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Abstract The advancement of World Wide Web has rev-
olutionized the way the manufacturers can do business. The
manufacturers can collect customer preferences for products
and product features from their sales and other product-
related Web sites to enter and sustain in the global market.
For example, the manufactures can make intelligent use of
these customer preference data to decide on which prod-
ucts should be selected for targeted marketing. However, the
selected products must attract as many customers as possible
to increase the possibility of selling more than their respec-
tive competitors. This paper addresses this kind of product
selection problem. That is, given a database of existing prod-
uctsP from the competitors, a set of company’s own products
Q, a dataset C of customer preferences and a positive inte-
ger k, we want to find k-most promising products (k-MPP)
from Q with maximum expected number of total customers
for targeted marketing. We model k-MPP query and propose
an algorithmic framework for processing such query and its
variants. Our framework utilizes grid-based data partitioning
scheme and parallel computing techniques to realize k-MPP
query. The effectiveness and efficiency of the framework are
demonstrated by conducting extensive experiments with real
and synthetic datasets.
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1 Introduction

The competitive products are the alternative choices poten-
tial customers can decide to buy over any available product.
The rampant use ofWorldWideWeb for selling goods online
allows the manufacturer to collect customer preferences for
product features, e.g., search queries of online users and
thereby, make intelligent use of these preference data to
identify the competitive products as well as the potential
buyers for them. The study of competitive products is cru-
cially important for the manufacturers to sustain in the global
market and has attracted considerable attention to the com-
munity ([1,6,9,13–15,20,25,27,28,30] for survey), e.g., the
sale department can exploit this kind of study to find cus-
tomer groups who are most likely to buy their products and
also, to design specialized promotions, advertisement cam-
paigns, coupons or similar promotions to expedite the sales
of their products. In general, the promotion events are meant
to increase the sales of the products and thereby, increase the
overall revenue. However, several products might be inter-
esting for the same customer and not all products contribute
equally to attract customers in the market. Therefore, the
manufacturers wish to identify only a subset of products that
can possibly attract the highest number of customers in the
market so that the advertising and other costs spread over a
larger number of customers.

Consider another example from the jobmarket area where
a software firm wishes to hire some employees to fill up a
few vacant positions. The firm can advertise these positions
alongwith the required skills and employment benefits.How-
ever, the advertised positions need to compete with other job
openings available in the market. Therefore, the firm wishes
to attract as many candidates as possible so that the probabil-
ities of getting more interviewees are increased and the firm
can select some best employees by interviewing them. Here,
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we can treat the firm as the manufacturer, job openings as
products and the candidates as the customers.

The above product selection problem is defined as follows:
given a set of products P from existing market, a set of own
products Q called query products, a dataset of customer pref-
erences C where C � P � Q, find k products from Q with
maximum expected number of total customers. We term this
as finding k-most promising products (k-MPP). The solution
to this k-MPP product selection problem requires a product
adoption model for the customers and a product selection
strategy for the manufacturer. The product adoption model
tells which products are competing with each other to attract
a particular customer and how much a product contributes
to attract a customer. On the contrary, the product selection
strategy tells how to select products with maximum expected
number of customers.

In this paper, we present a novel product adoption model
and a product selection strategy based on dynamic skyline
[2,18] and reverse skyline [4,12] queries. The dynamic sky-
line query is used to retrieve data (products) from customer’s
perspective, and reverse skyline query is used to retrieve data
(customers) from manufacturer’s perspective. Given a data-
base of products P and a customer preference c as query, the
dynamic skyline query for c retrieves all products p1 ∈ P
that are preferable to c than other products p2 ∈ P . That
is, products p1 match the preference of c better than other
products p2 in P . On the other hand, given a database of
customer preferences C , products P and a query product p1,
the reverse skyline query retrieves all customers c ∈ C that
prefer p1 than any other product p2 ∈ P . In other words, the
reverse skyline of p1 consists of all customers c that include
p1 in their dynamic skylines. Both the dynamic skyline and
reverse skyline queries follow the around-by semantics, i.e.,
absolute differences between the product attributes’ values
and the customer preferences in those attributes. These types
of queries are studied in [29] and [1] for supporting mar-
ket research queries. These works assume that a customer
appearing in the product’s reverse skyline contributes 100%
for the sustainment of the product in the market, i.e., the
influence of a product is defined by its reverse skyline size.
However, the dynamic skyline of a customer may consist
of products from the competitors in the market, not only the
company’s own products. That is, a customer may have other
products in her preference list and none of them is dominated
by the manufacturer’s own product (and vice versa). There-
fore, the manufacturers cannot be firm about the adoption
of the product by a customer; rather, they may associate a
probability with it. Existing market research queries [1,29]
disregard the above.

In our model, we associate a probability with the prod-
uct adoption among customers based on dynamic dominance
(i.e., around-by semantics) and skylines (i.e., preference-
based queries). The models in [13] and [30] also associate

a probability with the product adoption among customers.
However, these models [13,30] assume that a product satis-
fies the requirements of a customer if the product attributes’
values are less than or greater than the customer-specified
preferences in those attributes. Therefore, these models fail
to model the scenarios where a customer might not like to
minimize or maximize certain quality metric of a product.
For example, a customer may not like a too small or a too big
screen for a laptop; rather, he/she may like a certain range
for it. This kind of preferences can only be modeled appro-
priately in dynamic skyline and reverse skyline queries with
around-by semantics, i.e., the absolute differences between
product attributes’ values and the customer preferences in
those attributes.

We also present a novel product selection strategy for
finding k-most promising products (k-MPP) with maximum
expected number of customers for the manufacturers based
on our product adoption model. The basic computational
units of a k-MPP query are dynamic and reverse skylines.
Though there are a number of established studies on dynamic
[18] and reverse [1,4,5,19,29] skylines, none of them are
efficient for processing k-MPP queries. Most of these works
either rely on index structures that are query dependent
or are not optimized for multiple units. In this paper, a
query-independent grid-based data partitioning scheme is
developed to process k-MPP queries by designing parallel
algorithms for them. Our index scheme selectively stores
one or more data objects as pivots from each partition to
filter data objects belonging to a partition as early as possible
while processing the basic computational units of a k-MPP
query. Further, an approach is developed for grouping mul-
tiple queries and processing them together with expedite the
efficiency.

The main contributions of this paper are as follows:

– We develop a novel probabilistic product adoptionmodel
among customers based on dynamic and reverse skylines.

– We develop a novel product selection strategy for finding
the k-most promising products (k-MPP for short) with
maximum expected number of customers.

– We present a parallel computing approach for process-
ing k-MPP product selection query and its variants by
designing a simple yet efficient query-independent grid-
based data partitioning scheme.

– We also demonstrate the effectiveness and efficiency of
our approach by conducting extensive experiments with
both real and synthetic datasets.

The paper is organized as follows: Sect. 2 provides the
necessary background and preliminaries; Sect. 3.1 presents
our product adoptionmodel; Sect. 3.2 describes the proposed
product selection strategy, the k-MPP query and its vari-
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ants; Sect. 4 analyzes the complexity of computing k-MPP
queries; Sect. 5 describes our approach; Sect. 6 presents the
experimental results; Sect. 7 describes the related work; and
finally, Sect. 8 concludes the paper.

2 Background

Data modelWe consider each product p ∈ P , query product
q ∈ Q and customer (customer preference) c ∈ C as a
d-dimensional data object. Without any loss of generality,
we assume that each data object stores only numeric values
in its dimensions. The i th-dimensional values of a product,
query product and customer are denoted by pi , qi and ci ,
respectively. In general, we use ob to denote any data object
from these three datasets, unless otherwise it is explicitly
specified.

Definition 1 (Dynamic dominance) A data object ob1
dynamically dominates another data object ob2 w.r.t. a third
data object ob3, denoted by ob1 ≺ob3 ob2, if ob1 is closer to
ob3’s values in all dimensions and is strictly closer to ob3’s
value in at least one dimension than ob2. Mathematically,
the relation ob1 ≺ob3 ob2 holds iff (a) |obi3 − obi1| ≤ |obi3 −
obi2|,∀i ∈ [1, ..., d] and (b) |obi3 − obi1| < |obi3 − obi2|, ∃i ∈
[1, ..., d].
Example 1 Consider the dataset of products and customers
given in Fig. 1. According to Definition 1, p1 dynamically
dominates p3 w.r.t. c1, i.e., p1 ≺c1 p3, as |c11 − p11| = |2 −
6| = 4 ≤ |c11 − p13| = |2−6| = 4 and |c21 − p21| = |8−6| =
2 ≤ |c21 − p23| = |8 − 20| = 12.

From Definition 1, it is easy to verify that dynamic
dominance relies on around-by semantics, which is also
exemplified in Example 1. Dynamic dominance plays a very
important role in modeling the customer preferences for a
product in dynamic skyline [18] and reverse skyline [4]
queries and studied extensively to establish the customer–
product relationship [1,29].

ID Dim1 Dim2
p1 6 6
p2 4 18
p3 6 20
p4 9 15
p5 12 18
p6 16 14
p7 12 6
p8 16 6
p9 20 8
p10 20 20

(a)

ID Dim1 Dim2
c1 2 8
c2 4 10
c3 6 16
c4 8 18
c5 10 10
c6 16 14
c7 12 2
c8 18 6
c9 18 18
c10 20 13
(b)

Fig. 1 A dataset of products (P) and customers (C), a products in the
market, b customer preferences

2.1 Dynamic skyline

Definition 2 (Dynamic skyline [18]) The dynamic skyline of
a customer c ∈ C , denoted byDSL(c), consists of all products
p1 ∈ P that are not dynamically dominated by other products
p2 ∈ P w.r.t. the customer c, i.e., p2 ⊀c p1.

Example 2 Consider the dataset given in Fig. 1. According
to Definition 2, the dynamic skyline of customer c5 con-
sists of products p4, p7 and p9 as these products are not
dynamically dominated by other products in P w.r.t. c5. Sim-
ilarly, the dynamic skylines of c3 and c4 are {p2, p3, p4} and
{p2, p3, p4, p5}, respectively.

The dynamic skyline DSL(c) consists of all products
p1 ∈ P that dynamically match the customer preference
c better than any other product p2 ∈ P . Therefore, the
dynamic skyline query is used to retrieve products from cus-
tomer’s perspective or point of view. We say every product
p ∈ DSL(c) competes with each other for the customer c to
enter into the market, e.g., products p4, p7 and p9 compete
with each other for c5.

2.1.1 Dynamic skyline computation

A large number of dynamic skyline of a customer indicate
more choices for the customer. The dynamic skyline of c
can be computed by any traditional skyline computing algo-
rithm [2] having all products p ∈ P transformed to a new
data space where point c is considered as the origin and the
absolute distances to c are used as the mapping functions
[18] as shown in Fig. 2. Themapping function, f i , is defined
as f i (pi ) = |ci − pi |.

2.2 Reverse skyline

Definition 3 (Reverse skyline [4]) The reverse skyline of a
product p1, denoted by RSL(p1), consists of all customers
c ∈ C such that p1 is not dynamically dominated by other
products p2 ∈ P w.r.t. the customer c, i.e., p2 ⊀c p1. In
other words, the reverse skyline of a product p1 retrieves
all customers c ∈ C such that p1 appears in the dynamic
skylines of c.

Example 3 Consider the dataset of products and customers
given in Fig. 1. The reverse skyline of product p4 con-
sists of customer c3, c4 and c5 as each of them includes
the product p4 in their dynamic skylines. Similarly, the
reverse skyline of p3 and p5 is RSL(p3) = {c3, c4} and
RSL(p5) = {c4, c9}, respectively.

