The VLDB Journal (2017) 26:31-54
DOI 10.1007/s00778-016-0435-4

@ CrossMark

SPECIAL ISSUE PAPER

Resource bricolage and resource selection for parallel database

systems

Jiexing Li! - Jeffrey F. Naughton? - Rimma V. Nehme?

Received: 15 December 2015 / Revised: 10 May 2016 / Accepted: 14 June 2016 / Published online: 25 June 2016

© Springer-Verlag Berlin Heidelberg 2016

Abstract Running parallel database systems in an environ-
ment with heterogeneous resources has become increasingly
common, due to cluster evolution and increasing interest in
moving applications into public clouds. Performance dif-
ferences among machines in the same cluster pose new
challenges for parallel database systems. First, for database
systems running in a heterogeneous cluster, the default uni-
form data partitioning strategy may overload some of the
slow machines, while at the same time it may underuti-
lize the more powerful machines. Since the processing time
of a parallel query is determined by the slowest machine,
such an allocation strategy may result in a significant query
performance degradation. Second, since machines might
have varying resources or performance, different choices of
machines may lead to different costs or performance for
executing the same workload. By carefully selecting the
most suitable machines for running a workload, we may
achieve better performance with the same budget, or we may
meet the same performance requirements with a lower cost.
We address these challenges by introducing techniques we
call resource bricolage and resource selection that improve
database performance in heterogeneous environments. Our
approaches quantify the performance differences among

B Jiexing Li
jiexing@google.com

Jeffrey F. Naughton
naughton@cs.wisc.edu

Rimma V. Nehme
rimman @microsoft.com
1 Google Inc, Mountain View, CA, USA

Department of Computer Sciences, University of Wisconsin,
Madison, Madison, WI, USA

3 Microsoft Jim Gray Systems Lab, Madison, WI, USA

machines with various resources as they process workloads
with diverse resource requirements. For the purpose of better
resource utilization, we formalize the problem of minimiz-
ing workload execution time and view it as an optimization
problem, and then, we employ linear programming to obtain
arecommended data partitioning scheme. For the purpose of
better resource selection, we formalize two problems: One
minimizes the total workload execution time with a given
budget, and the other minimizes the total budget with a given
performance target. We then employ different mixed-integer
programs to search for the optimal resource selection deci-
sions. We verify the effectiveness of both resource bricolage
and resource selection techniques with an extensive experi-
mental study.

Keywords Resource bricolage - Resource selection -
Parallel database systems - Heterogeneous clusters -
Performance prediction - Data partitioning

1 Introduction

With the growth of the Internet, our ability to generate
extremely large amounts of data has dramatically increased.
This sheer volume of data that needs to be managed and
analyzed has led to the wide adoption of parallel database
systems. To exploit data parallelism, these systems typically
partition data among multiple machines. A query running
on the systems is then broken up into subqueries, which are
executed in parallel on the separate data chunks.

Nowadays, running parallel database systems in an envi-
ronment with heterogeneous resources has become increas-
ingly common, due to cluster evolution and increasing
interest in moving applications into public clouds. For exam-
ple, when a cluster is first built, it typically begins with a

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-016-0435-4&domain=pdf

32

J. Lietal.

set of identical machines. Over time, old machines may be
reconfigured, upgraded, or replaced, and new machines may
be added, thus resulting in a heterogeneous cluster. At the
same time, more and more parallel database systems are
moving into public clouds. Previous research has revealed
that the supposedly identical instances provided by public
clouds often exhibit measurably different performance. Per-
formance variations exist extensively in disk, CPU, memory,
and network [13,22,33,35].

1.1 Motivation

Performance differences among machines (either physical or
virtual) in the same cluster pose new challenges for parallel
database systems. In this paper, we discuss and address two
such challenges.

Fully utilize cluster resources By default, parallel systems
ignore differences among machines and try to assign the same
amount of data to each. If these machines have different disk,
CPU, memory, and network resources, they will take varying
amounts of time to process the same amount of data. Unfor-
tunately, the execution time of a query in a parallel database
system is determined by its slowest machine. At worst, a
slow machine can substantially degrade the performance of
the query. On the other hand, a fast machine in such a system
will be underutilized, finishing its work early, sitting idle,
and waiting for the slower machines to finish. This suggests
that we can reduce execution time by allocating more data to
more powerful machines and less data to the overloaded slow
machines, in order to reduce the execution times of the slow
ones. In Fig. 1, we compare the execution times of the first 5
TPC-H queries running on a heterogeneous cluster with two
different data partitioning strategies. One strategy partitions
the data uniformly across all the machines, while the other
partitions the data using our proposed technique, which we
present in Sect. 4. The detailed cluster setup is described in
Sect. 5. As can be seen from the graph, we can significantly

Query execution time (sec)

400 -
Uniform ———
300 Bricolage RRRReza
200 ¢
[X
100 || B
i0858%] K
[g
sesesd 4
(34 s
0 120203 g
Ql Q2 Q4
TPC-H Query

Fig. 1 Query execution times with different data partitioning strategies

@ Springer

reduce total query execution time by carefully partitioning
the data.

Our task is complicated by the fact that whether a
machine should be considered powerful or not depends on
the workload. For example, a machine with powerful CPUs is
considered “fast” if we have a CPU-intensive workload. For
an I/O-intensive workload, it is considered “slow” if it has
limited disks. Furthermore, to partition the data in a better
way, we also need to know how much data we should allocate
per machine. Obviously, enough data should be assigned to
machines to fully exploit their potential for the best perfor-
mance, but at the same time, we do not want to push too far
to turn things around by overloading the powerful machines.
The problem gets more complicated when queries in a work-
load have different (mixed) resource requirements, as usually
happens in practice. For a workload with a mix of I/O, CPU,
and network-intensive queries, the partitioning of data with
the goal of reducing overall execution time is a non-trivial
task.

Automated partitioning design for parallel databases is a
fairly well-researched problem [8,27,30,31]. The proposed
approaches improve system performance by selecting the
most suitable partitioning keys for base tables or minimizing
the number of distributed transactions for OLTP workloads.
Somewhat surprisingly, despite the apparent importance of
this problem, no existing approach aims directly at mini-
mizing decision support execution time for heterogeneous
clusters. We will provide detailed explanations in Sect. 9.

Fully utilize budget When a new cluster is built or when
an old cluster is upgraded, there are various machines that
we can choose from. By carefully selecting the most suit-
able machines for running a workload, we may achieve
better performance with the same budget, or we may achieve
the same performance requirements with a lower cost. To
help customers deploy applications in the cloud, previous
research has conducted performance evaluations or designed
algorithms to seek virtual machine instances with better per-
formance [13,28,29,41-43]. For example, customers can
over-allocate instances and then terminate those instances
with bad performance to optimize their cloud usage. By
selecting better performing instances to complete the same
task, cloud users can save up to 30 % of their total costs [28,
29].

However, previous research has been focused on rela-
tively simple workloads, such as workloads with a single
bottleneck resource. For example, the work in [42] aims at
only latency-sensitive applications where the response time
of a service request largely depends on network connectivity
between instances. As we will discuss in Sect. 2, our tar-
geted workloads consist of SQL queries running in a parallel
database system, which may be decomposed into a number
of steps with different CPU, /O, or network requirements.
Thus, a decision that is made purely based on performance

Resource bricolage and resource selection for parallel database systems

33

evaluations of a single type of resource may result in poor
performance. To select the best set of computing resources
to process a workload, we must take into account the fol-
lowing three aspects simultaneously: First, we should select
machines that are “suitable” for processing the workloads.
In other words, we prefer machines that can process the
workloads fast. Second, the selected machines should “col-
laborate” well in the same cluster (we will discuss an example
where the set of fast machines do not collaborate well in
Sect. 2.3). Finally, we should allocate data to the selected
machines in a way that minimizes execution time. Unfortu-
nately, the first two aspects sometimes can be contradictory.
As we will see in the example in Sect. 2.3, a machine that
is most suitable for our workloads when used individually
may not collaborate well with other machines in the cluster.
Thus, an optimal solution must balance all three factors for
the best performance.

1.2 Our contributions

Resource bricolage To better utilize resources in a cluster,
we propose a technique we call resource bricolage. The term
bricolage refers to construction or creation of a work from
a diverse range of things that happen to be available, or a
work created by such a process. The keys to the success
of bricolage are knowing the characteristics of the available
items, and knowing a way to utilize and get the most out of
them during construction.

In the context of our problem, a set of heterogeneous
machines are the available resources, and we want to use
them to process a database workload as fast as possible.
Thus, to implement resource bricolage, we must know the
performance characteristics of the machines that execute
database queries, and we must also know which machines
to use and how to partition data across them to minimize
workload execution time. To do this, we quantify differences
among machines by using the query optimizer and a set of
profiling queries that estimate the machines’ performance
parameters. We then formalize the problem of minimizing
workload execution time and view it as an optimization prob-
lem that takes the performance parameters as input. We solve
the problem using a standard linear program solver to obtain
a recommended data partitioning scheme. In Sect. 4.4, we
also discuss alternatives for handling nonlinear situations.
We implemented our techniques and tested them in Microsoft
SQL Server Parallel Data Warehouse (PDW) [34], and our
experimental results show the effectiveness of our proposed
solution.

Generalizations Resource bricolage can be generalized to
a variety of different resource selection problems. In Sect.
6, we discuss two such problems. In these two more general
problems, we do not know which machines are going to be
used in the cluster. Our goal is to select the most suitable com-

puting resources with budget constraints or time constraints.
More specifically, in addition to the two challenges facing by
resource bricolage, we also need to either (i) select a set of
computing resources that minimizes the total execution time
for a given budget, or (ii) select a set of computing resources
that minimizes the budget for a given performance target.
We first formally define the resource selection problems
and prove their hardness. As with our resource bricolage
technique, we quantify differences among machines and
formalize the two resource selection problems as optimiza-
tion problems. We then formulate the problems as different
mixed-integer programs (MIPs) to efficiently search for the
optimal solutions. We finally solve the programs using a
standard linear program solver to obtain both the resource
selection decisions (e.g., which machines to use) and the data
allocation decisions (e.g., the amounts of data allocated to
selected machines). We compare the performance differences
of our approaches and other alternatives with synthetic exper-
iments that simulate different real-world scenarios, and we
analyze various use cases to illustrate when a simple heuris-
tic solution is effective and when a sophisticated solution is
needed. Our experiments suggest that a solution that com-
bines both data allocation and resource selection can yield
significant performance improvement over other alternatives.
The rest of the paper is organized as follows. Section 2 for-
malizes the resource bricolage problem. Section 3 describes
our way of characterizing the performance of a machine.
Section 4 presents our approach for finding an effective data
partitioning scheme. Section 5 experimentally confirms the
effectiveness of our proposed resource bricolage solution.
Section 6 formalizes the resource selection problems and
proves the NP-hardness of the problems. Section 7 presents
our solutions for selecting resources. Section 8 evaluates the
performance of different approaches for resource selection.
Section 9 briefly reviews the related work. Finally, Sect. 10
concludes the paper with directions for future work.

2 The resource bricolage problem
2.1 Formalization

To enable parallelism in a parallel database system, tables
are typically horizontally partitioned across machines. The
tuples of a table are assigned to a machine either by applying
a partitioning function, such as a hash or a range partitioning
function, or in a round-robin fashion. A partitioning function
maps the tuples of a table to machines based on the values of
specified column(s), which is (are) called the partitioning key
of the table. As a result, a partitioning function determines
the number of tuples that will be mapped to each machine.
A uniform partitioning function may result in poor perfor-
mance. Let us consider a simple example where we have two

@ Springer

34 J. Lietal.
Machine 1 Machine 2 M, M, M,
N
CPU| |CPU CPU S|t 5y ta
2 o Q
o)
Partitioning schemes (Disk] (Disk] Sz | 1 122 In2 > h steps
For I/O-intensive queries: 33% 67%
_1 1 1 . 0, 0,
For CPU-intensive queries: 67% 33% S| 1, P i)
Fig. 2 Different data partitioning schemes / / /
1 2 n
— _J
v .
n machines

Step 1 (Subquery 1, ..., Subquery n)
Query 1 {

Workload { :

Query q

Step s

Fig. 3 A query workload

machines in a cluster as shown in Fig. 2. Let the CPUs of the
first machine be twice as fast as that of the second machine,
and let the disks of the first machine be 50 % slower than that
of the second machine. We want to find the best data parti-
tioning scheme to allocate the data to these two machines.
Suppose that we have only one query in our workload, and
it is I/O intensive. This query scans a table and counts the
number of tuples in the table. The query completes when
both machines finish their processing. To minimize the total
execution time, it is easy for us to come up with the best
partitioning scheme, which assigns 33 % of the data to the
first machine and 67 % of the data to the second machine.
In this case, both machines will have similar response times.
Assume now that we add a CPU-intensive query to the work-
load. It scans and sorts the tuples in the table. Determining the
best partitioning scheme in this case becomes a non-trivial
task. Intuitively, if the CPU-intensive query takes longer to
execute than the I/O-intensive query, we should assign more
data to the first machine to take advantage of its more pow-
erful CPUs and vice versa.

