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Abstract As the volumes of spatiotemporal trajectory data
continue to grow at a rapid pace; a new generation of data
management techniques is needed in order to be able to uti-
lize these data to provide a range of data-driven services,
including geographic-type services. Key challenges posed
by spatiotemporal data include the massive data volumes,
the high velocity with which the data are captured, the
need for interactive response times, and the inherent inac-
curacy of the data. We propose an infrastructure, Elite, that
leverages peer-to-peer and parallel computing techniques
to address these challenges. The infrastructure offers effi-
cient, parallel update and query processing by organizing
the data into a layered index structure that is logically cen-
tralized, but physically distributed among computing nodes.
The infrastructure is elastic with respect to storage, mean-
ing that it adapts to fluctuations in the storage volume, and
with respect to computation, meaning that the degree of par-
allelism can be adapted to best match the computational
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requirements. Further, the infrastructure offers advanced
functionality, including probabilistic simulations, for con-
tending with the inaccuracy of the underlying data in query
processing. Extensive empirical studies offer insight into
properties of the infrastructure and indicate that it meets its
design goals, thus enabling the effective management of big
spatiotemporal data.

Keywords Elasticity · Spatiotemporal data · Trajectories

1 Introduction

The current decade is called the digital universe decade
because the digital universe, all data available in digital form,
is predicted to grow exponentially during the entire decade.
We consider one type of data, namely spatial data and, in
particular, spatial-temporal trajectory data. Such data cap-
ture the movement of objects, e.g., of individuals, by means
of their smartphones or other devices they carry. With the
proliferation of location sensing technologies and network-
ing, dramatically increasing volumes of trajectory data are
becoming available at a rapid rate.

These data hold the potential to be used in a wide range of
services. For example, trajectories capture the time-varying
states of a transportation system and of the behaviors of the
system users. These data can be used for next-generation,
data-driven routing services such as eco-routing and person-
alized routing [1–3]. And it can be used for urban planning
and other smart city purposes.While we consider geographic
spatial data, we note that spatiotemporal trajectories also play
a role in studies of the human brain in neuroscience [4].

Theproliferationof spatiotemporal trajectorydata presents
us with three key challenges: the data volume, the velocity
of the data, including the update rate and the query latency
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requirements, and the inherent inaccuracy of the data, often
referred to as veracity.

McKinsey reports that the volume of spatiotemporal data
from smartphone users is on the order of petabytes per year,
and they find that the volume can be 400 times larger if
location information inferred using techniques such as sta-
tion triangulation is included [5]. Likewise, in neuroscience,
where a neuron fiber can be modeled as a trajectory, a brain
simulation creates petabytes of data [4].

Due to the different location sensing technologies used
for obtaining spatiotemporal data, these data are inherently
inaccurate and thus come with veracity challenges. Specifi-
cally, different positioning technologies such as GPS-based,
communication network-based (2G–4G and Wi-Fi based),
and proximity-based (e.g., RFID-based) technologies, work
differently in different settings and yield data with different
accuracies. It is thus generally not possible to obtain accu-
rate spatiotemporal information on moving objects [6–10].
For example, investigators may need to query a large vol-
ume of historical trajectories stored in a traffic monitoring
system for finding witnesses around the scene of an acci-
dent. The relevance of trajectories could be measured by the
spatiotemporal closeness, i.e., trajectories within a specified
spatial region plus a time interval. Meanwhile, the quality of
positioned information needs to be considered for the query
evaluation [6–8].

Existing data management techniques fall short in fully
addressing these challenges inherent to spatiotemporal data.
Specifically, centralized storage and indexing techniques are
not well equipped to address the challenges. While a num-
ber of distributed storage and indexing techniques have been
proposed recently, these offer only partial solutions to the
specific challenges of spatiotemporal data [11–16]. Some
studies [11–14] propose a master-slave architecture, where
themaster node serves as a global index that captures the sys-
tem namespace and the partitioning of the data among slaves.
This approach results in a single-node bottleneck that limits
index scalability and renders the processing of large current
data requests inefficient. RT-CAN [15] and MIDAS [16] aim
to enable scalability by applying peer-to-peer overlays. How-
ever, the proposed techniques fail to address aspects specific
to spatiotemporal data. First, they assume a fixed domain
space, while time expands continuously for spatiotemporal
data. Second, they do not address complex data types such
as trajectories and data inaccuracy. Third, their support for
parallelism in query processing can be improved.

To address the challenges of spatiotemporal data, we pro-
vide techniques that enable a datamanagement infrastructure
that uses a peer-to-peer overlay (CAN [17]) over a cluster of
shared-nothing computational nodes, where each such node
is a virtual machine. The data are partitioned among nodes
based on its spatiotemporal locality. The overlay serves as the
global index, and each node has a local index on its data. By

utilizing both data locality and parallelism, efficient query
processing can be achieved.

The infrastructure includes techniques thatmodel the inac-
curacy in the data and enable inference of the confidence in
query results, thus enabling trustworthy query results. Para-
meterized representation of the inaccuracy in the data is used
in order to reduce the size and storage costs of inaccuracy
descriptions. In query processing, we use sampling tech-
niques that recover the inaccuracies of the data from their
parameterized representations and enable confidence calcu-
lation. Both inter- and intra-query parallelism are supported
in query processing.

The infrastructure matches the available computational
resources with the computational needs, thus avoiding cases
of over- and under-provisioning. Elasticity is achieved with
respect to storage and computation. To achieve storage elas-
ticity, new nodes can be assigned dynamically to active
regions where incoming data increase the storage needs;
and regions with under-utilized storage can be migrated and
condensed tomaximize resource utilization. To achieve com-
putational elasticity, the infrastructure is equippedwith novel
workload estimators that identify a suitable degree of paral-
lelism for querying.

To examine the design properties of the infrastructure,
we consider the two arguably most fundamental queries in
spatiotemporal databases, the spatiotemporal range query
(STRQ) and the spatiotemporal nearest neighbor query
(STNNQ). These are used widely and constitute building
blocks for many other queries. For example, data-driven
routing [18] can be supported by aggregating historical tra-
jectories that pass throughboth a givenorigin anddestination,
and such trajectories can be found by intersecting the results
of STRQs around the origin and destination. In the blue brain
project [4], neuroscientists also adopt the range query as a
building block for advanced data analyses. Likewise, recent
work on the earthquake prediction [19] uses the STNNQ as
a building block for the clustering of noisy seismic data.

