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Abstract Graphs are widely used to model complex data in
many applications, such as bioinformatics, chemistry, social
networks, pattern recognition. A fundamental and critical
query primitive is to efficiently search similar structures
in a large collection of graphs. This article mainly studies
threshold-based graph similarity search with edit distance
constraints. Existing solutions to the problem utilize fixed-
size overlapping substructures to generate candidates, and
thus become susceptible to large vertex degrees and dis-
tance thresholds. In this article, we present a partition-based
approach to tackle the problem. By dividing data graphs into
variable-size non-overlapping partitions, the edit distance
constraint is converted to a graph containment constraint
for candidate generation. We develop efficient query pro-
cessing algorithms based on the novel paradigm. Moreover,
candidate-pruning techniques and an improved graph edit
distance verification algorithm are developed to boost the
performance. In addition, a cost-aware graph partitioning
method is devised to optimize the index. Extending the
partition-based filtering paradigm, we present a solution to
the top-k graph similarity search problem, where tailored
filtering, look-ahead and computation-sharing strategies are
exploited. Using both public real-life and synthetic datasets,
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extensive experiments demonstrate that our approaches sig-
nificantly outperform the baseline and its alternatives.

Keywords Graph database - Similarity query - Graph edit
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1 Introduction

Recent decades have witnessed a rapid proliferation of data
modeled as graphs, such as biological interactions and busi-
ness processes. As a fundamental and critical query primitive,
graph search, which retrieves the occurrences of a query
structure in a database, is frequently issued in these appli-
cation domains, and hence attracts extensive attention. Due
to the existence of data inconsistency, such as erroneous data
entry, natural noise, and different data representations in dif-
ferent sources, a recent trend is to study similarity queries.
A structure similarity search query finds data graphs from a
graph collection that are similar to a query graph.

Thus far, various similarity or distance measures have been
utilized to quantify the similarity between graphs, e.g., the
measures based on maximum common subgraphs [26], or
missing edges [31]. Among them, graph edit distance (GED)
stands out for its elegant properties: (1) It is a metric appli-
cable to all types of graphs, and (2) it captures precisely the
structural difference (both vertex and edge) between graphs. !
Thus, it finds a wide spectrum of applications of different
domains, including object recognition in computer vision
[3], and molecule analysis in chem-informa-tics [13]. For a
notable example, compound screening in the process of drug
development entails efficient structure similarity searches.

' Anelaborated discussion is provided in Part A of supplementary mate-
rial to this article.
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The structure—activity relationship indicates that the biolog-
ical activity of a compound is usually determined by its
chemical structure. In light of it, for the investigation of a
new chemical compound, chemists may query the existing
massive chemical database with the compound, in order to
find compounds with similar structures.

Driven by these reasons, we investigate structure simi-
larity search with edit distance constraints in this research:
Given a data graph collection and a query, we find all the data
graphs whose GED to the query is within a threshold. How-
ever, the notorious GED computation (NP-hard [29]) poses
serious algorithmic challenges. Therefore, state-of-the-art
solutions are mainly based on a filter—verify strategy, which
first generates a set of promising candidates under a looser
constraint, and then verifies them with the expensive GED
computation. Inspired by the g-gram idea for string similarity
queries, the notions of tree-based g-gram [23] and path-based
g-gram [33] were proposed. Both studies convert the distance
constraint to a count-filtering condition, i.e., arequirement on
the number of common ¢-grams, based on the observation
that if the GED between two graphs is small, the majority
of g-grams in one graph are preserved when transforming
one to the other. Besides ¢g-gram features, star structure [29]
was also proposed, which is exactly the same as tree-based
1-gram. Rather than count common features, a method was
developed to compute the lower and upper bounds of GED
through bipartite matching between the star representations
of two graphs [29]. The method was later equipped with a
two-level index and a cascaded search strategy to find can-
didates [24]. Lately, branch structure was conceived through
shrinking star structures by removing the leaf vertices [34],
and then integrated with several mixed filters.

We summarize the aforementioned work, i.e., tree- and
path-based g-grams, star and branch structures, as fixed-size
overlapping substructure-based approaches, as the adopted
features share two common characteristics: (1) fixed size—
being trees of the same depth (tree-based g-grams and star
structures) or paths of the same length (path-based g-grams)
and overlapping—sharing vertices and/or edges in the orig-
inal graphs such that one edit operation affects multiple
substructures. Thus, these approaches inevitably suffer from
the following drawbacks. (1) They do not take full advantage
of the global topological structure of graphs and the distribu-
tions of data graphs/query workloads, and fixing substructure
size limits its selectivity, being inelastic to databases and
queries. (2) Redundancy exists among features, hence mak-
ing their filtering conditions—all established in a pessimistic
way to evaluate the effect of edit operations—vulne-rable to
large vertex degrees or large distance thresholds. To over-
come the shortcomings, we propose to leverage variable-size
non-overlapping substructures via graph partitioning.

In this research, we present a novel solution following
the filter—verify fashion (cf. Fig. 3), which is inspired by
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pigeonhole principle and instantiated by a refreshing fil-
tering paradigm that divides data graphs into variable-size
non-overlapping partitions. In contrast to fixed-size overlap-
ping substructures, partition-based scheme is less prone to
be affected by vertex degrees and can accommodate larger
distance thresholds in practice with good selectivity, being
adaptive to data and query graphs. This enables us to con-
duct similarity searches on a wider range of applications
with larger thresholds. In case the offline partitioning of data
graphs does not well fit the structural characteristics of the
ever-changing queries, we explore the idea of dynamic par-
tition filtering, and advanced online pruning strategies are
accordingly proposed to reduce candidates. First, enhanced
matching condition via neighborhood completion is enforced
for matching partition with respect to the distance constraint.
Second is to dynamically rearrange partitions to adapt to the
online query by recycling and making use of the information
in mismatching partitions. Furthermore in GED evaluation,
we design a verification method by extending matching
partitions to share the computation between filtering and ver-
ification. Additionally, a cost model is devised to compute
quality partitioning of data graphs for a workload of queries.
Sometimes, it may be difficult to give a numerical distance
threshold to the system, due to lack of an overall image of
the database. One possible solution is to conduct top-k sim-
ilarity searches; that is, to find the most similar k graphs to
the query. However, handling top-k search with a threshold-
based algorithm is rather expensive, since it has to enumerate
the threshold incrementally, and execute the search procedure
for each threshold. In response to this, we propose a top-k
search algorithm with a hierarchical inverted index, which
is among the first attempts of this style. On top of it, tai-
lored pruning and delicate look-ahead strategies are availed
to boost the performance.
Contribution This article is a substantial extension of our
previous work [32]. We have made the following major
updates: (1) In Sect. 4.2, we explore the idea of dynamic
partitioning from a new perspective and propose enhanced
matching condition that can be invoked on any matching
partition under the partition-based filtering scheme. (2) In
Sect. 4.3, we make a more smooth transition between the
idea of recycling mismatching partitions and the algorithm
by providing Theorem 3. It shows the optimization is NP-
hard, and hence, a heuristic algorithm comes for efficient
solution. (3) We introduce the concept of completeness of fil-
tering methods, and show that the proposed filtering methods
satisfy the completeness in Theorems 1, 2 and 4, respec-
tively. An in-depth comparison among the filtering methods
are also presented in Sect. 4.4. (4) In Sect. 5.2, we enhance
the extension-based verification algorithm by removing the
constraint of requiring only one matching partition. While
retaining correctness, the generic version of the algorithm
exhibits higher efficiency in terms of running time. (5) In
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Sect. 7, we extend the partition-based filtering scheme to han-
dle top-k graph similarity search. By level-wise merging the
partition-based inverted index, we put forward an agglomer-
ative index, on top of which a top-k search procedure with
look-ahead and computation-sharing strategies are devised.
(6) For empirical studies in Sect. 8, we conduct additional
experiments on both real-life and synthetic datasets to verify
the new techniques and methods. Moreover, the latest algo-
rithms for graph similarity search and GED computation are
involved for comprehensive evaluation. (7) In Sect. 9, we
update the related work by incorporating some state-of-the-
art research on top-k (sub-)graph exact and similarity search
that has popped up most recently. (8) A brief extension of our
solution to deal with supergraph similarity search queries is
supplied in Part B of supplementary material to this article.

2 Preliminaries
This section provides the background knowledge.
2.1 Problem definition and notations

For ease of exposition, we focus on simple graphs; without
loss of generality, our approaches can be extended to directed
or multigraphs.

A graph g is represented in a triple (V, Eg, [g), where V,
is a set of vertices, E, € V, x V, is a set of edges, and [ is
a labeling function that assigns labels to vertices and edges.
|Vl and |Eg| are the number of vertices and edges in g,
respectively. [, (v) denotes the label of vertex v, and /¢ (u, v)
denotes the label of the edge (u, v). y; is the maximum vertex
degree in g, and J, is the average vertex degree in g.

A graph edit operation is an edit operation to transform
one graph to another [2, 18], including:

insert an isolated labeled vertex into the graph;
delete an isolated labeled vertex from the graph;
change the label of a vertex;

— insert a labeled edge into the graph;

delete a labeled edge from the graph; and
change the label of an edge.

The graph edit distance (GED) between graphs g and
g’, denoted by GED(g, g’), is the minimum number of
edit operations that transform g to g’. The edit operations
required by the transformation are referred as “edit error” in
g’ with respect to g. GED is a metric; nevertheless, comput-
ing GED between two graphs is NP-hard [29]. In this study,
we use GED to capture the similarity between graphs, and
two graphs are similar if their GED is not larger than a dis-
tance threshold t. For brevity, we may use “distance” for
“graph edit distance” when there is no ambiguity.

pP1 P2
C1 CI
‘ /C’; ‘ /C’;
N=0_ | P—s_ |
‘ C ‘ C
C, ¢ C ¢
81 14
N G
[ |
02 _ Ci—N—S
n _C [
0, C3 - Cy
83 q

Fig. 1 Sample data graphs and query graphs

Example 1 In Fig. 1, there is a sample collection of data
graphs G = {g1, g2, g3}, where each graph models a
molecule with vertex labels representing atoms and edges
being chemical bonds. Subscripts are added to vertices with
identical labels in the a single graph for differentiation, while
they correspond to the same atom symbol; for example, C;
and C; both refer to carbon atom. g can be transformed to
g by three edit operations: relabel P to N, delete the edge
between S and C3, and insert an edge between N and C3.
So GED(g2,q) = 3. Additionally, one may verify that
GED(g2,9) < GED(g1,9) < GED(g3,q).

Problem 1 (threshold-based graph similarity search) Given
a data graph collection G, a query graph q, and an edit
distance threshold t, threshold-based similarity search finds
all the data graphs g € G such that GED(g, q) < 7.

Problem 2 (top-k graph similarity search) Given a data
graph collection G, a query graph q, and an integer k, top-k
similarity search finds a subset R C G, such that |R| = k
andV¥g € R, g’ € G\ R, GED(g', q) < GED(g, q).

Example 2 Further to Example 1, assume that one inputs
a query graph g. Threshold-based graph similarity search
(Problem 1) with T = 3 returns graph g» as the answer, as
only GED(g2, 1) < 3; top-k graph similarity search (Prob-
lem 2) with k = 2 returns graphs g, and g; as the answers,
since GED(g3,q) > GED(g1,q) > GED(g2,q).

For ease of reference, we list the major notations in
Table 1. In the sequel, we first present a partition-based solu-
tion to Problem 1 with an inverted index and then extend
to handle Problem 2 with a hierarchical index. We focus on
solving the problems exactly on in-memory settings.

2.2 Prior work on Problem 1

Approaching Problem 1 with sequential scan is extremely
costly, because one has to not only access the whole database
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Table 1 Notations B I‘\‘I . B ﬁ) . /C\ , C )
X X
Symbol Description C 0 C C N C C o) (x2) IL (x2)
g A data graph (a) 1-ATs (Stars)
G A collection of graphs C—N(x2) N=0 0—C(x2) c—cC
A query graph
qQ A :ueri fvofkload (b) Path-based 1-grams
v A single vertex of a graph Fig. 2 Fixed-size substructures of g;
nb(v) The set of neighboring vertices of v
Ve The maximum vertex degree in g
P A partition of a graph T-max(4, 1+ max(yg, vg)),
P, A graph partitioning of g constituted of p’s
p An extended partition of p where y, (resp. y,) is the maximum vertex degree of graph
Ap The extended portion of j g (resp. g), and the condition is also proportional to the max-
seq The revised QISequence of p imum vertex degree. Based on star structures, a two-level
p . .
I ! An inverted index of partitions index and a cascaded search strategy were devised [24].
I The postings list of / for entry p While it is superior to star structure in search strategy, the
/Cl A lookup table from graph identifiers to Boolean basic filtering principle remains the same. Its performance is
P The universe of index partitions dependent on the parameters controlling the index access,
» The set of matchi i whereas choosing appropriate parameter values is by no
m € set oI matching partitions

but also one by one conduct the NP-hard GED computations.
Thus, the state-of-the-art solutions address the problem in a
filter—verify fashion: first generate a set of candidates that
satisfy necessary conditions of the edit distance constraints
and then verify with edit distance computation.

Inspired by the g-gram concept in string similarity queries,
tree-based g-grams [23] were first defined on graphs. For
each vertex v, a k-AT (or a g-gram) is a tree rooted at v with
all vertices reachable in « hops. A count-filtering condition
on the minimum number of common «-AT’s between the data
graph g and query graph g is established as

max(|Vg| — 7 - A(g). V4l =7 Alg)),

where A = 1+ vy - %, y is the maximum vertex

degree of a graph, and « is the a given number of hops. The
lower bound tends to be small, and even below zero if there
is a large-degree vertex in the graph and/or a large distance
threshold, hence rendering it useful only on sparse graphs.
To relieve the issue, path-based g-grams [33] were proposed,
and techniques exploiting both matching and mismatch-
ing g-grams. Nonetheless, the exponential number of paths
imposes a performance concern. Moreover, the inability to
handle large vertex degree and distance threshold is inherited.
A star structure [29] is exactly a 1-gram defined by «-
AT. It employs a disparate philosophy for filtering based on
bipartite matching between star structures of two graphs. Let
SED(g, q) denote the sum of pairwise distances from the
bipartite matching of stars between g and g. A filtering con-
dition is established on the upper bound of SED(g, q)

@ Springer

means an easy task. In addition, verification was not involved
in the evaluation, and thus, the overall performance is not
unveiled.

