
The VLDB Journal (2017) 26:585–610
DOI 10.1007/s00778-017-0465-6

REGULAR PAPER

Indexing metric uncertain data for range queries and range joins

Lu Chen1 · Yunjun Gao1,2 · Aoxiao Zhong1 · Christian S. Jensen3 ·
Gang Chen1,2 · Baihua Zheng4

Received: 29 August 2016 / Revised: 26 April 2017 / Accepted: 11 May 2017 / Published online: 24 May 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract Range queries and range joins in metric spaces
have applications in many areas, including GIS, computa-
tional biology, and data integration, where metric uncertain
data exist in different forms, resulting from circumstances
such as equipment limitations, high-throughput sequencing
technologies, and privacy preservation. We represent metric
uncertain data by using an object-level model and a bi-level
model, respectively. Two novel indexes, the uncertain pivot
B+-tree (UPB-tree) and the uncertain pivot B+-forest (UPB-
forest), are proposed in order to support probabilistic range
queries and range joins for a wide range of uncertain data
types and similaritymetrics. Both index structures use a small
set of effective pivots chosen based on a newly defined cri-
terion and employ the B+-tree(s) as the underlying index. In

B Yunjun Gao
gaoyj@zju.edu.cn

Lu Chen
luchen@zju.edu.cn

Aoxiao Zhong
axzhong@zju.edu.cn

Christian S. Jensen
csj@cs.aau.dk

Gang Chen
cg@zju.edu.cn

Baihua Zheng
bhzheng@smu.edu.sg

1 College of Computer Science, Zhejiang University,
Hangzhou, China

2 The Key Lab of Big Data Intelligent Computing of Zhejiang
Province, Zhejiang University, Hangzhou, China

3 Department of Computer Science, Aalborg University,
Aalborg, Denmark

4 School of Information Systems, Singapore Management
University, Singapore, Singapore

addition,wepresent efficientmetric probabilistic range query
and metric probabilistic range join algorithms, which utilize
validation and pruning techniques based on derived proba-
bility lower and upper bounds. Extensive experiments with
both real and synthetic data sets demonstrate that, compared
against existing state-of-the-art indexes for metric uncertain
data, theUPB-tree and theUPB-forest incurmuch lower con-
struction costs, consume less storage space, and can support
more efficient metric probabilistic range queries and metric
probabilistic range joins.

Keywords Range query · Range join · Uncertain data ·
Metric space · Index structure

1 Introduction

Given a distance threshold R, a range query returns the
objects with distances to a specified query object q that are
within R, and a range join returns all pairs of objects that
are within distance R of each other. Consider, for example,
Fig. 1, given a distance threshold R, a range query returns
objects o1 and o3 for a query object q, and a range join
returns object pairs 〈q1, o1〉, 〈q1, o3〉, 〈q2, o4〉 and 〈q3, o6〉.
These operations are common inmany areas of computer sci-
ence, includingGIS, computational biology, data integration,
to name but a few. In such areas, uncertainty arises in dif-
ferent forms, resulting from the limitations of equipments
and measurements, high-throughput sequencing technolo-
gies, privacy preservation, and so forth, which makes range
queries and range joins inaccurate. Hence, we study prob-
abilistic range queries and range joins over uncertain data,
with three representative examples given as follows.

Application 1 (GIS) In a GIS application, the similarity
between locations could be measured by the L2-norm or the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-017-0465-6&domain=pdf

586 L. Chen et al.

(a) (b)

Fig. 1 Illustration of a range query and a range join. a Range query
and b range join

shortest path distance. A range query is able to be utilized
to find potential customers for a restaurant, and a range join
can be employed to find residents near to each other in order
to generate recommendations for carpooling or other social
events. Due to privacy preservation, a location can be repre-
sented by using an uncertain region in which the resident can
locate with a certain probability. To address the uncertainty
of locations, probability thresholds are integrated into range
queries (range joins), resulting in probabilistic range queries
(probabilistic range joins).

Application 2 (Multimedia retrieval) In an information
retrieval system, the similarity between terms or documents
might edit distance, tf-idf, or other metrics. However, the
limitation of extraction techniques or typos may incur uncer-
tainty. For instance, due to the typos, “defoliati” can be
represented by using two possible meanings “defoliation”
and “defoliating,” with each assigned a probability. Hence,
probabilistic range queries can help to find similar terms to a
given one, while probabilistic rang joins can be used to find
similar term pairs for data integration.

Application 3 (Computational biology) In a protein inter-
action network, the distance between two proteins that
represents how well the proteins interact with each other
can be measured by the shortest path, maximum flow, or
other metrics. However, the protein data are uncertain due
to a number of aspects of the high-throughput sequencing
techniques [18]. Therefore, probabilistic range queries can
help to find the proteins that are more likely to interact
with a specified query protein, and probabilistic range joins
can help to find protein pairs that may interact with each
other.

Although techniques can be developed for a specific data
type, considering a wide range of data types in the afore-
mentioned application scenarios (e.g., locations, strings, and
protein sequences), a generic model (i.e., metric space) is
desirable that is capable of accommodating not just a sin-
gle data type, but a wide spectrum. In addition, distance
metrics for quantifying the similarity between objects, such
as edit distance used for strings, are no longer restricted to
the Euclidean distance (i.e., L2-norm). To accommodate a
wide range of similarity notions, we investigate probabilis-

tic range queries and joins on metric uncertain data, where
no assumptions are made about the representations of uncer-
tain objects and where any similarity notion satisfying the
triangle inequality can be used.

Although many previous efforts exist on indexing uncer-
tain data to accelerate probabilistic range queries and prob-
abilistic range joins [23,26,38,43,44], they target mainly
Euclidean space or, more generally, vector spaces. Unfor-
tunately, these models of uncertain data and geometric
properties are restricted to vector spaces, rendering them
inapplicable to more complex data (e.g., sets) that cannot
fit into Euclidean models. Hence, Angiulli and Fassetti [3]
first study the indexing on metric uncertain data and present
the UP-Index. While representing an important advance, this
index can be further improved in several ways because (i) it
processes metric uncertain data using the vector space uncer-
tain model, which limits its applicability to complex metric
uncertain data such as uncertain sets anduncertain graphs; (ii)
it stores unnecessary informationwhich leads to redundancy;
(iii) it has to scan the entire index, for any range query, in
order to prune away objects using probability upper bounds;
and (iv) it cannot validate objects due to no probability lower
bounds.

In order to design efficient external memory indexes
on metric uncertain data, three challenging issues must be
addressed. First, how shall we model metric uncertain data
in a more general manner than using the vector space uncer-
tain model?We propose two metric uncertain data models to
represent the uncertainty in metric spaces. Second, how can
we support efficient metric probabilistic range queries and
metric probabilistic range joins? Here, efficiency is mea-
sured by both the number of distance computations (i.e.,
CPU cost) and the number of page accesses (i.e., I/O cost).
We tackle this by identifying a small set of effective piv-
ots to map uncertain objects from the metric space to the
vector space, based on which probability lower and upper
bounds are derived to validate and prune uncertain objects.
Moreover, MBBs and a space-filling curve (e.g., Hilbert
curve, Z-order curve) are utilized to cluster uncertain data
to reduce the I/O cost. Third, how do we achieve low costs
of index storage, construction, and manipulation? To save
storage cost, our solution only stores necessary information
and makes use of space-filling curve-based dimensional-
ity reduction. To support efficient index construction and
manipulation, we use the B+-tree(s) as the underlying
index.

The resulting proposals are called the uncertain pivot
B+-tree (UPB-tree) and the uncertain pivot B+-forest (UPB-
forest). These are based on two proposed metric uncertain
data models. They do not depend on the detailed representa-
tions of objects and then can support all the distance metrics
that satisfy the triangle inequality. To sum up, the key con-
tributions of this paper are as follows:

123

Indexing metric uncertain data for range queries and range joins 587

– We develop twometric uncertain data models with corre-
sponding disk-based index structures, the UPB-tree and
the UPB-forest, whichmap uncertain objects from amet-
ric space to a vector space using a set of pivots, utilize
a space-filling curve for dimensionality reduction, and
employ the B+-tree(s) as the underlying index.

– We propose efficient algorithms for metric probabilistic
range queries and joins that use the validation andpruning
techniques based on derived lower and upper bounds of
the probabilities.

– We present a pivot selection algorithm based on a new
criterion to choose a small set of effective pivots.

– We conduct extensive experiments using real and syn-
thetic data sets to show that the UPB-tree and the
UPB-forest outperform the state-of-the-art competitors
on metric uncertain data in terms of the number of dis-
tance computations and the number of page accesses.

The paper extends a preliminary study [8]. The exten-
sions include support for the efficient processing of (i) two
additional interesting queries, i.e., metric probabilistic range
queries with uncertain query objects (Sects. 4.3, 5.3) and
metric probabilistic range joins (Sects. 4.4, 5.4), based on the
UPB-tree and the UPB-forest; (ii) an enhanced experimen-
tal evaluation that incorporates the new classes of queries
(Sect. 7); and (iii) more comprehensive coverage of related
work (Sect. 2). Also, we have revised the introduction and
have contained additional theoretical analysis.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 formalizes the problem. Sec-
tions 4 and 5 elaborate the indexing structures with their
corresponding metric probabilistic range query and metric
probabilistic range join algorithms. Section 6 presents the
pivot selection algorithm. Experimental findings are reported
inSect. 7. Finally, Sect. 8 concludes the paper andoffers some
directions for future work.

2 Related work

Weproceed to review relatedworkon indexing techniques for
probabilistic range queries and range joins, and then survey
metric range queries and range joins.

2.1 Probabilistic range queries and range joins

Given a set U of uncertain objects, a range region RR, and
a probability threshold θ , a probabilistic range query returns
the uncertain objects u ∈ U with Pr(u ∈ RR) ≥ θ . Cheng
et al. [10] first address probabilistic range queries on one-
dimensional uncertain data. Then, R-tree-based approaches
[27,36] are proposed, inwhich theMBBof anobject serves as
the summary of its PDF. Tao et al. [38] introduce the U-tree,

as the PDF summary of an object is a finite set of prob-
abilistically constrained regions. Next, range queries with
constraints, where PDFs of uncertain data follow Gaussian
or Uniform distributions, are studied [4,6,16]. Aggarwal and
Yu [2] show how to construct an effective index structure
in order to handle uncertain range queries in high dimen-
sionality. Assuming that PDFs of objects are histograms,
Agarwal et al. [1] provide a thorough theoretical analy-
sis of various indexing schemes with linear or near-linear
space and logarithmic query time. More recently, Zhang et
al. [43] present the UI-tree, assuming that every uncertain
object is a set of groups that are disjointed partitions of its
PDF. Kimura et al. [23] propose a primary indexing tech-
nique named UPI to speed up query processing on uncertain
data by clustering heap files. Zhang et al. [44] develop a
U-Quadtree, which employs a Quadtree to organize multi-
dimensional uncertain objects. Zhu et al. [45] present MRST
and R-MRST, which are data structures that enable the effec-
tive and efficient indexing of uncertain objects. In addition,
indexing techniques over one-dimensional uncertain data are
explored [11,24], which divide the interval of an uncertain
object into several disjoint subintervals.

Given two setsU and V of uncertain objects, a query dis-
tance R, and a probability threshold θ , a probabilistic range
join (also termed as probabilistic similarity join) returns all
uncertain object pairs 〈u, v〉 (∈ U×V) withPr(d(u, v) ≤ R)
≥ θ . Cheng et al. [9] and Silva et al. [34] deal with probabilis-
tic range joins on one-dimensional uncertain data. Kriegel
et al. [25] review all types of probabilistic joins. Kriegel et
al. [26] propose an R-tree-based approach to accelerate prob-
abilistic range joins.

The above approaches have shortcomings in relation to
range queries and range joins on metric uncertain data. First,
the uncertain models used are restricted to vector spaces,
rendering the approaches inapplicable to complex data (e.g.,
sets, DNA sequences). Second, to accelerate query process-
ing, they utilize geometric properties (e.g., MBB [26,27,36],
grid [44]) that are unavailable in metric spaces.

To the best of our knowledge, only Angiulli and Fas-
setti [3] study the indexing of metric uncertain data. They
present a pivot-based index, the UP-Index, that stores pre-
computed histograms of the probability distribution for every
uncertain object w.r.t. a set of pivots. The index enables prun-
ing of uncertain objects during search using the upper bound
of the probability derived by the reverse triangle inequal-
ity. Although the UP-Index supports any distance metric
that satisfies the triangle inequality, it is still based on the
vector space uncertain model, and it has to transform non-
vector uncertain data into vectors before building the index.
Section 7 reports on performance studies to show that the
UP-Index is not competitive in terms of distance computa-
tions and page accesses. This is because: (i) UP-Index needs
to store pre-computed histograms w.r.t. the whole distance

123

588 L. Chen et al.

range, resulting in larger storage cost; (ii) for any probabilis-
tic range query, it needs to scan the whole index in order to
prune uncertain objects using the probability upper bounds
as it has no early termination conditions or batch pruning
techniques; and (iii) it cannot validate objects since it has no
probability lower bounds.

In addition, some efforts have been devoted to proba-
bilistic range queries [13,22], similarity search [14,17], and
similarity joins [21,28] for specific metric uncertain data
(e.g., sets, data series, graphs). These works utilize uncer-
tain models and algorithms particular to the specific metric
uncertain data they target. Thus, they do not support effi-
ciently probabilistic range queries and probabilistic range
joins over metric uncertain data.

2.2 Metric range queries and range joins

Given an object set O , a query object q, and a search radius
R in ametric space, a metric range query retrieves the objects
in O with distances to q bounded by R. To accelerate metric
range queries, a large number of metric indexing structures
are proposed, which can be generally classified into two
categories, compact partitioning methods [12,39] and pivot-
based methods [7,30,37,40,41]. For two objects q and o, the
distance d(q, o) cannot be smaller than |d(q, p) − d(o, p)|
for any pivot p, due to the triangle inequality. Hence, it may
be possible to prune an object o as a match for q using the
lower bound |d(q, p) − d(o, p)| instead of calculating d(q,
o). This capability enables pivot-based approaches to outper-
form compact partitioningmethods in terms of the number of
distance computations, a key performance criterion in metric
spaces. Hence, in this paper, we adopt the pivot techniques.

Given two object sets Q and O , a metric range join (also
termed as metric similarity join) retrieves pairs of objects
from Q × O that are within distance R of each other. This
operator has been explored in metric spaces, and efficient
solutions exist [20]. Recently, Paredes and Reyes [31] han-
dle similarity joins usingLTC,which indexes two sets jointly.
Fredriksson and Braithwaite [15] improve the Quickjoin
algorithm [20] for similarity joins. Silva and Pearson [32,35]
develop a nonblocking similarity join operator, DBSimJoin,
and study index-based similarity joins. Also, metric range
joins using map-reduce are investigated in [33,42].

The above efforts do not consider uncertainty, and there-
fore, they do not solve the problem we study.

3 Problem formulation

We review briefly properties of themetric space, presentmet-
ric uncertain data models, and formalize the probabilistic
range query and join in the metric space. Table 1 summa-
rizes the notations used frequently throughout this paper.

Table 1 Symbols used frequently

Notation Description

U , V Sets of uncertain objects

ui , v j Uncertain objects in U or V

ui j An instance object of an uncertain object ui
m The number of instances for each uncertain

object

Gp,ui The PDF of the distance between ui and a
pivot p

gp,ui The approximation of Gp,ui

MPRQ(q, R, θ) A metric probabilistic range query w.r.t.
query object q, search radius R, probability
threshold θ

MPRQU(uq, R, θ) An MPRQ w.r.t. uncertain query object uq,
search radius R, and probability threshold θ

MPRJ(U, V, R, θ) A metric probabilistic range join w.r.t. U , V ,
search radius R, and probability threshold θ

P A set of pivots pt

d() The distance function in a metric space

D() The L∞-norm metric in a mapped vector
space

d+ The maximum distance in a metric space

n, s The number of slots or the intervals of each
slot

Rq A circular search region (in a metric space)
centered at a query object q with radius R

φpt (Rq), φ(Rq) Rq in the mapped vector space using pt or P

φ(q), φ(ui) q or ui in the mapped vector space

π(ui , Rq) The probability of ui contained in Rq

lπ(ui , Rq) The lower bound of π(ui , Rq)

uπ(ui , Rq) The upper bound of π(ui , Rq)

π(ui , v j) The probability Pr(d(ui , v j) ≤ R)

lπ(ui , v j) The lower bound of π(ui , v j)

uπ(ui , v j) The upper bound of π(ui , v j)

3.1 Metric spaces

A metric space is given by a tuple (M , d), where M is an
object domain and d is a distance function quantifying “sim-
ilarity” between objects in M . The distance function d has
four properties: (i) symmetry: d(q, o) = d(o, q); (ii) nonneg-
ativity: d(q, o) ≥ 0; (iii) identity: d(q, o) = 0 iff q = o; and
(iv) triangle inequality: d(q, o) ≤ d(q, p) + d(p, o).