Our contributions can be summarized as follows:

– We investigate a distributed peer-to-peer storage and
indexing scheme that is well suited for elastic storage
and query processing (Sect. 3).

– We study the evaluation of two fundamental query types,
STRQ and STNNQ (Sects. 4.1 and 4.2).

– We present an elastic approach that enables on-demand
provisioning of computational resources in order to
accelerate query processing (Sect. 4.3).

– We offer empirically based insight into the design prop-
erties of the proposed infrastructure by means of experi-
ments with both synthetic and real datasets (Sect. 5).

To the best of our knowledge, this work is the first study
on storing and indexing trajectory data in real time and scal-
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Fig. 1 Infrastructure overview

ably, and the first elastic solution for handling the veracity
challenge associated with the data.

The rest of the paper is organized as follows. As a precur-
sor to the content sections covered above, Sect. 2 makes an
overview of our system. Section 6 covers related work, and
Sect. 7 concludes the paper.

2 Infrastructure overview

Our proposed infrastructure is built on a set of nodes virtu-
alized by OpenStack, as shown in Fig. 1. Each node can be
viewed as a computer which is the basic unit in the system
providing both storage and computation capabilities. A node
can either join or depart from a system task according to the
system’s elasticity mechanism. In particular, our system’s
tasks are of two categories: storage and computation.

The storage task includes maintaining and indexing
observed spatiotemporal information, obtained from a vari-
ety of sources. In general, the observed information contains
spatial information (represented by coordinates), temporal
information (represented by timestamps), as well as object
identifiers which string separated records into trajectories.

Definition 1 (Observed trajectory) The observed trajectory
Ti for a moving object Oi is a sequence of observed location
records with timestamps 〈ci (t1), ci (t2), ...〉, where record
ci (t j ) is a spatial location ci timestamped with t j , also called
the snapshot of Oi at t j . Two consecutive records are con-
nected by a line segment to interpolate the locations in
between.

In the assumed use scenario, that the system is sub-
jected to continuously updating spatiotemporal streams of
timestamped location records. The storage manager employs
a distributed index in order to accommodate a very high rate
of incoming records and in order to adapt to the dynamic
resource requirements. In addition, data replicas are main-
tained to enhance the system’s fault tolerance.

The computation task is handled by the query engine. In
addition to retaining basic functionalities of processing accu-
rate data, the query engine can also offer high-quality answers
to queries on inaccurate data by capturing the uncertainties
associated with the data. To do that, the probability simulator
is invoked to render probabilistic information from observed
trajectories and accuracy parameters. Queries are then eval-
uated on the materialized uncertain trajectories, and query
results are annotated with their confidences. As shown in
the literature [6,20], processing uncertain information often
involves considerable computational efforts. To satisfy the
performance requirements, the infrastructure uses a work-
load equalizer to decide how and how much the system’s
parallel capabilities are to be utilized.

The central data object considered in the paper is that of
an uncertain trajectory. Considering a snapshot of a mov-
ing object, existing proposals [6,21] consider the trajectory
uncertainty as an uncertainty region, where the exact location
is a random variable inside the region. The probability den-
sity function (pdf) that captures the distribution of an exact
location can be determined or approximated by means of
object’s velocities, parameters of positioning devices [21],
or analysis of historical records. The pdf can be described
by either a closed form equation [6,7], or a set of discrete
instances [22,23]. In the storage phase, we adopt the con-
tinuous form of the uncertainty representation, because it
is hard to directly obtain sampling points in real applica-
tions, and because the closed form equations are compact,
which reduces the storage load requirement. In the query
phase, we generate the sampling values based on the pdfs,
since the discrete form is good for numerical and parallel
computation.

For example, object Oi is observed at time t as a point ci .
We model Oi (t) by an uncertainty region �(ci , γi ), which
is a circle centered at ci (t) with radius γi , plus a two-
dimensional normal distribution N

(
ci ,

γi
3

)
restricted to the

region. In the query phase, Oi (t)’s uncertainty region and
pdf are retrieved and sampled into m points, which are rep-
resented by Oi (t) = {Oi (t)(1), Oi (t)(2), ...Oi (t)(m)}. Let
Pr(v) be the existence probability of a random value v.
The summation of instances’ existence probability satisfy-
ing

∑m
j=1 Pr(Oi (t)( j)) = 1, meaning that Oi must exist in

its uncertainty region at time t .

Definition 2 (Uncertain trajectory) An uncertain trajectory
UTi is a sequence of spatiotemporal instances of object Oi at
different times: 〈Oi (t0), Oi (t2), . . . , Oi (tn)〉. For a time t ∈
[t j , t j+1], Oi (t)’s uncertainty is the interpolation between
Oi (t j ) and Oi (t j+1).

It is challenging to manage and query the large and fast
cumulative trajectory data. Next, we introduce the distributed
indexing infrastructure that is the core part of the storage
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Table 1 Notation

Notation Meaning

S, T, S× T Spatial, temporal, spatiotemporal
domain

{O1, O2, ..., On} A set of uncertain objects

O1(t) = {O1(t)(1), ...O1(t)(m)} O1 represented by m samples

{T1,T2, ...TN } A set of tori

Ti = {T1, T2, ...} Ti contains a set of torus nodes

{T1, T2, ...Tn} A set of observed trajectories

Ti = 〈ci (t1), ci (t2), ...〉 An observed trajectory

{UT1,UT2, ...,UTn} A set of uncertain trajectories

UTi = 〈Oi (t1), Oi (t2), ...〉 A recovered uncertain trajectory

Δt, [ts , te] A time interval from ts to te
R ⊕ r Expand R’s spatial region by r

�(c, r) Circle with center c and radius r

manager, and we further discuss how it offers parallelism for
the query engine. Table 1 summarizes the notations used in
this paper.

3 Indexing infrastructure

In this section, we introduce the proposed storage and index-
ing infrastructure. Section 3.1 serves as a roadmap. Logically,
the indexing infrastructure consists of three layers, a skip-list
layer (Sect. 3.2), a torus layer (Sect. 3.3), and an oct-tree layer
(Sect. 3.4). In Sect. 3.5, we cover the dynamic operations that
are important for storage elasticity. Finally, other system fea-
tures, such as storage load balancing and fault tolerance, are
covered in Sect. 3.6.

