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Abstract Shortest path query processing on dynamic road
networks is a fundamental component for real-time nav-
igation systems. In the face of an enormous volume of
customer demand from Uber and similar apps, it is desir-
able to study distributed shortest path query processing that
can be deployed on elastic and fault-tolerant cloud platforms.
In this paper, we combine the merits of distributed streaming
computing systems and lightweight indexing to build an effi-
cient shortest path query processing engine on top of Yahoo
S4. We propose two types of asynchronous communication
algorithms for early termination. One is first-in-first-outmes-
sage propagation with certain optimizations, and the other
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is prioritized message propagation with the help of naviga-
tional intelligence. Extensive experiments were conducted
on large-scale real road networks, and the results show that
the query efficiency of our methods can meet the real-time
requirement and is superior to Pregel and Pregel+. The source
code of our system is publicly available at https://github.com/
yangdingyu/cands.

Keywords Shortest path query · Dynamic road networks ·
Navigational intelligence · Yahoo S4

1 Introduction

With accelerated urbanization worldwide, the number of
vehicles on the road and the need for transport is growing
rapidly. The current transportation systems, with their poten-
tial inadequacy at handling fast changing traffic conditions
and the optimal control of flows of vehicles, must be recti-
fied to accommodate increasing transportation demands. In
recent years, numerous attempts have been made to address
these tough problems. For example, MobileMillennium [17]
was proposed as a smart traffic estimation and prediction
system. The system processes millions of real-time GPS
data using cloud computing and the Spark cluster comput-
ing framework. In another case, IBM InfoSphere Streams [5]
demonstrates the capability of tackling the challenges of scal-
ability, extensibility and user interaction in the domain of
intelligent transportation services [16]. Both Mobile Millen-
nium and IBM InfoSphere Streams provide traffic estimation
based on real-time GPS data. With the traffic estimation and
prediction models, it is still a challenging task to consider
the dynamism of traffic patterns for real-time shortest path
services.
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Most of the previous work on index design to boost short-
est path query processing in large road networks [2,6,18,
32,40] is focused on accelerating query response time. They
assume the network is static and adopt a carefully designed
index to achieve good performance. However, these methods
may not be suitable for dynamic road network as the weights
of road segments are frequently updated. The family of cus-
tomizable route planning (CRP) [7–9] takes care of query
response time and traffic update at the same time. The index
update cost is reduced to less than 1 second, and the queries
can be answered promptly. However, the unprecedented suc-
cess of Uber brings new challenges to these methods. On
the one hand, the high query frequency requires the ser-
vice system to provide good throughput. For example, the
ride request of Didi in China (a service similar to Uber)
has reached 14 million per day1. On the other hand, it is
desirable for the system to handle larger-scale (e.g., world-
scale) road networks. Since the customizable route planning
algorithms require a considerable amount of memory and
its index update process in response to traffic update will
also consume considerable CPU resources, replicating the
service among multiple servers may not be economical. In
addition, it is trivial to handle the dynamic weight update in
road network as all the replicated indexes in different servers
have to be updated. Therefore, it is still of research interest
and practical use to examine distributed solutions that can be
deployed on elastic and fault-tolerant cloud platforms. There
have been several distributed graph processing engines such
as Pregel [23] and its variants [26,33,35] that can process
shortest path query based on the bulk synchronous parallel
(BSP)model.AlthoughGraphLab [22] andPowerGraph [15]
support asynchronous model, they were mainly designed for
machine learning algorithms based on static graph and are
not suitable for dynamic road networks. Hence, there is still
a research gap in handling distributed shortest path queries
in a large dynamic road network.

In this paper, we combine themerits of distributed stream-
ing computing systems and lightweight indexing to support
both efficient query processing and frequent edge update at
the same time. We build our shortest path query processing
engine on top of Yahoo S42, which is a distributed stream
processing system.We first split the whole road network into
small partitions and assign them to different machines. For
each partition, we maintain shortcuts between each pair of
border vertices. Each shortcut is the shortest path between
the corresponding pair of border vertices within the same
graph partition. Such lightweight index is easy to maintain
because it only involves computation of vertices in a small
local partition. The query processing starts from the partition

1 http://www.recode.net/2016/6/1/11835620/
didi-booking-china-apple.
2 http://incubator.apache.org/s4/.

containing the source vertex and propagates partial optimal
results to the neighboring partitions until the destination ver-
tex is reached. The partial results will also be aggregated in
the master node which determines query completion.

Instead of using synchronization communication mech-
anism as in most graph processing systems, we propose
two types of asynchronous algorithms for early termination.
In the first type, the messages are sent to the neighboring
graph partition in an first-in-first-out (FIFO) manner asyn-
chronously. We set up a master processing element as a
coordinator among all the workers to collect information
and determine algorithm termination. Since there is no syn-
chronization latency, the query processing is rather efficient.
However, without any navigational intelligence, each par-
tition blindly propagates messages to all the neighboring
partitions, which incurs huge amounts of unnecessary com-
munication cost. When there are multiple queries at the same
time, the throughput degrades significantly.

To reduce the number of messages propagated in the net-
work, we devise a prioritized communication mechanism
with navigational intelligence to judiciously determine the
order of message propagation. We propose two types of
summary information as our navigational intelligence: one
is a partition-level summary graph and the other consists
of distance vectors to a group of sampled landmarks. The
query processing is improved in two ways. First, the mes-
sages propagated to neighboring partitions that are close to
the target vertex will be processed with higher priority. Sec-
ond, the pruning power can be enhanced with the help of the
maintained summary information. Consequently, the number
of communication I/O can be dramatically reduced and the
throughput of concurrent query processing is significantly
improved.
Contributions. This paper is a journal extension of our pre-
vious conference paper [37]. The principle contributions in
the conference paper and journal extension are summarized
as follows:

1. We develop a distributed shortest path query processing
engine on Yahoo S4 to support both efficient query pro-
cessing and dynamic road traffic update (in conference
paper).

2. We propose an asynchronous algorithm that processes
and propagatesmessages in an FIFOmanner.We devise a
safe termination mechanism to guarantee the correctness
and certain optimization techniques to reduce network
I/O (in conference paper).

3. We propose a prioritized message propagation mecha-
nism to replace the old FIFO one. Broadcast messages
and promising intermediates results will be processed
with higher priority (in journal version).

4. Inspired by the ideas of summary graph [24] and land-
mark techniques [13], we propose two types of naviga-
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tional intelligence to judiciously determine the order of
message propagation (in journal version).

5. We conducted extensive experiments on large-scale real
road networks and compare with state-of-the-art dis-
tributed graph processing systems. In the journal version,
we added more recent systems such as Pregel+ [35] in
our comparison.We also added an evaluation on the index
update efficiency to show that our index can support real-
time traffic update.
The remainder of the paper is organized as follows. We

first present the problem definition and system framework
in Sect. 2. Literature review is conducted in Sect. 3. We
present the graph partition scheme in Sects. 4. The FIFO-
based asynchronous query processing algorithm is proposed
in Sect. 5. We propose the navigational intelligence and the
prioritized communicationmechanism in Sect. 6. The related
index update is discussed in 7. Extensive experiment results
are reported in Sect. 8. Finally, Sect. 9 concludes the paper.

2 Problem statement and system framework

As a convention, we model a road network G = (V, E,W )

as a directed weighted graph. Each edge e ∈ E is a road
segment with a certain direction and is represented by e =
(vi , v j , we), where vi ∈ V and v j ∈ V are road junctions,
and we is the average travel time to cross the edge. The aver-
age time changes over time subject to the traffic conditions.
The goal of this paper is to support distributed single-source
shortest path query processing over dynamic graphs.

Existing single-server index-based solutions to shortest
path query processing require considerable index construc-
tion cost and are not suitable to handle large-scale and
highly dynamic road network. In this paper, we study how
to efficiently process time-dependent shortest path query in
a distributed environment. Our system is implemented on
Yahoo S4, which is a general-purpose distributed stream pro-
cessing system. S4 provides friendly programming interfaces
and supports an unbounded stream. The basic processing unit
in S4 is called processing element (PE) that are customized
with specific tasks and allowed to communicate with each
other via asynchronous messaging. The system adopts actor
model in which each PE makes local decisions in response
to an incoming message (Table1). It is worth noting most of
the other streaming systems such as Twitter Storm3 also pro-
vide such basic features and programming interface. Hence,
our system can be naturally deployed on other streaming sys-
tems with the efforts of replacing the relevant processing and
communication APIs.

When the system initializes, a collection of Processing
Elements(PEs) are spawned in each node to handle differ-

3 https://github.com/nathanmarz/storm/.

Table 1 Notations and symbols

G A road network

V Vertices in the road network

E Edges in the road network

Q A shortest path query

Gp A graph partition

δs→t The shortest distance from s to t ever found

Gs The graph partition containing start vertex s

Gt The graph partition containing target vertex v

d(s, t) The distance of the shortest path from s to t

d(s,Gp) The minimum network distance from s to any vertex
in partition Gs

ent tasks. Two PEs can communicate in an inner-machine or
intra-machine manner. In the former case, the communica-
tion is via shared memory as two related threads are located
within the samemachine. In the latter case, messages are sent
via network. Obviously, the network I/O in the latter case is
much more expensive and can easily become a bottleneck of
system performance.