We summarize the aforementioned solutions as fixed-
size overlapping substructure-based approaches. The major
advantages of them are (1) substructures are easy to generate
and manipulate, e.g., fast equality check, and (2) indexing
space is pre-defined, e.g., trees or paths of fixed sizes. Intu-
itively, fewer candidates are usually associated with more
selective features for filtering. Nevertheless, fixed-size fea-
tures express little global structural information within the
graphs and with respect to the whole database, and thus, fea-
ture selectivity is not well considered. In other words, it is
difficult to balance the selectivities of frequent and infrequent
features to achieve a collective goal on the number of can-
didates. Moreover, they are forced to accept the worst case
assumption that edit operations occur at locations with the
greatest feature coverage, i.e., modifying the most features.
This effect is exacerbated by the overlap among features, and
consequently, they are vulnerable to large vertex degrees and
edit distance thresholds. The example below illustrates the
aforementioned disadvantages.

Example 3 Consider the data graph g; and the query graph
g in Fig. 1. Figure 2a shows the 1-ATs (or stars) of g1, and
in Fig. 2b are its path-based 1-grams. Assume v = 2. The
count-filtering condition is max(6 —2 x 4,6 —2 x 5) =
—2, while they share two 1-ATs. For path-based 1-grams, g
also satisfies the count-filtering condition. For star structures,
bipartite matching on stars of g and g returns SE D(g1, g) as
4, while the allowed SED upper bound is 1-max(4, (1+4)) =
5, and thus cannot prune g;. Therefore, all of them include
g1 as a candidate, whereas GED(g1,q) =4 > 1.
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Lately, there is another appealing method [34] that mixes
the g-gram and mismatching disjoint partitions based ideas.
For g-grams, it designs a branch structure which comprises a
centering vertex and the edges incident to the vertex. Then, a
bipartite matching costis derived as the distance lower bound.
For Example 3, the branch under vertex N can be represented
as (N, {-, -, =}), and the (compact) branch filter produces a
distance lower bound 1.5, less than t = 2. For mismatching
disjoint partitions, it online partitions the query graph, and
accumulates all the mismatches, the number of which is a
distance lower bound. As to Example 3, it gives a distance
lower bound 2, no larger than 7. Furthermore, a hybrid filter
is conceived on the basis of the two lower bounds. Note that
this algorithm can still be roughly categorized into the fixed-
size substructure-based approaches, because (1) branches are
akin to stars, and (2) most of the mismatching partitions are
restricted up to size-3 (e.g., -C- and C-C) in practice. We
make a thorough comparison with the state-of-the-art algo-
rithms in Sect. 8.6.

2.3 Solution overview

In this research, the proposed partition-based solution is
coined as Pars (partition-based similarity search), com-
prising two major components for indexing and query
processing, respectively, as overviewed in Fig. 3. Indexing
is usually done in an offline mode on a collection of data
graphs, which is composed of two steps—data graph parti-
tioning and inverted index construction. When a query comes
for processing, it is handled in two phases—filtering and
verification. For filtering, we first employ the basic partition-
based filtering scheme to obtain a initial set of candidates,
and then dynamic partition filtering scheme is availed to
reduce candidates. The later is explored from two perspec-
tives, namely enhanced matching condition and recycling
mismatching partitions. Surviving candidates are eventually
fed to an extension-based verification, which produces the
final answers.

AQuery Processing}x { Data Indexing }

Basic Partition-based Filtering Data Graph Partitioning
(Algorithm 2) (Algorithms 9 & 10)

{ }

Dynamic Partition Filtering <= = Inverted Index Construction
(Algorithms 4 & 5) (Algorithm 1)

\

Extension-based Verification
(Algorithms 7 & 8)

A J

Fig. 3 Solution overview of Pars

3 A partition-based algorithm

In this section, we propose our partition-based algorithm for
threshold-based structure similarity search, and start with an
overview of the whole solution.

3.1 Partition-based filtering scheme

We illustrate the idea of partition-based filtering by an exam-
ple and formalize the scheme afterward.

Example 4 Consider in Fig. 1 the graphs g; and ¢, and
assume t = 1. g1 is partitioned into non-overlapping p; and
P2, and neither partitions is contained by ¢g. That is, at least
one edit operation for each partition is necessary to transform
g1tog.Thus, GED(g1, gq) is at least 2, and hence, g; cannot
satisfy the query constraint regarding ¢g.

The example shows the possibility of filtering data graphs
by partitioning them and carrying out a containment test
against the query graph. Assume each data graph g is par-
titioned into T + 1 non-overlapping partitions. From the
pigeonhole principle, GE D(g, q) must exceed 7 if none of
the T + 1 partitions is contained by ¢. Before formally pre-
senting the filtering principle, we start with the concept of
half-edge graph for defining data graph partitions.

Definition 1 (Half-edge) A half-edge is an edge with only
one end vertex, denoted by (u, -), where u is the vertex that
the edge is incident to.

Definition 2 (Half-edge graph) A half-edge graph g is a
labeled graph, denoted by a tuple (V,, E,, [;), where Vj is
a set of vertices, E, € V, x V, UV, x {-} comprises a set
of edges and a multiset of half-edges, and /, is a labeling
function that assigns labels to vertices and (half-) edges.

Definition 3 (Half-edge subgraph isomorphism) A half-
edge graph g is subgraph isomorphic to a graph g’, denoted
as g £ g, if there exists an injection f : V; — V, such that

—YueVy, f(u) € Vg Nlg(u) =lg(f());

- VYu,v) € Eg,(fw),f(w) € Eg A lgu,v) =
Ly (f(u), f(v));

- V(u,), (,-) € Eg, Jw, w' e Vo \ f(Vy), (f(w), w) €
Eg A (f),w') € Eg ANlg(u,) = lg(f(u),w) A
Iy, ) =1y (f(v), w), and

o ifu=v,w#w €nb(fu));
o ifu # v, wenb(fu),w enb(f(v)),

where nb(v) is the set of neighbor vertices of v in g.
The major difference between Definition 3 and classic
subgraph isomorphism lies in the third item for mapping half-

edges. The last two conditions ensure that two half-edges of
g do not map to an identical edge of g’.
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Fig. 4 Example of partitioning P —GC3
of g» in Fig. 1 g !
G ¢ G —q
P P

If g C g, we say g is a half-edge subgraph of g’, or
g is half-edge contained by g'. Immediate is that half-edge
subgraph isomorphism test is at least as hard as subgraph
isomorphism test (NP-complete [S5]). We may omit prefix
“half-edge” onward when context is clear.

Definition 4 (Graph partitioning) A partitioning of a graph
g is a division of the elements—vertices V, and edges
E,—into collectively exhaustive and mutually exclusive
non-empty groups with respect to V, and Eg, i.e.,

P(g) ={pi|Vipi=V,UE; ApiNpj =¥, Vi#]j}
where each p; is a half-edge graph, called a partition of g.>

Example 5 Consider graph g» in Fig. 1. Figure 4 depicts one
partitioning P(g2) = { p}, pj,} among many others, where
p} and p), are two half-edge graphs.

In this research, we assume that an edge always exists
with the end vertex that it is incident to; in other words, if
two vertices u and v both are in partition p, the induced
edge (u, v) is also in p. We abuse the notation g \ p to notate
the remaining subgraph of g except p. Furthermore, we call a
partition p amatching partition if p is subgraph isomorphic to
the query graph g, or equivalently, it matches the query graph;
otherwise, p is a mismatching partition, or it mismatches the
query graph.

Next, we state our partition-based filtering principle.

Lemma 1 Considera query graph q and a data graph g with
a partitioning P(g) of T + 1 partitions. f GED(g, q) < T,
at least one of the T + 1 partitions matches q.

Proof We prove by contradiction, and assume that none of
the t + 1 partitions of P(g) is subgraph isomorphic to g.
By the definition of graph edit distance, we need to establish
a one-to-one mapping f* between V, and V, via graph iso-
morphism, in which case every p € P(g) is modified to be
subgraph isomorphic to ¢. Recall that the partitions do not
overlap with each other on any vertex or edge of g. Since
none of p’s are subgraph isomorphic to g, at least one edit
operation is required to transform p to make it contained
by g. Thus, T + 1 edit operations in total are essential to
establishing the isomorphic mapping.

On the other hand, however, GED(g,q) = t’ < t sug-
gests that only 7’ edit operations are indispensable to fulfill

2 A partition can be either connected or disconnected.
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Algorithm 1: Parsindex (G, 7)

Input : G is a collection of data graphs; 7 is an edit distance
threshold.
Output : An inverted index /.
11 <

2 foreach g € G do
3 P, < GraphPartition (g);

4 foreach partition p € P, do
5 | Ip < I,U{g}; /* add to postings list */
6 return /;

the necessary transformation, in which case we can affect at
most T partitions of P(g) with T + 1 — 7/ > 0 partitions
unaffected. This contradicts the assumption that none of the
T + 1 partitions of P(g) is contained by g. O

Corollary 1 Consider a query graph q, a data graph g and
a partitioning P(g) of t + 1 partitions. If GED(g, q) =
1/ <1, at least T + 1 — 1/ partitions match q.

Proof We prove by contradiction, and assume there are only
7 — 7/ partitions matching ¢. In this case, there are t/ + 1
mismatching partitions of g against g. As the partitions are
disjoint, each mismatching partition incurs at least one edit
error. As a consequence, there needs in total at least '+ 1 edit
operations to transform g to g. This implies that the distance
between g and g is at least 7’ + 1, which contradicts with
GED(g,q) < t’. Therefore, the corollary follows. O

Due to Corollary 1, we are able to build an index offline
with a pre-defined tpax, Which works for all thresholds 7 <
Tmax. From now on, we will focus on the T = 1,25 case, and
refer to this as basic partition-based filtering scheme.

3.2 Similarity search framework

In light of Theorem 1, we propose a partition-based similar-
ity search framework Pars for Problem 1. It encompasses
two stages—indexing (Algorithm 1) and query processing
(Algorithm 2). For Algorithm 1 (usually done offline), it
takes as input a graph database G and a distance thresh-
old 7, and constructs an inverted index. For each data graph
g, it first divides g into T 4 1 partitions by calling Graph-
Partition (Line 3, to be introduced in Sect. 6). Then, for
each partition, it inserts the identifier of g into the postings
list of that partition (Line 5). This completes the indexing
stage.

In the online query processing stage, Algorithm 2 receives
a query graph ¢, and probes the inverted index for candi-
date generation. We utilize a map to indicate the states of
data graphs, which can be uninitialized, true or false. At
first, the states are set to uninitialized for all data graphs
(Line 1). Then, for each partition p in the inverted list, it
tests whether p is contained by the query (Line 3). If so,
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Algorithm 2: ParsQuery (¢, 7, I)

Input : g is a query graph; / is an inverted index built on G;
7 is an edit distance threshold.
Output : R={g | GED(g,q) <t1,8€G}.

1 M <« empty lookup table from graph identifier to boolean;
2 foreach p in I do
if Subgraphlsomorphism (p, ¢, ¥) then
foreach g in I, such that M[g] is uninitialized do
if SizeFilter (g, ¢) A LabelFilter (g, ¢) then
| Mlg] « true;

else M[g] < false;

I Y

N

8 foreach g € G such that M[g] = true do
9 | if GEDVerification (g,¢) < v then R < RU{g};

10 return R;

for each data graph with an uninitialized state in the post-
ings list of p, it examines the graph through size filtering
and label filtering. Size filtering tests whether the differ-
ence exceeds T between the data and the query graph in
terms of vertex and edge numbers. Label filtering exam-
ines whether the numbers of vertex and edge relabeling
is more than t, regardless of structures. The states of the
qualified graphs are set to true and become candidates,
while the states of the disqualified are set to false and will
not be tested in the future (Lines 4-7). Finally, candidates
are sent to GEDVerification, and results are returned in R
(Line 9).

To ensure that Algorithm 2 finds all the answers to query
q,we require the filtering method to satisfy the completeness.
We first give a formal definition of completeness of a filtering
method, and then, present Theorem 1.

Definition 5 (Completeness) Given a candidate pair (g, ¢),a
filtering method is complete, provided thatif (g, ¢) is similar,
(g, g) must pass the filter.

Theorem 1 The basic partition-based filtering scheme sat-
isfies the completeness.

Proof Assume the distance threshold is t. Given a similar
graph pair (g, q) of GED(g,q) = t/ < 1. According to
Lemma 1, by dividing g into T + 1 partitions, t” edit opera-
tions affect at most t’ partitions, leaving T + 1 — 7/ partitions
unaffected. Each of the latter matches ¢ and makes g pass the
basic filter. Therefore, the completeness of the basic partition-
based filtering scheme is satisfied. O

3.3 Cost analysis

In the query processing stage, the major concern is the
response time, including filtering and verification time. Let
‘P denote the universe of indexed partitions, each associated

with a list of graphs having the partition. We model the over-
all cost of processing a query by

|P| ts + |Pm| st + |Cq|‘td,

where (1) ¢, is the average running time of a subgraph iso-
morphism test, which is conducted for every partition in P;
(2) t. is the average time of retrieving (and merging) the post-
ings lists of a matching partitions, which is carried out for
|Pp| times, where P, is the set of matching partitions; and
(3) t4 is the average time of a G E D computation, which is
applied for |C,| times in total on the candidate set C,,.