3.1 Infrastructure overview

Physically, our system consists of a set of shared-nothing
nodes. Each node is an independent computational unit, i.e.,
a computer, whose data range correspond to a fragment of
the spatiotemporal domain of the data. Nodes are clustered
into a structure called the torus according to the proximity of
their spatiotemporal ranges in order to achieve data locality.
A torus abstracts the topological features of the peer-to-peer
protocol CAN [17]. We show an example of a 2D torus in
Fig. 2. In spatiotemporal applications, the spatial domain S

is often fixed, while temporal domain T expands over time.
Thus, it is reasonable to define a torusT’s domain asS×Δt ,
where Δt ⊆ T is T’s time domain.

The three logical layers of the system are shown in Fig. 3.
The oct-tree layer refers to the local indexes, typically oct-
trees, that each node uses for indexing its local data. The
two upper layers, the skip-list layer and the torus layer, form

Fig. 2 Torus

Fig. 3 Global view of the distributed index

the global part of the system, the system’s global index. The
global index serves as the communication channel between
the different nodes. The communication occurs at two lev-
els, inter- and intra-torus communication, which are handled
by the skip-list layer and the torus layer, respectively. The
three layers are distributed across all nodes in the system.
In the infrastructure, there is no privileged nodes and each
node is an equipotent peer. Data access requests through the
global index to reach relevant nodes. Then, corresponding
local indexes are traversed. In case relevant data are found at
multiple nodes, the data are combined and refined. Next, we
consider each component in detail (Fig. 3).

3.2 Skip-list layer

The skip-list layer connects different tori in the temporal
domain. The temporal domain T is partitioned into a set of
time intervals,T = {Δt0,Δt1, . . .}meaning thatΔti ∩Δt j =
∅ if i 
= j and ∪iΔti = T, and each torus corresponds to
a time interval. Tori are chained. An 2D example of a torus
chain is shown in Fig. 4. Further, to support fast search on the
temporal dimension, we use a double linked skip list [24].
Next, each torus cluster corresponds to a node in the skip list.
For a skip-list node, the key is the temporal interval of the
torus cluster, and the pointer to it is a preassigned consecutive
ip address segment. Within a torus, the skip-list information
is shared among all nodes.
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Fig. 4 Torus chain

For example, suppose toriT1 andT2 are directly linked in
the skip-list layer. It means that torus node A ∈ T1 stores the
ip address segment of T2. For routing targeted at T2, A ran-
domly picks an ip address from the T2’s ip address segment,
which points to a torus node B ∈ T2. After that, intra-torus
routing starts in T2. Since B is randomly chosen, the work-
load on the skip-list layer is evenly distributed among the
nodes in a torus cluster.

Analysis If k tori are indexed by the skip list, it costs
O(logk) hops to reach a torus. Each torus takes O(logk)
to store the skip-list node.

3.3 Torus layer

In the system, a torus corresponds to a cluster of nodes. Each
node is an independent computational unit (a physical com-
puter or virtual machine). The torus structure is the core part
of the index. We use a torus because: (1) it supports multidi-
mensional data; (2) it preserves the elasticity of peer-to-peer
techniques (CAN [17]), where a node can easily depart from
or enter the system. Correspondingly, the intra-torus com-
munication between different nodes follows the CAN [17]
routing scheme. To achieve that, each node stores a routing
table about its neighboring nodes. The routing table has two
major columns: the ip address of a neighbor and the data
range of the neighbor. Initially, the number of neighbors is
set to 6, since there are three dimensions, and each dimension
has two directions. Thus, the cardinality of the routing table
is 6. Notice that the topology of a 3D torus is different from
that of a cube structure. On a torus, nodes on a dimension are
strung together end-to-end in a ring structure, whereas on a
cube, they are connected by a line, meaning that the head and
tail nodes do not connect.

The routing within a torus is done as follows. Let nodes A
and B be in the same torus. A gets a request q to access data
in B. A handles the routing by seeking in its routing table to
find the neighbor whose data range is closest to q. If multiple
neighbors are equally close to q, A randomly selects a neigh-
bor, since the expected number of hops to reach B is the same
for each candidate. Then, on A’s neighbor node, the above
process is repeated until B is reached. The detailed routing
process is described by Algorithm 5 in the “Appendix”. If

Fig. 5 RT-CAN versus Elite (routing cost)

A and B are located in different tori, routing on the skip-list
layer occurs first. Based on the routing scheme, we can eas-
ily design the range query that is the basic operator for data
access in a torus. Given a spatiotemporal query region q, i.e.,
a 3D rectangle, the range query finds all relevant nodes and
forwards the search to local indexes for further processing,
as detailed in Algorithm 4 in the “Appendix”.

AnalysisThe expected routing cost of a torus containing N
nodes is 0.69 3

√
N hops (Lemma2), and themaximum routing

cost is 0.91 3
√
N hops (Lemma 1, also in the “Appendix”).

If extra links are built, as RT-CAN [15] does, the average
routing cost can be reduced to logarithmic forms, e.g., log N

4
for intra-torus routing and log kN

4 for routing over the entire
infrastructure. We choose to follow the simple but powerful
CAN protocol [17]. We plot the routing costs of RT-CAN
and our proposal (Elite) in Fig. 5, ignoring their common
part O(logk). RT-CAN starts to perform better only when
the size of a single torus cluster is extremely large (≥2500
nodes). We expect such cases to be rare. Also, the simple
structure has smaller update and storage costs (see Table 2)
and thus retains the ability for light weight self-adjustment
in dynamic scenarios.

The routing cost can be used to estimate the system
throughput for storage tasks. Suppose the storage workload
is uniformly distributed among different peers, the through-
put of a peer-to-peer scheme can be estimated as the total
bandwidth of the system divided by the number of messages
that a task takes. If the throughput of a fully packed com-
puter is 1, the throughput of RT-CAN and Elite can be upper
bounded by the quotient of kN divided by their routing costs,
respectively (see Table 2).