In general, we may have a set of heterogeneous machines
with different disk, CPU, and network performance, and they
may have different amounts of memory. At the same time, we
have a workload with a set of SQL queries as shown in Fig. 3.
A query can be further decomposed into a number of steps
with different resource requirements. For each step, there
will be a set of identical subqueries executing concurrently
on different machines to exploit data parallelism. A step will
not start until all steps upon which it depends on, if any, have
finished. Thus, the running time of a step is determined by
the longest-running subquery. The query result of a step will
be repartitioned to be utilized by later steps, if needed.

We visually depict our problem setting in Fig. 4. Let
M, M, ..., M, be a set of machines in the cluster, and
let W be a workload consisting of multiple queries. Each

@ Springer

Fig. 4 Problem setting

query consists of a certain number of steps, and we con-
catenate all the steps in all of the queries to get a total of &
steps: S1, 82, ..., Sp. Assume that 7;; would be the execu-
tion time for step S; running on machine M; if all the data
were assigned to M;. Each column in the graph corresponds
to a machine, and each row represents the set of subqueries
running on the machines for a particular step. In addition, we
assume that a machine M; also has a storage limit /;, which
represents the maximum percentage of the entire data set that
it can hold. The goal of resource bricolage is to find the best
way to partition data across machines in order to minimize
the total execution time of the entire workload.

2.2 Potential for improvement

Whether it is worth allocating data to machines in a non-
uniform fashion is dependent on the characteristics of the
available computing resources. If all the machines in a cluster
are identical or have similar performance, there is no need
for us to consider the resource bricolage problem at all. At
the other extreme, if all the machines are fast except for a few
slow ones, we can improve performance and come close to
the optimal solution by just deleting the slow machines. The
time that we can save by dealing with performance variability
depends on many factors, such as the hardware differences
among machines, the percentage of fast/slow machines, and
the workloads.

To gain preliminary insight as to when explicitly mod-
eling resource heterogeneity can and cannot pay off, we
consider three data partitioning strategies: Uniform, Delete,
and Optimal. Uniform is the default data allocation strat-
egy of a parallel database system. It ignores differences
among machines and assigns the same amount of data to each
machine. Since there is no commonly accepted approach for
the problem we address in the paper, we propose Delete as
a simple heuristic that attempts to handle resource hetero-
geneity. It deletes some slow machines before it partitions
the data uniformly to the remaining ones. It tries to delete

Resource bricolage and resource selection for parallel database systems

35

the slowest set of machines first and then the second slowest
next. This process is repeated until no further improvement
can be made. Optimal is the ideal data partitioning strategy
that we want to pursue. It distributes data to machines in a
way that can minimize the overall workload execution time.
The corresponding query execution times for these strategies
are denoted as t,,, 4./, and f,,, respectively. According to the
definitions, we have t, > tge; > tops.

We start with a simple case with n machines in total,
where a fraction p of them are fast and (1 — p) are slow.
Our workload contains just one single-step query. For sim-
plicity, we assume that one fast machine can process all
data in 1 unit of time (e.g., 1 hour, 1 day), and the slow
machines need r units of time (» > 1). We also assume
that, for each machine, the processing time of a step changes
linearly with the amount of data. The value r can also be
considered to be the ratio between execution times of a slow
machine and a fast machine. We omit the underlying reasons
that lead to the performance differences (e.g., due to a slow
disk, CPU, or network connection), since they are not impor-
tant for our discussion here. It is easy to see that #, = %r,
W g
are considering, calculating #,, is easy and can be conducted
in the following way. We denote the fractions of data we allo-
cate to a fast machine as p; and to a slow machine as p»,
respectively. The optimal strategy assigns data to machines
in such a way that the processing times are identical. This
can be represented as p; = rpy. Since the sum of p; and p;
is 1, we can derive #,,; = m.

To see how much improvement we can make by going
from a simple strategy to a more sophisticated one, we cal-
culate the percentage of time we can reduce from #; to #, as
100(1 — #,/t1). We discuss the reduction that can be made
by adopting the simple heuristic Delete first, and then, we
present the further reduction that can be achieved by trying
to come up with Optimal.

From uniform to delete When r < %, we have tg,; =

tdel = Min { } In this limited specialized case that we

ty. The decision is to keep all machines, and no
improvement can be made by deleting slow machines. When

r > %, tdel = %. The percentage of reduction we can make
(1 — L) . When rp is big, the percentage of reduction

L =
n

is 100 W

can getclose to 100 %. Delete is well suited for clusters where
there are only a few slow machines and the more powerful
machines are much faster than the slow ones. Thus, given a
heterogeneous cluster, the first thing we should do is try to
find the slow outliers and delete them.

From delete to optimal In this case, the improvement we
can make is not so obvious. In Fig. 5, we plot the percentage
of time that can be reduced from #4.; to #,,;. We vary p from
0to 100 % and r from O to 20. As we can see from the graph,
when r is fixed, the percentage of reduction increases at first

Percent of improvement (%)

p% of fast machines

Fig. 5 Potential for improvement

“slow” machines | “fast” machines
M, My Mypei Mype2 M,

S; ate ate € € €

S, ¢€ e | a-e € €

S; ¢ € € a-e €
Swo+l € € € € a-e

Fig. 6 A worst-case example

and then decreases as p gets bigger. Similarly, when p is
fixed, the percentage of reduction also increases at first and
then decreases as we vary r from 0 to 20. More precisely,
when r < %, tdel = %r. The percentage of reduction can be

calculated as 100(1 — fop; /tger) = 100 (1 _ m) Since

rp < 1,wehaverp + 1 — p < 2. As aresult, the reduction
100 (1 — m) is less than 50 %. When r > %, we have

tdel = L "and the reduction is 100 (1 — % . Since
np 1+ﬁ—;
rp > 1, the denominator is no larger than 2. Therefore, the

percent of reduction is also less than 50 %.

Now, let us consider a more complicated example with n
machines and n/2 4 1 steps. In this example, we will show
that in the worst case, the performance gap between Delete
and Optimal can be arbitrarily large. The detailed 7;; values
are indicated in Fig. 6, where a is large constant and ¢ is a
very small positive number. If we use each machine individ-
ually to process the data, the workload execution time for a
machine in the first half on the left is a + (% + l) . This
is longer than the workload execution time a + (% -){;‘
for a machine in the second half. When we look at these
machines individually, the first n/2 of them are considered
to be relatively slow.

Given these machines, Delete works as follows. First, it
calculates the execution time of the workload when data are
partitioned uniformly across all machines. The runtime for
the first step Sy is %(a + ¢). The runtime for a later step

S;(j = 2)is %(a — ¢), which is the processing time of

@ Springer

36

J. Lietal.

machine M, ;21 ;—1. In total, we have n/2 number of such
steps. As a result, the execution time of all steps is %(a +
g) + %(a — ¢). Then Delete tries to reduce the execution
time by deleting slow machines, and thus, it will try to delete
{My, M, ..., My»} first. We can prove that the best choice
for Delete is to use all machines. On the other hand, the
optimal strategy is to use just the “slow” machines and assign
% of the data to each of them, and we have #,,, = ,%(a +¢).
Although Delete uses more machines than Optimal, it is easy
to getthat f‘:—; ~ 7.Note that the performance of Delete could
be even worse if the actual 7;; values are not known and the
good machines are deleted. As shown in the experimental
section, Delete could degrade the performance due to errors
in execution time estimation.

2.3 Challenges

Although the worst-case situation may not happen very often
in the real world, our main point here is that when there are
many different machines in a cluster and we have queries with
various resource demands, the heuristic (Delete) that works
well for simple cases may generate results far from optimal.
In addition, the heuristic works by deleting the set of obvi-
ously slow machines. However, simple cases where we can
divide machines in the same cluster into a fast group and a
slow group may not happen very often. According to Moore’s
law, computers’ capabilities double approximately every two
years. If cluster administrators perform hardware upgrades
every one or two years, it is reasonable to assume that we
may see 2, 4x, or maybe 8 x differences in machine perfor-
mance in the same cluster. This assumption is also consistent
with what has been observed in a very large Google cluster
[32]. Normally, we would not add a machine to a cluster that
is significantly different from the others to perform the same
tasks. On the other hand, machines that are too slow and out
of date will be eventually phased out. For systems running on
a public cloud, requesting a set of VM instances of the same
type to run an application is the most common situation. As
we discussed in Sect. 1, the supposedly identical instances
from public clouds may still have different performance.
Previous studies, which used a number of benchmarks to
test the performance of 40 Amazon EC2 m1.small instances,
observed that the speedup of the best performance instance
over the worst performance instance is usually in the range
from 0 to 300 % for different resources [13].

Thus, it is important for us to come up with the optimal
partitioning strategy to better utilize computing resources.
To do this, there are a number of challenges that need to
be tackled. First of all, we need to quantify performance
differences among machines in order to assign the proper
amounts of data to them. Second, we need to know which
machines to use and how much data to assign to each of them

@ Springer

for best performance. Intuitively, we should choose “fast”
machines, and we should add more machines to a cluster to
reduce query execution times. However, this is not true in
the worst-case example we discussed. In our example, the
performance of the set of “slow” machines used by Optimal
are similar, and the bottlenecks of the subqueries are clustered
on the same step (S1). Delete uses some additional “fast”
machines, but these machines do not collaborate well in the
system. They introduce additional bottlenecks in other steps
(82 to S8;/241), which result in longer execution times.

3 Quantifying performance differences

For each machine in the cluster, we use the runtimes of the
queries that will be executed to quantify its performance.
Since we do not know actual query execution times before
they finish, we need to estimate these values.

There has been a lot of work in the area of query execution
time estimation [5,6, 18,20,25]. Unlike previous work, we do
not need to get perfect time estimates to make a good data
partitioning recommendation. As we will see in the experi-
mental section, the ratios in time between machines are the
key information that we need to deal with heterogeneous
resources. Thus, we adopt a less accurate but much simpler
approach to estimate query execution times. Our approach
can be summarized as follows. For a given database query,
we retrieve its execution plan from the optimizer, and we
divide the plan into a set of pipelines. We then use the opti-
mizer’s cost model to estimate the CPU, I/0, and network
“work” that needs to be done by each pipeline. To estimate
the times to execute the pipelines on different machines, we
run profiling queries to measure the speeds to process the
estimated work for each machine.

3.1 Estimating the cost of a pipeline

Like previous work on execution time estimation [6,20], we
use the execution plan for a query to estimate its runtime.
An execution plan is a tree of physical operators chosen by
a query optimizer. In addition to the most commonly used
operators in a single-node DBMS, such as Table Scan, Filter,
and Hash Join, a parallel database system also employs data
movement operators, which are used for transferring data
between DBMS instances running on different machines.
An execution plan is divided into a set of pipelines delim-
ited by blocking operators (e.g., Hash Join, Group-by, and
data movement operators). The example plan in Fig. 7 is
divided into two different pipelines P} and P,. Pipelines are
executed one after another. If we can estimate the execution
time for each pipeline, the total runtime of a query is simply
the sum of the execution time(s) of its pipeline(s). To estimate
a pipeline’s execution time, we first predict what is the work

Resource bricolage and resource selection for parallel database systems

37

' “Shuffle Move,
| [Temp t] AN

Table Scar;
< Lineitem

Fig. 7 An execution plan with two pipelines

of the pipeline and what is the speed to process the work. We
then estimate the runtime of a pipeline as the estimated work
divided by the processing speed.

For each pipeline, we use the optimizer’s cost model to
estimate the work (called cost) that needs to be done by CPUs,
disks, and network, respectively. These costs are estimated
based on the available memory size. We utilize the optimizer
estimated cost units to define the work for an operator in a
pipeline. We follow the idea presented in [18] to calculate
the cost for a pipeline, and the interested reader is referred to
that paper for details.

However, the default optimizer estimated cost is calcu-
lated using parameters with predefined values (e.g., the time
to fetch a page sequentially), which are set by optimizer
designers without taking into account the resources that will
be available on the machine for running a query. Thus, it is
not a good indication of actual query execution time for a
specific machine. To obtain more accurate predictions, we
keep the original estimates and treat them as estimated work
if a query was to run on a “standard” machine with default
parameters. Then, we test on a given machine to see how fast
it can go through this estimated work with its resources (the
speeds).