We say that all customers appearing in RSL(p) prefer
the product p to others. Therefore, these customers are con-
sidered to be the potential buyers for the product p1 in the
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Fig. 2 Computing the dynamic skyline of the customer c5

market [1], e.g., c3, c4 and c5 are the potential buyers for the
product p5. A large number of reverse skyline indicate more
customers for a product.

Definition 4 (Influence set of a product [1,29]) The influ-
ence set of a product p ∈ P , denoted by I S(p), consists of
the customers c ∈ C that appear in the reverse skyline of p,
i.e., RSL(p). The influence score of p is measured by the
size of the set, i.e., |I S(p)|.
Example 4 Consider the dataset of products and customers
given in Fig. 1. The influence set of product p4 consists of
customer c3, c4 and c5, i.e., I S(p4) = {c3, c4, c5} and the
influence score of p4 is |I S(p4)| = 3. Similarly, the influ-
ence score of p3 and p5 is |I S(p3)| = |{c3, c4}| = 2 and
|I S(p5)| = |{c4, c9}| = 2, respectively.

2.2.1 Reverse skyline (influence set) computation

To compute the reverse skyline of a product p1, firstly we
need to compute the midpoint skyline (also known as mid-
skyline [29]) for each orthant O of p1. A product p1 has
2d orthants in a d-dimensional dataspace. The orthant of
an object ob2 with respect to an object ob1 is calculated
as follows: Oi = 0 if obi2 ≤ obi1, 1 otherwise . The mid-
point for each product p2 ∈ P w.r.t. p1 is calculated as
mi

2 = (pi1 + pi2)/2. Then, we need to compute the skyline
of these midpoints for each orthant (as shown for p4 in Fig.
3). Secondly, we need to checkwhether a customer c is domi-
nated by these midpoint skylines w.r.t. p1 or not. A customer
c is dominated by a midskyline point m w.r.t. the product
p1 iff (a) |pi1 − mi | ≤ |pi1 − ci |,∀i ∈ [1, ..., d] and (b)
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Fig. 3 Computing the reverse skyline of the product p4

|pi1 − mi | < |pi1 − ci |, ∃i ∈ [1, ..., d]. If c is not dominated
by any of the corresponding midpoint skylines w.r.t. p1, then
c appears in the reverse skyline of p1. To know more about
midpoint skyline and its role in reverse skyline computation,
interested readers are referred to [29].

Table 1 shows the list of symbols used in the paper.

3 The proposed product adoption model and
selection strategy

This section presents our product adoption model and the
product selection strategy.

3.1 The proposed product adoption model

We propose a uniform product adoption (UPA) model based
on dynamic and reverse skylines. In our model, we assume
that every product p ∈ P appearing in the dynamic skyline
of the customer c ∈ C , i.e., DSL(c), competes with each
other to attract the customer c. Also, the customers c ∈ C
that appear in the reverse skyline of p ∈ P , i.e., RSL(p),
are the potential buyers for the product p. The UPAmodel is
described below.

Definition 5 Given a set of existing products P in the mar-
ket, the probability by which the customer will buy the
product p, denoted by Pr(c, p|P), is given as:

Pr(c, p|P) =
{

1
|DSL(c)| if p ∈ DSL(c)

0 otherwise
(1)

It is easy to verify that Eq. (1) does not show any biasness
toward any particular product that appears in DSL(c). That
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Table 1 The list of symbols

Symbol Meaning

P A set of products in the market

C A set of customers

Q A set of company’s own product

D P ∪ C

d The number of dimensions in D

p A product in P

c A customer in C

q A product in Q

ob An object in D

DSL(c) Dynamic skyline of c

RSL(p) Reverse skyline of p

Pr(c, p|P) Probability by which c buy p

E(C, p|P) Market contribution of p given P

E(C, P ′|P) Market contribution of the set P ′ given P

|I S(p)| Influence score of p

|I S(P ′)| Influence score of P ′

k-MPP The k-most promising products

k-MPPind Independent k-MPP

k-MPPdep Dependent k-MPP

m Number of threads (i.e., worker nodes)

n Grid size

Dl The lth partition of D

posl The positional vector of Dl

δi Side length of a partition in i th dimension

loc(ob) Partition of D that contains ob

Nc(D) Search space of DSL(c)

Nq (D) Search space of RSL(q)

N+
q (D) Extended search space of RSL(q)

M The midpoint skyline

is, every product in DSL(c) has the equal chance of being
selected by c and the products not appearing in DSL(c) do
not have any chance of being selected by c. Therefore, we
get the following:

∑
∀p∈P

Pr(c, p|P) = 1 (2)

Under UPA model, a customer c is considered to be a
valued customer for a product p if the customer c contains
the product p in its dynamic skyline exclusively. It is assumed
that the manufacturers like to increase the number of valued
customers for their products.

Example 5 Consider the dataset given in Fig. 1. The proba-
bility of p4 being chosen by the customer c5 is Pr(c5, p4|P)

= 1
|DSL(c5)| = 1

3 as |DSL(c5)| = 3 (from Example 2). Sim-

ilarly, the probabilities of p4 being chosen by customers c3
and c4 are 1

3 and 1
4 , respectively.

3.1.1 Market contribution

The market contribution of a product p ∈ P is measured
by the expected number of total customers in C that might
choose to buy the product p over other products in P . We
assume that a customer would be equally interested in each
product that appears in her dynamic skyline. Thus, the cus-
tomer assigns an equal weight to the product that is inversely
proportional to the size of the dynamic skyline as described
in Sect. 3.1. Finally, the contribution of a product becomes
the sum of the weights it receives from all the customers in
the market.

Definition 6 Given a set of products P and a set of cus-
tomers C , the market contribution of a product p, denoted
by E(C, p|P), is obtained by adding the probabilities
Pr(c, p|P) of each customer c in C as follows:

E(C, p|P) =
∑
∀c∈C

Pr(c, p|P) (3)

As the customers c appearing in the reverse skyline of p
are the only potential buyers for p (as per Definition 3) and
the probabilities of p being chosen by customers that do not
contain p in their dynamic skylines are zero (as per Eq. 1),
Eq. 3 reduces to the following:

E(C, p|P) =
∑

∀c∈RSL(p)

Pr(c, p|P) (4)

Example 6 Consider the dataset given in Fig. 1. The mar-
ket contribution of p4 is E(C, p4|P) = Pr(c3, p4|P) +
Pr(c4, p4|P) + Pr(c5, p4|P) = 1

3 + 1
4 + 1

3 = 11
12 . Simi-

larly, the market contribution of p3 and p5 is E(C, p3|P) =
Pr(c3, p3|P) + Pr(c4, p3|P) = 1

3 + 1
4 = 7

12 and
E(C, p5|P) = Pr(c4, p5|P)+ Pr(c9, p5|P) = 1

4 + 1
2 = 3

4 ,
respectively.

Definition 7 Given a set of products P and a set of customers
C , the market contribution of a product set P ′, denoted by
E(C, P ′|P), is obtained by adding the market contribution
of each product p ∈ P ′ as follows:

E(C, P ′|P) =
∑

∀p∈P ′
E(C, p|P) (5)

Example 7 Consider the dataset of products and customers
given in Fig. 1. Assume that P ′ is a product set consisting
of p3, p4 and p5. The market contribution of the prod-
uct set P ′ is E(C, P ′|P) = E(C, p3|P) + E(C, p4|P) +
E(C, p5|P) = 7

12 + 11
12 + 3

4 = 2.25.
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Theorem 1 Themarket contributionof aproduct set P ′ ⊆ P
is bounded as follows: 0 ≤ E(C, P ′|P) ≤ |C |.
Proof By putting Eq. 3 into the formula of E(C, P ′|P) given
in Eq. 5, we get the following:

E(C, P ′|P) =
∑
∀c∈C

∑
∀p∈P ′

Pr(c, p|P) (6)

Now, assume that P ′ = P; then, all customers c ∈ C are
the potential buyers for the products p in P ′. From Eq. 2, we
get

∑
∀p∈P ′ Pr(c, p|P) = 1 as P ′ = P . Therefore, Eq. 6

becomes as given as follows:

E(C, P ′|P) =
∑
c∈C

1 = |C |.

Again, assume that P ′ ⊂ P and ∃c1 ∈ C that includes
at least a product p1 ∈ P \ P ′ in its dynamic skyline, i.e.,
p1 ∈ DSL(c1). Then, Eq. 2 becomes:

∑
∀p∈P ′

Pr(c1, p|P) +
∑

∀p1∈P\P ′
Pr(c1, p1|P) = 1.

We know that
∑

∀p1∈P\P ′
Pr(c1, p1|P) > 0 as p1 ∈

DSL(c1), which gives us the following:

∑
∀p∈P ′

Pr(c1, p|P) < 1.

By putting the above into Eq. 6, we get:

E(C, P ′|P) <
∑
c∈C

1 = |C |.

Finally, assume that P ′ ⊂ P and every product p ∈ P ′ is
dynamically dominated by a product p1 ∈ P \ P ′ w.r.t. a c ∈
C . Then, Eq. 2 becomes

∑
∀p∈P ′

Pr(c, p|P) = 0. Therefore,

Eq. 6 becomes as given as follows:

E(C, P ′|P) =
∑
c∈C

0 = 0.

Hence, the theorem. �

3.1.2 Market contribution versus influence score

Definition 8 (Influence score of a product set [1]) The influ-
ence set of a product set P ′, denoted by I S(P ′), consists of
all customers c ∈ C that appear in the reverse skyline of
p ∈ P ′, i.e., I S(P ′) = ∪

∀p∈P ′ I S(p). The influence score of

P ′ is measured by the size of the set I S(P ′) and is denoted
by |I S(P ′)|.

Example 8 Consider the dataset given in Fig. 1. The influ-
ence set of the product set P ′ = {p3, p4, p5} consists of
customers c3, c4, c5 and c9, i.e., I S(P ′) = {c3, c4, c5, c9}.
Therefore, the influence score of P ′ is |I S(P ′)| = 4.

There is a clear distinction between the market contri-
bution proposed in this paper and the influence score [1,29].
We argue that themarket contributionmetric ismore realistic
than the influence score for measuring the product sustain-
ment in the market. For example, if we consider the influence
score metric to judge the product sustainment in the market,
then both product p3 and p5 are the same (see Example 4).
However, if we consider the market contribution, then p5
is preferable to the manufacturer than p3 as the expected
number of customers of p5 is greater than that of p3. The
influence score metric [1] assumes that the number of actual
customers of a product set is equivalent to its influence set
size, which is an overestimate of the expected number of
customers in the market. The market contribution metric
measures the expected number of customers probabilistically
by taking into account all plausible choices of a customer, i.e.,
the market contribution combines both the customers’ per-
spective and the manufacturers’ perspective into the metric.
The existing influence score[1] considers the manufacturers’
perspective only.

3.2 The proposed product selection strategy

We propose a novel product selection strategy for the man-
ufacturers based on the UPA model developed in Sect. 3.1.
The new query is called k-most promising products (k-MPP)
selection query as given below.

Definition 9 (Generalized k-MPP query) Given a set of
existing products P , a set of own products Q, a set of
customers C and a positive integer k less than |Q|, the k-
MPP query, denoted by k-MPP(Q, P,C), selects a subset
of k products Q′ from Q which has the market contribution
greater than any other subset of k products Q′′ of the product
set Q.

The above presents a generalized product selection query,
which can be specialized. We present two variants of it based
on the competition among the own products: (a) independent
and (b) dependent k-MPP.

3.2.1 Independent k-MPP

We define a k-MPP query as independent k-MPP, denoted
by k-MPPind , where the query products in Q do not com-
pete with each other. That is, products in Q are considered
independentlywhile computing their contribution in themar-
ket. For example, the competitors of q1 w.r.t. customer c2 is
shown in Fig. 4a, where q1 does not compete with any other
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Fig. 4 Competitors of the product q1 in a independent and b dependent k-MPP query settings w.r.t. customer c2

products from Q, but products from their competitors only,
i.e., P . This kind of k-MPP query is suitable in scenarios
where a manufacturer considers to offer variants of the same
type of product among the customers and likes to expedite the
sales via market segmentation; or a job applicant is wished to
be interviewed by each sub-team in a company if she satisfies
the requirements of each of them.