Since the postings lists are usually short due to judicious
graph partitioning (to be discussed in Sect. 6), subgraph iso-
morphism tests and G E D computations play the major roles.
Thanks to recent advances, subgraph isomorphism test can
be done efficiently on small graphs and even large sparse
graphs (with hundreds of distinct labels and up to millions
of vertices) [1,22]. Our empirical study also demonstrates
that subgraph isomorphism test is on average three orders
of magnitude faster than G E D computation. Moreover, f, is
much smaller than #;, and Py, is always a subset of P. There-
fore, we argue that the major factor of the overall cost lies
in GE D computation, i.e., |Cy| - t4, and the key to improve
system response time is to minimize the candidate set C,,.

It has been observed that the filtering performance of
algorithms relying on inclusive logic over inverted index is
determined by the selectivity of indexed features. A match-
ing feature is apt to produce many candidates if its postings
list is long, i.e., it frequently appears in data graphs. Fixed-
size features are generated irrespectively of frequency, and
hence selectivity, while variable-size partitions offer more
flexibility in constructing feature-based inverted index. We
are able to choose the features reflecting the global struc-
tural information within data graphs and whole database, and
obtain statistically more selective features. Further, partition-
based features distinguish from those utilized by existing
approaches in that partitions are non-overlapping. This prop-
erty restricts that an edit operation can affect at most one
feature, and thus, the number of features hit by t edit oper-
ations is drastically reduced. As a result, unlike previous
approaches, partition-based algorithms suffer little from the
drawback of loose lower bounds when handling large thresh-
olds and data and/or query graphs with large-degree vertices.

Before delving into the details of graph partitioning algo-
rithms (Sect. 6), we first exploit two further optimizations to
reduce candidates on top of the basic partition-based filter-
ing scheme (Sect. 4), and also discuss efficient verification
of candidates (Sect. 5).

3 For example, a partition contained by the query for Pars, or a g-gram
appearing in the query’s g-gram multiset for «-AT.
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4 Dynamic partition filtering

We start with an illustrating example.

Example 6 Consider in Fig. 1 the data graph g> and query
g, and T = 1. Assume we have partitioned g to pj and p)
as in Fig. 4. p| is not contained by ¢ but p), is, making g, a
candidate. However, if we adjust the partitioning by moving
vertex S from pj to pj, neither partitions will be contained
by ¢, hence disqualifying g, being a candidate.

This example evidences the chance of adjusting the parti-
tions according to an online query so that the pruning power
of partition-based filtering is enhanced. In light of it, this sec-
tion conceives a novel filtering technique, namely, dynamic
partition filtering scheme, to exploit the observation. We con-
cretize the idea from two different perspectives—enhanced
matching condition and mismatching partition recycle, and
integrate them into the tests of data graph partitions. In
essence, the former is lightweight with certain restriction,
while the latter is generic and widely applicable.

Next, we first adapt a graph encoding technique for effi-
cient half-edge subgraph isomorphism test, based on which
dynamic partition filtering will be presented.

4.1 Half-edge subgraph isomorphism test

QlSequence [20] is a graph encoding technique originally
proposed for efficient (non-half-edge) subgraph isomor-
phism test. We adapt and extend it to support half-edges and
disconnected cases. The revised QlSequence of a partition
p is a regular expression [[v,-e;kj]‘vﬂ], which consists of con-
stants, which denotes sets of vertices and edges, and operator
symbols, which denote operations over these sets. When p
is connected, seq,, is encoded based on a spanning tree of p.
For constants, v; is the ith vertex in the order of the spanning
tree; for all i > j, e;; encodes

— sEdge—the spanning edge between v; and v; in the
spanning tree;

— bEdge—the backward edges between v; and v; in p but
not in the spanning tree; and

— hEdge—the half-edges incident to v;.

For operator symbols, a Kleene star e;kj denotes the smallest
superset of ¢;;, and a concatenation vie?‘j denotes the set
of constants can be obtained by concatenating v; and some
e;;’s; a exponentiation with a positive integer exponent |V, |
denotes repeated concatenation of the base set of constants by
|Vp| times. For disconnected case with multiple connected
components, sequences are generated for each component
and then concatenated as QlSequence.

To generate the QlSequence of p, we start at the root of
a spanning tree of p, and vertices of p are appended in the
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Algorithm 3: BasicSubgraphlso (p, ¢, F)
Input

: p is a partition; ¢ is a query graph; F is a mapping
vector.
Output : A boolean indicating whether p C g.

1 if |F| = |V,| then return true ;

2 v < next vertex in seq;

3 U < {u | u € FindCandidate(v, seq,, ¢, F)};

4 foreach u € U do

5 F «—~FU{v—>ul;

6 L if BasicSubgraphlso (p, ¢, F’) then return true ;

7 return false;

order of spanning tree traversal, each time a spanning edge
with (possible) backward edges and half-edges.

Example 7 Consider the partition p} in Fig. 4. Based on a
spanning tree rooted at P, the sequence seq »| of pj is shown
intheleft of Fig. 5, where solid lines represent spanning edges
and half-edges (without the other end vertex), and dashed
lines represent backward edges.

Algorithm 3 tests whether a partition p is subgraph iso-
morphic to the query ¢. It maps the vertices of p one after
another, following the order of the QlSequence of p to find
a vertex mapping F from p to ¢ via a depth-first search. For
the current vertex v of p, if seq,[v] is the first term with
sEdge = nil, it finds candidate vertices from all unmapped
vertices in ¢; otherwise, it utilizes seq,[v].SEdge to shrink
the search space. Candidate vertices are further checked
by label (/,(v)), backward edge (seq,[v].bEdge) and half-
edge (seqp[v].hEdge) constraints successively. These are
realized by FindCandidate (Line 3), which discovers valid
candidate mappings of v in g by comparing vertex label and
associated edges regarding the threshold. Then, we map v
to one of the qualified vertices, and proceed with the next
vertex. We call F a partial mapping if |F| < |V,], or a
full mapping if |F| = |V,|. If the current mapping cannot
be extended to a full mapping, it backtracks to the prece-
dent vertex in QlSequence, and tries another mapping. The
algorithm terminates when a full mapping is found, indicat-
ing p is subgraph isomorphic to g; or it fails to find any full
mapping.

Complexity analysis It can be verified that if there exits a
half-edge subgraph isomorphism from p to g, Algorithm 3

\
S —Cs
[seq ] ‘ [seqp ]
G
—C
Ci

Fig. 5 Example of QlSequences (solid lines—spanning and half-
edges; dashed lines—backward edges)
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must find it. The worst case time complexity remains the
. . . . v,
same as classic subgraph isomorphism test, i.e., 0()/[1| P |).

4.2 Enhancing matching condition

Recall in Algorithm 2 that once a partition matches, the cor-
responding data graphs become candidates; only when none
of partitions over a data graph match, the data graph will
be pruned. As a consequence, we seek every opportunity to
reduce the chance of matching partitions for fewer candi-
dates. The following example manifests the possibility by
taking into consideration the missing end vertices as well as
their incident edges of matching partitions.

Example 8 Consider the graphs g and g in Fig. 6,and 7 = 2.
g is partitioned into 3 half-edge graphs: C; —N, > C, —C3—,
and O — Cy4; g is partitioned into 3 half-edge graphs: C; =
0,>C 5 — C3—, and C4 — C1. Let p (in red) denote the
second partition of g. p finds an isomorphism F (in blue)
in g according to Algorithm 3, hence making g a candidate.
Next, we try to expand p by growing end vertices Cq, N and
0. If we investigate the (vertex-) induced subgraph p, and
its counterpart in g (circled by dashed lines), it takes 3 edit
operations to make them identical, which is greater than t.
This portends that F is invalid with respect to . As there
are no other isomorphisms from p to ¢, p should not match
q. Further, it is also the case for the other two partitions, and
thus, (g, ¢) is determined to be dissimilar.

The example depicts the scenario that even if a partition
finds an isomorphism in the query graph, the mapping may be
invalid, and we can disqualify the “matching” partition (after
testing all isomorphic mappings) and carry on to examine
other partitions. In this connection, we propose enhanced
matching condition that limits the location of a partition in
the query graph, and if all the mappings of the partition are
determined to be invalid, it cannot match the query graph.
This procedure eventually reduces the chance for a data graph
to be a candidate. Following formally defines the concept of
extended partition.

Definition 6 (Extended partition) Given a half-edge sub-
graph p of graph g, the extended partition of p, denoted
by p, is constructed by following steps:

(1) for each half-edge, grow the corresponding end vertex by
Ve \ Vp, and include it in Vp;

I
, 0

ONC PP .
72 NN

2 N
C—C -G -0-C

Fig. 6 Example of enhanced matching condition

(2) for each half-edge, remove it from E,, and add the cor-
responding (normal) edge containing it into E »p; and

(3) for each vertex in V4, restore the induced edges involv-
ingitin Eg \ E), if any, and include them in E5p.

An extended partition p is a graph such that V; =V, U
Vap and Ej = E, U Epp. It can be seen that only steps
(1) and (3) add elements to p. The basic idea of enhanced
matching condition via extended partitions is to increase the
chance of disqualifying a “matching” partition, and a data
graph eventually, by limiting the location of p in ¢ leveraging
Ap. That is, based on a given mapping F : p — ¢, we are
to find the mapping from p to ¢ incurring the minimum edit
errors, and if this number exceeds t, F is invalid.

Nonetheless, it brings to our attention that there exists a
combinatorial optimization; in other terms, although F is
given and fixed, to find the best mappings for Ap is a non-
trivial task, if there are multiple vertices in V 5), to map and
settle. For the sake of elegant online performance, we resort
to a lower bound of the minimum number of edit errors by
utilizing the 1-hop neighborhoods of the vertices in V.
Particularly, for each vertex v € V,p, we select a mapping
candidate from the unused vertex set V,; \ V.z(p,) such that the
connections to vertices in V}, matches. This is required by the
isomorphism F. Then, the number of mismatches on vertex
label and connections to vertices in V) is logged. Among
all possible mapping candidates, the minimum number of
mismatches is kept to surrogate the number of edit errors
at v. Adding together for all vertices in V5, provides an
estimation of real number of minimum edit errors. Since the
mapping procedure does not consider the combination of the
mapping candidates of V 5,, the solution may not be globally
feasible, and thus, renders a lower bound.

The aforementioned estimation provides the first portion
of the overall filtering condition for pruning. Besides, we
also take into account in enhanced matching condition the
possible edit errors incurred by comparing the induced sub-
graph of F(p) with p. Recall that when matching p to g by
Algorithm 3, we only examine the elements of p, in order
to establish a subgraph isomorphism. Nevertheless, our ulti-
mate goal is to find a transformation from g to ¢ conforming
the constraint based on graph isomorphism. The procedure
of matching p to g overlooks the potential mismatches in ¢
compared with p. Thus, we integrate the check of such mis-
matches, which together with the first portion makes up the
final condition, as detailed in Algorithm 4.

Algorithm 4 takes as input a partition p, a query graph ¢,
as well as a subgraph isomorphic mapping F : p — ¢, and
determines whether F is valid according to enhanced match-
ing condition. Specifically, we first construct the extended
partition of p, and initialize a variable ¢ to 0, which accumu-
lates and estimates the total number of edit errors (Lines 1
and 2). Then, we compute an estimation of edit errors to
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Algorithm 4: EnhancedMatching (p, ¢, F)
Input

: p is a partition; ¢ is a query graph; F is a mapping
vector.
Output : A boolean indicating whether  is valid regarding 7.
construct the extended partition p of p;
e« 0; /* aggregate edit errors */
foreach vertex v € V,, do
p<—T+1;
foreach vertex u € V,; \ Vx(,) do
if all edges (v, v') € E, matches (u, 7(v')) then
if [;(v) =1;(u) theno < Oelse o < 1;
foreach edge (v, v') € E,p do
if 3(u, u’) such that
u' e Vo \ Vep) Al (v, V) = ly(u, u’) then
10 L o <«—o+1;

e ® N A R W N =

1 if o < pthen p < o;

12 | if p < 7 thene < ¢+ p else return false;

13 if ¢ > 7 then return false;

14 foreach vertex u € V() as per order in F do

15 foreach edge (u, u") such that u’ is ahead of u in F do
6 | | i (F @), FTNW) ¢ Epthen & < e+ 1;

17 return ¢ < 1;

match p to g, by selecting for each newly grown vertex
in V4p an unmapped vertex of ¢ satisfying the mapping
constraint. Foremost, the vertex has to fulfill the mapping
constraints imposed by F; otherwise, it cannot make a can-
didate (Line 6). Afterward, we examine the vertex labels
and neighborhoods to lower bound the number of edit errors
at this vertex, where only the minimum value is kept in p
among all choices (Lines 7-11). If p is no more than t, it
is aggregated to ¢; otherwise, the current vertex cannot find
a counterpart conforming 7, and the mapping is immedi-
ately determined to be invalid (Line 12). Estimations for all
vertices are then aggregated to &, and compared with 7. If
F survives through the first phase, we proceed to the second
phase—to test the induced edges by F (p) against p, in which
each mismatch contributes 1 edit error to & (Lines 14-16).
That is, if there is an edge (u, u’) in the induced subgraph of
F(p) buthaving no counterpart (F~' (1), F~'(u')), it neces-
sitates an edit operation. Again, all errors are aggregated to
the existing &, and compared with 7. If ¢ is not larger than
7, F is valid by enhanced matching condition; otherwise, it
is determined to be invalid.

Complexity analysis In the first phase, there are at most | £, |
newly grown vertices when all edges in p are half-edges.
For each vertex, it computes the number of edit errors by
exploring and comparing the neighborhoods of |V, | candi-
date vertices, each in O (y,) time. Thus, the time complexity
of the first phase is O(yg|Ep||Vy]). Similarly, the second
phase takes O (y;|Vpl). In short, checking enhanced match-
ing condition by Algorithm 4 isin O (Y4 |Ep|| Vgl + v4 V).
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Lemma 2 Consider a matching partition p of a data graph
g to a query graph q via mapping F, and ¢ as derived by
Algorithm 4. If F is a valid mapping regarding distance con-
straint T, e < 1.