3.2 Measuring speeds to process the cost

Measuring I/O speed To test the speed to process the esti-
mated I/O cost for a machine, we execute the following query
with a cold buffer cache: select count(*) from T. This query
simply scans a table 7" and returns the number of tuples in
the table. It is an I/O-intensive query with negligible CPU
cost. For this query, we use the query optimizer to get its
estimated I/O cost, and then, we run it to obtain its execu-
tion time for the given machine. Then, we calculate the I/O
speed for this machine as the estimated I/O cost divided by
the query execution time.

Measuring CPU speed To measure the CPU speed, we
test a CPU-intensive query: select T.a from T group by T.a
from a warm buffer cache. We need to make sure that the
query has a negligible I/O factor when calculating the CPU
speed. For this query, we can also get its estimated CPU
cost and runtime, and we calculate the CPU speed for this

machine in a similar way. Since small queries tend to have
higher variation in the cost estimates and execution times, one
practical suggestion is to use a sufficiently big table for the
test. Meanwhile, since the time spent on transferring query
results from a database engine to an external test program is
not used to process the estimated CPU cost, we need to limit
the number of tuples that will be returned. In our experiment,
T contains 18 M unsorted tuples, and only 4 distinct 7.a
values are returned. We repeat the measurement 3 times and
take the average as the estimate.

Measuring network speed We use a small and separate
program to test the network speed instead of a query run-
ning on an actual database system. The reason is that it is
hard to find a query to test the network speed when isolat-
ing all other factors that can contribute to query execution
times. For a query with data movement operators in a fully
functional system, the query may need to read data from a
local disk and store data in a destination table. If network
is not the bottleneck resource, we cannot observe the true
network speed. Thus, we wrote a small program to resemble
the actual system for transmitting data between machines.
We run this program at its full speed to send (receive) data to
(from) another machine that is known to have a fast network
connection. At the end, we calculate the average bytes of data
that can be transferred per second as the network speed for
the tested machine.

Finally, for a pipeline P, we estimate its execution time as
the maximum of Cges(P)/Speedpes, for any Res in {CPU,
I/O, network }. The execution time of a plan is the sum of the
execution times of all pipelines in the plan.

4 Resource bricolage technique

After we estimate the performance differences among
machines for running our workload, we now need to find
a better way to utilize the machines to process a given work-
load as fast as possible. We model and solve this problem
using linear programming, and we deploy special strategies
to handle nonlinear scenarios.

4.1 Base and intermediate data partitioning

Data partitioning can happen in two different places. One is
base table partitioning when loading data into a system, and
the other one is intermediate result reshuffling at the end of
an intermediate step. For example, consider a subquery of a
step that uses the execution plan shown in Fig. 7. This plan
scans two base tables: Lineitem and Orders, which may be
partitioned across all machines. The result of this subquery,
which can be viewed as a temporary table, is served as input
to next steps, if there are any. Thus, the output table may also
be redistributed among the machines.

@ Springer

38

J. Lietal.

The execution time of a plan running on a given machine
is usually determined by the input table sizes. For example,
the runtime of the plan in Fig. 7 depends on the number of
Lineitem and Orders (L and O for short) tuples. The run-
time of a plan that takes a temporary table as input is again
determined by the size of the temporary table.

In some cases, the partitioning of an immediate table can
be independent of the partitioning of any other tables. For
example, if the output of L o< O is used to perform a
local aggregate in the next step, we can use a partitioning
function different from the one used to partition L and O
to redistribute the join results. However, if the output of
L >a O is used to join with other tables in a later step,
we must partition all tables participating in the join in a
distribution-compatible way. In other words, we have to use
the same partitioning function to allocate the data for these
tables.

In our work, we consider data partitioning for both base
and intermediate tables. Note that our technique can also be
applied to systems that do not partition base tables a pri-
ori or do not store data in local disks. For these systems,
our approach can be used to decide the initial assignment of
data to the set of parallel tasks running with heterogeneous
resources, and similarly, our approach can be used for inter-
mediate result reshuffling. Instead of reading pre-partitioned
data from local disks, these systems read data from distrib-
uted file systems or remote servers. In order to apply our
technique, we need to replace the time estimates for read-
ing data locally with the time estimates for accessing remote
data. We omit the details here since it is not the focus of our

paper.
4.2 The linear programming model

Next, we will first give our solution to the situation where
all tables must be partitioned using the same partitioning
function, and then we extend it to cases where multiple par-
titioning functions are allowed at the same time.

Recall that in our problem setting, we have n machines,
and the maximum percentage of the entire data set that
machine M; can hold is /;. Our workload consists of &
steps, and it would take time #;; for machine M; to process
step S; if all data were assigned to M;. The actual #;; val-
ues are unknown, and we use the technique proposed in
Sect. 3 to estimate them. We want to find a data partitioning
scheme that can minimize the overall workload execution
time.

When all tables are partitioned in the same way, we can
use just one variable to represent the percentage of data that
goes to a particular machine for different tables. Let p; be
the percentage of the data that is allocated to M; for each
table. We assume that the time it takes for M; to process
step §; is proportional to the percentage of data assigned

@ Springer

to it. Based on this assumption, p;?;; represents the time to
process p; of the data for step S; running on machine M;.
The execution time of S, which is determined by the slowest
machine, is max:.’:] pitij. Then, the total execution time of the
workload can be calculated as Z?’ —max!_, p;t;j.Inorderto
use a linear program to model this problem, we introduce an
additional variable x; to represent the execution time of step
S ;. Thus, the total execution time of the workload can also be
represented as Z?Zl xj. The linear program that minimizes
the total execution time of the workload can be formulated
below.

For step §;, since the execution time x; is the longest
execution time of all machines, we must have p;t;; < x;
for machine M;. We also know that the percentage of data
that can be allocated to M; must be at least 0 and at most /;.
The sum of all p;s is 1, since all data must be processed.
We can solve this linear programming model using stan-
dard linear optimization techniques to derive the values for
pis (0 <7 < mn)and xjs (0 < j < h), where the set of
pi values represents a data partitioning scheme that mini-
mizes Z?:l xj. Note that we may use only a subset of the
machines, since we do not need to run queries on a machine
with 0 % of the data. Thus, the data partitioning scheme sug-
gests a way to select the most suitable set of machines and
a way to utilize them to process the database workload effi-
ciently.

h
minimize Zx j
j=1
subject to p;t;; < x;

4.3 Allowing multiple partitioning functions

When different partitioning functions are allowed to be used
by different tables, we are given more flexibility for making
improvements. Thus, we want to apply different partition-
ing functions whenever possible. In order to do this, we
need to identify sets of tables that must be partitioned in
the same way to produce join-compatible distributions, and
we apply different partition functions to tables in different
sets.

For step S in workload W, let {T;, Ti2, ..., Ti;} be the
set of its input tables and 7, be its output table as we show
in Fig. 8. An input table to S could be a base table or an out-
put table of another step, and all input tables will be joined
together in step S. In order to perform joins, tuples in these
tables must be mapped to machines using the same parti-

Resource bricolage and resource selection for parallel database systems

Fig. 8 The input and output T
tables for a step *0

Step S

40X

Iy T, T

tioning function, otherwise tuples that can be joined together
may go to different machines'.

We define a distribution-compatible group as the set of
input and output tables for W that must be partitioned using
the same function, together with the set of steps in W that
take these tables as input. Placing a step to a group implies
that how to partition the tables in the group has a significant
impact on the execution time of the step. If we can find all
distribution-compatible groups for W, we can apply different
functions to tables in different groups for data allocation.

Given a database, we assume that the partitioning keys for
base tables and whether two base tables should be partitioned
in a distribution-compatible way or not are designed by a
database administrator or an automated algorithm [1,27,31].
As a result, we know which base tables should belong to
a distribution-compatible group. For intermediate tables,
we need to figure this out. We generate the distribution-
compatible groups for a workload W in the following way:

1. Create initial groups with corresponding distribution-
compatible base tables according to the database design.

2. Foreachstep S in W, perform the following three instruc-
tions.

(a) For the input tables to S, find the groups that they
belong to. If more than one group is found, we merge
them into a single group.

(b) Assign S to the group.

(c) Create a new group with the output table of S.

We go through a small example shown in Fig. 9 to demon-
strate how it works. The example has only five steps and three
base tables: L, O, and C, where L and O are distribution-
compatible group according to the physical design. First, we
create two groups G| and G, for the base tables, and L and O
belong to the same group G 1. Then for each step in the work-
load, we perform the three instructions (a) to (c) as described
above. Step S joins L and O from the group G1. Since both
of them belong to the same group, there is no need to merge.
We assign step S to group G to indicate that the partitioning

I We omit replicated tables in our problem. Since a full copy of a
replicated table will be kept on a machine, there is no need to worry
about partitioning.

39
Steps: Groups:
Gl G2
L 1L 1T g
~ [Lo][c | [T]
Rt e N

Gy
[]

51

S TP = 1o
L O C T
—
-
S5 T,,0<A0 = return

Fig. 9 Example of distribution-compatible group generation

Sy C— T,y

of the tables in G has a significant impact on the runtime
of S1. A new group G3 is then created for the output table
T,1 of S1. No query step has been assigned to the new group
yet, since we do not know which step(s) will use 7,. S> will
then be processed. Since S; joins 7,1 in G3 with table C in
G,, we merge G3 with G,. We do this by inserting every
element in G3 into G. We then assign S, to the group that
contains tables C and 7,1, and we create a new group G4 for
Ty. At step S3, a local aggregation on T, is performed, and
the result is returned to the user. Thus, we assign S3 to group
G4. After all steps are processed, we get three groups for this
workload.

For each distribution-compatible group generated, we can
employ the linear model proposed above to obtain a parti-
tioning scheme for the tables to minimize total runtime of
the steps in the group.

4.4 Handling nonlinear growth in time

In our proposed linear programming model, we assume that
query execution time changes linearly with the data size.
Unfortunately, this assumption does not always hold true for
database queries. However, as we will see later in our experi-
ments, the assumption is valid in many cases, and even when
it does not strictly hold, it is a reasonable heuristic that yields
good performance.

This assumption is valid for the network cost of a query,
where the transmission time increases in proportion to data
size. Itis also true for the CPU and I/O costs of many database
operators, such as Table/Index Scan, Filter, and Compute
Scalar. These operators take a large proportion of query exe-
cution times for analytical workloads.

The linear assumption may be invalid for multi-phase
operators such as Hash Join and Sort. We may introduce
errors by choosing fixed linear functions for these operators
in the following way. To estimate the #;; value for step S;
running on machine M;, we first assume that M; gets 1/n
of the data. We then use the query optimizer to generate the

@ Springer

40

J. Lietal.

Fig. 10 1/O cost for Sort 6N

1/n data
L AN

Num. of I/Os

e 2N

B B(B-1) B(B-1)?
Num. of pages N to sort

execution plan for S;, and we estimate the runtime for the
plan. Finally, the estimated value is magnified n times and
returned as the #;; value for §; running on M;. Based onall 7;;s
we predict, a recommended partitioning is computed using
the linear programming model, and the data we eventually
allocate to M; may be less or more than 1/n.

If the plan is the same as the estimated plan and the opera-
tor costs increase linearly with the data size, everything will
work as is. However, since the input table sizes could be
different from our assumption, the plan may change, and
some multi-phase operators may need more or fewer passes
to perform their tasks. We use the I/O cost for Sort as our
running example, and the I/O cost for Hash Join is similar.
To sort a table with N pages using B buffer pages, the num-
ber of passes for merging is [logz_;[N/B1]. In each pass,
N pages of data will be written to disk and then brought back
to memory. The number of I/Os for Sort? can be calculated
as 2N [logg_[N/BT], and we plot this nonlinear function
in Fig. 10. The axes are in log scale. As we can see from the
graph, for a multi-phase operator like Sort, by making a lin-
ear assumption, we will stick with a particular linear function
(e.g., 4N in the graph) for predicting the time. Thus, the esti-
mated times we used to quantify the performance differences
among machines may be wrong.

The impact of the changes in plans and operator execu-
tions is twofold. When a plan with lower cost is selected or
fewer passes are needed for an operator, the actual query run-
time should be shorter than our estimate, leaving more room
for improvement. When things change in the opposite direc-
tion, query execution times may be longer than expected,
and we may place too much data on a machine. The latter
case is an unfavorable situation that we should watch out
for. We use the following strategies to avoid making a bad
recommendation.