Definition 10 (k-MPPind query) Given Q, P and C , a k −
MPPind query is realized as:

k-MPPind(Q, P,C) = argmax
Q′⊆Q,|Q′|=k

E(C, Q′|P) (7)

Example 9 Consider the dataset of existing products and cus-
tomers given in Fig. 1. Assume that we are given four query
products Q : {q1(12, 12), q2(7, 15), q3(14, 11), q4(19, 11)}
and the manufacturer wishes to retrieve top 3-products from
Q with the maximum number of total customers. The mar-
ket contribution of q1 is E(C, q1|P) = Pr(c2, q1|P) +
Pr(c5, q1|P) = 1

2 + 1
3 = 5

6 . Similarly, we get E(C, q2|P) =
Pr(c3, q2|P)+ Pr(c4, q2|P) = 1

2 + 1
5 = 7

10 , E(C, q3|P) =
Pr(c2, q3|P)+ Pr(c5, q3|P) = 1

3 + 1
3 = 2

3 and E(C, q4|P)

= Pr(c2, q4|P) + Pr(c5, q4|P) + Pr(c8, q4|P)

+ Pr(c9, q4|P) + Pr(c10, q4|P) = 1
3 + 1

3 + 1
2 + 1

3 +
1
3 = 11

6 . In k − MPPind , we chose q1, q2 and q4 as
E(C, {q1, q2, q4}|P) = 5

6 + 7
10 + 11

6 = 3.37 is the high-
est than any other 3-query products in the set Q.

3.2.2 Dependent k-MPP

Wedefine a k-MPP query as dependent k-MPP, denotedby k-
MPPdep, where we allow the query products in Q to compete

with each other. That is, we compute the market contribution
of q considering the products not only from P , but also from
Q as q’s competitors. For example, the competitors of q1
w.r.t. customer c2 is shown in Fig. 4bwhere q1 competes with
the products from P as well products from the query product
set Q. This kind of k-MPP query is useful for scenarioswhere
a manufacturer wishes to judge the sustainment of a new
product which is a variant of an existing product; or a job
applicant is wished to be interviewed by only one sub-team
in a company.

Definition 11 (k-MPPdep query) Given Q, P and C , a k-
MPPdep query is realized as follows:

k-MPPdep(Q, P,C) = argmax
Q′⊆Q,|Q′|=k

E(C, Q′|P ∪ Q) (8)

Example 10 Consider the dataset of existing products and
customers given in Fig. 1. Assume that we are given
four query products Q : {q1(12, 12), q2(7, 15), q3(14, 11),
q4(19, 11)} and the manufacturer wishes to retrieve top
3-products from Q with the maximum number of total cus-
tomers. The market contribution of q1 is E(C, q1|P ∪ Q) =
Pr(c2, q1|P ∪ Q) + Pr(c5, q1|P ∪ Q) = 1

4 + 1
3 = 7

12 .
Similarly, we get E(C, q2|P ∪ Q) = Pr(c3, q2|P ∪ Q) +
Pr(c4, q2|P ∪ Q) = 1

2 + 1
5 = 7

10 , E(C, q3|P ∪ Q) =
Pr(c2, q3|P ∪ Q) + Pr(c5, q3|P ∪ Q) = 1

4 + 1
3 = 7

12
and E(C, q4|P ∪ Q) = Pr(c8, q4|P ∪ Q) + Pr(c9, q4|P ∪
Q)+ Pr(c10, q4|P ∪ Q) = 1

2 + 1
3 + 1

3 = 7
6 . In k −MPPdep,

we chose q2, q3 and q4 as E(C, {q2, q3, q4}|P ∪ Q) =
7
10 + 7

12 + 7
6 = 2.45 is the highest than any other 3-query

products in the set Q.
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3.3 Related product selection models

There are a number of related product selection models exist
in the literature [1,13,29] and [30]. Given a dataset of prod-
ucts and customers, Wu et al. [29] propose a new algorithm
called BRS to compute the influence set (IS) of a given query
product q, which outperform the branch and bound algorithm
proposed by Dellis et al.[4]. Later, Arvanitis et al. [1] extend
this to select a subset of query products Q′ from a given
product set Q that jointly maximize the size of the influence
set, i.e., |I S(Q′)|. The products in this set are termed asmost
attractive candidates (MAC) and if the size of Q′ is k, then
this is called the k-MAC query.

Theorem 2 Assume that Q′ is the set of k products selected
by the k-MAC query and Q′′ is the set of k products selected
by the k-MPP query optimally from Q. We get the following:
|I S(Q′)| ≥ |I S(Q′′)| but E(C, Q′|P ∪ Q) ≤ E(C, Q′′|P ∪
Q) (also E(C, Q′|P) ≤ E(C, Q′′|P)).

Proof Assume that there are no existing products in the
market, i.e., P = ∅. Then, every customer c ∈ C prefers
one or more products only from the product set Q. Con-
sider a special case where |Q| = 1 and also the value of
k is 1. We get Q′ = Q′′, |I S(Q′)| = |I S(Q′′)| = |C |
and E(C, Q′|P ∪ Q) = E(C, Q′′|P ∪ Q) = |C | (also
E(C, Q′|P) = E(C, Q′′|P) = |C |). Consider another case
where there are three query products q1, q2 and q3 in Q with
RSL(q1) = C1 ∪ C2, RSL(q2) = C1 and RSL(q3) = C3.
We assume that the following relationships hold: (a) C =
C1 ∪ C2 ∪ C3 and (b) C1,C2 and C3 are mutually disjoint.
We get the followings:

(i) E(C, q1|P ∪ Q) = |C1|
2 + |C2|;

(ii) E(C, q2|P ∪ Q) = |C1|
2 ;

(iii) E(C, q3|P ∪ Q) = |C3|;
(iv) I S({q1, q3}) = C1 ∪ C2 ∪ C3 and
(v) I S({q1, q2}) = C1 ∪ C2.

Now, if the value of k is 2, then the optimal k-MAC query
selects q1 and q3 as Q′ from Q as |I S({q1, q3})| = |C1| +
|C2| + |C3| > |I S({q1, q2})| = |C1| + |C2|. However, the
optimal k-MPP selectsq1 andq2 asQ′′ as E(C, Q′′|P∪Q) =
|C1| + |C2| > E(C, Q′|P ∪ Q) = |C1|

2 + |C2| + |C3| for
|C1| > 2 × |C3|. Similarly, we can prove E(C, Q′′|P) >

E(C, Q′′|P). Hence, the theorem. �

Given a set of products and customers, Lin et al. [13] pro-
pose a product selection model called discovering k-most
demanding products, denoted by k-MDP, where a product p
is assumed to satisfy a customer c iff pi ≤ ci . This work also
maximizes the number of expected customers for a subset of
products of a given set of candidate products Q as we do in

our model. Xu et al. [30] propose two types of product selec-
tions models, called k-best selling products (k-BSP) and (b)
k-best-benefit products (k-BBP), that increase the expected
sales in the market. This work also develops a probabilistic
product adoption model by assuming that a product satis-
fies a customer iff pi ≥ ci . However, the product adoption
models of these works [13,30] are not realistic in the sense
that customers do not always wish tominimize/maximize the
attributes of a product, rather they may prefer certain ranges
in them. These attributes can also bemodeled in our approach
by setting the customer preferences to their MIN/MAXes.
Therefore, we argue that our product adoption model is more
robust compared to [13] and [30] as we model product adop-
tion among the customers through around-by semantics (i.e.,
dynamic dominance and skyline) and more sustainable com-
pared to [1,29] as wemodel product selection by considering
both the customer and the manufacturer perspectives (recall
from Sect. 3.1.2).

3.4 Design decision models versus k-MPP queries

The proposed product selection strategy is orthogonal to the
design decision models studied in other domain [7,16]. Like
[7,16], the k-MPP queries consider the product (i.e., the prod-
uct attributes), the consumer (i.e., the customer), the firm
(i.e., themanufacturer) and its competitors (i.e., competitors’
products in the market). The k-MPP queries tend to maxi-
mize the profit (i.e., modeled via the expected number of total
customers) by selecting a subset of products from Q that can
beat the competitors’ product by fulfilling the demand of the
consumer. Unlike top-k queries [3] where weights are used
to rank the objects, the demand of a product is measured by
the customers c that appears in RSL(c) and the alternative
choices of a customer c are determined by the products p
that appears in DSL(c).

4 Complexity analysis

This section analyzes the complexity of processing k-MPP
query by providing a serial execution approach and then, a
hypothetical parallel approach for improving the efficiency.
The k-MPP is a special type of query which requires a dif-
ferent kind of data indexing scheme to expedite its execution
time. We conclude that existing data indexing policies and
parallel skyline computing techniques are inefficient for k-
MPP queries.

4.1 Serial execution of k-MPP query

To process k-MPP query, one can start computing the
dynamic skyline of each customer c ∈ C and then, check
whether DSL(c) contains the product q ∈ Q. Once we
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know DSL(c) of each customer c ∈ C , we can com-
pute Pr(c, q|P) (or Pr(c, q|P ∪ Q)) and E(C, q|P) (or
E(C, q|P∪Q)) for each product q ∈ Q. However, this naive
solution is not efficient as we need to compute |C | dynamic
skylines (recall C � P � Q). The dynamic skyline is itself
computationally very expensive [18]. Not all products in Q
may also be readily available for computing DSL(c) offline
to expedite the computation, e.g., some of the products may
not be manufactured yet, rather they are prototyped on the fly
based on the demand received from the customers (e.g., prod-
uct survey), which requires online computation of DSL(c).
An alternative/better solution to the above is to compute the
reverse skyline of each query product q ∈ Q, then compute
the dynamic skyline only for those customers that appear in
the reverse skyline of q (avoiding unnecessary dynamic sky-
line computations) as suggested in Eq. 4. We term this as the
baseline approach. The efficiency of this solution depends
on the number of query products in Q, the time required to
compute the reverse skylines and the dynamic skylines of the
customers c that appear in RSL(q) of q ∈ Q.

Assume that the average run time of computing RSL(q)

of q ∈ Q and DSL(c) of a customer c in RSL(q) are
TRSL and TDSL , respectively. Also, assume that both TRSL
and TDSL include the time required to build the data index.
Then, the average runtime complexity, T s

k−MPP, of the base-
line approach is given as follows:

T s
k−MPP = |Q| × (TRSL + |RSL(q)| × TDSL) (9)

Equation 9 represents the runtime complexity of execut-
ing a k-MPP query in serial where |RSL(q)| is the average
reverse skylines of the query products q in Q.

4.2 Parallel processing of k-MPP query

Assume that there are m + 1 computing resources (e.g.,
threads, processors and machines) T0, T1, …, Tm available.
We term these computing resources as nodes, where T0 is
regarded as the master node and others as the worker nodes.
The efficiency of the baseline approach can be improved ifwe
compute the reverse skylines and the corresponding dynamic
skylines in parallel. Figure 5 shows a hypothetical parallel
processing strategy of k-MPP query for |Q| = 3 in a 4-
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Fig. 5 A hypothetical parallel processing strategy of k-MPP query

nodes system. Here, we compute either a reverse skyline or
a dynamic skyline query in each node at a time. Assume that
there are three customers for each q ∈ Q on average. In serial
execution, we would have complexity: 3×TRSL +9×TDSL .
As we can execute three skyline queries in parallel in our
hypothetical parallel processing strategy of k-MPP, we will
have complexity: TRSL + 3 × TDSL . That is, the hypothet-
ical parallel processing strategy can achieve speed up ratio
3 as illustrated in Fig. 5. Here, we ignore the implementa-
tion overheadof synchronization, data communication, result
processing, etc. as indicated by TQ in Fig. 5. Therefore, the
runtime complexity of processing k-MPP query in parallel,
T p
k−MPP, in an (m + 1)-nodes ideal system is:

T p
k−MPP = |Q|

m
× (TRSL + |RSL(q)| × TDSL) (10)

The efficiency of the hypothetical parallel processing
strategy of k-MPP can be further expedited as follows:
(1) building query-independent reusable data index; (2)
grouping queries based on their similarities (e.g., signifi-
cant overlap of the search spaces of two or more skyline
queries) and processing them together by sharing their com-
putations; and (3) computing the DSL(c) offline of each
customer c ∈ C considering the product objects p in P and
later, updating it for query products q ∈ Q.

