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Abstract Modern search engines employ advanced tech-
niques that go beyond the structures that strictly satisfy the
query conditions in an effort to better capture the user inten-
tions. In this work, we introduce a novel query paradigm
that considers a user query as an example of the data in
which the user is interested. We call these queries exemplar
queries. We provide a formal specification of their semantics
and show that they are fundamentally different from notions
like queries by example, approximate queries and related
queries. We provide an implementation of these semantics
for knowledge graphs and present an exact solution with a
number of optimizations that improve performance without
compromising the result quality. We study two different con-
gruence relations, isomorphism and strong simulation, for
identifying the answers to an exemplar query. We also pro-
vide an approximate solution that prunes the search space and
achieves considerably better time performance with minimal
or no impact on effectiveness. The effectiveness and effi-
ciency of these solutions with synthetic and real datasets are
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experimentally evaluated, and the importance of exemplar
queries in practice is illustrated.
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1 Introduction

Traditional query answering is about finding the structures in
a data repository that satisfy the query conditions [2,8,9,15,
24,48]. Simpler, less structured and less specific queries [7]
have attracted considerable attention because users may not
always be accustomed to the technicalities and capabilities of
the query language. To capture the elements of interest given
the vague specifications of such queries, techniques like
query relaxation [33], semantic enhancements [6], statistics-
driven query answering [19] and log-based analysis [10,37]
were developed. Yet, these techniques assume that the user
is aware of the characteristics of the structures of interest and
can (at least partially) describe them in the query.

We advocate here that there are many practical scenar-
ios in which the user may not know how to describe the
specifications of the items of interest, but does know one of
them, i.e., one of those elements that are expected to be in the
result set. Here, we studyways to infer the result set using the
known item as a seed. In other words, the user “query” works
as an example of what the elements of interest are. We call
this novel query paradigm exemplar queries to emphasize its
different nature and the new evaluation methods it requires.
Exemplar queries find application, amongst others, in cases
of a student a curious citizen, an investigator, a lawyer or a
reporter that needs to perform a study on a topic to which
she may not be familiar with, but has as a starting point an
element from those related to the topic.
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The notion of exemplar queries reminisces the notion of
query by example (QBE) [53], yet it is fundamentally dif-
ferent. In QBE, the query is an instance of the intended
conditions and works as a wildcard query. An exemplar
query, on the other hand, indicates the type of elements that
are expected to be in the results. These elements may have
characteristics different from those mentioned in the exam-
ple, simply because their similarity to the example that the
user query provides may be based on characteristics that are
not explicitly stated in the query (i.e., the example). Our
approach is also different from query relaxation [33,36],
which aims at producing more generic versions of a query,
for a similar reason.
Motivating example: Consider a student who wants to per-
form a study on company acquisitions in the Bay area,
without being an expert in the field, nor familiar with
the related terminology. Issuing a query with the terms
“acquisitions” and “Bay Area” will return documents about
acquisitions and also mentioning the Bay area. Yet, an arti-
cle on the takeover of Tumblr by Yahoo! may not be returned
if the terms “acquisition” and “Bay area” are not explicitly
mentioned in the text.

The student knows that a good example for the type of
acquisition she is looking for is the one of YouTube by
Google. Thus, she issues the query: “Google founded-in
Menlo Park acquired YouTube”. The search engine typi-
cally respondswith results related toGoogle,Menlo Park and
YouTube, but will not return anything related to the acqui-
sition of Tumblr by Yahoo! If many users have performed
similar searches in the past, an analysis of the query logs
may reveal that information, and the search engine (based on
log analysis) may propose, in the related searches section,
queries on Yahoo! and Tumblr (A simple test in existing
search engines reveals that this is not actually happening.).
Relaxing one or more of the query conditions does not help
in a significant way, since the results are still focused around
the term “Google.”

Consider now a second candidate answer for the user
query: Paramount that was acquired by CBS. Between the
Yahoo!–Tumblr and CBS–Paramount answers, it is more
likely that the former is among the company acquisitions that
the user is interested in and not the latter. This is because even
though Yahoo! was founded in a different city than Google,
that city is still in California (just like with Google), while
the city that CBS was founded is in New York. Furthermore,
the example of Google–YouTube that the user provided is
about IT companies and so is the Yahoo!–Tumblr pair, while
CBS–Paramount belongs to the broadcasting industry.

Therefore, there is a need to devise methods for inferring
the set of elements that the user is interested in from a sample
(of that set), which may be provided by the user. Exemplar
queries can form the basis of a new form of search engines
that use them as the main query evaluation mechanism, or

Fig. 1 Exemplar Query Answering process

they can be used to enhance the services that search engines
are currently offering.

In particular, in parallel to the query evaluation a search
engine performs, the query can also be seen as an exem-
plar query and be evaluated as such. These results can be
appended to the results the search engine generates, increas-
ing the probability to capture the user’s intent. Alternatively,
the results of the exemplar query evaluation can be mod-
eled as a set of queries and then appended in the list of
“related/additional queries” that mostmodern search engines
are currently suggesting to their users.
Proposed approach: Evaluating an exemplar query is a two-
step approach. The first identifies in the data the elements
mentioned in the user query. These elements may be in the
form of documents, entities, tuples or web pages, and they
constitute the user sample, which is the input to our approach.
The second step examines the database and finds elements
similar to the user sample: Those are the elements belonging
to the desired result set. These elements constitute the solu-
tions, which are eventually ranked and presented to the user.
A high-level overview of a system employing the exemplar
query paradigm to answer keyword queries on a knowledge
graph can be seen in Fig. 1.

We highlight that the notion of exemplar queries is generic
and can be applied to any datamodel. In this study though,we
focus on the casewhere data is represented using a graphwith
labeled edges, e.g., a knowledge graph. Therefore, the sam-
ples and the solutions are substructures of the graph, namely
subgraphs. Regarding the first step, that is, the interpretation
of the user query within the database, there exist several solu-
tions that have been proposed in the literature [26,27,41].
Thus, in this work, we focus on the second step, that of
searching for relevant subgraphs, using two alternative mea-
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Fig. 2 An Exemplar Query Answering demonstration

sures that we call congruence relations: graph isomorphism
and strong simulation. Furthermore, we are interested in the
efficient retrieval of the k most relevant results. Traditional
query answering on graphs [28,29,52] focuses on finding
the best subset of nodes matching a given graph query and
offers no straightforward and time-efficient adaptation for the
retrieval of the top-k most relevant subgraphs based on our
form of congruence. (The brute-force solution is exponential
in nature.)

Example 1 In order to illustrate these ideas, consider the
knowledge graph depicted in Fig. 2 and the exemplar query
“Google founded-in Menlo Park acquired YouTube”, repre-
sented by graph Q1 at the top-left corner of the figure. The
evaluation of this query on the database results to the user
sample that is indicated in the database with the dashed box
labeled S. Searching for structures that are (edge-isomorphic)
congruent to the user sample results to the two structures
indicated with the dotted line boxes labeled A1 and A2,
which refer to companies founded in some city that have
acquired other companies. These are the answers to the exem-
plar query, and in this particular example, we would like
to have the “Yahoo!–Santa Clara–Tumblr” answer ranked
higher than “CBS–NYC–Paramount,” since the former is
closer to the subject of the exemplar query (they are all,
California-based IT companies).

While we introduced Exemplar Queries in a previous
work [34], here we present its complete formalization, and
study two alternative congruence relations. Moreover, we
propose an efficient pruning schema for both relations, which
precomputes a compact representation of each node in terms
of neighbor nodes at a fixed distance from it.We demonstrate
that this algorithm is exact, i.e., it preserves the correctness
of the final answers, while significantly reducing compu-
tation time. We also propose an approximate algorithm,

which effectively restricts the search space. We also propose
an approximate algorithm, which can effectively prune the
search space. We show that this heuristic works very well
in practice, with no significant compromise on the quality
of the results. The effectiveness of this result has also been
showcased in practice [35]. As a trade-off between efficiency
and quality we study a top-k algorithm, that stops exploring
the search space as soon as the k best answers are found.
Contributions: In this paper, we make the following contri-
butions:

1. We introduce and formally define a novel form of query
answering, referred to as exemplar queries that treats a
query as a sample from the desired result set.

2. We study exemplar queries for graph-based edge-labeled
models and devise two congruence relations, based on
subgraph isomorphism and strong simulation, which
effectively answer exemplar queries in this context. In
addition, we provide a theoretical analysis for our rela-
tions, proving their correctness, and we demonstrate that
the two proposed relations capture different, yet interest-
ing use cases.

3. We propose two algorithms to compute the exact solu-
tion: a straightforward solution and an optimized algo-
rithm that can prune the search space. We also introduce
an efficient top-k algorithm based on our proposed rank-
ing function. Furthermore, we describe an approximate
algorithm with significant efficiency gains and minimal
effect on the final ranking, which can be used for real-
time query answering.

4. We perform a thorough experimental evaluation, using
the largest multigraph ever used (Freebase [20]) in this
field. We experimentally show that existing approaches
either fail to produce correct exemplar query evalua-
tions, or they do so in a much longer time, which makes
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them inapplicable for online applications. In contrast, the
experiments demonstrate the efficiency of our solutions,
and a user study validates the usefulness of exemplar
queries.

Paper structure: The remainder of this paper is structured as
follows. Section 2 presents the related work, and Sect. 3 for-
mally defines our problem. Section 4 introduces the generic
exact algorithm and the two specific congruence relations
studied in the paper. Algorithmic solutions for isomorphic
structures are described in Sect. 5 and for strong simula-
tion in Sect. 6. Section 7 summarizes the proposed approach,
explaining how to combine the algorithms and how to rank
the results.We present the experimental evaluation in Sect. 8,
and finally, we conclude in Sect. 9.

2 Related work

Searching the web has been studied for a long time and the
task of understanding the user queries is vital in many sce-
narios. In this area, several solutions have been proposed, all
starting from the same premise: The user is looking for a par-
ticular resource, but does not know how to express it. In this
light, we review thework in the areas of query refinement and
query diversification, as well as in that of query answering
on graphs, and highlight the differences to our problem.
Query modification: Many different works study ways to
provide the user with answers that may be of interest even if
they were not explicitly requested in the query. Query refine-
ment [33] extends the user query in order to retrieve more
precise results [2,8,42,48] using some external knowledge.
In our work, we are not trying to alter the query, but only
use it as a sample that can lead us to additional queries gen-
erating resources of interest. Query relaxation [33,36], on
the other hand, relaxes an overspecified query that returns no
answers to allow a non-empty answer set to be produced.
Our approach is somehow similar; however, query relax-
ation is driven by the conditions in the query. It will not
include results that are similar to those the user query gener-
ates, unless they are satisfying a subset of these conditions.
A recent work [23] proposes a method to perform semantic
exploration of the knowledge graph. This is in line with the
query relaxation works in which the information need of the
user is not clear from the beginning. In contrast, our approach
adds additional results by using similarities at the data level.
Related queries deal with the discovery of queries generat-
ing results of possible interest to a user based on a query
that the user has already posed. Their discovery is based on
information like query logs [2,48], document corpuses [8],
knowledge bases [38] or wikis [10]. Since our work can be
used to suggest related queries as explained in the introduc-

tion, it can be seen as complementary to these approaches,
offering a new way of generating related queries.

