabilistic thresh-
old, a stochastic routing algorithm identifies a path or a set of
paths whose cost distribution satisfy the conditions specified
by the input parameters.

Different routing algorithms have been proposed to solve
different types of routing problems, e.g., stochastic fastest
routing [24], probabilistic top-k routing [20], stochastic sky-
line routing [38], and non-dominated routing [2]. Table 3
summarizes existing stochastic routing algorithms according
to two aspects: whether they consider multiple travel costs
and whether they consider time-varying uncertainty.

Instead of proposing new types of stochastic routing prob-
lems, this paper presents the PACE paradigm that enables
more accurate and more efficient stochastic routing and
shows how to integrate existing stochastic routing algorithms
seamlessly into PACE to improve both the accuracy and effi-
ciency of these algorithms.

8 Conclusion

This study provides a new and promising paradigm called
PACE, where travel costs are associated not only with road
network edges, but with paths. In PACE, we model joint dis-
tributions that capture the travel cost dependencies among
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paths that form longer paths, which in turn enables accu-
rate travel cost estimation of any path using sparse historical
trajectory data. In addition, we show how existing stochas-
tic routing algorithms can be integrated seamlessly into
PACE, resulting in improved accuracy and efficiency. Empir-
ical studies in realistic settings offer insight into the design
properties of the PACE paradigm and suggest that PACE is
effective and efficient.
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