
The VLDB Journal (2017) 26:709–727
DOI 10.1007/s00778-017-0473-6

REGULAR PAPER

Geo-social group queries with minimum acquaintance constraints

Qijun Zhu1 · Haibo Hu2 · Cheng Xu1 · Jianliang Xu1 · Wang-Chien Lee3

Received: 3 May 2016 / Revised: 14 May 2017 / Accepted: 8 July 2017 / Published online: 19 July 2017
© Springer-Verlag GmbH Germany 2017

Abstract The prosperity of location-based social network-
ing has paved the way for new applications of group-based
activity planning and marketing. While such applications
heavily rely on geo-social group queries (GSGQs), exist-
ing studies fail to produce a cohesive group in terms of
user acquaintance. In this paper, we propose a new family
of GSGQs with minimum acquaintance constraints. They
are more appealing to users as they guarantee a worst-case
acquaintance level in the result group. For efficient pro-
cessing of GSGQs on large location-based social networks,
we devise two social-aware spatial index structures, namely
SaR-tree and SaR*-tree. The latter improves on the for-
mer by considering both spatial and social distances when
clustering objects. Based on SaR-tree and SaR*-tree, novel
algorithms are developed to process various GSGQs. Exten-
sive experiments on real datasets Gowalla and Twitter show

B Haibo Hu
haibo.hu@polyu.edu.hk

Qijun Zhu
qjzhu@comp.hkbu.edu.hk

Cheng Xu
chengxu@comp.hkbu.edu.hk

Jianliang Xu
xujl@comp.hkbu.edu.hk

Wang-Chien Lee
wlee@cse.psu.edu

1 Department of Computer Science, Hong Kong Baptist
University, Kowloon Tong, Hong Kong

2 Department of Electronic and Information Engineering, Hong
Kong Polytechnic University, Hung Hom, Hong Kong

3 Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA, USA

that our proposedmethods substantially outperform the base-
line algorithms under various system settings.

Keywords Location-based services · Geo-social networks ·
Spatial queries · Nearest neighbor queries

1 Introduction

With the ever-growing popularity of smartphone devices, the
past few years have witnessed a massive boom in location-
based social networking services (LBSN) [14,16,24,33] like
Foursquare, Yelp, Google+, and Facebook Places. In all these
applications, mobile users are allowed to share their check-
in locations (e.g., restaurants, theaters) with friends. Such
location information, bridging the gap between the physical
world and the virtual world of social networks, presents to
users new applications of group-based activity planning and
marketing [18,19,31]. In a typical use case, Facebook now
offers users to create or participate in a local group event, such
as a lunch gathering or a tennis match. With location infor-
mation, Facebook can proactively recommend users nearby
and invite them to this event. Third-party apps can also make
use of such information. For example Zimride, on Facebook,
suggests ridesharing among a group of users with similar
commutes. These location-based social networking appli-
cations are essentially geo-social group queries with both
spatial and social constraints.

While research attention has recently been drawn to geo-
social group queries (e.g., [20,31]), existing works only
impose some loose social constraint on the query. For exam-
ple in [20], the circle-of-friend query targets at finding a set
of k users such that the maximal weighted spatial and social
distance among the users is minimized. Since social distance
is only one of the two factors, users in the result group could

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-017-0473-6&domain=pdf
http://orcid.org/0000-0002-9008-2112

710 Q. Zhu et al.

have very distant or diverse social relations. In an extreme
case, no users in the result group are familiarwith one another
but they are so spatially close that the overall intra-group
distance is minimum. As an improvement, the socio-spatial
group query proposed in [31] aims to find k spatially close
users among which the average number of unfamiliar users
does not exceed a threshold p. While the use of threshold
p effectively reduces the occurrence of unfamiliar users in a
result group, there is no guarantee on the minimum number
of users a group member is familiar with. In the worst case,
as shown in our experiments in Sect. 7.2, some user may
be unfamiliar with all other users in the group. Moreover,
both queries require tailor-made user inputs—Liu et al. [20]
imposes weights on social and spatial distances, and Yang
et al. [31] needs to set a unified threshold p for all users in
the group even though different users may have varied tol-
erance of unfamiliar users surrounded. Finally, these works
mainly focused on in-memory processing (e.g., improving
the user scanning order and filtering the candidate combi-
nations) and cannot be adapted to external-memory indexes.
Therefore, they cannot work for large-scale and real-world
LBSNs.

In this paper, we propose a new family of geo-social
group queries with constraint on minimum acquaintance,
hereafter called GSGQs for brevity. A GSGQ query takes
three arguments: (q,Λ, c), where q is the query issuer, Λ is
the spatial constraint, and c is the acquaintance constraint.
The acquaintance constraint c imposes a minimum degree
on the familiarity of group members (which may include
q), i.e., every user in the group should be familiar with at
least c other users. The minimum-degree constraint is an
important measure of group cohesiveness in social science
research [25]. Known as c-core, it has been widely investi-
gated in the research of graphproblems [2,6,22] and accepted
as an important constraint in practical applications [28]. The
spatial constraint Λ can be a range constraint, a k-nearest
neighbor (kNN) constraint or a relaxed k-nearest neighbor
(rkNN) constraint, where kNN (resp. rkNN)means the result
group, among all valid groups of exactly (resp. no fewer than)
k users that satisfy theminimum acquaintance constraint, has
the minimum spatial distance to the query issuer.

Figure 1 illustrates an example of GSGQ, where the social
network is split into a social layer and a spatial layer for
clarify of presentation. Suppose user v1 wants to arrange a
friend gathering of some friends nearby. To have a friendly
atmosphere in the gathering, she hopes anyone in the group
should be familiar with at least two other users. Thus, she
issues a GSGQ = (q,Λ, c) with q set as v1, Λ being 3NN,
and c = 2. With the objective of minimizing the spatial dis-
tance between q and the farthest user in the group, the result
group she will obtain is W = {v2, v5, v6}. Alternatively, to
find an acquainted group of friends within a fixed range, she
may issue a GSGQ = (q,Λ, c) with q set as v1, Λ being r

Fig. 1 An example of GSGQ 〈v1, 3NN , 2〉. Lines between the users
represent acquaintance relations and the points on the spatial layer
denote the positions of the users

(shaded area in Fig. 1), and c = 2. In this example, she will
also obtain W = {v2, v5, v6}.

We argue that compared to the geo-social group queries
studied in prior work [20,31], our GSGQs, with the adoption
of a minimum acquaintance constraint, are more appealing
to produce a cohesive group that guarantees the worst-case
acquaintance level. Nonetheless, these GSGQs are much
more complex to process than conventional spatial queries.
Particularly, when the spatial constraint is strict kNN, we
prove that GSGQs are NP-hard. Due to the additional social
constraint, traditional spatial query processing techniques
[4,10,13,23] cannot be directly applied to GSGQs. More-
over, these queries are intrinsically harder than other variants
of spatial queries, such as spatial keyword queries [7,29,32]
and collective spatial keyword queries [5], which only intro-
duce independent attributes (e.g., text descriptions) of the
objects but not binary relations among them.

On the other hand, most previous works on group queries
in social networks use sequential scan in query processing.
That is, they enumerate every possible combination of a user
group and optimize the processing through some pruning
heuristics. Although Yang et al. [31] proposed an SR-tree to
cluster the users of each leaf node, this index achieves more
significant reduction on computation than on disk accesses
since it separates spatial and social constraints in the cluster-
ing process. Thus, when geo-social queries such as GSGQs
are processed, still many disk pages are accessed to fetch
the users that satisfy both spatial and social constraints.
Moreover, its filtering techniques only work for average-
degree social constraints, and are not suitable for GSGQs
with minimum-degree social constraints. In this paper, we
propose two novel social-aware spatial indexing structures,
namely SaR-tree and SaR*-tree, for efficient processing of
general GSGQ queries on external storage. The main idea
is to project the social relations of an LBSN on the spatial
layer and then index both social and spatial relations in a
uniform tree structure to facilitate GSGQ processing. Fur-

123

Geo-social group queries with minimum acquaintance constraints 711

thermore, we optimize the in-memory processing of GSGQs
with a strict kNN constraint by devising powerful pruning
strategies. To sum up, the main contributions of this paper
are as follows:

– We propose a new family of geo-social group queries
with minimum acquaintance constraint (GSGQs), which
guarantees the worst-case acquaintance level. We prove
that the GSGQs with a strict kNN spatial constraint are
NP-hard.

– We design new social-aware index structures, namely
SaR-tree and SaR*-tree, for GSGQs. To optimize the I/O
access and processing cost, a novel clustering technique
that considers both spatial and social factors is proposed
in the SaR*-tree. The update procedures of both indexes
are also presented.

– Basedon theSaR-tree andSaR*-tree, efficient algorithms
are developed to process various GSGQs.
Moreover, in-memory optimizations are proposed for
GSGQs with a strict kNN constraint.

– We conduct extensive experiments to demonstrate the
performance of our proposed indexes and algorithms.

The rest of this paper is organized as follows. Section 2
reviews the related works. Section 3 introduces some core
concepts in the social constraint and formalizes the prob-
lems of GSGQs. Section 4 presents the designs of basic
SaR-tree and optimized SaR*-tree. Section 5 details the pro-
cessing methods for various GSGQs based on SaR-trees.
Section 6 describes the update algorithms of SaR-trees. Sec-
tion 7 evaluates the performance of our proposals. Finally,
Sect. 8 concludes the paper and discusses future directions.

2 Related works

2.1 Spatial query processing

Many spatial databases use R-tree or its extensions [4,13]
as an access method to disk storage for spatial queries
(e.g., range, kNN, and spatial join queries). Figure 2 shows
nine objects in a two-dimensional space and how they are
aggregated into Minimum Bounding Rectangles (MBRs)
recursively to build up the corresponding R-tree. An R-tree
node is composed of a number of entries, each covering a set
of objects and using an MBR to bound them. A query is pro-
cessed by traversing the R-tree from the root node all the way
down to leaf nodes for qualified objects. During this process,
a priority queue H can be used to maintain the entries to be
explored. A generic query evaluation procedure for a query
Q can be summarized as follows: (1) push the entries of the
root node into H ; (2) pop up the top entry e from H ; (3) if

3

4

9

1

8

2

6

5

7

query point

a

b

d

c

A

B

A B

c d

5 6 7 8 9

root

B

c d

a b

1 2 3 4

A

a b

leaf node

level

2

1

0

Fig. 2 An example of R-tree

e is a leaf entry, check if the corresponding object is a result
object otherwise push all qualified child entries of e into H ;
(4) repeat (2) and (3) until H is empty or a termination con-
dition of Q is satisfied. The construction of R-trees can be
either incremental [4,13] or bulk-loaded.