Proof Denote by ¢ the minimum number of edit operations
to transform the extended partition to an induced subgraph
of ¢ after fixing F, which is expected by the transformation
between g and ¢. If F is valid, based on which g finds a fea-
sible transformation to ¢, { must be no larger than t. Hence,
it is left to show that the derived ¢ is a lower bound of ¢.

¢ is constituted of two portions—the first portion comes
from the mismatches when mapping the extended part of p,
and the second portion counts the overlooked mismatches
on F when matching p against g. For the first portion, the
neighborhood of every extended vertex in Ap is examined,
and the estimation is made by matching it to an arbitrary
vertex that is not used by F(p). In the optimal case, such
choice cannot be arbitrary, and combinations of the candidate
vertices need to be explored in order to determine the optimal
edit cost. Thus, summing up the individual edit errors never
overestimates the optimal cost. As to the second portion, it
is the exact cost for the induced edges that are not currently
included in F (p), which were not considered when matching
p against g but need to be handled when transforming g to
q. Consequently, the two portions together provides a lower
bound of ¢, and thus the lemma is proved. O

Through the proof of Lemma 2, we see that although F
is not a valid mapping, p may still match ¢ under other
mappings, based on which g finds a transformation to g con-
forming 7. Thus, we need to test all possible mappings of p in
q. To integrate enhanced matching condition in the half-edge
subgraph isomorphism test, we replace Line 6 of Algorithm 3
with “if BasicSubgraphlso (p, ¢, F) A EnhancedMatch-
ing (p, g, F) then”. That is, Algorithm 4 is only called
when a subgraph isomorphism is established, which further
examines whether F is valid regarding 7, while the overall
algorithm framework remains intact.

Theorem 2 The partition-based filtering method with
enhanced matching condition satisfies the completeness.

Proof Consider a similar graph pair (g,q) with a given
partitioning P(g). By Theorem 1, there exists at least one
matching partition from P (g) such that p of g matches g via
subgraph isomorphic mapping F; moreover, it requires no
more than t edit operations to transform g \ g to g \ F(p).
In this case with F fixed, the number of edit errors when
matching the extended partition of p to the (induced) sub-
graph F (p) should not be over t, and hence, it will meet the
constraint of enhanced matching condition. In other terms, p
is a matching partition under enhanced matching condition.
Hence, (g, ¢) will be identified as a candidate, and thus the
completeness of the filtering method is satisfied. O
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4.3 Recycling mismatching partitions

While enhanced matching condition exerts a stricter con-
straint on matching partitions, looking from a different
perspective this subsection exploits mismatching partitions.

We call |F|, the cardinality of a (partial) mapping from
p to g, the depth of the mapping F. Among all the map-
pings explored by the algorithm, there is a mismatching depth
d, which equal the minimum of all |F|’s. A full mapping
is found if and only if d equals |V |. Contrarily, if no full
mapping is found, it identifies the vertices that make p not
contained by ¢, which are not included in the partial mapping
yielding d. In other words, we could have allocated fewer ver-
tices to p, and save this extra portion for other partitions, in
which way we hope to make the full use of mismatching par-
titions. In the sequel, we show how to recycle these vertices
and start with an example.

Example 9 Further to Example 6 and Example 7, we first
conduct subgraph isomorphism test for p| against ¢, and no
mapping is found for the first vertex P. Thus, d = 0 for p].
Next, we test p), against ¢, and a full mapping is found from
the original p} to ¢.In this case, if we recycled the unexplored
vertices S, C1, Cp as well as incident edges, we could append
them to p5, and hence, the QlSequence of p) becomes as
in the right of Fig. 7. The new p), is not contained by ¢, and
consequently, g> is no longer a candidate.

The principle of dynamic partition filtering is to leverage
the mismatching partition and to dynamically add “unused”
vertices and edges to a matching partition. Intuitively, the
less we use for the current partition, the more we save for the
remaining partitions. To save the maximum for the remaining
partitions, we formulate the following problem.

Problem 3 (minimum mismatching depth) Given a partition
p and query graph q, find the minimum mismatching depth
dmin such that pg... Z q, where pq, .. is a vertex-induced
subgraph of p induced by the first dmin vertices of V), as per
a partial order O, dpmin € [0, |V,| — 1].

Theorem 3 Problem 3 is NP-hard.

Proof We consider the decision version of Problem 3, which
is stated as follows: Given a partition p and query graph g, is

[seqp ] P Cy  [seqy)]

Fig. 7 Example of recycling (solid lines—spanning and half-edges;
dashed lines—backward edges)

there a mapping F with mismatching depth no larger than d.
A special case of the decision problem is when d = |F| —1,
which is simply the subgraph isomorphism test that is proved
to be NP-complete. Therefore, the decision problem is at
least as hard as subgraph isomorphism test, and therefore the
theorem follows. O

Having seen the NP-hardness, we present a heuristic
method to avoid the high complexity at online query pro-
cessing. Algorithm 5 implements the subgraph isomorphism
test equipped with mismatching partition recycle. d is used
to log the mismatching depth, which is initialized to O in the
first call. If the algorithm returns false in the outmost call, d
advises that the subgraph induced by the first d + 1 vertices
is enough to prevent this partition from matching. As a by-
product of the subgraph isomorphism test for future use, for
every data graph g having p as its partition, we respectively
recycle the vertices v; € seq P> i > d+ 1, as well as their
incident edges.

The recycled vertices and edges are utilized once the sub-

graph isomorphism test invoked by Line 3 of Algorithm 2
returns true. In particular, for each data graph g in p’s post-
ings list, we append g’s recycled vertices and edges to p and
perform another subgraph isomorphism test. Only if the new
partition is contained by ¢ does g become a candidate to be
verified by GED computation. Note that if the new subgraph
isomorphism test fails, the vertices and edges beyond d + 1
can be recycled again.
Complexity analysis It can be verified that Algorithm 5 cor-
rectly computes the containment between p and ¢, as well
as the mismatching depth d. In addition to the isomorphism
test, constant time is required to collect the unused subgraph
of p by copying and following the QISequence.

Theorem 4 The partition-based filtering method with mis-
matching partition recycle satisfies the completeness.

Algorithm 5: RecyclingSubgraphlso (p, ¢, F)
Input

: p is a partition; ¢ is a query graph; F is a mapping
vector.
Output : A boolean indicating whether p C g.

1ifd < |F|then d < |F|;

2 if |F| = |V, | then return true ;

3 v < next vertex in seqp;

4 U < {u | u € FindCandidate(v, seq,, q, F)};

5 foreach u € U do

6 F <~ FU{v—>ul;

7 if RecyclingSubgraphlso (p, g, F') then return true ;

8 if this is the outmost call then

9 foreach g in 7, such that M[g] is not initialized do

10 foreach v; € seq,,i >d+1do

11 L L add v; and its incident edges in g into A}

12 return false;
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Proof Without loss of generality, we assume that given a par-
titioning of a graph g P = { p1, p2, ..., Pr+1 }, the dynamic
partitioning adjusts p; and p; to p/ and p}, respectively. That
is, only partial py is used for filtering, and p; \ p] is recycled,
which makes p into p}, while the remaining partitions are
not affected. It can be seen that P’ = { p{, p}, ..., pry1}is
also a partitioning of g. Then, based on Lemma 1, P’ can be
also used for partition-based filtering without incurring false
negatives. Consequently, the repartitioning does not affect
the completeness.

In the general case where a succession of adjustments
is involved, by using the aforementioned procedure for
induction, the final partitioning does not impact on the com-
pleteness either. Therefore, the theorem is proved. O

4.4 Comparing filtering methods

We remark to compare the proposed filtering methods in
this section with the basic partition-based filtering scheme.
In essence, the basic partition-based filtering scheme takes
advantage of a given partitioning of data graph. Nonethe-
less, the two advanced filtering methods share one common
point—adjust the partitioning of a data graph. Enhanced
matching condition exploits the neighborhood proximity of
a partition to improve its selectivity. However, such modifi-
cation is only logically, which does not affect the remaining
partitions actually. On the contrary, mismatching partition
recycle saves unused vertices and edges, and dispatches them
on demand in future. Thus, it does make a new partitioning
by moving the recycled elements to other partitions.

Ascribable to the intrinsic disparity, the filtering con-
straints of the two methods vary—enhanced matching con-
dition allows the extended partitions to match within a
relaxation of T, while mismatching partition recycle requires
the extended partition have an exact match. This is rational,
because the latter strictly enforces the principle of partition-
based filtering that each vertex and edge is in only one
partition. In the former case, however, the expanded vertices
and edges are tested at least twice—respectively, in Ap for
enhanced matching condition checking and in p’ for basic
partition-based filtering. It is hence beyond the applicable
scope of the partition-based filtering principle. Therefore, to
ensure enhanced matching condition does not admit false
negatives, it has to relax the constraint rather than require an
exact match of extended partitions.

5 Verification

In this section, we first review a state-of-the-art GED verifi-
cation algorithm, followed by speedup over it.
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5.1 GED Verification

The most widely used algorithm to compute GED is based
on A* [17], which explores all possible vertex mappings
between graphs in a best-first search fashion. It maintains
a priority queue of states, each representing a partial vertex
mapping F of the graphs associated with a priority via a
function f(F). f(F) is the sum of: (1) g(F), the distance
between the partial graphs regarding the current mapping;
and (2) h(F), the distance estimated from the current to the
goal—a state with all the vertices mapped. In unweighted
graphs, h(F) equals the numbers of vertex and edge relabel-
ing between the remaining parts of g and g.

We encapsulate the details in Algorithm 6. It takes as input
a data graph, a query graph and a distance threshold, and
returns the edit distance if GED(g, ¢) < t, or T + 1 other-
wise. First, it arranges the vertices of g in an order O (Line 1),
e.g., ascending order of vertex identifers [17]. The mapping
F is initialized empty and inserted in a priority queue Q
(Line 2). Next, it goes through an iterative mapping exten-
sion procedure till (1) all vertices of g are mapped with an edit
distance no more than 7 (Line 6); or (2) the queue is empty,
meaning the edit distance exceeds 7 (Line 13). In each itera-
tion, it retrieves the mapping with the minimum f(F) in the
queue (Line 5). Then, it tries to map the next unmapped ver-
tex of g as per O (Line 7), to either an unmapped vertex of g,
or a dummy vertex to indicate a vertex deletion. Thereupon,
a new mapping state is composed, and evaluated by EXxist-
ingDistance and EstimateDistance to calculate the values
of g(F) and h(F), respectively. ExistingDistance carefully
checks how many edit error there are between the subgraph
of g induced by vertices already in F and its counterpart
of ¢. EstimateDistance gives a lower bound of potential
edit errors that will be incurred by matching the remaining
graphs. g(F) and h(F) together makes f(F), an estimation

Algorithm 6: GEDVerification (g, q)

Input : g isadata graph; ¢ is a query graph.

Output : GED(g, q),if GED(g, q) < t;or 7 + 1, otherwise.
1 O <« order the vertices of g;
2 F <« ¥,0 <« 0
3 Q.push(F);
4 while Q # ¢ do
5 | F < Q.pop();
6
7
8

if | F| = |V,| then return g(F) ;

u < next unmapped vertex in V; as per O;
foreach v € V, such that v ¢ 7 and

|deg(u) — deg(v)| < T or a dummy vertex do

9 F <« FU{u—v};

10 g(F) < ExistingDistance(F);

11 h(F) < EstimateDistance(F);

12 if f(F)=g(F)+ h(F) <t then Q.push(F);

13 return t + 1;
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of overall edit distance that never exceeds the real value, and
only if f(F) < t is the state inserted into the queue (Lines
9-12).

Definition 7 (Correctness) Given a candidate pair (g, g), a
verification algorithm is correct, provided it satisfies (1) if
(g, q) passes the algorithm, (g, g) must be a similar pair,
and (2) if (g, q) is a similar pair, it must pass the algorithm.

While it is straightforward to verify that Algorithm 6 sat-
isfies the correctness, the search space of the algorithm is
exponential in the number of vertices. More importantly, it
overlooks the option of leveraging the matching partitions
obtained from candidate generation. In other words, there
are opportunities to reuse the computation for matching par-
titions to speed up the verification. Next, we present our
improvement by sharing computation between dynamic par-
tition filtering and candidate verification.

5.2 Extending matching partition

Recall Algorithm 2 admits a list of graphs as candidates if
the corresponding partition of the postings list is contained
by the query via subgraph isomorphism test. As each g in
the list shares with ¢ a common subgraph, i.e., the match-
ing partition, we can use this common part as the starting
point to verify the pair. Based on this intuition, we devise a
verification algorithm by extending the matching partitions.

The basic idea of the extension-based verification tech-
nique is to fix the existing mapping F between the matching
partition p and g from the subgraph isomorphism test in the
filtering phase, and further match the remaining subgraph
g \ p with g \ F(p) using Algorithm 6 in the verification
phase. In order not to miss real results, if ¢ has multiple
matching partitions, we need to run such procedure multiple
times, each starting with a mapping from p to g, where p is
a matching partition surviving the filters.

Example 10 Consider the data graph g with its two partitions
and a query graph g shown in Fig. 8, and t = 1. The partition
-C-0; is contained by ¢ via a mapping to either -C-0y or
—-C-0,. To carry out the extension-based verification, assume
the first mapping is to —~C-01, and then we try to match N
and O; in succession. After it fails to find a mapping with
GED within t, we proceed with the next mapping -C-03,
which is invalid either. Eventually, we can verify g is not an
answer since GED(g, q) > 2.