Another group of works that do not try to extend or
improve the query results with new data, but only to orga-
nize them in some way that is more comprehensive to the
user, is the one of faceted search [15] and query catego-
rization [46]. Despite the fundamental difference from our
approach, these works are also aiming at increasing the user
satisfaction.
Query answering on graphs: Most works on finding a
graph structure in a large graph exploit graph edit distance
that measures similarity between subgraphs [18]. Computing
the graph edit distance is NP-hard, and numerous indexing
and pruning techniques have been proposed to improve the
performance [47,50]. Traditionally, graph search has been
solved efficiently. Our solution is mainly related to approx-
imate query answering on graphs. Approximate search can
be performed when the user does not know the exact key-
words to formulate the query, formulating an incomplete or
imprecise query. In graphs, p-homomorphism [16] enables
similarity structure search instead of the strict isomorphism.
Likewise, NeMa [29] introduces the notion of node neigh-
borhood (i.e., the set of nodes reachable from a source node
in a limited number of steps) to match nodes and edges
approximately, which is relevant to our approach. One recent
work, SLQ [51], elaborates over the latter including a ranking
model for a set of fixed textual/topological transformations
from query to answer nodes in a graph. Similarly, strong
simulation [32], which we employ in our study, finds approx-
imate answers to a graph query. Nevertheless, all these works
subsume that the user is able to express the query conditions,
even though partially. This is not true in our case.

3 Problem statement

The first step for retrieving the answers to an exemplar query
can be easily achieved using traditional query evaluation
techniques. We denote the results of this type of evaluation
of a query Q as eval(Q) and refer to it as the user sam-
ple.

The second step is to find the remaining structures of inter-
est for the user, based on the structure that has been identified
in the first step.Note that there exists a query that describes all
these structures that the user is looking for, it is just that she
is not aware of that query, or is not in a position to describe it.
Thus, it is natural to assume that all the structures of interest
have some commonalities among them, and especially with
the one that the user provided as an indicative example. As
such, we are interested in finding similar structures to the
results of the first step and return these results as an answer
to the user-provided query. We refer to this new query para-
digm as exemplar queries, and the results of their evaluation
as exemplar answers, or simply answers.
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Definition 1 The evaluation of an exemplar query Q on a
database D, denoted as xmpEval(Q), is the set {a|∃s s.t.
s ∈ eval(Q) ∧ a≈s}, where a and s are structures in D and
≈ indicates a congruence relation.

In the definition above, we refer to the concept of congru-
ence relation as a binary relation defined over the elements
of the database, with the following semantics: Given an ele-
ment from the database, it tests its membership to the desired
answer set that is implied by the element in eval(Q) (i.e., the
sample element provided by the user). Intuitively, a congru-
ence relation defined this way acts as a similarity check, i.e.,
deciding whether the two structures are similar or not.

Note that the definition of exemplar queries above is inde-
pendent of the data model, the query form, the retrieved
results, and the congruence relation.As long as there is a stan-
dard query evaluation methodology and some congruence
relation that can be used to fit a specific use case, exemplar
queries can be answered. This leads to flexibility and the
ability to use exemplar queries in a wide range of different
applications. Nonetheless, while Definition 1 adapts to many
application scenarios and data models, the congruence rela-
tion should be carefully selected based on the domain and
the expected results. A proper congruence relation should be
able to infer from the user sample and the data the conditions
that represent the desired result set. Indeed, recent studies
employ (although not explicitly) the notion of Exemplar
Query Answering for the relational model [13,44], where
the congruence relation is represented by the select–project–
join query that generates the user samples. Therefore, in their
case, two elements belong to the same desired result set if
they satisfy the same query conditions.

On the contrary, we are interested in applying exemplar
queries in cases where the data are highly heterogeneous,
involving relaxed structures. This is notably the case of
knowledge graphs that represent entities as labeled nodes
with attributes and relationships as labeled edges. For this
reason, in our current study, we have chosen to employ this
flexible data model, a simple query form with a traditional
query evaluation that is based on subgraph matching, and
two very generic congruence relations that are based on edge
label-preserving similarity on graphs.

As mentioned above, for the representation of the data we
consider an entity-based data model [14] that can represent
various forms of heterogeneous knowledge. In particular, we
assume an infinite set of labels L and of values V . The set V
consists of an infinite set of atomic values T and of object
identifiersO, i.e., V = T ∪O. An object is a representation
of a real-world entity or concept and is modeled through
an object identifier and a set of attributes for that identifier
modeling characteristic properties of the real-world entity or
concept. An attribute of an object o ∈ O is a triple 〈o, �, v〉,
where � ∈ L and v ∈ V .

A database is a finite collection of objects, alongside a
finite set of attributes for these objects. The attributes are
either connecting the objects or specify some characteristic
properties of them.

Definition 2 A database is a pair D : 〈O, A〉 where O ⊆ O
and A ⊂ O × L × (O ∪ T ), both finite.

A database can be represented as a graph where every object,
or atomic value in the database, is represented as a node and
every attribute as a labeled edge from the node representing
the object of the attribute to the node representing its value.
Thus, we can equivalently say that a database 〈O, A〉 is a
graph G(N , E), also denoted as 〈N , E〉, where the set of
nodes N is the set {n | n ∈ O ∨ ∃(n′, �, n) ∈ A} and the

set of edges E is the set {n �→ n′ | (n, �, n′) ∈ A}. The
expression n

�→ n′ denotes an edge from node n to node n′
labeled �. We also say that two nodes n1, n2 are equivalent
and denote it as n ≡ n′, if they represent the same atomic
value or the same object, i.e., the identifiers of the objects
they, respectively, represent are the same.

A query is traditionally an expression describing a set
of objects alongside a set of conditions they need to sat-
isfy. These conditions describe certain characteristics of
these objects and the relationships they may have among
them. We make the natural assumption that the objects ref-
erenced in a query are somehow all connected; otherwise,
the query expression would actually constitute two indepen-
dent queries. Since a query describes a set of objects with
attributes, i.e., properties and relationships among them, it
can also be seen as a database and consequently represented
as a connected graph.Answering a query on a databasemeans
finding the database structures that satisfy the query speci-
fication. By the term database structures, we mean a set of
objects and a set of attributes for these objects. In graph terms,
answering a query means finding the subgraphs in the data-
base that have a structure matching the graph representation
of the query. The set of these subgraphs constitutes the answer
set of the query.

Definition 3 A query Q is a database whose graph repre-
sentation is a connected graph Q : 〈NQ, EQ〉. An answer
to a query Q : 〈NQ, EQ〉 on a database D is any connected
subgraph D′ : 〈ND′ , ED′ 〉 of D matching the query Q, i.e.,
there exists a binary relationR, such that ∀nQ ∈ NQ, ∃nD′ ∈
ND′ : nQR nD′ . The set of all such subgraphs, denoted as
eval(Q), is referred to as the answer set of the query.

Query Q is finally evaluated as an exemplar query accord-
ing to Definition 1. Finally, we note that we are interested in
returning a ranked list of results and in particular the top-k
most similar and relevant structures. Then, given a query Q
evaluated as an exemplar query, in this work we address the
following problem.
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Problem 1 (Exemplar Query Answering) Given an exem-
plar query Q and a parameter k, find the top-k answers a ∈ D
such that a ∈ xmpEval(Q) for a chosen congruence relation
≈ and a ranking function ρ.

In the next paragraphs, we provide insights about suitable
similarity and ranking functions for the case of knowledge
graphs.
Congruence relation: Even though several different con-
gruence relations can be used, we are interested in those
that are able to preserve user intent by generalizing the set
of conditions that can be derived by the sample. Hence, we
consider two alternatives based on edge-preserving subgraph
matching relations: (a) a congruence relation based on the
notion of subgraph isomorphism [12], and (b) a more elastic
relation, based on the recently introduced strong simula-
tion [32]. While subgraph isomorphism is a natural method
for identifying perfect matches of an input query graph in
the database, strong simulation offers the ability to group-
matching nodes based on nearby edge labels. As we discuss
in more detail later on, strong simulation relaxes the strict
requirements of isomorphism, while preserving the topol-
ogy and the semantics of the original query. The motivations
for a less rigid congruence relation are twofold: compactness
and expressiveness. Compactness allows us to aggregate sev-
eral answers in a single graph (e.g., all the acquisitions from
Google), while expressiveness allows for some freedom in
the structure matched. The following example motivates the
need for the strong simulation congruence relation.

Example 2 Consider the example described in Sect. 1 and
the portion of the database illustrated in Fig. 2. Consider
query Q2, shown at the top- left corner of the figure, where
the user additionally asks for companies that own a Web
site. The query evaluates to the same sample S. Then the
only perfect match is A2, which is semantically further away
than A1. In this case, strict equality may not best serve the
intentions of the user, who may be interested in companies
with at least one acquisition and oneWeb site. Therefore, the
congruence relation should allow some degree of freedom.
Using simulation, both A1 and A2 are returned as answers
(Tumblr serving both as an acquisition and a Web site).

Ranking function: An exemplar query is an implicit indica-
tion of the structure and the kind of results the user expects.
Therefore, an ideal ranking function should be able to dis-
tinguish answers that have characteristics similar to the user
sample and at the same time penalize results that are seman-
tically unrelated to the query. We explain this intuition with
an example (a formal discussion is included in Sect. 7).

Example 3 Consider again the database illustrated in Fig. 2
and the user (exemplar) query Q1, shown at the top-left
corner of the figure. The evaluation of this query on the data-
base results to the user sample shown in the database with

the dashed box labeled S, and the structures that are (edge-
isomorphic) similar to the user sample are indicated with the
dotted line boxes labeled A1 and A2. These are the answers
to the exemplar query. We observe that A1 has around itself
more nodes and edges in common to the user sample S
(for instance, the IT Company, Search Engine and
California) than A2. Therefore, A1 should be ranked
higher than A2.

Since the first step of the exemplar query evaluation is
a standard search in a graph for a subgraph matching the
user query and many solutions have already been stud-
ied [26,27,41], we will not discuss this problem further.
Instead, we focus on the implementation of the second step,
which is to devise amethod that given such subgraph (the user
sample) finds other edge-isomorphic (or alternatively simu-
lating) subgraphs (the exemplar answers) and ranks them
based on their similarity to nodes around the query, as well
as their position within the query neighborhood. One of the
challenging parts of this is that there is no clear limit on
how large a query neighborhood to consider, apart from the
entire database, i.e., how far from the user sample a con-
gruent answer can still be considered relevant to the query.
In our implementation, we use Freebase, which is one of
the largest knowledge graphs available nowadays. Existing
works on graph similarity concentrate the effort of searching
on a large number of small graphs, but searching on a very
large graph in the form and size we consider here has not
been considered before, even though there is an increasing
interest for such application [31].

4 The basic XQ algorithm

Once the user query has been evaluated and the sample S has
been identified in the database D, the set of congruent struc-
tures will have to be discovered. To do so, the user sample
S will have to be compared with every other subgraph in the
database. Instead of considering the exponential number of
subgraphs in the database, by following a typical backtrack-
ing approach [45], a node ns from S is randomly selected
to serve as a seed. Then all the nodes in the database D are
considered, one at a time. For each such node n, we check
whether a subgraph congruent to S can be constructed when
mapping ns to n. If such a graph is found, then it is added
in the set of exemplar answers. At the end of this procedure,
the exemplar answers are sorted and returned to the user (all
of them or only the top-k) as the result to the exemplar query
(The sorting task is studied in detail in Sect. 7.).

The pseudocode of the above steps is described in Algo-
rithm 1. The construction of the matching subgraphs (line 5
in Algorithm 1) is done by initially considering a graph G
consisting only from the node ns and a subgraph T consist-
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Algorithm 1 XQ

Input: Database D : 〈N , E〉
Input: User Query Q
Output: Set of exemplar answers Q
1: Q← ∅
2: S ← eval(Q)

3: ns ← select ARandom Node(S)

4: for each n ∈ N do
5: Q← Q∪ FindSimilarSubgraphs(S, ns , D, n)

6: Rank(Q)

7: return Q

ing only from node n, and assuming that congruence relation
maps ns to n. Then the algorithm iteratively tries to expand
the subgraphs G and T with edges from S and D, respec-
tively, such that the resulting subgraphs remain congruent
(based on the selected congruence relation). If (after a num-
ber of steps) the graph G becomes equal to S, then T is one
of the answers.