3.2 Metric uncertain data models

An uncertain object is typically represented in one of the two
ways: (i) using all possible instances, each with an assigned
probability, or (ii) using a probability density function (PDF).
Hence, we present two metric uncertain data models.

Object-level model Every uncertain object ui can be mod-
eled by all the possible instances and their corresponding

123

Indexing metric uncertain data for range queries and range joins 589

(a) (b)

Fig. 2 Example of the bi-level model. a Uncertain object u and b
continuous PDF of d(u, p)

nonnegative probabilities {〈ui1, Pr(ui1)〉, 〈ui2, Pr(ui2)〉, …,
〈uim , Pr(uim)〉} such that

∑m
j=1 Pr(ui j) = 1, in which

Pr(ui j) denotes the nonnegative probability of ui being ui j .
As an example, an uncertain English word u can be mod-

eled as {〈“defoliation,” 0.2〉, 〈“defoliated,” 0.1〉, 〈“defoliate,”
0.3〉, 〈“defoliates,” 0.4〉}.
Bi-level model Each uncertain object ui can utilize any other
uncertainty model as the underlying model, based on which
it can be further represented by using the PDF of its dis-

tance to a pivot p, satisfying that
∫ d+
0 Gp,ui (x)dx = 1 or

∑d+
0 Gp,ui (x) = 1 for continuous or discrete PDFs, respec-

tively. Here, x is the distance d(ui , p) from ui to p, and d+
is the maximum distance of d(ui , p).

To support query processing for a wide range of uncertain
data types, the bi-level model can use any specific uncertain
model (e.g., the vector space uncertain model [10,16,44] or
the p-setmodel [17]) as its underlyingmodel, based onwhich
an upper model is built to represent its distance uncertainty.
Consider the example of the bi-levelmodel built on the vector
space uncertain model shown in Fig. 2. The uncertain object
u locates uniformly within the uncertain region, as illustrated
in Fig. 2a, and the PDF of the distance d(u, p) is depicted in
Fig. 2b.

For the bi-level model, although a PDF might be both
discrete and continuous, we concentrate on the continuous
case for simplicity. However, for the object-level model, we
only aim at the discrete case according to its definition.

3.3 Metric probabilistic range query

Given a query objectq and a search radius R in ametric space,
a metric range query finds the objects with distances to q
within R, i.e., the objects located into a circular search region
Rq (centered at q with radius R). Considering uncertainty,
let π(ui , Rq) be the probability that a metric uncertain object
ui is contained in Rq , i.e., π(ui , Rq) = Pr(d(q, ui) ≤ R).
We formally define the probabilistic range query on metric
uncertain data.

Definition 3.1 (Metric probabilistic range query) Given a
set U of uncertain objects, a certain query object q, a search

(a) (b) (c)

Φ

Fig. 3 Example of MPRQ using the object-level model. a Metric
space, b vector space, c Hilbert curve

radius R, and a probability threshold θ (0< θ ≤ 1) in ametric
space, a metric probabilistic range query (MPRQ) finds the
uncertain objects inU whose probabilities of being contained
in Rq are no smaller than θ , i.e., MPRQ(q, R, θ) = {ui |ui ∈
U ∧ π (ui , Rq) ≥ θ}.

Consider, for example, the uncertain object set U =
{u1, u2, u3, u4}, illustrated in Fig. 3a, with u1 = {(u11, 0.6),
(u12, 0.4)}, u2 = {(u21, 0.5), (u22, 0.5)}, u3 = {(u31, 0.4),
(u32, 0.6)}, and u4 = {(u41, 0.2), (u42, 0.3), (u43, 0.5)}
using the object-level model. Assuming that the L2-norm
is used as the distance function, the result of MPRQ(q, 2,
0.5) is {u1, u2}, as π(u1, Rq) = 0.6 and π(u2, Rq) = 1.

However, the query object q might be uncertain, due to the
limitations of equipments andmeasurements, privacy preser-
vation, and so forth. For example, in Application 2 stated
in Sect. 1, the query object (i.e., a query term input by a
user) could be uncertain due to typos. Thus, we also define
the metric probabilistic range query with an uncertain query
object.

Definition 3.2 (Metric probabilistic rangequerywith uncer-
tain query object) Given a set U of uncertain objects, an
uncertain query object uq, a search radius R, and a proba-
bility threshold θ (0 < θ ≤ 1) in a metric space, a metric
probabilistic range query with an uncertain query object
(MPRQU) finds the uncertain objects in U whose proba-
bilities of being contained in the search region Ruq are no
smaller than θ , i.e., MPRQU(uq, R, θ)= {ui |ui ∈ U ∧π (ui ,
Ruq) ≥ θ}.

Consider, for instance, the uncertain object set U = {u2,
u3, u4} and uq = u1 using the object-level model, as illus-
trated in Fig. 3a. Assume that the L2-norm is used as the
distance function, the result of MPRQ(uq, 2, 0.5) is {u2}, as
π(u2, Ruq) = 0.6.

Note that, Ruq for an uncertain query object uq could be
m circular search regions Rq j (1 ≤ j ≤ m) if using the
object-level model as discussed in Sect. 4.3, or one con-
tinuous search region if using the bi-level model as to be
discussed in Sect. 5.3.

123

590 L. Chen et al.

3.4 Metric probabilistic range join

The metric probabilistic range query only involves a single
query object. In the following, we consider a set of uncer-
tain query objects. For example, in Application 2 stated in
Sect. 1, we need to find similar objects for each of the query
objects during the data integration.Motivated by this, we also
introduce the metric probabilistic range join as follows.

Definition 3.3 (Metric probabilistic range join) Given two
sets U and V of uncertain objects, a search radius R, and
a probability threshold θ (0 < θ ≤ 1) in a metric space,
a metric probabilistic range join (MPRJ) finds the uncer-
tain object pairs 〈ui , v j 〉 in U × V whose probabilities of
distances d(ui , v j) being no larger than R are no smaller
than θ , i.e., MPRJ(U, V, R, θ) = {〈ui , v j 〉|ui ∈ U ∧ v j ∈
V ∧ π(ui , v j) ≥ θ}, where π(ui , v j) = Pr(d(ui , v j) ≤ R).

Consider, for example, two uncertain object sets U =
{u1, u3} and V = {u2, u4} as depicted in Fig. 3a, with u1 =
{(u11, 0.6), (u12, 0.4)}, u2 = {(u21, 0.5), (u22, 0.5)}, u3 =
{(u31, 0.4), (u32, 0.6)}, and u4 = {(u41, 0.2), (u42, 0.3),
(u43, 0.5)}, using the object-level model. If the L2-norm is
used as the distance function, the result of a MPRJ(U , V , 2,
0.5) is {〈u1, u2〉}, as π(u1, u2) = 0.6.

4 The UPB-tree

We propose a new index structure, the UPB-tree, to index
uncertain objects based on the object-level model, and then,
we present the corresponding range query and join algo-
rithms. Also, we analyze query costs.

4.1 UPB-tree structure

UPB-tree construction is based on a two-stage mapping.
In the first stage, we map all instances of metric uncertain
objects to data points in a vector space, using selected piv-
ots. We prefer the vector space to the metric space because
it provides geometric and coordinate information that is not
available in the metric space. In the second stage, we utilize
a proximity-preserving space-filling curve (SFC) to map the
data points in the vector space to integers in one-dimensional
space. Finally, we use a B+-tree with MBB information to
index the metric uncertain objects.

Pivot mapping Given a pivot set P = {p1, p2, …, p|P|}, a
metric space (M , d) can be mapped into a vector space (R|P|,
L∞). Specifically, any instance object ui j in the metric space
can be represented as a point φ(ui j) = 〈d(ui j , p1), d(ui j ,
p2), …, d(ui j , p|P|)〉 in the vector space. Consider Fig. 3,
in which U = {u1, u2, u3, u4}. If P = {u11, u42}, U can
be mapped to a two-dimensional vector space as depicted in

(a) (b)

(c)

Fig. 4 Example of the UPB-tree for the dataset in Fig. 3. a MBBs of
UPB-tree, bMBB representation, c the UPB-tree

Fig. 3b, where the x axis denotes d(ui j , u11) and the y axis
represents d(ui j , u42).

Given a pivot set P , d(ui j , u′
i j) ≥max{|d(ui j , p)−d(u′

i j ,
p)| | p ∈ P} = D(φ(ui j), φ(u′

i j)) according to the triangle
inequality, in which D() is an L∞-norm metric. Clearly, the
distance in the mapped vector space is a lower bound on that
in the original metric space. For example, in Fig. 3, d(u43,
u32) ≥ D(φ(u43), φ(u32)) = 1.

Space-filling curve mapping Given a vector φ(ui j) after
the pivot mapping, an SFC maps φ(ui j) to an integer
SFC(φ(ui j)). Considering the example shown in Fig. 3c,
SFC(φ(u21)) = 18. Although we employ the Hilbert curve
in this paper, any SFC is applicable to the UPB-tree.

A UPB-tree used to index a metric uncertain object set
based on the object-level model contains three parts, i.e., a
pivot table, a random access file (RAF), and a B+-tree. Fig-
ure 4 illustrates aUPB-tree that indexesU = {u1, u2, u3, u4}.
The pivot table stores the pivots (u11 and u42) that are used
to map a metric space into a vector space. The RAF stores
instance objects in ascending order of their SFC values as
they appear in the B+-tree, in order to enhance efficiency.
Each RAF entry records (i) an uncertain object identifier id,
(ii) an instance identifier cid, (iii) the storage overhead len (in
bytes) of the instance object, and (iv) the real instance object
obj. In Fig. 4c, the RAF entry associated with the object u21
records the uncertain object identifier 2, the instance identi-
fier 1, the storage overhead 8 (bytes), and the real instance
object u21.

AB+-tree is employed to index the SFC values of instance
objects. The structure of a node entry varies, dependent on
whether it is an entry in a leaf node or an entry in a nonleaf
node. A leaf entry in the leaf node (e.g., N3, N4, N5, and
N6) of the B+-tree records (i) an uncertain object identifier

123

Indexing metric uncertain data for range queries and range joins 591

id, (ii) an instance identifier cid, (iii) a SFC value key, (iv)
a probability Pr, and (v) a pointer ptr to the real instance
object, which is the address of the instance object kept in the
RAF. As an example depicted in Fig. 4c, the leaf entry E7

associated with u21 records the uncertain object identifier 2,
the instance identifier 1, the Hilbert value 18, the probability
0.5, and the storage address 0 of u21 in the RAF. A nonleaf
entry in the root or intermediate node (e.g., N0, N1, and N2)

of the B+-tree records (i) the minimum SFC value key in its
subtree, (ii) the pointer ptr to the root node of its subtree, and
(iii) the SFC values min and max for 〈a1, a2, …, a|P|〉 and
〈b1, b2, …, b|P|〉, to represent the MBB Mi (= {[at , bt] | t ∈
[1, |P|]}) of the root node Ni of its subtree. For instance, the
nonleaf entry E3 uses min (= 19) and max (= 23) to denote
the M3 of N3.

Note that, while some existing index structures (e.g., the
R-tree) can also be used to index themapped vector space, the
UPB-tree uses a B+-tree to index the SFC values of instance
objects after the pivot mapping. This is attractive because
the use of an SFC can cluster objects into compact regions
and meanwhile reduce the amount of storage needed for pre-
computed distances, as to be verified by our experiments in
Sect. 7.

4.2 UPB-tree-based MPRQ algorithm

Given a setU of uncertain objects,MPRQfinds the uncertain
objects ui in U with probabilities of being contained in Rq

no smaller than θ , i.e., π(ui , Rq) ≥ θ . Since an uncertain
object ui can be represented by all instance objects ui j with
associated nonnegative probabilities based on the object-
level model, π(ui , Rq) can be calculated by summarizing
all the probabilities of its instance objects ui j (∈ Rq). Thus,
to derive π(ui , Rq) of an uncertain object ui , a naive solution
is to check every instance object ui j and determine whether
ui j is contained in Rq . However, as stated in Lemma 4.1, we
only need to verify the instance objects ui j with φ(ui j) ∈
φ(Rq), where φ(Rq) denotes the mapped search region in
the vector space using a pivot set P . For example, the dashed
circle in Fig. 3a represents Rq , and the dashed rectangle in
Fig. 3b denotes φ(Rq) using P = {u11, u42}.

Lemma 4.1 Given a pivot set P, if an instance object ui j
is enclosed in Rq , then φ(ui j) is contained in the mapped
range region φ(Rq), where φ(Rq) = {〈x1, x2, . . ., x|P|〉|1 ≤
t ≤ |P| ∧ xt ≥ 0 ∧ xt ∈ [d(q, pt) − R, d(q, pt) + R]}.

Proof Assume, to the contrary, that there exists an instance
object ui j ∈ Rq but φ(ui j) /∈ φ(Rq), i.e., ∃pt ∈ P , d(ui j ,
pt) > d(q, pt)+R or d(ui j , pt) < d(q, pt)−R. If d(ui j , pt)
> d(q, pt)+R or d(ui j , pt) < d(q, pt)−R, then d(q, ui j) ≥
|d(ui j , pt) − d(q, pt)| > R due to the triangle inequality.
This contradicts our assumption that ui j ∈ Rq . ��

Based on Lemma 4.1, if the MBB of a node N does not
overlap φ(Rq), we can prune N since the instance objects
ui j contained in N cannot contribute to the value of π(ui ,
Rq). Here, MBB can be obtained easily by using the SFC
values min and max stored in the UPB-tree. In the MPRQ
example shown in Figs. 3 and 4, N6 can be discarded due to
M6 ∩ φ(Rq) = ∅.

When computing π(ui , Rq), Lemma 4.1 is used to avoid
distance computations for instance objects ui j having φ(ui j)
/∈ φ(Rq). Nonetheless, we still have to verify the instance
objects ui j with φ(ui j) enclosed in φ(Rq). Therefore, we
develop Lemma 4.2 that enables us to further avoid unnec-
essary distance computations.

Lemma 4.2 Given a pivot set P, for an instance object ui j , if
there exists a pivot pt (∈ P) satisfying d(ui j , pt) ≤ R−d(q,
pt), then ui j is included in Rq .

Proof Given a query object q, an instance object ui j , and a
pivot pt , we have d(q, ui j) ≤ d(ui j , pt) + d(q, pt) due to
the triangle inequality. If d(ui j , pt) ≤ R−d(q, pt), then d(q,
ui j) ≤ R − d(q, pt) + d(q, pt) = R. Thus, ui j is certainly
contained in Rq . ��

Consider the MPRQ example in Fig. 3. If R = 3, then
for an object u21, there exists a pivot u11 satisfying d(u21,
u11) = R−d(q, u11) = 3−2 = 1. Hence, u21 is guaranteed
to be contained in Rq , and there is no need for any further
distance computation of d(q, u21).

To speed up MPRQ processing, we can also validate or
prune uncertain objects ui using the upper and lower bounds
of π(ui , Rq), as stated in Theorem 4.1.

Theorem 4.1 Given an MPRQ(q, R, θ), let uπ(ui , Rq) and
lπ(ui , Rq) be the upper and lower bounds of π(ui , Rq),
respectively. Then, (i) ui can be safely pruned if uπ(ui , Rq)

< θ , and (ii) ui can be validated if lπ(ui , Rq) ≥ θ .

The proof of Theorem 4.1 is straightforward and thus
omitted. To use Theorem 4.1, we have to derive tight upper
bound uπ(ui , Rq) and lower bound lπ(ui , Rq). According to
Lemma 4.1, by summarizing all the probabilities of instances
ui j for an uncertain object ui with φ(ui j) ∈ φ(Rq), we can
get the upper bound of π(ui , Rq) as follows.

Lemma 4.3 Given an MPRQ(q, R, θ) and a pivot set P,
uπ(ui , Rq) = ∑

φ(ui j)∈φ(Rq) Pr(ui j).