Algorithm 7 outlines the extension-based verification. It
takes as input a data graph g, a query ¢, a set of matching
partitions P from the filtering phase, and the vertex map-
ping F obtained via subgraph isomorphism test. Then, it
enumerates all possible mappings of p in ¢, and computes
GED starting with the mapping. If a distance in Line 4 is
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Fig. 8 Example of extension-based verification

no larger than t, it confirms that there is a valid mapping
such that using no more than 7 edit operations can transform
g to gq; otherwise, it proceeds with the next mapping until
all mappings are attempted. In each verification, we make
minor changes according to Algorithm 8, and let it take as
input a mapping F, either retrieved from the filtering phase
in Line 2 of Algorithm 7 or enumerated in Line 6 of Algo-
rithm 7. In particular, g (F) and 4 (F) are computed first, and
JF 1is inserted as the initial state into the priority queue, if
f(F) does not exceed the threshold. Hence, the remaining
unmapped vertices of g, i.e., V; \ V,,, are given an order and
processed according the classic A* algorithm. Since the ver-
tices in V, \ V), remain unchanged for a matching partition
p, the order is cached during various mappings of p. After
testing all matching partitions p € P, in which all subgraph
isomorphic mappings from p to ¢ are tried, it comes to the
conclusion of false indicating GED(g, q) > t.
Complexity analysis During verification, we need to estab-
lish a mapping for each vertex v of ¢, where in each step, v
finds a match, which can be any vertex of g or null, and edge
correspondence also needs to be checked. In all, the worst
case complexity is O ((|Vy| - (|Vg| + | Eg| + yg))WA"), which
is identical to that of Algorithm 6.

We remark that the empirical number of search states of
our solution is usually much smaller than that of the classic
A* algorithm (to be experimentally verified in Sect. 8.3).
By fixing the matching partition p to F(p), we only match

Algorithm 7: ExtensionBasedDist (g, ¢, P)

1 foreach matching partition p € P do
F <« mapping of p from filtering phase;
while 7 # (f do
distance < GEDVerification(g, g, F);
if distance < t then return true ;
else 7 < EnumerateNextMap(p, ¢);

= 7 IR N

7 return false;

Algorithm 8: Replacement of Lines 2 and 3 of Algo-

rithm 6

1 g(F) < ExistingDistance(F) ; /* F is a subgraph
isomorphic mapping of p in g */

2 h(F) < EstimateDistance(F);

3 if f(F) = g(F) + h(F) < t then

4 L O <« order the vertices in Vg \ V), ;

5 Q.push(F);

/* cached */
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an unmapped vertex in g \ p to a vertex in g \ F(p); if
p has more embeddings in ¢, the cost of locating multiple
embeddings is also much smaller via subgraph isomorphism.
In our implementation, instead of collecting all the matching
partitions in P, we conduct verification (Lines 3-5) of g
against ¢ once we find a matching partition that passes the
dynamic partition filtering. If it returns true, g is an answer
and excluded from future computation; otherwise, it resumes
the index probing and filtering. By doing this, if we encounter
an index entry with empty inverted list, we skip directly to the
next one. Therefore, the extension-based solution not only
shrinks the search space, but also shares the computation
between the filtering and the verification phases.

Theorem S The extension-based verification satisfies the
correctness.

Proof Itis can be seen that if g is not an answer with respect
to g, there does not exist a mapping between g and ¢ in any
case, and thus, the verification procedure returns false.

If the extension-based verification returns true, it means
that there exists at least one mapping F between g and g such
that using no more than t, say 6, edit operations can transform
g to g based on F. It may be or may not be the optimal
mapping, but we are assured that GED(g,q) <6 < t.In
other words, g is an answer in this case, though F may not
be the one yielding the minimum number of edit operations,
or equally, the algorithm may not provide the real GED. 0O

5.3 Completeness and correctness

All the proposed techniques constitute our advanced Pars
algorithm for threshold-based similarity search. We show the
completeness and correctness of the algorithm.

Theorem 6 The proposed algorithm Pars satisfies

e Completeness: given any similar pair (g, q), our algo-
rithm must find it as an answer;

e Correctness: a pair (g, q) found by our algorithm must
be a similar pair.

Proof We first prove completeness. Based on Theorems 1, 2
and 4, given a similar pair (g, ¢g), the basic partition-based
filtering and dynamic partition filtering schemes must find
this pair as a candidate pair. Based on Theorem 5, (g, ¢) can
pass our extension-based verification. Thus, it must be iden-
tified and added to the answer set, and hence, the algorithm
satisfies the completeness.

Next, we show correctness. Guaranteed by Theorem 5, any
pair having passed our extension-based verification must be
a similar pair conforming the distance constraint. Therefore,
our algorithm satisfies the correctness. O
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6 Cost-aware graph partition

In this section, we propose a cost model to analyze the effect
of graph partitioning on query processing, based on which a
practical partitioning algorithm is devised.

6.1 Effect of graph partitioning

Recall Algorithm 2. It tests subgraph isomorphism from each
indexed partition p to the query graph ¢. Ignoring the effect
of size filtering, label filtering and dynamic partition filtering,
graphs in the postings list of p are included as candidates,
if p T g. Therefore, the candidate set C;, = U,{ D, | p C
q, p<€ P}, where D, ={g| pE g, g €G}. Incorporat-
ing a binary integer ¢, to indicate whether p C g, we rewrite
the candidate number as

ICyl =Y ¢p-lpl, peP,
p

where [, is the postings list of p. Suppose there is a query

workload @, and denote ¢, as the probability that p C

g, q € Qsie, ¢p = Hq\pgquAlqEQ}l

ber of candidates of a query g € Q is

. The expected num-

ICql =) ¢p-IIpl, peP.
P

Since the postings lists are composed of data graph identi-
fiers, we rewrite it using a binary integer variable né’ ,

IC =YY ¢p -7l . peP. g€,
8 P

where nf is 1 if p is one of g’s partitions, and O otherwise.
We interpret the expected candidate number as a com-
modity contributed by all data graphs. As g is partitioned
into T 4 1 partitions P = { p; },i € [1, T + 1], the expected
number of contributed candidates from a data graph g is

T+1

GGEcp =) ¢p |Gl (1)
i=1

In light of this, we observe that data graphs are mutually
independent for minimizing candidates from a partition-
based index. Immediate is that

ICql=) T g €G.
8

Example 11 Considerin Fig. 9 data graph g to be partitioned,
the three graphs below as Q = {g1,g2,¢83},andt = 1. A
partitioning P(g) is presented besides g. Testing p; against
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Fig. 9 Effect of different partitionings

O confirms that no graph in Q contains py, and thus ¢, = 0;
similarly, ¢, = 0. cp = (¢p, + ¢p,) - |G| = 0. Moving
vertex O1 from py to pa yields P' = { p}, p5}.cpr = (Pp +
qbp/z) |G| = 3/3+0) - |G| = |G|. P is better than P’ in
terms of Equation (1). In fact, it can be verified that P is one
of the best partitionings of g regarding Q.

In case that a historical query workload is not available, we
may, as an alternative, sample a portion of the database to act
as a surrogate of Q. To this end, a sample ratio p is introduced
to control the sample size |Q| = p - |G|. We extract graphs
from the database as queries in our experimental evaluation.
Thus, we adopt this option so that the index is built to work
well with these queries. We also investigate how p influences
the performance (Sect. 8.5).

Now, we are able to minimize the total number of candi-
dates by minimizing the candidate number from each data
graph. We will show our solution in the sequel.

6.2 A practical partitioning algorithm

We formulate the graph partitioning of index construction as
an optimization problem.

Problem 4 (minimum graph partitioning) Given a data
graph g and a distance threshold t, partition the graph into
T + 1 subgraphs such that Equation (1) is minimized.

As expected, even for a trivial cost function, e.g., the
average number of vertices of the partitions, the above opti-
mization problem is NP-hard.* Seeing the difficulty of the
problem, we propose a practical algorithm as a remedy to
select a good partitioning: first randomly generate a parti-
tioning of the data graph and then refine it.

4 The special case of T = 1 is polynomially reducible from the par-
tition problem that decides whether a given multiset of numbers can
be partitioned into two subsets such that the sums of elements in both
subsets are equal, and thus, is NP-hard.

Algorithm 9: RandomPartition (g, 7)

Input : g isadata graph; 7 is an edit distance threshold.
Output : A graph partitioning P, initialized as §.

1 M < empty map from vertex identifier to boolean ;
/* whether a vertex has been considered */

2 fori e[l, t+1]do

3 randomly choose a vertex v € V, such that M[v] = false;
4 | pi<={vho,{L};

5 M[v] < true;

¢ while Jv such that M[v] = false do

7 foreach p; € P do

8 u < ChooseVertexExpand (p;);

9 L ExpandinducedSub (p;, u);

[
>

while 3(u, v) with end vertices in different partitions do
L randomly assign (u, v) to either p, or p;

—

2 return P;

—

Algorithm 10: RefinePartition (P, Q)

Input : P is a graph partitioning; Q is a set of query graphs.
Qutput : P is an optimized graph partitioning.

1 updated <« true;

2 ¢, < ComputeSupport (P, Q);
3 while updated = true do
4 Cmin < Cg;

5 foreach (u,v) € E; do
6

7

8

9

P <« P;

p,, < ShrinkinducedSub(p;,, u);

pl, < ExpandinducedSub(p;, u);

randomly assign remaining edges between p;, and p);
/

10 ¢, < ComputeSupport(P’, Q);

11 if cg, < Cmin then Ppin < P/, Cmin < cg, ;
12 if cpin < ¢g then P < Py, ¢ < Cmins

13 | else updated < false;

14 return P;

Algorithm 9 sketches the random partitioning phase,
which takes a data graph and a distance threshold as input,
and produces t + 1 partitions as per Definition 4. It main-
tains a Boolean map M to indicate the vertex states—true
if a vertex has been assigned to a subgraph, and false other-
wise. Firstly, it randomly distributes 7 + 1 distinct vertices
into p;,i € [1, t + 1] (Lines 2-5). This ensures every p; is
non-empty and contains at least one vertex. Then, for each
pi, we extend it by 1-hop via ChooseVertexExpand, which
randomly selects a vertex v € V), , chooses toinclude in p; an
extension vertex u via edge (v, u) that has not been assigned
to any partitions, together with its edges connected to the ver-
tices that are already in p;. If v fails to extend p;, we select
one of v’s neighbors in p; to replace v, and try the expansion
again till there is no option to grow (Lines 6-9). This offers
each p; a chance to grow, and hence the sizes and the selec-
tivities of the partitions are balanced. Finally, it assigns the
remaining edges (u, v), whose end vertices are in different
partitions, randomly to either p, or p, as half-edges.
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In the refine phase, we take the opportunity to improve the

quality of the initial partition, as shown in Algorithm 10. It
takes as input a graph partitioning P and a workload of query
graphs O, and outputs the optimized partitioning. Our algo-
rithm optimizes the current partitioning by selecting the best
option of moving a vertex u from one partition p, to another
py such that (u, v) € E,. In particular, Line 7 removes u
from p;, by excluding « and its incident edges in p),, where
p,, is the partition containing u. Then, in Line 8, it adds « and
edges between u and vertices in p),. Afterward, the remain-
ing extracted edges are randomly assigned to either p/, or
p., as half-edges, since they have end vertices in both parti-
tions. Hence, we have a new partitioning P’. c;, is computed
in Line 10. If it is less than the current best option cpin, We
replace cpin with c;’,. As a consequence, the best option that
reduces ¢, the most is taken as the move for the current itera-
tion in Line 12. The above procedure repeats until ¢, cannot
be improved by cp;n. To evaluate ¢, and cg, in Lines 2 and 10,
respectively, we can conduct subgraph isomorphism tests to
collect partitions’ support in Q, fulfilled by ComputeSup-
port.
Correctness and complexity analysis Algorithms 9 and 10
constitute the implementation of GraphPartition. Immediate
is that GraphPartition computes a graph partitioning con-
forming to Definition 4. For Algorithm 9, it takes O (V + E)
time to assign vertices and edges. The complexity of Algo-
rithm 10 is mostly determined by ComputeSupport, which
carries out subgraph isomorphism tests from the partitions to
Q. In each iteration of refinement, we need to conduct |E|
rounds of ComputeSupport, through which the supports of
two newly constructed partitions are evaluated.

7 Supporting Top-k search

This section expounds how to extend the partition-based fil-
tering scheme to handle top-k graph similarity search.

A straightforward way to process top-k queries via
threshold-based similarity search is to issue a series of simi-
larity queries, starting at T = 0 with increment as 1, till there
are k graphs in the answer set. However, this naive solution
can be fairly computationally expensive. Next, we devise a
hierarchical inverted index by adapting the partition-based
inverted index, and then present a novel top-k procedure.

7.1 Agglomerative index organization

We first describe the adaptation of the partition-based
inverted index. The partitioning of a graph with 6 + 1 parti-
tions is called a 6-partitioning of the graph. The basic idea is
constituted of two steps: (1) for each data graph, we construct
ahierarchy with a T« -partitioning as the leaves (level-tax ),
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Algorithm 11: Hierarchicallndex (G, tmax, Q)

Input : G is a set of data graph; Tmax is the maximum edit
distance threshold; Q is a set of query graphs.
Output : A hierarchical inverted index H.
H <~ ¢;
foreach data graph g € G do
P™max <« GraphPartition(g, tmax, Q);
i < Tmax — 1, hg < PTmax;
while i > 0 do
¢« 0o, Pl < @
while P’ < EnumerateNextPart(P*!) do
L ¢/ < ComputeSupport(P’, Q);

T R 7 I N R SR

if ¢ <cithen Pl < P/, ¢t < ¢;

10 hg<—thPi;

11 level-wise merge h, with H;

12 return H;

and the graph itself as the root (level-0); and (2) level-wise
merge and organize the partitionings of all data graphs.

Specifically, each data graph is associated with a (Tmax +
1)-level hierarchy (level-0 to level-ty,x) such that

— for level-0, it is a dummy node representing g;

— for level-i, it is an i-partitioning of g; and

— one and only one of the partitions at level-i is made of
two partitions at level-(i + 1),7 € {1, ..., tmax — 1 }-

Then, we adopt an agglomerative organization of the parti-
tionings of single graphs. In essence, the first step is com-
parative to drawing a dendrogram over the tj,x-partitioning
of a graph, and the second step is a typical merging process
akin to agglomerative clustering [9]. Recall that agglomer-
ative clustering every time merges two elements in the set
into one cluster. Hence, we devise an agglomerative method
to construct the index as Algorithm 11.