In our system framework, as shown in Fig. 1, we split
the road network into smaller partitions (details presented in
Sect. 4) and allocate as many adjacent partitions as possible
to the same machine in order to save the network commu-
nication cost. The weight of the edge in the road network
is the average travel time. Some shortcuts are also main-
tained as lightweight index to facilitate query processing.
Our system accepts two types of incoming messages. The
first one is a shortest path query, and the optimal path is cal-
culated based on the current traffic conditions (details are
presented in Sects. 5 and 6). The second one is the traffic
update informationwith an edge id and the newweight.When
receiving the message, our system needs to update the graph
and the affected shortcuts within the same partition of the
edge (details are presented in Sect. 7).

3 Related work

3.1 Shortest path query processing

Shortest path query processing has been intensively stud-
ied [1,3,6,11–13,18,25,27,32,40]. Most of the recent works
focused on developing index structures to support query pro-
cessing in a huge road network. For example, ALT [12]
selects some vertices as landmarks and pre-computes the
distance to these landmarks to accelerate query processing.
RE [13] adds shortcuts between pairs of selected vertices to
help pruning. TNR [3] uses distance tables on a subset of the
vertices so that route planning can be conducted mostly by
table lookup with reasonable space and preprocessing time.
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Fig. 1 System framework

In [1,6,11,18,25,40], the vertices are organized in a hier-
archical structure and shortcuts between different levels of
vertices are added. Although these indexes are efficient in
answering shortest path queries, they assume the graph is rel-
atively static as they require tremendous pre-computing cost
to maintain the index and are not suitable for a dynamic road
networkwith frequent traffic update. The family of customiz-
able route planning [7–9] can attain prompt query response
time and fast traffic update simultaneously. However, these
algorithms are designed for a single server and not easy to
be extended to a distributed environment. In [21], distributed
implementation of contraction hierarchies was proposed to
improve preprocessing time and support distributed query.
However, the work cannot handle frequent network update.
A comprehensive survey about route planning in transporta-
tion networks is available in [4].

3.2 Traffic mining

There are various mining algorithms proposed to predict
travel time across a road segment. For example, T-drive
[38] mines smart driving directions from the historical GPS
trajectories of a large number of taxis and constructs a time-
dependent landmark graph to recommend the best route. Bus
scheduling based on real-time traffic and demand was stud-
ied in [30]. Another adaptive algorithm [14] is proposed
to estimate traffic conditions from historical traffic data.
VTrack [28] can estimate the travel time along the route
based on the noisy information from different sources such
as WiFi. IBM also implemented a real-time traffic estima-
tion system based on IBM InfoSphere Streams4. Mobile
Millennium [17], developed in Spark5, is another system
supporting traffic estimation and prediction. It infers traffic
conditions using GPS measurements from drivers running

4 http://www-01.ibm.com/software/data/infosphere/streams/.
5 http://spark.incubator.apache.org/.

cell phone applications, taxicabs, and other mobile and static
data sources.

3.3 Distributed graph processing systems

Distributed graph processing systems such as Pregel [23],
GPS [26],Giraph6, Blogel [33], Pregel+ [35] andQuegel [36]
were developed to efficiently process large-scale web graphs
and various social networks. These systems require much
effort in synchronization and are designed for general graph
processing algorithms. Therefore, our customized method
can achieve two orders of magnitude improved performance.
Although GraphLab [22] and PowerGraph [15] also adopt
asynchronousmethods to support scalable graphmining in an
asynchronous manner, their current implementation assumes
the input is a static graph and hence is not suitable for the
scenario we consider in this paper. Recently, Blogel [33]
was proposed to make the graph processing system “think-
like-a-block” instead of “thinking-like-a-vertex.” It utilizes
better graph partitioning algorithms to address the issues of
skewed degree distribution, large diameter, and high den-
sity in real-world graphs. Pregel+ [34,35] is an extended
work over Pregel to reduce communication cost and elim-
inate skewness in communication. Quegel [36] is a more
recent system developed from the same research group of
Pregel+. It implemented the Hub2-Labeling approach [19]
as a distributed index to support point-to-point shortest path
queries. Since it requires considerable index maintenance
overhead, we consider it not suitable for frequent network
update and treat Pregel+ as the state-of-the-art work.

4 Graph initialization

In our model, the road network is modeled as a time-
dependent graph. The edges are road segments and vertices

6 http://giraph.apache.org/.
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Fig. 2 An example graph with three partitions

are road junctions. The weight of each graph edge is esti-
mated as the average travel time to cross the segment. In the
following, we present some graph initialization steps before
query processing.

4.1 Graph partitioning

In graph partitioning, the whole road network is first par-
titioned into M subgraphs using a METIS-balanced graph
partitioning algorithm [20]7, where M is the number of
machines in a cluster. This step is critical to performance
improvement. First, the query processing time is normally
determined by the slowest task and a balanced partitioning
can eliminate the performance bottleneck. Second, commu-
nication between vertices in the same subgraph is done in the
same machine and network I/O can be significantly reduced.
In the second level, each subgraph is further split into P
smaller partitions and each partition is assigned to one pro-
cessing element so that the computing resources in each
machine can be fully utilized. The number P is a user-defined
parameter and is estimated in Sect. 8. The border edges cross-
ing two partitions are stored in both partitions because our
query processing algorithm requires communication among
neighboring partitions.

Example 1 Figure 2 shows an example of a graph split into
three partitions and assigned to different PEs. For each par-
tition Gp, we maintain a list of pairs L p = {〈vi , v j ,G ′〉} to
store the connecting edges from G to its neighboring par-
titions G ′. For example, the border vertices in partition G1

are {v1, v4} and we maintain for G1 a list of pairs L1 =
{〈v1, v6,G2〉, 〈v1, v5,G2〉, 〈v4, v8,G3〉, 〈v4, v5,G2〉}.
7 Other edge-balanced graph partitioning methods can also be applied.

4.2 Graph shortcut

We maintain a collection of shortcuts to facilitate query
processing. The shortcut is the shortest path of two border
vertices within each partition. For any two border vertices b1
and b2, we pre-compute their shortest paths using Dijkstra’s
algorithm and store the results. In the above example, the
shortest path v1 → v2 → v4 with distance 4.5 is maintained
in G1. Note that this path only guarantees local optimality
instead of global optimality. A better result may be found
to contain vertices from other partitions. In this example,
v1 → v5 → v4 with distance 4 is the real shortest path from
v1 to v4. When there is an update in the road status in this
partition, the shortcuts will be refreshed to ensure the cor-
rectness of local optimality. The index update algorithm is
presented in Sect. 7 and evaluated in the experimental study.

5 Dynamic SSSP query processing

Existing solutions on shortest path query processing form
two extremes in terms of the index maintenance cost. The
index-based approaches [3,11,40] are very efficient. How-
ever, they are difficult to adapt in a dynamic graph due to
their prohibitive pre-computation costs. On the other hand,
shortest path algorithm is adopted in several distributed graph
processing systems [15,23,26], and it does not have any index
construction cost. But these systems cannot efficiently sup-
port shortest path queries in a real-time manner for a huge
road network.

The solution proposed in this paper is a hybrid scheme
between these two extremes. The road network is split into
partitions that are assigned to different nodes. In each node,
a number of PEs are deployed, each in charge of one parti-
tion. In each partition, we maintain some shortcuts between
border vertices to facilitate query processing. The shortcuts
can be used directly to pass through one partition instead of
traversing all the vertices in this partition.

The query processing engine shown in Fig. 1 has the
following functionalities. EventHandler is responsible for
receiving events, emitting events to downstream PEs. A ter-
mination algorithm (Termination) is designed to determine
whether the resultant shortest path is optimal. In each PE,
query processing optimization algorithms (Optimization) are
further applied to improve the performance.

5.1 FIFO-based query processing algorithm

The query processing strategy, depicted in Fig. 3, relies on the
coordination of four types of PEs. QueryPE accepts all the
navigation requests from vehicles. It stores the graph par-
tition information and knows which partition contains the
source vertex of the query. A new RouteEvent is created and
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Fig. 3 PEs handle a shortest path query

Table 2 The fields contained in a RouteEvent

qid A query id to uniquely identify the query

s The source vertex of the query

t The target vertex of the query

b The border node receiving the message

nei The neighboring partition which sends the message

dist The partial best distance from s to b

path The shortest path from s to b

ack An acknowledgment sequence from the neighboring
partition

sent to ShortPathPE. The event contains eight fields, as listed
in Table 2. The qid, s and t are derived from the naviga-
tion request. The border node b is initialized to be the same
as s, and the neighboring partition is initialized as the one
containing the source vertex. The remaining fields are left
empty. When the ShortPathPE receives the message, it starts
cooperating with other ShortPathPEs (graph partitions) in an
asynchronous manner to find the shortest path. Meanwhile,
acknowledgments are sent from ShortPathPE to a StatPE.
The StatPE collects the information, determines the termi-
nation of the query and sends the shortest path to OutputPE
after the termination. The OutputPE then returns the result
to the querying vehicle.

ShortPathPE is the core PE. It cooperates with neighbor-
ing partitions to find the shortest path. The idea is similar
to Dijkstra’s algorithm, but without synchronization in each
iteration to check which is the best vertex to visit. Our algo-
rithm starts from the graph partition containing the source
vertex, denoted byGs . The ShortPathPE spreads the shortest
path from s to all the border nodes in Gs to its neighbor-
ing partitions. The neighbors receive the events and process

thesemessages in an FIFOmanner. They improve the partial
results and further disseminate them to neighbors. Finally,
all these partial results will arrive at the graph partition con-
taining the target vertex, denoted by Gt . When there is no
message propagating in the network, our algorithm can ter-
minate with the correct shortest path.