— Detection Before we actually adopt a partitioning rec-
ommendation, we involve the query optimizer again to
generate execution plans. We re-estimate query execution
times when assuming that each machine gets the fraction
of data as suggested by our model. We return a warning
to the user, if we find that the new estimated workload
runtime is longer than the old estimate. This approach
works for both plan and phase changes.

2 We assume that the I/Os for generating the sorted runs are done by a
scan operator, and we omit the cost here.

@ Springer

— Safeguard To avoid overloading a machine M;, we can
add a new constraint p; < pjsfe to our model. By select-
ing a suitable value for pj.f as a guarding point, we can
force the problem to stay in the region, where query exe-
cution times grow linearly with data size. For the example
shown in Fig. 10, we can use the value of the second
dark point as pjsqfe, to prevent data processing time from
growing too fast.

Even if additional passes are required for some operators,
the data processing time of a powerful machine may still be
shorter than that of a slow machine. One possible direction
would be to use a mixed-integer program to fully exploit the
potential of a powerful machine. Due to lack of space, we
leave this as an interesting direction for future work.

It is worth noting that a linear region spans a large range.
For a sort operator with x passes, the range starts at B(B —
1)*~D and ends at B(B — 1)*. The end point is B — 1 times
as large as the start point. B is typically a very large number.
For example, if the page size is 8 KB, an 8 MB buffer pool
consists of 1024 pages. Thus, introducing one more pass is
easy if the assumed 1/n of the data happens to be close to an
end point. To introduce two more passes, we need to assign
at least 1000 times more data to a machine. Meanwhile, we
typically will not assign so much more data to a machine,
since the performance differences among machines in our
problem are usually not very big (e.g., no more than 8).

5 Experimental evaluation for resource bricolage

This section experimentally evaluates the effectiveness and
efficiency of our proposed techniques. Our experiments focus
on whether we can accurately predict the performance differ-
ences among machines, and whether we are able to achieve
the estimated improvements provided by our model. We also
evaluate our technique’s ability to handle situations where
data processing times increase faster than linear.

5.1 Experimental setup

We implemented and tested our techniques in SQL Server
PDW. Our cluster consisted of 9 physical machines, which
were connected by a 1Gbit HP Procurve Ethernet switch.
Each machine had two 2.33 GHz Intel E5410 quad-core
processors, 16 GB of main memory, and eight SAS 10K RPM
147 GB disks. On top of each physical machine, we created
a virtual machine (VM) to run our database system. One VM
served as a control node for our system, while the remain-
ing eight were compute nodes. We artificially introduced
heterogeneity by allowing VMs to use varying numbers of
processors and disks, limiting the amount of main memory,
and by “throttling” the network connection.

Resource bricolage and resource selection for parallel database systems

41

Table 1 Partition keys for the TPC-H tables

Table Partition key Table Partition key
Customer c_custkey Part p_partkey
Lineitem 1_orderkey Partsupp ps_partkey
Nation (replicated) Region (replicated)
Orders o_orderkey Supplier s_suppkey

The parallel database system we ran consists of single-
node DBMSs connected by a distribution layer, and we have
eight instances of this single-node DBMS, each running in
one of the VMs. The single-node DBMS is responsible for
exploiting the resources within the node (e.g., multiple cores
and disks); however, this is transparent to the parallel dis-
tribution layer. We used a TPC-H 200 GB database for our
experiments. Each table was either hash partitioned or repli-
cated across all compute nodes. Table 1 summarizes the
partition keys used for the TPC-H tables. Replicated tables
were stored at every compute node on a single disk.

5.2 Overall performance

To test the performance of different data partitioning
approaches, we used a workload of 22 TPC-H queries. By
default, each VM used 4 disks, 8 CPUs, 1 Gb/s network band-
width, and 8 GB memory. In the first set of experiments, we
created 6 different heterogeneous environments as summa-
rized below to run the queries. In these cases, we vary only
the number of disks, CPUs, and the network bandwidth for
the VMs. We will study the impact of heterogeneous memory
in a separate subsection later.

1. CPU-intensive configuration To make more queries CPU
bound, we use as few CPUs as possible for the VMs. In
this setting, we use just one CPU for half of the VMs, and
two CPUs for the other half. As a result, CPU capacity
of the fast machines is twice that of the slow machines.

2. Network-intensive configuration Similarly, to make more
queries network bound, we reduce network bandwidth
for the VMs. We set the bandwidth for half of them to
10 Mb/s and for the other half to 20 Mb/s.

3. I/O-intensive configuration (2) We reduce the number of
disks that are used by the VMs. We limit the number of
disks used for half of them to one and for the remainder
to two.

4. I/O-intensive configuration (4) In this setting, we have
4 types of machines. We set the number of disks used
by the VMs to 1, 1, 2, 2, 4, 4, 8, and 8, respectively.
Note that the I/O speeds of the machines with 8 disks
(the fastest machines) are roughly 4 times as fast as the
I/O speeds of the machines with just 1 disk (the slowest

machines), and the I/O speeds of the machines with 4
disks are roughly 3.2 times as fast as the I/O speeds of
the slowest machines.

5. CPU and I/O-intensive configuration The number of
disks used by the VMs is the same as in the above con-
figuration, but we reduce their CPU capability. We set
the number of CPUs that they use to 2, 4, 2, 4, 2, 4, 2,
and 4, respectively. In this setting, all VMs are different.
If we calculate a ratio to represent the number of CPUs
to the number of disks for a VM, we can conclude that
subqueries running on a VM with a small ratio tend to be
CPU bound, while subqueries running on a VM with a
large ratio tend to be I/O bound. We refer to this config-
uration as Mix-2.

6. CPU, I/O, and network-intensive configuration The CPU
and /O settings are the same as above. We also reduce
network bandwidth to make some of the subqueries net-
work bound. We set the bandwidth for the VMs in Mb/s
to 30, 30, 30, 10, 10, 30, 30, and 30, respectively. We
refer to this configuration as Mix-3.

For each heterogeneous cluster configuration, we evalu-
ate the performance of the strategy proposed in this paper
(we refer to it as Bricolage). We use Uniform and Delete as
the competitors, since to the best of our knowledge, there
are no previously proposed solutions in the literature. The
improvement in execution time due to our bricolage tech-
niques depends on differences among machines. For each
cluster configuration, we first measure the processing speeds
for each machine using the profiling queries and the network
test program described in Sect. 3. For a given machine, the
data we use to measure its I/O speed are a 50 MB Customer
table, and the data we use to measure its CPU speed are a
2GB Lineitem table. We then generate execution plans for
the queries in our workload assuming uniform partitioning,
and we estimate the processing times for these plans running
on different machines (the estimated 7;; values). These val-
ues are then used as input parameters for both Delete and
Bricolage. For machine M;, Delete sums up all its #;; val-
ues and uses the summation as its score. Delete then tries to
delete machines in descending order of their scores until no
further improvements can be made. We then estimate the new
query execution times for Delete where only the remaining
machines are used. For our approach, we use the #;; values
together with the /; values (determined by storage limits) as
input to the model, and then, we solve the linear program
using a standard optimization technique called the simplex
method [9]. The model returns arecommended data partition-
ing scheme together with the targeted workload execution
time. In Table 2a, we illustrate the predicted workload exe-
cution time for different approaches running with different

@ Springer

42 J. Lietal.
Table 2 Overall performance (22 TPC-H queries)

Strategy CPU-intensive Network-intensive 1/O-intensive (2) I/O-intensive (4) Mix-2 Mix-3

(a) Estimated execution time and percentage of time reduction for different data partitioning strategies

Uniform (s) 5346 5628 5302 5583 6451 8709

Delete (s) 5346 (0.0 %) 5628 (0.0 %) 5103 (3.7 %) 3522 (36.9 %) 4760 (26.2 %) 8052 (7.5 %)
Bricolage (s) 4115 (23.0%) 4583 (18.6 %) 3317 (37.4 %) 2431 (56.5 %) 3420 (47.0 %) 5202 (40.3 %)
(b) Actual execution time and percentage of time reduction for different data partitioning strategies

Uniform (s) 7371 8720 6037 6275 7680 11,564
Delete (s) 7371 (0.0 %) 8720 (0.0 %) 6581 (—9.0 %) 4026 (35.8 %) 6107 (20.5 %) 9202 (20.4 %)
Bricolage (s) 6024 (18.3 %) 7205 (17.4 %) 4195 (30.5 %) 3236 (48.4 %) 5131 (33.2%) 5767 (50.1 %)

Query execution time (sec)

600 ~—
Uniform C—1 -
Delete
400 | Bricolage RRR —
200
0

Q6 Q9

TPC-H Query

Fig. 11 Query execution time comparison

cluster configurations. We also calculate the percentage of
time that can be reduced compared to the Uniform approach.

We load the data into our cluster using different data par-
titioning strategies to run the queries, and we measure the
actual workload processing times and the improvements. In
Table 2b, we list the numbers we observe after running the
workload. As we can see from the table, Bricolage is the
best among the three strategies, and Delete outperforms Uni-
form with an exception in the I/O-intensive (2) configuration,
where Delete wrongly removes the 4 slow machines due to
the inaccuracy in query execution time estimation. Although
in some cases, our absolute time estimates are not very pre-
cise, the percentage improvement we achieve is close to our
predictions. As a result, we can conclude that our model is
reliable for making recommendations.

InFig. 1, we show the execution times of the first 5 TPC-H
queries (Q1 to Qs) running with the I/O-intensive (4) con-
figuration. The percentages of data that Bricolage allocates
to the 8 machines are 5.6, 4.2,9.9,9.8, 14.1, 14.4, 21.2, and
20.8, respectively. In Fig. 11, we show the results for the
next 5 TPC-H queries (Qg to Q1¢) along with the results for
Delete. Compared to Uniform, Delete reduces query execu-
tion times by removing the slowest machines (the bottleneck)
with just one disk. For Qg, Delete and Bricolage have similar
performance, since this query moves a lot of data to the con-

@ Springer

trol node, which is the bottleneck when data are partitioned
using these two strategies. For other queries, Bricolage can
further reduce query execution times by fully utilizing all the
computing resources.

5.3 Execution time estimation

In our work, we quantify differences among machines using
data processing times (the #;;5). Thus, we want to see whether
our estimated times truly indicate the performance differ-
ences. For each machine in the cluster, we sum up its
estimated and actual execution times for all steps. In Fig. 12a,
we plot the results for the CPU-intensive configuration. In
this case, the estimated workload execution time is 5346s,
which is shorter than the actual execution time of 7371s.
From the graph, we can see that the estimated times for
all machines are consistently shorter than the correspond-
ing actual execution times. If we pick the machine with the
longest actual processing time (M4 in the graph) and use
the actual (estimated) time for it to normalize the actual
(estimated) times for other machines, we get the normalized
performance for all machines as shown in Fig. 12b. Ideally,
we hope that for each machine its normalized estimated value
is the same as the actual value. Although our estimates are
not perfect, the errors we make when predicting relative per-
formance differences are much smaller than when predicting
absolute performance.

From Fig. 12b, we can also see that we underestimate
performance for some machines (e.g., M>) while overesti-
mate performance for some others (e.g., M3). In this case,
we will assign an inadequate amount of data to the under-
estimated machines and too much data to the overestimated
ones, which leads to performance degradation. As a result,
the actual improvement we obtained is usually smaller than
the predicted improvement.

In our experiments, we found that the estimated CPU and
network speeds tend to be slightly faster than the speeds we
observed when running the workload. Since the queries in our
workload are more complicated than the profiling queries

Resource bricolage and resource selection for parallel database systems

43

Fig. 12 Performance
predictions for machines

Total time for steps (sec)

Estimated 1 Actual V227771

Normalized value

8000
T — —

6000 | Foo9 b [N

4000 0.6 f

2000 r 03 ¢

0 0
M, M, M3 M, Mg Mg M; Mg M; M, M3 M, Ms Mg M, Mg
Machine Machine

(a) (b)

we used to measure the speeds, we suspect that the actual
processing speeds slow down a bit due to resource con-
tention. But since we use the same approach (e.g., the same
query/program) to measure the speeds for all machines, we
introduce the same errors for them, consistently. As a result,
we can still obtain reasonable estimates for relative perfor-
mance.

5.4 Investigating further improvements

The experiments presented up until now demonstrate that
the actual improvements we obtain are close to our predicted
improvements. However, this does not tell us whether or not
further improvements might be possible if we had better sys-
tem performance predictions. In this section, we explore this
issue. Our goal is not to provide a better technique; rather, it
is to evaluate the gap between our technique and the optimal,
perhaps to shed light on remaining room for further improve-
ment.