4.3 Limitations of existing approaches

As outlined in Sect. 4.1, the basic units of computation for
processing k-MPP queries are dynamic and reverse skylines
and the efficiency of realizing a k-MPP query in a hypo-
thetical ideal system is much dependent on parallelizing
these units as conceptualized in Sect. 4.2. Though there are
a number of established works on parallelizing traditional
skyline query exist in the literature ([10,17,21,24,31,32] for
survey), none of them are suitable for processing k-MPP
queries in parallel (recall that k-MPP relies on dynamic and
reverse skylines, not the traditional skyline query). To apply
these technique for our problem, we need to transform every
objects into a new space considering each query (q ∈ Q for
reverse skyline) as well as the customer (c ∈ C for dynamic
skyline) as the origin, which is certainly not efficient for solv-
ing k-MPP.

The only work on computing dynamic and reverse sky-
lines in parallel is proposed in [19] using quad-tree. However,
the quad-tree index is query dependent and is designed to
facilitate the computation of a single dynamic and reverse
skyline query in parallel, not multiple skyline queries. There
is also no technique for computing bichromatic reverse
skyline involving both competitor’s products and customer
preferences using quad-tree index. The index needs to be
rebuilt every time if we want to process a new dynamic or
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reverse skyline query. Therefore, the approach proposed in
[19] cannot omit the data index-building time from TRSL and
TDSL in Eq. 10 for processing k-MPP query in parallel. To
the best of our knowledge, there is also no work on group-
ing multiple skyline queries and processing them together by
sharing their data space and computation.

5 Our approach

This section presents our approach for processing the k-MPP
product selection queries in parallel. Firstly, we design a
simple yet very efficient grid-based index structure, which
is query independent, and therefore, the resultant index is
reusable. Then, we show how to efficiently compute the basic
units of a k-MPP query by reducing their search spaces. We
also present an approach for grouping multiple query prod-
ucts q ∈ Q together based on their (extended) search spaces
and thereby, expedite the processing of the k-MPP further.

5.1 Data indexing

We partition the whole data space into regular grids. Then,
we index our dataset P and C by scanning them once. We
also carefully select some of the products p ∈ P as pivots to
establish the partitionwise dominances.

5.1.1 Index structure

We apply an n × n grid to partition the whole data space
D = {P,C}. That is, each dimension is divided into n parts
and there are nd partitions in total for a d-dimensional data
space D. These partitions are termed as D0, D1,…,Dnd−1
and are read in column-major order. Each partition Dl , l ∈
{0, 1, . . . , nd −1}, is qualified by a d-dimensional positional
vector posl , which locates the corresponding partition in the
grid structure. The range of values covered in the i th dimen-
sion of a partition are given as follows: [posil × δi , (posil +
1)×δi ), where δi = max(obi )

n ,∀i ∈ {1, 2, . . . , d} and posi ∈
{0, 1, . . . , n − 1}. The positional vector posl of the partition
in which the data objects belong to are computed as follows:

posil = obi
n ,∀i ∈ {1, 2, . . . , d}. Therefore, the index struc-

ture can identify the location of a data object ob in the grid,
denoted by loc(ob), in O(1) time.

Example 11 Consider the data objects given in Fig. 1. A 3×3
grid index structure of this dataset is shown in Fig. 6. In
this index structure, we have 9 partitions: D0, D1…, D8 and
the corresponding positional vectors of these partitions are:
< 0, 0 >,< 0, 1 >, …, < 2, 2 >, where δ1 = 24

3 = 8
and δ2 = 24

3 = 8. Here, we assume max(obi ) = 24,∀i ∈
{1, 2, . . . , d}. The range of values covered in the 1st and 2nd
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Fig. 6 A 3 × 3 grid index structure of the two-dimensional dataset
given in Fig. 1

Data Object “\n” ... “\n” Data Object

(a)

Grid Header “\n” Partition Info “\n” ... “\n” Partition Info

(b)

Fig. 7 The a data object and b grid index file format

dimensions of partition D1 are [0, 8) and [8, 16), respec-
tively. Similarly, the range of values covered in the 1st and
2nd dimensions of D8 are [16, 24) and [16, 24), respectively.
The location of p2 is < 6

8 ,
18
8 >=< 0, 2 >, i.e., partition

D2.

5.1.2 Index creation

To create the index, we scan the data objects in P and C
sequentially and then, rewrite them in text file(s) as data
objects separated by newlines as shown in Fig. 7a. Each data
object is modeled as containing the following information:
(a) the vector posl of the partition Dl containing the data
object ob; (b) the id of ob and (c) values of the data object
ob. We maintain two different text files, one for products P ,
denoted by “gridproducts.txt” and another one for customers
C , denoted by “gridcustomers.txt.” The rationale is that we
can scan the indexed products once and pass it to each sky-
line query if P fits entirely in memory (C � P). We can
also scan objects from C page by page and process them one
after another for computing the reverse skylines.

While scanning and rewriting indexed objects, we save
information about the partitions of the indexed data objects
(e.g., positional vector of the partition, #product objects and
#customer objects in it). When we finish scanning objects
from P and C , we write the information about the partitions
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and the pivot objects of the partition in a text file, denoted by
“gridinfo.txt,” consisting of the followings: (a) a grid header
and (b) partition infos as shown in Fig. 7b. The grid header
consists of the following information: (i) #dimensions; (ii)
grid size (n) and (iii) the δ. The partition info(s) contain
information about the non-empty partitions consisting of the
followings (i) posl of the partition Dl ; (ii) #product objects;
(iii) #customer objects; (iv) #pivot objects and (v) the values
of the pivot objects. We do not save information about an
empty partition, i.e., partitions that do not contain any type of
data object. The index is built once and shared by all queries.

5.1.3 Pivot object and partitionwise dominance

Definition 12 Apartition D1 dominates another partition D2

w.r.t. a data object ob3, denoted by D1 ≺ob3 D2, if every data
object ob2 ∈ D2 is dominated by a data object ob1 ∈ D1

w.r.t. ob3, i.e., ob1 ≺ob3 ob2. If ob1 is a product object from
P , we say D1 productwise dominates D2 and is denoted by
D1 ≺P

ob3
D2. We term the product object ob1 as the pivot

object of D1.

Example 12 Consider the datasets given in Fig. 1 and the
query product q1(12, 12) as shown in Fig. 6. According to
Definition 1, every object in D2 is dominated by p4 ∈ D4

w.r.t. q1. Therefore, D2 is dominated by D4 w.r.t q1, i.e.,
D4 ≺q1 D2. Here, p4 is the pivot object for D4 which is
used to establish D4 ≺q1 D2 and D4 ≺P

q1 D2. Similarly,
p4 can also be used to establish the following relationships:
D4 ≺c5 D2 and D4 ≺P

c5 D2.

To establish the partitionwise dominance between parti-
tions D1 and D2 w.r.t. ob3, we do not need to check the
pairwise dominance between the data object ob1 ∈ D1 and
every data object ob2 ∈ D2. We know that the data objects
of a partition D2 are bounded by its hypothetical corner
objects (as marked by the red circles in Fig. 6). In a d-
dimensional data space, a partition has 2d corner objects.
The values of these corner objects of D2 in the i th dimension
are: < posi2 × δi + b × δi >,∀b ∈ {0, 1}. We only need to
check the pairwise dominance of ob1 with these hypothetical
corner objects of D2 w.r.t. ob3. If ob1 ∈ D1 dominates all of
these corner objects of D2 w.r.t. ob3, then we can ensure that
all data objects of ob2 ∈ D2 will be dominated by ob1 ∈ D1

w.r.t. ob3. Therefore, we save ob1 as pivot objects for D1 to
establish D1 ≺ob3 D2 in “gridinfo.txt.”

Example 13 Consider the datasets given in Fig. 1, the index
structure and the query product q1(12, 12) as shown in Fig.
6. The hypothetical corner objects of D2 are marked as red
circles in Fig. 6. It is easy to verify that all of these corner
objects of D2 are dominated by p4 ∈ D4 w.r.t. q1. We get
D4 ≺q1 D2 and also, D4 ≺P

q1 D2. Therefore, p4 is stored
as pivot object for D4 in “gridinfo.txt” to establish the parti-
tionwise dominance with D2 in D w.r.t. q1.

Algorithm 1: Search Space of Dynamic Skyline
Input : customer c
Output: Nc(D)

1 begin
2 L ← loc(c); // initialize the FIFO list L

with loc(c)
3 while L �= ∅ do
4 D1 ← pop an element from L;
5 add D1 to Nc(D);// D1 is a non-dominating

partition
6 N1(D1) ← immediate neighboring partitions of D1;
7 for each D2 ∈ N1(D1) do
8 if �D1 ∈ Nc(D) : D1 ≺P

c D2 then
9 add D2 to Nc(D);// D2 is a

non-dominating partition
10 insert D2 into L;

Lemma 1 If a partition D1 dominates another partition D2

w.r.t. a data object ob and D2 dominates D3 w.r.t. ob too,
then D1 also dominates D3 w.r.t. ob, i.e., D1 ≺ob D2 and
D2 ≺ob D3 �⇒ D1 ≺ob D3.

Proof Let us assume that there are three data objects
ob1 ∈ D1, ob2 ∈ D2 and ob3 ∈ D3. The proof of this
lemma then immediately follows the transitivity: ob1 ≺ob

ob2 and ob2 ≺ob ob3 �⇒ ob1 ≺ob ob3, and the partition-
wise dominance given in Definition 12. �

5.2 Processing the basic computational units

This section describes how we can compute the basic units
(i.e., dynamic and reverse skylines) of the k-MPP query by
reducing their search spaces and thereby, avoid checking the
pairwise dominances as much as possible. We establish par-
titionwise dominance relationships so that that we can filter
all objects belonging to a partition without checking the pair-
wise dominances.

5.2.1 Computing dynamic skyline of a customer

We already know that a dynamic skyline of a customer c
retrieves all products p1 ∈ P that are not dynamically dom-
inated by other products p2 ∈ P w.r.t. the customer c as
explained in Sect. 2.

Lemma 2 We can safely remove every product p2 contained
in a partition D2 for processing DSL(c) iff ∃D1 ∈ D :
D1 ≺P

c D2.