Proof Let Sui = {ui j |ui j ∈ Rq} and Sφ(ui) = {ui j |φ(ui j) ∈
φ(Rq)}. We have Sui ⊆ Sφ(ui) according to Lemma 4.1.
Therefore, π(ui , Rq) = ∑

ui j∈Sui Pr(ui j) ≤ ∑
ui j∈Sφ(ui)

Pr(ui j) = ∑
φ(ui j)∈φ(Rq) Pr(ui j). Consequently, uπ(ui , Rq)

can be set as
∑

φ(ui j)∈φ(Rq) Pr(ui j). ��
Consider theMPRQ(q, 2, 0.5) example in Fig. 3. We have

uπ(u1, Rq) = Pr(u11) + Pr(u12) = 1 and uπ(u3, Rq) =

123

592 L. Chen et al.

Pr(u31) = 0.4, since φ(u11), φ(u12), and φ(u31) are inside
φ(Rq). Hence, u3 can be pruned by Theorem 4.1 because
uπ(u3, Rq) < θ . It is worth noting that, for ui that cannot
be filtered, when computing an accurate π(ui , Rq) during
the verification phase, we can further tighten uπ(ui , Rq) to
improve the pruning power. Specifically, if φ(uik) ∈ φ(Rq)

but d(q, uik) > R, then uπ(ui , Rq) can be tightened to∑
φ(ui j)∈φ(Rq) Pr(ui j) − Pr(uik). As an example, in Fig. 3,

uπ(u1, Rq) can be reduced to 0.6 as φ(u12) ∈ φ(Rq) but
d(q, u12) ≥ 2.

Next, we derive the lower bound of π(ui , Rq) using
Lemma 4.2, by accumulating all the probabilities of the
instance objects satisfying the condition of Lemma 4.2.

Lemma 4.4 Given an MPRQ(q, R, θ) and a pivot set P,
lπ(ui , Rq) = ∑

∃pt∈Ps.t.d(ui j ,pt)≤R−d(q,pt) Pr(ui j).

Proof Let Sui = {ui j | ui j ∈ Rq} and SP = {ui j | ∃pt (∈ P)

s.t. d(ui j , pt) ≤ R − d(q, pt)}. Based on Lemma 4.2, we
can get that Sui ⊇ SP . Then, π(ui , Rq) = ∑

ui j∈Sui Pr(ui j)≥∑
ui j∈SP Pr(ui j)=∑

∃pt∈P s.t. d(ui j ,pt)≤R−d(q,pt) Pr(ui j).
Thus, lπ(ui , Rq) can be set to

∑
∃pt∈P s.t. d(ui j ,pt)≤R−d(q,pt)

Pr(ui j). ��
Consider the MPRQ(q, 2, 0.5) example depicted in Fig. 3

again. We have lπ(u1, Rq) = Pr(u11) = 0.6, as pivot
u11 satisfies d(u11, u11) ≤ 2 − d(q, u11). Also, we can
tighten lπ(ui , Rq) during the verification phase. Specifi-
cally, if uik does not satisfy the condition of Lemma 4.2
but uik ∈ Rq , then lπ(ui , Rq) can also be tightened to∑

∃pt∈P s.t. d(ui j ,pt)≤R−d(q,pt) Pr(ui j) + Pr(uik).

Based on Theorem 4.1 and Lemmas 4.1 to 4.4, we develop
aUPB-tree-based MPRQ algorithm (UtMA). The algorithm
follows a filtering-and-refinement framework. The pseudo-
code is presented in Algorithm 1. The algorithm takes as
inputs q, R, θ , and an uncertain object set U indexed by
a UPB-tree and outputs the result set Sr . In the filtering
phase, UtMA first computes φ(q) and φ(Rq) using a pivot
table P (line 1). Then, it traverses the B+-tree in a depth-
first manner (lines 2–20) to find candidate uncertain objects
(maintained in a set Sc) and the uncertain instance objects
needed further verification (preserved in a set ISc) using
Lemmas 4.1 and 4.2, and to update uπ(ui , Rq) and lπ(ui ,
Rq) for uncertain objects ui in Sc via Lemmas 4.3 and 4.4.
Next, UtMA validates or eliminates the uncertain objects ui
in Sc by Theorem 4.1, and removes corresponding uncer-
tain instance objects uik from ISc (lines 21–24). After that,
during the refinement phase, UtMAfirst verifies every uncer-
tain instance object ui j in ISc in order to tighten uπ(ui , Rq)

and lπ(ui , Rq) for the corresponding uncertain object ui
(lines 26–27). Then, it validates or prunes ui based on The-
orem 4.1, and removes the corresponding uncertain instance
objects uik from ISc (lines 28–30). Finally, Sr is returned
(line 31).

Example 1 Please refer to the conference paper [8] for details
and thus omitted here. ��

4.3 UPB-tree-based MPRQU algorithm

Since the query object q of an MPRQmight be uncertain (as
discussed in Sect. 3.3), we extendMPRQ to take an uncertain
query object as argument, obtaining a new query type called
MPRQU. As an uncertain query object uq can be modeled as
{〈q1,Pr(q1)〉, 〈q2,Pr(q2)〉, …, 〈qm,Pr(qm)〉} based on the
object-level model, the range region Ruq for uq consists of
m circular range regions Rqx (1 ≤ x ≤ m), and thus, π(ui ,
Ruq) can be calculated by summarizing all the probabilities
of π(ui , Rqx) × Pr(qx) (qx ∈ uq). In order to avoid the
high cost of computing π(ui , Ruq), we derive upper and
lower bounds of π(ui , Ruq) as follows, to prune and validate
uncertain objects using Theorem 4.1.

Lemma 4.5 Given an MPRQU(uq, R, θ) and a pivot set P,
uπ(ui , Ruq) = ∑m

x=1
∑

φ(ui j)∈φ(Rqx) (Pr(ui j) × Pr(qx)).

Proof The proof is simple due to the proof of Lemma 4.3
and the definition of π(ui , Ruq), and thus, it is omitted. ��

Consider the MPRQU(uq, 2, 0.5) example depicted in
Fig. 5 where uq = {〈q1, 0.6〉, 〈q2, 0.4〉}. We have uπ(u1,
Ruq) = Pr(u11) × Pr(q1) + Pr(u12) × Pr(q1) + Pr(u12)
× Pr(q2) = 0.76 and uπ(u3, Ruq) = Pr(u31) × Pr(q1)
+ Pr(u31) × Pr(q2) = 0.4, since φ(u11), φ(u12), and
φ(u31) are inside φ(Rq1)while φ(u12) and φ(u31) are inside

123

Indexing metric uncertain data for range queries and range joins 593

(a) (b) (c)

Φ Φ Φ

Fig. 5 Example of MPRQU using the object-level model. a Metric
space, b vector space, c Hilbert curve

φ(Rq2). Hence, u3 can be pruned based on Theorem 4.1.
Also, uπ(ui , Ruq) can be tightened during verification in
order to get stronger pruning power. To be more specific, if
φ(uik) ∈ φ(Rqy) but d(qy , uik) > R, then uπ(ui , Ruq) can
be tightened to

∑m
x=1

∑
φ(ui j)∈φ(Rqx) (Pr(ui j) × Pr(qx)) −

Pr(uik) × Pr(qy).

Lemma 4.6 Given an MPRQU(uq, R, θ) and a pivot set P,
lπ(ui , Ruq) = ∑m

x=1
∑

∃pt∈P s.t. d(ui j ,pt)≤R−d(qx ,pt) (Pr(ui j)
× Pr(qx)).

Proof The proof is simple due to the proof of Lemma 4.4
and the definition of π(ui , Ruq), and thus, it is omitted. ��

Consider the MPRQ(uq, 2, 0.5) example in Fig. 5, where
uq = {〈q1, 0.6〉, 〈q2, 0.4〉}. We have lπ(u1, Ruq) = Pr(u11)
× Pr(q1) = 0.3, since pivot u11 satisfies d(u11, u11) ≤
2 − d(q, u11). Further, lπ(ui , Ruq) can be tightened dur-
ing verification to improve the pruning power. Specifically,
if uik does not satisfy the condition of Lemma 4.2 (i.e.,
d(uik, pt) > R−d(qy, pt)) but uik ∈ Rqy , then lπ(ui , Ruq)

can be tighten to
∑

∃pt∈P s.t. d(ui j ,pt)≤R−d(qx ,pt)(Pr(ui j) ×
Pr(qx)) + Pr(uik) × Pr(qy).

To reduce the computational costs of upper and lower
bounds, a single range region φ(SRuq) that contains all
subrange regions Rqx (1 ≤ x ≤ m) can be used to avoid
unnecessary verifications. Consider the example illustrated
in Fig. 5b, where φ(SRuq) denotes the minimum bounding
box to contain φ(Rq1) and φ(Rq2).

Lemma 4.7 Let φ(SRuq) be the minimum bounding box to
contain all φ(Rqx) (qx ∈ uq), if an instance object ui j strat-
ifies that φ(ui j) /∈ φ(SRuq), then ui j can be pruned safely
for the uncertain query object uq.

Proof According to the definition, we can get that φ(Rqx) ⊂
φ(SRuq) for any qx ∈ uq. Hence, if φ(ui j) /∈ φ(SRuq), then
φ(ui j) /∈ φ(Rqx) for any qx ∈ uq. Due to Lemma 4.1, ui j
cannot locate in any Rqx , and thus, ui j can be pruned safely
for the uncertain query object uq. ��

Consider the MPRQU(uq, 2, 0.5) example depicted in
Fig. 5 where uq = {〈q1, 0.6〉, 〈q2, 0.4〉}. Instance objects
u41,u42, u43, and u32 can be pruned using Lemma 4.7.

According to Lemma 4.7, if the MBB of a node N does
not overlap φ(SRuq), we can also prune N . However, we
still have to verify instance objects that cannot be pruned
by Lemma 4.7. Therefore, we develop Lemma 4.8 to further
avoid unnecessary verifications.

Lemma 4.8 Given a pivot set P, for an instance object ui j ,
if there exists a pivot pt (∈ P) satisfies that d(ui j , pt) ≤
R − max{d(qx , pt)|qx ∈ uq}, then ui j can be validated for
the uncertain query object uq.

Proof According to Lemma 4.2, if there exists a pivot pt
(∈ P) satisfies that d(ui j , pt) ≤ R − max{d(qx , pt)|qx ∈
uq}, then ui j locates in all Rqx (qx ∈ uq). Hence, ui j can be
validated for the uncertain query object uq. ��

Consider again theMPRQU(uq, 2, 0.5) example shown in
Fig. 5 where uq = {〈q1, 0.6〉, 〈q2, 0.4〉}. Due to Lemma 4.8,
none of those instance objects can be validated for uq.

Based on Theorem 4.1 and Lemmas 4.5 to 4.8, we develop
aUPB-tree-basedMPRQU algorithm (UtMUA) that follows
a filtering-and-refinement framework. The pseudo-code of

123

594 L. Chen et al.

UtMUA is depicted in Algorithm 2, which takes as inputs
uq, R, θ , and an uncertain object set U indexed by a UPB-
tree, and outputs a result set Sr . In the filtering phase,UtMUA
first computes φ(qx) and φ(Rqx) for each query instance qx
(1 ≤ x ≤ m) of uq, using a pivot table P (line 1), and then,
it computes the minimum bounding box φ(SRuq) to contain
all φ(Rqx) (line 2). Next, similar as UtMA, it traverses the
B+-tree in a depth-first fashion (lines 3–26), to find candidate
uncertain objects (maintained in a set Sc) and the uncertain
instance objects needed further verification (kept in a map
IMc). The differences betweenUtMUAandUtMAare that (i)
UtMUAvisits nonleaf entries e in the B+-tree ifMBB(e.ptr)
intersects with any φ(Rqx) (1 ≤ x ≤ m) (lines 8–10), (ii)
UtMUAprunes and validates the instance objects using Lem-
mas 4.7 and 4.8 (lines 14–17); (iii) UtMUA updates uπ(ui ,
Ruq) and lπ(ui , Ruq) using Lemmas 4.5 and 4.6 instead
of Lemmas 4.3 and 4.4 (lines 22–24), and (iv) UtMUA uti-
lizes the map IMc to maintain each candidate instance object
ui j with a corresponding vector v that stores qualified query
instances (lines 25–26). A query instance qx is qualified for
ui j if the condition ofLemma4.1 holds, i.e.,φ(ui j)∈φ(Rqx).
Then, the verification in UtMUA is also similar as that in
UtMA (lines 27–37). The difference is that UtMUA needs to
verify all the query instances in IMc(ui j).v for each ui j in
IMc (line 32). Finally, Sr is returned (line 38).

Example 2 We illustrate UtMUA using the MPRQU(uq,
2, 0.5) shown in Fig. 5 with the UPB-tree in Fig. 4. In
the filtering phase, UtMUA computes φ(q1) = (2, 5) and
φ(q2) = (4, 5) using P = {u11, u42} , and then, it gets
φ(Rq1), φ(Rq2) and φ(SRuq). Next, it traverses the B+-tree
to obtain candidate uncertain objects (Sc = {u1, u2, u3})
and instance objects (IMc = {〈u21, {q1}〉, 〈u22, {q1, q2}〉,
〈u31, {q1, q2}〉, 〈u12, {q1, q2}〉}). Meanwhile, lπ(ui , Ruq)

and uπ(ui , Ruq) (ui ∈ Sc) are updated using Lemmas 4.5
and 4.6. After that, the algorithm validates or eliminates the
uncertain objects in Sc. Specifically, u3 is pruned as uπ(u3,
Rq)=0.4<0.5, andu31 is removed from IMc. Thereafter, the
algorithm has Sc = {u1, u2}, IMc = {〈u21, {q1}〉, 〈u22, {q1,
q2}〉, 〈u12, {q1, q2}〉}, and Sr = ∅. In the refinement phase,
for u21 in IMc, lπ(u2, Rq) is tightened to 0.3 due to d(q1,
u21) < 2. In the sequel, entries in IMc are verified similarly.
Finally, the result set Sr = {u1, u2} is returned. ��

4.4 UPB-tree-based MPRJ algorithm

Metric probabilistic range queries only involve a single query
object. In this section, we consider a set of uncertain query
objects, and thus, we investigate the metric probabilistic
range join (MPRJ) that finds all uncertain object pairs 〈ui , v j 〉
with π(ui , v j) exceeding the probability threshold θ . Con-
sider the example using the object-level model illustrated in
Fig. 6, where U = {u1, u2, u3} and V = {v1, v2} with

(a) (b) (c)

Φ

Fig. 6 Example ofMPRJ using the object-level model. aMetric space,
b vector space, c Z-order curve

u1 = {(u11, 0.6), (u12, 0.4)}, u2 = {(u21, 0.5), (u22, 0.5)},
u3 = {(u31, 0.2), (u32, 0.3), (u33, 0.5)}, v1 = {(v11, 0.4),
(v12, 0.6)}, and v2 = {(v21, 0.5), (v22, 0.5)}. Assume that
R = 1, θ = 0.5, and that the L2-norm is utilized. The result
of MPRJ(U , V , 1, 0.5) is {〈u2, v1〉, 〈u3, v2〉}.

A metric probabilistic range join MPRJ(U , V , R, θ) can
be regarded as an MPRQU(ui , R, θ) on V for each uncertain
object ui in U , i.e., MPRJ(U , V , R, θ) = ∪ui∈U {〈ui , v j 〉 |
v j ∈MPRQU(ui , R, θ)}=∪ui∈U {〈ui , v j 〉 |π(v j , Rui) ≥ θ}.
Also, the metric probabilistic range join is symmetric in its
two argumentsU and V , i.e.,MPRJ(U , V , R, θ) =MPRJ(V ,
U , R, θ). Hence, MPRJ(U , V , R, θ) = ∪v j∈V {〈ui , v j 〉 | ui ∈
MPRQU(v j , R, θ)} = ∪v j∈V {〈ui , v j 〉 | π(ui , Rv j) ≥ θ}.

A naive solution for the metric probabilistic range join
MPRJ(U , V , R, θ) is to perform |U | metric probabilistic
range queriesMPRQU(ui , R, θ) (ui ∈ U) on V or |V |metric
probabilistic range queries MPRQU(v j , R, θ) (v j ∈ V) on
U . However, these are inefficient because they have to access
the uncertain object set V or U multiple times. Thus, we
propose an efficient algorithm, calledUPB-tree-basedmetric
probabilistic range join algorithm (UtMJA), which scans the
uncertain object sets U and V only once.