We try to derive the best possible improvements by using
information obtained from actual runs of the queries to get
more accurate f;; estimates. For the pipelines that do not
transfer any data to other machines, their processing times
are determined only by the performance of the machine on
which they run, and we know their actual execution times,
and we can replace our estimated values with the actual val-
ues. However, for a pipeline which transfers data to other
machines, the execution time we observe in an actual run
may also be determined by the processing speeds of other
machines. For this kind of pipeline, it may be hard to get the
processing time that is independent of the other machines,
and we have to use our estimated value. However, we can
still try to improve the estimates by using actual query plans
and actual cardinalities. In our experiment, we found that for
the 4 configurations without network-intensive pipelines, the
other machines have negligible impact on the execution time
of a pipeline running on a specific machine. Thus, we have
very accurate t;; values for these 4 cases. However, the impact

Table 3 Estimated time reductions using actual runs

Configuration Est. reduction (%) Act. reduction (%)
CPU-intensive 20.6 18.3
Network-intensive 22.1 17.4
I/O-intensive (2) 32.3 30.5
1/O-intensive (4) 51.2 48.4
Mix-2 41.1 33.2
Mix-3 42.7 50.1

of other machines on the execution time of a network-bound
pipeline is very obvious.

We use these updated #;; values as input to our model,
and we calculate the percentage of time that can be reduced
for the 6 cases (we refer to this method as Optimal-a later).
The new estimated time reductions are shown in Table 3. If
we compare these values with the actual improvements we
made, we find that they are close. Based on this investigation,
we suspect that it is not worth trying too hard to improve the
1;j estimates.

5.5 Handling nonlinearity

The method we use to handle nonlinearity is based on the
hypothesis that available memory changes processing time
by changing the number of passes needed by multi-phase
operators, and there are linear regions for these operators
that are determined by the number of phases required.

To test whether linear regions exist along with the num-
ber of passes needed, we test how data processing time
changes with data size. The cluster is configured with the
I/O-intensive (4) setting. We set the memory size of the last
machine to 0.25 or 0.5 GB, and we vary the amount of data
assigned to it from 10 to 50 %. The memory sizes of the
other machines are set to 8 GB, respectively, and they evenly
share the remaining data. We sum up the time to process all
steps for the last machine and plot the results in Fig. 13a. In
both cases, the total time increases linearly with data size.

@ Springer

44

J. Lietal.

Fig. 13 Execution time versus

Total time for steps (sec)

Total time for steps (sec)

data size 12000
0.25GB —&— 0.25GB —&—
9000 | 0.5GB —&— 3000 | 0.5GB —8—
6000 r 2000
3000 ¢ 1000
0 — — o
10 30 40 50 10 20 30 40 50
Percentage of data (%) Percentage of data (%)
(@) (b)

Table 4 Percentage of time

. o Strate
reductions when memory size is £y

Bricolage-d (%)

Bricolage-g (%) Optimal-a (%)

0.25 GB for the last machine 53.1

352

Est. reduction

Act. reduction

525
44.1

46.7
44.9

When memory size is 0.5 GB, all memory-consuming oper-
ators need no more than one pass, and when the memory
size is 0.25 GB, some operators need two passes. Since these
operators do not change the number of passes required when
we vary data size, they stay in regions where processing time
grows linearly. Furthermore, when memory size is 0.25 GB
(2 passes are needed), the line should also have a steeper
slope. To see this more clearly, we plot the results in Fig. 13b
for a only subset of the most memory-consuming queries.

Based on our observations, to assign the proper amount of
data to a machine, we need to estimate the execution time for
a query accurately with different memory sizes, and we also
need to use the corresponding estimate when the execution
goes to a phase with a different number of passes. For the
system that we worked with, our technique is effective when
no more than one pass is needed. Take the I/O-intensive con-
figuration as an example. We set the DBMS memory size
to 0.5 GB (where no operator needs more than one pass) for
the last machine and 8 GB for other machines to repeat the
experiment. The predicted and actual time reductions for our
approach are 53.5 and 46.7 %, respectively. The time esti-
mates for the last machine correctly represent its performance
differences compared to other machines, and thus, less data
are assigned to it compared to its original configuration with
8 GB memory.

However, when memory is really scarce and more than one
pass is required, the I/O cost estimates provided by our sys-
tem are no longer accurate. Our predicted times are usually
smaller than the actual processing times. In the first column of
Table 4, we show the estimated and actual reductions in time
for our default approach without guarding points (we refer to
it as Bricolage-d in the table), when the DBMS memory size
is set to 0.25 GB for the last machine. This is a really adver-
sarial situation, since the last machine has the most powerful

@ Springer

disks to accomplish more I/O work, while at the same time,
it does not have enough memory to accommodate the data.
The actual performance we obtained is much worse than our
prediction, since we assign too much data to the last machine.

We have proposed two strategies in Sect. 4.4 for han-
dling this: issuing a warning or using guarding points. In the
above case, after we use Bricolage-d to provide an alloca-
tion recommendation, we estimate the input size | S| for each
memory-consuming operator as if data were partitioned in
the suggested way. We found that some operators need two
passes based on the estimated input table sizes and avail-
able memory. Thus, we can issue a warning saying that we
are not sure about our estimate this time. Another approach
denoted as Bricolage-g is to use guarding points. For machine
M;, we calculated a pjyf value, to ensure that as long as
the data allocated to M; is no more than pjs,f, N0 operator
needs more than one pass. As we can see from the table, by
using guarding points, our estimate is now more accurate.
We also investigate the optimal improvement for this case by
using information derived from actual runs as input parame-
ters to the model. The results are shown in the last column
of Table 4. Although the actual reductions for Bricolage-g
and Optimal-a are similar here, in general, an approach that
uses true performance for machines can better exploit their
capabilities. As a result, we leave accurate time estimation
for memory-consuming operators as our future work.

5.6 Overhead of our solution

Our approach needs to estimate the processing speeds for
machines, estimate plans and their execution times, and solve
the linear model. Here, we describe the overheads involved.
In our experiments, we used 2 min each to test the I/O and the
CPU speeds for a machine. This can be done on all machines

Resource bricolage and resource selection for parallel database systems

45

concurrently. We used 30 seconds to test the network speed
for a machine, but another fast machine is required for send-
ing/receiving the data. In the worst case, where we use just
one fast machine to do the test, we need 0.5n minutes to
test all » machines. We think this overhead is sufficiently
small. For example, we need only 50 min to test the network
speeds for 100 machines. For the complex analytical TPC-H
workload, the average time to generate plans and estimate
processing times for a query is 2.3 s. Thus, the expected total
time to estimate the performance parameters for a workload
is 2.3|W|, where |W| is the number of queries in the work-
load. After we get all the estimates, the linear program can
be solved efficiently. For example, for a cluster with 100
machines of 10 different kinds, and a workload with 100
queries, the linear program solver returns the solution in less
than 3s.

6 The resource selection problems

In this section, we will discuss some natural generalizations
of resource bricolage. We cover these generalizations with
the broad term resource selection.

6.1 Problem definitions

The problem setting for resource selection is similar to that
of resource bricolage in Sect. 2 (see Fig. 4 for more details),
and it has some additional parameters and constraints, which
are summarized as below.

Machines We have a set of n heterogeneous machines
denoted as M, M3, ..., M,. A machine M; (1 <i < n)has
a storage limit /;, which represents the maximum percentage
of the entire data set that it can hold. In addition, each machine
M; also has a price, which we refer to as price;.

Workload We have a workload with a union of & steps:
S1,82,..., Sy, and we use t;; to represent the execution
time for step S; running on machine M; if all the data were
assigned to M;.

Constraints The resource selection problems we consider
here have either one of the following constraints: (i) The total
price of the machines that we select must be no more than a
budget B, or (ii) we must finish the workload within time 7.

Differences For the resource bricolage problem in Sect. 2,
the n machines are the machines in a cluster, and we can use
all to execute the workload. The n machines in the resource
selection problems are considered as candidates. Due to the
additional constraints, we only select a subset from them to
execute the workload.

These n machines might belong to different classes with
different prices. On the other hand, it is also possible that they
have identical prices but varying performance. For instance,
virtual machines of the same type provided by cloud service

companies cost the same amount of money, but they may
exhibit measurable different performance [13,22,33,35]. We
will use the same approach to solve both cases (when they
have identical prices or different prices). To simplify our dis-
cussion, we use the case where machines have the same prices
as the primary case throughout the section. In the discussion,
we will emphasize the differences between these two cases,
if any.

When machines have the same price, a fixed budget B can
buy a fixed number of machines from the candidate pool. We
use b to denote the number of machines we can afford with
a budget B. In the first problem that we consider, our goal
is to select b out of n (b < n) machines to achieve the best
performance. We call it a minimum time resource selection
problem, and it is defined as follows.

Problem 1 Given a positive integer b, the minimum time
resource selection problem is to select a subset of at most b
machines that minimize the total execution time of a work-
load.

In the second problem that we consider, the goal is to
process the workload within time 7. As long as we can meet
the performance requirement, it is desirable for us to spend
less money to achieve this goal. In other words, we want to
achieve the same performance with the minimum number of
machines. We call this a minimum cost resource selection
problem, which is defined as below.

Problem 2 Given a positive real number 7', the minimum
costresource selection problem is to select the smallest num-
ber of machines that can finish the workload within time 7.

6.2 NP-hardness of the problems

A straightforward solution for these two problems is to use a
greedy algorithm, which works in the following way. For
each machine, we first obtain its total execution time to
process all the steps of the workload. A machine with less
processing time usually indicates that it is more suitable for
processing the workload. Thus, we can pick those machines
with the least execution time first.

Unfortunately, using the same example we presented in
Fig. 6, we can show that the greedy algorithm may produce a
solution that is much worse than the optimal solution. Here,
we illustrate how this is possible. For the minimum time
resource selection problem, suppose that for the n machines,
we want to select half of them to process the workload. Since

machines in the second half (M%H, M%+2, R Mn) are
considered “fast” for processing the workload, the greedy
algorithm will choose them as the solution. The work-
load execution time for a cluster with these machines is
(a—e¢)+ %8. The optimal solution is to choose the set of

“slow” machines, and the workload execution time is only

@ Springer

46

J. Lietal.

%(a + &) + &, which is roughly % of the execution time of
the greedy solution.

For the minimum cost resource selection problem, the
greedy algorithm also prefers relatively fast machines, hop-
ing that they can finish early to meet a given performance
goal T'. In the example presented in Fig. 6, the greedy algo-
rithm will prefer machines from the “fast” half. For example,

ifwesetT ~ %, it will choose all the 5 “fast” machines

first. At this point, the workload execution time for the %
“fast” machines is (a — &) + %8, which is still worse than the
performance goal. Thus, it needs to choose two more “slow”
machines, resulting in a total of % + 2 machines. However,
for the same example, the optimal solution is to use roughly
two “slow”” machines to achieve the performance goal. Since
these “fast” machines do not collaborate well in the same
cluster and the “slow” machines work better together as a
set, the greedy algorithm ends up using a lot more machines
to meet the execution time requirement.

For the cases where machines have different prices, a
greedy algorithm may select machines with smaller time-
to-cost ratios first. However, this subtle difference does not
change the fact that a greedy algorithm does not take into
account collaboration between machines and thus may select
machines with poor performance when working as a set. In
the following, we prove the NP-hardness of both Problem 1
and Problem 2.

Theorem 1 Given a workload of h steps, both the minimum
time resource selection and the minimum cost resource selec-
tion problems are NP-hard when h > 1.

Proof They are optimization problems, and their decision
versions are the following: Is there a set of b instances so that
the execution time of the workload is within 7°? To prove this
theorem, it suffices to show that the decision versions of our
problems is NP-complete, since an optimization problem is
NP-hard if it has an NP-complete decision version. We prove
that the decision problem is NP-complete in three steps. We
first show that a Max-Intersection problem is NP-complete,
and then, we prove that it can be reduced to a Min-Union
problem (details will follow shortly). Finally, we reduce the
Min-Union problem to the decision versions of our problems.

Given a finite universe U = {ej,e2,...,ep}, a set S
of n sets uiy, ua, ..., u, whose union is equals to U, and
two integers k and s. The Max-Intersection problem is to
determine whether there exists u;, u;,, ..., u; such that
| ﬂ];: j 4i;| = s. This problem is clearly in NP, since given a
k-subset of S, we can easily verify whether the cardinality of
their intersection is at least s. The remaining question is to
prove the hardness. Consider the following known NP-hard
problem: Given a bipartite graph, does there exist a com-
plete bipartite subgraph, with each partition of size k (which
is called a k-balanced biclique) [16]? We can reduce this
known NP-hard problem to the Max-Intersection problem in

@ Springer

the following way. For each vertex in the left partition, we
create a set u;, and the elements in u; are the neighbors of
this vertex in the bipartite graph. Let s = k. We claim that
there is a k-balanced biclique if and only if there exists k
subsets with an intersection of size at least k. As a result, the
Max-Intersection problem is NP-complete.