Some variants of spatial queries have been studied with
the consideration of certain grouping semantics. The group
nearest neighbor query [23] extends the concept of the near-
est neighbor query by considering a group of query points.
It targets at finding a set of data points with the smallest
sum of distances to all the query points. Based on R-tree,
Papadias et al. [23] proposes various pruning heuristics to
efficiently process group nearest neighbor queries. The spa-
tial keyword query is anotherwell-known extension of spatial
queries that exploits both locations and textual descriptions
of the objects. Most solutions for this query, e.g., BR*-tree
[32], I R2-tree [7], and IR-tree [29], rely on combining the
inverted index, which was designed for keyword search, with
a conventional R-tree. The collective spatial keyword query
[5] further considers the problem of retrieving a group of
spatial web objects such that the group’s keywords cover the
query’s keywords and the objects, with the shortest inter-
object distances, are nearest to the query location. Based on
IR-tree, Cao et al. [5] proposes dynamic programming algo-
rithms for exact query processing and greedy algorithms for
approximate query processing. It is noteworthy that while
these works deal with some grouping semantics, they do not
consider acquaintance relations in social networks.

2.2 Social network analysis and query processing

There have been a lot of works on community discovery in
social networks. There is a comprehensive survey on commu-
nity finding in graphs [11]. A typical approach is to optimize
the modularity measure [12]. Since communities are usually
cohesive subgraphs formed by the users with the acquain-
tance relationship, some graph structures such as clique [15],
k-core [25], and k-plex [2,21,22] have been well studied
under this topic. However, most of these works only provide
theoretical solutions with asymptotic complexity, with a few
exceptions such as the external-memory top-down algorithm
for core decomposition [6].

123

712 Q. Zhu et al.

As for query processing in social networks, Faloutsos et
al. [9] addresses the problem of finding a subgraph that con-
nects a set of query nodes in a graph. Sozio and Gionis [28]
studies a query-dependent variant of the community discov-
ery problem, which finds a dense subgraph that contains the
query nodes. Based on ameasure of graph density, an optimal
greedy algorithm is proposed. The authors of [28] also prove
that finding communities of size no larger than a specified
upper bound is NP-hard. Besides, Yang et al. [30] proposes
a socio-temporal group query with acquaintance constraint
in social networks. The aim is to find the activity time and
attendeeswith theminimum total social distance to the initia-
tor. As this problem is NP-hard, heuristic-based algorithms
have been proposed to reduce the run-time complexity. How-
ever, all these works do not consider the spatial dimension of
the users and thus cannot be applied to location-based social
networks.

2.3 Geo-social query processing

Efficient processing of queries that consider both spatial and
social relations is essential for LBSNs. Doytsher et al. [8]
directly combines spatial and social networks and proposes
graph-based query processing techniques. Liu et al. [20] pro-
poses a circle-of-friendquery tofindminimal-diameter social
groups. By transforming the relations in social networks into
social distances among users, an integrated distance com-
bining both spatial and social distances is proposed. Yang et
al. [31] considers a special socio-spatial group query with
the requirement of minimizing the total spatial distance.
Accordingly, in-memory pruning and searching schemes are
proposed in [31]. All these works only impose a loose social
constraint in the query. As for the processing techniques,
the methods of these works enumerate all possible com-
binations guided by some searching and pruning schemes.
Although a tree structure named SR-tree is introduced in
[31], it is mainly used to reduce the enumeration of states
during the in-memory processing. With that said, external-
memory indexes tailored for geo-social query processing in
large-scale LBSNs are still lacking. More recently, Armenat-
zoglou et al. [1] proposes a general framework for geo-social
query processing, which separates the social, geographi-
cal and query processing modules and thus enables flexible
data management. Since its pruning power comes separately
from the social and spatial index, it cannot further optimize
the processing of GSGQ with access methods that integrate
both spatial and social information. Li et al. [19] studies
a geo-social query that retrieves a group of socially con-
nected userswhose familiar regions collectively cover a set of
query points. Zhang et al. [34] proposes a geo-social location
recommendation system based on personalized social and
geographical influence modeling. Similarly, Shi et al. [26]

proposes to cluster and categorize locations based on social
and spatial density obtained from geo-social networks.

3 Preliminaries and problem statement

Aiming to find a cohesive group of acquaintances, GSGQs
use c-core [25] as the basis of social constraint to restrict
the result group. In this section, we first introduce the defini-
tion and the properties of c-core, based on which the GSGQ
problems are then formalized.

3.1 C-core

C-core is a degree-based relaxation of clique [25]. Consider
an undirected graph G = (V, E), where V is the set of
vertices and E is the set of edges. Given a vertex v ∈ V , we
define the set of neighbors of v as NG(v) = {u ∈ V | uv ∈ E}
and the degree of v as degG(v) = |NG(v)|. Accordingly,
the maximum and minimum degrees of G are represented
as Δ(G) = maxv∈V degG(v) and δ(G) = minv∈V degG(v),
respectively. Let G[W] denote a subgraph induced by W ⊆
V . The following is a generalized definition of a c-core [25].

Definition 1 (c-core) A subgraph G[W] is a c-core (or a
core of order c) if δ(G[W]) ≥ c.

The c-core defined in Definition 1 is not required to be
maximum and fits for GSGQs in various applications. In the
sequel, the term c-core refers to both the set W and the sub-
graph G[W]. The core number of a vertex v, denoted by cv ,
is the highest order of a core that contains this vertex.

A greedy algorithm can be used for core decomposition,
i.e., finding the core numbers for all vertices in G. The basic
idea is to iteratively remove the vertex with the minimum
degree in the remaining subgraph, together with all the edges
adjacent to it, and determine the core number of that vertex
accordingly. The most costly step of this algorithm is sorting
the vertices according to their degrees at each iteration. As
shown in [3], a bin-sort can be used with O(|V | + |E |) time
complexity. Thus, for a given c, we can find the maximum
c-core of G in O(|V | + |E |) time.

3.2 Problem statement

Consider an LBSN G = (V, E), where the set of vertices V
denotes the users and the set of edges E denotes the acquain-
tance relations1 among the users in V . For any two users
v, u ∈ V , there exists an edge vu ∈ E if and only if v is

1 Such relation can be either a “friend” relation or a more intimate
acquaintance relation, depending on the nature of the group event in a
GSGQ service.

123

Geo-social group queries with minimum acquaintance constraints 713

acquainted with u. Moreover, for any user v ∈ V , its loca-
tion pv is also stored in G. Given two users v and u, let
d(v, u) denote the spatial distance between v and u, and the
(largest) distance from v to a set of users W is defined by
dmax(v,W) = maxu∈W d(v, u).

As formally defined below, a GSGQ finds a group of users
that satisfies the given spatial and social constraints. Without
loss of generality, we assume that the query issuer q ∈ V .

Definition 2 [Geo-social group query with minimum
acquaintance constraint (GSGQ)] Given an LBSN G =
(V, E), a GSGQ is represented as Qgs = (v,Λ, c), where
v ∈ V is the query issuer, Λ is a type of spatial query
denoting the spatial constraint, and c is the minimum degree
of result group, denoting the social acquaintance constraint
as in [20,31]. GSGQ finds a maximal user result set W
which satisfiesΛ and the condition that the induced subgraph
G[W ∪ {v}] is a c-core, or formally, δ(G[W ∪ {v}]) ≥ c.

As for the spatial constraint, this paper mainly focuses
on three query types: range (i.e., window) query, relaxed k-
nearest neighbor (rkNN) query, and strict k-nearest neighbor
(kNN) query. Accordingly, they correspond to three types of
GSGQs:

– GSGQ with range constraint, denoted as GSGQrange. A
GSGQrange is represented as Qgs = (v, range, c), where
pv ∈ range. It targets at finding the largest c-coreW∪{v}
located inside range, a rectangular spatial window. For
example, “find me the largest user group satisfying c-
core in 5th Avenue, Manhattan, NYC”.

– GSGQ with relaxed kNN constraint, denoted as GSGQ

rkNN. A GSGQrkNN is represented as Qgs = (v, rkNN,

c). It targets at finding a maximal c-core W ∪ {v} of size
no less than k + 1 with the minimum dmax(v,W). Here
“relaxed” means the size of the result is not strictly k+1,
and as a general requirement in GSGQ the size should
be the largest possible. For example, “find me the closest
(maximal) group of at least nine users satisfying c-core
to be eligible for a bulk discount”.

– GSGQwith strict kNN constraint, denoted as GSGQkNN.
A GSGQkNN is represented as Qgs = (v, kNN, c). It is a
strict form of GSGQrkNN, which requires that the c-core
W ∪ {v} has an exact size of k + 1. For example, “find
me the closest group of three users satisfying c-core to
play tennis doubles with me”.

For these GSGQs, we prove the following theorems on
their complexities.

Theorem 1 GSGQrange and GSGQrkNN can be solved in
polynomial time.

Proof As we will show in the next subsection, processing a
GSGQrange can be completed by running core decomposition

once, while processing a GSGQrkNN can be completed by
running core decomposition atmost |V | times. Since the time
complexity of core decomposition is O(|V | + |E |), both of
the queries can be solved in polynomial time. �	
Theorem 2 GSGQkNN is NP-hard.

Proof It has been proved in [2] that given a graph G and
positive integers c̄ and k, determining whether there exists a
c̄-plex of size k+1, i.e., a setW such that δ(G[W]) ≥ |W |−c̄
and |W | = k+1, is NP-complete. Since a c-core of size k+1
is equivalent to a (k + 1− c)-plex, we can find a (k + 1− c)-
plex of size k + 1 by iteratively applying GSGQkNN for each
user v in G. If a c-core of size k + 1 is found for a user v,
then a (k+1− c)-plex of size k+1 exists; otherwise, such a
(k+1−c)-plex does not exist. In this way, the c̄-plex problem
can be polynomially reduced to GSGQkNN. This proves that
GSGQkNN is NP-hard. �	

3.3 R-tree-based query processing

We consider the GSGQ problems for large-scale LBSNs
where the users’ location and social information are stored
separately on external disk storage as described in [1]. A
baseline approach of processing GSGQs on an R-tree index
of user locations is as follows. For a GSGQrange Qgs =
(v, range, c), we first find all users located inside range via
R-tree, then compute the c-core W ′ of the subgraph formed
by these users. If v exists in W ′, then W = W ′ − {v} is the
final result; otherwise, there is no result for Qgs. Since the
user filtering step can be done in O(|V |) time and the core
decomposition step can be done in O(|V | + |E |) time, the
complexity of this method is O(|V | + |E |).