Proof From definition 12, we know that ∃p1 ∈ D1 such that
the products p2 ∈ D2 are dominated by p1 w.r.t. the customer
c as D1 ≺P

c D2. Therefore, p2 ∈ D2 can not appear in the
dynamic skyline of the customer c and can be removed safely
while computing DSL(c). �
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Algorithm 2: Dynamic Skyline of a Customer
Input : customer c, Nc(D), products P
Output: DSL(c)

1 begin
2 if Nc(D) ←= null then
3 Nc(D) ← searchSpaceOfDynamicSkyline(c);

// Algo. 1

4 for each p ∈ P do
5 if loc(p) ∈ Nc(D) then
6 insert p to the min heap Hc;

7 DSL(c) ← ∅; // initialization
8 while Hc �= ∅ do
9 p1 ← retrieve the root element from Hc;

10 if �p2 ∈ DSL(c) : p2 ≺c p1 then
11 add p1 to DSL(c);

The search space Nc(D) of a dynamic skyline query c
consists of all non-dominating partitions in D (according
to Lemma 2 and Lemma 1), which can be determined by
accessing the information stored in “gridinfo.txt.” As we are
going to retrieve products p1 ∈ P that are preferable to c
than other products p2 ∈ P , we need to access the product
data stored in “gridproducts.txt” only.The steps of computing
DSL(c) are described below:

(1) ComputingNc(D) for DSL(c): We initialize a FIFO
list L by the location of the customer c, i.e., loc(c). Then,
we do the following until L is empty: (a) pop an element
D1 from L and add it toNc(D); (b) compute the immediate
neighbors N1(D1) of D1 as follows: < posi1 + b >,∀b ∈
{−1, 0,+1} and i ∈ {1, 2, ..., d}; and (c) ∀D2 ∈ N1(D1),
if D2 is not dominated by any partition in Nc(D) (Lemma
2) w.r.t. c, then add D2 to Nc(D) and also, insert D2 into
L. We add D2 to L because we can not guarantee that the
immediate neighbors of D2 will be dominated either by D1

or D2 , e.g., neighboring partitions of D2 that are positioned
into the vertical and horizontal directions. The above steps
are pseudo-coded in Algorithm 1.

(2) Retrieving Products from P: We access the products
p stored in “gridproducts.t xt” sequentially and filter them
as follows: if loc(p) ∈ Nc(D), then we insert p into a min
heap Hc, otherwise drop it. To compare two objects for the
min heap Hc, we use the Euclidean distances of products
p1 and p2 to c. We assume that the min heap Hc can be
stored in the main memory (recall P � C). These steps are
pseudo-coded in lines 4–6 of Algorithm 2.

(3) Computing Dynamic Skyline DSL(c): Firstly, we
initialize DSL(c) to ∅. Then, we do the following untilHc is
empty: (a) retrieve the root product p1 fromHc; and (b) add
p1 to DSL(c) if �p2 ∈ DSL(c) : p2 ≺c p1. These steps are
pseudo-coded in lines 7–11 of Algorithm 2.

Correctness ofAlgorithm 2. The lines 2–10ofAlgorithm
1 computes the search space, i.e., the set of non-dominating

partitionsNc(D) for DSL(c) starting from the loc(c). Then,
it grows Nc(D) by repeatedly adding the non-dominating
neighboring partitions into it. It stops only if the neighboring
partitions are dominated by some of the partitions already
added toNc(D). Therefore, we can say thatNc(D) consists
of the legitimate partitions which may contain the dynamic
skyline objects for DSL(c). The lines 4–6 of Algorithm 2
scan the product objects from “gridproduct.txt” and insert
them in a min heap Hc in order of their distances to c. The
lines 7–11 of Algorithm 2 compute DSL(c) by repeatedly
retrieving the root product from Hc. The mean heap Hc

ensures that the root product is either dominated by some
products already added in DSL(c) or part of it [18]. There-
fore,we correctly compute the dynamic skyline of a customer
c ∈ C , i.e., DSL(c).

5.2.2 Computing the reverse skyline of a product

A reverse skyline query of a query product q, RSL(q), con-
sists of all customers c ∈ C that prefer to buy q over other
products p ∈ P . The RSL(q) is computed by retrieving all
customers c ∈ C that are not dynamically dominated by the
midskylines of products p ∈ P w.r.t. q in each of its orthant,
i.e., m ⊀q c, where m is the midskyline for P as explained
in Sect. 2.

Observation-1: If a product p dominates a customer c
w.r.t. a query product q in an orthant O , then the midpoint
m of p also dominates c w.r.t. q. Therefore, the customer c
cannot be in the reverse skyline ofq if p ≺q c in an orthantO .

Observation-2: If a product p1 dominates another prod-
uct p2 w.r.t. a query product q in an orthant O , then the mid
pointm1 of p1 also dominates the midpointm2 of p2 w.r.t. q.
Therefore, if p2 dominates cw.r.t. q in an orthant O , thenm1

also dominates cw.r.t.q. As a result, c cannot be in the reverse
skyline of the query product q if p1 ≺q p2 and p2 ≺q c.

Example 14 Consider the datasets given in Fig. 1, the index
structure, the query product q1(12, 12), customer c3 ∈ C and
the midpointm4 of product p4 ∈ P w.r.t. q1 as shown in Fig.
8. It is easy to verify that c3 ∈ C is dominated bym4 w.r.t. q1
in orthantO4 as p4 ≺q1 c3. Therefore, the customer c3 cannot
be in RSL(q1). Similarly, any customer in D2 dominated by
p2 or p3 w.r.t. q1 would also be dominated by m4 w.r.t. q1
and therefore, could not be in RSL(q1).

Lemma 3 We can safely remove each product p2 and cus-
tomer c2 contained in D2 for processing RSL(q) iff (1)
∃ pivot p ∈ D1 such that the pivot p and the partition D2

are in the same orthant of q and (2) D1 ≺P
q D2.

Proof The proof of this lemma immediately follows the
Observation 1 and 2, also the definition of partitionwise dom-
inance given in the Definition 12. �
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Fig. 8 Midpoint of p4 dominates c3 w.r.t. q1 for dataset given in Fig. 1

Algorithm 3: Search Space of Reverse Skyline
Input : query product q
Output: Nq (D)

1 begin
2 L ← loc(q); // initialization
3 while L �= ∅ do
4 D1 ← pop an element from L;
5 add D1 to Nq (D); // D1 is a non-dominating

partition
6 N1(D1) ← immediate neighboring partitions of D1;
7 for each D2 ∈ N1(D1) do
8 if �D1 ∈ Nq (D) : D1 ≺P

q D2&Oq (p) = Oq (D2)

then
9 add D2 to Nq (D); // p is a pivot

object for D1
10 insert D2 into L; // D2 is a

non-dominating partition

The search spaceNq(D) of a reverse skyline query q con-
sists of all non-dominating partitions (according to Lemma
3 and Lemma 1), which can be determined by accessing
the information stored in “gridinfo.txt” only. However, as
we are going to retrieve customers that find q preferable to
other products in P , we need to access both product data
and customer data stored in “gridproducts.txt” and “gridcus-
tomers.txt,” respectively.

The steps of computing RSL(q) are follows:
(1) Computing Nq(D) for RSL(q): We initialize a FIFO
list L by the location of the query q, i.e., loc(q). Then, we
do the following until L is empty: (a) pop an element D1

from L and add it to Nq(D); (b) compute the immediate
neighbors N1(D1) of D1 as follows: < posi1 + b >,∀b ∈
{−1, 0,+1} and i ∈ {1, 2, ..., d}; and (c) ∀D2 ∈ N1(D1), if

Algorithm 4:Midpoint Skyline of a Product
Input : query product q, Nq (D), products P
Output: midpoint skyline M

1 begin
2 for each p ∈ P do
3 if loc(p) ∈ Nq (D) then
4 insert p to the min heap Hq ;

5 M ← ∅; // initialization
6 while Hq �= ∅ do
7 p1 ←retrieve the root element from Hq ;
8 m1 ← compute midpoint of p1 w.r.t. q;
9 if �m2 ∈ M : m2 ≺q m1&Oq (m1) = Oq (m2) then

10 add m1 to M; // m1 is a midpoint
skyline

D2 is not dominated by any partition in Nq(D) (Lemma 3),
then add D2 toNq(D) and also, insert D2 intoL. These steps
are pseudo-coded in lines 2–10 of Algorithm 3.
(2) Retrieving Products from P: We access the product
objects p stored in “gridproducts.t xt” sequentially and fil-
ter them as follows: if loc(p) ∈ Nq(D), then we insert p into
a min heap Hq , otherwise drop it. To compare two objects
for the min heapHq , we use the Euclidean distances of prod-
ucts p1 and p2 to q. We assume that the min heapHq can be
stored in the main memory (recall P � C). These steps are
pseudo-coded in lines 2–4 of Algorithm 4.

(3) Computing Midpoint Skyline of P: Firstly, we ini-
tialize the midpoint skyline set M to ∅. Then, we do the
following until Hq is empty: (a) retrieve the root product
p1 from Hq ; and (b) add the midpoint m1 of p1 to M if
�m2 ∈ M : m2 ≺q m1 and m1 and m2 are in the same
orthant O of the query product q (Observation-2). These
steps are pseudo-coded in lines 5–10 of Algorithm 4.

(4) Computing Reverse Skyline from C : We access the
customers c stored in “gridcustomers.t xt” sequentially and
filter them as follows: (a) if loc(c) ∈ Nq(D), then go to step
(b), otherwise drop it; and (b) we add c to the RSL(q) if
�m ∈ M : m ≺q c and both c and m are in the same
orthant O of q. These steps are pseudo-coded in lines 6–10
of Algorithm 5.

Correctness ofAlgorithm 5. The lines 2–10ofAlgorithm
3 computes the set of non-dominating partitions Nq(D) for
RSL(q) starting from the loc(q). Then, it grows Nq(D) by
repeatedly adding the non-dominating neighboring partitions
into it. It stops only if the neighboring partitions are domi-
nated by some of the partitions already added into Nq(D)

in the same orthant of q. Therefore, we can say that Nq(D)

consists of the legitimate partitions which may contain the
midpoint skyline and reverse skyline objects for RSL(q).
The lines 2–4 of Algorithm 4 scan the products from “grid-
product.txt” and insert them into a min heap Hq in order of
their distances to q. The lines 5–10 of Algorithm 4 compute
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Algorithm 5: Reverse Skyline of a Product
Input : query q, midpoint skyline M, Nq (D), products P ,

customers C
Output: RSL(q)

1 begin
2 if Nq (D) ←= null then
3 Nq (D) ← searchSpaceOfReverseSkyline(q);

// Algo. 3

4 if M ←= null then
5 M ← midpointSkyline(q,Nq (D), P); // Algo. 4

6 RSL(q) ← ∅; // initialization
7 for c ∈ C do
8 if loc(c) ∈ Nq (D) then
9 if �m ∈ M : m ≺q c&Oq (m) = Oq (c) then

10 add c to RSL(q);

midpoint skyline M by repeatedly retrieving the root prod-
uct fromHq . The mean heapHq ensures that the current root
product is either dominated by some products already added
in M in an orthant of q or a part of M. Finally, lines 6–10
of Algorithm 5 scan customers c from “gridcustomers.txt”
and check whether they are dominated by an m ∈ M. The
customer c is added to RSL(q), only if it is not dominated
by any m ∈ M in an orthant of q. Therefore, Algorithm 5
correctly computes the reverse skyline of q.

5.2.3 Optimizing partitionwise dominance for RSL

Consider a hypothetical query point q and the grid index
structure in a hypothetical two-dimensional data space as
shown in Fig. 9. We see that we could establish partition-
wise dominances for D4 with D0, D2, D6 and D8 if we had
a pivot product for each of the four orthants of q. Therefore,
we argue to have 2d pivots per partition in the index struc-
ture for RSL(q) and the grid size n should be selected in a
way so that each partition of D contains at least 2d objects.
Enforcing this may incur additional steps while indexing the
data. The selected pivot objects should be closer to the cor-
ners of a partition to increase the probability of having a pivot
object for each orthant of a random query product. However,
the above is different for dynamic skylines. As we do not
consider orthants in dynamic skyline, one pivot object per
partition is sufficient for DSL(c).