3.4 Oct-tree layer

The local index contains an oct-tree and a hash table. An oct-
tree is a three-dimensional version of a quad-tree and is used
to store the observed locations of a trajectory. Each stored
location has a pointer to the its successor location. Then,
operations on a trajectory are similar to those on a linked
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Table 2 Complexity comparison

Centralized index RT-CAN [15] Elite (skip-list linked CAN [17])

Routing O(logk+ logN) log(kN/4) O(logk)+0.69 3
√
N

Throughput 1 kN/log(kN/4) kN
O(log) + 0.69 3√N

≈ 1.45kN 2/3

Updating cost O(logk+ logN) O(logk+ log N) O(1) (intra-torus update) or O(logk) (inter-torus update)

Extra storage cost 0 O(logk+ logN) O(logk)

list. The data format of each location record is a five-element
tuple (TrajID, Obs_Pt, Next_Pt, Next_ptr, UPara). Here, Tra-
jID identifies a trajectory uniquely. Then, Obs_Pt stores the
trajectory’s observed location, andNext_Pt stores the succes-
sor’s location. The two points form a line segment that work
as the basic unit in comparison with query ranges. All inter-
polated points (on the line segment) have to be considered
during query processing to avoid false negatives. Next_ptr
identifies the location record of the next location of the tra-
jectory. Then, the observed trajectory can be traversed by
starting at the trajectory’s head then following the successor
pointers. The UPara field stores information for describing
the uncertainty associated with the trajectory, including an
uncertainty region size and a probability distribution for each
observed position.

The hash table is used to map a trajectory’s ID to its
observed locations. In particular, it stores pointers to trajec-
tories’ heads and tails. The tail is the latest observation of a
trajectory in the torus, and the head is the first observation.
Since we assume that the trajectory data arrive in chrono-
logical order, the tail pointer is used for efficient insertion.
The root node of oct-tree represents the entire domain of the
torus node. Each internal node has eight children, each of
which corresponds to 1/8 of its parent’s range, as depicted in
Fig. 6a. The trajectory data are inserted into an oct-tree leaf
node, if the node and the data overlap. In case the leaf node
is full, i.e., the capacity exceeds 4Kb, it is split into eight new
nodes, from octant 1 to 8 in Fig. 6a.

Given the structure above, a local range search Q, the
query first finds the leaf nodes overlapping with its range;
then it descends the index to find the line segments overlap-
ping with its range. Finally, the trajectory IDs of overlapping
segments are retrieved.

Discussion We use the oct-tree [25] instead of the fre-
quently used R-tree because of three reasons. First, the
oct-tree is more consistent with the space decomposition
approach of the torus layer. Second, it is straightforward
and simple to apply to oct-tree to index trajectory data.
Existing R-tree variants for trajectory data, e.g., the 3D-
Rtree, the TB-tree, and the MV3-RTree, target disk-based
indexing of disk-resident data and thus are either not well
suited for in-memory settings orwould benefit from improve-
ments [26,27]. Third, the performance of local indexes is a

Fig. 6 Oct-tree node splitting

secondary issue for the system. The performance bottleneck
is found in the networking part, and the local indexes do not
limit the performance.

3.5 Dynamic operations

The infrastructure achieves storage elasticity throughdynam-
ically allocating and recycling storage loads. We cover
dynamic operations on the skip-list layer in Sect. 3.5.1 and
operations on the torus layer in Sect. 3.5.2.

3.5.1 Dynamic skip-list operations

If a new torus is to be appended to the system, this is broad-
cast to all torus clusters by reporting the new torus’s address
segment and temporal range. Upon receiving the report, each
skip-list node establishes the double links with some proba-
bility [24]. We set the probability to be 0.5. Then, the torus
cluster with a positive decision sends its ip address segment
and data range back to the new torus. This results in a total of
k + logk hops between torus clusters. On each torus cluster,
the time complexity is O(logk).

3.5.2 Dynamic torus operations

The system has two types of dynamic operations at the torus
level: splitting and condensing.

Torus node splittingWe set a maximum capacity for each
torus node. If the storage on torus node A exceeds the capac-
ity, the system allocates a new torus node B to share the
storage load. Logically, the torus node A is split into two
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nodes, A and B, along a specified splitting dimension d
for better storage load balancing. We choose the splitting
dimension d which results in the least difference between
the storage load of the new A and B.

Suppose A’s region R is split into two equally volumed
regions R+

d and R−
d along dimension d. After the splitting,

A’s value region is set to R+
d . Meanwhile, a new torus node

B is appended whose value region is set to R−
d .

There are four types of information to be migrated fromA
toB: the trajectory data overlappingwith R−

d , the index struc-
ture for R−

d , the auxiliary hash table for R
−
d , and the updated

routing table containing the new neighbor information. The
index structure is easy and efficient to handle, as the oct-tree
itself is constructed through splitting of the domain space.
Since a torus node is split into two equal volume nodes, a
torus node is split along the splitting surface of the oct-tree
root node. In other words, the process does not incur any
oct-tree node splitting.

To get the trajectory and the hash table, we need to traverse
every trajectory from head to tail. During the traversal, we
(1) determine which line segment belongs to R−

d ; (2) if a line
segment spans over A and B, the line segment breaks at the
intersection with the splitting dimension; (3) construct the
hash table for B. The routing tables of A and B are updated
accordingly. Then, the retrieved information is packed and
sent to B.

Torus node condensing In case a torus node A is under-
utilized, say below a minimum capacity,1 the system can
migrate the information of the node to another under-utilized
torus node B. Logically, the two under-utilized nodes A and
B are merged. To implement that, the system: (1) informs A’s
neighbor to change the routing tablewith the address ofB; (2)
migrates the index, data, and routing table; (3) recycles node
A. Notice that now B has two data ranges and routing tables.
The routing package is analyzed to determine whether it is
sent from B’s neighbors or from neighbors of the old A. The
service can be triggered either manually or automatically.

3.5.3 Oct-tree node splitting

When a leaf node reaches its capacity, it is split into eight
octants by splitting along three dimensions. The trajectories
associated with the leaf node are then placed in the appropri-
ate new nodes. During the splitting, we need to interpolate
some points on the splitting dimensions and include them in
the trajectory. Otherwise, false negatives occur in the query
processing. For example, the range query Q in Fig. 7 will
miss trajectory a → b, if points x1 and x2 are not interpo-
lated and stored in octant 2.

1 The minimum capacity is below half of the maximum capacity. Oth-
erwise, the condensed node may exceed the maximum capacity.