The pseudo-code of event processing in a ShortPathPE
with regard to a graph partition Gp is illustrated in Algo-
rithm 1. In the following, we explicitly explain how a
ShortPathPE handles an arrival RouteEvent. When an event
is received from a neighboring partition, the ShortPathPE
needs to check whether the source vertex s or the target ver-
tex t in this event is contained in Gp, which leads to four
cases:

– Case 1: s ∈ Gp ∧ t ∈ Gp (lines 5-19). If both nodes
are within Gp, we can directly calculate the shortest path
from s to t in the subgraph Gp. The resultant path is sent
to StatPE. However, the algorithm cannot be terminated
at this point because the true shortest pathmay bemissed.
For example, as shown in Fig. 2, the shortest path from
v1 to v4 is v1 → v5 → v4, while the Dijkstra’s algo-
rithm in partition G1 returns v1 → v2 → v4. Therefore,
we still need to send the query and partial result to the
neighboring partitions even though we have obtained an
initial candidate path.

– Case 2: s ∈ Gp ∧ t /∈ Gp (lines 14-19). If only s is in
Gp, we call Dijkstra’s algorithm to calculate the shortest
path from s to all the border nodes. Then, all these partial
results are sent to neighboring partitions of Gp.

– Case 3: s /∈ Gp ∧ t /∈ Gp (lines 20-28). If the
current partition is just a bridge between s and t , the
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message is updated by taking account of the shortcuts
between border nodes and then forwarded to the neigh-
bors. Such a forwarding process is efficient as the shortest
path between border nodes has been pre-computed and
is available in the local memory. Meanwhile, the partial
distance from s to the incoming border node, denoted by
δs→b(Gp), is cached for future pruning. Another advan-
tage is that it can be used to avoid message looping
between twoneighboring partitions,which generates par-
tial results with loops.

– Case 4: s /∈ Gp ∧ t ∈ Gp (lines 29-39). If messages
containing partial results arrive at the target graph par-
tition, we call Dijkstra’s algorithm to calculate the path
and notify StatPE of the result.

Algorithm1RouteEvent handling algorithm inShortPathPE
1. s ← event.source; t ← event.target; b ← event.border;
2. dist (s, b) ← event .dist;ack = next Ack(event.qid);
3. initialize a StatEvents sEvent ; sEvent .rev[Gp] ← 1;
4. if s ∈ Gp then
5. if t ∈ Gp then
6. dist(s,t) ← Dijkstra(s,t)
7. if dist(s,t)< δs→t then
8. initialize a PathEvent pEvent
9. pEvent .path ← path(s, t)
10. δs→t ← dist (s, t)
11. broadcast δs→t to all the other ShortPathPE
12. emit pEvent to StatPE
13. T ← T

⋃ 〈qid,Gp,Gp, ack〉
14. for each b′ ∈ Ln .keySet () do
15. run Dijkstra(s,b′)
16. initialize a r Event
17. r Event ← 〈qid, dist (s, b′), b′,Gp, path(s, b′), ack〉
18. combiner [G ′

p][b] ← r Event
19. T ← CombineByParti tion(combiner)
20. else if s /∈ Gp && t /∈ Gp then
21. if dist (s, b) < distCache(s, b) then
22. for each pair 〈b′,G ′

p〉 ∈ Ln do
23. dist (s, b′) ← dist (s, b) + dist (b, b′)
24. if dist (s, b′) < δs→t then
25. initialize a r Event
26. r Event ← 〈qid, dist (s, b′), b′,Gp, path(s, b′)〉
27. combiner [G ′

p][b] ← r Event
28. T ← CombineByParti tion(combiner)
29. else if s /∈ Gp && t ∈ Gp then
30. if dist (s, b) < distCache(s, b) then
31. dist(b,t) ← Dijkstra(b,t)
32. if dist(s,b)+dist(b,t)< δs→t then
33. initialize a PathEvent pEvent
34. pEvent .path ← path(s, b) �� path(b, t)
35. δs→t ← dist (s, b) + dist (b, t)
36. broadcast δs→t to all the other ShortPathPE
37. emit pEvent to StatPE
38. T ← T

⋃ 〈qid,Gp,Gp, ack〉
39. T ← T

⋃ 〈qid, event.nei,Gp, event.ack〉
40. sEvent.tuples ← T
41. emit sEvent to StatPE

5.2 Query processing optimization

Algorithm 1 not only introduces four cases of processing an
arrival ShortPathPE, but also incorporates two optimization
strategies Message Combiner and Message Broadcast to
improve the processing performance.

5.2.1 Message combiner

After traversing one partition, messages are sent to neighbor
partitions through border edges. For each border edge, one
message will be generated and sent to the connecting neigh-
bor partition. It is possible that a partition hasmultiple border
vertices connecting to the same neighborhood. For example,
in Fig. 2 there are two border vertices v1 and v4 in partition
G1. v1 has to send twomessages to partitionG2 and v4 sends
onemessage toG2 and onemessage toG3. Thismessage dis-
semination mechanism incurs too much communication cost
in the network. To tackle this problem,we propose aMessage
Combiner technique to combine somemessages together.We
add a message combiner before emitting the messages to the
neighboring ShortPathPE. If the messages in one partition
are sent to the same neighbor partition, they will be merged
together as one message (lines 19 and 28 in Algorithm 1). In
Fig. 2, we combine the RouteEvents between G1 and G2 as
one message and then send it to G2.

5.2.2 Message broadcast

Another optimization technique to avoid message flooding is
to broadcast the shortest path to all the ShortPathPEs when-
ever a better result is found at the target partition Gt . In this
way, each partition Gp maintains a variable δs→t , indicating
the current best distance. The purpose is that the partitions
far away from s can learn this information before receiving
messages from neighbors. Then, the message propagation
process can stop earlier without involving too many graph
partitions. We define the distance from s to a graph partition
as follows:

d(s,Gp) = min
v∈Gp .border

d(s, v) (1)

If d(s,Gp) > δs→t , this propagation can stop. Although
this condition may not be satisfied as the message transmis-
sion in the network is asynchronous, it can avoid spreading
partial worse results from the source partition Gs to every
other partition. The partition far away from s can dismiss the
events if the partial result is found to be worse than the broad-
casted result (lines 11 and 36 in Algorithm 1). Although the
broadcast overhead is not cheap (the number of messages is
the same as that of graph partitions), it still gains an advan-
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tage compared to the overhead caused by the communication
between any two neighboring ShortPathPEs far from s.

If a graph partition Gp does not receive any RouteEvent
from its neighbors, we have d(s,Gp) ≥ d(s, t). That means
this partition is far away from source vertex s and the shortest
path between s and t must not pass through this partition. In
the following, we show that if a graph partition Gp does
not receive any RouteEvent from its neighbors, we have
d(s,Gp) ≥ d(s, t).

Lemma 1 For any partition G p, its cached δs→t is at least
d(s, t).

Proof If the partition does not receive a broadcast message
from the destination PE, δs→t is initialized to ∞ and thus
δs→t ≥ d(s, t). Otherwise, we have found a path from s
to t with distance δs→t . Since d(s, t) is the distance of the
shortest path, δs→t ≥ d(s, t). ��

Lemma 2 For any partition G p, if d(s,Gp) < d(s, t), G p

receives at least one RouteEvent from its neighbors.

Proof Assume that the shortest path from s to Gp is s →
. . . u → v where u ∈ G ′

p and v ∈ Gp. In other words,
G ′

p is the neighboring partition of Gp with a connecting
edge (u, v). We know that in G ′

p, we have dist (s, u) +
dist (u, v) = dist (s,Gp) < d(s, t). From Lemma 1, we
have d(s, t) ≤ δs→t . Therefore, dist (s, u) + dist (u, v) <

δs→t and a RouteEventwill be sent from G ′
p to Gp based

on Algorithm 1. ��

This naturally leads to the following lemma.

Lemma 3 If a graph partition G p does not receive a mes-
sage w.r.t. to Qs→t from its neighbor, we have d(s,Gp) ≥
d(s, t).

5.3 Algorithm termination mechanism

Algorithm termination is a critical issue in distributed query
processing. For example, Pregel terminates when every ver-
tex votes to halt in each superstep. In this paper, a
solution is proposed to determine algorithm termination.
We create a special PE, named StatPE, to receive statis-
tics of messages sent and received (which are encapsulated
in StatEvent) from ShortPathPE and determine when query
processing can be terminated. A StatEvent contains multiple
tuples in the formof 〈qid,Gp,G ′

p, ack〉, each acknowledges
the communication with its neighboring partition. It means
the message is sent from Gp to G ′

p with acknowledgment
sequence ack. Two tuples T1 and T2 match each other if the
following condition is satisfied:

T1.Gp = T2.Gp ∧ T1.G
′
p = T2.G

′
p ∧ T1.ack = T2.ack

In StatPE, we maintain a buffer and a match counter for each
query. When a StatEvent arrives, we scan the tuples in the
event. For each tuple, we scan the buffer to find if there is
a match. If a match is found, the tuple is removed from the
buffer and the match counter increases by 1. Otherwise, we
insert the tuple into the buffer. The algorithm is shown in
Algorithm 2. All PEs can fully utilize the CPU resources
without being idle. The algorithm can be terminated imme-
diately when the buffer is empty and match > 0. There is
no need to vote for halt.

Note that when there is message loss, the termination con-
dition will not be satisfied. To avoid endless waiting, we set
a threshold for maximum waiting time for early termination
of a failed query processing.