Searching for possible matches of the user sample in the
entire database, as the Algorithm XQ requires, is an expen-
sive operation. Thus, one of the main challenges is how to
effectively and efficiently reduce the search space preserving
quality guarantees on the answers. In what follows, we pro-
pose solutions based on structural properties of the database
that adapt to different congruence relations.

4.1 Instantiations of the congruence relation

The XQ algorithm requires the definition of a congruence
relation to find the answers to an exemplar query. Although
different congruence relations could fit the definition, we are
interested in those that preserve the semantic properties of the
user query. In a knowledge graph, a candidate similarity func-
tion should preserve the edge labels of the user sample and
the (basic) layout of connections between nodes, since these
are the elementary features that constitute the user sample.
We identify two compelling congruence relations, based on:
(1) subgraph isomorphism, which finds exact matches and
is known to be NP-hard, and (2) strong similarity, a weaker
notion of subgraph matching that admits a cubic-time solu-
tion in the size of the query [32].

In the following, we formally define the two congruence
relations we selected, and discuss their properties.

4.1.1 Subgraph isomorphism

The most natural definition of congruence to the query terms
is strict equality. In graph terms, thismeans finding structures
that are subgraph isomorphic to the user sample. While sub-
graph isomorphism is defined over node and edge labels,
matching node labels means referring to the exact same
object, which is too strict for the exemplar query scenario.

Therefore, we define edge-preserving1 isomorphism as fol-
lows:

Definition 4 A database D is edge-preserving isomorphic
to a database D′, denoted as D � D′, if there is a bijective
function μ from the nodes of D to the nodes of D′ such that
for every edge n1

�→ n2 in D, the edge μ(n1)
�→ μ(n2) is

in D′.

Edge-preserving isomorphism is a very restrictive congru-
ence relation, in that it recognizes only exact structures. We
acknowledge that this level of precision could be desired in
some cases but detrimental in other settings. Consider, for
instance, the query Q2 and the two graphs S and A2 from
Example 2. They are conceptually very close; S is an IT
Company that has bought another company, owns aWeb site
and was founded in California. A1 on the other hand differs
from S, because Tumblr is a Web site and also an acquisition
of Yahoo. However, the user could be interested in A1 and
may want it included in the results. To allow more flexibility
in our congruence relation, we propose simulation [40], and
in particular strong simulation [32], which we discuss next.

4.1.2 Strong simulation

In simulation,we say that a candidate answer graph simulates
a query graph if the former contains the same edge sequences
of the latter and preserves sequences of edge labels in the
same order. In practice, this translates to checking if every
sequence of edge labels in the query is contained in the can-
didate answer. Since the subgraph match is performed in a
sequence-wise fashion, this notion preserves the semantics
of the query, yet allows for some freedom in the structure.
This can be seen in Example 2, where A1 is not isomorphic
to Q2, yet it is simulating.

This flexibility though has some significant shortcomings.
First, graph simulation does not consider parent–child rela-
tionships, since it only requires that nodes in the relation
match the outgoing edges of the query. Second, the matched
graph is not bounded, in that any sequence of edges with
the same label can be matched to a single edge in the query.
These issues are illustrated in the following example, where
we show two graphs that are matched by simulation, but not
by strong simulation, and do not satisfy the user intention.

Example 4 Consider the scenario in Fig. 3. The user is ask-
ing for IT companies, such that one acquired the other with
a focus on the Investors. She provides the example “Sequoia
Capital invested in IT companyYouTube acquired by IT com-
pany Google.” This is depicted as the sample S in the figure,
and we then search for congruent graphs using simulation.

1 In the rest of the document, we will be dropping the part “edge-
preserving.”
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Fig. 3 A sample (S) and two simulating graphs (G1 and G2)

Searching for structures simulating the query results in G1
and G2. G1 simulates S because both Google and Yahoo!
have an outgoing acquired edge, YouTube and Tumblr have
an isA edge, IT Company matches with both IT Company
and Web site in G1, and Sequoia and Spark have an investor
edge. However, the fundamental property that YouTube and
Tumblr are both IT Companies is lost, since simulation does
not require to match nodes with the same parent. Note that
also G2 simulates S, since Google is matched by Microsoft
and CBS, YouTube is matched by Paramount, IT Company is
matched by Publishing and IT Company in G2, and Sequoia
is matched by InterWest. Intuitively, every edge sequence
in S is matched by some sequence in G2. Simulation disre-
gards the locality of the match, finding possible answers in
any part of the graph. Consequently, even though G1 and G2
are correctly simulating the sample, they both prove to be
unsatisfying answers.

Motivated by the above discussion, we adopt a more strin-
gent congruence relation called strong simulation. Strong
simulation requires the definition of dual simulation. Dual
simulation is a bidirectional simulation that checks both the
incoming and outgoing edges of each query node.

Definition 5 (Dual simulation) Let S : 〈Ns, Es〉 and D :
〈N , E〉 be two databases represented as graphs. D dual sim-
ulates S, denoted as S �D D, if there exists a relation R,
such that for every node ns ∈ Ns and n ∈ N for which
(ns, n) ∈ R:

1. for all ns
�→ n′

s , exists n′ such that n
�→ n′ and (n′

s, n′) ∈
R, and

2. for all n′′
s

�→ ns , exists n′′ such that n′′ �→ n and
(n′′

s , n′′) ∈ R.

While dual simulation admits answers of any diameter,
strong simulation is bounded to the diameter of the query.
Strong simulation is based on the notion of reachable nodes.
We call d-hop node of a node n a node that is reachable from
n in at most d hops, i.e., the shortest path from n to this node
is no longer than d.

Definition 6 (d-hop) Let n ∈ N be a node of a database
D : 〈N , E〉. The node ni ∈ N is a d-hop node of n if there
exists a path from n to ni of length at most d. The d-hop
node set of n, denoted as Nd(n), is the set of d-hop nodes of
n. The d-graph of n, denoted as D[n, d], is the subgraph of
D induced2 by the nodes in Nd(n).

Strong simulation defines bounds on the size of the simu-
lation. Moreover, as proved in [32], the size of the maximum
dual simulation relation is bounded by the diameter of the
query. Recall that the diameter of a query is the length of the
longest shortest path.

Definition 7 (Strong simulation) A database D : 〈N , E〉
strong simulates a database S : 〈Ns, Es〉, denoted as S �S D,
if there exist a node n ∈ N and a d-graph D[n, d] such that:

1. d is equal to the diameter of the database S.
2. S �D D[n, d] with the maximal dual simulation (i.e.,

any other dual simulation of S in D[n, d] is contained in
the maximal).

This definition embodies the two important properties of
bounding the simulation relation size within the d-graph and
preserving the parent–child relationships. Looking back at
Example 2, we observe that using Definition 7, the query
returns both A1 and A2 as results. At the same time, both G1
and G2 (shown in Fig. 3) are rejected, which is the desired
behavior.

Note that, differently from the seminal work [32], our def-
inition matches edge labels instead of node labels. In Sect. 6,
we describe how the existing algorithms for this case, pro-
viding analytical results on the correctness of this adaptation.

The following sections introduce algorithmic solutions
for both congruence relations. Section 5 introduces approxi-
mate and exact algorithms to evaluate exemplar queries with
isomorphism, while Sect. 6 describes our strong simulation
algorithms, designed for the case of exemplar queries.

5 Finding subgraph isomorphic answers

Since subgraph isomorphism is an NP-hard problem, we
need to carefully design our algorithmic solutions in order to
be efficient in practice. This becomes particularly important
when the database size is large. In this section, we present
the methods, and the ideas behind them, that we devised to
efficiently answer exemplar queries using isomorphism as
the congruence relation.

2 A subgraph induced by a set of nodes N is the subgraph whose edges
have both endpoints in N .
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5.1 An efficient exact solution

To improve the performance, we propose an effective way
to prune the search space, i.e., the list of database nodes we
have to match to the nodes of the user sample in order to find
isomorphic structures, leading to a new algorithm: FastXQ.
The FastXQ algorithm is divided into two steps: First we
use the query to drive a process that will restrict and prune
the search space, and then, we apply XQ to the resulting
restricted spaced. To prune the space, we devise an efficient
technique for comparing nodes and an algorithm for effec-
tively rejecting pairs of nodes that are bound to not participate
in any isomorphic mapping. We call this algorithm Itera-

tivePruning. Although this technique does not remove all
non-matching subgraphs, the schema is effective and reduces
significantly the search space and therefore the total number
of isomorphic checks. The false positives are subsequently
removed by running the traditional isomorphic verification
algorithm on them.

To compare nodes (and inspired by [28]), we devise a tech-
nique that is meant to represent the part of the graph around
them in a compact way and to match the nodes in advance
without the need to examine all the nodes in the graph. More
specifically, the idea is to store a compact representation of
nodes and edges that are at a fixed distance d from each node.
This provides an effective way to compare nodes, allowing
the pruning to remove the non-matching nodes without hav-
ing to actually visit any part of the graph around them.

A basic concept of our approach is also the notion of d-
hop nodes introduced in Definition 6. For every node in the
database, we compute a table consisting of the number of
nodes that are reachable from that node at some specific dis-
tance and with a path ending with a label �. In other words,
for a node n, for every label � and for every distance i , we
keep the cardinality of the set Wn,�,i , where

Wn,�,i = {n1|n1
�→ n2 ∨ n1

�← n2, n2 ∈ Ni−1(n)}

In practice, since doing so for every node in the database
is expensive in terms of time, we implement an approach
similar to an inverted index. We use an index structure that
for every label and for every distance can provide a list of all
the nodes that have a label � at the respective distance and the
number of edges with such labels. The index is a hash table,
in which keys are edge labels and values are two-dimensional
matrices. For a label �, the matrix contains in position i, j all
the nodes n, such that |Wn,�,i | = j , for each j > 0.

Note that, once computed for each label � and each i ≤ d,
W compactly represents the portion of the graph around a
node. For this reason, if we compute W for the nodes of the
user sample as well, we can compare nodes in the database
and nodes in the user sample, in order to know in advance

which nodes can be pruned.We denote the d-hop nodes set of
a node ns of graph S byN

S
d (ns). A node n ∈ N of D : 〈N , E〉

matches a node ns ∈ Ns in the user sample and therefore is
not pruned, if the following property holds (ref. to Theorem 1
for a formal proof).

Property 1 For each label � and a distance i ≤ d, |Wn,�,i | ≥
|Wns ,�,i |.

Using the ability to compare nodes through the compact
representation of the part of the graph around them, we
devise a way of fast eliminating pairs of the user sample
and database nodes, respectively, which do not participate in
an isomorphism match. Traditional techniques that compute
isomorphisms compute matches of the different nodes inde-
pendently and then try to combine the results. We show that
this process can be optimized further, if the comparison of
the nodes takes into consideration the previously computed
matches. To implement this idea, we exploit dual simulation.
Note that in this case, simulation is used to prune nodes in
advance and not as a congruence relation as in Sect. 6.

Deciding whether one graph dual simulates another graph
is known to be solvable in polynomial time with respect to
the size of the graph [22]. Themain idea of our approach is to
check whether a subgraph can dual simulate the user sample
on the database graph, while iteratively pruning nodes that
cannot possibly match.