For a GSGQrkNN Qgs = (v, rkNN, c), according to its
definition, we access the users in ascending order of their
spatial distances to v. As such, we use a similar procedure
to kNN search on R-tree. Specifically, we employ a priority
queue H whose priority score is spatial distance to v, and a
candidate result set ˜W . At the beginning, ˜W is initialized as
{v} and all the root entries of the R-tree are put into H . Each
time the top entry e of H is popped up and processed. If e is a
non-leaf entry, its child entries are accessed and put into H ;
otherwise, e is a leaf entry, i.e., a user, so e is added into ˜W .
When the size of ˜W exceeds k, we compute the c-coreW ′ of
the subgraph formed by the users in ˜W . If |W ′| ≥ k + 1 and
v ∈ W ′, W = W ′ − {v} is the result; otherwise, the above
procedure is continued until the result is found. Since each
round of c-core detection can be done in O(|V | + |E |) time,
the complexity of this method is O(|V |(|V | + |E |)).

For a GSGQkNN Qgs = (v, kNN, c), the processing is
similar to GSGQrkNN. The major difference is how to find
the result from ˜W . Since the query returns exact k users, all
possible user sets of size k + 1 and containing v are checked
to see if it is a c-core. If such a user set W ′ exists, then

123

714 Q. Zhu et al.

W = W ′ − {v} is the result. There are C |V−1|
k possible user

sets to be checked, where C |V−1|
k denotes the number of k-

combinations from the user set V −{v}. Thus, the complexity
of this method is O(C |V−1|

k (|V | + |E |)),
Obviously, these approaches are inefficient for GSGQs

with a large c value, because a large c means tighter social
constraints and thus result users from farther away. Accord-
ing to a recent study [27], the maximum c of a graph where
the c-core exists obeys a 3-to-1 power law with respect to the
count of triangles in the graph. This implies that the number
of users to search and check in these approaches increases
exponentially as c increases. On the other hand, intuitively
a large c means higher chances to prune the irrelevant users
before finding the result users. As will be proved and shown
in the rest of this paper, the efficiency can be significantly
improved by filtering the irrelevant users and optimizing the
processing order.

4 Social-aware R-trees

Since a GSGQ involves both spatial and social constraints,
to expedite its processing, both spatial locations and social
relations of the users should be indexed simultaneously.
Unfortunately, R-tree only indexes spatial locations of the
users and is thus inefficient. In this section, we design novel
social-aware R-trees (SaR-trees) to form the basis of our
query processing solutions. In what follows, we first intro-
duce the concept of Core Bounding Rectangle (CBR) and
then present the details of SaR-tree, followed by a variant
SaR*-tree.

4.1 Core Bounding Rectangle (CBR)

The social constraint of a GSGQ requires the result group to
be a c-core. Unfortunately, pure social measures such as core
number and centrality cannot adequately facilitate GSGQ
processing which also features a spatial constraint. To devise
effective spatial-dependant social measures to filter users in
query processing, in this paper, we develop the concept of
CoreBoundingRectangle (CBR)byprojecting theminimum-
degree constraint on the spatial layer. Simply put, the CBR
of a user v is a rectangle containing v, inside which any user
groupwith v does not satisfy theminimum-degree constraint.
In other words, it is a localized social measure to a user.
As a GSGQ mainly requests the nearby users, the locality
of CBR becomes very valuable for processing GSGQs. The
formal description of a CBR of user v for a minimum-degree
constraint c, denoted by CBRv,c, is given in Definition 3.

Definition 3 [Core Bounding Rectangle (CBR)] Consider
a user v ∈ G. Given a minimum-degree constraint c, CBRv,c

is a rectangle which contains v and inside which any user

Fig. 3 An example of CBR. The LBSN is shown on the spatial layer.
The points represent the users aswell as their positions,while thedashed
lines denote the acquaintance relations among users

group with v (excluding the users on the bounding edges)
cannot be a c-core. Formally, CBRv,c satisfies pv ∈ CBRv,c

and ∀W = {v} ∪ {u|u ∈ V, pu ∈ CBRv,c} δ(G[W]) < c.

An example is shown in Fig. 3. According to the acquain-
tance relations of user v2, rectangular area r1 is a CBR v2,2,
because any user group inside r1 that contains v2 cannot be
a 2-core. On the contrary, r2 is not a CBRv2,2, because some
user groups inside r2 that contain v2, e.g., {v2, v1, v6}, are
2-cores. Note that CBRv,c is not unique for a given v and c.
For example, r3 is another CBRv2,2 for user v2. FromDefini-
tion 3, we can quickly exclude a user v from the result group
by checking CBRv,c during query processing. For example,
if the query range of a GSGQrange is covered by CBRv,c,
then v can be safely pruned from the result. This property
makes CBR a powerful pruning mechanism.

Computing CBR of a user In an LBSN G, given a user v

and minimum-degree constraint c, a simple method to com-
puteCBRv,c is to search neighboring users in ascending order
of distance until there is a user u such that the core number
of v in the subgraph formed by the users inside �v,u (i.e.,
the circle centered at v with radius d(v, u)) is no less than
c, i.e., all user groups located within �v,u are not qualified
as a c-core. CBRv,c can then be easily derived from �v,u as
follows. We first compute the bounding box of the circle and
move out one bounding edge to go through u. Then, we check
the nodes inside the rectangle but outside the circle. For each
of them, we move out one bounding edge to go through u
so that the node becomes outside of the new rectangle. An
example is shown in Fig. 4a, where a CBRv2,2 is constructed
based on users v5, v6, and v8. This generated CBR satisfies
Definition 3 since the users inside it (i.e., v1, v2, v3) cannot
form 2-core groups. However, it is not a maximal one, thus
limiting its pruning power in GSGQ processing. We improve
this initial CBRv,c by recursively expanding it from each

123

Geo-social group queries with minimum acquaintance constraints 715

(a) (b)

Fig. 4 An exemplary procedure of computing CBRv2,2 in an LBSN.
The number after a user vi denotes the core number of v2 in the subgraph
determined by vi . For a, the subgraph is formed by the users inside
�v2,vi ; for b, the subgraph is formed by the users inside CBRv2,2 when
moving its bottom edge outward to go through vi . a Initialization. b
Expansion

bounding edge until no edge can be further moved outward
(see Fig. 4b). Depending on different initial CBRs and dif-
ferent expanding orders, there could be a number of maximal
CBRs.

Algorithm 1 details the procedure of computing CBRv,c.
In Line 1, we first sort the users of V in ascending order of
their distances to v. In Lines 2–5, we find the nearest user
u such that cv ≥ c in the subgraph formed by the users in
V with equal or shorter distances to v. In Line 6, we initial-
ize CBRv,c based on u such that CBRv,c does not contain
any user outside �v,u . An exemplary way is to compute the
bounding box of �v,u first and move one bounding edge to
go through u. Then, check the users which are located inside
the rectangle but outside �v,u . For each of them, move one
bounding edge of the rectangle to go through it so that the user
is not located inside the new rectangle. In this procedure, a
greedy scheme is adopted to always select the bounding edge
whichmaximizes the area of the rectangle. In Lines 7–10, we
expand CBRv,c by moving each bounding edge l of CBRv,c

outward, if cv < c in the subgraph formed by the users inside
CBRv,c and on l. Obviously, the rectangle generated byAlgo-
rithm1 is amaximalCBRv,c, i.e., it is aCBRv,c and cannot be
fully covered by any other CBRv,c. This property guarantees
its pruning power for GSGQ processing, and such maximal
CBRswill be stored in the social-awareR-trees. Figure 4 pro-
vides an exemplary procedure for computing CBRv2,2 when
applying Algorithm 1 on an LBSN.

To save the computing and storage cost,weonlymaintain a
limited number of CBRs for user v—CBRv,20 , CBRv,21 , . . .,
CBRv,2log2 cv�—where cv is the core number of v in G. We
choose CBRs with respect to exponential minimum-degree
constraints because for a larger c, as shown in Sect. 7, much
fewer c-cores exist and keeping sparse CBRs is sufficient to
support effective pruning.

Algorithm 1 Computing CBR of a User
Input: LBSN G = (V, E), user v, constraint c
Output: CBRv,c

CompCBR(G, v, c)
1: Sort users of V in ascending order of distances to v;
2: for each user u in V do
3: Compute cv in the subgraph formed by the users before (and

including) u;
4: if cv ≥ c then
5: Break;
6: end if
7: end for
8: Build an initial CBRv,c which goes through u and does not contain

any user outside �v,u ; //u is the user that breaks the above loop
9: Sort users of V in horizontal and vertical order, respectively.
10: while existing a bounding edge l of CBRv,c s.t. cv < c in the

subgraph formed by the users inside CBRv,c and on l do
11: Move l outward to the next (or previous) user in horizontal (or

vertical) order until cv ≥ c in the subgraph formed by the users
inside CBRv,c and on l;

12: end while
13: return CBRv,c;

Complexity analysis. Let n = |V | and m = |E |. In Algo-
rithm 1, the sorting step, i.e., Line 1, requires O(n log n) time
complexity. Since the core number of a user in graph G can
be computed in O(n+m) time, initializing CBRv,c in Lines
2–6 requires O((n + m)n) time complexity. Further sorting
step in Line 7 requires O(n log n) time complexity. During
CBR expansion in Lines 8–9, the movement of a bounding
edge requires O((n + m)n) time complexity. In total, the
time complexity of Algorithm 1 is O((n + m)n). By apply-
ing a binary search to find a proper u in CBR initialization
and a proper user to go through in CBR expansion, the time
complexity can be reduced to O((n + m) log n). Usually,
m > n in an LBSN, so the time complexity of Algorithm 1
is O(m log n).

4.2 SaR-tree

We now present the basic SaR-tree. It is a variant of R-tree
in which each entry further maintains some aggregate social
relation information for the users covered by this entry. Fig-
ure 5 exemplifies an SaR-tree. Different from a conventional
R-tree, each entry of an SaR-tree refers to two pieces of infor-
mation, i.e., a set of CBRs (detailed below) and an MBR, to
describe the group of users it covers. An example of the for-
mer, CBRsb is shown in the figure. It comprises the core
number cb and two CBRs {CBRb,1,CBRb,2} for entry b.
The core number of an entry is the maximum core number of
the users it covers, which bounds the number of CBRs of this
entry. Considering that only one CBR of an entry is related to
a GSGQ, we optimize the storage by decoupling CBRs from
MBR, as shown in Fig. 5. Then, we can directly access the
CBR page with the specified c, without losing any pruning
power of R-tree. Perceptually, a CBR in the SaR-tree bounds

123

716 Q. Zhu et al.

Fig. 5 SaR-tree. CBRse denotes the set of CBRs for an entry e

a group of users from the social perspective while an MBR
bounds the users from the spatial perspective. As such, SaR-
tree gains the power for both social-based and spatial-based
pruning during GSGQ processing, as will be explained in the
next section.