Fig. 7 Three cases for oct-tree node splitting

There are four cases to consider according to the relative
position of a and b. If a and b are on the diagonal corners,
it is case 0, shown in Fig. 6b. Otherwise, they are on the
same side of a splitting dimension, as shown in cases 1–3 in
Fig. 7.

If a and b are separated only by one splitting dimension,
we can calculate the intersection x of the line segment ab
and the splitting dimension (case 1 in Fig. 7). If a and b are
separated by two splitting dimensions (both vertically and
horizontally as in case 2 in Fig. 7), we can calculate two
intersections x1 and x2. A special case occurs when x1 and
x2 degenerate into one point x , as shown in case 3 in Fig. 7).
In our work, we use a threshold ε, such that if the distance
between x1 and x2 is smaller than ε, we use the center point to
approximate the intersection (case 3 in Fig. 7). The last case
occurs when a and b are in the diagonal corners, meaning
that they are separated by all three splitting dimensions, as
depicted in Fig. 6b. This case can be transformed into the
cases in Fig. 7 by arbitrarily selecting a splitting dimension
to decompose the line segment into two parts. Each part is
then covered by one of the cases 1–3.

3.6 Discussion on the torus structure

Storage load balancing Storage load balancing is achieved
by integrating with the OpenStack cloud platform that adopts
a scheduler to determine which physical node a virtual
node should be launched on. By default, the scheduler
will randomly select a physical node for a virtual node
allocation request in order to evenly distribute the virtual
nodes among all physical nodes. The random strategy alle-
viates the problem of data skew. In real applications, it is
likely that only a fraction of the data are being accessed
frequently. If such “hot” data are divided among multi-
ple physical nodes, the corresponding operations over the
data will also be more evenly distributed. Another level
of storage load balancing is achieved by condensing vir-
tual nodes. The system is able to periodically merge virtual
nodes that underflow in order to better utilize computational
resources.

Fault tolerance We implement a synchronization strat-
egy for a torus node to replicate the data it owns (called
a primary copy) onto two neighboring nodes (called repli-
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cas). The replicas help increasing the data’s resilience and
potentially enhance query performance. In our system, the
synchronization can occur in two ways: (1) transactional
replication, which mirrors the updates to the replicas simul-
taneously with updates to the primary copies; (2) periodical
replication, which propagates batched updates of primary
copies periodically. Then, the recovery process consists of
three steps. Suppose a torus node, T1, fails. First, another
node, Tnew, is initialized and appended to the torus cluster.
Second, a replica of the data in T1, which is kept in a neigh-
boring node of T1, is sent to Tnew. Third, Tnew loads the data
and reconstructs the local index.

LockingmechanismThe systemhandles updates by imple-
menting read–write locks on the index. If write–write or
read–write conflict occurs, the index (or, equivalently, the
root node) is locked until the task that holds the lock finishes.
Opportunities exist for optimizing the locking granularity,
i.e., from locking the root node to locking child nodes. How-
ever, studies of locking granularities are orthogonal to this
work.

Potential routing optimizationThere exist rooms to further
optimize the routing and indexing schemes considered in the
work.

Inter-torus routing optimization In a torus chain, there
exist some torus nodes which have adjacent domains but are
allocated to different tori. For example, as shown in Fig. 4,
tori ΔT1 and ΔT2 overlap at a slice T1 highlighted in black.
The torus nodes that touches the slice can be interconnected
so that the routing across the slice can be done without the
skip list.

Intra-torus routing optimization It is possible to reduce
the intra-torus routing cost by accommodating trajectories
in a R+-tree manner. For example, if a trajectory spans over
multiple torus nodes, we maintain the copy of the whole tra-
jectory for those nodes. Then, if a trajectory is to be accessed,
a local node instead of multiple nodes is accessed and thus
reduces the intra-torus communication. Actually, it has been
partially achieved in the replica mechanism presented in the
work.

In this work, we do not go deeper in these directions
because the routing cost is not the dominant part of the query
evaluation.

4 Query engine

In this section, we describe the query engine. We first
define two representative spatiotemporal queries, STRQ and
STNNQ (Sect. 4.1). Then, we describe how the parallelism
is used for processing these queries efficiently (Sect. 4.2).
Finally, we describe how the parallelism can be used for
processing queries elastically (Sect. 4.3).

4.1 Query semantics

The query engine supports data veracity by applying uncer-
tainty models to the observed trajectory data. A query then
returns possible answers together with their qualification
probabilities, indicating the confidence of the result.

4.1.1 Spatiotemporal range queries

Definition 3 (Spatiotemporal range query (STRQ)) given
a three-dimensional query region Q, and an uncertain tra-
jectory database D, STRQ(Q, D) retrieves all uncertain
trajectories {UTi } that belong to Q with nonzero probability.
Formally,

STRQ(Q, D)

={(UTi , qp
R(Q,UTi )) | qpR(Q,UTi ) > 0 ∧UTi ∈ D}

Definition 4 Thequalificationprobability (qpR) of anuncer-
tain trajectory UTi satisfying STRQ(Q, D) is:

qpR(Q,UTi ) = 1 −
|UTi ·Δt∩Q·Δt |∏

t=1

F(Q,UTi , t), (1)

where

F(Q,UTi , t) =
∑

{ j |O( j)
i (t)/∈Q}

Pr(O( j)
i (t))

Here, F(Q,UTi , t) is the probability that UTi does not sat-
isfy Q at time point t . Hence, the second term of Eq. 1
calculates the probability that UTi cannot appear in Q at
any time. To obtain F(Q,UTi , t), we sum up the existence
probabilities of Oi ’s samples that located outside Q.

4.1.2 Spatiotemporal nearest neighbor queries

Definition 5 (Spatiotemporal nearest neighbor query
(STNNQ)) given a query Q = (q,Δt) consisting of a spa-
tial point location q and a time interval Δt , and an uncertain
trajectory database D, STNNQ(Q, D) retrieves all uncer-
tain trajectories {UTi } in D that can be q’s nearest neighbors
during Δt with nonzero probability. Formally,

STNNQ(Q, D)

=
{
(UTi , qp

N (Q,UTi )) | qpN (Q,UTi ) > 0 ∧UTi ∈ D
}

Definition 6 The qualification probability (qpN ) of an
uncertain trajectory UTi satisfying STNNQ(Q, D) is:
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qpN (Q,UTi ) = 1 −
|UTi ·Δt∩Q·Δt |∏

t=1

F(q,UTi , t), (2)

where

F(q,UTi , t)

= 1 −
∑

{ j |O( j)
i (t)}

Pr(O( j)
i (t))

∏

g 
=i∧Og∈D
Pr(|q, O( j)

i (t)| < |q, Og(t)|)

Equation 2 is similar to Eq. 1, where F(q,UTi , t) is the
probability that UTi is not the nearest neighbor of q at time
point t . The value of F(q,UTi , t) is calculated by one minus
the probability that UTi is the nearest neighbor of q. Note
that at time point t , UTi will be the nearest neighbor of q
if Oi appears at O

( j)
i (t) and the distances between all other

objects and q exceed |q, O( j)
i (t)|.