5.3 Processing k-MPP query

To process a k-MPP query, we need to do the following:
(a) computing the reverse skyline for each query product
q ∈ Q; (b) computing the dynamic skyline of each customer
c ∈ RSL(q); and (c) selecting the k query products from
Q based on their contribution in the market. However, the
processing of dynamic skyline of a customer c ∈ RSL(q)

D4

D3

D1

8

p1

0

q

16 24

p4

m4

m1

D2

D0

D7

D8

O1 O2

O3O4

p2
m2

p3

m3

D5

D6

8

16

24

Fig. 9 Selection of pivot objects for a hypothetical query product q in
partition D2 for RSL(q)

varies for k−MPPind and k−MPPdep. To compute DSL(c)
and RSL(q) for k − MPPdep query, we use P ∪ Q \q as P .

5.3.1 An straightforward strategy

This strategy computes k-MPP in light of the hypothetical
parallel strategy of processing k-MPP as explained in Sect.
4.2. That is, we first compute the RSL(q) for each query
product q ∈ Q and then, we compute the DSL(c) for each
c ∈ RSL(q) in parallel. We consider each (reverse/dynamic)
skyline query as an independent job which needs to be exe-
cuted by the worker nodes supervised by the master node.
However, the number of skyline queries can be larger than
the number of available worker nodes. Therefore, we insert
all jobs into awaiting queue and start executing them in first-
come-first-serve order. Once a job is finished by a worker
node, the result is returned to the master node. These steps
are pseudo-coded in Algorithm 6.

5.3.2 An optimized strategy

This section describes an optimized strategy for comput-
ing k-MPP product selection query in parallel based on: (1)
grouping similar query products in Q and processing their
reverse skylines together; and (2) computing DSL(c) offline
andupdating it for the query products inq ∈ Q.Our approach
is described below.
A) Grouping similar query productsWe propose to group
queries in Q based on their similarities to achieve the follow-
ings: (1) the reverse skylines of the similar query products
can be processed together by a single working node and (2)
the disk accesses can be reduced by sharing the data objects
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Algorithm 6: An Straightforward Strategy
Input : query products Q, products P , customers C
Output: subset of query products Q′

1 begin
2 T0 : for each q ∈ Q do
3 E(C, q|P) ← 0; // initialization

4 T0 : parallel for each q ∈ Q do
5 T j ← retrieveAFreeNode ({T1, T2, ...., Tm});
6 RSL(q) ← T j : reverseSkyline(q, null, null, P,C);

// Algo. 5

7 T0 : for each q ∈ Q do
8 parallel for each c ∈ RSL(q) do
9 T j ← retrieveAFreeNode({T1, T2, ...., Tm});

10 DSL(c) ← T j : dynamicSkyline(c, null, P ∪ q);
// Algo. 2

11 E(C, q|P) ← E(C, q|P) + 1
DSL(c) ;

12 T0 : Q′ ← selectKProducts(Q); // based on
E(C, q|P)

among the basic computational units while processing the
k-MPP query.

Definition 13 (Strong similarity) Two query products q1 and
q2 in Q are said to be strongly similar iffNq1(D) = Nq2(D).

However, the checking of the above strong similarity
requires computing the actual search spaces Nq1(D) and
Nq2(D) of q1 and q2 and then, inspecting whether these
search spaces are the same, which is time-consuming for the
master node. Therefore, grouping queries based on strong
similarity is not durable for efficiently parallelizing k-MPP
query. As an alternative, we propose to rely on the extended
search space N+

q (D) of the reverse skylines of the query
products q ∈ Q to measure their similarity. The extended
search space of the reverse skyline of a query product q ∈ Q
is computed as follows: Firstly, we add the location of the
query product q, i.e., loc(q) toN+

q (D). Then, we initialize a
FIFO list L by the immediate neighbors of loc(q) and do the
followinguntilL is empty: (a) pop an element D1 from L; and
(b) if � pivot p ∈ loc(q) : p ≺q D1 & Oq(p) = Oq(D1),
then add D1 to N+

q (D) and insert the immediate neighbors
N1(D1) of D1 into L. The above is pseudo-coded in Algo-
rithm 7. It is easy to verify that Nq(D) ⊆ N+

q (D).

Lemma 4 Two query products q1 and q2 share the same
extended search space, i.e., N+

q1(D) = N+
q2(D), if (1)

loc(q1) = loc(q2) (rename them as loc(q12)); and (2)
∀p ∈ loc(q12), Oq1(p) = Oq2(p) in loc(q12), where p ∈ P
is a pivot for loc(q12).

Proof Assume that the extended search spaces N+
q1(D) and

N+
q2(D) are not the same but the conditions (1) and (2) in

Lemma 4 hold for q1 and q2. Also, assume that a partition D1

Algorithm 7: Search Space+ of Reverse Skyline
Input : query product q
Output: extended search space N+

q (D)

1 begin
2 add loc(q) to N+

q (D);
3 N1(loc(q)) ← immediate neighboring partitions of loc(q);
4 L ← N1(loc(q)); // initialization
5 while L �= ∅ do
6 D1 ← pop an element from L;
7 if � pivot p ∈ loc(q) : p ≺q D1&Oq (p) = Oq (D1) then
8 add D1 to N+

q (D);
9 insert immediate neighboring partitions of D1 into L;

does not appear in N+
q1(D) but does in N+

q2(D). Since D1 /∈
N+

q1(D), there must be a pivot product p1 in loc(q1) such
that (1) Oq(p1) = Oq(D1) and (2) p1 ≺q1 D1. However,
the above cannot happen. Since, loc(q1) = loc(q2) and p1
appears in the same orthant for both q1 and q2, then p1 must
also dominate D1 w.r.t. q2, i.e., p1 ≺q2 D1. �
Definition 14 (Weak similarity) Two queries q1 and q2 in
the query product set Q are said to be weakly similar if (1)
loc(q1) = loc(q2); and (2) N+

q1(D) = N+
q2(D).

The first condition inDefinition 14 can be decided in O(1)
time as explained in Sect. 5.1.1 and the second can also be
decided in constant time as per Lemma 4. Therefore, it is
obvious that checking query similarity based on extended
search spaces N+

q (D) is much more cheaper than checking
query similarity by computing their actual search spaces,
Nq(D). Once, we know the similarity of two or more queries
in Q, we can group them, share the (extended) search space
(which is computed for one query product per group) among
them and finally, compute their reverse skylines together.
However, if there is only one query in a group, we compute
the actual search space of the reverse skyline for it.

Example 15 Consider the datasets given in Fig. 1, the index
structure and the queries as shown in Fig 10. The location
of q1 and q3 is D4. Assume that p4 is a pivot object for D4.
It is easy to verify that p4 is in the same orthant for both
q1 and q3, i.e., (1) if pi4 ≤ qi1, then pi4 ≤ qi3 and (2) if
pi4 > qi1, then pi4 > qi3. Therefore, the (extended) search
spaces of the reverse skylines for q1 and q3 are the same,
i.e., {D0, D1, D3, D4, D5, D6, D7, D8}. We say q1 and q3
are similar.

B)Computing DSL(c) offline andupdating for Q To com-
pute k-MPP, we need to compute the dynamic skyline for
each customer c ∈ RSL(q). The dynamic skyline is compu-
tationally known to be very expensive [18]. To expedite this
operation, we precompute the dynamic skyline of each cus-
tomer c ∈ C considering only the existing products P . Then,
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Fig. 10 a The locations of the
query products in a 3 × 3 index
structure and b Search space
[Reverse Skyline] of the query
products q1 and q3
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Algorithm 8: An Optimized Strategy
Input : query products Q, products P , customers C
Output: subset of query products Q′

1 begin
2 T0 : for each q ∈ Q do
3 E(C, q|P) ← 0;

4 T0 : Q ← groupQueriesBasedOnSimilarity(Q);
// Definition 14

5 T0 : parallel for each Q1 ∈ Q do
6 T j ← retrieveAFreeNode (T1, T2, ...., Tm );
7 T j :if Q1.si ze() = 1 then
8 q ← retrieveTheQuery(Q1);
9 RSL(q) ← reverseSkyline(q, null, null, P,C);

10 else
11 q ← retrieveAnyQuery(Q1);
12 N+

q (D) ← extendedSearchSpace(q); // Algo. 7

13 P ′ ← filteredProducts( N+
q (D), P);

14 for each q ∈ Q1 do
15 Nq (D) ← refineSearchSpace(q,N+

q (D));
16 M(q) ← midpointSkyline(q,Nq (D), P ′);

// Algo. 4
17 RSL(q) ←

reverseSkyline(q,M(q),Nq (D), null,C);
// Algo. 5

18 T0: for each q ∈ Q do
19 parallel for each c ∈ RSL(q) do
20 T j ← retrieveAFreeNode (T1, T2, ...., Tm );
21 T j : DSL(c) ← precomputedDSL(c);
22 DSL(c) ← T j : updateDSL(DSL(c), Q);
23 E(C, q|P) ← E(C, q|P) + 1

DSL(c) ;

24 T0 : Q′ ←selectKProducts(Q); // based on E(C, q|P)

we update this precomputed dynamic skyline for the query
product set Q. The precomputed dynamic skylines are stored
as fixed-length records in a text file “dynamicskylines.txt.”
Each record in the file consist of the identifiers (comma sep-
arated) of the products p ∈ P that appear in the dynamic

skyline of the customer c ∈ C (spaces are padded at the end
if needed). The first record represents the dynamic skyline of
the first customer c1 in C and so on.

To retrieve the precomputed dynamic skyline for a cus-
tomer c, we position the file pointer as follows: (cid −1)×rc,
where cid and rc denote the id and the size of the fixed-
length record of the dynamic skyline of c, respectively.
The indexed products are also stored as fixed-length records
in“gridproduct.txt” file. To update the dynamic skyline of a
customer c ∈ RSL(q), firstly we retrieve the product iden-
tifiers from the precomputed dynamic skylines and then, we
retrieve the product values from “gridproduct.txt.” The prod-
uct objects are retrieved by positioning the file pointer as
follows: (pid − 1) × rp, where pid and rp denote the id and
the size of the fixed-length record of the product object p,
respectively. Finally, the dynamic skyline DSL(c) of a cus-
tomer c is updated for Q as follows: (1) find a subset Q′ of
Q such that no two queries in Q′ dominate each other w.r.t.
the customer c; and (2) for each query product q ∈ Q′ we
do the followings: (a) if �p ∈ DSL(c) : p ≺c q, then q is
added to DSL(c) and if ∃p ∈ DSL(c) : q ≺c p, then p is
removed from DSL(c); (b) otherwise, q is ignored.

The pseudo-code of efficiently computing k-MPP query
in parallel considering the above is given in Algorithm 8.
Firstly, the algorithm group queries based on their predicted
N+

q (D) (line 4) computed by the master node. Then, for
each group of queries Q1, a worker node is assigned by the
master node to do the following: if |Q1| = 1, process it by
calling Algorithm 5, otherwise: (a) compute the extended
search space N+

q (D) and the filtered products P ′ ⊆ P and
(b) compute RSL(q)for each q ∈ Q1 as follows (i) compute
the actual search spaceNq(D) by refiningN+

q (D) for q, (ii)
computemidpoint skylineM(q) based onNq (D) and P ′ and
(iii) finally, compute RSL(q) based onNq(D),M(q) andC
(lines 11–17). Lines 18–23 compute the dynamic skyline for
each c ∈ RSL(q) by retrieving the precomputed DSL(c)
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Fig. 11 Examples of tested a real CarDB; synthetic, b uniform; c correlated and d anticorrelated datasets

and then updating it for Q. Finally, line 24 selects k best
query products in Q based on E(C, q|P).

6 Experiments

This sectionpresents the experimental studies of our approach.
More specifically, we show the effectiveness of our prod-
uct selection model as well as evaluate the performance
of processing k-MPP query in parallel by comparing our
approach with the existing counterparts.