As π(ui , v j) = π(ui , Rv j) = π(v j , Rui) according to
the definition of MPRJ, we get that π(ui , v j) = ∑

uix∈ui∑
v j y∈v j∧(v j y∈Ruix ∨uix∈Rv j y) (Pr(uix)× Pr(v j y)). Hence, in

order to find anMPRJ result pair 〈ui , v j 〉with π(ui , v j) ≥ θ ,
we need to find the instances v j y ∈ Ruix or the instances uix
∈ Rv j y . Since MPRJ can be regarded as multiple MPRQU,
Lemma 4.1 still holds. Thus, we can use Lemma 4.1 to avoid
unnecessary verifications when finding instances v j y ∈ Ruix
and instances uix ∈ Rv j y . Also, the Z-order curve can be
utilized with the pivot mapping to further accelerate MPRJ
processing.

Here, Z-order curve rather than other SFC curves is uti-
lized, because it has the property that, given twopointsφ(v j y)
= 〈s1, . . ., s|P|〉 and φ(v′

j y) = 〈s′
1, . . ., s′|P|〉 in the vector

space, if st ≤ s′
t for all 1 ≤ t ≤ |P|, then SFC(φ(v j y))

≤ SFC(φ(v′
j y)). Let minRR(Ruix) and maxRR(Ruix) be the

SFC values for the left lower and right upper points in
φ(Ruix), i.e., minRR(Ruix) = SFC(φ(〈d(uix , p1) − R, …,
d(uix , p|P|) − R〉)) and maxRR(Ruix) = SFC(φ(〈d(uix , p1)

123

Indexing metric uncertain data for range queries and range joins 595

+ R, . . ., d(uix , p|P|) + R〉)). In order to find the instances
v j y ∈ Ruix , we only need to verify the uncertain instance
objects v j y whose SFC(φ(v j y)) are contained in the range
[minRR(Ruix), maxRR(Ruix)], as elaborated.

Lemma 4.9 Assume that the Z-order curve and a pivot set
P are used. If an uncertain instance v j y is contained in Ruix ,
then SFC(φ(v j y)) ∈ [minRR(Ruix), maxRR(Ruix)].
Proof By definition, φ(Ruix) = {〈s1, . . ., s|P|〉| d(uix , pt)−
R ≤ st ≤ d(uix , pt)+ R ∧ 1 ≤ t ≤ |P|)}. Hence, for φ(v j y)

∈ φ(Ruix), minRR(Ruix) ≤ SFC(φ(v j y)) ≤ maxRR(Ruix),
according to the property of the Z-order curve. Based on
Lemma 4.1, if an uncertain object instance v j y ∈ Ruix , then
φ(v j y) is certainly contained in φ(Ruix). Thus, minRR(Ruix)
≤ SFC(φ(v j y)) ≤ minRR(Ruix). ��

Due to the symmetry of MPRJ, we can also get that if an
uncertain instance uix is contained in Rv j y , then SFC(φ(uix))
∈ [minRR(Rv j y), maxRR(Rv j y)]. In the example shown in
Fig. 6, minRR(Rv11) and maxRR(Rv11) are equal to 18 and
30, respectively. According to Lemma 4.9, instance u22 can
be pruned for v11 since SFC(φ(u22))>maxRR(Rv11). Based
on Lemma 4.9, we can stop evaluating instances v j y for uix ,
when SFC(φ(v j y)) exceeds maxRR(Ruix) if the instances
v j y are retrieved in ascending order of their SFC values,
or when SFC(φ(v j y)) is smaller than minRR(Ruix) if the
instances v j y are retrieved in descending order.

UPB-trees are assumed on the two uncertain object setsU
and V , the leaf levels of which contain the uncertain object
instances in ascending order of their Z-order values. Amerge
join is then performed on the leaf levels. Specifically, objects
uix and viy stored in the two leaf levels of two UPB-trees
are visited in ascending order of their Z-order values, and
two lists are used to keep the instances uix or v j y visited,
respectively. When an instance uix is visited, UtMJA finds
uncertain object instances v j y (∈ Ruix) among instances v j y

visited before uix , and updates π(ui , v j). Likewise, when an
instanceviy is visited,UtMJAfindsuncertain object instances
uix (∈ Rv j y) among instances uix visited before v j y and
updates π(ui , v j). Note that, Lemma 4.9 is used to eliminate
unqualified uix and v j y from the lists, and that Lemma 4.1 is
utilized to avoid unnecessary verifications.

During the merge join, we can preserve the current occur-
rence probability and the failure probability for the uncertain
object ui or v j , in order to avoid unnecessary verifications for
uncertain object pairs. Let Prc(ui) (or Prc(v j)) be the sum
of the probabilities Pr(uix) (or Pr(v j y)) already visited, and
Pr f (ui) (or Pr f (v j)) be the sum of the probabilities Pr(uix)
(or Pr(v j y)) already deleted from the list due to Lemma 4.9.

Lemma 4.10 Let πc(ui , v j) be the current π(ui , v j) during
MPRJ processing. If Prc(ui) × Prc(v j)−πc(ui , v j) + (1−
Prc(ui)) × Pr f (v j) + (1 − Prc(v j)) × Pr f (ui) > 1 − θ ,
then 〈ui , v j 〉 can be pruned safely.

Proof By definition, if 〈ui , v j 〉 ∈ MPRJ(U , V , R, θ), then
π(ui , v j) ≥ θ . Based onLemma4.9, 1−π(ui , v j)≥ Prc(ui)
× Prc(v j) − πc(ui , v j) + (1− Prc(ui)) × Pr f (v j) + (1−
Prc(v j))× Pr f (ui). Thus, if Prc(ui)× Prc(v j)−πc(ui , v j)

+ (1−Prc(ui))× Pr f (v j)+(1−Prc(v j))×Pr f (ui) > 1−θ ,
then π(ui , v j) < θ . Hence, 〈ui , v j 〉 can be pruned away
without any further verification. ��

The pseudo-code of UtMJA is presented in Algorithm 3.
First, UtMJA initializes two lists LU and LV to empty and
gets the first leaf entries EU and EV of the UPB-trees UTU
and UTV , respectively (lines 1–2). Then, the algorithm per-
forms a while loop to visit the leaf entries in ascending order
of SFC values (i.e., keys stored in the UPB-trees), until all
leaf entries of UTU and UTV have been evaluated (i.e., EU

and EV are empty) (lines 3–11). Each time, if all the leaf
entries of UTV are visited (i.e., EV = ∅) or EU .key ≤
EV .key, the Verify function is invoked (line 5) to find the
instances viy stored in LV with viy ∈ Ruix (uix = EU .ptr),
in order to update πc(ui , v j) and Sr if necessary (lines 18–
23). The Verify function also deletes unqualified v j x from
LV and updates corresponding Pr f (v j) (lines 16–17). After
that, UtMJA inserts uix into the list LU , updates Prc(ui),
and gets the next leaf entry EU in UTU (lines 6–7). Other-
wise, if EU is empty (i.e., all leaf entries in UTU have been
visited) or EU .key > EV .key, the algorithm invokes Verify
(line 9) to find the instances uix stored in LU satisfying uix ∈
Rv j y (v j y = EV .ptr) with πc(ui , v j) and Sr being updated
if necessary, and to prune unqualified uix in LU with the cor-
responding Pr f (ui) being updated. Next, UtMJA inserts v j y

in the list LV , updates Prc(v j), and gets the next leaf entry

123

596 L. Chen et al.

(a) (b)

Fig. 7 UPB-trees built on U and V . a UTU and b UTV

EV in UTV (lines 10–11). Finally, the query result set Sr is
returned (line 12).

Example 3 We illustrate UtMJA using MPRQ(U , V , 1, 0.5)
as depicted in Fig. 6, with the corresponding UPB-trees
shown in Fig. 7. We assume that R = 1 and θ = 0.5. Ini-
tially, UtMJA sets LU and LV to empty, and traverses UTU
and UTV to get the first leaf entries EU4 and EV 3. Then, it
performs a while loop. In the first iteration, since EU4.key
> EV 3.key, it invokes Verify(v21, LU), inserts v21 (i.e.,
EV 3.ptr) into LV (= {v21}), updates Prc(v2) to 0.5, and
gets the next leaf entry EV 4 in UTV . In the second iteration,
as EU4.key > EV 4.key, Verify(u11, LV) is invoked, where
v21 can not be pruned due to Lemmas 4.1, 4.9, and 4.10,
and πc(u2, v1) is updated to 0.25. Next, UtMJA inserts u21
into LU (= {u12}), updates Prc(u2) to 0.5, and gets the next
leaf entry EU5 in UTU . In the third iteration, as EU5.key <

EV 4.key, UtMJA calls Verify(u12, LV), where v21 is pruned
for u12 as d(u12, v21) > R. Then, it inserts u21 into LU

(= {u12, u21}) and gets the next leaf entry EU6 in UTU .
UtMJA proceeds in the same manner until all the leaf entries
in UTU and UTV are visited. Finally, it returns the result set
Sr = {〈u2, v1〉, 〈u3, v2〉}. ��

4.5 Discussion

We proceed to discuss the SFC mapping, the impact of LRU
buffer, and then present CPU and I/O cost analysis.

4.5.1 SFC mapping

During the SFC mapping, if the range of d() in an original
metric space is discrete integers (e.g., edit distance), SFC
can directly map φ(ui j) to an integer SFC(φ(ui j)). On the
other hand, if the range of d() in a metric space covers a
range of continuous real numbers (e.g., the L∞-norm), the
real numeric range can be partitioned into n slots, namely
slot 0, slot 1, …, slot n − 1 with corresponding intervals [0,
s), [s, 2× s), …, [(n − 1) × s, d+), in which s = d+/n.
Thus, the entire mapped vector space can be divided into
cells. Then, φ(ui j) can be approximated as 〈�d(ui j , p1)/s�,
�d(ui j , p2)/s�, . . . , �d(ui j , p|P|)/s�〉.

4.5.2 The impact of LRU buffer

If the LRU buffer size is much smaller than the index size,
the I/O cost of our proposed MPRQ, MPRQU, and MPRJ
algorithms based onUPB-trees is unaffected. This is because,
UPB-trees are visited only once for every query. However,
for a large LRU buffer (i.e., the whole tree can be load into
the buffer in an extreme case), the I/O cost can be reduced.
They also hold for the presented UPB-forest as follows.

4.5.3 CPU cost

Thecost of distance computations is the dominant component
of the CPU cost for search in the metric space, since distance
computations are usually expensive (e.g., edit distance, Jac-
card coefficient). Hence, the CPU cost can be estimated by
the number of distance computations.

For UtMA, the number of distance computations includes
the number of distance computations for computingφ(q) and
that for verifying whether an instance object ui j is contained
in Rq . In the worst case, UtMA needs to verify all instance
objects ui j with φ(ui j) ∈ φ(Rq) according to Lemma 4.1.
Thus, the CPU cost of UtMA in terms of distance computa-
tions can be calculated as:

UtMAC = |P| +
∑

ui j∈U
I (φ(ui j), φ(Rq)) (1)

where I (a, b) =
{
1 a ∈ b

0 otherwise
.

Since UtMUA is similar to UtMA, with the query object
q having replaced with the uncertain query object uq, the
CPU cost of UtMUA in terms of distance computations can
be calculated as:

UtMUAC = |P| × m +
∑

qx∈uq

∑

ui j∈U
I (φ(ui j), φ(Rqx)) (2)

For UtMJA, the number of distance computations can be
estimated as the sum of distance computations needed when
finding the instances v j y in Ruix for each instance uix using
Lemmas 4.1 and 4.9. Therefore, the CPU cost of UtMJA in
terms of distance computations can be calculated as:

UtMJAC =
∑

uix∈U

∑

v j y∈V
I (φ(v j y), φ(Ruix)) (3)

4.5.4 I/O cost

The I/O cost of the query processing on a UPB-tree includes
two parts, i.e., B+-tree and RAF page accesses.

ForUtMA, to obtain the number of B+-tree page accesses,
it is sufficient to sum all the nodes whose MBBs are inter-

123

Indexing metric uncertain data for range queries and range joins 597

u1 u2

u3
10 2 3 4 5 6

2

1

3

4

5

6

7

7

u1.c

u1.r

x

y

q
R = 2.5 u2.c

10 2 3 4 5 6 7
u1.c x

10 2 3 4 5 6 7
u2.c x

u1.c(Rq)

(b)

(c)(a)

u3.c
u3.r

u2.r

u2.c(Rq)

u1.c(u3)
u1.c(u2)u1.c(u1)

u2.c(u3)
u2.c(u1)u2.c(u2)

Rq

Φ Φ
Φ

Φ

Φ

Φ
ΦΦ

Fig. 8 Example ofMPRQusing theUPB-forest. (a)Metric space,b the
vector space after u1.c mapping, c the vector space after u2.c mapping

sected with the search region φ(Rq). Also, the number of
RAF page accesses can be estimated as UtMAC/ f , because
the instance objects accessed in the RAF are expected to be
stored close to each other. Here, UtMAC is used to estimate
the total number of the instance objects visited, and f repre-
sents the average number of instance objects per RAF page.
Hence, the I/O cost of UtMA in terms of page accesses can
be calculated as:

UtMAI O =
∑

Mi∈B+-tree
I ′(Mi , φ(Rq)) + UtMAC

f
(4)

where I ′(a, b) =
{
1 a intersects with b

0 otherwise
.

For UtMUA, similarly, the I/O cost of UtMUA in terms
of page accesses can be calculated as:

UtMUAIO =
∑

Mi∈B+-tree
I ′(Mi , φ(Ruq)) + UtMUAC

f
(5)

UtMJA traverses UPB-trees built on uncertain object sets
U andV only once, and thus, it is sufficient to sum the number
of B+-tree leaf pages and RAF pages in the UPB-trees. Let
|UTU | (|UTV |) denote the total number of B+-tree leaf pages
ofUTU (UTV), and let fU (fV) represent the average number
of the objects per RAF page for UTU (UTV). The I/O cost of
UtMJA in terms of page accesses can then be calculated as:

UtMJAI O = |UTU | + |UTV | + |U | × m

fU
+ |V | × m

fV
(6)

5 The UPB-forest

We first present a UPB-forest structure based on the bi-level
model (only considering the continuous case as stated in
Sect. 3.2), and then, we provide corresponding MPRQ and
MPRJ algorithms. Finally, we offer cost analysis.

5.1 UPB-forest structure

As does the UPB-tree, the UPB-forest maps a metric space
into multiple one-dimensional vector spaces using a pivot set
P , and then, it utilizes B+-trees to index those mapped one-
dimensional vector spaces. However, unlike the UPB-tree
that only uses a single B+-tree, the UPB-forest utilizes |P|
B+-trees to index intervals (for continuous PDFs) or points
(for discrete PDFs) in the mapped one-dimensional vector
space. This is because, as discussed in Sect. 2.2, a metric
uncertain object can be represented as |P| PDFs w.r.t. each
pivot in P using the bi-level model, but it is difficult to derive
the multivariate PDF w.r.t the whole pivot set P . Therefore,
one B+-tree is needed for every p ∈ P .

Given a pivot set P = {p1, p2, …, p|P|}, a metric space
(M , d) can be mapped into |P| one-dimensional vector
spaces (R, L∞). Specifically, an uncertain object ui (denoted
as an uncertain region centered at ui .c with radius ui .r)
in the metric space, it can be represented as |P| intervals
φpt (ui) = [d(ui .c, pt) − ui .r , d(ui .c, pt) + ui .r] (pt ∈ P)

with associated continuousPDFs in the one-dimensional vec-
tor space. As an example, Fig. 8b, c illustrates the mapped
one-dimensional vector spaces using pivots u1.c and u2.c,
respectively. According to the triangle inequality, given a
query object q and a pivot pt , d(q, ui) ≥ |d(q, pt) − d(ui ,
pt)| = D(φpt (q), φpt (ui)). Hence, we can conclude that the
distance in the mapped vector space is a lower bound of that
in the original metric space.