CBR of an entry. To define the CBRs for each SaR-tree
entry, we extend the concept of CBR defined for each indi-
vidual user (in the previous subsection). Let MBRe and Ve
denote the MBR and the set of users covered by an entry
e, respectively. A CBR of e is a rectangle which intersects
MBRe and inside which any user group containing any user
from Ve cannot satisfy the minimum-degree constraint. The
formal definition of a CBR of entry e with respect to a
minimum-degree constraint c, denoted by CBRe,c, is given
as follows:

Definition 4 (CBR of an entry) Consider an entry e with
MBRMBRe and user set Ve. Given a minimum-degree con-
straint c, CBRe,c is a rectangle which intersects MBRe and
inside which any user group containing any user from Ve
(not including the users on the bounding edges) cannot be a
c-core.

Note that CBRe,c is required to intersect MBRe to guar-
antee its locality. Figure 5 shows two examples of CBRs for
an entry b, where Vb = {v3, v4}. We can see that any user
group inside CBRb,2 and containing v3 or v4 (not including
v9 on the bounding edges) cannot be a 2-core. Thus, during
GSGQprocessing, wemay safely prune entry e, for example,
if the query range of a GSGQrange (with a minimum-degree
constraint of 2) is fully covered by CBRb,2. Since CBRe,c

is determined by the set of users in Ve, we use CBRVe,c and
CBRe,c interchangeably.

To efficiently generate the CBRs of the entries in SaR-
tree, we adopt a bottom-up approach in our implementation.
Obviously, the CBR of a leaf entry e is just the CBR of the
user it covers. For a non-leaf entry e, let e1, e2, . . . , em be
the child entries of e. Then, the CBR of e can be computed
by recursively applying the following function on CBRe1 ,

. . . ,CBRem :

CBR{e1,...,ei+1},c =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

CBR{e1,...,ei },c, if
MBRei+1 ∩ CBR{e1,...,ei },c = φ

CBR{e1,...,ei },c ∩ CBRei+1,c,

otherwise

Finally, CBRe,c = CBR{e1,...,em },c. It is easy to verify that the
CBRs of the entries generated by the above approach satisfy
Definition 4.

For an entry e, similar to a user, we only store the CBRs
of e with respect to minimum-degree constraints 20, 21, . . . ,
2log2 ce�, where ce = maxv∈Ve cv is the core number of e.
Let cG denote the maximum core number of the users in G
and s denote the minimum fanout of an SaR-tree. The total
number of CBRs in an SaR-tree can be estimated as,

nCBR ≤
∑

v∈V
(log2 cv� + 1) + 2n(log2 cG� + 1)

s

≤ n(log2
∑

v∈V cv

n
� + 2(log2 cG� + 1)

s
+ 1).

Since cG and
∑

v∈V cv
n are quite small in a typical LBSN (e.g.,

they are 43 and 4.5 for the Gowalla dataset used in our exper-
iments), the storage cost of CBRs is comparable to G (e.g.,
around 2.3n in our experiments).

Based on the concept of CBRs, SaR-tree can be directly
built on top of R-tree. That is, we first construct a standard
R-tree based on the locations of the users and then embed
the CBRs into each entry. In this way, SaR-tree indexes
both spatial locations and social relations of the users. Note
that the users in SaR-tree are organized merely based on
their locations—they are spatially close, but may not be well
clustered in terms of their social relations. This unfortu-
nately weakens the pruning power of SaR-tree in processing
GSGQs. To overcome this weakness, we propose a variant
in the next subsection.

4.3 SaR*-tree

Inspired by R*-tree, the R-tree variant that optimizes the
grouping of spatial object to minimize the disk I/O cost, we
propose SaR*-tree as an variant of SaR-tree. It has the same
node structure but uses a different closeness metric to group
users into nodes. Specifically, instead of using only the spatial
area of MBR for closeness, SaR*-tree defines a new close-
ness metric I (V) for a group of users V that integrates both
CBRs andMBRs to measure the combined social and spatial
closenesses:

I (V) = ||MBRV || ·
∑

c

(|| ∪v∈V CBRv,c − CBRV,c||) (1)

where ||·|| is the area of anMBRorCBR, and∪v∈VCBRv,c−
CBRV,c quantifies the similarity of CBRs of the users in V .

123

Geo-social group queries with minimum acquaintance constraints 717

Obviously, a small I (V) indicates that the users of V have
both close locations and similar CBRs. This new closeness
metric will be used in the R-tree construction.

Similar to SaR-tree, SaR*-tree is also constructed by iter-
atively inserting users. During this construction, CBRs and
MBRsare generated at the same time andused for further user
insertion. Moreover, if a node N of an SaR*-tree overflows,
it will be split. The details about these two main operations
in SaR*-tree construction, i.e., user insertion and node split,
are described below.

– User insertion. When a user v is inserted into an SaR*-
tree, for a node N with entries e1, e2, . . . , em , we will
select the entry ei with the minimal I (Vei ∪{v}) to insert
v.

– Node split.When a node N of an SaR*-tree overflows,we
split N into two sets of entries N1 and N2 with the mini-
mal I (∪ei∈N1Vei)+ I (∪e j∈N2Ve j). Then, the parent node
of n use two entries to point to n1 and n2, respectively.
This splitting may propagate upwards until the root.

5 GSGQ processing

In this section, we present the detailed processing algorithms
based on SaR-trees for various GSGQs. As mentioned in
Sect. 3, we mainly focus on three types of GSGQs, namely,
GSGQrange, GSGQrkNN, and GSGQkNN. We will show that
the CBRs of SaR-trees can be used in different ways for
processing these queries.

5.1 GSGQ with range constraint

When processing a GSGQrange Qgs = (v, range, c), each
entry of the SaR-tree or SaR*-tree that may cover result users
will be visited and possibly further explored. Compared to
traditional R-trees, which only provide spatial information
via MBRs, an SaR-tree or SaR*-tree provides much greater
pruning power due to the social information in CBRs. Con-
sider an exemplary GSGQ Qgs = (v1, range, 2) in Fig. 5,
where the shaded area is the query range. When entry b
(which covers users v3 and v4) is visited, b needs further
exploration if we only consider MBRb like in regular R-
tree. However, with CBRb,2, we can easily decide that any
user group inside the query range and containing any user in
Vb (i.e., v3 or v4), cannot be a 2-core, because the query
range is covered by CBRb,2. Since Vb does not contain
any result user, we can simply prune entry b from further
processing, as formally proved in Theorem 3. Considering
SaR-trees only maintain the CBRs with respect to exponen-
tial minimum-degree constraints, given a minimum degree
c, we use CBRv,2log2 c� to represent CBRv,c in GSGQrange

processing. Similar ideas are also applied in GSGQrkNN and
GSGQkNN processing.

Theorem 3 For a GSGQrange Qgs = (v, range, c) where
pv ∈ range, any user in Ve of entry e does not belong to the
result group if range ⊂ CBRe,c and range does not contain
any bounding edge of CBRe,c.

Proof We prove it by contradiction. If the theorem is not
true, i.e., a user u ∈ Ve belongs to the result group W . Since
the users of W ∪ {v} are located inside range and range ⊂
CBRe,c does not contain any bounding edge of CBRe,c,W ∪
{v} is a c-core with u inside CBRe,c (not including the users
on the bounding edges), which is contradictory to the CBR
definition for an entry.

Algorithm 2 Processing GSGQrange

Input: LBSN G = (V, E), Qgs = (v, range, c)
Output: Result of Qgs

ProGSGQRange(G, Qgs)
1: Let c′ = 2log2 c�;
2: if cv < c or range ⊂ CBRv,c′ then
3: return φ;
4: end if
5: Initialize H with the root entries of index tree;
6: while H has non-leaf entries do
7: Pop the first non-leaf entry e from H ;
8: for each child entry e′ of e do
9: if range ∩ MBRe′ �= φ and ce′ ≥ c and range �⊂ CBRe′,c′

then
10: Put e′ into H ;
11: end if
12: end for
13: end while
14: Get the users ˜W corresponding to the entries of H ;
15: Compute the maximum c-core W ′ of G[˜W];
16: if v ∈ W ′ then
17: return W = W ′ − {v};
18: else
19: return φ;
20: end if

Algorithm 2 details the procedure of processing a GSGQ

range based on an SaR-tree or SaR*-tree. At the beginning,
we access the CBR of user v. If cv < c or range ⊂ CBR

v,2log2 c� , it means the core number of v is smaller than c
in the subgraph formed by the users inside range. Thus, we
cannot find any c-core containing v inside range and there
is no answer to Qgs (Lines 2–3). Otherwise, we move on to
find all candidate users ˜W via the proposed pruning schemes
(Lines 6–13). Then, we compute the maximum c-coreW ′ of
G[˜W] by applying the core decomposition algorithm (Line
15). If v ∈ W ′,W = W ′ −{v} is the answer; otherwise, there
is no answer to Qgs.

We again use the example in Fig. 5 to illustrate the pruning
power of the proposed algorithm for processing GSGQrange.

123

718 Q. Zhu et al.

When applying the baseline algorithm based on R-tree, 5
users, i.e., v2, v3, v5, v6 and v8, need to be accessed. In
contrast, in the proposed algorithm, by using both MBRs
and CBRs, there is no need to access index node b (as well
as its covered user v3) and user v8 since range ⊂ CBRb,2

and range ⊂ CBRv8,2. As a result, only 3 users are accessed,
achieving a great saving on computing and I/O cost.