Algorithm 2 StatEvent handling algorithm in StatPE
1. for each tuple T in StatEvent do
2. for each tuple T ′ in bu f w.r.t to Qs→t do
3. if T matches T ′ then
4. remove T ′ from bu f
5. match ← match + 1
6. if bu f is empty and match > 0 then
7. emit result to OutputPE

This leads to the following lemma:

Lemma 4 Given a message propagation chain from G1

→ G2 → . . . → Gn, if a set of acknowledgments from
{G j1,G j2 , . . .} arrive earlier than Gi where jk > i , we can
find at least one acknowledgment from G jk ( jk > i) pending
in the buffer.

Proof Let u = min{ j1, j2, . . .}, i.e., u > i and Gu is the
partition closest to Gi in the propagation chain G1 → G2

→ . . . → Gn whose acknowledgment has arrived. Since the
acknowledgment of Gu−1 has not arrived, the acknowledg-
ment from Gu , which is 〈qid,Gu−1,Gu, ack〉, cannot find
a match and it will be kept in the buffer as in Algorithm 2.��
Lemma 5 If match > 0 and bu f = ∅, all the RouteEvents
have been processed.

Proof Suppose at timepoint t , we have match > 0 and
bu f = ∅ in StatPE and there still exists one RouteEvent
sending from Gp to G ′

p that has not been processed. The
event could be either under the transmission in network or
queueing in the event buffer in G ′

p. We assume that the par-
tial result from s to G ′

p in this message is s → v1 → v2 →
. . . → u → v and this path crosses a set of partitions
G1 → G2 → . . . → Gn . In the following, we prove the
lemma by contradiction.

Case 1: If there exists no partition Gi from which StatPE
has received a tuple 〈qid,Gi ,Gi+1, ack〉 used to acknowl-
edge its sending a RouteEvent to the neighbor Gi+1 in this
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path. SinceG1 = Gs , if there is no othermessage propogated
except G1 → G2 → . . . → Gn , no acknowledgment has
ever arrived at StatPE and match = 0. Otherwise, we can
find a chain forking from one of Gi in G1 → G2 → . . . →
Gn . According to Lemma 4, the buffer will not be empty.

Case 2: StatPE has received an acknowledgment fromGi .
SupposeGi is closest toGn in this chain and the acknowledg-
ment Gi has been sent to StatPE. Since the acknowledgment
from Gi+1 has not arrived, the one from Gi cannot be
matched and it will be pending in the buffer. This contra-
dicts with the fact that the buffer is empty. ��
Theorem 1 If match > 0 and bu f = ∅ in StatPE,the algo-
rithm can terminate with the correct shortest path from s to
t.

Proof From Lemma 5, we know that when match > 0 and
the message buffer in StatPE is empty, all the RouteEvents
have been processed and acknowledged and there is no nec-
essary for the StatPE to continuewaiting formessage coming
from ShortPathPE. The algorithm can terminate.

Next we prove that when the algorithm terminates, the
found result is the shortest path. Let P be the real short-
est path and P = (s → vs1 . . .) → (v11 → v12 . . .) →
(v21 → v22 . . .) → . . . → (vm1 → . . . → t) which passes
a sequence of m graph partitions (G1) → (G2) → . . . →
(Gm). Since all the nodes vi j are on the shortest path, we have
d(s, v(i−1)1)+d(v(i−1)1, vi1) = d(s, vi1) < d(s, t) < δs→t .
Based on Algorithm 1, we know that each partition Gi will
receive a RouteEvent along this path.

We know that the target partition Gm does not receive
the real shortest distance d(s, vm1) from its neighbor. Oth-
erwise, P will be returned by our algorithm when Dijkstra’s
algorithm is called to compute the remaining path from vm1

to t . Suppose Gi (Gi �= Gs) is the first graph partition
in the path such that the partial result d ′

i sent from Gi−1

to Gi is not equal to d(s, vi1). Since in Gi−1, we have
dist (s, vi1) < d(s, t) ≤ δs→t . It will send the partial result
to Gi which leads to a contradiction as Gi does not receive
the partial result containing the best distance from s to vi1.

��

5.4 Event loss and failure recovery

In S4, event loss may occur from time to time. When the
event arriving rate is too high for PE to handle, the event
receiving buffer will become full and some events may have
to be discarded. If a RouteEvent is lost, the termination con-
dition cannot be satisfied because it will always wait for the
acknowledgment of this event. Similarly, the event loss in
StatPE will also lead to the same consequence. We set a
threshold for maximum waiting time PT for a tuple in the
buffer to be matched. If a tuple of acknowledgment stays in
the buffer for longer than PT , it is considered there is an event

loss for this query and a message is broadcasted to notify all
the graph partitions of dismissing all the events related to
this query. Then, a new query with the same source and tar-
get vertex is re-submitted. If the system is overloaded at the
moment, an alternative is to adopt the caching technique to
find an approximate shortest path to the vehicles [29].

6 Prioritized communication mechanism

The communication mechanism for each processing element
proposed in Sect. 5 is essentially in an FIFO fashion. The pro-
cessing element associated with a graph partitionmaintains a
buffer as an FIFO queue. The incoming messages are queued
in the buffer and sorted by the arrival timestamp. Each time
the PE picks the message on the top of the queue, processes
it and moves to the next one. There are two extreme cases
for the buffer: 1) When the buffer is empty, the PE turns into
the state of idle, waiting for the next incoming event, and 2)
when the buffer is full, the local graph partition becomes a
hot spot. It means the arrival speed of incomingmessages has
become too high to process. Thus, the system will directly
discard some of the messages without processing them. In
consequence, the returned shortest path may not be accurate
and this is the scenario wewant to avoid in the system design.

In this section, we propose a prioritized communication
mechanism to significantly reduce the incurred network I/O
and improve the success rate of query processing as well as
the throughput of concurrent query processing. The idea is
based on the following two observations. First, there are two
types of messages involved in the query processing. One is
the partial results propagated from neighboring partitions.
The other is the broadcast messages sent from the global
Stat PE to notify all the PEs about a better shortest path of
a query. Obviously, the broadcast message is more useful in
terms of reducing the number of network I/O. If the local PE
processes this type of message with higher priority, some of
the partial results in the buffer w.r.t. to the same querymay be
pruned. Second, there could be multiple queries issued at the
same time and the buffer contains partial results w.r.t. differ-
ent queries. These messages should be processed in the order
of their potential for a better result. The promising partial
results should be extended with local path in the current par-
tition and propagated to neighboring partitions urgently. The
less promising ones can be delayed for processing in case a
broadcast message with a better shortest path arrives. Then,
these less promising messages may be able to be pruned
directly.

Therefore, in the prioritized communication mechanism,
we treat the broadcastmessagewith the highest priority. Each
time a better result of the shortest path query is broadcast, we
process it immediately by updating the best distance for that
query stored in the local cache and scan all the partial results
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in the buffer. As long as the minimum distance of complete
path derived from the partial results in the buffer is already
larger than the newly received distance for the same query,
we can safely prune that message from the buffer. For the
remaining messages, we propose a novel scoring criterion
to measure its potential to lead to a better result such that
more promising partial results will be handled with higher
priority. In the following, we first present how to construct
navigational intelligence offline for online decision making
in Sect. 6.1. Based on the navigational intelligence, we pro-
pose our prioritized communication mechanism in Sect. 6.2.

6.1 Navigational Intelligence

The high-level query processing algorithm proposed in
Sect. 5 can be considered as asynchronous breadth-first
search by starting from the source vertex and gradually prop-
agating to the target vertex. Without relying on any external
intelligence, the propagation is essentially blind because it
has to calculate all the possible partial results that may lead
to the target node and send them to its neighbors. This incurs
a significant amount of network I/O especially since all the
partitions within the radius of δs→t have to be involved in
the message propagation even though some of them are far
away from the target node. Our solution to this issue is
to maintain navigational intelligence such that the message
propagation in the network can become smarter. It has an
estimated knowledge of the distance from its neighboring
partitions to the target node such that the messages can be
sent to those neighbors which are more likely to find a better
result.

A straightforward method to estimate the distance from
a graph partition to a target node is to use the Euclidean
distance. In several previous work, the Euclidean distance
provides a lower bound of the real network distance. Unfor-
tunately, the geo-coordinate information of each vertex in the
road network may not be always available. Many published
road network datasets only provide the graph topological
structure without spatial information. In this paper, we adopt
the ideas of low bound estimation in [24] and [13] in the
context of vertex-to-vertex distance calculation and extend
them in our context of partition-to-partition distance estima-
tion, which serves as the navigational intelligence to guide
message propagation between partitions.

6.1.1 Partition-level summary graph

Our first attempt to capture the navigational intelligence is
to build a partition-level summary graph based on the lower
bound of the original graph G, denoted by GL . The idea is
similar to PCD [24], in which the graph is partitioned into
clusters and the shortest distance between each pair of clus-

ters is pre-computed to facilitate pruning. In GL , the weight
for each edge is the minimum possible travel time at any
timestamp. Hence, it is easy to infer that the shortest path
distance from s to t in GL is the lower bound for all the
snapshots of temporal graphs GT .

Figure 4 shows an example of a partition-level summary
graph. The whole network is split into seven partitions G1,
G2, . . .,G7, each representing a vertex in the summary graph.
There is a directed edge from Gi to G j if we can find a con-
nected edge (vi , v j ) in the original network such that vi ∈ Gi

and v j ∈ G j . The weight of (Gi ,G j ) in the summary graph
is set to the minimum travel time among all the connect-
ing edges. We can use the partition-to-partition weight in the
summary graph to estimate the vertex-to-vertex distance in
the original network. For example, if s is located in G1 and
t is located in G5, it is likely that the shortest path from s to
t should go through partitions G1 → G2 → G5 based on
the knowledge of the summary graph. Hence, in the query
processing, we can put higher priority to the communication
message propagation along this path.