In order to index the intervals with continuous PDFs after
the pivot mapping, the real numeric range is partitioned into
n slots, i.e., slot 0, slot 1, …, slot n − 1, with correspond-
ing intervals [0, s), [s, 2 × s), . . ., [(n−1) × s, d+) where
s = d+/n. Thus, φpt (ui) can be partitioned into several
subintervals, and every continuous Gpt ,i (pt ∈ P) can be
approximated as discrete gpt ,ui , in which gpt ,ui (j) denotes
the probability integration on the slot j (i.e., the interval [j ×
s, (j+1) × s)). Take Fig. 8 as an example. Suppose n = 10
and s = 1. Then, φu1.c(u3) can be partitioned into four slots
(i.e., slots 3, 4, 5, and 6), and hence, Gu1.c,u3 can be approx-
imated as gu1.c,u3 , with gu1.c,u3(3) = ∫ 4

3 Gu1.c,u3(x)dx =
0.14, gu1.c,u3(4) = ∫ 5

4 Gu1.c,u3(x)dx = 0.4, gu1.c,u3(5) =
0.38, and gu1.c,u3(6) = 0.08.

An UPB-forest used to index a metric uncertain object
set based on the bi-level model contains three parts, viz.,
a pivot table, a RAF, and |P| B+-trees. Figure 9 shows a
UPB-forest that indexes the uncertain object set U = {u1,
u2, u3} depicted in Fig. 8. The pivot table stores selected
pivots P (u1.c and u2.c in this case) used to map a metric
space into |P| one-dimensional vector spaces. The RAF is
utilized to keep uncertain objects in ascending order of their
identifiers, which improves the efficiency of managing com-
plex uncertain objects. Each RAF entry records an uncertain

123

598 L. Chen et al.

Fig. 9 Example of UPB-forest for the dataset in Fig. 8

object identifier id and the real uncertain object obj. Contin-
uing the above example, in Fig. 9, the RAF entry associated
with uncertain object u1 records its uncertain object identifier
1 and its real uncertain object 〈u1.c, 1, Uniform〉.

The B+-trees Bt (0 ≤ t < |P|) for each pivot pt in the
pivot table are employed to index the intervals φpt (ui) after
the pivot mapping. Every leaf entry in the leaf node of Bt (0
≤ t < |P|) records an uncertain object identifier id, the slot
number key (0 ≤ key < n), and the probability integration
Pr of Gpt ,uid on the corresponding slot (i.e., gpt ,uid (key)).
As an example, in Fig. 9, the first leaf entry of B0 records
the uncertain object identifier id = 1, the slot number key =
0, and the probability integration Pr = 1 equivalent to the
numeric integration of Gu1.c,u1 on slot 0.

Note that a UPB-forest works iff the continuous PDF
representing the uncertain objects can be integrated. In addi-
tion, unlike the UP-Index [3], which needs to store the
pre-computed histograms w.r.t. the whole distance range for
every uncertain object ui , the UPB-forest only stores nec-
essary information. To be more specific, for each ui , the
UPB-forest only records nonzero values gpt ,ui (j) on slot j
instead of the entire slot set. In addition, B+-trees of the
UPB-forest preserve entries in ascending order of their cor-
responding slot values, which improves I/O efficiency as the
entries to be visited are stored close to each other.

5.2 UPB-forest-based MPRQ algorithm

In what follows, we employ a running example to better
explain MPRQ processing. Specifically, consider the uncer-
tain object set U = {u1, u2, u3} illustrated in Fig. 8, with
u1 = 〈u1.c, 1, Uniform〉 (indicating that u1 is located uni-
formly within the uncertain region centered at u1.c having
radius 1), u2 = 〈u2.c, 1, Uniform〉, and u3 = 〈u3.c, 1.5,
Uniform〉. Assuming that the L2-norm is used to measure
similarity, the result of a MPRQ(q, 2.5, 0.15) is the uncertain
object u1.

To accelerate MPRQ processing, we first derive an upper
bound uπ(ui , Rq) and a lower bound lπ(ui , Rq) on π(ui ,

Rq) based on the UPB-forest. These allow us to filter out and
validate uncertain objects according to Theorem 4.1 without
any need for further verification.

Lemma 5.1 Given a pivot set P and a query object q, for
an uncertain object ui , uπ(ui , Rq) = minpt∈P

∫ d(q,pt)+R
d(q,pt)−R

Gpt ,ui (x)dx is an upper bound on π(ui , Rq).

Proof Based on the triangle inequality, given a pivot pt , we
have d(q, pt) − R ≤ d(ui , pt) ≤ d(q, pt) + R if d(q,
ui) ≤ R, while the reverse is not true. Hence, π(ui , Rq) =
Pr(d(q, ui) ≤ R) ≤ Pr(d(q, pt) − R ≤ d(ui , pt) ≤ d(q,
pt) + R) = ∫ d(q,pt)+R

d(q,pt)−R Gpt ,ui (x)dx , and uπ(ui , Rq) can be

set as minpt∈P
∫ d(q,pt)+R
d(q,pt)−R Gpt ,ui (x)dx . The proof completes.

��

Consider MPRQ(q, 2.5, 0.15) depicted in Fig. 8 as an
example.Given P ={u1.c, u2.c}, uπ(u3, Rq) = ∫ d(q,u1.c)+R

d(q,u1.c)−R
Gu1.c,u3(x)dx ≈ 0.14 < θ , and thus, u3 can be pruned.

As mentioned in Sect. 5.1, Gpt ,ui is approximated as
gpt ,ui when building the UPB-forest. To utilize Lemma 5.1,

uπ(ui , Rq) can be calculated as minpt∈P
∑�(d(q,pt)+R)/s�−1

�(d(q,pt)−R)/s�
gpt ,ui (x). Considering again Fig. 8 as an example, uπ(u3,
Rq) = gu1.c,u3(3) = 0.14.

Note that, according to Lemma 5.1, if φpt (u) does not
intersect with φpt (Rq) (pt ∈ P), ui can be safely pruned by
Theorem 4.1 as uπ(ui , Rq) = 0 < θ . Thus, we only need to
verify uncertain objects ui with φpt (ui) crossing φpt (Rq) for
every pt ∈ P , i.e.,φ(ui)∩φ(Rq) �= ∅, sinceφ(ui) andφ(Rq)

represent the hypercubes in the mapped multi-dimensional
vector space using the whole pivot set P .

Lemma 5.2 Given a pivot set P and a query object q, for
an uncertain object ui , lπ(ui , Rq) = maxpt∈P

∫ R−d(q,pt)
0

Gpt ,ui (x)dx is a lower bound on π(ui , Rq).

Proof According to the triangle inequality, given a pivot pt ,
if d(ui , pt) ≤ R−d(q, pt), then d(q, ui) ≤ R. Hence, π(ui ,
Rq) = Pr(d(q, ui) ≤ R) ≥ Pr(d(ui , pt) ≤ R − d(q, pt))

= ∫ R−d(q,pt)
0 Gpt ,ui (x)dx , and thus, lπ(ui , Rq) can be set as

maxpt∈P
∫ R−d(q,pt)
0 Gpt ,ui (x)dx . The proof completes. ��

Consider again theMPRQ(q, 2.5, 0.15) depicted in Fig. 8.
Here, lπ(u1, Rq) = ∫ R−d(q,u1.c)

0 Gu1.c,u1(x)dx = 1 > θ .
Therefore, u1 can be validated without further verification.
Similarly, to use Lemma 5.2, lπ(ui , Rq) can be calculated as

maxpt∈P
∑�(R−d(q,pt))/s�−1

0 gpt ,i (x). For instance, in Fig. 8,
lπ(u3, Rq) = gu1.c,u1(0) = 1.

123

Indexing metric uncertain data for range queries and range joins 599

Based on these upper and lower bounds, we present the
UPB-forest-based MPRQ algorithm (UfMA), which follows
a filtering-and-refinement framework. The pseudo-code of
UfMA is shown in Algorithm 4. It takes as inputs q, R, θ ,
and an uncertain object set U indexed by a UPB-forest, and
it outputs the result set Sr of MPRQ(q, R, θ). In the filtering
phase, UfMA first computes the set Spt of slots contained in
the mapped search region φpt (Rq) and the set S′

pt for each
pt ∈ P (line 1). It then traverses each B+-tree Bt of theUPB-
forest to retrieve leaf entries 〈ui , key, pr〉 with keys ∈ Spt or
keys∈ S′

pt (line 3), updatesuπ(ui , Rq)or lπ(ui , Rq)basedon
Lemma 5.1 or 5.2 (line 4), and inserts all qualified candidates
ui (i.e., uπ(ui , Rq) ≥ θ and ui /∈ Sc) into Sc (lines 5–6). In
the refinement phase, for every ui ∈ Sc, the algorithm adds ui
to Sr if lπ(ui , Rq) ≥ θ (lines 8–9) and filters ui if uπ(ui , Rq)

< θ (lines 10–11). Otherwise, it computes π(ui , Rq) using
numerical integration and inserts ui into Sr if π(ui , Rq) ≥ θ

(lines 12–13). Note that, π(ui , Rq) is derived by using GNU
Scientific Library with the error bound set to 10−5. Finally,
the result set Sr is returned (line 14).

Example 4 Please refer to the conference paper [8] for details
and thus omitted here. ��

5.3 UPB-forest-based MPRQU algorithm

To explainMPRQU processing, we also use a running exam-
ple. Specifically, consider the uncertain object set U = {u1,
u2, u3} illustrated in Fig. 10, with u1 = 〈u1.c, 1, Uniform〉
(meaning that u1 is located uniformly within the uncertain
region centered at u1.c having radius 1), u2 = 〈u2.c, 1,
Uniform〉, and u3 = 〈u3.c, 1.5, Uniform〉. Assume that the
L2-norm is used to measure similarity and uq = 〈uq.c, 1,
Uniform〉, the result of aMPRQU(uq, 1.5, 0.15) is the uncer-
tain object u1.

Since the query object q is replaced with the uncertain
query object uq (an uncertain region centered at uq.c with
the radius uq.r in our running example) for MPRQU, the
derivation of the upper bound uπ(ui , Ruq) and lower bound

u1 u2

u3
10 2 3 4 5 6

2

1

3

4

5

6

7

7

u1.c

u1.r

x

y

R = 1.5

u2.c
10 2 3 4 5 6 7

u1.c x

10 2 3 4 5 6 7
u2.c x

u1.c(Ruq)

(b)

u3.c
u3.r

u2.r

u2.c(Ruq)

u1.c(u3)
u1.c(u2)u1.c(u1)

u2.c(u3)
u2.c(u1)u2.c(u2)

Ruq

uq.c

uq.r

uq

(a) (c)

Φ Φ
Φ

Φ
ΦΦ

Φ

Φ

Fig. 10 Example of MPRQU using the UPB-forest. a Metric space,
b the vector space after u1.c mapping, c the vector space after u2.c
mapping

lπ(ui , Ruq) based on the UPB-forest needs to take into
account the uncertainty of uq. The range region Ruq in the
mapped vector space w.r.t. a specific pivot pt (i.e., φpt (Ruq))
can be represented as an interval [d(uq.c, pt) − uq.r − R,
d(uq.c, pt)+uq.r+R]. Let Fpt ,uq(x) = ∫ x+R

x−R Gpt ,uq(x)dx ,
we can derive the upper bound below.

Lemma 5.3 Givenapivot set P andaquery uncertain object
uq, for an uncertain object ui , uπ(ui , Ruq) = minpt∈P∫ d(uq.c,pt)+uq.r+R
d(uq.c,pt)−uq.r−R Gpt ,ui (x) × Fpt ,uq(x)dx is a upper bound
on π(ui , Ruq).

Proof The proof follows straightforwardly from the defini-
tion of MPRQU and the proof of Lemma 5.1. ��

Since we approximate a continuous Gpt ,ui (pt ∈ P) by
a discrete gpt ,ui , in which gpt ,ui (j) denotes the probability
integration on the slot j (i.e., the interval [j × s, (j+1) ×
s)), we can also approximate Fpt ,uq as a discrete u f pt ,uq ,
where u f pt ,uq(j) represents the maximum probability of
Fpt ,uq on the slot j . Hence, uπ(ui , Ruq) can be cal-

culated as minpt∈P
∑�(d(uq.c,pt)+uq.r+R)/s�−1

�(d(uq.c,pt)−uq.r−R/s)� (gpt ,ui (x)×
u f pt ,uq(x)). For example, in Fig. 10, given P = {u1.c, u2.c},
uπ(u3, Ruq) = gu1.c,u3(3) × u fu1.c,uq(3) = 0.0261 < θ .
Thus, u3 can be pruned.

Let F ′
pt ,uq(x) = ∫ R−x

0 Gpt ,uq(x)dx , we can derive the
lower bound as follows.

Lemma 5.4 Givenapivot set P andaquery uncertain object
uq, for an uncertain object ui , lπ(ui , Ruq) = maxpt∈P∫ R−d(q,pt)+uq.r
0 Gpt ,ui (x)dx × F ′

pt ,uq(x)dx is a lower bound
on π(ui , Ruq).

Proof The proof follows straightforwardly from the defini-
tion of MPRQU and the proof of Lemma 5.2. ��

Similarly, we can also approximate F ′
pt ,uq as the discrete

l f pt ,uq , in which l f pt ,uq(j) denotes the minimum probability
of F ′

pt ,uq on the slot j . Hence, lπ(ui , Ruq) can be cal-

culated as maxpt∈P
∑�(R−d(uq.c,pt)+uq.r)/s�−1

0 (gpt ,ui (x)×
l f pt ,uq(x)). Using the example in Fig. 10, given P =

123

600 L. Chen et al.

{u1.c, u2.c}, lπ(u1, Ruq) = gu1.c,u1(1) × l fu1.c,uq(1) =
0.0086 < θ . Thus, u1 cannot be validated and a further veri-
fication is needed.

Based on the upper and lower bounds derived above, we
present theUPB-forest-basedMPRQU algorithm (UfMUA),
which follows a filtering-and-refinement framework. The
pseudo-code of UfMUA is shown in Algorithm 5. It takes
as inputs uq, R, θ , and an uncertain object set U indexed by
a UPB-forest, and it outputs the result set Sr of MPRQU(uq,
R, θ). In the filtering phase, UfMUA first computes u f pt ,uq
on the set Spt of slots contained in the mapped search region
φpt (Ruq) and l f pt ,uq on the set S′

pt for each pt in P (lines
1–2). It then traverses each B+-tree Bt of the UPB-forest
to search leaf entries 〈ui , key, pr〉 with keys ∈ Spt or keys
∈ S′

pt (line 4), updates uπ(ui , Ruq) or lπ(ui , Ruq) based on
Lemma 5.3 or 5.4 (line 5), and inserts all qualified candidates
ui (i.e., uπ(ui , Ruq) ≥ θ and ui /∈ Sc) into Sc (lines 6–7). In
the refinement phase, for every ui ∈ Sc, the algorithm adds
ui to Sr if lπ(ui , Ruq) ≥ θ (lines 10–11), and it filters ui if
uπ(ui , Ruq) < θ (lines 9–10). Otherwise, it computes π(ui ,
Ruq) using the numerical integration and inserts ui into Sr
if π(ui , Ruq) ≥ θ (lines 13–14). Finally, the result set Sr is
returned (line 15).

Example 5 We illustrate UfMUA using MPRQU(uq, 1.5,
0.15) as depicted in Fig. 10 with the UPB-forest shown in
Fig. 9, andwe let n =10 and s=1.UfMUAcomputes u fu1.c,uq
on Su1.c = {x |x ∈ [-2, 3]}, u fu2.c,uq on Su2.c = {x | x ∈
[1, 6]}, l fu1.c,uq on S′

u1.c = {x | x ∈ [0, 1]}, and l fu2.c,uq on
S′
u2.c = ∅. Then, it traverses the B+-tree B0 to find the leaf

entries with their keys contained in Spt or S
′
pt , i.e., 〈u1, 0, 1〉,〈u2, 3, 0.18〉, and 〈u3, 3, 0.14〉; it updates uπ(u1, Ruq) = 1,

uπ(u2, Ruq) = 0.0934, uπ(u3, Ruq) = 0.0261, and lπ(u1,
Ruq) = 0.0086 based on Lemmas 5.3 and 5.4; and it adds
u1 to Sc. Next, B1 is traversed similarly, after which uπ(u2,
Ruq) is updated to 0. In the sequel, UfMUA subsequently
checks every uncertain object in Sc. It inserts u1 into Sr as
π(u1, Ruq) > θ . Finally, the result set Sr = {u1} is returned.

��

u1 v2

u2
10 2 3 4 5 6

2

1

3

4

5

6

7

7

u1.c

u1.r

x

y

v2.c
10 2 3 4 5 6 7

u1.c x

10 2 3 4 5 6 7
v2.c x

(b)

u2.c
u2.r

v2.r u1.c(u2)
u1.c(v2)u1.c(u1)

v2.c(u2)
v2.c(u1)v2.c(v2)

v1.c

v1.r

v1

u1.c(v1)

v2.c(v1)

(a) (c)

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Fig. 11 Example of MPRQU using the UPB-forest. a Metric space,
b the vector space after u1.c mapping, (c) the vector space after v2.c
mapping

5.4 UPB-forest-based MPRJ algorithm

We also utilize a running example better explain MPRJ
processing. Specifically, consider two uncertain object sets
U = {u1, u2} and V = {v1, v2} illustrated in Fig. 11,
with u1 = 〈u1.c, 1, Uniform〉 (meaning that u1 is located
uniformly within the uncertain region centered at u1.c hav-
ing radius 1), u2 = 〈u2.c, 1.5, Uniform〉, v1 = 〈v1.c, 1,
Uniform〉, and v2 = 〈v2.c, 1, Uniform〉. Assuming that the
L2-norm is used tomeasure similarity, the result ofMPRJ(U ,
V , 1.5, 0.5) is {〈u1, v1〉}.