5.2 GSGQ with relaxed kNN constraint

To process a GSGQrkNN Qgs = (v, rkNN, c) on an SaR-
tree or SaR*-tree, we maintain a priority queue H of entries,
whose priority score is the spatial distance from v to both
MBRe and CBRe,c. Let LCBRe,c denote the set of bounding
edges of CBRe,c and d(v, l) denote the distance from v to
edge l. The distance from v to CBRe,c, where v is located
inside CBRe,c, is defined as the minimum distance from v to
reach any bounding edge of CBRe,c. Formally,

din(v,CBRe,c) =
{

minl∈LCBRe,c
d(v, l), v ∈ CBRe,c

0, otherwise

In our implementation, din(v,CBRe,c) is computed based
on CBRv,2log2 c� . H uses de = max{d(v,MBRe), din(v,

CBRe,c)} of an entry e as the sorting key in the queue. The
rationale of adopting this priority queue is as follows. By
Definition 4 and the definition of din , any user group inside
the area �(v, din(v,CBRe,c)) and containing any user in Ve
cannot be a c-core. In other words, if some users covered
by entry e belong to a candidate group which satisfies the
social acquaintance constraint, the maximum distance of the
candidate group to v is expected to be at least de. There-
fore, we can derive another constraint on dmax(v,W) (recall
that dmax(v,W) is defined as maxu∈W d(v, u)) as summa-
rized in Theorem 4 below. By combing both constraints of
dmax(v,W) in de, we can get an optimized processing order
of the entries on an SaR-tree or SaR*-tree. Figure 6 shows an
example to demonstrate this rationale. Suppose user v1 issues
a GSGQrkNN Qgs = (v1, r3NN , 2). When entry b cover-
ing users v3 and v4 is visited, we have d1 = d(v1,MBRb)

and d2 = din(v1,CBRb,2). Then, the key of b is set to be
db = max{d1, d2} = d2. We can see that if v3 or v4 belongs
to the result group, it should also contains v9 to make the
whole group a 2-core, which makes the maximum distance
to v1 larger than dc. Thus, we can access entry c before b,
although c is spatially farther away from v1 than b. As a
result, a candidate group W = {v2, v6} can be obtained after
accessing entry c, since dmax(v1,W) < db, there is no need
to visit entry b any longer, thereby saving the access cost.

Theorem 4 Given a user v and a minimum-degree con-
straint c, if a user set W makes G[W ∪ {v}] a c-core, then
dmax(v,W) ≥ de for any entry e with Ve ∩ W �= φ.

Fig. 6 An example of processing a GSGQrkNN Qgs = (v1, r3NN , 2)

Algorithm 3 presents the details of processing a GSGQ

rkNN based on an SaR-tree or SaR*-tree. A set ˜W is used to
store the currently visited users and initialized as {v}. The
entries in H are visited in ascending order of de. If a visited
entry e is not a leaf entry, it will be further explored and its
child entries with ce′ ≥ c are inserted into H (Lines 7–10);
otherwise, we get its corresponding user u (Line 12) and pro-
ceed with the following steps. If cu < c, it means u cannot be
a result user. Thus, we simply ignore it and continue checking
the next entry of H . On the other hand, if cu ≥ c, u is added
into the candidate set ˜W (Lines 13–14). Then, we compute
the maximum c-core, denoted asW ′, in the subgraph formed
by ˜W (Line 15). If |W ′| ≥ k + 1 and v ∈ W ′, W ′ − {v}
is the result (Line 16–17); otherwise, the above procedure
is continued until the result is found or shown to be non-
existent. Theorem 5 proves the correctness of Algorithm 3
and its superiority to the baseline accessing model.

Theorem 5 For a GSGQrkNN Qgs = (v, rkNN, c), Algo-
rithm 3 generates the result of Qgs. Moreover, it checks equal
or less users than that of the baseline accessing model based
on d(v,MBRe).

Proof Let W be the user set returned by Algorithm 3 and
user u′ = argu∈W max d(v, u). Suppose another user set
W ′, W ′ �= W , is the result. Then, it should be either 1)
dmax(v,W ′) < dmax(v,W) or 2) dmax(v,W ′) = dmax(v,W)

and W ⊂ W ′.
For case 1, consider a user u ∈ W ′. For any entry e which

covers u, based on Theorem 4, we have de ≤ dmax(v, W ′) <

dmax(v,W) = d(v, u) ≤ du′ . According to Algorithm 3, a
super set of W ′, denoted as W ′′, should be checked before
gettingW and G[W ′′ ∪ {v}] does not contain a c-core of size
no less than k + 1 covering v. Then, W ′ cannot be the result,
which is contradictory to the assumption.

123

Geo-social group queries with minimum acquaintance constraints 719

Algorithm 3 Processing GSGQrkNN

Input: LBSN G = (V, E), Qgs = (v, rkN N , c)
Output: Result of Qgs

ProGSGQrKNN(G, Qgs)
1: if cv < c then
2: return φ;
3: end if
4: ˜W = {v};
5: Initialize H with the entries of the root node;
6: while H �= φ do
7: Pop the first entry e from H ;
8: if e is not a leaf entry then
9: for each child entry e′ of e do
10: if ce′ ≥ c then
11: Compute de′ and put e′ into H ;
12: end if
13: end for
14: else
15: Get the corresponding user u of e;
16: if cu ≥ c then
17: ˜W = ˜W ∪ {u};
18: if the first entry e′ in H has de′ > de then
19: Compute the maximum c-core W ′ in ˜W ;
20: if |W ′| ≥ k + 1 and v ∈ W ′ then
21: return W ′ − {v};
22: end if
23: end if
24: end if
25: end if
26: end while
27: return φ;

For case 2), consider a user u ∈ W ′ and u /∈ W . According
to Algorithm 3, there is a any entry e which covers u and
de > du . Based on Theorem 4, we have dmax(v,W ′) ≥ de >

du′ ≥ d(v, u) = dmax(v,W), which is contradictory to the
assumption dmax(v,W ′) = dmax(v,W).

To conclude, W is the result of Qgs.
Let S and S′ be the entries explored byAlgorithm 3 and by

the baseline accessing model based on d(v,MBRe), respec-
tively, for finding the result set W . Based on Theorem 4,
for any entry e ∈ S, we have de ≤ dmax(v,W) (if not, e
will not be further explored since all the users of W have
been accessed and the result set W has been found). Con-
sidering that S′ = {e|d(v,MBRe) ≤ dmax(v,W)}, then
S ⊆ {e|e ∈ S′ ∧ din(v,CBRe,c) ≤ dmax(v,W)} ⊆ S′. It
means S contains equal or less users than that of S′. �	

Recall the example in Fig. 6. When applying Algorithm 3
toprocessQgs = (v1, r3NN , 2), the access order of the users
is v2, v6, v5, v3, v4, v9 and v7. The result can be obtained by
accessing the first 3 users. In contrast, the baseline algorithm
based on R-tree accesses the users in the order of v2, v3,
v6, v5, v4, v8, v9, and v7. Then, 4 users are accessed and
processed. Obviously, by reorganizing the access order of
entries, Algorithm 3 processes GSGQrknn more efficiently.

5.3 GSGQ with strict kNN constraint

For a GSGQkNN Qgs = (v, kNN, c), we adopt the same
processing framework as in Algorithm 3. However, when a
valid W ′ is found for GSGQrkNN at Line 16, more steps will
be needed to obtain the result of GSGQkNN. Let W

′ be the
maximum c-core formed by the set of currently visited users
˜W . Only if |W ′| ≥ k + 1 and v ∈ W ′, it is possible to find
a c-core of size k + 1 in ˜W that contains v. Moreover, such
a c-core must be a subset of W ′. Thus, we invoke a function
FindExactkNN to check all user sets of size k+1 that contain
v inW ′. If such a user setW ′′ is found,W ′′ −{v} is the result
of Qgs; otherwise, the above procedure is repeated when
Algorithm 3 continues to find the next candidate W ′.

In-MemoryOptimizations.Theaboveprocessing frame-
workprovides optimizednode access onSaR-trees forGSGQ

kNN. However, due to the NP-hardness of GSGQkNN, the in-
memory processing function FindExactkNN also has a great
impact on the performance of the algorithm. A naive idea
of checking all possible combinations of the user sets costs
up to exponential time complexity of k. In this subsection,
we single out this problem to optimize the FindExactkNN
function by designing two pruning strategies.

Algorithm 4 details the optimized FindExactkNN, which
employs abranch-and-boundmethod and expands the source
user set S from the candidate user set U . At the beginning,
S and U are initialized as {v, u} and W ′ − {v, u} (u denotes
the newly accessed user in Algorithm 3), respectively. Note
that if a result W ′′ exists in W ′, W ′′ must contain u, because
it has been proved that W ′ − {u} does not contain a result.
During the processing, two major pruning strategies, namely
core decomposition based pruning (Lines 6–11, 16–20) and
k-plex based pruning (Lines 5, 12), are applied.

(1) Core decomposition-based pruning:Based on the def-
inition of c-core, we can observe that if the current source
user set S′ can be expanded to a c-core of size k + 1, it
must be contained by the maximum c-core ofU ′ ∪ S′, where
U ′ denotes the set of remaining candidate users. Therefore,
we conduct a core decomposition on U ′ ∪ S′ before further
exploration. If a user of S′ has a core number smaller than c in
U ′ ∪ S′, S′ cannot be expanded to a result from the candidate
user set U ′ and thus we can safely stop further exploration.
In addition, if the maximum c-core inU ′ ∪ S′ contains S′ and
has size k + 1, it is the result of GSGQkNN and the whole
processing terminates. Otherwise, further exploration on the
maximum c-core of U ′ ∪ S′ is required. Finally, if S′ cannot
be expanded to a c-core of size k+1, we roll back to explore
S and the remainingU . Similarly, we compute the maximum
c-core W ′ of S ∪ U . If |W ′| ≥ k + 1 and S ⊆ W ′, S could
be expanded to the result from U = W ′ − S and further
exploration is applied; otherwise, no result can be found.

(2) k-plex-based pruning: One major challenge of the c-
core problem is that it does not preserve locality, that is, if

123

720 Q. Zhu et al.

W is a c-core, adding or dropping some users from W no
longer retains it as a c-core. As a workaround, we transfer
the problem to a dual c̄-plex problem [2] (which preserves the
locality property) by adding some constraint. Simply speak-
ing, a c̄-plex W ⊆ V is a set such that δ(G[W]) ≥ |W | − c̄.

Since a c-core of size k + 1 is also a (k + 1− c)-plex, we
seek to find a (k+1−c)-plex of size k+1 to achieve further
pruning. c̄-plex preserves the locality property because if W
is a c̄-plex, dropping some users can still make it a c̄-plex. In
other words, if the maximum (k+1−c)-plex inU ′ ∪ S′ has a
size no less than k+1, it is certain that a (k+1−c)-plex of size
k+1 can be found; otherwise, such a (k+1−c)-plex cannot
be found. Moveover, (k + 1 − c)-plex is more constrained
than c-core because the size of the maximum (k+1−c)-plex
is always no larger than that of the maximum c-core of size
no smaller than k + 1.