The space cost of the summary graph is affordable. The
storage complexity is at most O(M2P2) as there are M · P
partitions as presented in Sect. 4. In addition, we can use
the summary graph to improve the pruning effect. In our
proposed query processing algorithm in Algorithm 1, we
compare the distance in the partial result with the δs→t .
If the partial distance is already no smaller than δs→t , the
message can be pruned without incurring further propa-
gation to neighboring partitions. In the improved version
with summary graph, we can obtain the minimum dis-
tance from each neighboring partition to the target partition.
The pruning condition in line 24 of Algorithm 1 can be
replaced by

dist (s, b′) + dist (G ′
p,Gt ) < δs→t (2)

where dist (G ′
p,Gt ) is the minimum distance fromG ′

p toGt

in the summary graph.

Lemma 6 Algorithm 1 is correct with the new pruning rule
in Eqn. 2.

Proof Given a partial result sent to the current partition
Gp via border node b, we have dist (s, b′) = dist (s, b) +
dist (b, b′), where b′ is the border node in the neighboring
partition G ′

p. Since dist (G
′
p,Gt ) is the minimum distance

from any node in G ′
p to target partition Gt in the lower-

bound network, we have dist (b′,Gt ) ≥ dist (G ′
p,Gt ).

Since dist (b′, t) ≥ dist (b′,Gt ), we know the shortest dis-
tance from b′ to t is at least dist (G ′

p,Gt ). Hence, it is
impossible to derive a better shortest path from the partial
result s → b → b′ if dist (s, b′) + dist (G ′

p,Gt ) ≥ δs→t .
In other words, the message will only be handled when
dist (s, b′) + dist (G ′

p,Gt ) < δs→t . ��
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Fig. 4 An example of a partition-level summary graph

6.1.2 Graph landmark

Inspired by [13], an alternative representation of navigational
intelligence is to randomly sample N vertices as landmarks
or reference points in the lower-bound graph GL . Given a
vertex u inGL , wemaintain a N -dimensional vector inwhich
each entry stores the distance of the shortest path from u to
the associated landmark. We can use the distance vector to
estimate node-to-node distance: intuitively, if the distance
vectors of u and v are similar, it is likely that these two
vertices are close to each other in the network. We use the
previous partitioning example in Fig. 2 as a lower-bound
graph to illustrate the idea of landmark-based distance vector.
As shown in Fig. 5, vertices v2, v6 and v10 from different
partitions are selected as landmarks, denoted by L1, L2 and
L3, respectively. Then, we can calculate the shortest network
distance in the lower-bound graph from any vertex to these
landmarks. Take v3 as an example. Its minimum distance
to landmark v2 is 1.8. Hence, we set its first dimension in
the distance vector to be 1.8. Similarly, we can calculate its
shortest distance to the other landmarks and fill the distance
vector. From the vector results, we can see that the three-
dimensional vector of v1 is more similar to v2 than v9. It
verifies that the similarity between two distance vectors is
positively correlatedwith their network distance in the graph.

Given the vectors preserving node-to-landmark distance,
we can aggregate them to obtain the partition-to-landmark
distance. The distance vector for a graph partition Gi is also
N -dimensional. SupposeGi contains nodes {v1, v2, . . . , vm}.
The N -dimensional distancevector forGi is [d1, d2, . . . , dN ],
where d j is the shortest distance from any v ∈ Gi to the
landmark L j . We still use Fig. 5 as an example. The distance
vectors for the three partitions G1, G2 and G3 become

G1 : [0.0, 3.5, 3.7]
G2 : [4.0, 0.0, 5.0]
G3 : [4.2, 3.5, 0.0]

We can see that the kth entry in the vector of Gi is essen-
tially the minimum value of the kth entry among the distance

Fig. 5 An example of landmark-based distance vector

vectors of vertices belonging toGi . Then, we use the distance
vector as an approximation of the network distance. Given an
incoming message whose target node is t , we can estimate
the similarity between each neighboring partition and the
target partition containing t . The most similar neighboring
partition is considered to be closer to the routing destination,
and we can assign higher priority to the messages propa-
gated to this neighbor. For example, we extend the example
in Fig. 5 by adding an edge v10 to v11 which belongs to a new
graph partition G4 and suppose the edge weight is 1.0. Then,
the distance vector of G4 is [6.7, 8.0, 1.0]. Given a shortest
path query from v2 ∈ G1 to v11 ∈ G4, we know that G1 has
two neighboring partitions leading to the destination, namely
G1 → G2 → G4 and G1 → G3 → G4. Since the distance
between distance vectors (G3,G4) is smaller than (G2,G4),
we consider G1 → G3 → G4 as a more promising commu-
nication path which can reach the destination earlier.

In our implementation, we set N to be the same with the
number of partitions M · P . In other words, we randomly
pick a vertex in each partition to form a group of landmarks.
For each landmark, we run one round of Dijkstra’s algorithm
to find single-source shortest paths for all the vertices and
estimate the average distance from the landmark to all the
partitions.When a node is popped from the priority queue,we
get the partition id of that node, compare the distancewith the
preserved minimum distance, and update it if necessary. In
addition, we store the maximum distance from the landmark
to any other node within the same partition to facilitate prun-
ing.Thedetailed algorithm is shown inAlgorithm3.Sincewe
call Dijkstra’s algorithm P times, the running time complex-
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ity is O(M ·P(|E |+|V | log |V |)). The space requirement for
the distance vectors is O(M2P2 + MP) because we need
to maintain M · P distance vectors, each with dimension
M · P . In addition, we will maintain additional O(M · P)

values to store the maximum local distance of landmarks.
These values can facilitate pruning, aswill be presented in the
following.

Algorithm 3 Distance vector construction
1. for each partition Gi do
2. randomly sample a vertex Li as a landmark
3. for each landmark Li do
4. Q ← {};maxi ← 0; dist[Li ] ← 0
5. for each vertex in graph GL do
6. if v �= Li then
7. add v to Q
8. dist[v] ← ∞
9. while Q is not empty do
10. pop u with the minimum distance dist[u]
11. find the partition G j containing u
12. if dist[u] is smaller than the i-dimension of distance vector of

G j then
13. update the distance vector of G j
14. if j = i && dist[u] > maxi then
15. maxi ← dist[u]
16. for each neighbor v of u do
17. if dist[u] + dist (u, v) < dist[v] then
18. dist[v] ← dist[u] + dist (u, v)

Similar to the pruning rule in Eq. 2, we propose an alter-
native pruning condition based on the landmark distance
vectors. The main idea is about how to infer the lower-bound
distance from any partition G ′

p to the target partition Gt .
Let [d1, d2, . . . , dN ] and [d ′

1, d
′
2, . . . , d

′
N ] denote their dis-

tance vectors, respectively. Since we pick a landmark from
each partition, let Lt be the landmark selected in partition
Gt . Then, we know the minimum distance from Gp to Lt

is located in the t th dimension of the distance vector and
d ′
t = 0. In Algorithm 3, we have maintained the maximum
distance from a landmark to any other node within the same
partition. Letmaxt denote the maximum distance from Lt to
any node in Gt , we have dt −maxt as the minimum distance
from partition Gp to Gt in the lower-bound graph.

Lemma 7 Let [d1, d2, . . . , dN ] be the distance vector for a
partition G ′

p, we have dist (G
′
p,Gt ) ≥ dt − maxt .

Proof Suppose the shortest path from any node in G ′
p to

reach a node in Gt is from u ∈ G ′
p to v ∈ Gt and we

have dist (G ′
p,Gt ) = dist (u, v). Since dt is the minimum

distance from any node inG ′
p to t , we have dt ≤ dist (u, t) ≤

dist (u, v) + dist (v, t). Since dist (u, v) = dist (G ′
p,Gt )

and dist (v, t) ≤ maxt , we get the lower bound for the inter-
partition distance dist (G ′

p,Gt ). ��

Based on Lemma 7, we can replace the pruning condition
in line 24 of Algorithm 1 by

dist (s, b′) + dt − maxt < δs→t (3)

and similarly, we can easily prove that the algorithm remains
correct.

6.2 Prioritized communication mechanism

With the navigational intelligence that can be built offline,
we are ready to present our new event processing algorithm
for the case s /∈ Gp and t /∈ Gp, which is the most common
scenario among the four cases. Our objective is to signifi-
cantly reduce the amount of network I/O and improve the
success rate and throughput of concurrent query processing.

Instead of using a FIFO message buffer, we create m
buffers where m is the number of neighboring partitions
of Gp. Each buffer Bi is in charge of the message propa-
gation to a specific neighbor Ni . The messages sent to Ni

will only be buffered in Bi . On one hand, we want to pro-
cess the messages with a new order to replace FIFO such
that more important messages can be handled earlier. On the
other hand, we need to set a waiting time limit to avoid keep-
ing a message waiting all the time. Thus, we propose a new
sorting scheme to determine the order of the messages to
be processed. When a new message containing the partial
result w.r.t query Q arrives, we know the destination in Q.
Then, we can estimate the distance from each neighboring
partition to the destination based on our stored navigational
intelligence. If a summary graph is maintained, we use the
partition distance in the summary graph as an estimation. If
distance vectors to the selected landmarks are maintained,
we calculate the similarity between the distance vectors of
each neighboring partition and target partition. Eventually,
we can spawn each incomingmessage intommessages. Each
message is associated with one particular neighbor and is
assigned with a ranked order. The messages with higher rank
are considered to be closer to the target node and should be
processed earlier. To guarantee that the messages with lower
rank can also be processed in time, we split the buffer into
time-based windows. Each message is hashed into a unique
window based on its arrival time. The messages in a window
are sorted by the ranked order, and they are processed in a
window-by-window manner.