Algorithm 11 takes as input a set of data graphs G, the
maximum threshold Ty,x to support, and a query workload Q,
and produces a hierarchical index H. It processes all the data
graphs one-by-one. For each g, taking the ty,«-partitioning
as the base (Line 3), we add it to the hierarchy first, and then,
construct the upper levels by iterations (Lines 5—10). The
core procedure resembles the refinement of Algorithm 10
that, at level-i, it composes a new partitioning by combining
two partitions from level-(i + 1). By testing all possible com-
binations of the partitionings at level-(i + 1), the best one is
retained as the partitioning at level-i. This heuristic ensures
that level-i is always an i-partitioning of g, and hence, the
partition-based filtering scheme can be appropriately applied.
Then, the level-i index is added to be hierarchy /g, and
another level-up round for level-(i — 1) begins thereafter
until it reaches the root of the hierarchy, which completes
the index construction of a single graph.
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After constructing the hierarchies of single data graphs, we
merge them level-by-level (Line 11). We denote the partition-
ing of graph g at level-6 by hZ" In particular, two hierarchies
hg and hg are processed as follows. Starting from level-
Tmax, W€ make a set of subgraphs, each of which is from the
partitions at level-tmax of hg and h. Specifically for level-
i,i € {1,..., Tmax }, if a partition from hfg, collides with
another from h;,, they correspond to the same subgraph at
level-i of the index (as entries of dictionary in inverted index),
and g and g’ are inserted into a list attached to that subgraph
(as postings list in inverted index); otherwise, a new dictio-
nary entry is created for that partition, and g is inserted into
a list of the entry. After merging all hierarchies of single data
graphs, all the data graphs and their partitions are organized
by a hierarchical inverted index. Note that the linage of the
original hierarchies are retained in the index. This completes
the index construction, and next, we look into the search pro-
cedure.

7.2 Top-k search procedure

Inspired by classic top-k search algorithms, we maintain a
priority queue Q to keep the current best k results. Let Ug
denote the largest distance between ¢ and the k graphs in Q.
It is observed that the distance between any graph in the top-
k results to the query graph cannot exceed the current Ug
when Q is filled up. Thus, we can prune a data graph if its
distance to the query graph is determined to be larger than or
equal to Ug. Nevertheless, in contrast to the straightforward
solution via multiple threshold-based similarity queries, we
propose to first access the promising graphs that have large
possibility to be similar to the query graph, e.g., graphs shar-
ing many common partitions with the query graph. Based on
the promising graphs, we can accurately estimate an upper
bound of distances of top-k answers to the query graph, which
can then be used for pruning dissimilar graphs.

To illustrate how to leverage this pruning idea, we present
Algorithm 12, which takes as input a query graph ¢, an integer
k as well as a hierarchical inverted index H, and reports a list
Q of k graphs with the smallest distance to g.

It first initializes a priority queue Q for keeping the cur-
rent best k graphs (Line 1). Then, it probes the hierarchical
inverted index level-by-level, from 1 to Tiax. Inside the iter-
ations, there is an exit condition that Ug is no larger than the
maximum threshold supported by level-i (Line 3). Recall that
level-i index supports threshold-based similarity search with
threshold up to i; in other words, all graphs with distance
less than i — 1 have been dealt with in previous rounds, and
the current round is for graphs with distance greater than or
equal to i. If Ug > i, it essentially implies all unseen data
graphs are of distance at least Ug. In this case, top-k results
shall be found by now; otherwise, we continue to probe H to

Algorithm 12: TopkSearch (¢, k, H)
Input

: q is a query graph; k is an integer; H is a hierarchical
inverted index.

Output : Qs a list of k graphs with smallest distance to g.

Q <« 0, Ug <« o0;

fori =1 — 1. do

if i > Ug then return Q;

probe H' to find graphs with at least one matching partition,

and group them into N;’s;

5 | foreach N; with j from large to small do

B W RN =

6 if |V,|+ |E4| — j = Ug then break ;

7 foreach graph g € N; with number of matching
partitions from large to small do

8 if GEDVerification(g, ¢, Ug) < Ug then

9 L L update Q and Uog;

10 return Q;

find graphs that have at least one matching partition. By the
principle of partition-based filtering, only these graphs can
make candidates to the top-k results. Moreover, these graphs
are grouped into a number of sets according to the overall size
of matching partitions (Line 4). Each set is denoted by N,
and j is the total number of vertices and edges of matching
partitions. Subsequently, for every graph of the sets with j
from large to small, we first test whether the graphs can pass
the size filter (Line 6). That is, if |V, | + |E4| — j > Ug, the
graphs in N; cannot match g with edit distance smaller than
Ug. In addition, we can prune the graphs in Ny with k < j
as well, by skipping the remaining sets and proceeding to
the next iteration. Then, we verify the distance from each
graph in N; to the query graph, starting from the one with
most matching partitions, and update Q and Ug if necessary
(Lines 5-9). The intuition is that the larger j, the more com-
mon elements between g and g € N;j; the more matching
partitions, the larger chance for g in top-k results. Iterating
in this way, we expect to find the right graphs earlier.

The advantage of the proposed search procedure mainly
comes from the fact that it (1) filters out graphs in a batch
mode by grouping as per matching size, and (2) derives a
tight upper bound Ug quickly for pruning and verification.
Look-ahead While the aforementioned pruning is effective
when each mismatching partition contains only one edit error,
this estimation can be inaccurate when there are more edit
errors inside single mismatching partitions. Inspired by the
filtering principle of Corollary 1, we conceive a look-ahead
strategy to prune by leveraging the hierarchical index.

Example 12 Consider in Fig. 10 data graph g and query
graph ¢, and assume we are probing level-2 of the index,
and the current Ug is 4. The hierarchy of g is shown on the
left, where “e” means that it is a partition identical to the one
below at the lower level. We observe that all 3 partitions—
P1, p2 and p3—do not match ¢, giving a distance lower
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Fig. 10 Example of look-ahead strategy

bound 3, less than Ug. Hence, g needs to be verified in group
No. However, if we look one level down to level-3, we find
that C=0 is broken into pé and p%, which neither match q.
Thus, they, together with p; and p», form a 4-partitioning of
g and produce a distance lower bound 4, equal to Ug. Thus,
we disqualify g from results without verification.

The example manifests the chance of filtering out more
non-promising candidates by looking into the subsequent
levels under mismatching partitions. In general, consider
a data graph g at level-i with at least one matching parti-
tion, i € {1,..., Tmax }, and we cannot exclude g. Instead
of immediately verifying g against g, we further divide the
mismatching partitions following the hierarchy of g, and esti-
mate a potentially tighter distance lower bound by testing the
new partitions. The intuition is that the cluttered edit errors
may be separated into smaller subgraphs at lower levels, and
hence, identified by partition-based filtering. In other words,
if the number of mismatching partitions is increased to be
greater than or equal to Ug with the new partitioning, we
are able to prune g (though it might be discovered again
later when 7 increases and the top-k results are not filled up).
Thus, this pruning effectively postpones verification, until we
cannot look ahead further, i.e., to the lowest level, in which
case we execute final verification. Note that we only examine
and look ahead for mismatching partitions in the subsequent

Algorithm 13: LookAhead (g, ¢, Ug, i)
Input

: g is a data graph; ¢ is a query graph; Ug is a distance
threshold; i is the current index level.
Output : A boolean - false if GED(g, q) > Ug; true
otherwise.
1 while i < 1, do
examine partitions whose parents mismatch ¢;
if more mismatching partitions are found then
L [b < number of mismatching partitions at level-i;

[Z I S

if /b > Ug then return false ;
6 I <i+1;

7 return true;

@ Springer

levels, since matching partitions never contribute edit errors
later on.

We call this look-ahead strategy, abstracted in Algo-

rithm 13, and apply it right before verification. In our
implementation, we employ a queue to keep the mismatching
partitions of g. Every time, we take the first partition in the
queue, and find the two subgraphs composing it according
to the hierarchical index. Then, we test each of them against
¢, and if it mismatches, we increase by 1 the lower bound. If
the lower bound is no less than Ug, we can safely prune g
and exit the iterations; otherwise, we insert it into the end of
the queue, and start another round with the first element in
the queue.
Computation sharing As a further optimization, we propose
to reuse the computation during look-ahead for subsequent
levels. Recall that a data graph g pruned at level-i may be
discovered again at level-j, i < j < Tyax. To this end, when
conducting the look-ahead strategy, we record the distance
lower bound /b for g, and g enters look-ahead again or final
verification only if i becomes greater than /b. This saves g
from potential repeated look-ahead pruning. I,n addition, as
some of the partitions are verified during the look-ahead for
g, we make a note of the matching results on the correspond-
ing entries in the hierarchical inverted index. By doing this,
afterward when we carry out index probing on following lev-
els as well as look-ahead, the marked partitions are not to be
tested again, and the matching information is hence reused,
avoiding computational redundancy.

For final verification, we call the basic A*-based algorithm
using Ug as threshold. As a minor optimization, when Ug
is too large or Q is not yet filled up, we employ an existing
upper-bounding technique [6,29] to restrict the search space,
since the real distance never exceeds the upper bound.

8 Experiments

This section reports experimental results and our analyses.

8.1 Experiment setup

We conducted experiments on 3 public real-life datasets:

— AIDS is an antivirus screen compound dataset from the
Developmental Therapeutics Program at NCI/NIH.Y It
contains 42,687 chemical compound structures.

— PROTEIN is a protein database from the Protein Data
Bank,° constituted of 600 protein structures. Vertices rep-

> http://dtp.nci.nih.gov/docs/aids/aids_data.html.

6 http://www.iam.unibe.ch/fki/databases/iam-graph-database/
download-the-iam-graph-database.
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Table 2 Dataset statistics

Dataset |Gl avg [V|/|E]| v 1/1lE] Y

AIDS 42,687 25.60/27.60 62/3 12
PROTEIN 600 32.63/62.14 3/5 9
NASA 36,790 33.24/32.24 10/1 245

resent secondary structure elements, labeled by types;
edges are labeled with lengths in amino acids.

— NASA is an XML dataset storing metadata of an astro-
nomical repository,” including 36,790 graphs. We ran-
domly assigned 10 vertex labels to the graphs, as the
original graphs are nearly of unique vertex labels.

Table 2 lists the statistics of the datasets. AIDS is a popular
benchmark for structure search, PROTEIN is denser and less
label-informative, and NASA has more skewed vertex degree
distribution. We randomly sampled 100 graphs from every
dataset to make up the corresponding query set, which were
used throughout the experimental studies for performance
evaluation. Thus, the queries are of similar label distribution
and average density to the data graphs. The average |V, | for
AIDS, PROTEIN and NASA are 26.70, 31.67 and 42.51,
respectively. In addition, the scalability tests involve syn-
thetic data, which were generated by a graph generator.® It
measures graph size in terms of |E|, and density is defined
asd = %, equal 0.3 by default. The cardinalities of
vertex and edge label domains are 2 and 1, respectively.

Experiments were conducted on a machine of Quad-Core
AMD Opteron Processor 8378 @800 MHz with 96G RAM,?
running Ubuntu 10.04 LTS. All the algorithms were imple-
mented in C++, and ran in main memory. We evaluated
threshold-based queries with T = 7p,,x at both indexing and
query processing stages, and top-k queries with tpx = 6 at
indexing. We measured

— index size by memory space consumption;

index construction time;

number of candidates that need GED verification; and

— query response time,'? including candidate generation
and GED verification.

Candidate number and running time are reported on the basis
of the 100 queries.

7 http://www.cs.washington.edu/research/xmldatasets/.
8 http://www.cse.ust.hk/graphgen/.

9 This RAM configuration is to accommodate the A*-based verification
algorithm, which needs to maintain a large number of partial mappings
in a priority queue.

10 Some of the experiments were manually terminated after running for
24 h, the duration of which was reported instead.

8.2 Evaluating filtering methods

We first evaluate the proposed filtering methods. We use
“Basic Partition” to denote the basic implementation of
our partition-based similarity search algorithm, “+ Match”
to denote the basic algorithm equipped with the enhanced
matching condition, and “+ Dynamic” to denote the imple-
mentation of integrating + Match with dynamic partition
filtering.

Figure 1la summarizes candidate numbers on AIDS,
where “P”, “M”, “D” and “R” are short for Basic Parti-
tion, + Match, + Dynamic and real result, respectively. In
particular, it compares the ratios of candidate numbers to
the real result number; that is, for each GED threshold, the
real result number is used as the base (i.e., 1 in the figure),
and the quotient of candidate number divided by the base is
shown.!! Specifically, when T is the largest as 6, there are
intotal |G| x (t + 1) = 42,687 x 7 = 298, 809 partitions,
and on average 26,951 out of the 45,263 distinct partitions
(59.5%) hit the query by Basic Partition. Moreover, the gen-
eral trend is that candidates returned by the three methods
increase with the growth of 7, and the gap is more remarkable
when t is large. The trend is within expectation according to
the discussion in the end of Sect. 4. As read from the results,
candidate set shrinks when additional filtering techniques +
Match and + Dynamic are applied. The margin is substan-
tial, especially between + Dynamic and Basic Partition;
when 7 = 1, + Dynamic provides a reduction over + Match
and Basic Partition by 32 and 51%, respectively.

To reflect the filtering effect on response time, we
appended the basic A* algorithm (denoted “A*”) to verify
the candidates. The query response time is summarized in
Fig. 11b, where the running time of + Dynamic is used as
the base for each GED threshold. The filtering time of +
Dynamic is greater than + Match, and + Match is slightly
greater than Basic Partition; whereas, as an immediate con-
sequence of less candidates, the overall response time of
+ Dynamic is smaller by up to 67 and 36%, respectively,
in comparison with Basic Partition and + Match, among
all the thresholds. Thus, enhanced matching condition bene-
fits the overall performance while incurring a little overhead
in filtering time; mismatching partition recycle needs more
computation in filtering but remarkably improves the over-
all runtime performance in return. Note that since candidate
generation is fairly fast compared with GED verification, its
running time becomes almost invisible for t > 3.