4.2 Evaluating spatiotemporal queries

Weproceed to describe how to efficiently compute the STRQ
and STNNQ queries. Query evaluation proceeds in three
phases. The first phase, filtering, utilizes the distributed index
(Sect. 3) to locate the torus nodes that overlap with the query
region in order to retrieve candidate trajectories by accessing
local indexes. The second phase, node allocation, allocates
idle torus nodes for the refinement phase. In the third phase,
refinement, we use sampling methods to generate a set of
possible instances, simulate the imprecision of trajectories,
and calculate the corresponding qualification probabilities.
The results are then merged and returned.

4.2.1 Spatiotemporal range query

The evaluation of STRQ is formalized in Algorithm 1. In
the filtering step, the query is forwarded to torus nodes with
regions that overlap with the query range Q. For each node
Ti , the intersection with Q is Qi . The query Q is thus decom-
posed into a set of sub-queries that can be run on different
nodes in parallel. Let us consider Ti with Qi . The local
index is traversed to retrieve trajectories overlapping with
Qi ⊕Umax, whereUmax is the size of the uncertainty region,
and “⊕” is a binary operator that extends the spatial region of
the left operand with a length indicated by the right operand.
Formally,

⊕ : (S × T) × N → (S × T)

For example, given a region R = ([xlow, xhigh], [ylow, yhigh],
[tlow, thigh]) and a length r , R ⊕ r is the region R′ =

Algorithm 1 Spatiotemporal Range Query
1: function STRQ(query Q)
2: Find all torus nodes {Ti} overlapping with Q � Step 1.

Filtering
3: Qi is the intersection between Q and the region of Ti
4: In parallel for each Ti do
5: Ci ← LocalOctTreeRangeSearch(UT , Qi ⊕Umax)
6: � Ci ={ UT } is a set of candidate trajectories
7: � Umax is the largest uncertainty region size
8: n# ← FN (|Ci |) � n# is the number of torus nodes

requested
9: {Tj } ← nalloc(n#) � Step 2. Node Allocation

10: Decompose Qi into n# sub-queries {Q( j)
i }

11: for each sub-query Q( j)
i do

12: Find its corresponding candidates C ( j)
i �

C ( j)
i ⊆ Ci

13: Deliver (Q( j)
i ,C ( j)

i ) to corresponding node Tj

14: In parallel for each T ∈ {Tj } do � Step 3.
Refinement

15: for each trajectory UT ∈ C ( j)
i do

16: Calculate qpR(Q( j)
i ,UT )

17: Merge the results of {Q( j)
i } and return to the query issuer.

([xlow − r, xhigh + r ], [ylow − r, yhigh + r ], [tlow, thigh]). In
the torus node Ti , if an uncertain trajectory does not intersect
Qi ⊕Umax, it cannot to be in the region Q. Based on the num-
ber of candidates retrieved, we can estimate the refinement
cost by equation FR , to be detailed in Sect. 4.3.2.

The second phase is node allocation (Nalloc). Upon
receiving the Nalloc task, a representative torus node, called
*node,2 allocates a number of idle nodes to Ti for the
refinement phase. Query Qi together with the candidates
obtained beforehand is distributed evenly among the assigned
nodes. Refinement is then done in parallel in order to meet
response-time requirements. Details about Nalloc and the
cost estimation function FR are provided in Sects. 4.3.1
and 4.3.2, respectively. In the end, the query results are col-
lected and returned to the user.

4.2.2 Spatiotemporal nearest neighbor query

The evaluation of STNNQ is detailed in Algorithm 2. In
the filtering step, the query retrieves in parallel all can-
didates that can be the nearest neighbor of q ∈ Q. For
each torus node Ti intersecting with Q, assume Qi is the
intersection part. Q is decomposed into a set of {Qi },
each of which is run independently in the corresponding
torus node Ti . Ti issues a range query parameterized by
(Qi ⊕dmax)⊕Umax to filter objects outside the range, as they
have no chance to be STNNQ answers. Here, dmax is equal to
maxt∈Qi ·Δt min∀UT∈Ti (|Oi (t), q|). Theprocess of obtaining
dmax is discussed in “Appendix 4”. Notice that the filtering

2 Details on the *node are covered in Sect. 4.3.1.
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Algorithm 2 Spatiotemporal Nearest Neighbor Query
1: function STNNQ(query Q < q(x, y),Δt (ts , te) >)
2: Find all torus nodes {Ti} overlapping with Q � Step 1. Filtering
3: Qi is the intersection between Q and Ti ’s region
4: In parallel For each Ti do
5: Obtain dmax � “Appendix 4”
6: Ri ← Qi ⊕ dmax ⊕Umax
7: Ci ← RangeQuery(Ri , Ti ) � Ci ={ UT } is a set of

candidate trajectories
8: n# ← FN (Ci ) � n# is the number of nodes requested
9: {Tj } ← nalloc(n#) � Step 2. Node Allocation

10: Decompose Qi into n# sub-queries {Q( j)
i }

11: for each sub-query Q( j)
i do

12: Find its corresponding candidates C ( j)
i � C ( j)

i ⊆ Ci

13: Deliver (Q( j)
i ,C j ) to corresponding node Tj

14: In parallel for each T ∈ {Tj } do � Step 3. Refinement

15: for each trajectory UT ∈ C ( j)
i do

16: Calculate qpN (Q( j)
i ,UT )

17: Merge the results of {Q( j)
i } and return to the query issuer.

range might span multiple torus nodes. The qualified trajec-
tories are shipped back to Ti .We then estimate the refinement
cost by function FN , to be detailed in Sect. 4.3.2. The allo-
cation and refinement phases are similar to those of STRQ.