6.1 Settings

Datasets We empirically evaluate the performance of our
proposed technique for processing k-MPP query in parallel
using real data, namelyCarDB1, consisting of 2×105 objects.
This is a six-dimensional dataset with attributes: make,
model, year, price, mileage and location. The three numer-
ical attributes year, price and mileage are considered in our
experiments. The dataset is normalized into the range [0, 1].
We randomly select half of these normalized car objects as
products and the rest as the customers. The use of the CarDB
dataset makes excellent sense in our experiment. The k-MPP
can be exploited to estimate the market contribution of the
advertised cars for a particular seller and thereby, select the
k-most promising cars for designing specialized promotions.
We also present experimental results based on synthetic data:
uniform (UN), correlated (CO) and anti-correlated (AC),
consisting of varying number of products, customers and
dimensions. The cardinalities of these datasets in products
and customers are 1 × 105, 2 × 105, 3 × 105, 4 × 105 and
5 × 105. The dimensionality is in the range of 2–4. Exam-
ples of these datasets consisting of 2 × 105 objects in two
dimensions are shown in Fig. 11a–d.
Data indexing Each dataset is normalized in the range [0,1]
and is indexed by our proposed grid-based index structure.
We vary the grid size from 4 to 80.

1 https://autos.yahoo.com/.

Table 2 Values of different parameters used in experiments

Parameter Values

Datasets Real (CarDB), Synthetic (UN, CO, AC)

Data cardinality 1 × 105, 2 × 105, 3 × 105, 4 × 105, 5 × 105

Dimensionality 2–4

Grid size 4–80

Threads 5–50

QTree samples [19] 1000

Split threshold [19] 40

Queries For each experiment we run a number of queries
generated (synthetic) and selected (CarDB) randomly by fol-
lowing the distribution of the tested datasets.
Environment We perform our experiments in Swinburne
High Performance Computing (HPC) system2 with nodes
1–5, 10 processors per node (ppn) and 10GB main memory.
All of our algorithms are implemented in Java utilizing its
multi-threading packages. The nodes are selected by follow-
ing the formula given below:

argmin
nodes

(nodes−1)× ppn ≤ (m+1) ≤ nodes× ppn (11)

where m is the number of workers (threads in Java). The
datasets are indexed by the proposed grid-based data index-
ing scheme in a Windows PC with Intel(R) Core (TM) Duo
2.99 GHz CPU and 3.49 GB RAM. Table 2 summarizes the
values of different parameters.

6.2 Effectiveness study

We know that the market contribution measure effectively
combines both the customer and the manufacturer perspec-
tive into the same metric, which is (theoretically) more
realistic than the influence scoremeasure as demonstrated in
Sects. 3.1 and 3.4. This section evaluates how effectively our
approach trades-off between the valued customers and the

2 http://www.astronomy.swin.edu.au/supercomputing/.
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Fig. 12 CarDB products used in the effectiveness study

influence score. Recall that the valued customers are those
customers in the market that are prone to prefer the manu-
facturer’s own products as explained in Sect. 3.1.

To demonstrate the effectiveness of the proposed product
selection model, we randomly select 500 products (i.e., cars)
from the real CarDB dataset by following the distribution of
the dataset as shown in Fig. 123. Then, we issue various prod-
uct selection queries, e.g., k-MAC, k-MPP and the greedy
variations of them. The variation of k-MAC is the (1 − 1

e )

greedy approximation of the optimal k-MAC as explained
by Arvanitis et al. in [1]. We consider the k-MPPdep (where
the manufacturer’s own products compete with each other to
attract customers) and a greedy approximation of it, which is
constructed as follows: (a) select a product q from Q with the
maximum influence score (simply, the number of customers
in its reverse skyline) and (b) keep adding product(s) into
Q′ from Q which has the maximum number of customers in
common with the influence set of products already selected,
if there is no such product left, then we choose the one with
maximum influence score. The rationale of the above greedy
approximation is that the selected products should increase
the market contribution of the products already in the set
(recall the proof of Theorem 2). This greedy version of k-
MPP differs from the k-MAC one only in the sense that we
select the next product in the set by maximizing the over-
lap of their influence set. Finally, we show the percentage
of valued customers retained in our k-MPP and the existing
k-MAC product selection models by setting value for k from
10 to 50.

From Fig. 13a, it is evident that our product selection
model k-MPP outperforms other two models k-MAC and
greedy k-MPP in terms of market contribution metric, which
is expected aswemodel this in our approach.We also see that

3 We find only 67 query products are non-dominating w.r.t. attracting
customers in the market, i.e., RSL(q) �= ∅.

the greedy k-MPP is very close to the optimal k-MPP in terms
of market contribution. However, our model is very close to
the optimal k-MAC model in terms of influence score as we
see from Fig. 13b. We already know that product selections
are meant to increase the sales by provoking the customers in
buying the manufacturer’s own products, which is achieved
by designing special product promotional events for the cus-
tomers (recall from Sect. 1). This urges that we should make
a good balance between the percentage of valued customers
and the influence score while maximizing the market contri-
bution so that the promotional costs are distributed among the
actual customers. Figure 13c shows the % valued customers
of different product selection models (% valued customers
= market contribution

influence score ), which demonstrates that our model can
make a good trade-off between them. However, to achieve
this we need to compute the market contribution of each
query product q ∈ Q, which adds another level of com-
plexity in our product selection model. In this paper, we
design a specialized grid-based query-independent reusable
data indexing scheme to expedite the performance of k-MPP
by parallelizing the basic computational units for it. The effi-
ciency of our approach is studied in Sects. 6.3 and 6.4.

6.3 Data indexing evaluation

We evaluate the proposed grid-based index structure in terms
of index-building time and index size (i.e., size of the “grid-
info.txt” file in disk).More specifically, we study the effect of
data cardinality, dimensionality and the grid size on the above
two metrics. Figure 14 shows the effect of different para-
meters on index-building time and size in disk in synthetic
datasets UN, CO and AC. The index size in disk remains
constant for the certain grid size and dimensions if the car-
dinality in customer and product datasets varies as shown in
Fig. 14a–f. However, this is different for index-building time.
The index-building time increases if the cardinality increases
in either product or customer datasets or both. In general, the
index-building time and the index size in disk increase if the
dimensionality in the datasets and the grid size in the index
structure increase as we see in Fig. 14g–l.

6.4 Performance study

This section studies the execution efficiency of processing
k-MPP in parallel based on our index structure. More specif-
ically, we study the effect of different parameter settings
on the efficiency of the proposed approaches SROND (the
Baseline), SROFD (a variation of the Baseline), PROND
(the straightforward strategy) and PROFD (a variation of
the straightforward strategy) as summarized in Table 3. We
also compare the efficiency of our approach with the exist-
ing approach of computing dynamic and reverse skylines
in parallel using quad-tree (QTree) indexing scheme [19].
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Fig. 13 The quality of results in different influence-based product selectionsmodels, amarket contribution, b Influence Score, c%valued customers

As our k-MPP query involves both products and customer
preferences, we extend the mono-chromatic reverse skyline
computing technique given in [19] for bichromatic reverse
skyline using the QTree index as follows: (a) a QTree node
n1 is marked as pruned for a q ∈ Q if there exists a QTree
node n2 such that n1 and n2 are in the same orthant of q
and p2 ∈ n2 dominates all corner points of n1 w.r.t q; (b) all
products p ∈ P are scanned and used to compute midpoint
skyline for q if not located in the pruned node and (c) finally,
all c ∈ C are scanned andmarked as plausible customer for q
(i.e., reverse skyline point) if not located in the pruned node
of the QTree and not dominated by any midskyline point.
We utilize 1000 samples (selected by applying the reservoir
sampling method) and split threshold 40 to build the QTree
for best performance as suggested in [19]. We compare two
variants of this approach, i.e., QPROND and QPROFD as
summarized in Table 3.

6.4.1 Effect of dimensionality

We study the effect of data dimensions on our proposed
algorithms by setting the number of worker nodes (num-
ber of threads in the thread pool of Java) to 10. We run
experiments on 2–3 dimensional real CarDB datasets and
2–4-dimensional synthetic datasets. The cardinality is set to
1 × 105 for both products and customers. To index each
tested dataset, the grid size (n) is established empirically.
The value of k is set to 20 for k-MPPdep. We run 100
queries following the distribution of the tested dataset. The
results are shown in Fig. 15. We see that the execution time
of every approach increases if the number of dimension
increases in general. However, the proposed parallel algo-
rithms PROFD and PROND take far less time compared to
the baseline approaches, i.e., SROFD and SROND and sig-
nificantly outperform the existing counterparts, i.e.,QROFD
and QROND for the increased number of dimensions in the
datasets. The existing QROFD and QROND performs worst

compared to our approach because of its query dependent
data indices as per our analysis given in Sect. 4.3. The exist-
ing counterpartQROND is not scalable in higher dimensions
as shown in Fig. 15b. These results demonstrate that the base-
line approaches as well as the existing counterparts are not
suitable for processing k-MPP queries. We conclude that
the proposed reusable query-independent grid-based data
indexing and our approach of processing k-MPP queries are
efficient for processing k-MPP queries in parallel.

6.4.2 Effect of query products

This section studies the effect of cardinality in the query
products on the execution time of our approaches. We run
experiments on CarDB and CO datasets in two dimensions
by varying the number of query products, |Q|, from 20–
500, setting |P| = 1 × 105, |C | = 1 × 105, k to 25 for
k-MPPdep and the number of worker nodes (threads in
Java) to 20. The results are shown in Fig. 16. The grid
size (n) is established empirically. From Fig. 16, we see
that the execution time of every technique increases if the
number of query products in Q increases. However, our
approaches PROFD and PROND are much faster compared
to the existing counterpartsQROFD andQROND. The exist-
ing counterpart QROND is not scalable in terms of |Q| due
to its query dependent quad-tree index. On the other hand,
our approaches are highly scalable in terms of |Q|.

6.4.3 Effect of cardinality in datasets

This section studies the effect of cardinality of product and
customer datasets on the execution time of our approaches of
processing k-MPP queries in parallel. We run experiments
on UN dataset in three dimensions by varying the cardinality
in both products P and customers C . We set the grid size
n = 10, |C | = 1×105 ∼ 5×105], |P| = 1×105 ∼ 4×105],
|Q| = 100, k to 25 for k-MPPdep and the workers (threads in
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Fig. 14 Effect of a–c cardinality [n = 10, d = 3, |P| = 1×105] , d–f cardinality [n = 10, d = 3, |C | = 1×105] g–i dimensions [n = 10, |D| =
2 × 105] and j–l grid [d = 3, |D| = 2 × 105] on index-building time and size in synthetic datasets
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Table 3 Different approaches of processing k-MPP

Acronym Description

SROND Serial RSL+ ON line DSL

SROFD Serial RSL + OFfline DSL

PROND Parallel RSL + ON line DSL

PROFD Parallel RSL + OFfline DSL

QPROND Parallel RSL + ON line DSL using QTree [19]

QPROFD Parallel RSL + OFfline DSL using QTree [19]

PMROND ParallelMultiple RSL + ON line DSL

PMROFD ParallelMultiple RSL + OFfline DSL

Java) to 20. The results are shown in Fig. 17. We see that the
execution times increase if the cardinalities in either products
or customers increase. However, the execution times of our
approaches are far less than the existing counterparts i.e.,
QROFD and QROND. These results demonstrate that our
approaches are scalable in terms of cardinality increases in
the datasets.

6.4.4 Effect of threads

This part of performance study investigates the effect of the
number of threads on the execution time of processing k-
MPP queries. We run experiments on two-dimensional real

and synthetic datasets. The cardinality is set to 1 × 105 for
both products and customers. To index each testeddataset, the
grid size (n) is established empirically. We run 100 queries
by following the distribution of the tested dataset and setting
k to 25 for k-MPPdep. The number of threads is varied from
5 to 50. The results are shown in Fig. 18. The execution
times of both our approaches and the existing counterparts
tend to decrease up to a certain number of threads, after that
the execution times tend to increase again. This indicates
that the overhead (delay due to the communication between
the workers and the master and the synchronization between
them) of processing k-MPP in parallel becomes more costly
after a certain number of threads for a particular data and
query settings.