1" Onwards this method is adopted for summarizing experiment results
if not otherwise specified, and figures of the same results in logarithmic
scale can be found in Part C of supplementary material to this article.
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8.3 Evaluating verification methods

To evaluate the extension-based verification technique, we
verify the candidates returned by + Dynamic with three
methods on AIDS. Besides “A*”, an algorithm “+ Exten-
sion” implementing our extension-based verification is
involved. We are aware of a novel algorithm proposed lately
for computing GED, namely, CSI_GED [7], which was also
incorporated for comparison.

Figure 11c summarized the running time to verify the same
set of candidates under varying t’s, where the time of +
Extension is used as the base for each GED threshold. We
observe an improvement of + Extension over A* as much
as 79%, which approaches 2 orders of magnitude when 7 is
small. This advantage is attributed to (1) the shrink of possi-
ble mapping space between unmatched portions of query and
data graphs; and (2) the computation sharing on the matching
partition between filtering and verification phases. One may
concern that for a pair of graphs multiple rounds of extension-
based verification can result in computational overhead. We
argue that scheduling such computation requires only a little
more than that of A*. Moreover, it was logged that the chance
of having only one matching partition is not low, thanks to
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the judicious graph partitioning. For example, the percentage
of candidates having only one matching partition is as high
as 83% fort = 1, and 69% for T = 2, respectively. Although
this percentage downgrades toward T = 6, more graphs need
to conduct extension-based verification for multiple match-
ing partitions, and the margin of response time is still large,
as + Extension contributes speedups by exploring smaller
search spaces. CSI_GED is a novel algorithm demonstrated
to have good scalability for obtaining GED, which imple-
ments effective techniques in confining search space when
GED is large. This argument is also backed by our results,
where it starts slower than + Extension, and overtakes when
T > 4. In short, we contend that more advanced GED algo-
rithm can also be incorporated for verification with large t’s,
but for common and small thresholds tailored algorithm +
Extension is more preferable.

8.4 Evaluating index construction

We evaluate two graph partitioning methods for index con-
struction: (1) Random, labeled by “R”, is the basic graph
partitioning method that randomly assigns vertices and edges
into partitions (Algorithm 9); and (2) + Refine, labeled by
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“F”,is a partitioning method outlined in Algorithms 9 and 10,
i.e., the complete partitioning algorithm.

Figure 11d compares the indexing time of the two algo-
rithms in logarithmic scale. The logged time does not include
the time of constructing index for estimating the probability
that a partition is contained by a query, i.e., the index for
subgraph isomorphism test, as it is reasonable to assume it is
available in a graph database. We used Swift-index [20] for
fast subgraph isomorphism test. Random is quite fast for all
the thresholds. + Refine is more computationally demand-
ing, typically two orders of magnitude slower than Random
due to the high complexity of (1) graph partitioning opti-
mization, and (2) partition support evaluation. Running +
Dynamic on the indexes, we plot ratios of candidate number
and response time in Fig. 11e, f, respectively. Together, they
advise that refining random partitioning brings down candi-
date number by as much as 47% and response time by up to
69%.

8.5 Evaluating sample ratio

This set of experiments study the effect of sample ratio
p = %‘ Figure 11g—i summarize indexing time, candidate
number and query response time, respectively, with vary-
ing p, where the best result at each GED threshold is used
as the base. It can be seen that indexing time rises along
with larger sample size, while candidate number and query
response time exhibit slight decrease. To balance the cost and
benefit of index construction, we chose p = 0.4 for subse-
quent experiments. Note that we did not deliberately exclude
the 100 query graphs from the samples, and thus, they may
appear in the samples especially when p is large; addition-
ally, it can be conjectured that system performance improves
if they are directly used as Q for indexing.

Hereafter, we use + Refine for offline indexing, and apply
+ Dynamic and + Extension for filtering and verification,
respectively, to achieve the best performance.

8.6 Comparing with existing methods
This subsection compares with the state-of-the-art,

— Pars, labeled by “P”, is our partition-based algorithm,
integrating all the proposed techniques.

— SEGOS, labeled by “S”, is an algorithm based on stars,
incorporating novel indexing and search strategies [24].
We received the source code from the authors. As ver-
ification was not covered in the original evaluation, we
appended A* to verify the candidates. SEGOS is param-
eterized by step-controlling variables k and 4, set as 100
and 1000, respectively, for best performance.

— GSimSearch, labeled by “G”, is a path-based g-gram
approach for processing similarity queries [33]. The per-

Table 3 Index size (MB, T = 6)

Dataset SEGOS GSimSearch BranchMix Pars
AIDS 5.06 31.51 10.65 12.87
PROTEIN 0.16 2.60 0.25 0.38
NASA 11.97 8.66 12.55 14.40
Table 4 Pars index statistics Dataset [P avg |I,|
(r=06)

AIDS 45263  6.60

PROTEIN 3485 1.21

NASA 46,343  5.56

formance of g-gram-based approaches is influenced by
g-gram size. For best performance, we chose g = 4 for
AIDS, ¢ = 3 for PROTEIN, and ¢ = 1 for NASA.

— BranchMix, labeled by “M”, is a hybrid method inte-
grating branch-based and partition-based filtering tech-
niques [34]. We implemented the algorithm, and used the
A* to verify the candidates.!? For best performance, we
adopted T = 8 for all the datasets by default [34], which
limits the largest sizes of subgraphs of query graphs for
mismatching disjoint partition test.

Among others, «-AT was omitted, since GSimSearch was
demonstrated to outperform «-AT under all settings [33].

We first compare the index size. Table 3 displays the index
sizes of the algorithms on three datasets for T = 6. Similar
pattern is observed under other t values. While all the algo-
rithms exhibit small index sizes, there is no overall winner.
On AIDS and PROTEIN, GSimSearch needs more space
than SEGOS, BranchMix and Pars; on NASA, SEGOS,
BranchMix and Pars build larger index than GSimSearch.
The reason why Pars constructs a smaller index on AIDS
than on NASA is that NASA possesses more large graphs.
Thus, the index size of Pars is largely dependent on graph
size. To get more insight of the inverted index, we list the
number of distinct partitions and the average length of a post-
ings list in Table 4. Due to judicious partitioning, the average
length of postings lists is small. On PROTEIN, postings lists
are shorter than the other two, because of its less number of
graphs and greater diversity in substructure caused by higher
vertex degrees.

Indexing time is provided in Fig. 12a—c in logarithmic
scale. Pars spends more time to build index, since it involves
sophisticated graph partitioning and subgraph isomorphism
tests in the refine phase of index construction. It is noted that
on PROTEIN, GSimSearch overtakes Pars when 7 > 3,
due to larger density of PROTEIN graphs, and hence greater

12 The original algorithm does not come with exact verification [7].
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difficulty in computing minimum prefix length for path-based
g-grams. Among others, SEGOS and BranchMix are fairly
stable since their index construction algorithms are not influ-
enced by distance threshold for indexing.

Regarding query processing, Pars offers the best perfor-
mance on both candidate size and response time in most sets
of experiments, as shown in Fig. 12d—f, g—i, respectively,
where the result of Pars is used the base for each GED
threshold. It is read from the figures that the performance
gaps between Pars and other competitors, e.g., SEGOS and
BranchMix, on NASA are larger than those on AIDS. We
argue that Pars is less vulnerable to large maximum vertex
degrees. The numbers of candidates from SEGOS, GSim-
Search and Pars are up to 114.1x, 87.0x and 53.2x that
of real results (not shown), respectively. Hence, the result on
response time becomes expectable. We highlight the follows:
(1) Pars always demonstrates the best overall runtime per-
formance; (2) For filtering time, GSimSearch takes more
on PROTEIN, while SEGOS spends more on NASA; (3)
Verification dominates the query processing stage, and GED
verification on PROTEIN is more expensive than that on
other datasets; (4) The margins on candidate number and
response time between Pars and competitors enlarge, when
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T approaches large values. We also observe that advantage
of Pars is more remarkable on datasets with higher degrees
like PROTEIN and NASA. For instance, when 7 = 4,
Pars has 12.3x speedup over SEGOS on AIDS, 56.8x on
PROTEIN and 19.3 x on NASA. In comparison with GSim-
Search, Parsis 5.1x, 42.8x and 17.5x faster, respectively
on the three datasets. As to the state-of-the-art BranchMix,
Pars outperforms by 2.4x, 19.6x and 8.6x, respectively.
Among others, it is noted that in terms of candidate size,
Pars generates a little more candidates than BranchMix for
small 7’s on NASA. This may be attributed to the peculiar
structure of graphs in NASA, on which Pars may be less
effective.

In terms of response time, however, BranchMix consumes
longer time than Pars, even than GSimSearch, in the filter-
ing phase on NASA; in addition, the verification time of Pars
is much shorter than that of BranchMix, due to advanced
algorithmic design. In short, the cross-method study demon-
strates that Pars offers, in terms of running time, the most
competent option for filtering, which is attributed to the
novel partition-based filtering scheme with enhanced match-
ing condition and mismatching partition recycle; on top of
the small candidate set surviving the filtering, advanced and
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tailored verification procedure is carried out to ensure the — Parsk is an algorithm by integrating the look-ahead and
best responsiveness.

8.7 Evaluating Top-k search

computation-sharing strategies with Basic Parsk.

We first look into index construction. The space required
for storing the indexes are shown in Table 5. Itis read from the

In this set of experiments, we assess the top-k search algo- table that the size of the hierarchical index is mainly depen-
rithm by extending the partition-based filtering scheme, dent on the dataset cardinality such that more data graphs
namely Parsk. In particular, we implemented two algorithms imply more variety of partitions and longer inverted lists.

as described in Sect. 7:

Similar to the indexing performance in threshold-based sim-
ilarity search, it takes time to construct the indexes, since
it involves large numbers of subgraph isomorphism tests.

— Baseline is an adapted algorithm that issues threshold- ~ Thanks to the one-off nature of index construction, we will
based similarity searches with 7 growing starting with  see shortly this is rewarding in query processing.
0, which terminates when the priority queue of answers The results on query response time are plotted in Fig. 13a—

reaches size k after a certain 7;
— Basic Parsk is our baseline algorithm for top-k graph  general trend observed is that the query response time grows
similarity search leveraging partition-based filtering  with k, but the three algorithms differ in growth ratio—the

scheme;
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Parsk) is larger toward larger t. The figures all read that
the proposed top-k similarity search framework is smarter in
returning the exact answers with less computation. In par-
ticular, the gap between Baseline and Parsk is the most
noteworthy on AIDS in terms of difference value, as large as
18.940, and on PROTEIN in terms of multiple, as many as
3.9x. For Baseline, we see plateaus along with the growth
of k, for instance, k € [10, 50] on AIDS and k € [20, 100]
on NASA. This is reasonable due to its iteration-based algo-
rithmic design, for instance, if k = 20, it needs to finish
3 threshold-based similarity searches with t equal 0, 1, 2
and 3, respectively (cf. Fig. 12d—f), which is also the case
for k = 50. Among others, the batch-based pruning of
Basic Parsk enables early stopping, and the look-ahead and
computation-sharing strategies further expedite the query
processing.

8.8 Evaluating scalability

All the scalability tests were conducted on synthetic data,
and we first look at threshold-based setting with 7 fixed
as 2. To evaluate the scalability against dataset cardinality,
we generated five datasets, constituted of 20-100k graphs.
Results for the 4 algorithms (cf. Sect. 8.6) are provided in
Fig. 13d. The query response time grows steadily when the
dataset cardinality increases. Pars has a lower starting point
when dataset is small, and showcases a smaller growth ratio,
with up to 18.8x speedup over SEGOS, 6.8 x over GSim-
Search and 4.2x over BranchMix, respectively. SEGOS
consumes the most time in both filtering and verification; the
filtering time of BranchMix is sometimes larger than that of
GSimSearch, which may be due to the fluctuation of graph
density; Pars always demonstrates the preeminent runtime
performance on all five datasets.

Next, we evaluate the scalability against graph size and
density on synthetic data. Each set of data graphs was of
cardinality 10k, and we randomly sampled 100 graphs from
data graphs and added a random number ([1, T + 1]) of edit
operations to make up the corresponding query graphs.

Five datasets with density 0.1 were generated, with aver-
age graph size ranging in [100, 500]. As shown in Fig. 13e,
the query response time grows gradually with the graph size,
and verification takes the majority of the total running time.
Further, it takes much longer to verify the candidates of large
graphs than small ones. Pars scales the best at both filtering
and verification stages. This is credited to its (1) fast fil-

Table 5 Hierarchical inverted index size (MB, Tjax = 6)

AIDS PROTEIN

Dataset NASA

Parsk 34.37 3.18 51.26
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tering with substantial candidate reduction, and (2) efficient
verification for evaluating the candidates. On large graphs,
GSimSearch spends more time on filtering, while SEGOS
scales better in filtering time but becomes less effective in
overall performance; BranchMix has comparable filtering
performance, and expends longer time than SEGOS and
GSimSearch except Pars.

Figure 13f shows the response time against graph den-
sity. Pars scales the best with density in terms of overall
query response time, while SEGOS has the smallest growth
ratio for filtering time. When graphs become denser, more
candidates are admitted by SEGOS and GSimSearch, due
to the shortcomings pointed out in Sect. 2.2. BranchMix
generates less candidates than GSimSearch, but consumes
longer time in filtering phase when graph density is small.
By contrast, Pars exhibits good filtering and overall perfor-
mance, offering up to 18.4x speedup over SEGOS, 3.4x
over GSimSearch, and 2.7 x over BranchMix, respectively.