The Min-Union problem is to determine whether there
exists u;,, Uiy, ..., such that |U';=1 ui;| < s. Let u¢
denotes the complement of u in U. We have ﬂ];:1 uj; =
(U’;zlufj)c. Therefore, if we know that |U’]‘-=1ufj| <

|U| — s, we also know that | ﬂljf:l ui;| > s. Thus, the Min-
Union problem is also NP-complete.

We can reduce the Min-Union problem to the decision
versions of our problems. Consider a set #; € S as a machine
M; and an element e¢; € U as a step in our problems. We set
t;j tok if u; contains e, and 0 otherwise. For each machine /;,
we set the maximum percentage of data it can hold to % Let
b = k,and T = s. We claim that there exists a k-subset of S
whose union cardinality is less than or equals to s if and only
if there is a set of k machines such that the execution time of
the workload is within s. This completes the reduction.

The case where machines may have different prices is
more general than the case where they have identical price.
If we can find an efficient algorithm to solve the general case,
we can use the same algorithm to solve the special case where
machine prices are the same. Since we have proved that the
special case is NP-hard, the more general case must be NP-
hard as well. In the next section, we present our solution for
solving these two problems.

7 A resource selection technique

Like the problem in Sect. 4, we first need to estimate all #;;
values. We use the approach presented in Sect. 3 to do the
estimation. Once all the #;; values are computed, we have
enough information to solve the problems. Next, we present
our approaches, which employ different solvers based on
mixed-integer and constraint programming to search for the
optimal solutions.

7.1 Minimum time resource selection

In this problem, we know that we can only afford to use b
machines due to a budget constraint, and the goal is to select
a set of b machines to minimize workload execution time.
To solve this problem, in addition to the variables that we
introduced in Sect. 4.2, we use one more binary variable
m; to indicate whether machine M; will be selected or not.
We model the problem using mixed-integer programming as
follows.

Resource bricolage and resource selection for parallel database systems

47

h
minimize Zx j
Jj=1
subject to p;t;; < x;

n
Zpi=1

i=1

0<pi =<l I<i=<n
m; € {0, 1} 1<i<n
m; > p; I<i<n

n
Zmi <b
i=1

The objective function we want to minimize is the total
execution time of all steps. The first three constraint func-
tions are the same as those in Sect. 4.2. The variable m; can
take a value of either O or 1, where 1 indicates that machine
M,; is selected, and O indicates that it is not. Since the total
number of machines we want to select is at most b, we have
Zl'-’: 1 m; < b. We also want to enforce that we will not allo-
cate any data to a machine that is not selected. In other words,
when m; = 0 (1 <i < n), we must also have p; = 0; and
whenm; = 1, p; can be greater than 0. We use the constraint
function m; > p; to enforce this requirement. Since m; can
only take two values, when m; = 0, m; > p; implies that p;
must be 0 as well. When m; = 1, p; can be any nonnegative
value less than or equal to 1. A solution that satisfies all the
constraint functions gives us a set of b machines that mini-
mize the execution time of our workload. The constraints can
be revised to deal with the case where machines have differ-
ent prices (e.g., some are low-end machines which cost less
money). Assume that the budget we have is B, we can replace
>'_ym; = b with a new function >}, m; * price; = B
to deal with this case, where price; is the price for choosing
machine M;.

Note that the resource bricolage problem is actually a spe-
cial case of the minimum time resource selection problem,
where we have unlimited (or enough) budget to use all n
machines. Thus, we can replace b with n (the total number
of machines) in the MIP to solve the resource bricolage prob-
lem. However, due to the integer variables, solving the MIP
is an NP-hard problem. Thus, we use the simpler program in
Sect. 4.2 to solve the resource bricolage problem.

7.2 Minimum cost resource selection

In this problem, we do not have a fixed budget that limits the
number of machines that we can use. The constraint we have
is that we need to finish the workload within a desired amount
of time T with least number of machines. We formulate this
problem as below.

n
minimize E m;
i=1

subject to p;t;; <x; 1<

A
A
=
IA
~
A
Bl

O<pi<li 1<i<n
m; €{0,1} 1<i<n
mi = pij I<i<n
h

2% =T

j=1

In the objective function, we minimize the total number of
selected machines. The first five constraint functions are the
same as those in Sect. 7.1. Since we have a performance
target for the workload, the total execution time of all x;s
should not exceed the desired execution time. Thus, we have
the additional constraint function Z?zl xj < T.Inthe case
where the machines have different prices, we can modify the
objective function to), m; * price; to minimize the total
cost of the selected machines.

Query execution time estimation is known to be a chal-
lenging problem, and previous work has proved that it is
impossible to provide execution time estimates with worst-
case guarantees due to cardinality estimation errors [5]. As a
result, when meeting a performance goal is critical, we use

h . h .
2j—1%j < T *oainstead of 377, x; < T as a constraint
function, where 0 < o < 1. When we are confident in the
query execution time estimation, we can choose an « that is
close to 1, and we can use a smaller « when we are not.

On the other side, clouds are typically elastic. They allow
users to request resources dynamically. In the future, we plan
to study the problem of how to automatically expand and
shrink a cluster when our initial estimates are off or the server
performance changes. In any case, our technique proposed
here can provide us with a reasonable set of resources to start
with.

8 Simulation experiments for resource selection

In this section, we construct a number of cases that simulate
different real-world scenarios to evaluate the performance of
various alternatives for solving the resource selection prob-
lems. We first give a summary of the experimental settings
and the techniques that we evaluate, and then, we compare
the performance of these techniques. Note that our simulation
is by no means a complete coverage of all possible scenarios
in practice. The main purpose of the simulation experiments

@ Springer

43 J. Lietal

is to gain some insights into the performance differences of ~ Table 5 Overall performance of different approaches

alternative approaches. Approaches Case (1) Case (2) Case (3) Case (4)

8.1 Experimental setup Blind Vv x x X
Greedy_U V4 v X X

We consider the following cases. Greedy_B Vv V4 v x

(1) With identical machines This is the simplest and ideal Optimal Vv v V4 J

setting where all machines are identical.

(2) With exceptional machines In this case, most of the
machines are identical. But there are outliers that are much
slower than the majority of machines. This case corre-
sponds to the real world scenario where all the machines
are supposed to be the same (i.e., with the same hardware
and configurations); however, a small number of them may
exhibit poor performance due to a defect, such as a bad disk
or a corrupted memory card.

(3) With proportional machines There are multiple types of
machines in this case, and for any two types of machines,
they have the following property. Assume that for one type
of machine, its resources can be quantified as resy, ress, . . .,
resy, where x is the number of different resource types. For
the other type of machine, its amounts of resources must be
resyky,resyxy, ..., resy*y,where y is the ratio between
the capabilities of these two types of machines. This case
may correspond to the scenario where we have machines of
multiple generations, and the newer generation machine is
more powerful than the order generation machine in every
aspect with the same ratio.

(4) With arbitrary machines Each machine can have arbi-
trary amounts of computing resources. It represents the most
generalized case in practice.

In Sect. 1.1, we pointed out that we must consider three
aspects simultaneously, including capabilities of machines,
collaboration between machines, and allocation of data, in
order to provide a satisfactory solution for our resource selec-
tion problems. We compare the performance of the following
approaches, which take into account none, some, or all of the
three aspects, respectively.

Blind Blind completely ignores differences among
machines and randomly selects a set of machines to process
the workload. Data are partitioned uniformly across all the
selected machines. This approach disregards all three princi-
ples that we believe should be considered.

Greedy with uniform data allocation As we have discussed
in Sect. 6.2, this approach prefers powerful machines. Data
are allocated to machines in a uniform fashion. This approach
respects the criteria that we should choose machines that
can process the workload fast. We refer to this approach as
Greedy_U.

Greedy with best data allocation This approach greedily
selects fast machines and then uses the technique we pro-
posed in Sect. 4 to find the optimal data partitioning scheme
to allocate data. This approach selects individual powerful

@ Springer

machines and allocates the proper amount of data to them to
minimize the workload execution time, but these machines
may not collaborate well in the cluster. We refer to this
approach as Greedy_B.

Optimal This is the technique we presented in Sect. 7, and
it provides the optimal solution by taking into account all the
three aspects.

For each case listed above, we compare the performance of
these four approaches. In Table 5, we summarize the overall
performance of these approaches. We use 4/ to indicate that
the corresponding approach can find the optimal solution for
agiven case, and we use x to show that it may not. In Case (1)
where machines have no difference, this is the simplest case,
and even the simplest approach Blind is sufficient. In Case
(2) where there are a few slow machines (outliers), Blind has
an equal probability of selecting those outliers, which may
result in system performance degradation. The greedy algo-
rithms, with or without a best data allocation scheme, can
successfully exclude the outliers, and thus, they can choose
the right set of machines. In Case (3) where we have a group
of proportional machines, it is obvious that Blind may also
select those slow machines. Although the greedy algorithms
can select the fastest machines, Greedy_U may overload the
slow machines and at the same time underutilize the fast ones,
and thus, it cannot always provide the optimal solution. In
Case (4) where machines have arbitrary computing capabil-
ities, Blind and Greedy_U do not work well, and the reasons
are similar to those for Case (3). Greedy_B could not pro-
vide the optimal solution either. The reasons are presented in
detail in Sect. 6.2.

Next, we conduct a set of experiments to validate our the-
ory and to study of the performance of different approaches
in Cases (2), (3), and (4).

8.2 Experiments for minimum time resource selection

Results for Case (2) We simulate 100 machines with a small
number of outliers in our simulation experiment. Our work-
load consists of just one step, and the results are similar for
multi-step workloads. For simplicity, we assume that the nor-
mal machines can process all data in 1 unit of time (e.g.,
1h, 1 day), while the slow machines need r units of time
(r > 1) to process the same data. Suppose that our bud-

Resource bricolage and resource selection for parallel database systems

49

0 Workload execution time

Blind] —+—
Blind2 ——<—
Blind5 —%—
Worst —5—
. Optimal —&—

0.15 ¢

0.10 t

0.05

Ratio r

Fig. 14 Workload execution time comparison for Case (2)

get can only afford 50 machines, and the goal is to select
50 out of 100 machines to minimize workload execution
time. We employ the four approaches to select machines.
In Fig. 14, we compare the workload execution times of
Blind and Optimal. Note that the workload processing times
for the two greedy approaches are the same as Optimal,
and thus, we omit the results from the figure. We vary r
from 1 to 8 to cover the most common range of perfor-
mance differences among machines, and we could have 1,
2, or 5 slow machines out of 100. We use Blind1, Blind2,
and Blind5 to represent the experiment results for these
cases, respectively. Since Blind randomly selects machines
from the candidate set, its performance varies with the
selected machines. Therefore, we repeat the same experi-
ment for 100 times, and we take the average values as the
results. We also include the workload execution times for
the worst-case scenario where the slow machines are always
selected.

Since we select 50 machines for the workload, each
machine gets 2 % of the data. A regular machine takes 0.02
unit of time to process the data, while a slow machine takes
0.02r unit of time. When the machines are identical (r = 1),
the workload execution times of all approaches are 0.02.
When there are some slow machines in the candidate set,
Blind may end up selecting some of them. Even when there
is only one such machine, the performance of Blind1 is much
worse than Optimal. The performance of Blind gets worse
when the number of slow machines increases. When there
are 5 slow machines, the performance of Blind5 is almost as
bad as that of the worst-case scenario.

We then fix the number of slow machines to 2 to mea-
sure the performance of Blind and Optimal. The number of
machines to be selected are 20, 40, 60, or 80, per our bud-
get. Suppose that for an approach A, by using b machines,
it can process the workload in time 74 (b). We define the
slow-down ratio of an approach A with respect to Optimal as
tA(b)/top: (b). We measure the slow-down ratios of Blind for
different cases and show the results in Fig. 15. When more
machines need to be selected, Blind has a higher chance of

Slow-down ratio

! Select20 —+—
Select40) —<—
Select60) —*—
Select80 —8—

2 4 6 8
Ratio r

Fig. 15 Slow-down ratio for Case (2)

Workload execution time

Blind —+—
Greedy U —*—
Optimal —&—

0.14 1

0.10 ¢

0.06 t

0.02

Ratio r

Fig. 16 Workload execution time comparison for Case (3)

getting a slow machine, and as a result, it performs worse.
For most of the cases that we tested, the slow-down ratios of
Blind are greater than 2. In other words, the workload exe-
cution times of Blind are more than twice as long as that of
Optimal.