Figure 6 illustrates our data structure to support prioritized
communication mechanism. Suppose the current partition
is G2 and it has three neighboring partitions G1, G5 and
G6 as in Fig. 4. We maintain a buffer for each partition,
and the buffers are organized into time-based windows. For
example, partial results about Q1, Q2 and Q3 arrive in the
first time window. For each query, we can sort the partitions
based on their estimated distance to the target partition. The
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Fig. 6 An example of prioritized communication mechanism

message with higher rank will be put on top of the window
buffer so as to be processed earlier. There is no (Q2, 3) in
this example because the partial result of Q3 cannot lead
to a better distance through G1 based on our pruning rules.
Hence, there is no need to put the message in the buffer of
G1. Q4 is put into the next window because its arrival time is
larger than the boundary of the first window. In this case, we
can guarantee that the messages (Q3, 3) and (Q1, 3) in the
buffers of G5 and G6, respectively, can be processed earlier
than messages about Q4.

Based on the new message buffer, we propose a round-
robinmessage processing algorithm.We start from the buffer
for G1 and pop the top message (Q3, 1) in the window. The
partial result about Q3 is further aggregated with the short-
est path between local border nodes and sent to G1. Then,
we move the cursor to the buffer of G5 and G6 and process
the top messages similarly. The procedure continues until
all the messages in the first window are processed and we
proceed to the next window. Such a round-robin processing
algorithm exhibits twomajor advantages. First, the messages
with more promising partial results will be processed earlier.
The window-based mechanism also guarantees all the mes-
sages can be processed in time. Second, it provides better
load balance by making the workload of network communi-
cation evenly distributed among the partitions. Consequently,
a partition is less likely to become a hot spot, and as long as
all the messages can be processed in time, we can guarantee
that the success rate is close to 100 percent.

We also observed that most of the network I/O is incurred
in the message propagation stage before receiving the first
broadcast message containing an initial result δs→t . After
that, each partition can use δs→t for pruning and the num-
ber of messages drop dramatically. In Fig. 7, we plot the

figure about how the amount of network I/O varies in dif-
ferent timestamps when handling a shortest path query. The
x-axis is the timestamp in milliseconds, and the y-axis is the
amount of network I/O. The timings for the broadcast mes-
sages are also plotted in the vertical dashing lines. We can
see that the majority of the network I/O is triggered before
the first broadcast. When the partitions receive the broadcast
message with an initial distance for pruning, many messages
with non-promising partial results are pruned, which leads
to a sharp drop in network I/O.

Based on the observation, we propose an improved mes-
sage propagation strategy with two stages to process each
query Q. The first stage is the period before receiving the first
broadcast message that contains an initial result of Q. Then,
the messages are handled only when its associated rank is
smaller than k. k is normally set to a very small number such
as 3. The other messages will be delayed until a broadcast
message about Q is received or the maximumwaiting time is
reached. In other words, we only process the messages that
can lead to a near-optimal path. Such strategy can help reduce
the network I/O incurred before the first broadcast shown in
Fig. 7. In the second stage, at least a broadcast message about
Q has been received and we follow the prioritized message
propagation mechanism shown in Fig. 6.

It is worth noting that the aforementioned optimization
mechanisms about message combiner (in Sect. 5.2.1) and
message broadcast (in Sect. 5.2.2) are applicable in the con-
text of prioritized communication mechanism. For instance,
one of the improvements is that the new approach still relies
on the message broadcast strategy, but sets the highest pri-
ority to the broadcast message for early termination. In
consequence, many partial results in the buffer can be pruned
at an earlier stage. Another improvement is that we maintain
a message buffer for each neighboring partition individually.
Hence, the message combiner strategy can still be applied to
group the messages sent to the same neighboring partition
across multiple border edges.

7 Index update

When the state of a road segment e at partition Ge changes,
we need to update the shortcuts maintained for border nodes
in Ge. A naive solution is to re-calculate the shortest path for
each pair of border nodes,which is quite expensive. To reduce
the maintenance overhead of shortcuts, different strategies
are adopted in terms of the weight change and whether e
appears in the original shortest path between border nodes
b and b′. The pseudocode is presented in Algorithm 4 that
incorporates the following cases:

– Case 1: we ↑ ∧ e ∈ Pb→b′ (lines 4-6 ). The shortest
path between b and b′ may not be optimal, and we call
Dijkstra’s algorithm to re-compute the shortest path.
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Fig. 7 Network I/O visualization for a query at different timestamps

– Case 2: we ↑ ∧ e /∈ Pb→b′ . The original shortcut is
not affected by the update and is still optimal. No action
is required.

– Case 3: we ↓ ∧ e ∈ Pb→b′ (lines 8-9). The short-
cut between b and b′ is still optimal. We simply need to
update its distance because we decreases.

– Case 4: we ↓ ∧ e /∈ Pb→b′ (lines 10-11). In this case,
it is possible for border nodes b and b′ to find a better
result which passes edge e. Thus, Dijkstra’s algorithm is
called to guarantee the shortcut is optimal.

Algorithm 4 onEvent(event) to update shortcut
1. for each b ∈ Ln .keySet () do
2. for each b′ ∈ Ln .keySet () do
3. if b �= b′ then
4. if event .weight increases then
5. if event.edge ∈ Pb→b′ then
6. Pb→b′ =Dijkstra(b, b′)
7. else
8. if event.edge ∈ Pb→b′ then
9. update dist (b, b′) only
10. else
11. Pb→b′ =Dijkstra(b, b′)

8 Experiments

We implement our shortest path processing engine on S4,
which is a general-purpose distributed stream processing
system under Apache incubation. S4 provides friendly pro-
gramming interfaces and supports an unbounded stream.
This system is event driven and query processing in each
PE can be triggered periodically or by an incoming event.
All of our experiments are run on a cluster with ten nodes.

Each node has one Xeon E5607 Quad Core CPU (2.27GHz),
32GB memory, running CentOS 6.2. We select one node for
Zookeeper and data source adapter in the customization of
S4.

8.1 Comparison methods

We compare variants of our proposed asynchronous
approaches with state-of-the-art distributed graph processing
systems such as GPS [26] and Pregel+ [35] that can handle
distributed shortest path query. The comparison with vari-
ous index-based solutions including Quegel [36] is beyond
the scope of the paper because these methods cannot support
frequent network traffic update. In summary, the methods
compared in the following experiments include:

– GPS [26], which is the first open-source implementation
of Google’s Pregel by the Stanford team.

– Pregel+ [35], which is a more recent system developed
by the CUHK team to reduce communication cost and
eliminate skewness in Pregel.

– Async, which is the asynchronous algorithm supporting
FIFO message propagation but without any optimiza-
tions.

– Async+MB, which is theAsync algorithm with the opti-
mization of Message Broadcast in Sect. 5.2.

– Async+MC, which is theAsync algorithmwith the opti-
mization of Message Combiner in Sect. 5.2.

– Aysnc+MB+MC, which is the Async algorithm using
both optimization techniques.

– Summary,which is the asynchronous algorithmsupport-
ing prioritized message propagation and using partition-
level summary graph as the navigation intelligence.
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– Landmark, which uses distance vectors to a group of
selected landmarks as the navigation intelligence.

8.2 Performance metric

In the experimental setup, we issue 10 queries per second and
measure the performance of shortest path query processing
from the following four aspects:

– Average query latency. The latency of an SSSP query is
the time interval between the time it arrives at the system
and the time it has been processed. If a query fails, we do
not count it when calculating the average query latency.

– Throughput. Throughput is measured by the number of
queries processed in a time unit. In our setting, the time
unit is one minute.

– Network I/O. The network I/O is measured by the
amount of bytes of messages transferred in the network.

– Success rate. Since messages may be lost in S4 when the
message arrival rate is too high, we use the query success
rate as a measurement of system availability.

8.3 Experiments with synthetic workloads

Our first set of experiments are conducted in real road net-
works, but with synthetic traffic estimation. We use datasets
derived from US road network8 and pick 5 representative
road networks of different sizes. The statistics of these net-
works are summarized in Table 3. The smallest dataset
contains only 320K vertices, and the largest one contains
more than 14 million vertices. By default, we use the CAL
dataset with moderate size to test the performance.

We evaluate the performance with varying numbers of
nodes in a cluster, length of path route and number of graph
partitions. The parameters are listed in Table 4, with default
settings in bold. We set PT = 60 seconds, i.e., the query pro-
cessing is considered as a failure if the result is not returned
within 60 seconds.

8.3.1 Construction cost of summary graph and landmark

We first present the construction cost of two types of nav-
igational intelligence, i.e., summary graph and landmarks,
before query processing. This stage is considered as prepro-
cessing, and the construction cost with varying number of
graph partitions (from 10 to 5000) is presented in Table 5.
It takes around 3 minutes to build the summary graph
because we only need to scan the border edges between each
pair of partitions to find the lower-bound cost. In contrast,
the construction time of landmark grows dramatically with
increasing number of partitions. This is because for each

8 http://www.dis.uniroma1.it/challenge9/download.shtml/.