DiscussionNote that the distributed refinement workloads
are run independently over different torus nodes. Suppose
UTi · Δt is partitioned into several time intervals, i.e.,
UTi · Δt = {Δt1, ..., Δts}, each of which corresponds to an
allocated torus node. The qualification probability equation
of STRQ (Eq. 1) can be rewritten as follows.

qpR(Q,UTi )

= 1 −
|Δt1∩Q·Δt |∏

t=1

F(Q,UTi , t)

× · · · ×
|Δts∩Q·Δt |∏

t=1

F(Q,UTi , t) (3)

Thus, each
∏|Δtl∩Q·Δt |

t=1 F(Q,UTi , t) (l = 1, · · · , s) can
be computed independently by a torus node allocated in the
Nalloc phase, and the final result can be obtained easily by
combining the local results according to Eq. 3. The distrib-
uted calculation of the qualification probabilities for STNNQ
queries can be handled in a similar way.

4.3 Elastic query evalaluation

Our system achieves computational elasticity by allocating
dynamic computational resources on demand. To explain
how it works, we first cover the mechanism for idle node
allocation (Nalloc), which fetches computational resources
upon requests, in Sect. 4.3.1. We describe the workload esti-
mator in Sect. 4.3.2.

Fig. 8 Heart beats

4.3.1 Implementation of Nalloc

The idea of the mechanism that provides elasticity is to col-
lect statistics from nodes periodically. Then, computational
resources are allocated according to the currently available
nodes and workload estimators.

Heart Beats The system monitors the query workload in
real time by having torus nodes report their current workload
periodically to a representative torus node, called *node (see
Fig. 8). The *node is selected among torus nodes with light
workloads. Initially, a random node is selected as *node as
they are equally idle. In our implementation, the heart beat
frequency is set to be 1 HZ. The system has a threshold to
indicate whether a node is idle or busy. The *node maintains
a table of currently idle nodes in the cluster. Our system
allows multiple *nodes. Then, the idle nodes in the table are
also shuffled at each heart beat to alleviate the problem of
allocating the same idle node to multiple tasks. The table is
checked when allocating nodes. A by-product of the heart
beats is to monitor whether to replace abnormal torus nodes.

Idle nodes retrieval Based on the workload estimation,
torus node Ti gets the number of nodes required for the local
refinement task. Before sending the request, the torus node
checks itself to see if it is idle. If no, the refinement task is for-
warded to the *node for allocation of idle nodes. Otherwise,
the requested number is decreased by one and delivered to the
*node. In case of multiple *nodes in the cluster, the request is
forwarded to a random one. Based on the statistics collected
at each heart beat, the *node tries to match the request with
the currently idle nodes. Other torus clusters are visited if too
few idle nodes are found. The request is forwarded to *nodes
of other such clusters through the skip-list layer. Due to its
special role and to ensure the smooth operation of monitor-
ing and scheduling, the *node is not allocated to refinement
tasks. The process is illustrated in Fig. 9.

4.3.2 Workload estimator

Now, we consider cost estimation for both STRQ and
STNNQ. According to Algorithm 1, for STRQ, the refine-
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Fig. 9 Find the idle node

ment phase contains two parts: (1) generate sampling points;
(2) check whether the sampling points overlap Q. Let α and
β be the cost per sampling point for the two parts, respec-
tively. The refinement cost canbe estimatedby FR as follows,
where n is the number of total sampling points.

FR(Q) = αn + βn (4)

Similarly, based on Algorithm 2, for STNNQ, the refine-
ment phase contains three steps: (1) generate sampling
points; (2) pruning non-qualifying points; (3) calculate the
qualification probabilities. Let α, β, and γ 3 be the cost per
sampling point for these three steps. Then, the refinement
cost can be estimated by FN as shown below, where h is the
number of sampling points after pruning (h ≤ n).

FN (Q) = f N (Qsnapshot ) · QN · Δt,

where f N (Qsnapshot ) = αn + βn + γ (h2/2)

Here, f N is the cost for each sampled snapshot on the
time dimension. Note that the cost of calculating probabili-
ties is proportional to h2/2 using the method in our previous
work [28]. The value of n can be collected after the filter-
ing step. The value of h for STNNQ can be estimated as
detailed in Appendix 1. Then, the number of nodes required
for the computation can be calculated by Eq. 5. The expected
response time is FR(Q) for STRQ and FN (Q) for STNNQ.

# of Nodes Required =
⌈
Expected Response time

MAX_ResponseTime

⌉
(5)

Having estimated the number of nodes required, the
request is sent to *node. Upon receiving the request, *node
looks up the heart beat statistics to find currently available
idle nodes and sends the feedback. Then, the task is decom-
posed into equal sized subtasks, each of which is assigned to
an idle node.

3 From experiments, we obtained α = 5e−4, β = 1e−6, and γ = 1e−6.

5 Experimental analysis

Section 5.1 details the experimental setup. Sections 5.2 and
5.3 concern the performance of the storage manager and
query engine, respectively. Section 5.4 discusses results over
real datasets.

5.1 Setup

We construct the torus clusters with virtual machines cre-
ated byOpenStack.We study performancewhile considering
torus clusters containing 4, 8, 12, 18, and 27 nodes, with each
node having 2GRAM, a two-core 2.4GCPU, and using Cen-
tOS 6.4. The default size is 27 nodes.

We examine our methods with both synthetic and real
datasets. We first use Brinkhoff’s generator4 to incremen-
tally produce a large dataset based on the road network of San
Francisco. A dataset containing 103.68 million data points
and 7.02 million trajectories is used for the torus cluster with
27 nodes. So, in our default settings, each torus node stores
3.84 (=103.68/27) million data points and 0.26 (=7.02/27)
million trajectories on average. For differently sized torus
clusters, we randomly extract corresponding fractions of data
tomake sure the average storage load on each node is approx-
imately the same as described above. For example, the torus
cluster with 18 nodes stores 69.12 (=103.68 · 18/27) million
data points. By doing this, we can test the scalability over
torus cluster size while eliminating other factors.

We also use theGeolife dataset5 fromMSRA that contains
17,621 trajectories, and more than 19million data points.We
“inject” uncertainties for each observed point according to
the GPS error,6 which follows a Gaussian distribution with a
sigma of 10 meters. By default, we use 200 sampling points
to represent such a distribution.