Algorithm 4 Finding c-core of size k + 1
Input: User set U and S, c, k
Output: c-core W

FindExactkNN(U , S, c, k)
1: if |S| = k + 1 then
2: return S;
3: end if
4: while U �= φ do
5: S′ = S ∪ {u}, U = U − {u} for some u ∈ U ;
6: U ′ = {u ∈ U : S′ ∪ {u} is a (k + 1 − c)-plex };
7: Compute the maximum c-core W ′ of U ′ ∪ S′;
8: if |W ′| ≥ k + 1 and S′ ⊆ W ′ then
9: if |W ′| = k + 1 then
10: return W ′;
11: else
12: U ′ = W ′ − S′;
13: if Bp(G[U ′ ∪ S′]) ≥ k + 1 then
14: W ′′ = FindExactkNN(U ′, S′, c, k);
15: if W ′′ �= φ then
16: return W ′′;
17: end if
18: end if
19: end if
20: end if
21: Compute the maximum c-core W ′ of S ∪U ;
22: if |W ′| ≥ k + 1 and S ⊆ W ′ then
23: U = W ′ − S;
24: else
25: break;
26: end if
27: end while
28: return φ;

The properties of (k + 1 − c)-plex can be used to devise
powerful pruning strategies in processing GSGQkNN. First,
we prune those users in U who cannot expand the source
user set S′ to a (k+1−c)-plex. This pruning is implemented
in Line 5 of Algorithm 4. Second, we estimate the size of a
maximum (k+1− c)-plex to provide further pruning. Some
theoretic bounds on it have been proposed in the literature. In

Fig. 7 Exemplary procedures of the original and optimized func-
tion FindExactkNN when W ′ = {v1, v2, v3, v6, v9, v8, v4, v7} for
GSGQkNN Qgs = (v1, 3NN , 2). The entries are omitted here because
they are not related to function FindExactkNN

this paper, we adopt the result of [21] and compute an upper
bound B on the size of a maximum (k + 1 − c)-plex in a
graph G as,

Bp(G) = min
i=1,...,p

{

1

i
B(Ci

1, . . . ,C
i
mi

)

}

, (2)

and

B(Ci
1, . . . ,C

i
mi

) =
mi
∑

j=1

min{2c̄ − 2 + c̄ mod 2, c̄ + ai, j ,

Δ(G[Ci
j]) + c̄, |Ci

j |},

where c̄ = k + 1 − c, Ci
1, . . . ,C

i
mi

are co-c̄-plexes [21]
in which every vertex of V appears exactly i times, ai, j =
max{n : |{v|v ∈ V ∧ degG(v) ≥ n}| ≥ c̄ + l} for each Ci

j ,
and p is a parameter to limit the iterations of computing.

Figure 7 shows the steps of both the basic and optimized
version of function FindExactkNN where user set W ′ =
{v1, v2, v3, v6, v9, v8, v4, v7} and Qgs = (v1, 3NN , 2). In
the optimized procedure, each step shows the investigated
source user set S′ and the candidate setU ′ after filtering. For
example, in the first step, we try to check S′ = {v1, v7, v4}
and U ′ = {v2, v3, v6, v8, v9}. After filtering U ′ via Line 5
of Algorithm 4, we can get U ′ = {v2, v6, v8, v9}. Since the
maximum 2-core of U ′ ∪ S′ only has size 3, no 2-core of
size 4 can be found inU ′ ∪ S′. Thus, all the combinations of
these users can be ignored. A similar case can be found in
the second step when S′ = {v1, v7, v9}. In the third step, we
can get the upper bound of the size of the maximum 2-plex
inU ′ ∪ S′ as 3 by computing B2(G[U ′ ∪ S′]). Thus,U ′ ∪ S′
does not contain a 2-core of size 4. We can stop searching
here because no user is filtered fromU ′ in the last step, which
means all the combinations are covered. We can see that the
optimized function FindExactkNN effectively prunes unnec-
essary explorations and saves significant computation cost.

123

Geo-social group queries with minimum acquaintance constraints 721

6 Update of SaR-trees

The SaR-trees, once built, can be used as underlying struc-
tures for efficient GSGQ processing with generic spatial
constraints. It is particularly favorable for applications where
both social relations and user locations (e.g., home addresses)
are stable. However, for other applications where users may
regularly change their locations and social relations, effi-
cient update of the SaR-trees is required. This is challenging
because an update of a user affects not only her own CBR but
also those of others. In this section, we propose a lazy update
approach tailored for SaR-trees that strikes a balance between
update efficiency and effectiveness of GSGQ processing.

6.1 Lazy update in SaR-trees

Anupdate fromuser v ∈ Gmeans either her location changes
from pv to p′

v or her social relation NG(v) changes.However,
not all changes lead to the update of CBRs. The following
two rules show the location and social conditions on which
CBRs might need updates.

Updaterule 1 Location update. A CBRu,c might become
invalid only if there exists some user v such that c ≤ cv ,
pv /∈ CBRu,c, and p′

v ∈ CBRu,c.

Updaterule 2 Social updates. A CBRu,c might become
invalid only if there exist two users v, v′ such that edge vv′
is newly added, min{cv, cv′ } ≥ c and {pv, pv′ } ∈ CBRu,c.

To relieve an update procedure from intensive CBR re-
computation, we propose a lazy update model for SaR-trees.
Particularly, a memo M is introduced to store those accu-
mulated updates which have not been applied on the CBRs
of SaR-trees. Figure 8 illustrates the data structure for the
SaR-tree in Fig. 5. A user update is thus handled in three
steps. In the first step, the user record is updated, and core
decomposition is performed on G to update the core num-
bers of users if it is a social update. If the core number of a
user u changes, the core numbers of the entries along the
path from u to the root are updated. In the second step,
the user update is added into M . In this figure, user v2
adds an edge with v3, and the new edge has been inserted

Fig. 8 Lazy update and update memo

to M . Similar operation is performed for location updates
when a user moves into other users’ CBRs. In the third
step, when the size of M reaches a threshold, named the
Batch Update Size, a batch update is applied on the CBRs of
SaR-trees. This calls for re-computation of all affected CBRs
in M .

To facilitate CBR updates, an R-tree is built on the CBRs
of users. By a point containment query on this R-tree, we
can find the CBRs that cover the latest location of an updated
user. The retrieved CBRs are then filtered based on Update
Rule 1 and Update Rule 2. For the remaining CBRs, we first
determine their validity by computing the core numbers of
the corresponding users in the subgraphs formed by the users
inside the CBRs. Then, each invalid CBR is recomputed by
applying Algorithm 1 and its update is propagated to the root
along the SaR-tree path.

6.2 GSGQ processing with update memo on SaR-trees

With an update memo M , GSGQ processing algorithms
on SaR-trees need to be revised for correctness as some
CBRs may be invalid. In the following, we outline the
major changes of the processing algorithms for different
GSGQs.

GSGQrange processing To revise Algorithm 2, the
CBRswill no longer be used to prune entries when traversing
the SaR-tree. As a result, the priority queue H is composed
of a number of leaf entries, each corresponding to a user with
core number equal to or larger than c inside range. As such,
for each user u in H s.t. range ⊂ CBRu,c, we check the
other users in H located inside range: if some other user has
updates in M which might invalidate CBRu,c according to
Update Rule 1 or 2, we keep u in H ; otherwise, u is pruned
from H . In the end, if the query issuer v is pruned from H ,
there will be no result; otherwise, we obtain the result from
H as Algorithm 2 does.

GSGQrkNN (or GSGQkNN) processing To revise Algo-
rithm 3, we still use the second priority queue H ′ to store the
entries of H in ascending order of their minimal distances
to v. When putting an entry e into H , if din(v,CBRe,c) >

d(v,MBRe), we need to verify the validity of CBRe,c. For
a non-leaf entry e, we simply set de = d(v,MBRe) to
avoid the validating cost. For a leaf entry e, let u be the
corresponding user. We retrieve all users with shorter dis-
tances to the query issuer v than din(v,CBRe,c) by exploring
H ′, denoted as U . Then, we filter out the users in U who
has no update in M or cannot invalidate CBRe,c according
to Update Rule 1 or 2. If U is not empty, din(v,CBRe,c)

is updated as minu′∈U d(v, u′). It is easy to verify that if
pu ∈ �(v,minu′∈U d(v, u′)), any user group with u inside
�(v,minu′∈U d(v, u′)) cannot be a c-core. This guarantees
the correctness of the algorithm.

123

722 Q. Zhu et al.

7 Performance evaluation

In this section, we evaluate the proposed methods on three
real datasets, namely Gowalla, Dianping, and Twitter-2010,
and investigate the impact of various parameters. The code
is written in C++ and compiled by GNU gcc x64 4.5.2. All
the experiments are performed on a Dell R430 server with
dual Intel Xeon E5-2620 CPU and 64GB RAM, running
GNU/Ubuntu Linux 64-bit 14.04 LTS.

7.1 Experimental setting

The Gowalla dataset was collected from the location-
based social network Gowalla (available on http://snap.
stan-ford.edu/data/loc-gowalla.html), the Dianping dataset
was crawled by us from a Chinese restaurant review site
(available on https://goo.gl/uUV4Wg), and the Twitter-
2010 dataset is from the social network Twitter (avail-
able on http://law.di.unimi.it/webdata/twitter-2010/). For the
Gowalla dataset and the Dianping dataset, we remove the
users with no check-ins and select the first check-in position
of each user as his/her location. As a result, the preprocessed
Gowalla dataset has 107,092nodes (users) and456,830 edges
(friend relations), while the preprocessed Dianping dataset
has 2,673,970 nodes and 922,977 edges. In comparison, the
Twitter-2010 dataset is much bigger, with 41,652,098 nodes
and 684,500,219 edges. The locations of the users in Twitter-
2010 are randomly generatedwith a uniform distribution. For
both datasets, we normalize the location data into a unit space
[0,1] x [0, 1].

We implement four indexes for performance evaluation,
namely R-tree, C-imbedded R-tree, SaR-tree, and SaR*-tree.
The C-imbedded R-tree is built on top of an R-tree and addi-
tionally stores the core numbers of the index entries. The
averageCPU time of constructing a userCBR in the latter two
trees is less than 100 ms for Gowalla and Dianping, and 50
ms for Twitter-2010. The sizes of SaR-trees are 15.5MB for
Gowalla, 257MB for Dianping and 2.1GB for Twitter-2010.
The index construction time is less than 1min for Gowalla
and Dianping, and 1.3h for Twitter-2010. The correspond-
ing GSGQ processing methods on these indexes are denoted
as BR (baseline R-tree), CR, SaR and SaR*, respectively.
CR enhances BR by pruning those nodes whose core num-
bers cannot satisfy theminimum-degree constraint c in query
processing.