5.1.1 Matching algorithm with iterative pruning

The algorithmworks as follows. First, it calculates the d-hop
nodes for each node of the user sample. Then, a user sample
node is selected as starting node. Although any node is a valid
starting node, we propose to pick the node with the lowest
selectivity among the user sample nodes, with the hope to
reduce the number of candidate matches between the user
sample and database nodes. The selectivity is an estimate of
the number of possiblematches generated from a user sample
node. The idea is to consider the number of adjacent nodes
of a user sample node and the frequency of the labels of the
edges connected to it. The selectivity of a node n is

Sel(n) = freq(n) +
d∑

i=1

1

i

∑

Wn,�,i

|E�|, (1)

where the frequency freq(n) of a node n is defined as the
sum of the number of outgoing and incoming edges. The
selectivity favors nodes in which both the degree and the
frequency of the labels are high. Furthermore, the further the
edges are from the node n, the less important the frequencies
are, which explains the i−1 factor.

We similarly define the frequency of a label � as the num-
ber of edges in the graph having label � and we denote it as

123



750 D. Mottin et al.

Algorithm 2 IterativePruning

Input: A database D : 〈N , E〉
Input: A user sample S : 〈NS, ES〉
Output: A set of candidate mappings μ ⊆ NS × N
1: NS

d ← d-hop nodes of S
2: Vis ← ∅ � Visited nodes
3: nmin ← argmin

n∈NS

Sel(n)

4: C ← {nmin} � Query candidates
5: μ(nmin) ← {n|NS

d (nmin) ⊆ Nd (n)}
6: for each ns ∈ C do

7: if ns
�→ n′

s ∈ ES and n′
s /∈ Vis then

8: μ(ns) ← μ(ns) \ {n|n ��→ n1, n ∈ μ(ns)}
9: μ(n′

s) ← {n1|n �→ n1, n ∈ μ(ns),N
S
d (n′

s) ⊆ Nd (n1)}
10: else if n′

s
�→ ns ∈ ES and n′

s /∈ Vis then

11: μ(ns) ← μ(ns) \ {n|n1
��→ n, n ∈ μ(ns)}

12: μ(n′
s) ← {n1|n1

�→ n, n ∈ μ(ns),N
S
d (n′

s) ⊆ Nd (n1)}
13: C ← C ∪ {n′

s |ns
�→ n′

s ∨ ns
�← n′

s}
14: C ← C \ {ns}
15: Vis ← Vis ∪{ns}

|E�|. The less probable the combination of labels at a cer-
tain distance is, the lower the selectivity and the higher is the
expected pruning power.

After having selected the starting node nmin, the algo-
rithm retrieves the nodes in the database that match the node
nmin and marks them as candidate mappings μ(nmin), where
μ ⊆ NS × N is the mapping between user sample and
database nodes that the algorithm will compute. Then the
algorithm iteratively checks, for each user sample node nS

not yet visited, that each adjacent edge of nS matches the
edges adjacent to the nodes n ∈ μ(nS), verifying the label
and the direction of the edge. If it does not match, then
n is removed from μ(nS); otherwise, we consider a node
n1 adjacent to n a candidate for the user sample node n′

S
adjacent to nS , i.e., we insert it into μ(nS), if the condition
described by Theorem 1 holds. Finally, the user sample node
nS is marked as visited and removed from the candidate list.
The steps of the algorithm are described in pseudocode in
Algorithm 2.

In the worst case, Algorithm 2 will have to traverse the
entire database for each node. Thus, the complexity of the
algorithm is O(|E | ∗ (|NS| + |ES|)). Since the user sam-
ple is typically very small, the algorithm is, for the majority
of practical cases, quadratic to the number of nodes. In the
implementation, in order to reduce the time computation of
μ, we used a hash map for storing the nodes of the user
sample and their partial mappings.

The set of candidate mappings computed by Algorithm 2
is used to eliminate those nodes of the database that will
never participate in an isomorphism with the user sample
nodes.

5.1.2 Algorithm correctness and complexity

The following theorem guarantees that Algorithm 2 does not
falsely discard any node while traversing the user sample
nodes. However, it may introduce false positives, i.e., nodes
that match the user sample nodes but are not included in an
isomorphism.3

Theorem 1 Given a database D : 〈N , E〉 and a user sample
S, let Nd and N

S
d be the d-hop nodes set of D and S, respec-

tively. If there exists a subgraph isomorphism μ : NS → N,
then ∀nS ∈ NS, N

S
d (nS) ⊆ Nd(n), n ∈ N , n ∈ μ(nS)

Proof (by contradiction) Suppose that (nS, n) ∈ μ, but
N

S
d (nS) � Nd(n), then there exists i, 1 ≤ i ≤ d and a label �

such that Property 1 does not hold, i.e., |WnS ,�,i | > |Wn,�,i |.
For this reason, we can say that there exists n′

S ∈ WnS ,�,i ,

connected to n′′
S ∈ Ni−1(nS) by �, i.e., n′

S
�→ n′′

S . The lat-
ter assumption holds since μ is a subgraph isomorphism.

However, there does not exist any μ(n′
S)

�→ μ(n′′
S), which

contradicts the subgraph isomorphism hypothesis. ��

Additionally, a guarantee that the algorithm is complete,
namely it does not discard any simulating answer, is offered
by the following theorem.

Theorem 2 Given a user sample S and a database D :
〈N , E〉, if a node n ∈ N is pruned by Algorithm 2, then
n does not belong to any dual simulation of S in D.

Proof In order to prove the theorem, we need to prove that a
node n discarded by the algorithm cannot participate in any
simulation of the sample S. Recall that a node is discarded
by Algorithm 2 if one of the following conditions holds

(a) N
S
d (n′

S) � Nd(n1) (line 9)

(b) nS
�→ n′

S , but �n1 s.t. n
��→ n1 (line 8)

If (a) holds, then it follows immediately from Theorem 1
that the node cannot participate in an isomorphism; thus, we
conclude. Conversely, if (b) holds, then nS has an � edge, but
n does not. In this case, from the definition of simulation, n
cannot simulate nS . On the other hand, node n cannot be part
of any other simulation, since it has been previously consid-
ered in a matching path from nmin to nS . Therefore, there
exists a path in S that is not matched by n. This concludes
the proof. ��

3 Note that those nodes will be removed later, when the actual isomor-
phic check will be performed.
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5.2 An approximate solution

In the previous subsection, we describe an exact solution to
prune the search space, removing nodes that cannot possi-
bly match the user sample. That approach reduces the total
number of isomorphism tests, while ensuring that all the sub-
graph isomorphic graphs (and only those) will be returned as
answers. In this subsection, we propose an additional method
that removes in advance portions of the graph that are likely
to not be relevant to the user, i.e., not to contain answers that
will be ranked among the top-k. The idea is based on the
observation that the user is not always interested in all the
answers, but only in the portion more closely related to the
sample. We call this method ApFastXQ.

We aim at restricting in advance the search space in order
to search for solutions, i.e., to search for isomorphic struc-
tures, only in the portion of the graph that is more likely to
contain answers that are also the most relevant to the user.
Consequently, some of the solutions will be discarded in
advance because they are not likely to rank among the top-
k most relevant answers. As already mentioned previously
(Fig. 2), both pairs CBS–Paramount and Yahoo!–Tumblr are
part of the solution space, but the pairYahoo!–Tumblr ismore
relevant to the user, and therefore, we would like to restrict
our search only to the subgraph that is containing the second
but not the first.

In the following,we describe howwemodel this portion of
the graph, which we call Query Neighborhood (Sect. 5.2.1).
That portion is the subset of nodes with higher proximity to
the nodes of the user sample. The intuition behind this is that
nodes in the graph that are located far from the user sample
will be also semantically distant from the user’s intention as
expressed in the exemplar query. Hence, even if such nodes
will form an answer, such answers will be considered not
interesting by the user.

We model a relatedness measure based on the distance in
the graph, andwe use it to prune away nodes that are far away
from the user sample before even looking for isomorphic
structures among them.

It is clear that, while the approach described in the previ-
ous subsection is exact (does not discard any valid answers),
this second approach is approximate: Some correct answers
could potentially be filtered out as they fall out of the Query
Neighborhood. For this reason, we propose a principled way
of measuring the relatedness and for pruning the graph,
aimed at discarding only irrelevant solutions. We implement
a function that iteratively retrieves the Query Neighborhood
without traversing the entire graph (Sect. 5.2.2). As we show
later (Sect. 8), thanks to the SelectQueryNeighborhood
algorithm, by operating in this special portion of the graph,
we can effectively reduce the search space. The restricted
search space can then be given as input toXQ in Algorithm 1,
without sacrificing the quality of the results. We can still

apply on this subgraph the pruning techniques presented in
the previous subsection and then look for isomorphic struc-
tures on a much smaller database. Hence, the ApFastXQ

algorithm first applies the SelectQueryNeighborhood

algorithm and then FastXQ.

5.2.1 Identifying relevant answers

Given the set of exemplar answers Q = xmpEval(Qe), we
aim at restricting our search to the subset Qρ ⊆ Q that
contains only the answers that are more relevant to the user,
i.e., those that are more likely to rank among the top-k when
considering the ranking function ρ. Since the only evidence
of the user’s intent is the input query Q and the corresponding
user sample S, we assume a measure of relevance ρS of each
answer to the sample:

Definition 8 (Relevance measure) Given a user sample S,
the relevance measure ρS is a function ρS : Q �→ R

+ that,
given an answer A ∈ Q, returns the relevance ρS(A) of A to
S.

Note that given a second answer A′ ∈ Q, if ρS(A) > ρS(A′),
then we say that A is more relevant than A′ with respect to
S. We can now define the set of relevant exemplar answers
as

Qρ = {A ∈ Q | ρS(A) > τ } (2)

where the threshold τ > 0 is data dependent and can be
provided by the user. The idea is that such set should then
contain the top-k answers.

Since Qρ is a set of subgraphs of D, we say that the
set of solutions Qρ is contained in the subgraph Dρ ⊆ D,
which is any subgraph of D that contains all the relevant
exemplar answers Qρ and none of the remaining irrelevant
exemplar answers Qρ = Q\Qρ . This portion of the graph
is the subgraph induced by the subset of nodes Nρ ⊆ N ,
called the relevant nodes. In the following, we assume that
for an answer to be considered relevant, all its nodes should
be relevant, i.e., they should satisfy the minimum relevance
threshold τ (otherwise, we would be admitting answers that
are only partially relevant).

Therefore, we consider a relevance measure ρNS : N �→
R

+ to be applicable to any node in the graph. Then, relevant
nodes are the nodes whose relevance measure is above the
threshold τ , i.e., Nρ = {n ∈ N |ρNS (n) > τ }. Hence, an
answer A is relevant when all its nodes are relevant. In prac-
tice, we first identify the set of relevant nodes Nρ , and we
then use only these nodes to construct the subgraph Dρ ⊆ D.

In our solution, we implement ρNS as a distance measure
on the graph, such that it measures the distance of every node
from the nodes of the sample NS , and we keep only nodes
that are within a certain distance threshold from the sample.
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Algorithm 3 SelectQueryNeighborhood

Input: User Sample S : 〈NS, ES〉
Input: Database D : 〈N , E〉
Input: Teleportation probability c
Input: Threshold τ

Output: Subgraph D′ ⊆ D
1: Ā ← AdjacencyNormalized(D, S)

2: p ← [0] × N
3: for each qi ∈ NS do
4: p[qi ] ← 1/|NS |
5: v ← ComputeAPPV( Ā, p, c, τ )

6: ND′ ← Nearest(N , v)

7: D′ ← GetSubgraph(D, ND′ )
8: return D′

For this reason, we call Dρ the Query Neighborhood of the
sample S. In order to compute this distance, we propose the
Adaptive Personalized PageRank Vector (APPV), an exten-
sion of the Personalized PageRank Vector (PPV), designed
to exploit the properties of our problem. This is implemented
by the SelectQueryNeighborhood algorithm.