Then, we assess the scalability of Baseline and Parsk (cf.
Sect. 8.7) against dataset cardinality, graph size and graph
density, respectively. The corresponding experiment results
of Baseline and Parsk are provided in Fig. 13g—i, where
the aforementioned synthetic datasets were inherited, and k
was fixed as 50. From Fig. 13g, we see a steady growth of
running time for both Baseline and Parsk, from 20k graphs
to 100k graphs. Nonetheless, the gap between them is more
prominent when the dataset is larger, e.g., the difference of
response time is 1.2 s on 20k graphs, and it increases to 22.3 s
on 100k graphs. Figure 13h reads a exponential growth of
response time for both Baseline and Parsk. The increase is
mainly attributed to the rise of complexity of verifying large
graphs, which makes the results within expectation. At last,
similar trend is observed in the scalability experiment against
graph density, as shown in Fig. 13i. We can see that Parsk
handles top-k similarity search over dense graphs better
than Baseline. Moreover, the rise of graph density accounts
for the upward tendency of both lines. Compared with the
straightforward approach by Baseline, however, the better
design of search framework and optimization techniques by
Parsk reduces such effect. In short, Parsk is computation-
ally less expensive and more scalable, when dealing with
dense graphs.

9 Related work

Research on using GED for chemical molecular analysis
dates back to 1990s [30].

Structure similarity search Structure similarity search has
received considerable attention recently, which is to find
data graphs approximately isomorphic to the query graph.
Since we have thoroughly reviewed the prior work for GED
constraints in Sect. 2.2, here discusses other work that is
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also under this theme. Closure-Tree was proposed to iden-
tify top-k graphs nearly isomorphic to query [11] without
precision guarantee. Incorporating the general definition of
GED, Zeng et al. [29] proposed to bound GED-based struc-
ture similarity via bipartite matching of star structures from
two graphs. It was followed by a recent effort SEGOS [24]
that proposed an indexing and search paradigm based on
star structures, where TA and CA are adapted to acceler-
ate query processing. Another advance defined g-grams on
graphs [23], which was inspired by the idea of g-grams on
strings. It builds index by generating tree-based g-grams,
and produces candidates against a count-filtering condition
on the number of common g-grams between graphs. Seeing
that limited pruning power of star structures and tree-based
g-grams, GSimSearch [33] tackles the problem by uti-
lizing paths as g-grams, exploiting both the matching and
mismatching features. Meanwhile, Zheng et al. approached
the problem by proposing branch structures [34]—a com-
promise between star structure and tree, as well as a set
of GED bounding and indexing techniques. The aforemen-
tioned methods utilize fixed-size overlapping substructures
for indexing, and thus, suffer from the issues summarized in
Sect. 2.2. As opposed to this type of substructures, we pro-
pose a partition-based framework, and index variable-size
non-overlapping partitions of data graphs.

With a focus on representativeness modeling, Ranu et al.
[14] formulated the problem of top-k representative queries
on graph databases. It finds data graphs meeting the given
GED threshold whose representative power is maximized.
We are also aware that maximum common subgraph (MCS)
based similarity is investigated to find top-k results from
graph databases [35]. To enhance online performance, dis-
tance and structure-preserved mapping was investigated to
map graphs into vector space and find approximate top-k
results [36]. We differ by developing tailored top-k search
strategy leveraging a hierarchical index. Note that these are
the only rwo existing work that measure structure similarity
based on MCS.!3 Top-k search in a large graph [28] is based
on a disparate setting and beyond our focus.

Subgraph similarity queries Subgraph similarity search
is to retrieve the data graphs that approximately contain
the query; most work focuses on MCS-based similarity
[12,19,26]. Grafil [26] proposed the problem, where simi-
larity was defined as the number of missing edges regarding
maximum common subgraph. GrafD-index [19] deals with
similarity based on maximum connected common subgraph,
and it exploits the triangle inequality to develop pruning
and validation rules. PRAGUE [12] developed a more effi-
cient solution utilizing system response time under the visual
query formulation and processing paradigm. Zhao et al. [33]

13 There is a pile of literature dedicated to subgraph similarity search
based on MCS, e.g., [12,19,26].

extended path-based g-gram technique to handle subgraph
edit distance based subgraph similarity search. Subgraph
similarity matching queries were studied over single large
graphs as well, [8,27] to name a few recent efforts.

As a special case when the similarity threshold is nil, sub-

graph similarity queries evolve into the problem of subgraph
search or matching. A subgraph search query finds from a
set of data graphs those containing the query graph. Practi-
cal algorithms to this problem includes the classic backtrack
algorithm and a successive of advances leveraging bit vec-
tors [21], degree reduction [22], and various indexes [20,25].
As a more difficult problem, subgraph matching finds from
a single large data graph all embeddings of the query graph.
A volume of literature is dedicated to this problem, e.g.,
[1,10,16] to name some late progress.
GED computation Another line of related research focuses
on GED computation. A widely accepted exact method is
based on the A* algorithm. So far, the most well-known exact
solution is attributed to an A*-based algorithm incorporating
a bipartite heuristic [17]. Our extension-based verification
inherits the merit, and further conducts the search in a
more efficient manner under the partition-based paradigm.
Lately, a novel edge-based mapping method was proposed
for computing GED through common substructure isomor-
phism enumeration [7]. The CSI_GED algorithm utilizes
backtracking search combined with a number of heuristics,
which is can be integrated as the verifier into any solutions
to graph similarity searches. To render the matching pro-
cess less computationally demanding, approximate methods
were proposed to find suboptimal answers, e.g., [4,15]. To
quickly obtain a tight search threshold in top-k similarity
search queries, we may leverage some existing GED upper-
bounding techniques [6,29] to restrict the search space in the
beginning stage, since the real distance never exceeds the
upper bound.

10 Conclusion

In this article, we have studied the problem of graph simi-
larity search with edit distance constraints. Unlike existing
solutions, we propose a framework availing a novel filtering
scheme based on variable-size non-overlapping partitions.
We devise a dynamic partitioning technique with enhanced
matching condition and mismatching partition recycling
to strengthen the pruning power. Moreover, an extension-
based verification algorithm leveraging matching partitions
is conceived to expedite the final verification. For index con-
struction, a cost-aware graph partitioning method is proposed
to optimize the index. In addition, the index is extended to
form a hierarchical inverted index, in order to support top-k
similarity queries. Based on it, tailored search procedure with
look-ahead and computation-sharing strategies are devised.
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During the research, we became aware of that certain
applications may have additional context-aware constraints,
e.g., in chemistry, an atom O may be replaced by S but not
C. This can be solved by enforcing context-aware rules when
computing GED with additional care, while filtering tech-
niques are not affected and still applicable. As future work,
one may come up with more pertinent filtering techniques
and query processing methods to handle these constraints.
Among others, the A*-based GED algorithm is notoriously
memory-consuming, due to its best-first nature. This makes it
inaccessible to common PC machines nowadays. Therefore,
it is of significance to develop algorithms that guarantees
optimality while allowing early termination.

Acknowledgements Funding was provided by Japan Society for
the Promotion of Science (Grant No. 16H01722), National Natural
Science Foundation of China (Grant Nos. 61402494, 71690233), Nat-
ural Science Foundation of Hunan Province (Grant No. 2015JJ4009)
and Australian Research Council (Grant Nos. DP150103071 and
DP150102728).

References

1. Bi, F, Chang, L., Lin, X., Qin, L., Zhang, W.: Efficient subgraph
matching by postponing Cartesian products. In: SIGMOD Confer-
ence, pp. 1199-1214 (2016)

2. Bunke, H., Allermann, G.: Inexact graph matching for structural
pattern recognition. PRL 1(4), 245-253 (1983)

3. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph
matching in pattern recognition. [JPRAI 18(3), 265-298 (2004)

4. Fankhauser, S., Riesen, K., Bunke, H.: Speeding up graph edit
distance computation through fast bipartite matching. In: GbRPR,
pp. 102-111 (2011)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide
to the Theory of NP-Completeness, 1st edn. W. H. Freeman, San
Francisco (1979)

6. Gouda, K., Arafa, M., Calders, T.: Bfst_ed: a novel upper bound
computation framework for the graph edit distance. In: SISAP, pp.
3-19 (2016)

7. Gouda, K., Hassaan, M.: CSI_GED: an efficient approach for graph
edit similarity computation. In: ICDE, pp. 265-276 (2016)

8. Gupta, M., Gao, J., Yan, X., Cam, H., Han, J.: Top-k interesting
subgraph discovery in information networks. In: ICDE, pp. 820—
831 (2014)

9. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Tech-
niques, 3rd edn. Morgan Kaufmann, Los Altos (2011)

10. Han, W.-S., Lee, J., Lee, J.-H.: Turbojs,: towards ultrafast and
robust subgraph isomorphism search in large graph databases. In:
SIGMOD Conference, pp. 337-348 (2013)

11. He, H., Singh, A.K.: Closure-Tree: an index structure for graph
queries. In: ICDE, p. 38 (2006)

12. Jin, C., Bhowmick, S.S., Choi, B., Zhou, S.: PRAGUE: towards
blending practical visual subgraph query formulation and query
processing. In: ICDE, pp. 222-233 (2012)

13. Marin, R.M., Aguirre, N.F., Daza, E.E.: Graph theoretical similarity
approach to compare molecular electrostatic potentials. J. Chem.
Inf. Model. 48(1), 109-118 (2008)

@ Springer

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Ranu, S., Hoang, M.X., Singh, A.K.: Answering top-k represen-
tative queries on graph databases. In: SIGMOD Conference, pp.
1163-1174 (2014)

Raveaux, R., Burie, J.-C., Ogier, J.-M.: A graph matching method
and a graph matching distance based on subgraph assignments.
PRL 31(5), 394-406 (2010)

Ren, X., Wang, J.: Exploiting vertex relationships in speeding up
subgraph isomorphism over large graphs. PVLDB 8(5), 617-628
(2015)

Riesen, K., Fankhauser, S., Bunke, H.: Speeding up graph edit
distance computation with a bipartite heuristic. In: MLG (2007)
Sanfeliu, A., Fu, K.-S.: A distance measure between attributed rela-
tional graphs for pattern recognition. IEEE Trans. Syst. Man Cyber.
13(3), 353-362 (1983)

Shang, H., Lin, X., Zhang, Y., Yu, J.X., Wang, W.: Connected sub-
structure similarity search. In: SIGMOD Conference, pp. 903-914
(2010)

Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hard-
ness: an efficient algorithm for testing subgraph isomorphism.
PVLDB 1(1), 364-375 (2008)

Ullmann, J.R.: Bit-vector algorithms for binary constraint satisfac-
tion and subgraph isomorphism. ACM J. Exp. Algorithmics 15,
1-6 (2010)

Ullmann, J.R.: Degree reduction in labeled graph retrieval. ACM
J. Exp. Algorithmics 20, 1-3 (2015)

Wang, G., Wang, B., Yang, X., Yu, G.: Efficiently indexing large
sparse graphs for similarity search. IEEE Trans. Knowl. Data Eng.
24(3), 440451 (2012)

Wang, X., Ding, X., Tung, A.K.H., Ying, S., Jin, H.: An efficient
graph indexing method. In: ICDE, pp. 210-221 (2012)

Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-
based approach. In: SIGMOD Conference, pp. 335-346 (2004)
Yan, X., Yu, P.S., Han, J.: Substructure similarity search in graph
databases. In: SIGMOD Conference, pp. 766777 (2005)

Yang, S., Han, F.,, Wu, Y., Yan, X.: Fast top-k search in knowledge
graphs. In: ICDE (to appear) (2016)

Yang, Z., Fu, A.W.,, Liu, R.: Diversified top-k subgraph querying
in a large graph. In: SIGMOD Conference, pp. 1167-1182 (2016)
Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing
stars: on approximating graph edit distance. PVLDB 2(1), 25-36
(2009)

Zhang, K., Wang, J.T.-L., Shasha, D.: On the editing distance
between undirected acyclic graphs and related problems. In: CPM,
pp. 395-407 (1995)

Zhang, S., Yang, J., Jin, W.: SAPPER: subgraph indexing and
approximate matching in large graphs. PVLDB 3(1), 1185-1194
(2010)

Zhao, X., Xiao, C., Lin, X., Liu, Q., Zhang, W.: A partition-based
approach to structure similarity search. PVLDB 7(3), 169-180
(2013)

Zhao, X., Xiao, C., Lin, X., Wang, W., Ishikawa, Y.: Efficient pro-
cessing of graph similarity queries with edit distance constraints.
VLDB J. 22(6), 727-752 (2013)

Zheng, W., Zou, L., Lian, X., Wang, D., Zhao, D.: Efficient graph
similarity search over large graph databases. IEEE Trans. Knowl.
Data Eng. 27(4), 964-978 (2015)

Zhu, Y., Qin, L., Yu, J.X., Cheng, H.: Finding top-k similar graphs
in graph databases. In: EDBT, pp. 456467 (2012)

Zhu, Y., Yu, J.X., Qin, L.: Leveraging graph dimensions in online
graph search. PVLDB 8(1), 85-96 (2014)



	Efficient structure similarity searches: a partition-based approach
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem definition and notations
	2.2 Prior work on Problem 1
	2.3 Solution overview

	3 A partition-based algorithm
	3.1 Partition-based filtering scheme
	3.2 Similarity search framework
	3.3 Cost analysis

	4 Dynamic partition filtering
	4.1 Half-edge subgraph isomorphism test
	4.2 Enhancing matching condition
	4.3 Recycling mismatching partitions
	4.4 Comparing filtering methods

	5 Verification
	5.1 GED Verification
	5.2 Extending matching partition
	5.3 Completeness and correctness

	6 Cost-aware graph partition
	6.1 Effect of graph partitioning
	6.2 A practical partitioning algorithm

	7 Supporting Top-k search
	7.1 Agglomerative index organization
	7.2 Top-k search procedure

	8 Experiments
	8.1 Experiment setup
	8.2 Evaluating filtering methods
	8.3 Evaluating verification methods
	8.4 Evaluating index construction
	8.5 Evaluating sample ratio
	8.6 Comparing with existing methods
	8.7 Evaluating Top-k search
	8.8 Evaluating scalability

	9 Related work
	10 Conclusion
	Acknowledgements
	References