To have a fair comparison, we implement CR, SaR, and
SaR* by coupling extra pages with each index node to store
the information of core numbers (for CR) or CBRs (for SaR
and SaR*). These extra pages are called coupled nodes. To
compare the performance of different methods, we mainly
use two metrics, namely the page access cost and the query
running time. The former includes the page accesses of index
nodes, coupled nodes, and user data. On the other hand, the

Table 1 System parameter settings

Parameter Value Parameter Value

c 1–5 r 0.002–0.05

k 10–250 Page size 4KB

Page acc. time 2ms

Gowalla

User # 107,092 Edge # 456,830

Max degree 9967 Avg. degree 9.177

Max core num. 43 Avg. core num. 4.839

Dataset size 27.2MB

Dianping

User # 2,673,970 Edge # 922,977

Max degree 11,423 Avg. degree 5.184

Max core num. 24 Avg. core num. 2.741

Data size 162M

Twitter-2010

User # 41,652,098 Edge # 684,500,219

Max degree 1,405,986 Avg. degree 30.453

Max core num. 2,059 Avg. core num. 14.692

Dataset size 29.7GB

query running timemeasures the actual clock time to process
a GSGQ, including the CPU time and the I/O time. In the
experiments, no cache is used for GSGQ processing and the
page access time is set as 2 ms per page access. Each test ran
a set of 1000 randomly generated GSGQs, and we report the
average performance.

Three types of queries, namely GSGQrange, GSGQrkNN,
and GSGQkNN, are tested. For GSGQrange, the range r is
defined as a square centered at the location of the query issuer.
In the sequel, we use the edge length to represent r , which is
set at 0.002 for Gowalla and Dianping, and 0.05 for Twitter-
2010 by default. For GSGQrkNN andGSGQkNN, k is selected
from10 to 250,which represents large-scale time-consuming
queries for real-life social applications, e.g., the marketing
example shown in Sect. 1. Finally, the minimum-degree con-
straint c is selected from 1 to 5. Table 1 summarizes themajor
parameters and their values used in the experiments, where
the average degree only counts connected nodes.

7.2 Overall performance

Table 2 shows the average minimum degree of the result
groups for three different query semantics onGowalla, where
kNN denotes a classic k-nearest neighbor query and SSGQ
denotes the socio-spatial group query proposed in [31]. As
expected, GSGQ always retrieves the groups that satisfy the
minimum degree constraints, while the other two queries
have a minimum degree of close to zero. This justifies the
improved social constraint introduced by GSGQ.

123

http://snap.stan-ford.edu/data/loc-gowalla.html
http://snap.stan-ford.edu/data/loc-gowalla.html
https://goo.gl/uUV4Wg
http://law.di.unimi.it/webdata/twitter-2010/

Geo-social group queries with minimum acquaintance constraints 723

Table 2 Minimum degree of the result group given k = 50 on Gowalla

Query ρ

1 2 3 4 5

kNN 0 0 0 0 0

SSGQ(p = ρ) 0.05 0.08 0.11 0.16 0.21

GSGQrkNN(c = ρ) 1 2 3 4 5

(a) (b)

(c) (d)

(e) (f)

Fig. 9 Overall performance comparison on Gowalla. a GSGQrange
(r = 0.002, c = 4), b GSGQrange (r = 0.002, c = 4), c GSGQrkNN
(k = 100, c = 4), d GSGQrkNN (k = 100, c = 4), e GSGQkNN
(k = 100, c = 3), f GSGQkNN (k = 100, c = 3)

Figures 9, 10, and 11 show the overall performance of the
GSGQ methods under three different queries on Gowalla,
Dianping, and Twitter-2010, respectively. Generally, SaR
and SaR* achieve significant improvement over BR and CR
in all tested cases. Take Twitter-2010 as an example. For
GSGQrange, SaR and SaR* outperform BR and CR by 77.9–
77.6 and 84.5–84.3% in terms of the query running time (see
Fig. 11a). This is mainly due to the savings in accessing the
user data as shown in Fig. 11b. It is interesting to note that CR

(a) (b)

(c) (d)

(e) (f)

Fig. 10 Overall performance comparison on Dianping. a GSGQrange
(r = 0.002, c = 4), b GSGQrange (r = 0.002, c = 4), c GSGQrkNN
(k = 100, c = 4), d GSGQrkNN (k = 100, c = 4), e GSGQkNN
(k = 30, c = 8), f GSGQkNN (k = 30, c = 8)

incurs an even higher page access cost than BR because of
the week pruning power of the core numbers for large social
networks and additional accesses on the coupled nodes.More
specifically, SaR and SaR* check much fewer users (around
2946 users) than CR (around 103,060 users) and BR (around
85,686 users) to derive the results. SaR* further reduces the
page accesses to 3135 compared to SaR (4089), CR (15,293)
and BR (14,436). All the results exhibit the high pruning
power of CBRs for GSGQrange processing.

For GSGQrkNN, SaR and SaR* achieve similar improve-
ment over BR and CR in terms of the query running time
and the page access cost (see Fig. 11c, d). They access much
less users in query processing. Specifically, SaR and SaR*
only check 3.0% users of BR and 3.6% users of CR. For
GSGQkNN, the improvement on query running time is even
more higher for SaR and SaR* because of the in-memory
optimizations (see Fig. 11e). That is, compared to BR (resp.
CR), SaR and SaR* save 92.5% (resp. 90.4%) and 93.5%

123

724 Q. Zhu et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 11 Overall performance comparison on Twitter-2010.
a GSGQrange (r = 0.05, c = 2), b GSGQrange (r = 0.05, c = 2),
c GSGQrkNN (k = 20, c = 2), d GSGQrkNN (k = 20, c = 2),
e GSGQkNN (k = 20, c = 2), f GSGQkNN (k = 20, c = 2)

(resp. 91.7%) of query running time. This indicates that by
optimizing the accessing order of the entries based on the
CBRs, a greater performance improvement can be achieved.

Finally, comparing Fig. 11 to Figs. 9 and 10, we can see
that our methods gain a higher improvement over CR on
Twitter-2010 than on Gowalla and Dianping. This is because
Twitter-2010 has a denser social network and more diverse
locations, thus limiting the pruning power of the core num-
bers and making it harder to process a GSGQ. As a further
investigation on the impact of the social graph with different
sizes and density, we choose subsets of users in Twitter-2010
from 5M to 40M, and Table 3 shows the average degrees and
core numbers of these induced subgraphs. Figure 12 plots
the performance comparison of GSGQrkNN queries on these
social graphs. We can see that as the graph density grows,
the performance gap between CR and SaR/SaR* increases,
because less pruning power can be obtained from the core

Table 3 Density of Twitter-2010 with different user #

User # (m) 5 10 20 40

Avg. degree 1.957 2.613 4.783 28.556

Avg. core num. 1.066 1.461 2.463 14.480

(a) (b)

Fig. 12 Overall performance comparison on Twitter-2010 with differ-
ent user #. aGSGQrkNN (k = 10, c = 2), bGSGQrkNN (k = 10, c = 2)

(a) (b)

Fig. 13 Query running time of the methods for GSGQrange queries
with different c settings. a Gowalla, b Twitter-2010

numbers. Compared to BR, SaR and SaR* retain the prun-
ing power and reduce the page access by roughly the same
ratio. The query running time of BR increases on the graph
of 40M users because there is a jump of the graph density
from 20M users to 40M users, and thus, less time saving
can be achieved in the in-memory processing. To conclude,
the pruning power of SaR and SaR*, mainly contributed by
the social relations in CBRs, benefits more from larger and
denser social networks.

7.3 GSGQrange processing

For a GSGQrange Qgs = (v, r, c), Fig. 13 shows the perfor-
mancewith different c settings onGowalla and Twitter-2010.
All methods except BR incur shorter query running time for
a larger c. The performance gap between BR and the other
methods increases as c grows. This is becausemore users and
index nodes can be pruned inCR, SaR, and SaR* for a large c.
SaR and SaR* outperform CR in all cases. The improvement
reduces a little at c = 3 and c = 5 because only approxi-

123

Geo-social group queries with minimum acquaintance constraints 725

(a) (b)

Fig. 14 Query running time of the methods for GSGQrange queries
with different r settings. a Gowalla, b Twitter-2010

(a) (b)

Fig. 15 Query running time of the methods for GSGQrkNN queries
with different c settings. a Gowalla, b Twitter-2010

mate CBRs (corresponding to c = 2 and c = 4, respectively)
are used for query processing in these cases (recall that only
the CBRs with respect to exponential minimum-degree con-
straints are stored). Moreover, SaR* benefits more from the
index than CR and SaR, as it groups the users based on both
spatial and social closenesses, making the pruning of index
nodes and user pages more powerful. As for various settings
of query range r (see Fig. 14), the performance of all meth-
ods degrades when r grows, because more users within the
range need to be checked. In terms of query running time,
SaR and SaR* perform much better than the other two meth-
ods. Moreover, SaR* has the best performance and thus is
the most favorable approach.

7.4 GSGQrkNN processing

This subsection investigates the performance of the meth-
ods for GSGQrkNN under various c and k settings. As we
observed similar performance trends for GSGQkNN under
these settings, we omit the details on GSGQkNN here.

For a GSGQrkNN Qgs = (v, rkNN, c), Fig. 15 shows the
performancewith different c settings onGowalla andTwitter-
2010. All methods incur higher query running time for a
larger c. This is because a large c tightens the social con-
straint of GSGQrkNN and thus more users need to be visited.
Similar to GSGQrange, the performance gaps between SaR*
and the other twomethods increase as c grows. For a larger c,

(a) (b)

Fig. 16 Query running time of the methods for GSGQrkNN queries
with different k settings. a Gowalla, b Twitter-2010

Table 4 Average # of updated CBRs w.r.t. batch update size

Upd. Size (k) 1 3 10 30 100 300

Gowalla 13.14 5.71 2.27 1.05 0.45 0.16

Upd. size (k) 10 30 100 300 1000

Twitter-2010 2927.7 1137.3 346.1 115.4 34.6

the candidate users for GSGQrkNN processing tend to share
similar CBRs. Thus, the social-aware user organization of
SaR* can effectively reduce the page accesses.

Figure 16 shows the performance with different k settings
on Gowalla and Twitter-2010. Compared to c, the increment
of k causes only a moderate increase in cost. SaR and SaR*
beat BR and CR for all k settings and the performance gaps
become larger as k grows. This implies that the pruning tech-
niques of SaR and SaR* are scalable to large user groups.