5.2.2 The SelectQueryNeighborhood algorithm

Our solution models the computation of the Personalized
PageRank Vector (PPV) [25] which is used as an estimate
of the distances of the nodes in the graph from the subset
of nodes in the user sample. In the literature, Personalized
PageRank (PPR) [21,25] is a well-known technique that
computes the PageRank biased toward the preferences of
the user. The problem is defined as follows: given an input
graph G : 〈N , E〉 with |N | vertices, and a preference vec-
tor p ∈ R

|N |, output the PPV v ∈ R
|N | containing the PPR

scores for all vertices of G with respect to the preference
vector p. We use p[n] to denote the personalized preference
value for node n ∈ N , and v[n] to denote its PPR score. In
our case, user preferences are expressed through the query
Q, and for this reason, we initialize the preference vector
according to the nodes in the user sample S, which models
the query Q in the database. Finally, we say that the relevance
measure ρNS (n) of a node n is its corresponding Personalized
Page Rank value v[n].

The main difference between the original PPV model and
our solution, APPV, lays on the semantic of edges. Tradition-
ally, edges between nodes are treated equally as they usually
represent just a link from one webpage to another (i.e., they
are all of the same kind). In contrast, our model adapts to
the various edges and their labels, according to S. In partic-
ular, the edges in our model may represent different kinds
of relationships. It is therefore natural to differentiate transi-
tion probabilities based on the information carried by each
single edge, as some relationships are more informative than
others [11,49]. Moreover, labels that do appear in the user

Fig. 4 A visualization of APPV

query should be given more importance when computing the
PageRank, since they represent the user preference.

Figure 4 depicts the output of the computation on the
graph of our running example. Here all the nodes have been
assigned the weights from the final APPV, computed using
the set of nodes in the sample as initial preferences.

The set Nρ , which satisfies the selectivity requirement,
consists of nodes with Personalized PageRank score higher
than a minimum threshold τ , 0 < τ < 1.

To compute the transition probabilities in the APPV
model, assume a model of the database D : 〈N , E〉, and
let AD be the adjacency matrix of this graph. If |N | is the
number of nodes in the database, then AD is an |N | × |N |
squarematrix. In thismatrix, we have that 0 < AD

i j ≤ 1 if and

only if the node i has a relationship e�
i j with node j with label

�; otherwise, we have AD
i j = 0. In this way, the element AD

i j
models the amount of information that is transferred from
node i to node j by the edge e�

i j as a function of its label �. In

our solution, the values in AD are proportional to the amount
of information [43] carried by the edge e�

i j , which is:

I (e�
i j ) = I (�) = log

1

P(�)
= − log P(�) (3)

P(�) =
∣∣E�

∣∣
|E | (4)

where E� is the set of edges with label �. Note that the fre-
quency of a label can be easily pre-computed in the database.

In order to account for the importance of the edges in
the user sample, we additionally define matrix AS , which is
constructed from the adjacency matrix of the database, but
where only entries for edges whose label appears also in S
are assigned a nonzero value. In other words, we construct
an |N | × |N | square matrix with 0 < AS

i j ≤ 1 if the nodes
i and j are connected by an edge and that edge has a label
� that appears as label of one edge in the user sample S and
with AS

i j = 0 otherwise.

We then combine the two matrices into the matrix Ā =
AD + AS and normalize it. Under this transformation, Ā
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Algorithm 4 ComputeAPPV

Input: Adjacency Matrix Ā
Input: Node vector p
Input: restart probability c
Input: threshold τ

Output: Approximate APPV v

1: for each qi ∈ p do
2: p[qi ] ← p[qi ] × 1/τ
3: v ← p
4: while ∃ ni ∈ p | p[ni ] �= 0 do
5: aux ← [0]
6: for each ni ∈ p | p[ni ] �= 0 do
7: particles ← p[ni ] × (1 − c)
8: for each ni → n j ∈ D (Sort by Āi j Desc.) do
9: if particles ≤ τ then
10: break
11: passing ← particles × Āi j
12: if passing ≤ τ then
13: passing ← τ

14: aux[n j ] ← aux[n j ] + passing
15: particles ← particles − passing

16: p ← aux
17: for each ni ∈ p do
18: v[ni ] ← v[ni ] + p[ni ]
19: return v

becomes the transition probability matrix for the knowledge
base graph, where more relevance is given to edges carrying
more information, as well as to edges with labels that appear
in the query. We also define p, an |N | × 1 column vector,
which serves as the normalized preference vector for which
p[n] �= 0 iff n ∈ NS , i.e., 0 < p[n] ≤ 1 if and only if
the node i is in S. Given the column normalized transition
probability matrix Ā, the teleportation probability c, and the
preference vector p, our technique adheres to the Person-
alized PageRank semantics [11,25]. Thus, the APPV v is
defined as the stationary distribution of the Markov chain
with state transition given by the matrix

(1 − c) Āv + c p (5)

where the teleportation probability c ∈ (0, 1) is typically
≈ 0.15, with small changes in this value having little effect
in practice [39].

The exact computation of this vector typically requires
O(|N |2) time and space. Performing the computation through
power iteration requiresO(|N |t) time, where t is the number
of iterations to be performed. Nevertheless, this computation
is still not practical for very large graphs.

In order to compute this value fast, we extend the tem-
plate proposed in [3] and apply an approach similar to the
weighted particle filtering procedure proposed in [30] but
extended to correctly take into account the teleportation
probability and to consider the non-uniform edge weights
that we previously introduced. The extension is shown in
Algorithm 4.

Fig. 5 An edge (left) and the corresponding expansion (right)

Algorithm 4 simulates a set of 1/τ floating particles (line
2) starting from each node with a nonzero value in p. At
each iteration (lines 6–15), they split among the neighbors
of the node they are currently visiting, but we prevent them
to split to arbitrarily small sizes, limiting them to have min-
imum size τ (lines 12–13). When spreading the particles
among the neighbors, the algorithm gives preference to the
edges with higher weights. The restart probability c will dis-
sipate part of the particles at every iteration (line 7), and
the algorithm will stop when no more particles are floating
around.

At the end of the algorithm, we return the APPV con-
taining the scores that have been accumulated through each
iteration on every node. We then keep the subset of the
graph containing only those nodes with a score higher than
some threshold and the edges connected to them (line 6–7 in
Algorithm 3). Since we are dealing with an iterative approx-
imation, we keep only those nodes that have been visited by
at least one particle, which means that we discard all nodes,
whose value is not greater than τ .

6 Finding simulating answers

In its original formulation, strong simulation is node label
preserving [32],meaning that the query and the database have
labels on the nodes (instead of the edges). On the contrary,
our definition is strictly based on edge labels: We require to
preserve the relationships among nodes, ignoring the node
labels. The adaptation of strong simulation from node label
preserving to edge label preserving is possible, albeit non-
trivial. We discuss the details in the following paragraphs.
We also show that it is possible to use the same strong
simulation algorithms [5] in our setting. The solution we pro-
pose includes the translation of our graph into an expanded
graph.

Definition 9 (Expanded graph) For a given graph G :
〈N , E〉, the expanded graph is a graph G+ : 〈N+, E+〉,
where each n1

�→ n2, (n1, n2) ∈ E is substituted with two
edges n1 → n� and n� → n2, where n� is a new uniquely
identified node with label �. The path n1 → n� → n2 is
called expanded edge and n� is called edge node.

Clearly, N+ = N ∪ {n� | ∃ n1, n2 ∈ N , n1
�→ n2} and

E+ = {(n1, n�), (n�, n2) | n1, n2 ∈ N ∧ n1
�→ n2}.

Figure 5 represents an edge n1
�→ n2 and its expansion.

Note that the nodes n1 and n2 in the expansion have no labels.
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We now prove that the definition of dual simulation in [32]
is equivalent to ours when applied to the expanded graph.
Recall that in a node-labeled graph, simulation is defined as
follows.

Definition 10 (Node label dual simulation)Anode-labeled
graph D1 : 〈N1, E1〉 dual simulates another graph D2 :
〈N2, E2〉, denoted as D1 �N

D D2, if there exists a relation
R, such that for each (n�

1, n�
2) ∈ R: (1) for all n1 → n′

1,
exists n′

2 such that n2 → n′
2 and (n′

1, n′
2) ∈ R, (2) for all

n′′
1 → n1, exists n′′

2 such that n′′
2 → n2 and (n′′

1, n′′
2) ∈ R.

We need to prove that edge label strong simulation is
equivalent to node label simulation on expanded graphs. We
first prove the following lemmas.

Lemma 1 Given two databases S : 〈Ns, Es〉 and D :
〈N , E〉, S �D D ⇔ S+ �N

D D+.

Proof The structure of the proof is as follows.We prove both
directions separately constructing another dual simulation
starting from the one existing by hypothesis.
(⇒): Given a dual simulation relation RD from s to D, we
construct a relation

R′
D = RD ∪ R+

D,

where R+
D = {(s�, n�) | s� ∈ N+

s , n� ∈ N+, (s1,

n1), (s2, n2) ∈ RD ∧ s1
�→ s2, n1

�→ n2}. Note that for
the generality of s1, s2, n1, n2, R+

D contains edges in both
directions.R′

D is, in fact, a dual simulation from S+ to D+.
Suppose R′

D is not a dual simulation, then it must exist
s ∈ N+

s such that it for any n ∈ N+, (s, n) /∈ RD . We
have two cases:

1. s ∈ N . This is a contradiction, since RD is a dual simu-
lation it exists a n, such that (s, n) ∈ RD .

2. s ∈ N+ \ N . This means that s is an edge node and

exists a label � and s1, s2 ∈ Ns , such that s1
�→ s2. By

hypothesis exists n1, n2 ∈ N such that (s1, n1) ∈ RD ,
and (s2, n2) ∈ RD . However, in the expanded graph
n1 → n� → n2, implying that (s�, n�) ∈ R′

D contra-
dicting the hypothesis.

(⇐): The proof is similar to the forward arrow, noticing that
RD = R′

D \ R+
D, and will be omitted. ��

We are now ready to prove the following theorem.

Theorem 3 Given two databases S : 〈Ns, Es〉 and D :
〈N , E〉, S �S D ⇔ S+ �N

S D+.

Proof Recall that from Definition 7, two graphs are strongly
similar if there exists a node n ∈ N and a d−graph D[n, d]
such that (1) d is equal to the diameter of S and (2) S �D

Algorithm 5 StrongSimSearch
Input: User database D: 〈N , E〉
Input: User sample S
Output: Set of simulating answers Q
1: D+ ← Expand(D)

2: S+ ← Expand(S)

3: Q← ∅
4: Q+ ← Match(D+, S+) � Algorithm from [32]
5: for each q+ ∈ Q+ do
6: Q← Q∪ Contract(q+)

D[n, d] with the maximal dual simulation. If S �S D, by
Lemma1 follows that S+ �N

D D+[n, d] and it easy to see that
d is the diameter of S+. It also follows that S+ �N

D D+[n, d]
with the maximal relation, since the relation as defined in
Lemma 1 contains all the pairs plus the pairs included in the
expanded edges. ��

Theorem 3 states that it is sufficient to run theMatch algo-
rithm from [32] on an expanded graph and then remove all
the edge nodes and the matching from the expanded graph to
obtain valid strong-simulating results for the original graph.
Algorithm 5 shows the pseudocode of the strong simulation
algorithm. First, the graphs S and D are expanded using the
procedure Expand (lines 1, 2); then, theMatch algorithm is
used to find strong-simulating answers Q+ in the expanded
graphs S+ and D+ (Line 4). Finally, all the results in Q+
are contracted using the Contract function to remove the
expanded edges (lines 5–7).
Algorithm complexity: The Match algorithm on D+ runs
inO(|N+|(|N+|+ (|N+

s |+|E+
s |)(|N+|+|E+|))) as shown

in [32]. Since the size of the user sample is small, |N+
s | is

bounded by a small constant and we can consider Match
to run in O(|N+|(|N+| + (|N+| + |E+|))). On the other
hand, |N+| = |N | + |E | since for each edge we add a
node and |E+| = 2|E |. Therefore, since both Expand and
Contract execute inO(|E |) time, the overall complexity is
dominated by Match, which runs in O(|N |4) for expanded
graphs.
Applying pruning techniques: Algorithm 5 works with any
kind of graph, but expanding the entire database may be
time-consuming. A legit question then is whether Itera-
tivePruning can be applied to simulation. Indeed, this is
possible by relaxing the constraint in Property 1. It easily
follows from Theorem 1 and Definition 5 that in a database
D : 〈N , E〉, a node n ∈ N matches a node ns ∈ Ns in the
user sample S, so it is not pruned, if for each label � and a
distance i ≤ d, if |Wns ,�,i | > 0 then |Wn,�,i | > 0. We refer
to this algorithm as IterativePruning∗.