As discussed in Sect. 4.4, a metric probabilistic range join
can be regarded asmultipleMPRQU.Hence, a naive solution
for MPRJ based on the bi-level model is to perform UfMUA
on V for each ui ∈U or to performUfMUA onU for each v j

∈ V . However, these are inefficient because they have to scan
the uncertain object set V orU multiple times. In view of this,
we develop an efficient algorithm, called UPB-forest-based
metric probabilistic range join algorithm (UfMJA), which
scans U and V only once. To accelerate MPRJ, we validate
or prune uncertain object pairs 〈ui , v j 〉 using upper and lower
bounds of π(ui , v j)without any further verification for com-
puting π(ui , v j), as stated in Theorem 5.1 below.

Theorem 5.1 Given an MPRJ(U, V , R, θ), let uπ(ui , v j)

and lπ(ui , v j) be the upper bound and lower bound on π(ui ,
v j). Then (i) 〈ui , v j 〉 can be safely pruned if uπ(ui , v j) < θ ,
and (ii) 〈ui , v j 〉 can be validated if lπ(ui , v j) ≥ θ .

The proof of Theorem 5.1 is straightforward and thus
omitted. In order to employ Theorem 5.1, we need to derive
bounds uπ(ui , v j) and lπ(ui , v j).

As defined in Sect. 5.3, Fpt ,v j (x) = ∫ x+R
x−R Gpt ,v j (x)dx .

Then, we can approximate Fpt ,v j as f pt ,v j using gpt ,v j stored
in the UPB-forest UFV built on U . In particular, f pt ,v j (k)

on slot k can be calculated as
∑k+1+�R/s�

k−�R/s� gpt ,v j (y). Hence,
we can get that for Fpt ,v j (x) (x ∈ [k × s, (k + 1) × s)) ≤
∫ (k+1)×s+R
k×s−R Gpt ,v j (x)dx ≤ f pt ,v j (k).

123

Indexing metric uncertain data for range queries and range joins 601

Lemma 5.5 Given a pivot set P, and two uncertain objects
ui and v j , uπ(ui , v j) = minpt∈P

∑�(d(ui .c,pt)+ui .r)/s�−1
�(d(ui .c,pt)−ui .r)/s�

(gpt ,ui (k) × f pt ,v j (k)) is an upper bound on π(ui , v j).

Proof According to Lemma 5.3, uπ(ui , v j) = minpt∈P
∫ d(v j .c,pt)+v j .r+R
d(v j .c,pt)−v j .r−R (gpt ,ui (x) × Fpt ,v j (x)). Due to the pivot
mapping, we can get that φpt (ui) = [d(ui .c, pt) − ui .r,
d(ui .c, pt)+ui .r], and thus, gpt ,ui has nonzero values for the
slots k ∈ [�(d(ui .c, pt) − ui .r)/s�, �(d(ui .c, pt) + ui .r)/s�
−1]. Since Fpt ,v j (x) ≤ f pt ,v j (k) (x ∈ [k × s, (k + 1) × s)),

uπ(ui , v j) ≤ minpt∈P
∑�(d(ui .c,pt)+ui .r)/s�−1

�(d(ui .c,pt)−ui .r)/s� (gpt ,ui (k) ×
f pt ,v j (k)). The proof completes. ��
Note that, since MPRJ is symmetric, uπ(ui , v j) can

be calculated asminpt∈P
∑�(d(ui .c,pt)+ui .r)/s�−1

�(d(ui .c,pt)−ui .r)/s� (gpt ,v j (k)×
f pt ,ui (k)). ConsiderMPRJ(U ,V , 1.5, 0.5) inFig. 11.Assume
that P = {u1.c, v2.c}, we can get that uπ(u1, v1) =
gu1.c,u1(0) × ∑3

−2 gu1.c,v1(k) = 1 and uπ(u1, v2) = gu1.c,u1
(0) × ∑3

−2 gu1.c,v2(k) = 0. Therefore, we can prune the
uncertain object pair 〈u1, v2〉 due to uπ(u1, v2) < θ accord-
ing to Theorem 5.1.

As defined in Sect. 5.3, F ′
pt ,v j

(x) = ∫ R−x
0 Gpt ,v j (x)dx .

Then, we can also approximate F ′
pt ,v j

as f ′
pt ,v j

using gpt ,v j

stored in the UPB-forestUFV over V . In particular, f ′
pt ,v j

(k)

on slot k can be calculated as
∑�R/s�−k−2

0 gpt ,v j (y). Hence,
we can get that for F ′

pt ,v j
(x) (x ∈ [k × s, (k + 1) × s)) ≥

∫ R−(k+1)×s
0 Gpt ,v j (x)dx ≥ f ′

pt ,v j
(k).

Lemma 5.6 Given a pivot set P, and two uncertain objects
ui and v j , lπ(ui , v j) = maxpt∈P

∑�(d(ui .c,pt)+ui .r)/s�−1
�(d(ui .c,pt)−ui .r)/s�

(gpt ,ui (k) × f ′
pt ,v j

(k)) is an lower bound on π(ui , v j).

Proof According to Lemma 5.3, uπ(ui , v j) = minpt∈P
∫ R−d(v j .c,pt)+ui .r
d(v j .c,pt)−ui .r−R (gpt ,i (x) × F ′

pt ,v j
(x)). Due to the pivot

mapping, φpt (ui) = [d(ui .c, pt) − ui .r, d(ui .c, pt) +
ui .r], and thus, gpt ,ui has nonzero values on slots k ∈
[�(d(ui .c, pt)−ui .r)/s�, �(d(ui .c, pt)+ui .r)/s�−1]. Since
F ′
pt ,v j

(x) ≤ f ′
pt ,v j

(k) (x ∈ [k × s, (k + 1) × s), lπ(ui , v j)

≥ maxpt∈P
∑�(d(ui .c,pt)+ui .r)/s�−1

�(d(ui .c,pt)−ui .r)/s� (gpt ,ui (k) × f ′
pt ,v j

(k)).
The proof completes. ��

Note that, since MPRJ is symmetric, lπ(ui , v j) can be

calculated as maxpt∈P
∑�(d(v j .c,pt)+v j .r)/s�−1

�(d(v j .c,pt)−v j .r)/s� (gpt ,v j (k)×
f ′
pt ,ui (k)). Consider MPRJ(U , V , 1.5, 0.5) again in Fig. 11.

Assuming that P = {u1.c, v2.c}, we can get that lπ(u1,
v1) = gu1.c,u1(0) × ∑−1

0 gu1.c,v1(k) = 0. Thus, we cannot
validate the uncertain object pair 〈u1, v1〉 by Theorem 5.1,
as lπ(u1, v1) < θ .

Based on Lemmas 5.5 and 5.6, and Theorem 5.1, UfMJA
adopts a filtering-and-refinement framework. The pseudo-
code of UfMJA is presented in Algorithm 6. The algorithm
takes as inputs UPB-forestsUFU andUFV built onU and V ,
respectively, a search radius R, and a probability threshold θ ,
and outputs the result Sr ofMPRJ(U , V , R, θ). In the filtering
phase, for theB+-trees BUt and BV t (0≤ t < |P|) ofUFU and
UFV , UfMJA first initializes two lists LU and LV to empty
and gets the first leaf entries EU and EV of the B+-trees
BUt and BV t , respectively (lines 2–3). Then, the algorithm
performs a while loop to visit the leaf entries in ascending
order of their keys values, until all leaf entries of both BUt and
BV t are evaluated (i.e., EU and EV are empty) (lines 4–12).
Each time, if all the leaf entries of BV t are visited (i.e., EV =
∅) or EU .key ≤ EV .key, the Verify function is invoked (line
5) to update utπ(ui , v j) and ltπ(ui , v j) (i = EU .id, j =
EV .id ∈ LV) and to delete unqualified EV from LV using
Lemmas 5.5 and 5.6. Note that, utπ(ui , v j) and ltπ(ui , v j)

are equal to uπ(ui , v j) and lπ(ui , v j) as computed using
a specific pivot pt . After that, UfMJA inserts EU into the
list LU and gets the next leaf entry EU in BUt (lines 7–8).
Otherwise, if EU is empty (i.e., all leaf entries in BUt have
been visited) or EU .key > EV .key, the algorithm invokes
Verify to update utπ(ui , v j) and ltπ(ui , v j) (i = EU .id ∈

123

602 L. Chen et al.

0 4

u1

0
Pivot table
id object
0
1

u1.c
6

1 0.08
u2

0.4
u2

0.38
u2

B+-tree

3 4 5

3

u1

4 5

0.18 0.31
u1

0.61
u2

0.21
u1

0.42
u2

B+-tree

u1
RAF

u2

v2.c

3 5

u2
0.14

3

u2
0.27

BU0

BU1

0 4

0

v2

3

0.18 0.18
v2

0.61

B+-tree

0 2 4

v2

0

v1

3

1 0.11
v1

0.59 0.3
v1

B+-tree

5

v2
0.21

BV0

BV1

v1

1 2

0.63
v1

0.19
v1

EU1 EU2 EU3 EU4 EU5 EV1 EV2 EV3 EV4 EV5 EV6

EU1 EU2 EU3 EU4 EU5 EU6 EV1 EV2 EV3 EV4

5

4

3

3

(a) (b)

Fig. 12 UPB-forests built on U and V . a UFU and b UFV

LU , j = EV .id), and to delete unqualified EU from LU using
Lemmas 5.5 and 5.6. Thereafter, UfMJA inserts EV into the
list LV andgets the next leaf entry EV in BV t (lines 11–12). In
the refinement phase, for each uncertain object pair 〈ui , v j 〉
in U × V , the algorithm inserts 〈ui , v j 〉 into Sr if lπ(ui , v j)

≥ θ (lines 14–15), and it filters 〈ui , v j 〉 if uπ(ui , v j) < θ

(lines 16–17). Otherwise, it computes π(ui , v j) and inserts
〈ui , v j 〉 into Sr if π(ui , v j) ≥ θ . Finally, the result set Sr is
returned (line 20).

Example 6 We illustrate the working of the UfMJA using
the MPRJ(U , V , 1.5, 0.5) example shown in Fig. 11, with
UPB-forests built on U and V as depicted in Fig. 12.
For B+-trees BU0 and BV 0, UfMJA sets LU and LV to
empty and traverses the two trees to get the first leaf
entries EU1 and EV 1. Then, it performs a while loop.
In the first iteration, since EU1.key = EV 1.key, UfMJA
calls Verfiy(EV 1, LU), inserts EV 1 into LV , and gets the
next leaf entry EV 2 in BV 0. In the second iteration, as
EU1.key < EV 2.key, Verify(EU1, LV) is invoked, where
u0π(u1, v1) is updated to 0.18 due to Lemmas 5.5. Then,
UfMJA inserts EU1 into LU and gets the next leaf entry
EU2 in BU0. In the third iteration, as EU2.key > EV 2.key,
the algorithm calls Verify(EV 2, LU), in which u0π(u1, v1)
is updated to 0.81. Then, UtMJA inserts EV 2 into LV

and gets the next leaf entry EV 3 in BV 0. The algo-
rithm proceeds in the same manner until all leaf entries
in BU0 and BV 0 are visited, with uπ0(u1, v1) = 1,
uπ0(u1, v2) = 0, uπ0(u2, v1) = 0.4748, and uπ0(u2, v2) =
0.9856. Next, BU1 and BV 1 are traversed similarly, with
uπ1(u1, v1) = 1, uπ1(u1, v2) = 0, uπ1(u2, v1) = 0.9659,
and uπ1(u2, v2) = 0. Subsequently, 〈u1, v1〉 is inserted
into Sr due to π(u1, v1) > 0.5. Other uncertain object pairs
〈ui , v j 〉 are pruned due to uπ(ui , v j) < 0.5 using Theo-
rem 5.1. Finally, the algorithm returns the result set Sr =
{〈u1, v1〉}. ��

5.5 Discussion

We proceed to analyze the CPU and I/O costs of query pro-
cessing based on the UPB-forest.

5.5.1 CPU cost

As for UfMA, the CPU cost of UfMA can be estimated by
using the number of distance computations, which includes
distance computations for computing φpt (Rq) w.r.t. each
pt ∈ P , and that for verifying whether an uncertain object
ui is a real answer object. According to Lemma 5.1, in the
worst case, UfMA needs to verify all the uncertain objects
ui with φpt (ui) ∩ φpt (Rq) �= ∅ for every pt ∈ P , i.e.,
φ(ui)∩φ(Rq) �= ∅. Hence, the CPU cost of UfMA in terms
of distance computations can be calculated as:

UfMAC = |P| +
∑

ui∈U
I ′(φ(ui), φ(Rq)) (7)

where I ′(a, b) =
{
1 a intersects with b

0 otherwise
.

Similarly, the CPU cost of UfMUA in terms of distance
computations can be calculated as:

UfMUAC = |P| +
∑

ui∈U
I ′(φ(ui), φ(Ruq)) (8)

For UfMJA, the number of distance computations can be
estimated by using the sum of distance computations needed
when finding the instances v j intersecting with Rui for each
instance ui . Thus, the CPU cost of UfMJA in terms of dis-
tance computations can be calculated as:

UfMJAC =
∑

ui∈U

∑

v j∈V
I ′(φ(ui), φ(Rv j)) (9)

5.5.2 I/O cost

The I/O cost of UfMA on the UPB-forest contains two parts,
i.e., B+-tree and RAF page accesses. To obtain the number
of B+-tree page accesses, it is sufficient to sum all the B+-
tree Bt (0 ≤ t < |P|) nodes whose MBBs intersect with
the search region φpt (Rq). In addition, the number of RAF
page accesses can be estimated by using UfMAC/ f , where
UfMAC is used to estimate the total number of the uncertain
objects accessed, and f represents the average number of the
uncertain objects per RAFpage because the uncertain objects
visited in RAF are stored close to each other. Hence, the I/O
cost of UfMA in terms of page accesses can be calculated
as:

123

Indexing metric uncertain data for range queries and range joins 603

UfMAI O =
∑

Mi∈Bt (0≤t<|P|)
I ′(Mi , φpt (Rq))

+UfMAC

f
(10)

The I/O cost of UfMUA in terms of page accesses can be
calculated similarly:

UfMUAI O =
∑

Mi∈Bt (0≤t<|P|)
I ′(Mi , φpt (Ruq))

+UfMUAC

f
(11)

As UfMJA traverses UPB-forests built on two uncertain
object sets U and V only once, it is sufficient to sum the
number of B+-tree leaf pages and RAF pages in the UPB-
forests. Let |BUt | ∈ UFU (|BV t | ∈ UFV) denote the total
number of B+-tree leaf pages of BUt (BV t), and let fU (fV)
represent the average number of the objects per RAF page
for UFU (UFV). In brief, the I/O cost of UfMJA in terms of
page accesses can be calculated as:

UfMJAI O =
∑

0≤t<|P|
|BUt | +

∑

0≤t<|P|
|BV t | + |U |

fU
+ |V |

fV

(12)

6 Pivot selection

In this section, we introduce a quality criterion for pivot sets
and then propose an efficient pivot selection algorithm to
obtain a high-quality pivot set based on the newly defined
quality criterion.

According to the cost analysis in Sects. 4.5 and 5.5, the
costs of MPRQ, MPRQU, and MPRJ using the UPB-tree
or the UPB-forest depend significantly on the pivot set P .
Hence, it makes sense to define a criterion to measure the
quality of pivots. Since our algorithms follow the filtering-
and-refinement framework, they prune an uncertain object u
using its probability upper bound Pr(D(φ(q), φ(u)) ≤ R),
to avoid unnecessary computation of Pr(d(q, u) ≤ R) (as
D() is the lower bound of d()). In order to achieve high
performance, i.e., fewer computations of Pr(d(q, u) ≤ R),
the lower bound distances should be close to the actual dis-
tances, i.e., the mapping to the vector space should preserve
the proximity in the metric space.