Table 3 Road network datasets

Name Region Vertex number Edge number

BAY San Francisco Bay Area 321,270 800,172

FLA Florida 1,070,376 2,712,798

CAL California and Nevada 1,890,815 4,657,742

E Eastern USA 3,598,623 8,778,114

CTR Central USA 14,081,816 34,292,496

Table 4 Experiment Parameters

Cluster nodes 1, 2, 3, 4, 5, 6, 7, 8, 9

Path length [1,100], [100,200], [200,300], [300,400], [400,500],
[500,600]

Graph partition 10, 100, 500, 1000, 5000, 10000

partition, we need to calculate its shortest distance to all the
sampled landmarks. If there are N partitions, the size of dis-
tance matrix is N × N . Thus, it takes around an hour to build
these distance vectors in the default dataset with 1000 parti-
tions. Fortunately, the computations of distance vectors are
highly independent and can be executed in parallel. With 10
parallel processes, we can reduce the construction cost of
landmark to only a few minutes.

8.3.2 Increasing number of nodes in a cluster

As to the performance of query processing, We first exam-
ine the performance in terms of increasing number of nodes
in a cluster. The query latency, throughput, network I/O and
success rate are reported in Fig. 8, leading to the following
observations: 1) The running time of our Landmark solution
is two orders of magnitude superior to GPS. Our Landmark
method adopts asynchronous communication mechanism,
and with the help of navigational intelligence, the perfor-
mance can be further boosted. GPS uses bulk synchronous
parallel model, and in each superstep, a vertex handles mes-
sages coming from its neighboring vertices. If there is no
incoming message in the current iteration, it votes to halt.
Therefore, given a query with length L (meaning the route
has L edges), it requires at least L supersteps to finish a query.
2) Pregel+ significantly improves the performance of GPS
because it was implemented with C++ and has a very small
constant overhead per superstep. However, its running time
and throughput are still inferior to the Landmark approach. 3)
Our method demonstrates much better scalability than GPS
and Pregel+ with increasing number of cluster nodes. The
average running time drops drastically with more computing
resources. When there are 9 nodes, it takes around 300ms
to answer an SSSP query and supports up to 800 queries in
one minute without any failure. 4) Message broadcast (MB)
method can reduce the communication cost, but the effect is
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Table 5 Construction Cost of
Summary Graph and Landmark
(in seconds)

10 100 500 1000 5000

Summary graph (non-parallel) 46 118 140 169 187

Landmark (non-parallel) 175 1071 3842 6030 20097

Landmark (parallel) 30 156 415 660 2479

limited. The message combiner (MC) plays a more impor-
tant role than MB in the optimization of query processing. It
is very effective in reducing network I/O and query latency.
It improves system throughput by 5 times. 5) The methods
with navigational intelligence can further improve the perfor-
mance by a wide margin, meaning our prioritized message
propagation strategies are highly effective. 6)Under our high-
workload experimental environment (10 queries per second),
the asynchronous methods incur a large amount of network

I/O within a short time and Yahoo S4 may discard messages
if their incoming speed is too high to process. We can see
from Fig. 8d that when facing very high workload, only the
Landmark method can guarantee successful query process-
ing because it incurs the least amount of network I/O and its
communication strategy is more load balancing. The other
asynchronous would fail in certain queries. GPS and Pregel+
have no such issues and always achieve 100 percent success
rate.

(a) (b)

(c) (d)

Fig. 8 Performance w.r.t. increasing nodes in a cluster. a Avg. query latency, b throughput, c network I/O, d success rate
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(a) (b)

(c) (d)

Fig. 9 Performance w.r.t. increasing length of query result. a Avg. query latency, b throughput, c network I/O, d success rate

8.3.3 Increasing query result length

The performance of query processing is also sensitive to the
query result length. We increase the length from [1, 100] to
[500, 600] and show the performance in Fig. 9. The query
latency grows with increasing path length and the through-
put drops sharply.With longer queries, the search radius from
the source node becomes larger and it is more difficult for
the termination condition to take effect, resulting in a dra-
matically increasing number of messages propagated in the
network. We can see that even the Landmark method starts
to fail when the result length of each query exceeds 500.

8.3.4 Increasing number of graph partitions

The query latency and network I/O of query processing
with increasing number of graph partitions are estimated in
Fig. 10. The communication I/Ogrows significantlywhen the

number of partitions increases from 10 to 10, 000. The query
processing time first drops when the graph is split into more
partitions.When the partition number is very small, it is com-
putationally expensive to employ Dijkstra algorithm to find
the distance from source vertex s to border vertices or from
border vertices to target vertex t . However, when the parti-
tion number grows to thousands, the performance degrades
because it incurs high communication cost and much effort
is spent in sending and receiving messages. The Landmark
solution always achieves the best performance as the parti-
tion number grows.

8.3.5 Performance in various datasets

We also report the average query latency and success rate
in different road networks in Fig. 11. When the graph size
increases, the PEs need to take charge of a larger graph par-
tition and the performance of query processing degrades. It
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(a) (b)

(c) (d)

Fig. 10 Performance w.r.t. increasing number of partitions. a Avg. query latency, b throughput, c network I/O, d success rate

takes longer query processing time and the success rate also
drops.However, theLandmark solution still achieves promis-
ing performance in the CTR dataset, which contains 14
million vertices. With a large number of concurrent queries,
its elapsed time for one query is slightly over 1 second and
the success rate is close to 100 percent.

8.4 Index update overhead

Since dynamic road network is of primary concern in this
paper, we are interested to investigate the performance w.r.t.
to traffic update. We report the index construction time per
partition and index update time w.r.t. each edge weight
update in Table 6. The results show that with more parti-
tions, the partition size becomes smaller and the associated
index construction time decreases as well. In our default set-
ting, we have 1000 partitions and the response time to update

the index for each traffic weight change is only 0.4ms, which
means our solution is able to support frequent traffic update
in real time.

8.5 Experiments with real workloads

The real trace dataset contains the GPS trajectories of 10,357
taxis during the period of February 2 to February 8, 2008,
within Beijing [10,39]. There are 154, 662 vertices and
337, 662 road segments in the Beijing road network. Each
trajectory is a sequence of GPS records with timestamp
and status information. These GPS records are mapped to
the corresponding network edges to infer the original travel
path [31]. We split a day into multiple time intervals, and
for each interval, we estimate the weight of road network by
the average travel time of all the taxies passing through the
edge in that period. We extract the boarding and alighting
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(a) (b)

(c) (d)

Fig. 11 Performance in different road networks. a Avg. query latency, b throughput, c network I/O, d success rate

Table 6 Index update cost w.r.t. increasing number of partitions

10 100 500 1000 5000

Index construction time (s) 6.46 3.07 0.55 0.2 0.1

Index update time (ms) 4.5 1.7 0.4 0.1 0.08

points of passengers as s and t in query Qs→t |T . In this way,
we generated 200 queries. The trace of these queries has an
average of around 200 path lengths.

The performance of query processing is evaluated with
increasing number of graph partitions and cluster nodes. The
query latency and success rate are reported in Fig. 12. The
best partition number is 100 and has higher success rate.
The query latency decreases with more nodes in all query
methods, which is similar to that for Synthetic Workloads.
The success rate of Landmark is much higher than the other
methods, exhibiting robustness in the high-workload envi-
ronment.

In real navigation systems, success rate is a critical issue
to guarantee a high standard of service of quality. In the syn-
thetic experiments with 10 queries per second, the success
rate of the Landmark algorithm cannot reach 100 percent
when handling queries with very long path (with more than
400 road segments) or very large networks (withmore than14
million vertices). This is because theworkload has exceed the
processing capacity of S4 systems when deployed in a clus-
ter with 10 machines. There are two alternative solutions to
handle such extreme cases. First, we can increase the number
of machines in a cluster to improve the processing power. As
depicted in Figs. 8d and 12d, the success rate increases with
more machines deployed. Second, we can apply the Land-
mark algorithm to estimate the distance of a query. If this is
a very long query, approximate methods can be used [29]. In
practice, the system is normally deployed to handle city-scale
applications. From the experimental results of Beijing City,
we can see that when the network size is moderate (around
154K vertices) and there are rarely very long queries, there
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(a) (b)

(c) (d)

Fig. 12 Performance Evaluation of query processing on real traffic conditions. aAvg. query latency, b success rate, cAvg. query latency, d Success
rate

is hardly any failure of query processing for the Landmark
algorithm.

9 Conclusion and future work

In this paper, we studied the distributed shortest path query
processing over dynamic road networks. In the baseline solu-
tion, we proposed an asynchronous framework that uses
traditional FIFOmessage propagation strategy, together with
message broadcast and message combiner as two opti-
mization techniques. As improved solutions, we propose
prioritized message propagation mechanism with the aid of
navigation intelligence, in the form of summary graph or
landmark, to further reduce communication cost. Promising
query processing time and throughput have been achieved

when we deploy our system on Yahoo S4 and the system is
able to handle up to 800 requests within one minute.

To further improve the performance, our future work can
incorporate the merits of customizable route planning and
use more advanced routing algorithms. In addition, the static
partitioning may not work particularly well in a dynamic
and skewworkload distribution. For instance, in the morning
peak hours, a navigation request is likely to be from other
areas to a few hot spots, and vice versa in the evening peak
hours. Therefore, an adaptive load-balancing strategy is an
interesting research topic worth further exploration.

Acknowledgements This work is supported in part by the National
Nature Science Foundation of China under grants No. 61602087,
No. 61632007 and No.61472253. It is supported by Academic
Discipline Project of Shanghai Dianji University, Project Number:
16YSXK04.