We call FastXQSim the algorithm that derives from XQ

when instantiated with the StrongSimSearch congruence
relation described in Algorithm 5 and the pruning algorithm
IterativePruning

∗.
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Fig. 6 The proposed algorithms and how they combine

Regarding the restriction of the search space presented
in Sect. 5.2, we note that no changes are needed to
SelectQueryNeighborhood. Therefore, for the case of
strong simulation, we can use the ApFastXQ algorithm
by first applying the SelectQueryNeighborhood algo-
rithm presented above and then the FastXQSim with
IterativePruning

∗. We refer to this new algorithm as
ApFastXQSim.

7 Solution workflow

In the following, we first summarize how the various algo-
rithms we have presented combine to solve our problem.
Then we explain how we can rank the results produced by
these solutions and present the user with the top-k among
them.

7.1 Choice of algorithms

The first solution (refer to Fig. 6) is to adopt the exact and
exhaustive XQ algorithm (Algorithm 1). In Algorithm 1,
we can either instantiate the FindSimilarSubgraphs func-
tion with an exploratory isomorphic search or use strong
simulation by replacing lines 3–9 with StrongSimSearch

(Algorithm 5) to obtain the XQSim algorithm.
In order to improve the running time of XQ and XQSim,

we first prune the search space by applying IterativePrun-
ing (Algorithm 2) and its variation IterativePruning

∗,
respectively. This leads to the FastXQ and FastXQSim

algorithms, respectively, which are both exact, i.e., the final
list of top-k results corresponds to the actual top-k exemplar
answers.

A further improvement in terms of time performance is
possible using the SelectQueryNeighborhood function
(Algorithm 3). This function can be used without changes
with both isomorphism and strong simulation and leads to
theApFastXQ andApFastXQSim algorithms, respectively.
In this case, we are just reducing the total amount of sub-
graph isomorphism (or simulation) checks needed, but all

answers returned are still the result of an exact isomorphism
(or simulation). These algorithms simply trade off effec-
tiveness for efficiency, returning a meaningful subset of the
results.

7.2 Ranking query answers

Once the answers have been computed from the user sample,
they need to be ranked in order to either be returned sorted
to the user that posed the query, or to select only the k most
promising candidates, i.e., the top-k. To do this, we introduce
a novel ranking function that is a linear combination of two
scores, namely the structural similarity score S based on the
d-hop nodes set and the amount of information as provided
by the APPV vector, which indicates the relevance of nodes
with respect to the sample nodes. The score of each answer
is computed by using the above two parameters to compare
the answer to the user sample.

Most node similarity measures proposed in the literature
are based on the concept of graph similarity and isomor-
phism. This is the case for graph edit distance [18], which
is computed with a reduction to graph isomorphism, and is
therefore inapplicable to our problem, due to its high time
complexity. A different method is proposed in [28] and is
based on a vectorial representation of nodes. This idea seems
suitable for our settings; thus, we extended it in order to cap-
ture the differences among nodes that emerge when taking
into account the edge labels connecting the d-hop nodes. We
also embed distance information aiming at giving different
weights to nodes based on their distance from the sample (for
the reasons presented in Sect. 5.2). Thus, for every node n,
we build a vector containing a value for every label � ∈ L in
the graph, and we compute this score as

σ(n, �) =
d∑

i=1

I (�)|Wn,�,i |
i2

(6)

The value I (�) represents the amount of information [43]
described in Sect. 5.2.2—Eq. 3 which quantifies the impor-
tance of an edge label. The i2 term is a quadratic decay
factor to the importance of an edge at distance i from the
current considered node. Intuitively, the further you go from
the node, the less important is the edge you encounter.

Given the vectorial representation of two nodes, we com-
pute the node similarity S using a metric for vectors, such
as the Jaccard, Euclidean distance or cosine similarity. Note
that our vectorial representation contains already the com-
puted score σ . In our experiments, we use cosine similarity,
but any other similarity metrics can also be used. Therefore,
the structural similarity between a node ns of the user sample
and any matching node n is computed as follows:
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S(ns, n) =

∑

�∈L
σ(ns, �)σ (n, �)

√∑

�∈L
σ(ns, �)2

√∑

�∈L
σ(n, �)2

(7)

The structural similarity above does not take into account
the proximity measure of the results with respect to the user
sample. Therefore, we consider a linear combination, para-
metrized by λ, between the node similarity (structural) and
the Personalized PageRank (proximity) as follows.

ρ(ns, n) = λS(ns, n) + (1 − λ)v[n] (8)

where v[n] is the APPV defined in Sect. 5.2.1. We then
compute the average of ρ(ns, n) over the number of nodes
matching the user sample nodes in the similarity relation R
and sum over all nodes in the sample:

ρ(S,R) =
∑

ns∈Ns

(∑
n∈R(ns )

ρ(ns, n)

|R(ns)|
)

(9)

Note that the choice of λ (in Eq. 8) is data dependent. A
value λ close to 1 favors results that share more edges with
the d-hop nodes of the user sample. On the other hand, a
value close to 0 will take into account only solutions that are
close to the original query. For this reason, we can see λ as a
diversification parameter that depends on the user and on the
data. This is also the approach taken by most diversification
models [1].

7.3 Top-k answering with TOPKXQ

The approximate approach we presented above first com-
putes all the answers within the Query Neighborhood and
then ranks them. Hence, answers outside this neighborhood
are disregarded. Although this approach is particularly suited
when the most relevant answers are expected to be close to
the user sample, it might not find k answers in case the rele-
vance threshold τ is set too low. The only answers that will be
incorrectly discarded by applying the APPV approximation
are those that are far away from the sample, but still achieve
structural similarity higher than the proximity value of all the
answers near the sample. Even though in practice the number
of answers lost is negligible (refer to Sect. 8), in what follows
we propose a more rigorous approach.

The key idea is to implement an exact top-k algorithm that
we call TopKXQ, which explores the graph until k answers
are found, and all the other candidate answers are guaranteed
to be worse (i.e., rank lower) than those. This algorithm is
based on the computation of an upper bound on the rank-
ing value for the answers that have not been considered so
far. It implements an iterative process that explores the graph

around the sample in circles of increasing radius. Starting
from an empty answer set, the algorithm finds answers that
are progressively further away from the sample. The search
stops when the upper bound of any remaining candidate
answer is lower than the value of the lowest ranked answer in
the top-k candidates. Thus, this approach ensures that there
are no false negatives.

7.3.1 Computing an upperbound for top-k answering

The stopping condition of the algorithm determines what is
the highest score that can be obtained if an answer exists
outside the nodes explored so far and compares it with the
score of the current kth answer. To devise an upper bound
on the rank value of the nodes, we note that Eq. 9 can be
rewritten as

λ
∑

ns∈Ns

∑
n∈R(ns )

S(ns, n)

|R(ns)| + (1 − λ)
∑

ns∈Ns

∑
n∈R(ns )

v[n]
|R(ns)|

In this equation, we observe that the second term depends
on the position of the answer with respect to the user sample,
since it is averaging over the APPV values of the nodes in the
answer. As such, it decreases proportionally to the distance of
an answer from the user sample. Therefore, answers outside
the current neighborhood necessarily achieve lower scores
for this value.

On the other hand, the first term takes into account the
structural similarity between each node in the query and each
corresponding node in the answer. Thus, it depends only on
the labels of edges around the two.

Given the above two observations, we can compute the
maximum value for the similarity score achievable by any
candidate answer outside the current neighborhood. In par-
ticular, given a sample S, we compute an upper bound for
the structural similarity value S(ns, n) between all nodes
ns ∈ Ns and n ∈ N \ Nρ , where Nρ is the set of nodes in
the current portion of the graph, where answers have already
been computed.

Therefore, the sum of the best structural similarity value
for each sample node is the highest possible structural simi-
larity achievable by an answer outside the neighborhood.

We then use this value to determine whether there exists
any candidate answer N s ⊆ N \ Nρ , such that the value
of

∑
n̄s∈N̄s

S(ns, n̄s) is high enough to fall into the top-k
answers. The application of the neighborhood algorithm pro-
duces only answers forwhich all nodes arewithin the distance
measure; hence, answers that are not completely contained
in the neighborhood are disregarded. Thus, for the stopping
condition to be correct, we take into account also answers
that lie across the boundary of the current neighborhood.
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Algorithm 6 TopKXQ

Input: User Sample S : 〈NS, ES〉
Input: Database D : 〈N , E〉
Input: diversification factor λ

Output: Sorted List of relevant answers Q
1: Dρ ← S
2: tempSim ← 0
3: do
4: Dρ ← ExpandQueryNeighborhood(S, D, Dρ)

5: Q← FindSimilarSubgraphs (S, Dρ)

6: Q← Rank(Q)

7: if |Q| < k then
8: continue
9: R ← Q[k]
10: tempSim ← λ

∑
ns∈Ns

1
|R(ns )|

∑
n∈R(ns )

S(ns , n)

11: while tempSim < λ·UpperBound(S, D, Dρ)

12: Q← Rank(Q)

13: return Q

Algorithm 7 UpperBound

Input: User Sample S : 〈NS, ES〉
Input: Database D : 〈N , E〉
Input: Current neighborhood Dρ : 〈Nρ, Eρ〉
Output: highest upper bound
1: Ř ← new Rel()
2: for each ns ∈ NS do � Find best scoring nodes
3: Ř(ns) ← argmaxn∈N\Nρ

S(ns , n)

4: return
∑

ns∈Ns

∑
n∈Ř(ns )

S(ns , n)

7.3.2 The TopKXQ algorithm

The above process is described in Algorithm 6, TopKXQ,
which starts by expanding the Query Neighborhood and
searching for answers in that portion of the graph. Then,
if less than k answers are found, the algorithm proceeds by
expanding further the neighborhood. The expansion process
is similar to what is presented in Algorithm 3, by using
decreasing values for the threshold τ . Then, it also performs a
BFS exploration following only edges with labels appearing
in the query, in order to include borderline solutions. Eventu-
ally, when k or more answers have been found, the algorithm
computes the upper bound for the structural similarity. The
search only continues in the case where the score for the kth
answer is lower than the upper bound, which means that a
better answer may exist in the graph.

The UpperBound method is described in Algorithm 7.
This function retrieves the node n̄ ∈ N \ Nρ , with the highest
similarity value S(ns, n̄), for each node ns in the sample S.
Given a node ns ∈ NS , n̄ = argmaxn∈N\Nρ

S(ns, n).
With such nodes, it builds a mock solution that maximizes

the structural similarity score, while containing only nodes
that are outside the current neighborhood. The computation
can be improved further considering only nodes in N \ Nρ

that are connected through edges with the same labels of the
sample nodes.