Let ε(x, y) (x , y ∈ U) denote the random variable defined
as D(φ(x), φ(y))/d(x, y). Note that, 0 ≤ ε(x, y) ≤ 1. The
expected value of ε(x, y) can be calculated as:

E[ε(x, y)] =
∫ 1

0
z × Pr(D(φ(x), φ(y))/d(x, y) = z)dz

(13)

To obtain an optimal pivot set P , we need to pick pivots
that maximize E[ε(x, y)]. However, it is costly to obtain the
distribution of ε(x, y) for every uncertain object pair. There-
fore, random sampling is exploited to estimate the value of
E[ε(x, y)], denoted as Ê[ε(x, y)], for achieving the follow-
ing goal:

Pr(|E[ε(x, y)] − Ê[ε(x, y)]| < ξ) > 1 − δ (14)

According to the Hoeffding’s inequality [19],

Pr(|E[ε(x, y)] − Ê[ε(x, y)]| < ξ) > 1 − 2 · exp(−2T ξ2)

(15)

Here, T represents the sampled size. Hence, to reach the
target stated in Eq. 14, T ≥ 1

2ξ2
log(2

δ
).

Given a set US (|US| ≥ 1
2ξ2

log(2
δ
)) of uncertain instance

pairs sampled from an uncertain object set U , the uncertain
instance object ui j with higher probability Pr(ui j) con-
tributes more to derive constrictive upper bound uπ(ui , Rq).
Hence, taking the probability of the uncertain instance object
into consideration, we offer a criterion to measure the quality
of a pivot set P based on the sampled metric uncertain data
as follows.

Definition 6.1 Given a sample US of instance object pairs
on the metric uncertain data, the quality of a pivot set P is
defined as

εP = 1

|US|
∑

<ui j ,umn>∈US

(
D(φ(ui j), φ(umn))

d(ui j , umn)
× Pr(ui j)

×Pr(umn)

)

The more the pivots, the better the pruning capabil-
ity. But the cost of using transformed objects will also be
higher (to be studied in Sect. 7). To be more specific, if
P contains more pivots, we can expect a larger D(φ(ui j),
φ(umn)); then, D(φ(ui j), φ(umn)) approaches d(ui j , umn)

andhence approaches 1.Therefore,we canprunemoreuncer-
tain objects using a larger pivot set. On the other hand, the
cost (e.g., D(φ(ui j), φ(umn)) computation cost) to prune
unqualified uncertain objects increases as well.

123

604 L. Chen et al.

Table 2 Statistics of the
datasets used

Dataset Cardinality Dim. Ins. Measurement

English 60K 1–22 4.9 Edit distance

Color 56K 8 2.9 L5-norm

SF 176K 2 6.9 L2-norm

DNA 200K 108 14.8 Cosine similarity under
tri-gram counting space

Synthetic (set) [50K, 250K] 20 4.76 Jaccrad coefficient

As shown in the literature [3], the problem of determining
whether a pivot set P (|P| ≥ 1) exists that makes the penalty
function of a defined criterion no larger than a nonnegative
real number is NP-hard. Thus, it is appropriate to apply a
greedy pivot selection algorithm for picking a high-quality
pivot set P (fromU) of a fixed size tomaximize εP . However,
the time complexity O(|P| × |U |) still remains high, espe-
cially for a large uncertain object set. Note that, since pivots
are certain objects, to select P (⊆ U), we need to replace
the uncertain objects inU with a set of representative certain
objects, denoted as cert(U).

To further reduce time complexity, we present an incre-
mental pivot selection algorithm (IPS), with the pseudo-code
depicted in Algorithm 7. IPS first employs HF algorithm [40]
to obtain outliers as candidate pivots Pc, and then, it selects
effective pivots from Pc incrementally. As pointed out in the
literature [5], good pivots are usually outliers, but outliers
are not always good pivots. The time complexity of IPS is
reduced to O(|P| × |Pc|), in which the cardinality of Pc (i.e.,
|Pc|) is small, and is only related to the distribution of the
object set. In this paper, we fix |Pc| to 40 (as elsewhere [29]),
which is enough to find all the outliers in our experiments.

7 Experimental evaluation

In this section, we experimentally evaluate the performance
of the UPB-tree and the UPB-forest. First, we study the
effectiveness of our pivot selection algorithm. Then, we
compare the UPB-tree and the UPB-forest with state-of-the-
art indexes. Finally, MPRQU and MPRJ performance are
explored.We implemented theUPB-tree, theUPB-forest, the
MPRQ, the MPRQU, and the MPRJ algorithms in C++. All
experimentswere conducted on an Intel Core 2Duo 2.93GHz
PC with 8GB RAM.

We employ four real datasets, namely English, Color,
SF, and DNA, as depicted in Table 2. English1 contains the
words extracted from the English language dictionary, and
edit distance is employed to compute the distance between
twowords.Color2 denotes the first eight dimensions of color

1 Available at http://www.sisap.org/Metric_Space_Library.html.
2 Available at http://www.sisap.org/Metric_Space_Library.html.

histograms extracted from an image database, and the L5-
norm is utilized to compare the color image features. SF3

consists of the locations in San Francisco, and the L2-norm
is used to measure their similarity.DNA4 includes DNA data,
and hamming distance is utilized to measure similarity. In
our experimental settings, English and Color use the object-
level model to represent the uncertainty. Specifically, every
uncertain object is represented using m (100 ≤ m ≤ 300)
instances with their distances to the word or image feature
in English or Color bounded by ϒ , resulting in a total of
12M instances for the default English and 11.2M instances
for the default Color. The associated instance probability
follows two popular distributions, namely Normal and Arbi-
trary, forEnglish andColor, respectively.SF andDNAutilize
the bi-level model to represent the uncertainty. For SF, the
uncertain object u is denoted as an uncertain region centered
at every location in SF with the radius bounded byϒ , and the
probability for u located in the uncertain region follows the
Uniform distribution. For DNA, each uncertain string uses
the character element model [21] as the underlying uncertain
model. Synthetic (set) datasets based on both the object-level
and bi-level models are also generated, in which every set in
Synthetic has 30 to 60 elements, and the Jaccard coefficient
is utilized to measure similarity. Note that, for the bi-level
model, the uncertain set uses the p-set model [17] as its
underlying uncertain model. Table 2 lists the statistics of the
datasets used in our experiments. All index structures are
configured to use a fixed disk page size of 4KB.

We investigate the efficiency of MPRQ, MPRQU, and
MPRJ algorithms using the UPB-tree and the UPB-forest
when varying different parameters, as shown in Table 3.
In each experiment, we change one parameter and fix the
others to their default values. The main performance met-
rics include the number of page accesses (PA), the number
of distance computations (compdists), and the CPU time.
Each measurement we report is an average of 50 random
queries.

3 Available at http://www.dbs.informatik.uni-muenchen.de/~seidl.
4 Available at http://www.ncbi.nlm.nih.gov/genome.

123

http://www.sisap.org/Metric_Space_Library.html
http://www.sisap.org/Metric_Space_Library.html
http://www.dbs.informatik.uni-muenchen.de/~seidl
http://www.ncbi.nlm.nih.gov/genome

Indexing metric uncertain data for range queries and range joins 605

Table 3 Parameter ranges and
default values

Parameter Setting Default

The number of pivots |P| 1, 3, 5, 7, 9 5

Uncertain region size γ (% of d+) 4, 6, 8, 10, 12 8

The number m of instances 100, 150, 200, 250, 300 200

The number n of slots 200, 400, 600, 800, 1000 1000

Search radius R (% of d+) 2, 4, 8, 16, 32 8

Probability threshold θ 0.1, 0.3, 0.5, 0.7, 0.9 0.5

Cardinality 50K, 100K, 150K, 200K, 250K 150K

(a) (b)

(c) (d)

Fig. 13 Efficiency of pivot selection methods versus |P|. a English, b
DNA, c English, d DNA

7.1 Pivot selection effectiveness

The first set of experiments compares the effectiveness of
our pivot selection algorithm IPS with that of the existing
pivot selection algorithm PSA [3]. We utilize the MPRQ on
the UPB-tree and the UPB-forest to investigate the effec-
tiveness of the pivot selection algorithms. Figure 13 depicts
the results using datasets English and DNA, where abbrevia-
tions of pivot selection algorithms (IP for IPS, PS for PSA)
are shown at the bottom of each column. As observed, IPS
performs better than PSA. The reason is that MPRQ perfor-
mance is highly related to εP as defined in Definition 6.1,
and IPS tries to maximize εP . The second observation is that
the number of distance computations decreases as the num-

ber of pivots grows. This is because, using more pivots, the
query efficiency improves as εP becomes larger, incurring
fewer distance computations. The third observation is that
PA and CPU time first drop and then stay stable or increase
when the number of pivots increases. However, PA and CPU
time of PSA onDNA increase with the growth of the number
of pivots. The reason is that the cost of filtering unqualified
uncertain objects grows as the number of pivots ascends.
Hence, MPRQ achieves better performance for all perfor-
mance metrics, when the number of pivots approaches the
intrinsic dimensionality (i.e., Ins. Dim. for short in Table 2)
of the dataset [40].

7.2 Comparisons with the UP-Index

The second set of experiments compares the efficiency of
the UPB-tree and the UPB-forest with that of state-of-the-art
UP-Index [3] using MPRQ.

Construction cost First, Tables 4 and5 show the construc-
tion costs and storage sizes for the UP-Index, the UPB-tree,
and theUPB-forest, using real datasets. Clearly, theUPB-tree
and the UPB-forest have much lower construction costs in
terms of the number of page accesses (i.e.,PA) and the storage
sizes (denoted as Storage) in most cases. The reason is that
our UPB-tree and UPB-forest only store necessary informa-
tion, while the UP-Index needs to preserve the histograms
w.r.t. the whole distance range for every uncertain object.
Notice that, on English, the UP-Index has smaller PA than
the UPB-tree. This is because, English has small distance
range (i.e., [0, 22]), resulting in low redundant storage forUP-
Index, while UPB-tree needs to store additional information
(e.g., SFC values and MBB information) to achieve search

Table 4 Construction cost of
the UP-Index and the UPB-tree

UP-Index UPB-tree

English Color English Color

PA 127,696 704,279 523,830 564,418

compdists 68,105,000 56,000,000 68,105,000 56,000,000

Time (s) 1970 293 553 552

Storage (KB) 510,784 2,817,116 489,669 707,909

123

606 L. Chen et al.

Table 5 Construction cost of the UP-Index and the UPB-forest

UP-Index UPB-forest

SF DNA SF DNA

PA 1,709,708 280,702 454,293 17,700

compdists 874,780 1,000,000 874,780 1,000,000

Time (s) 1509 105 795 333

Storage (KB) 6,838,832 1,122,808 608,037 506,306

(a) (b)

(c) (d)

θ θ

θθ

Fig. 14 MPRQ performance versus θ . a English, b DNA, c English, d
DNA

efficiency. However, the construction CPU time (denoted as
Time) of UPB-tree and UPB-forest can be higher than that
of UP-Index. This is because UPB-tree and UPB-forest need
additional CPU cost to build the B+-tree(s), while UP-Index
stores the histograms as a table.

Effect of θ Figure 14 illustrates the influence of θ

on the efficiency of MPRQ algorithms using English and
DNA. Abbreviations of indexes (UI for UP-Index, UT for
UPB-tree, UF for UPB-forest) are shown at the bottom of
each column. The first observation is that the UPB-tree-
and the UPB-forest-based MPRQ algorithms are better in
terms of compdists. The reason is that our pivot selection
algorithm selects effective pivots to avoid a large number
of distance computations, and the MPRQ algorithms can
avoid unnecessary distance computations by validating or
pruning uncertain objects based on the probability lower
and upper bounds. In contrast, the UP-Index cannot vali-
date uncertain objects because it has no probability lower
bounds. The second observation is that the UPB-tree- and
the UPB-forest-based MPRQ algorithms perform much bet-
ter in terms of I/O cost. This is because the UP-Index has to
scan the entire index to prune uncertain objects. Neverthe-
less, for the UPB-tree and the UPB-forest, they achieve I/O
efficiency since only qualified B+-tree entries and uncertain
objects are visited based on Lemmas 4.1 and 4.4, 5.1 and 5.2,

(a) (b)

(c) (d)

Fig. 15 MPRQ performance versus R. a Color, b SF, c Color, d SF

and Theorem 4.1. In addition, the MPRQ cost drops with the
growth of θ because the pruning power increases with θ .

Effect of R Figure 15 depicts the performance of MPRQ
whenvarying R, usingColor andSF. As expected,UPB-tree-
and UPB-forest-based MPRQ algorithms perform better in
terms of compdists and PA. However, the CPU time of UPB-
tree and UPB-forest is larger than that of UP-Index. This
is because, UPB-tree and UPB-forest need additional CPU
cost to compute the probability lower and upper bounds by
traversing the indexes. The query costs (including compdists,
PA, and theCPU time) increasewith R, since the search space
grows with R. In contrast, due to Lemma 4.4, the validation
power of the UPB-tree increases with R, resulting in fewer
distance computations, whichmakes it possible that the com-
pdists drops when R reaches 32% on Color as well as also
makes it possible that the CPU time of UPB-forest is less
than that of UP-Index on SF.

Effect of n In order to observe the impact of the number
n of slots on the efficiency of the indexes, we employ Color
and SF datasets since the ranges of their distance functions
are real numeric. Figure 16 plots the results with respect to
various n values. As observed, compdists slightly drops with
the growth of n. The reason is that, as n increases, the dis-
crete case approaches to the continuous case, which helps
tighten the probability upper and lower bounds calculations,
hence reducing the number of distance computations. How-
ever, for the UP-Index and the UPB-forest, the number of
page accesses increases with n, since their storage costs grow
with n in order to preserve the pre-computed histogram or
approximated discrete PDF for every uncertain object, incur-
ring higher I/O cost.

Effect of γ and m Figures 17 and 18 show the perfor-
manceofMPRQwhenvaryingγ andm.We see that the query
costs (including compdists, PA, and the CPU time) increase
with the growth of m. The reason is that the search space
grows with m. Notice that the query costs are not sensitive

123

Indexing metric uncertain data for range queries and range joins 607

(a) (b)

(c) (d)

Fig. 16 MPRQ performance versus n. a Color, b SF, c Color, d SF

(a) (b)

(c) (d)

γ γ

γγ

Fig. 17 MPRQ performance versus γ . a Color, b SF, c Color, d SF

to γ , and they drop slightly when γ reaches 12% on Color.
This is because, for the uncertain objects with larger uncer-
tain regions, the total number of qualifying answer objects
drops with fixed search radius.

Effect of cardinality In order to study the scalability
of the UPB-tree and the UPB-forest, we employ Synthetic
(set) datasets. Figure 19 plots the MPRQ performance as a
function of cardinality. Clearly, compdists, PA, and the CPU
time grow linearly with the cardinality. This occurs because
the search space grows as the dataset cardinality increases.
Since both object-level and bi-level models are used on
Synthetic (set) datasets, a comparison between UPB-tree
and UPB-forest is also investigated. As observed, compdists
of UPB-tree is much larger than that of UPB-forest, but
the CPU time of UPB-tree is smaller. This is because one
distance computation computes the distance between uncer-
tain instances for the UPB-tree, but computes the distance
between uncertain objects for the UPB-forest. Note that, the
distance computational cost for uncertain objects is much
more costly than that for uncertain instances on the same
dataset. In addition, the I/O cost of UPB-forest is slightly

(a) (b)

(c) (d)

Fig. 18 MPRQ performance versus m. a English, b Color, c English,
d Color

(a) (b)

Fig. 19 MPRQ performance versus cardinality. a Synthetic (set) and
b synthetic (set)

smaller than that of UPB-tree, because the bi-level model
needs fewer storage size than the object-level model.