123



Distributed shortest path query processing on dynamic road networks 419

References

1. Abraham, I., Fiat, A., Goldberg, AV., Werneck, RF.: Highway
dimension, shortest paths, and provably efficient algorithms. In:
SODA, pp. 782–793 (2010)

2. Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance
queries on large networks by pruned landmark labeling. In: SIG-
MOD, pp. 349–360 (2013)

3. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road
networks with transit nodes. Science 316(5824), 566–566 (2007)

4. Bast, H., Delling, D., Goldberg, AV., Müller-Hannemann, M.,
Pajor, T., Sanders, P., Wagner, D., Werneck, RF.: Route planning
in transportation networks. arXiv:1504.05140v1 [cs.DS] (2015)

5. Biem, A., Bouillet, E., Feng, H., Ranganathan, A., Riabov, A., Ver-
scheure, O., Koutsopoulos, H., Moran, C.: Ibm infosphere streams
for scalable, real-time, intelligent transportation services. In: SIG-
MOD, ACM, pp. 1093–1104 (2010)

6. Cheng, J., Ke, Y., Chu, S., Cheng, C.: Efficient processing of
distance queries in large graphs: a vertex cover approach. In: SIG-
MOD, pp. 457–468 (2012)

7. Delling, D., Werneck, RF.: Faster customization of road networks.
In: Experimental Algorithms, Springer, Berlin, pp. 30–42 (2013)

8. Delling, D., Goldberg, AV., Pajor, T., Werneck, RF.: Customizable
Route Planning. In: Pardalos, PM., Rebennack, S., (Eds.) Pro-
ceedings of the 10th International Symposium on Experimental
Algorithms (SEA’11), Springer, Lecture Notes in Computer Sci-
ence, vol. 6630, pp. 376–387 (2011)

9. Delling, D., Goldberg, AV., Pajor, T., Werneck, RF.: Customizable
route planning in road networks. Transportation Science (2015).
doi:10.1287/trsc.2014.0579

10. Fan,Q., Zhang,D.,Wu,H., Tan,K.: A general and parallel platform
for mining co-movement patterns over large-scale trajectories.
PVLDB 10(4), 313–324 (2016)

11. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction
hierarchies: Faster and simpler hierarchical routing in road net-
works. In: Experimental Algorithms, pp. 319–333. Springer, Berlin
(2008)

12. Goldberg, AV., Harrelson, C.: Computing the shortest path: A
search meets graph theory. In: SODA, pp. 156–165 (2005)

13. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for a*: Effi-
cient point-to-point shortest path algorithms. ALENEX 6, 129–143
(2006)

14. Gonzalez, H., Han, J., Li, X., Myslinska, M., Sondag, JP.: Adap-
tive fastest path computation on a road network: a traffic mining
approach. In: VLDB, VLDB Endowment, pp. 794–805 (2007)

15. Gonzalez, JE., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Power-
graph: Distributed graph-parallel computation on natural graphs.
In: OSDI, pp. 17–30 (2012)

16. Guerrero-Ibáñez, A., Flores-Cortés, C., Damián-Reyes, P.,
Andrade-Aréchiga,M., Pulido, J.: Emerging technologies for urban
traffic management. Tech. rep. (2012)

17. Hunter, T., Moldovan, TM., Zaharia, M., Merzgui, S., Ma, J.,
Franklin, MJ., Abbeel, P., Bayen, AM.: Scaling the mobile mil-
lennium system in the cloud. In: SOCC, p. 28 (2011)

18. Jin, R., Ruan, N., Xiang, Y., Lee, VE.: A highway-centric labeling
approach for answering distance queries on large sparse graphs. In:
SIGMOD, pp. 445–456 (2012)

19. Jin, R., Ruan, N., You, B., Wang, H.: Hub-accelerator: Fast
and exact shortest path computation in large social networks.
arXiv:1305.0507v1 [cs.SI] (2013)

20. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–
392 (1998)

21. Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed time-
dependent contraction hierarchies. ISEA, LNCS 6049, 83–93
(2010)

22. Low,Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Heller-
stein, J.M.:Distributed graphlab: a framework formachine learning
in the cloud. PVLDB 5(8), 716–727 (2012)

23. Malewicz, G., Austern, MH., Bik, AJ., Dehnert, JC., Horn, I.,
Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph
processing. In: SIGMOD, ACM, pp. 135–146 (2010)

24. Maue, J., Sanders, P., Matijevic, D.: Goal directed shortest path
queries using precomputed cluster distances. ACM J. Exp. Algo-
rithmics (2007)

25. Rice, M., Tsotras, V.J.: Graph indexing of road networks for short-
est path queries with label restrictions. VLDB 4(2), 69–80 (2010)

26. Salihoglu, S., Widom, J.: GPS: a graph processing system. In:
SSDBM, pp. 22:1–22:12 (2013)

27. Sanders, P., Schultes,D.:Highway hierarchies hasten exact shortest
path queries. In: ESA, pp. 568–579, Springer, Berlin (2005)

28. Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S.,
Balakrishnan,H., Toledo, S., Eriksson, J.:Vtrack: accurate, energy-
aware road traffic delay estimation using mobile phones. In:
SenSys, pp. 85–98, ACM (2009)

29. Thomsen, JR., Yiu, ML., Jensen, CS.: Effective caching of short-
est paths for location-based services. In: SIGMOD, pp. 313–324
(2012)

30. Wang, Y., Zhang, D., Hu, L., Yang, Y., Lee, LH.: A data-driven
and optimal bus scheduling model with time-dependent traffic and
demand. IEEETrans. Intell. Transp. Syst. (99):1–10, (2017) doi:10.
1109/TITS.2016.2644725

31. Wei, H.,Wang, Y., Forman, G., Zhu, Y., Guan, H.: Fast Viterbi map
matchingwith tunable weight functions. In: SIGSPATIALGIS, pp.
613–616, ACM (2012)

32. Wu, L., Xiao, X., Deng, D., Cong, G., Zhu, A.D., Zhou, S.: Short-
est path and distance queries on road networks: an experimental
evaluation. PVLDB 5(5), 406–417 (2012)

33. Yan, D., Cheng, J., Lu, Y., Ng, W.: Blogel: a block-centric frame-
work for distributed computation on real-world graphs. PVLDB
7(14), 1981–1992 (2014)

34. Yan, D., Cheng, J., Xing, K., Lu, Y., Ng, W., Bu, Y.: Pregel
algorithms for graph connectivity problemswith performance guar-
antees. PVLDB 7(14), 1821–1832 (2014)

35. Yan,D., Cheng, J., Lu,Y., Ng,W.: Effective techniques formessage
reduction and load balancing in distributed graph computation. In:
WWW, pp. 1307–1317 (2015)

36. Yan, D., Cheng, J., Özsu, MT., Yang, F., Lu, Y., Lui, JCS., Zhang,
Q., Ng, W.: Quegel: A general-purpose query-centric framework
for querying big graphs. arXiv:1601.06497v1 [cs.DC] (2016)

37. Yang, D., Zhang, D., Tan, K., Cao, J.,Mouël, F.L.: CANDS: contin-
uous optimal navigation via distributed stream processing. PVLDB
8(2), 137–148 (2014)

38. Yuan, J., Zheng, Y., Zhang, C., Xie,W., Xie, X., Sun, G., Huang, Y.:
T-drive: driving directions based on taxi trajectories. In: SIGSPA-
TIAL GIS, pp. 99–108 , ACM (2010)

39. Zheng, Y., Liu, Y., Yuan, J., Xie, X.: Urban computing with taxi-
cabs. In: Ubicomp, pp. 89–98 (2011)

40. Zhu, AD., Ma, H., Xiao, X., Luo, S., Tang, Y., Zhou, S.: Short-
est path and distance queries on road networks: towards bridging
theory and practice. In: SIGMOD, pp. 857–868 (2013)

123

http://arxiv.org/abs/1504.05140v1
http://dx.doi.org/10.1287/trsc.2014.0579
http://arxiv.org/abs/1305.0507v1
http://dx.doi.org/10.1109/TITS.2016.2644725
http://dx.doi.org/10.1109/TITS.2016.2644725
http://arxiv.org/abs/1601.06497v1

	Distributed shortest path query processing on dynamic road networks
	Abstract
	1 Introduction
	2 Problem statement and system framework
	3 Related work
	3.1 Shortest path query processing
	3.2 Traffic mining
	3.3 Distributed graph processing systems

	4 Graph initialization
	4.1 Graph partitioning
	4.2 Graph shortcut

	5 Dynamic SSSP query processing
	5.1 FIFO-based query processing algorithm
	5.2 Query processing optimization
	5.2.1 Message combiner
	5.2.2 Message broadcast

	5.3 Algorithm termination mechanism
	5.4 Event loss and failure recovery

	6 Prioritized communication mechanism
	6.1 Navigational Intelligence
	6.1.1 Partition-level summary graph
	6.1.2 Graph landmark

	6.2 Prioritized communication mechanism

	7 Index update
	8 Experiments
	8.1 Comparison methods
	8.2 Performance metric
	8.3 Experiments with synthetic workloads
	8.3.1 Construction cost of summary graph and landmark
	8.3.2 Increasing number of nodes in a cluster
	8.3.3 Increasing query result length
	8.3.4 Increasing number of graph partitions
	8.3.5 Performance in various datasets

	8.4 Index update overhead
	8.5 Experiments with real workloads

	9 Conclusion and future work
	Acknowledgements
	References