For Case (2), a “blind” approach may produce very bad
solutions compared to Optimal, and a simple greedy heuristic
is necessary, since it can eliminate bad choices to provide a
better solution.

Results for Case (3) We simulate 100 machines of 10 dif-
ferent types. Like Case (2), the workload consists of just one
step, and the results for multi-step workloads are similar. We
assume that the most powerful machine can process all data
in 1 unit of time, and the ith best machine can process the
same data in 14 W unit of time, where » (r > 1)isthe
ratio between execution times of the slowest and the fastest
machines for processing the same amount of data. We want
to select 50 out of the 100 machines to process the workload.
Figure 16 compares the workload processing times of Blind,
Greedy_U, and Optimal. As mentioned earlier, we measure
the average workload processing time for Blind. Note that the
performance of Greedy_B is the same as Optimal; therefore,
it is not presented here.

Recall that a slow machine takes 0.02r unit of time
to process the data, and the processing time of a step is

@ Springer

50 J. Lietal.
Slow-down ratio 3.0 Slow-down ratio
20 ' ' T Selec20 —+— ' | Blind —+—
Select40 —<— 25| | Greedy U —<—
1.8 | 1 Select6) —*— : Greedy_B —*—
Select80 —H8—
1.6 20 |
K
14 ¢ 1
1.5 ¢
1.2 ¢t
1 | | | | 1 X% %oy o
2 4 6 8 2 4 6 8
Ratio r Ratio r

Fig. 17 Slow-down ratio for Case (3)

determined by a slowest machine. Since Blind has a high
probability of getting at least one slow machine, its work-
load processing time increases linearly with the value of
r. Greedy_U can dramatically speed up the processing by
excluding slow machines. The optimal approach chooses the
same set of machines, but it uses the technique in Sect. 4 to
allocate data. Thus, it can further reduce workload execution
time by another 30 % in our simulation.

Next, we further investigate the performance of Greedy_U
by varying the number of selected machines. In Fig. 17, we
show that the slow-down ratios of Greedy_U when 20, 40,
60, or 80 machines are selected. As we can see, when a higher
percentage of the computing resources are chosen, the per-
formance of Greedy_U gets worse. The reason is that when
more machines need to be included, machines with worse
performance will be added. Since Greedy_U allocates data
in a uniform fashion, slow machines will severely degrade
performance.

For Case (3), a greedy heuristic can pick the same set of
machines as the Optimal approach and thus greatly decrease
data processing time. However, since it may overload slow
machines, its performance may still be worse than Optimal.
We also need to employ a good data allocation scheme for
better performance.

Results for Case (4) We simulate 100 machines, and the
workload consists of 100 steps. We noticed that when there
is more than one step in the workload, the experiment results
look quite similar. For Case (4), we do not make any assump-
tion about how long it takes for a machine to process the
data. For each machine, we randomly pick a processing
speed Speedpg.s from [Speedyy, Speedy;gy] for each type
of resource Res in {CPU, I/O, Network}. In our simula-
tion experiment, Speedy;q; is set to be 8 times as fast as
Speed, . For each step, we randomly pick a cost Costges
from [Costiow, Costpign] for each type of resource Res in
{CPU, I/O, Network}. Costpigp is set to be 8 times as large
as Costyyy as well. Then, the processing time of a step run-
ning on a machine is the maximum of Cg.s/Speedp,s, for
any Res in {CPU, I/O, Network}. The absolute values of

@ Springer

Fig. 18 Slow-down ratio for Case (4)

Speed;,y, and Costyyy, do not make much difference to the
results.

In the simulation experiment, we generate 100 machines
and 100 steps using the approach described above. We
then pick 50 out of 100 machines using the four differ-
ent approaches, and we calculate the slow-down ratios of
Blind, Greedy_U, and Greedy_B. The same procedure is
repeated 100 times, and we measure the average slow-
down ratios for each approach. The results are shown in
Fig. 18.

The performance of Blind and Greedy_U is worse than
Optimal as expected. Somewhat surprisingly, Greedy_B is
almost as good as Optimal, with an average slow-down ratio
less than 1.02. After further investigation, we found that for
Greedy_B to have bad performance, the set of n machines
must have the following three properties: (i) It has a subset of
“incompatible” machines (e.g., a set that contains machines
with very powerful CPUs but very limited other resources
and machines with very fast disks but very limited other
resources), (ii) it has a subset of “compatible”” machines, and
(iii) a machine in the “incompatible” subset is faster than a
machine in the “compatible” subset when they are used indi-
vidually. Property (iii) is a trick to deceive Greedy_B into
picking the subset of “incompatible” machines. Thus, for
steps with different resource requirements, we will always
have some of the machines act as a bottleneck due to resource
scarcity, resulting in longer execution time. When all the three
conditions are satisfied, Greedy_B will perform much worse
than Optimal. However, the 100 machines that we generate
randomly seldom simultaneously fulfill all three conditions.
As a result, the performance of Greedy_B is usually very
good.

In Fig. 19, we demonstrate cases where Greedy_B has a
slow-down ratio greater than 1.02 (note that for each value
of r, we repeat the experiment 100 times). As we can see,
although Greedy_B usually perform well in our simulation
experiment, its slow-down ratios can get very high for some
cases (when all three conditions stated earlier are satisfied).
There is no guarantee of its performance.

Resource bricolage and resource selection for parallel database systems

51

Slow-down ratio

13t ' *

12 | %Xixi

L1 % * %

¥ & (3

Tabaii!ds

2 4 6 8
Ratio r

Fig. 19 Slow-down ratio of Greedy_B for Case (4)

300 # of machines needed
' ' ' Blindl ——

Blind2 —>—
Blind5 —*—

200 ¢ Worst —H5—
Optimal —&—
100 ¢
0 "
2 4 6 8
Ratio r

Fig. 20 Number of machines needed for Case (2)

8.3 Experiments for minimum cost resource selection

The machines and workloads we employ here for the
experiments are the same as those we use in Sect. 8.2 for cor-
responding cases. The goal is to select a subset of machines
with minimum cost to process the workload within a given
time 7. When setting up the experiments, we want to choose
a reasonable value for 7' to make sure that the targeted time
is achievable.

Results for Case (2) The performance goal T is set to 0.03,
so roughly 30 % of the machines are needed for Optimal to
achieve this goal. Blind works in the following way when
selecting the computing resources. It starts with an empty
set and repeatedly chooses a random new machine to add
to the set. This process stops when it runs out of machines
or when it achieves the performance goal 7. However, in
this case, we assume that when Blind uses up all the original
100 machines, it can continue to add an unlimited amount
of fast machines to achieve the goal. We repeat the experi-
ment 100 times to measure the average number of machines
it needs to achieve the goal. In Fig. 20, we compare the (aver-
age) number of machines it needs to achieve the same goal
T = 0.03 for Blind and Optimal. We can see that Optimal
always uses 34 machines. As the number of slow machines
increases, on average, Blind needs more machines to achieve

Waste ratio

T=002 ——
T=0.04 —<—
T=006 —%—
T=008 —&—

[N O T . o)

Ratio r

Fig. 21 Waste ratio for Case (2)

of machines needed

120 Blind ——
100 ~ Greedy_ U —>%—
g0 | Optimal —4—
60 |
40 4
20
2 4 6 8
Ratio r

Fig. 22 Number of machines needed for Case (3)

the goal. Thus, the performance gap between Blind and Opti-
mal increases.

We then fix the number of slow machines to two while
varying T from 0.02 to 0.08 to evaluate the performance of
Blind and Optimal. An optimal approach produces a solution
with minimum number of machines (minimum cost), and any
additional machines used by a non-optimal approach can be
considered as a waste. Suppose that the number of machines
needed by an approach A to achieve a performance goal T
is Num4(T). We define the waste ratio of an approach A
with respect to Optimal as Num o (T)/Num op:(T). We cal-
culate the waste ratio of Blind and present the results in Fig.
21. Note that the numbers are averaged from 100 repeated
experiments. From the graph, we can see that when we have a
higher targeted performance (7 is smaller), Blind will waste
more machines and have a higher waste ratio.

Results for Case (3) We set the performance goal T to
0.03, and we compared the number of machines needed by
different approaches to achieve this goal. The results are illus-
trated in Fig. 22. The results for Greedy_B are not included,
since they are the same as that of Optimal. For all r that we
considered, Optimal needs less than 40 machines to meet the
performance goal. Blind and Greedy_U usually need much
more machines for the same goal. When r equals 6, 7, or
8, Greedy_U cannot achieve the performance goal even if
it uses all the 100 machines. When r is greater than two, it

@ Springer

52

J. Lietal.

Waste ratio

T=002 ——
T=0.03 —<—
T=004 —*—
T=0.06 —&—
T=008 —&—

2 4 6 8
Ratio r

Fig. 23 Waste ratio for Case (3)

Waste ratio

2.6 . .
Blind —+—
Greedy U —>—
22} 1 Greedy B —*—
1.8
1.4 |
1 X X X < X K
2 4 6 8
Ratio r

Fig. 24 Waste ratio for Case (4)

is impossible for Blind to achieve this goal either. For these
cases, we plot their data points with the value of 101 in Fig.
22 to indicate that the target performance is unachievable for
the corresponding approaches.

More results for Greedy_U are shown in Fig. 23, where
we vary T from 0.02 to 0.08. We omit the results when the
performance goal cannot be achieved from the graph. As we
mentioned before, Greedy_U cannot meet the goal when T
equals 0.03 and r equals 6, 7, or 8. When T gets smaller
(e.g., T = 0.02), Greedy_U requires more machines, and it
is harder to meet the goal.

Results for Case (4) Since the machines and workloads are
randomly generated using the strategy described in Sect. 8.2,
the achievable performance goal varies with the machines
and workloads generated. In light of this, when a set of
machines and a workload are generated, we run our program
for the minimum time resource selection problem with the
value of b set to 33. Based on the outputs of the program, we
obtain the minimum workload processing time when no more
than 33 machines are used. This minimum time achievable
with 33 machines is used as the targeted time, and we evaluate
the performance of Blind and the greedy algorithms. In this
case, Optimal will always use 33 machines, and we calculate
the waste ratios for Blind and the greedy algorithms. The
results are shown in Fig. 24. Note that the numbers we show
here are averaged from 100 times of repeated experiments.

@ Springer

As we can see, the performance of Blind is the worst. The
greedy approach with uniform data allocation is much better
than Blind, but is worse than Optimal. The greedy approach
with best data allocation is usually as good as Optimal, and
this matches our analysis in Fig. 19.

9 Related work

Our work is related to query execution time estimation,
which can be loosely classified into two categories. The first
category includes work on progress estimation for running
queries [5,17,18,20,21,24]. The key idea for this work is
to collect runtime statistics from the actual execution of a
query to dynamically predict the remaining work/time for
the query. In general, no prediction can be made before the
query starts. The debug run-based progress estimator for
MapReduce jobs proposed in [26] is an exception. However,
it cannot provide accurate estimates for queries running on
database systems [19]. On the other hand, the second cate-
gory of work focuses on query running time prediction before
a query starts [4,12,14,36,37]. In [37], the authors proposed
a technique to calibrate the cost units in the optimizer cost
model to match the true performance of the hardware and
software on which the query will be run, in order to estimate
query execution time. This paper gave details about how to
calibrate the five parameters used by PostgreSQL. However,
different database optimizers may use different cost formu-
las and parameters. Additional work is required before we
can apply the technique to other database systems. Usage
of machine learning-based techniques for the estimation of
query runtime has been explored in [4,12,14]. One key lim-
itation of these approaches is that they do not work well
for new “ad hoc” queries, since they usually use supervised
machine learning techniques.

Another related research direction is automated partition-
ing design for parallel databases. The goal of a partitioning
advisor is to automatically determine the optimal way of
partitioning the data, so that the overall workload cost is mini-
mized. The work in [15] investigates different multi-attribute
partitioning strategies, and it tries to place tuples that sat-
isfy the same selection predicates on fewer machines. The
work in [7,23] studies three data placement issues: choos-
ing the number of machines over which to partition base
data, selecting the set of machines on which to place each
relation, and deciding whether to place the data on disk or
cache it permanently in memory. In [27,31], the most suit-
able partitioning key for each table is automatically selected
in order to minimize estimated costs, such as data movement
costs. While these approaches can substantially improve sys-
tem performance, they focus on base table partitioning and
treat all machines in the cluster as identical. In our work,
we aim at improving query performance in heterogeneous

Resource bricolage and resource selection for parallel database systems

53

environments. Instead of always applying a uniform parti-
tioning function to these keys, we vary the amount of data
that will be assigned to each machine for the purpose of bet-
ter resource utilization and faster query execution. The work
in [8,30] attempts to improve scalability of distributed data-
bases by minimizing the number of distributed transactions
for OLTP workloads. Our work targets resource-intensive
analytical workloads where queries are typically distributed.