6.4.5 Effect of data indexing

This section studies the effect of data indexing, i.e., grid size
(n), on the execution times of our approaches. We run exper-
iments on CardDB and UN datasets in two dimensions for
varying grid size n = 10 − 80 by setting |Q| = 100, |P| =
1×105, |C | = 1×105, the workers (threads in thread pool of
Java) to 20 and k to 25 for k-MPPdep. The result is shown in
Fig. 19. We observe that the execution time of each approach
decreases for the increased grid size and it stabilizes after
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Fig. 15 Effect of dimensions on execution time in a CarDB, b UN, c CO and d AC datasets

Fig. 16 Effect of queries (|Q|)
on execution time in a CarDB
and b CO datasets
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Fig. 17 Effect of cardinality on
execution time in the UN
dataset, a Customers versus
time, b Products versus time
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Fig. 18 Effect of threads on execution time in a CarDB, b UN, c CO and d AC datasets

Fig. 19 Effect of grid size (n)
on execution time in a CarDB
and b UN datasets
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certain limit. However, the index-building time and its size
on disk also increase as explained in Sect. 6.3.

6.4.6 The k-MPPind versus k-MPPdep query

This section evaluates the performance of our approaches of
processing k-MPPind and k-MPPdep queries by conducting
two experiments. In the first experiment, we run 100 queries
for each dataset in two dimensions by setting the grid size (n)
empirically, |P| = 1 × 105, |C | = 1 × 105, the number of

Table 4 The efficiency (millisecs) of k-MPP variants

Dataset PROFD PROND

k-MPPind k-MPPdep k-MPPind k-MPPdep

CarDB 6689 6192 12,017 12,093

UN 2772 2847 11,823 11,661

CO 4775 4734 13,360 13,302

AC 3860 3720 10,484 10,471

123



Know your customer: computing k-most promising products for targeted marketing 567

Fig. 20 Effect of queries (|Q|)
on k-MPPind (IND) and
k-MPPdep (DEP) in a CarDB
and b UN datasets, where OFF
is Offline DSL and ONL is
Online DSL
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threads to 20 and the k to 25 for k-MPP. The results are shown
inTable 4.We conduct another experiment onCarDBandUN
datasets in two dimensions by varying |Q| from 100 to 500
and 100 to 200, respectively, with similar parameter settings
and the result are shown in Fig. 20. In these experiments,
we do not observe any significant difference in k-MPPind

and k-MPPdep’s execution times. This is because, we firstly
compute the midpoint skyline of q based on P only and then,
we update it by performing the dominance tests with Q to
finalize it for k-MPPdep. We also follow similar approach
for computing DSL(c) of c ∈ RSL(q) for k-MPPdep. The
above significantly reduces the pairwise dominance tests per-
formed for k-MPPdep. We may also have different RSL(q)

for k-MPPdep than k-MPPind and therefore, different num-
ber of DSL computations. However, the difference in their
efficiencies may become significant for large |Q|.

6.4.7 Evaluation of optimized strategy

This section evaluates the efficiency of the optimized strategy
for processing k-MPP queries in parallel. More specif-
ically, we compare the performances of the following
approaches:PMROND (a variation of the optimized strategy)
and PMROFD (the optimized strategy) as summarized in
Table 3. We create a number of clustered queries (to increase
the similarities of their search spaces) by setting |Q| = 100
for UN and |Q| = 200 for real CarDB datasets in two dimen-
sions and varying the grid size from 4 to 40. However, the
distributions of q ∈ Q in the resultant clusters (i.e., group
of similar queries) are not uniform as shown in Fig. 21. We
conduct two experiments to evaluate the performance of the
optimized strategy as given below.

Effect of data indexingWe study the effect of grid size (n)
on the efficiency of the optimized strategy by setting k to 25
for k-MPPdep, |P| = 1×105, |C | = 1×105 and the number
of threads to 20. The results are shown in Fig. 22.We see that
the optimized strategies PMROND and PMROFD take less

time compared to the straightforward strategies PROND and
PROFDfor lower grid sizes (n), exceptwhen the distributions
of q ∈ Q in the clusters are too skewed, e.g., the first few
clusters contain most of the query products q ∈ Q in CarDB
for n = 8 as Fig. 21b and the optimized strategies perform
worst (i.e., the responsible thread is heavily loaded). How-
ever, the optimized strategy tends to perform similarly to the
straightforward strategy for the increased grid sizes (n) as we
cannot form clusters of similar queries to share their search
spaces and thereby, computations to expedite the efficiency.

Effect of threads We study the effect of threads in Java
on the efficiency of the optimized strategy again in UN and
CarDB datasets by setting the grid size (n) for them to 8 and
25, respectively. We set the other parameters similar to the
first experiment. The results are shown in Fig. 23. We see
that the optimized as well as the straightforward strategies
achieve the best efficiency when the number of threads set in
the range 10 to 20 for the CarDB dataset. However, we see
an exception in the UN dataset where the optimized strategy
PMROND stabilizes when the number of threads set in the
range 10–20, then again offers a further improvement on the
efficiency when the number of threads set to 40 as shown in
Fig. 23a. We leave the optimization of these parameters as
future research direction.

7 Related work

The first work in dominance-based data retrieval was the
skyline query proposed by Börzsönyi et al. [2]. Since then,
this work has received lots of attention among the commu-
nity and is studied extensively [4,18,22,23,29] due to its
potential in multicriteria decision making applications. Our
product adoption model and the product selection strategy
is dominance-based and the basic computational units com-
prise of the proposed k-MPP query are dynamic and reverse
skylines. This section briefly describes the works that either
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Fig. 21 Effect of grid size (n) on similar query set (cluster) sizes in a UN and b CarDB datasets

study the dominance-based customer–product relationships
[1,8,9,11,13,29] or offer techniques for parallelizing the
skylines [10,17,19,21,24,31,32].

7.1 Customer–product relationship

There are a number of works that study the computational
aspects of customer–product relationships. Li et al. [11]
propose a data cube framework called DADA to analyze
dominance relationships from a microeconomic perspective.
The framework is aimed to provide insights about the dom-
inant relationships between the products and their potential
buyers and supports three types of dominant relationship
queries, e.g., (a) Linear Optimization Queries, (b) Subspace
Analysis Queries, and (c) Comparative Dominant Queries.
Given a set of products P and a set of customers C , Wu
et al. [29] propose an improved algorithm for computing the
influence set of a query product q. The influence of the query
product q ismeasured as the cardinality of the reverse skyline
of q termed as influence set for q, i.e., I S(q) = |RSL(q)|.
In [1], Arvanitis et al. propose an approach for computing
k-Most Attractive Candidates (k-MAC). Given a set of candi-
date query products Q and an integer k > 1 (as well as P and
C as in [29]), k-MAC query discovers the k-most attractive
candidate set Q′ ⊆ Q such that |Q′| = k and the joint influ-
ence score of Q′, defined as I S(Q′) = | ⋃q∈Q′ RSL(q)|,
is maximized. In these two works, every customer c appear-

ing in the RSL(p) is assumed to contribute 100% for the
sustainment of the product p in the market.

In [13], Lin et al. propose an approach for selecting k prod-
ucts from a set of candidate products such that the expected
number of the total customers ismaximized known as k-most
demanding products (k-MDP) discovering. The authors pro-
pose an exact algorithm for k-MDP by estimating the upper
bound of the expected number of the total customers. They
also offer a greedy algorithm which is scalable w.r.t. k. In
[9], Koh et al. presents an approach of computing k-most
favorite products based on reverse top-t queries, which isNP-
hard. They design an incremental greedy approach to find an
approximate solution with guaranteed quality exploiting the
properties of the top-t queries and skyline queries. In [30],
Xu et al., propose a product adoption model and a greedy-
based approximation algorithm for selecting k products that
canmaximize the sales for themanufacturer. In [28]Wu et al.
propose approaches for discovering the promotive subspaces
in which the product objects becomes prominent.

In [27]Wu et al. propose efficient approaches for process-
ing region-based promotion queries that can discover the
top-k-most interesting regions for effective promotion of a
product object in which it is top-ranked. In [14,15], Miah et
al. propose approaches for finding the best set of attributes of
a new product so that it can stand out in the crowd of existing
competitive products. Given a set of existing products P and
a set of given products Q, Wan et al. [25,26] and Peng et al.
[20] propose approaches for finding a set of k best possible
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Fig. 22 Effect of grid size (n)
on the efficiencies of the
optimized strategy in a UN and
b CarDB datasets
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Fig. 23 Effect of threads on the
efficiencies of the optimized
strategy in a UN and b CarDB
datasets
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products from Q such that this subset of products of Q are
not dominated by the products in P . They describe several
variants of this problem and provide solutions for them. In [8]
Islam et al. propose an approach of establishing an automatic
negotiation between a customer and a product by modifying
some of the product’s attributes (e.g., price) and customer
preferences for those attributes with minimum penalty.

In our work, we show that a customer does not contribute
100% for the sustainment of a product in the market, rather
only a fraction of it. Considering this, we propose a novel
probability-based product adoption model for the customer
and a product selection strategy for the manufacturer with
maximum expected number of attracted customers based on
dynamic and reverse skylines. We also propose a new type
of query called finding k-MPP and a solution approach for
it.

7.2 Computing skylines in parallel

There are a number of works on parallelizing the processing
of skyline queries. However, none of them are suitable for
parallelizing the execution of k-MPP query. In [24], Vla-
chou et al. propose an angle-based space partitioning for

skyline query processing in a parallel using the hyperspheri-
cal coordinates of the data points. In [32], Zhang et al. present
an object-based space partitioning approach for processing
skyline queries in parallel. In [10], Kohler et al. propose a
hyperplane data projection technique for computing skyline
in parallel which is independent of data distribution. In [31],
Zhang et al. propose MR-BNL algorithm by partitioning
the data space into 2d subspaces according to the median
of each dimension and then, computing the local skyline
of every subspace in parallel. Finally, the global skyline is
computed in a single machine from all the local skylines. In
[17], Mullesgaard et al. propose grid-based data partition-
ing scheme for computing skyline in MapReduce. In [21],
Pertesis and Doulkeridis propose an approach of processing
skyline query in SpatialHadoop. However, these approaches
are not suitable for dynamic/reverse skyline query processing
and thereby, cannot solve our problem.

The work in [19] parallelizes a single dynamic/reverse
skyline query using quad-tree index, notmultiple reverse sky-
lines. The quad-tree index is also query dependent and does
not allowmultiple queries to be grouped together. Therefore,
this approach is not suitable for processing k-MPP query in
parallel. In our work, we propose an approach for comput-
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ing k-MPP query in parallel by designing a simple yet very
efficient query-independent grid-based index structure. We
also provide an approach for grouping queries based on their
similarities and processing them together with parallelize the
processing of k-MPP.

8 Conclusion

This paper presents an efficient approach for processing k-
MPP product selection query and its variants. We design a
simple yet very efficient query-independent grid-based index
structure to partition the data space.We also establish the par-
titionwise dominances and several theoretical properties to
reduce the search spaces of the basic computational units and
filter the non-resultant data objects for computing k-MPP
query in parallel. We also show how to improve the effi-
ciency further by grouping queries based on their extended
search spaces and processing them together. The effective-
ness and efficiency of the proposed product selection model
are demonstrated by conducting extensive experiments. Our
model adds another level of assurance to identify the valued
customers in the influence-based market research queries,
which can be studied further.
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