7.5 Update performance of SaR-trees

This section investigates the update performance of SaR-
trees. We take the locations of user check-ins along the
timeline of Gowalla and Twitter-2010 to generate location
updates (where the new check-ins for Twitter-2010 are ran-
domly generatedwith themaximumdistance 0.0015 from the
last ones) and randomly insert new edges to generate social
updates on users. Due to the fact that social updates are rela-
tively infrequent in real social networks [17], the proportion
of social updates is set to 5%.We first investigate the effect of
batch update size. In general, the average amortized update
time decreases as more updates are applied in batch pro-
cessing. This is mainly because fewer CBRs, on average, are
required to update as summarized in Table 4. Figure 17 (resp.
Fig. 18) shows the performance for the GSGQrkNN queries
with default settings under different batch update sizes on
Gowalla (resp. Twitter-2010). We can see that the perfor-
mance of SaR and SaR* degrades as the batch update size
grows, which is mainly because more CBRs are invalidated
by the updates ofM and less pruningpower could be achieved
(yet still better than BR or CR).

123

726 Q. Zhu et al.

(b)(a)

Fig. 17 The performance of the lazy update model on Gowalla. a
Query running time, b page access cost

(a) (b)

Fig. 18 The performance of the lazy update model on Twitter-2010. a
Query running time, b page access cost

To further measure the impact of updates on query
processing, we generate workloads of mixed update and
query requests (i.e., the GSGQrkNN queries with default
settings). Figure 19a shows the throughputs under various
query/update ratios (workloads) on Gowalla. SaR* and SaR
achieve higher throughputs than CR when the workload has
fewer updates, i.e., q/u > 1 and 10, respectively, because
the performance gain from query processing can compensate
for the additional CBR update cost. Figure 19b shows the
thoughputs under different batch update sizes on Gowalla.
We can see that SaR outperforms CR only for a range of
the batch update size. It is because large batch update size
leads to obvious performance degradation of SaR for GSGQ
processing, making it incapable to compensate for the CBR
update cost any more. In comparison, SaR* always achieves
the highest throughput. This can also be observed on Twitter-
2010, as shown in Fig. 20.

7.6 Case study: SSGQ versus GSGQ

We also conducted a case study on the usefulness of GSGQ
against SSGQ [31]. We randomly chose 8 users from the
Gowalla dataset andgeneratedSSGQandGSGQ kNN results
under the following 4 parameter settings (i.e., 2 users under
each setting): (1) k = 5, c = p = 1; (2) k = 5, c = p = 2;
(3) k = 10, c = p = 1; (4) k = 10, c = p = 2. For

(a) (b)

Fig. 19 The query throughput of the methods on Gowalla. a Batch
update size = 30k, b q/u = 10

(a) (b)

Fig. 20 The query throughput of themethods on Twitter-2010. aBatch
update size= 300k, b q/u = 10

Fig. 21 Percentage of participants’ choice for each user

each user, the SSGQ result is visualized side by side with
the GSGQ result in the context of Google Map and social
relation of users. Twenty-eight participants were invited to
give (blind) opinions onwhich result each user should choose
for a group activity. Figure 21 shows the comparison result.
Of all 8 users except for #2 user,GSGQ is consistently chosen
more often than SSGQ queries, and overall in 78% cases a
participant chooses GSGQ results and in only 18% cases a
participant chooses SSGQ results. This case study justifies
our motivation of GSGQ as a more useful geo-social group
query.

8 Conclusion

This paper has studied geo-social group queries (GSGQs)
with minimum acquaintance constraints for large social net-
working services. Our main contribution is the design of two

123

Geo-social group queries with minimum acquaintance constraints 727

social-aware index structures, namely SaR-tree and SaR*-
tree. Based on them, we have developed efficient algorithms
to process various GSGQs, together with a number of opti-
mization techniques. Extensive experiments on real-world
datasets demonstrate that our proposedmethods substantially
outperform the baseline methods based on R-tree under vari-
ous system settings and that such GSGQ services are feasible
on a commodity server for large user populations. As for
future work, we plan to extend GSGQs to incorporate more
sophisticated spatial queries such as skyline and distance-
based joins.

Acknowledgements This work was supported by National Natural
Science Foundation of China (Grant Nos.: 61572413 and U1636205),
and Research Grants Council, Hong Kong SAR, China, under Projects
12244916, 12201615, 12202414, 12200914, 15238116, and C1008-
16G.

References

1. Armenatzoglou, N., Papadopoulos, S., Papadias, D.: A general
framework for geo-social query processing. In: Proceedings of
VLDB (2013)

2. Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in
social network analysis: the maximum k-plex problem. Oper. Res.
59(1), 133–142 (2011)

3. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decom-
position of networks. In: CoRR (2003)

4. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-
tree: an efficient and robust accessmethod for points and rectangles.
In: Proceedings of SIGMOD (1990)

5. Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial key-
word querying. In SIGMOD Conference (2011)

6. Cheng, J., Ke,Y., Chu, S., Ozsu,M.T.: Efficient core decomposition
in massive networks. In: Proceedings of ICDE (2011)

7. De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial
databases. In Proceedings of ICDE (2008)

8. Doytsher, Y., Galon, B., Kanza, Y.: Querying geo-social data by
bridging spatial networks and social networks. In: ACM LBSN
(2010)

9. Faloutsos, C., McCurley, K., Tomkins, A.: Fast discovery of con-
nection subgraphs. In KDD (2004)

10. Finkel, R., Bentley, J.L.: Quad trees: a data structure for retrieval
on composite keys. Acta Informatica 4(1), 1–9 (1974)

11. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–
5), 75–174 (2010)

12. Girvan, M., Newman, M.E.J.: Community structure in social and
biological networks. In Proceedings of the National Academy of
Sciences of the USA (2002)

13. Guttman, A.: R-trees: a dynamic index structure for spatial search-
ing. In Proceedings of SIGMOD (1984)

14. Hao, F., Li, S., Min, G., Kim, H.-C., Yau, S.S., Yang L.T.: An effi-
cient approach to generating location-sensitive recommendations
in ad-hoc social network environments. IEEETrans. Serv. Comput.
8(3), 520–533 (2015)

15. Harary, F., Ross, I.C.: A procedure for clique detection using the
group matrix. Sociometry 20(3), 205–215 (1957)

16. Khalid, O., Khan, M.U.S., Khan, S.U., Zomaya, A.Y.: OmniSug-
gest: a ubiquitous cloud based context aware recommendation
system for mobile social networks. IEEE Trans. Serv. Comput.
7(3), 401–414 (2014)

17. Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic
evolution of social networks. In KDD (2008)

18. Li, Y., Chen, R., Chen, L., Xu, J.: Towards social-aware ridesharing
group query services. IEEE Trans. Serv. Comput. (TSC). doi:10.
1109/TSC.2015.2508440

19. Li, Y., Chen, R., Xu, J., Huang, Q., Hu, H., Choi, B.: Geo-social
k-cover group queries for collaborative spatial computing. IEEE
Trans. Knowl. Data Eng. (TKDE) 27(8), 2729–2742 (2015)

20. Liu, W., Sun, W., Chen, C., Huang, Y., Jing, Y., Chen, K.: Circle
of friend query in geo-social networks. In DASFFA (2012)

21. McClosky, B., Hicks, I.V.: Combinatorial algorithms for max k-
plex. J. Combin. Optim. 23(1), 29–49 (2012)

22. Moser,H.,Niedermeier, R., Sorge,M.:Algorithms and experiments
for clique relaxations-finding maximum s-plexes. In SEA (2009)

23. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest
neighbor queries. In ICDE (2004)

24. Schlegel, R., Chow, C.-Y., Huang, Q., Wong, D.S.: Privacy-
preserving location sharing services for social networks. IEEE
Trans. Serv. Comput. (2016). doi:10.1109/TSC.2016.2514338

25. Seidman, S.B.:Network structure andminimumdegree. Soc.Netw.
5(3), 269–287 (1983)

26. Shi, J., Mamoulis, N., Wu, D., Cheung, D.W.: Density-based place
clustering in geo-social networks. In Proceedings of ACM SIG-
MOD (2014)

27. Shin, K., Eliassi-Rad, T., Faloutsos, C.: CoreScope: graph min-
ing using k-core analysis—patterns, anomalies, and algorithms. In
Proceedings of IEEE ICDE (2016)

28. Sozio, M., Gionis, A.: The community-search problem and how to
plan a successful cocktail party. In KDD (2010)

29. Wu, D., Yiu, M.L., Jensen, C.S., Cong, G.: Efficient continuously
moving top-k spatial keyword query processing. In Proceedings of
ICDE (2011)

30. Yang, D.-N., Chen, Y.-L., Lee, W.-C., Chen, M.-S.: On social-
temporal group querywith acquaintance constraint. In Proceedings
of VLDB (2011)

31. Yang,D.-N., Shen,C.-Y., Lee,W.-C.,Chen,M.-S.:On socio-spatial
group query for location-based social networks. In KDD (2012)

32. Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K.H., Kitsuregawa,
M.: Keyword search in spatial databases: towards searching by
document. In Proceedings of ICDE (2009)

33. Zhang, J.-D., Chow, C.-Y., Li, Y.: iGeoRec: a personalized and
efficient geographical location recommendation framework. IEEE
Trans. Serv. Comput. 8(5), 701–714 (2015)

34. Zhang, J.-D., Chow, C.-Y.: iGSLR: personalized geo-social loca-
tion recommendation—a kernel density estimation approach. In
Proceedings of ACM GIS (2013)

123

http://dx.doi.org/10.1109/TSC.2015.2508440
http://dx.doi.org/10.1109/TSC.2015.2508440
http://dx.doi.org/10.1109/TSC.2016.2514338

	Geo-social group queries with minimum acquaintance constraints
	Abstract
	1 Introduction
	2 Related works
	2.1 Spatial query processing
	2.2 Social network analysis and query processing
	2.3 Geo-social query processing

	3 Preliminaries and problem statement
	3.1 C-core
	3.2 Problem statement
	3.3 R-tree-based query processing

	4 Social-aware R-trees
	4.1 Core Bounding Rectangle (CBR)
	4.2 SaR-tree
	4.3 SaR*-tree

	5 GSGQ processing
	5.1 GSGQ with range constraint
	5.2 GSGQ with relaxed kNN constraint
	5.3 GSGQ with strict kNN constraint

	6 Update of SaR-trees
	6.1 Lazy update in SaR-trees
	6.2 GSGQ processing with update memo on SaR-trees

	7 Performance evaluation
	7.1 Experimental setting
	7.2 Overall performance
	7.3 GSGQrange processing
	7.4 GSGQrkNN processing
	7.5 Update performance of SaR-trees
	7.6 Case study: SSGQ versus GSGQ

	8 Conclusion
	Acknowledgements
	References