Our work is also related to skew handling in parallel data-
base systems [11,38,39]. Skew handling is in a sense the dual
problem of the one that we deal with in the paper. It assumes
that the hardware is homogeneous, but data skew can lead
to load imbalances in the cluster. It then tries to level the
imbalances that arise.

Finally, our paper is related to various approaches pro-
posed for improving system performance in heterogeneous
environments [2,10,40]. A suite of optimizations are pro-
posed in [2] to improve MapReduce performance on hetero-
geneous clusters. Zaharia et al. [40] develop a scheduling
algorithm to dispatch straggling tasks to reduce execution
times of MapReduce jobs. Since a MapReduce system does
not use knowledge of data distribution and location, our tech-
nique cannot be used to pre-partition the data in HDFS.
However, we can apply our technique to partition interme-
diate data in MapReduce systems with streaming pipelines.
The work in [10] proposes a scalable data center scheduler
to assign workloads to servers. It classifies incoming appli-
cations with respect to platform heterogeneity and workload
interference. This is achieved by utilizing collaborative fil-
tering techniques that combine a minimal profiling signal
about the new application with the large amount of data avail-
able from previously scheduled applications. It relies mostly
on information from previously scheduled workloads. Since
we do not have any information about previously scheduled
workloads, this technique cannot be directly applied here for
selecting machines. Besides, [10] does not consider the data
partitioning problem that needs to be addressed in our work.

10 Conclusion and future work

We studied the problem of improving database performance
in heterogeneous environments. We developed a technique to
quantify performance differences among machines with het-
erogeneous resources and to assign proper amounts of data to
them. For resource bricolage, extensive experiments confirm
that our technique can provide good and reliable partition rec-
ommendations for given workloads with minimal overhead.
We also discussed two resource selection problems: one with
budget constraints and the other with time constraints. We
deployed mixed-integer programming techniques to solve
these two problems. In our experiments, we showed that com-
pletely ignoring performance differences of the candidate

machines can result in poor performance. The combination
of greedy resource selection and heterogeneity-aware data
allocation techniques can generally provide satisfactory per-
formance; however, there is no guarantee of its performance
in some cases. Our proposed models provide the best perfor-
mance among these alternatives, at a price of complexity.
This paper also lays down a foundation for several direc-
tions toward future studies to improve database performance
running in the cloud. In our paper, we have generalized
resource bricolage into two resource selection problems. It
would be interesting to explore other generalizations. One
such generalization is to consider dynamic characterization
of resources to accommodate sharing in the cloud environ-
ment, where sometimes a machine is fast when itis dedicated,
and sometimes it is slow when it is shared. The programming
model proposed in the paper assumes that queries are run-
ning sequentially in the workload. Since queries might run
concurrently in a system, the relatively short running ones
might have negligible impact on the total execution time.
Furthermore, a query that runs concurrently with another
query could have negative or positive impact on the other
query’s performance, and previous work has shown that an
interaction-aware query scheduler can provide significant
performance improvements [3]. Thus, one promising direc-
tion would be to take into account concurrent query execution
and explicitly model how queries interact with each other
to better utilize resources. Previous research has revealed
that the supposedly identical instances provided by a pub-
lic cloud often exhibit measurable performance differences.
While the focus of this work has been on static data partition-
ing strategies, the natural follow-up will be to study how to
dynamically repartition the data at runtime, when our initial
prediction was not accurate or system conditions change.

Acknowledgements This research was supported by a grant from
Microsoft Jim Gray Systems Lab, Madison, WI. We would like to thank
everyone in the laboratory for valuable suggestions on this project

References

1. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and hor-
izontal partitioning into automated physical database design. In:
SIGMOD (2004)

2. Ahmad, F., Chakradhar, S.T., Raghunathan, A., Vijaykumar. T.N.:
Tarazu: Optimizing mapreduce on heterogeneous clusters. In: ASP-
LOS (2012)

3. Ahmad, M., Aboulnaga, A., Babu, S., Munagala, K.: Modeling
and exploiting query interactions in database systems. In: CIKM
(2008)

4. Akdere, M., Cetintemel, U., Riondato, M., Upfal, E., Zdonik, S.B.:
Learning-based query performance modeling and prediction. In:
ICDE (2012)

5. Chaudhuri, S., Kaushik, R., Ramamurthy, R.: When can we trust
progress estimators for SQL queries? In: SIGMOD (2005)

@ Springer

54

J. Lietal.

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Chaudhuri, S., Narasayya, V., Ramamurthy, R.: Estimating
progress of execution for SQL queries. In: SIGMOD (2004)
Copeland, G., Alexander, W., Boughter, E., Keller, T.: Data place-
ment in Bubba. In: SIGMOD Record (1988)

Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: a workload-
driven approach to database replication and partitioning. In:
PVLDB (2010)

Dantzig, G.B., Thapa, M.N.: Linear Programming 1: Introduction.
Springer, Berlin (1997)

Delimitrou, C., and Kozyrakis, C.: Paragon: Qos-aware scheduling
for heterogeneous datacenters. In: ASPLOS (2013)

DeWitt, D.J., Naughton, J.F,, Schneider, D.A., Seshadri, S.: Prac-
tical skew handling in parallel joins. In: VLDB (1992)

Duggan, J., Cetintemel, U., Papaemmanouil, O., and Upfal, E.:
Performance prediction for concurrent database workloads. In:
SIGMOD (2011)

. Farley, B., Juels, A., Varadarajan, V., Ristenpart, T., Bowers, K.D.,

Swift, M.M.: More for your money: exploiting performance het-
erogeneity in public clouds. In: SoCC (2012)

Ganapathi, A., Kuno, H., Dayal, U., Wiener, J.L., Fox, A., Jordan,
M., Patterson, D.: Predicting multiple metrics for queries: better
decisions enabled by machine learning. In: ICDE (2009)
Ghandeharizadeh, S., DeWitt, D.J., Qureshi, W.: A performance
analysis of alternative multi-attribute declustering strategies. In:
SIGMOD (1992)

Johnson, D.S.: The NP-completeness column: An ongoing guide.
J. Algorithms. 6(3), 434-451 (1985)

Konig, A.C., Ding, B., Chaudhuri, S., Narasayya, V.: A statistical
approach towards robust progress estimation. In: PVLDB (2012)
Li, J., Nehme, R.V., Naughton, J.F.: GSLPI: A cost-based query
progress indicator. In ICDE (2012)

Li, J., Nehme, R.V., Naughton, J.F., Toward progress indicators on
steroids for big data systems. In CIDR (2013)

Luo, G., Naughton, J.F., Ellmann, C.J., Watzke, M.W.: Toward a
progress indicator for database queries. In: SIGMOD (2004)

Luo, G., Naughton, J.F,, Ellmann, C.J., Watzke, M.W.: Increasing
the accuracy and coverage of SQL progress indicators. In: ICDE
(2005)

Mangot, D.: EC2 Variability: The Numbers Revealed. http://tech.
mangot.com/roller/dave/entry/ec2_variability_the_numbers_
revealed (2009)

Mehta, M., DeWitt, D.J.: Data placement in shared-nothing parallel
database systems. VLDB J. 6(1), 53-72 (1997)

Mishra, C., Koudas, N.: A lightweight online framework for query
progress indicators. In: ICDE (2007)

Morton, K., Balazinska, M., Grossman, D.: Paratimer: a progress
indicator for MapReduce DAGs. In: SIGMOD (2010)

Morton, K., Friesen, A., Balazinska, M., Grossman, D.: Estimating
the progress of MapReduce pipelines. In: ICDE (2010)

@ Springer

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Nehme, R., Bruno, N.: Automated partitioning design in parallel
database systems. In: SIGMOD (2011)

Ou, Z., Zhuang, H., Lukyanenko, A., Nurminen, J.K., Hui, P,
Mazalov, V., Yla-Jaaski, A.: Is the same instance type created
equal? Exploiting heterogeneity of public clouds. IEEE Trans.
Cloud Comput. 1(2), 201-214 (2013)

Ou, Z., Zhuang, H., Nurminen, J.K., Yld-Jddaski, A., Hui, P:
Exploiting hardware heterogeneity within the same instance type
of Amazon EC2. In: HotCloud (2012)

Pavlo, A., Curino, C., Zdonik, S.: Skew-aware automatic database
partitioning in shared-nothing, parallel OLTP systems. In: SIG-
MOD (2012)

Rao, J., Zhang, C., Megiddo, N., Lohman, G.: Automating physical
database design in a parallel database. In: SIGMOD (2002)
Reiss, C., Tumanov, A., Ganger, G. R., Katz, R. H., Kozuch, M. A.:
Heterogeneity and dynamicity of clouds at scale: Google trace
analysis. In: SoCC (2012)

Schad, J., Dittrich, J., Quiané-Ruiz, J.-A., Runtime measurements
in the cloud: observing, analyzing, and reducing variance. In:
PVLDB (2010)

SQL Server 2012 Parallel Data Warehouse. http://www.microsoft.
com/en-ca/server-cloud/products/analytics-platform-system/
Wang, G., Ng, T.S.E.: The impact of virtualization on network
performance of amazon EC2 data center. In: INFOCOM (2010)
Wu, W.,, Chi, Y., Hacigiimiis, H., Naughton, J.F.: Towards pre-
dicting query execution time for concurrent and dynamic database
workloads. In: PVLDB (2013)

Wu, W,, Chi, Y., Zhu, S., Tatemura, J., Hacigiimiis, H., Naughton,
J.E.: Predicting query execution time: are optimizer cost models
really unusable? In: ICDE (2013)

Xu, Y., Kostamaa, P.: Efficient outer join data skew handling in
parallel DBMS. In: PVLDB (2009)

Xu, Y., Kostamaa, P., Zhou, X., Chen, L.: Handling data skew in
parallel joins in shared-nothing systems. In: SIGMOD (2008)
Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, 1.
Improving mapreduce performance in heterogeneous environ-
ments. In: OSDI (2008)

Zhuang, H., Liu, X., Ou, Z., Aberer, K.: Impact of instance seeking
strategies on resource allocation in cloud data centers. In: CLOUD
(2013)

Zou, T., Bras, R.L., Salles, M.V., Demers, A., Gehrke, J.: ClouDiA:
a deployment advisor for public clouds. In: PVLDB (2013)

Zou, T., Wang, G., Salles, M.V, Bindel, D., Demers, A., Gehrke,
J., White, W.: Making time-stepped applications tick in the cloud.
In: SOCC (2011)

http://tech.mangot.com/roller/dave/entry/ec2_variability_the_numbers_revealed
http://tech.mangot.com/roller/dave/entry/ec2_variability_the_numbers_revealed
http://tech.mangot.com/roller/dave/entry/ec2_variability_the_numbers_revealed
http://www.microsoft.com/en-ca/server-cloud/products/analytics-platform-system/
http://www.microsoft.com/en-ca/server-cloud/products/analytics-platform-system/

	Resource bricolage and resource selection for parallel database systems
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our contributions

	2 The resource bricolage problem
	2.1 Formalization
	2.2 Potential for improvement
	2.3 Challenges

	3 Quantifying performance differences
	3.1 Estimating the cost of a pipeline
	3.2 Measuring speeds to process the cost

	4 Resource bricolage technique
	4.1 Base and intermediate data partitioning
	4.2 The linear programming model
	4.3 Allowing multiple partitioning functions
	4.4 Handling nonlinear growth in time

	5 Experimental evaluation for resource bricolage
	5.1 Experimental setup
	5.2 Overall performance
	5.3 Execution time estimation
	5.4 Investigating further improvements
	5.5 Handling nonlinearity
	5.6 Overhead of our solution

	6 The resource selection problems
	6.1 Problem definitions
	6.2 NP-hardness of the problems

	7 A resource selection technique
	7.1 Minimum time resource selection
	7.2 Minimum cost resource selection

	8 Simulation experiments for resource selection
	8.1 Experimental setup
	8.2 Experiments for minimum time resource selection
	8.3 Experiments for minimum cost resource selection

	9 Related work
	10 Conclusion and future work
	Acknowledgements
	References