Fig. 7 A visualization of the TopKXQ algorithm

Figure 7 depicts the TopKXQ algorithm, based on the
graph isomorphism congruence relation. If we want a ver-
sion of the algorithm that works with the strong simulation
congruence relation, then we simply have to replace algo-
rithms 1 and 2 with algorithms 5 and 2*, respectively. Note
that TopKXQ is an optimal algorithm: It always produces
the correct top-k answers.

8 Experimental evaluation

In this section, we experimentally validate our solution
by measuring its performance and comparing it to other
approaches.
Queries We extracted 100 real queries entailing a user need
expressiblewith an exemplar query from theAOLquery log,4

and mapped them to the knowledge base.5 Words in each
query were manually associated with the most appropriate
node, and relationships were similarly translated into an edge
or a path. An example of such a mapping can be seen in
Table 1.

Furthermore, we built 100 synthetic queries by selecting
100 nodes at random among those that have at least 2 out-
going or ingoing edges. Then, we run for each of them one
undirected random walk with restart with teleportation and
halting probability, sampled between 0.05 and 0.35. In our
experimental evaluation, we used these queries in addition to
the 100 queries from the AOL log, for a total of 200 queries.
The samples obtained in this way are highly heterogeneous
in terms of size and frequency of edge labels. Each query has
between 2 and 11 edges and diameter up to 10, with more
than 200 different edge labels overall in each set, while the
average diameter is 2.8, in line with real-world queries [17].
In order to test our algorithms with different query shapes,
we made sure our queries contain cycles, single paths, trees,
and complete graphs. Although we have used both the AOL
queries and the 100 synthetic queries, we report only the
graphs for the AOL queries, since the results of the experi-
ments on both sets are almost identical.

4 http://www.gregsadetsky.com/aol-data.
5 List of queries: http://www.mi.parisdescartes.fr/∼themisp/exemplar
query-ext/.
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Table 1 Mapping of the keyword query “infectious disease sexual
transmission and prevention” into an exemplar query

Query:

infectious disease sexual transmission and prevention

Nodes:

HIV/AIDS; Condom; Sex; Unsafe sex;

Edges:

HIV/AIDS - disease/prevention_factors → Condom

HIV/AIDS - disease/risk_factors → Unsafe sex

HIV/AIDS - disease/transmission → Sex

Datasets: We downloaded the full Freebase knowledge
base [20] in April 2014, obtaining a connected graph of 76M
nodes and 314M edges, with about 4.5K distinct edge types.
We refer to this dataset as Real. To the best of our knowl-
edge, this is the biggest graph used in this context in the
literature and the first time that the entire Freebase graph is
used for this purpose. While related works [28,47,50] use a
small part of Freebase, we explored solutions that scale to its
full size. Based onReal, we generated 10 synthetic datasets,
embedding 20 samples of the test set in different points of
the graph: We performed a breadth-first traversal from a
fixed starting node and randomly chose to embed an answer
according to a distribution that decreases exponentially with
the distance from the starting node (thus modeling answers
at varying distances). For the scalability tests, we generated
graphs having 0.5, 1, 5, 10 and 20Mnodes and 1K embedded
queries. We denote them as GSize-x, where x is the graph
size. Similarly, we generated graphs with 10M nodes and
0.5, 1, 2, 5 and 10K embedded answers. We denote them as
QSize-x, where x is the number of generated answers.
Experimental setup: In our experiments, we use d = 2
since we verified that it leads to low memory requirements
for storing the d-hop nodes set, without sacrificing time per-
formance (see Sect. 8.3). We also observed that λ = 0.3
(see Sect. 7) is a good compromise for retrieving diverse and
qualitative results. In Sect. 8.4, we study the effect of varying
the threshold parameter τ (see Sect. 5.2.2), for which we set
the default value to 0.003. All the reported results are aver-
ages over 5 consecutive runs. We implemented our solution
in Java 1.8 and ran the experiments on a i686 Intel Xeon
E52440 2.40GH machine with 12 cores in hyper-threading
and 188Gb RAM, over Linux kernel v3.13.0. The graphs are
loaded into main memory using our graph library available
under open-source license.6

ImplementedAlgorithms:Apart fromFastXQ,ApFastXQ,
FastXQSim and ApFastXQSim, we implemented three
additional algorithms from related works:

6 https://github.com/mutandon/Grava.

Fig. 8 Comparison of methods applied to the Exemplar Query task

QueryReformulation: An algorithm that produces query
reformulations bymining sessions from query logs in a term-
level fashion [48]. The model is trained on the AOL query
log, and the suggestions are based on our query test set.
EQ-Graph: Entity-query graph is a model that computes
serendipitous suggestions starting from entity mentions in a
page [10]. For our queries to work in this setting, we associ-
ated to each node the corresponding Wikipedia page (or the
best Wikipedia page that represents the node). The model is
trained on a big query log from the Yahoo! Search Engine.
NeMa: This algorithm [29] and other previous works are
based on the assumption that there exists a truly small set
of correct answers to a graph query, which is not true in our
case. Therefore, we implemented their technique taking into
account edge label matches instead of node matches. The
authors kindly provided us a C++ implementation (compiled
using gcc v4.4.3).
Summary of results: Our user studies demonstrate that 92%
of the users believe that exemplar queries are relevant and
useful for search tasks and that existing approaches are not
able to provide effective solutions to our problem. The user
studies also show that our method identifies meaningful
results with 81% precision. We observe that the Itera-

tivePruning algorithm leads to graphs up to 80% smaller,
decreasing the running time by 30%, with even higher
improvementswhenwe choose starting nodeswith low selec-
tivity. Overall, more than 50% of the queries take less than
1 second for τ ≥ 0.003. The set of results measuring per-
formance demonstrates the scalability of our approach to the
largest knowledge graph available in the field (76M nodes,
314M edges), while maintaining interactive response times.
Finally, the results show that strong simulation leads to richer
answer sets than isomorphism, retrieving 34% more nodes
(i.e., entities).

8.1 Usefulness

In order to assess the quality of the proposed solution,
we conducted the following user study. We used Ama-
zon Mechanical Turk (http://mturk.com) and asked 94 users
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Fig. 9 Percentage of relevant
and irrelevant results per query

Fig. 10 Percentage of satisfied and dissatisfied users

(with no restriction with respect to education level, age and
country) to evaluate our system. For each query in the test
set, we provided an explanation of the topic, the query inten-
tion and the top-10 results in our answer set obtained using
isomorphism as congruence relation and ranked according to
our ranking function.We asked each user to rate each result as
irrelevant, weakly related or very related with respect to the
topic and the expressed query intention. Each user evaluated
between 2 and 10 queries (on average 8).

The users provided 4540 marks in total (see Fig. 9): 81%
of our results are marked as relevant (weakly or strongly) and
only 19% of them are not considered relevant suggestions.
Out of the 427 suggestions we produced, 172 (40%) are
judged highly relevant by more than 50% of the users, while
each exemplar query contains at least one relevant (weakly or
strongly) result for 99% of the users. Note that the answers
judged irrelevant were still graphs with the same structure
of the user query, but were simply not related enough to the
specific user information need.

Moreover, each user expressed her opinion with respect
to (a) the idea of using examples as a search paradigm, (b)
whether she alreadyhad the need of searching using exemplar
queries and (c) the usefulness of the system in general. As
shown in Fig. 10, 92% of the users considers the exemplar
queries paradigm and the overall system useful for retrieving
additional and relevant information. Furthermore, 62%of the
people interviewed declared that they already had the need
to perform this kind of exemplar queries search in the past
(but there was no system to support them).

Fig. 11 Time vs size of graph with NeMa and our approach (Real
dataset)

8.2 Comparison to previous work

In the following, we compare our method against two differ-
ent approaches: (a) algorithms that produce related queries
and (b) an approximate query answering technique for
graphs.
Related queries: We implemented and compared with the
methods QueryReformulation and EQ-Graph mentioned
earlier, through a user study similar to the one presented in
Sect. 8.1. For each query in the test set, we presented to users
three groups of suggestions: one produced with our method
and one produced by each one of the two methods above. We
then asked users which of the three groups of suggestions
they considered the most helpful for each query task.

The results, depicted in Fig. 8, show that in 64% of the
cases the users preferred our solution to the other two. Fur-
thermore, for 78% of the queries that received more than 2
marks, the majority of users preferred our solution. In 18%
of the cases, none of the proposed solutions were satisfying,
neither the answers proposed by our model nor those pro-
duced by the other algorithms. Overall, the two competing
approaches together were preferred by less than 30% of the
users, none of them choosing the two approaches in all the
queries.
Approximate query answering on graphs:We now present
the comparison between our approach and NeMa [29], a
state-of-the-art technique for answering approximate queries
on graphs. Since on Real a single query takes NeMa more
than 13h to process, we test NeMa on graphs obtained after
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Table 2 Top-5 results withNeMa for “Google YouTube Menlo Park”

Q1: Google - YouTube - Menlo Park

Google - YouTube - Menlo Park

Yahoo! - LAUNCH Media - Stanford University

Yahoo! - Musixmatch - Stanford University

Yahoo! - Right Media - Stanford University

Yahoo! - Inktomi Corporation - Stanford University

Table 3 Top-5 results with NeMa for “Condom Sex HIV infection”

Q2: Condom - Sex - HIV infection

Water purification - Fecal-oral route - Cholera

Smoking cessation - Vector - Diabetes mellitus

Oral Transm. - Cytomegalovirus Infections - Oral Transm.

Oral Transmission - Cerebral palsy - Cytomegalovirus

Water purification - Fecal-oral route - Cholera

applying SelectQueryNeighborhood on our query test
set, thus giving it an advantage. The results in Fig. 11 show
that NeMa is almost three orders of magnitude slower than
our algorithm. This suggests that a query answering tech-
nique for graphs is not applicable to our setting.

We also provide anecdotal evidence comparing the top-
5 results from our method and NeMa. Tables 2 and 3 show
the top-5 results of NeMa for two different exemplar queries
comparedwith the results of our algorithm, shown inTables 4
and 5 (for our algorithm, we report the top-2 results contain-
ing query terms, the top-2 results not containing query terms
and for reference, the lowest ranking result).

We observe that if the structure of the exemplar query
is complex (e.g., it contains cycles), NeMa fails to find the
correct answers, mapping different query nodes on the same
graph node as depicted in Table 3-row 3, where the same
graph node, “Oral Transmission,” is used twice. Actually,
87% of the answers produced by NeMa are not isomorphic
to the test queries, producing results that contain the same
node more than once and, thus, leading to poor results. Fur-
thermore, the top answers proposed byNeMa for Q2 contain
diseases that are not sexually transmitted (e.g., diabetes that
is ranked 2nd), a situation that does not occur with our algo-
rithm.