7.3 Comparison with the U-Quadtree, UPR-tree, and
CSQ

To further explore the efficiency of the UPB-tree and the
UP-forest, we also compare them with the state-of-the-art
U-Quadtree [44] and CSQ [17] for specific uncertain met-
ric spaces using MPRQ. In addition, UPR-tree that uses a
R-tree instead of a B+-tree is also developed for compar-
ison. Table 6 shows the experimental results on Color and
Synthetic datasets, where abbreviations (UQ for U-Quadtree,
UT for UPB-tree, UR for UPR-tree, and UF for UPB-forest)
are used.Here, there is no value of compdists forU-Quadtree,
because the verification of the U-Quadtree does not need any
distance computation. Also, there is no value forPA for CSQ,
since CSQ is an in-memory method without any I/O cost. It
is observed that the I/O cost of UPB-tree is fewer than that of
U-Quadtree and UPR-tree. This is because SFC utilized by
the UPB-tree can reduce the storage cost of pre-computed
distances and meanwhile preserve the locality. However,
compdists of UPB-tree is slightly larger than that of UPR-
tree, since theUPB-tree uses approximated discrete distances
to perform the SFC mapping for continuous distance func-

123

608 L. Chen et al.

Table 6 Comparisons with
U-Quadtree, UPR-tree, and
CSQ

Color Synthetic

UQ UR UT CSQ UF CSQ+UF

PA 166,879 54,870 27,289 – 33,824 33,769

compdists – 548,720 599,674 28,746 43,757 19,260

Time (s) 0.9 1.7 3.8 111.35 5.645 4.461

(a) (b)

(c) (d)

θ θ

θθ

Fig. 20 MPRQU performance versus θ . a Color, b DNA, c Color, d
DNA

tions, resulting inweaker pruning ability of Lemma 4.1. Note
that, U-Quadtree achieves the smallest CPU time, followed
by UPR-tree and then UPB-tree. The reason is that UPR-tree
andUPB-tree need additional CPU cost to prune and validate
data using the triangle inequality for simple distance compu-
tation (e.g., L2-norm), and UPB-tree needs additional CPU
cost to perform SFCmapping. The second observation is that
CSQ has fewer compdists but takes longer than the UPB-
forest. The reason is that CSQ utilizes the characteristics of
set data to prune uncertain sets, leading to fewer distance
computations. Nonetheless, the individual and batch prun-
ing techniques used by CSQ can also be integrated easily into
our algorithm (denoted as CSQ + UPB), to further improve
the query efficiency on uncertain set data, as depicted in
Table 6.

7.4 MPRQU performance

The fourth set of experiments verifies the MPRQU perfor-
mance of the UPB-tree and the UPB-forest, compared with
the state-of-the-art UP-Index.

Effect of θ Figure 20 shows the MPRQU performance
when varying θ , using Color and DNA. The first observa-
tion is that the UPB-tree- and the UPB-forest-basedMPRQU
algorithms perform better than the UP-Index-basedMPRQU
algorithm in terms of compdists and PA. This is because the
UPB-tree- and the UPB-forest-based MPRQU algorithms

(a) (b)

(c) (d)

Fig. 21 MPRQU performance versus R. a Color, b DNA, c Color, d
DNA

utilize Lemmas 4.5, 4.6, 5.3, and 5.4 to derive the proba-
bility upper and lower bounds, and thus are able to prune
and validate uncertain objects without further verifications.
However, the CPU time of UP-Index can be smaller than that
of our methods. The reason is that the additional CPU cost
is used to derive the probability upper and lower bounds. In
addition, the query costs (including compdists, PA and the
CPU time) of MPRQU drop with the growth of θ since the
pruning power increases with θ .

Effect of R Figure 21 depicts the MPRQU performance
under various R values, using Color and DNA. As expected,
the compdists, PA and the CPU time increase with the growth
of R, because the search space grows with R. However,
due to Lemma 4.6, the validation power of the UPB-tree
increases with R, resulting in fewer distance computations,
which makes it possible that the compdists drops when R
reaches 32% on Color and also makes it possible that the
CPU time of UPB-tree is less than that of UP-Index onColor.

7.5 MPRJ performance

The last set of experiments target the MPRJ performance
based on the UPB-tree and the UPB-forest, compared
with the baseline algorithms as discussed in Sects. 4.4
and 5.4. Recall that the baseline algorithms performmultiple
MPRQU.

123

Indexing metric uncertain data for range queries and range joins 609

(a) (b)

(c) (d)

θ θ

θθ

Fig. 22 MPRQJ performance versus θ . a Color, b SF, c Color, d SF

Effect of θ Figure 22 plots the MPRJ performance when
changing θ , using Color and SF. As MPRJ is costly and it
involves two uncertain datasets, we divide Color (20K) and
SF (20K) into two parts with equal size. Abbreviations (Ut
forUtMJA,Bt forUPB-tree-based baseline algorithm,Uf for
UfMJA, andBf forUPB-forest-based baseline algorithm) are
depicted at the bottom of each column. The first observation
is that UtMJA and UfMJA are several orders of magnitude
better than the baseline algorithms in terms of page accesses.
The reason is that the baseline algorithms have to traverse
the datasets multiple times, while UtMJA and UfMJA need
to traverse the datasets only once. In addition, Lemmas 4.9,
4.10, 5.5, and5.6, andTheorem5.1 are utilizedbyUtMJAand
UfMJA to further accelerate the MPRJ. The second obser-
vation is that the query costs of MPRJ drop with the growth
of θ on SF dataset, while the query costs first increase and
then drop on Color dataset. This is because the validating
power decreases but the pruning power increases with θ . It is
worth noting that the compdists of UtMJA is larger than that
of the baseline algorithm. The reason is that Z-order curve
used for UtMJA to employ Lemma 4.9 has the weaker space
locality performance than Hilbert curve used by the baseline
algorithm.

Effect of R Figure 23 shows the MPRJ performance under
various R values, using English (20K) and DNA (40K). As
expected,UtMJAandUfMJAare several orders ofmagnitude
better than the baseline algorithms in terms ofPA. In addition,
the query costs increase with R, because the search space
grows with R.

Effect of cardinality Figure 24 depicts the MPRJ perfor-
mance as a function of cardinality. Clearly, the query costs
grow linearly with the cardinality as the search increases. In
addition, the number of distance computations of UPB-tree-
based algorithm ismuch larger than that ofUPB-forest-based
algorithm, but the CPU time of UPB-tree-based algorithm is
smaller, as already discussed in Sect. 7.2.

(a) (b)

(c) (d)

Fig. 23 MPRJ performance versus R. a English, b DNA, c English, d
DNA

(a) (b)

Fig. 24 MPRJ performance versus cardinality. a Synthetic (set) and b
synthetic (set)

8 Conclusions

To address the uncertainty in various applications, we intro-
duce an object-level model and a bi-level model, and we
propose corresponding indexing structures, i.e., theUPB-tree
and the UPB-forest, and present efficient metric probabilistic
range query and range join algorithms using these indexes.
The resulting findings via extensive experiments on both real
and synthetic data sets are summarized as follows.

– Our pivot selectionmethod PSA can selectmore effective
pivots than existing method IPS.

– Compared with the state-of-the-art method UP-Index,
our indexes UPB-tree and UPB-forest have lower con-
struction costs and metric probabilistic range query costs
in terms of distance computations and page accesses, but
have larger CPU time in some cases. Thus, our indexes
perform better than UP-Index when the I/O cost is the
dominance cost or the distance function is costly.

– UPB-forest has smaller I/O cost yet higher CPU cost than
UPB-tree using the same datasets.

– Our metric probabilistic range join algorithms UtMJA
and UfMJA are several orders of magnitude better than
baseline algorithms in terms of I/O cost, whereas they
achieve similar CPU performance. Hence, our methods

123

610 L. Chen et al.

perform better than the baseline algorithms when the I/O
cost is the dominance cost.

In the future, it is interesting to extend our indexes to
distributed environments. Another promising direction for
future work concerns other types of metric probabilistic
queries, such as metric probabilistic nearest neighbor search.

Acknowledgements This work was supported in part by the 973 Pro-
gram of China No. 2015CB352502, the NSFC Grant Nos. 61522208,
61379033, and 61472348, the NSFC-Zhejiang Joint Fund Grant No.
U1609217, and a grant from the Obel Family Foundation.

References

1. Agarwal, P.K., Cheng, S.W., Tao, Y., Yi, K.: Indexing uncertain
data. In: PODS, pp. 137–146 (2009)

2. Aggarwal, C., Yu, P.: On high dimensional indexing of uncertain
data. In: ICDE, pp. 1460–1461 (2008)

3. Angiulli, F., Fassetti, F.: Indexing uncertain data in general metric
space. IEEE Trans. Knowl. Data Eng. 24(9), 1640–1657 (2012)

4. Bohm,C.,Kunath, P., Schubert,M.:TheGauss-tree: efficient object
identification of probabilistic feature vectors. In: ICDE, article 9
(2006)

5. Bustos, B., Navarro, G., Chavez, E.: Pivot selection techniques
for proximity searching in metric spaces. Pattern Recognit. Lett.
24(14), 2357–2366 (2003)

6. Chen, J., Cheng, R.: Efficient evaluation of imprecise location-
dependent queries. In: ICDE, pp. 586–595 (2007)

7. Chen, L., Gao, Y., Li, X., Jensen, C.S., Chen, G.: Efficient metric
indexing for similarity search. In: ICDE, pp. 591–602 (2015)

8. Chen, L., Gao, Y., Li, X., Jensen, C.S., Chen, G., Zheng, B.: Index-
ing metric uncertain data for range queries. In: SIGMOD, pp.
951–965 (2015)

9. Cheng, R., Singh, S., Prabhakar, S., Shah, R., Vitter, J.S., Xia, Y.:
Efficient join processing over uncertain data. In: CIKM, pp. 738–
747 (2006)

10. Cheng, R., Xia, Y., Prabhakar, S., Shah, R., Vitter, J.S.: Efficient
indexingmethods for probabilistic threshold queries over uncertain
data. In: VLDB, pp. 876–887 (2004)

11. Chung,C.W., Pan,C.H., Liu,C.M.:An effective index for uncertain
data. In: IS3C, pp. 482–485 (2014)

12. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access
method for similarity search in metric spaces. In: VLDB, pp. 426–
435 (1997)

13. Dai, D., Xie, J., Zhang, H., Dong, J.: Efficient range queries over
uncertain strings. In: SSDBM, pp. 75–95 (2012)

14. Dallachiesa, M., Palpanas, T., Ilyas, I.F.: Top-k nearest neighbor
search in uncertain data series. PVLDB 8(1), 13–24 (2014)

15. Fredriksson, K., Braithwaite, B.: Quicker similarity joins in metric
spaces. In: SISAP, pp. 127–140 (2013)

16. Frentzos, E., Gratsias, K., Theodoridis, Y.: On the effect of location
uncertainty in spatial querying. IEEE Trans. Knowl. Data Eng.
21(3), 366–383 (2008)

17. Gao, M., Jin, C., Wang, W., Lin, X., Zhou, A.: Similarity query
processing for probabilistic sets. In: ICDE, pp. 913–924 (2013)

18. Ge, T., Li, Z.: Approximate substring matching over uncertain
strings. In: PVLDB vol. 4(11), pp. 772–782 (2011)

19. Hoeffding, W.: Probability inequalities for sums of bounded ran-
dom variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

20. Jacox, E.H., Samet, H.: Metric space similarity joins. ACM Trans.
Database Syst. 33(2), 7:1–7:38 (2008)

21. Jestes, J., Li, F., Yan, Z., Yi, K.: Probabilistic string similarity joins.
In: SIGMOD, pp. 327–338 (2010)

22. Jin, R., Liu, L., Ding, B.,Wang,H.:Distance constraint reachability
computation in uncertain graphs. In: PVLDB vol. 4(9), pp. 511–
562 (2011)

23. Kimura, H., Madden, S., Zdonik, S.B.: UPI: a primary index for
uncertain databases. In: PVLDB vol. 3(1), pp. 630–637 (2010)

24. Knight, A., Yu, Q., Rege, M.: Efficient range query processing on
complicated uncertain data. In: Ozyer, T., Kianmehr, K., Tan, M.,
Zeng, J. (eds.) Information Reuse and Integration in Academia and
Industry, pp. 51–72. Springer, Vienna (2013)

25. Kriegel, H.P., Bernecker, T., Renz,M., Zuefle,A.: Probabilistic join
queries in uncertain databases. In: Aggarwal, C. C. (ed.) Manag-
ing and Mining Uncertain Data, pp. 257–298. Springer, New York
(2009)

26. Kriegel, H.P., Kunath, P., Pfeifle, M., Renz, M.: Probabilistic sim-
ilarity join on uncertain data. In: DASFAA, pp. 295–309 (2006)

27. Lian,X.,Chen,L.:Ageneric framework for handlinguncertain data
with local correlations. In: PVLDB, vol. 4(1), pp. 12–21 (2010)

28. Lian, X., Chen, L.: Set similarity join on probabilistic data. In:
PVLDB, vol. 3(1), pp. 650–659 (2010)

29. Mao, R.,Mirankerb,W.L.,Mirankerc, D.P.: Pivot selection: dimen-
sion reduction for distance-based indexing. J. Discrete Algorithms
13, 32–46 (2012)

30. Novak, D., Batko, M., Zezula, P.: Metric index: an efficient and
scalable solution for precise and approximate similarity search.
Inf. Syst. 36(4), 721–723 (2011)

31. Paredes, R., Reyes, N.: Solving similarity joins and range queries in
metric spaces with the list of twin clusters. J. Discrete Algorithms
7(1), 18–35 (2009)

32. Pearson, S.S., Silva, Y.N.: Index-based R-S similarity joins. In:
SISAP, pp. 106–112 (2014)

33. Sarma, A.D., He, Y., Chaudhuri, S.: Clusterjoin: a similarity joins
framework using map-reduce. In: PVLDB, vol. 7(12), pp. 1059–
1070 (2014)

34. Silva, Y.N., Aref, W.G., Ali, M.H.: The similarity join database
operator. In: ICDE, pp. 892–903 (2010)

35. Silva, Y.N., Pearson, S.: Exploiting database similarity joins for
metric spaces. In: PVLDB, vol. 5(12), pp. 1922–1925 (2012)

36. Singh, S., Mayfield, C., Prabhakar, S., Shah, R., Hambrusch, S.E.:
Indexing uncertain categorical data. In: ICDE, pp. 616–625 (2007)

37. Skopal, T., Pokorny, J., Snasel, V.: PM-tree: pivotingmetric tree for
similarity search inmultimedia databases. In: ADBIS, pp. 803–815
(2004)

38. Tao, Y., Xiao, X., Cheng, R.: Range search on multidimensional
uncertain data. ACM Trans. Database Syst. 32(3), 15:1–15:54
(2007)

39. Traina Jr, C., Traina, A.J.M., Seeger, B., Faloutsos, C.: Slim-trees:
high performance metric trees minimizing overlap between nodes.
In: ICDE, pp. 51–65 (2000)

40. Traina Jr, C., Filho, R.F.S., Traina, A.J.M., Vieira, M.R., Faloutsos,
C.: The omni-family of all-purpose access methods: a simple and
effective way to make similarity search more efficient. VLDB J.
16(4), 483–505 (2007)

41. Vidal, E.: An algorithm for finding nearest neighbors in (approx-
imately) constant average time. Pattern Recognit. Lett. 4(3),
145–157 (1986)

42. Wang, Y., Metwally, A., Parthasarathy, S.: Scalable all-pairs simi-
larity search in metric spaces. In: KDD, pp. 829–837 (2013)

43. Zhang, Y., Lin, X., Zhang,W.,Wang, J., Lin, Q.: Effectively index-
ing the uncertain space. IEEE Trans. Knowl. Data Eng. 22(9),
1247–1261 (2010)

44. Zhang, Y., Zhang, W., Lin, Q., Lin, X.: Effectively indexing the
multi-dimensional uncertain objects for range searching. In: EDBT,
pp. 504–515 (2012)

45. Zhu, R., Wang, B., Wang, G.: Indexing uncertain data for support-
ing range queries. In: WAIM, pp. 72–83 (2014)

123

	Indexing metric uncertain data for range queries and range joins
	Abstract
	1 Introduction
	2 Related work
	2.1 Probabilistic range queries and range joins
	2.2 Metric range queries and range joins

	3 Problem formulation
	3.1 Metric spaces
	3.2 Metric uncertain data models
	3.3 Metric probabilistic range query
	3.4 Metric probabilistic range join

	4 The UPB-tree
	4.1 UPB-tree structure
	4.2 UPB-tree-based MPRQ algorithm
	4.3 UPB-tree-based MPRQU algorithm
	4.4 UPB-tree-based MPRJ algorithm
	4.5 Discussion
	4.5.1 SFC mapping
	4.5.2 The impact of LRU buffer
	4.5.3 CPU cost
	4.5.4 I/O cost

	5 The UPB-forest
	5.1 UPB-forest structure
	5.2 UPB-forest-based MPRQ algorithm
	5.3 UPB-forest-based MPRQU algorithm
	5.4 UPB-forest-based MPRJ algorithm
	5.5 Discussion
	5.5.1 CPU cost
	5.5.2 I/O cost

	6 Pivot selection
	7 Experimental evaluation
	7.1 Pivot selection effectiveness
	7.2 Comparisons with the UP-Index
	7.3 Comparison with the U-Quadtree, UPR-tree, and CSQ
	7.4 MPRQU performance
	7.5 MPRJ performance

	8 Conclusions
	Acknowledgements
	References