For strong simulation, Tables 6 and 7 report the top-2
results containing query terms, the top-2 results not contain-
ing query terms and the result with the lowest ranking score.
Note that,with strong simulation, someanswers includemore
nodes than those in the query. For instance, the first result in
Table 6 lists all the acquisitions made by Google7 and also

7 For ease of exposition, we do not report the complete list of entities
in the answer.

Table 4 Results for exemplar query “Google YouTube Menlo Park”

Q1: Google - YouTube - Menlo Park

Google - AdMob - Menlo Park

Google - DoubleClick - Menlo Park

Yahoo! - del.icio.us - Santa Clara

Microsoft - Powerset - Albuquerque

A&E Television - Lifetime Ent. Services

Table 5 Results for exemplar query “Condom Sex HIV infection”

Q2: Condom - Sex - HIV infection

Sex - HIV infection - Safe sex

Sex - HIV infection - Sexual abstinence

Safe sex - Vertical transmission - Hepatitis B

Safe sex - Vertical transmission - Syphilis

Hand washing - Droplet Contact - Cold

Table 6 Results for exemplar query “Google YouTube Menlo Park”
with strong simulation

Q1: Google - YouTube - Menlo Park

Google - AdMob - YouTube [...] - Menlo Park

YouTube - Next New Networks - San Mateo

Yahoo! - Inktomi - Del.icio.us, Inc. [...] - Santa Clara

AOL - Sphere - Netscape - USA

John Wiley & Sons - InfoPOEMs - New York City

Table 7 Results for exemplar query “Condom SexHIV infection” with
strong simulation

Q2: Condom - Sex - HIV infection

Sex - Condom - HIV infection - Safe Sex [...] - Candiasis

Sex - Condom - Unsafe Sex - [...] - Pelvic inflammation

Vaccine - Poor Hygiene - Immunodeficiency [...] - Influenza

Contact with infected person - Aciclovir [...] - Chickenpox

DPT vaccine - Child age - Droplet Contact [...] - Pertussis

Menlo Park. This is the result of the maximality enforced
by strong simulation, which compresses several isomorphic
answers in one single simulating answer. Similarly, the third
result (that does not contain any node of the query) represents
all the acquisitions by Yahoo, along with the Santa Clara
node. Contrary to isomorphism, strong simulation correctly
groups answers having the same root node (e.g., Yahoo).
Table 7 shows how themaximality condition reduces the size
of similar answers. Indeed, all the results that are in the first
two rows of Table 5 are condensed in the first result in Table 7
that represents all the risk factors and prevention methods
for sexually transmitted infections. We observe that some
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Fig. 12 Execution time gain distribution as a result of pruning (Real
dataset)

nodes are still repeated among different results, concluding
that strong simulation does not necessarily collapse all the
redundant information in one single answer. Nonetheless,
we still obtain good clusters of answers. Note that Table 7,
in rows 3 and 4, presents relevant answers about other con-
tagious infections not related to sex, thus offering a richer,
more diverse answer set. These results are also present in the
isomorphic answers, but in much lower-ranked positions.

8.3 Pruning effectiveness

We now study the impact of pruning on query time and the
effect of selectivity on pruning time.
Pruning impact: We perform a batch of experiments using
repeatedly the query test set, comparing the query time with
and without applying IterativePruning, and depict the
results in Fig. 12. The parameter d of IterativePruning
(Sect. 5.1) determines how large is the d-hop nodes set of
each node and it is compared to the similar representation
for each node of the query.

By definition, a higher value of d causes a more aggres-
sive pruning of the search space.We note that, as discussed in
Sect. 5.1, our pruning technique does not modify the quality
of the final result set, nor does it discard any relevant result.
Nonetheless, Theorem 1 suggests that values of d larger than
the query diameter (i.e., 3 or greater for our queries) have
no impact on pruning power. Fig. 13 validates this claim,
showing that the added benefit with d = 3 is minimal. In
practice, these results show that graph structures captured
by the node’s 3-hop nodes (i.e., for nodes at distance 3)
have insignificant additional discriminative power. There-
fore, building d-hop node tables for d = 3, or more, would
not be beneficial in terms of pruning and would instead be
detrimental in terms of performance.

Overall, pruning results in querying time reductions
between 3 and 99%. Interestingly, for 17% of the queries,
pruning does not affect query time. The reason is that prun-
ing is more effective when the the frequencies in the graph
of the sample edge-labels are low, since a large part of the

Fig. 13 Pruned edges distribution (Real dataset)

graph is eliminated with fewer operations. This observation
allows us to run the IterativePruning on demand. On aver-
age, IterativePruning reduces query time by 30% and the
graph size by 80% (by removing non-matching edges). This
entire batch of experiments takes 17 minutes to run with
pruning and 38 without, saving 55% of the total time.
Pruning selectivity: We study the performance of pruning
in terms of time as a function of the selectivity of the start-
ing node in the sample. Remember that low selectivity means
better pruning (see Eq. 1).We run experiments measuring the
correlation between time and selectivity, selecting the differ-
ent nodes of the sample as starting nodes. The results show
a positive correlation of 0.57 between selectivity and time
performance, which is statistically significant at the 0.01 sig-
nificance level.We conclude that starting froma low selective
node positively impacts the pruning time, with savings up to
87%.

8.4 Calibrating SelectQueryNeighborhood

We study the effect of τ on SelectQueryNeighborhood

in terms of time and quality of the results. The parameter τ

of SelectQueryNeighborhood determines the degree of
approximation of the estimation of PPV of each node and
is directly related to the number of answers retrieved and
to the running time. In Fig. 15c, f, we plot the size of the
neighborhoods (counts of vertices and edges from the graph)
visited for increasing values of τ (from 0.001 to 0.01) and
the number of answers retrieved in each case. We refer to
visited vertices/edges as the vertices/edges retrieved by our
SelectQueryNeighborhood algorithm. We then search
for relevant answers in the graph containing only such nodes
and edges. In general, we see in Fig. 14 that, for values of τ

equal or greater than 0.005, the vast majority of queries run
in less than 1s. On the other hand, when we use values of τ

equal or smaller than 0.003, we see that some queries start
taking more than 10 seconds.

We witness an exponential decay in the number of visited
nodes and edges as τ increases, which is proportional to the
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Fig. 14 Distribution of running time versus ApFastXQ threshold
(Real dataset)

number of answers retrieved. This is mirrored in Fig. 15a, d
by a decrease in the time needed to retrieve the query neigh-
borhood and to prune it. In line with this, Fig. 15b, e shows
that with larger values of τ , the total time needed to com-
pute the results decreases in the same manner. Thus, with a
larger neighborhood, we find more answers to the query, at
the expense of higher execution times.

We observe that the average time required by strong simu-
lation to compute the set of maximal d-graphs is higher than
isomorphism (Fig. 15b), but as the median result demon-
strates (Fig. 15e), this is only true for very few large and
complex queries. There is also a noticeable difference in
the number of answers retrieved by strong simulation and

isomorphism (see Fig. 15c, f). This is a natural conse-
quence of the strong simulation algorithm and a desirable
effect, because all the results are grouped in fewer but larger
answers. Fig. 16 validates this claim, showing that even
though strong simulation retrieves less answers, those involve
between22%(for τ = 0.01) and48%(for τ = 0.0003)more
distinct nodes than isomorphism. As expected, we found that
for every query the answer set retrieved with strong simula-
tion is a superset of the one retrieved with isomorphism.

In order to better understand the time performance behav-
ior of our approach, we measured the correlation between
search time and a number of query characteristics: diam-
eter, density, number of repeated edge labels and average
label frequency. With isomorphism as congruence relation,
the number of repeated edge labels positively correlates with
the running time, as shown in Fig. 17. This correlation is sta-
tistically significant with p value<0.001.We also observed a
weak correlation (p value <0.01) between the average num-
ber of times a label appears in the query and the search time.

Note that these observations do not hold for strong sim-
ulation. The performance of strong simulation depends only
on the size of the graph, since the Match algorithm is not
affected by the characteristics of the queries [32].

We now evaluate the quality of the answers produced by
ApFastXQ, bymeasuring precision at 1,5,10, 50,100, where
precision at k (abbreviated P@k) is defined as the fraction
of results produced by FastXQ that are also produced by

(a) (b) (c)

(d) (e) (f)

Fig. 15 Study of the average (top) and median (bottom) time and
number of results (count) as a function of the threshold τ , compar-
ing isomorphism and simulation with the ApFastXQ/ApFastXQSim
algorithms, a average neighbor and pruning time, b average total time,

c average count in terms of number of answers and visited edges/nodes,
d median neighbor and pruning time, e median total time, f median
count in terms of number of answers and visited edges/nodes
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Fig. 16 Percentage increment in vertex cardinality for strong simula-
tion answer answer set compared to isomorphism (Real dataset)

Fig. 17 Search time versus number of repeated labels

Table 8 Precision of ApFastXQ varying τ

τ P@1 P@5 P@10 P@50 P@100

0.002 1 0.99 0.99 0.85 0.75

0.003 1 0.97 0.94 0.80 0.73

0.004 1 0.95 0.93 0.71 0.60

0.005 1 0.94 0.92 0.66 0.56

ApFastXQ in the first k positions. Table 8 shows that overall
precision is high, especially for the top positions. Any value
of τ between 0.003 and 0.005 is a reasonable choice, leading
to high precision and an average query time of less than 2.4
seconds. Evidently, the choice of this parameter depends on
the application. In a biological setting, where precision is
more important than time, τ = 0.002 could be a reasonable
choice, producing very precise answers in about 10 seconds.
On the web, where timely answers are needed, τ = 0.005
can still offer precise answers in the top positions, in <1s.
In our experiments, we use τ = 0.003.

8.5 Top-k results

We now study the performance of the TopKXQ algorithm
and compare it against both FastXQ and AppFastXQ. We
measure the portion of the graph explored by each solution,
counting the number of nodes and edges used during the

Fig. 18 Average and median number of edges and nodes visited, com-
pared to running time, on GSize-10

isomorphic test. In this experiment, we use GSize-10 and
look for the top-10 answers. We report the results in Fig. 18.

We can see that FastXQ explores the entire graph,
while TopKXQ visits more than an order of magnitude less
nodes and edges. This considerable improvement is possi-
ble, because TopKXQ directly computes the top-k answers,
while FastXQ has to first compute all the answers, and then
rank them.

The AppFastXQ algorithm explores the smallest portion
of the graph, namely four and three orders of magnitude less
than FastXQ and TopKXQ, respectively. This speedup is
due to the fact that the answer set produced byAppFastXQ is
approximate, while the other two algorithms always provide
the optimal answers. Nevertheless, as we discussed earlier
(refer to Table 8), this approximate set of answers overlaps
almost completely with the optimal set of answers, and they
always contain the same top-1 answer.

8.6 Scalability

We present the scalability experiments as a function of the
number of answers and the size of the database. Figure 19
shows the number of visited edges and nodes, and the number
of results when the number of embedded answers increases
(recall that QSize-x contains exactly x answers for each
exemplar query). Figure 20 depicts the time of ApFastXQ,
broken down in the times required by the three components of
the algorithm. We observe that using SelectQueryNeigh-
borhood as the number of answers increases from 60 to
100, the number of explored nodes remains almost the same.
This is expected, since SelectQueryNeighborhood does
not explore more nodes as long as the structure of the graph
remains almost unchanged, but it finds more answers embed-
ded in the same subgraph.
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Fig. 19 Count versus number of answers (QSize-x dataset)

Fig. 20 Time versus number of answers (QSize-x dataset)

Fig. 21 Count versus number of nodes (GSize-x dataset)

Conversely, if the size of the dataset increases and the
number of answers is fixed, it is less likely to find answers
close to the exemplar query. As expected, since the num-
ber of nodes explored is almost the same (see Fig. 21), the
time remains constant (see Fig. 22), even though we move
from 500k to 20M nodes. This supports our design choice,
since changes in the peripheral part of the graph do not affect
APPV.

9 Conclusions

In this paper, we introduce and define a novel query paradigm
called exemplar queries and describe how it is applied in the

Fig. 22 Time versus number of nodes (GSize-x dataset)

case of knowledge graphs, where it requires the search for
subgraph isomorphism in order to evaluate a query. We also
propose a more flexible congruence relation, based on strong
simulation. For both congruence relations, we propose an
exact solution based on an effective and theoretically sound
pruning technique, a fast algorithm for the search of top-k rel-
evant exemplar answers and an efficient approximation algo-
rithm. We evaluated our approach using in its entirety (for
the first time in the literature) one of the biggest multigraphs
available and coupled our results with a user study, demon-
strating the efficiency and usefulness of the proposed system.
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