We compare our system with several mainstream spatial
big data platforms: SpatialHadoop [12], SpatialSpark [29],
MongoDB,7 and GeoCouch.8 SpatialHadoop and Spatial
Spark do not support temporal data and trajectory data in their
latest versions. None of the systems support uncertain data,
let alone uncertain trajectories. In comparisonwith these sys-
tems, we use spatial points. We apply our default settings for
each competitor, meaning that each maintains 27 nodes stor-
ing 103.68 million points.

All programs are written in C/C++ and complied by
gcc/g++ 4.4.7.

4 http://iapg.jade-hs.de/personen/brinkhoff/generator/.
5 http://research.microsoft.com/en-us/downloads/
b16d359d-d164-469e-9fd4-daa38f2b2e13/.
6 http://en.wikipedia.org/wiki/DifferentialGPS.
7 http://www.mongodb.org.
8 https://github.com/couchbase/geocouch.
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Fig. 10 Storing and indexing comparison

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

9 x 105

Torus Size

Th
ro

ug
hp

ut

Theorectial Upper Bound
0-replica
2-replica

Fig. 11 Throughput versus torus size

5.2 Storage manager study

Storage and indexing comparison Elite andMongoDB are
capable of storing data and maintaining the index synchroni-
cally. SpatialHadoop and SpatialSpark have to store the data
first and index it afterward.We compare their performance at
storing and indexing 1 million data points. Figure 10 shows
the task processing time when varying the torus size from
4 to 27. The results show that Elite dominates the competi-
tors in all settings. SpatialHadoop and SpatialSpark have
similar performances and are about half an order of mag-
nitude slower than Elite. We also tested the performance of
GeoCouch, whose speed is two orders of magnitudes below
that of MongoDB during data insertion. Next, we study the
performance over uncertain trajectories.

Throughput versus torus size We show a magnified view
of our method in Fig. 11. As can be seen, the throughput
increases when more nodes are used. A larger torus has
a larger network bandwidth, and the throughput increases.

Fig. 12 Breakdown for node splitting

This is consistent with the potentially increased parallelism
with respect to the torus cluster size. Also, the throughput
increases sub-linearly with respect to the cluster size, indi-
cating that our system has good scalability, thus supporting
elastic storage management. The gap between the theoreti-
cal upper bound is due to extra system spending, e.g., heart
beating. We also show the performance of Elite if no replicas
are stored, marked as 0-replica in Fig. 11. As shown, stor-
ing two replicas (our default setting) reduces the throughput
by about 10–20%. This performance reduction is the cost of
fault tolerance.

In the sequel, we report results for two operations, node
splitting and node appending, with which storage elasticity
is achieved.

Breakdown for node splitting Wereport the results of split-
ting a torus node in Fig. 12. The threshold of node splitting is
set to 3 million. This is below the average data volume of 3.8
million so that the results of node splitting can be observed.
In practice, the setting of the capacity is adjusted accord-
ing to the amount of memory available at virtual nodes, the
number of replica copiesmaintained per virtual node, and the
reserved heap and stack for programs.Node splitting involves
three phases: splitting the oct-tree in the original node, send-
ing data to the new torus node, and recreating the oct-tree in
the new node. As shown in Fig. 12, the time for splitting the
oct-tree is about 8 s, and the whole process takes about 13 s.

Appending a new torus node There are three steps for
appending a new torus node, i.e., sending the executable
binary files to the new torus node, starting the torus service in
the new node, and broadcasting this change throughout the
torus. Our experiments show that, the first step is the most
expensive, requiring about 0.8 s. The second step needs about
0.7 s, and the third consumes only a few milliseconds. The
whole cost of appending a new torus node is about 1.5 s.

Recovery The recovery process involves three steps: (1)
appending a new node; (2) sending the replica to the new
node; (3) rebuilding the index from the data. The cost of the
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Fig. 13 Routing cost analysis

first step is as mentioned above. The costs of the second and
third steps depend on the size of the dataset. For our default
setting with 3.8 million data points per node, we need about
4.05 s for sending the data, and 30.13 s for rebuilding the
index. Thus, the time cost for recovering the index is higher
than the time cost of node splitting (Fig. 12). This is because
that during node splitting the local index is serialized and
deserialized, which takes much less time. In other words, if
we maintain the serialized index, we can reduce the index
reconstruction time from 30.13 s to less than 4s. But main-
taining both the serialized index and the replica takes extra
efforts and affects the insertion throughput. So, in our imple-
mentation, we opt to maintain “light-weighted” replicas.

Routing cost analysis In Sect. 3.3, we analyze the torus
routing cost. Figure 13 shows the theoretical values with the
experimental results. According to the results, the average
routing costs are very close to the expected ones.

5.3 Query engine study

5.3.1 Query analysis

Query comparison We compare the response times of
Elite, SpatialHadoop, SpatialSpark, andMongoDB inFig. 14.
GeoCouch does not yet support distributed indexing and is
not included in this comparison. Again, for a fair compari-
son, we only consider selective queries over spatial points.
A selective query over spatial points is a simplified version
of STRQ, where no refinement is needed. As illustrated in
Fig. 14, Elite performs several orders of magnitude faster
than the three other systems. Now, we examine Elite alone
for the queries studied in the paper,which involves both index
traversal and probability computation.

Query throughputWe evaluate the query throughput, i.e.,
the number of queries processed per second, for tori with

Fig. 14 Query comparison

Fig. 15 Query throughput versus torus size

different sizes. In all cases, each node contains about 3.84
million data points. The query set contains 10,000 queries.
Half of the queries are STRQs, and the other half are
STNNQs. For STRQ, the query diameters vary from 1 to 5%
of a node’s domain size. For STNNQ, the query time span
varies from 50 to 250. In this test, queries are sent to the tori
continuously. As shown in Fig. 15, the throughput increases
almost linearly with respect to the torus size. Hence, our sys-
tem also has good scalability in terms of query processing.

Accuracy We test the accuracy of derived qualification
probabilities with respect to the number of sampling points.
We randomly generate 200 queries for both STRQ and
STNNQ. For each query, we calculate the qualification prob-
ability by varying the number of sampling points, i.e., from
100 to 500, for each object at each timestamp. We find that
the values of the derived qualification probabilities converge
fast if the number of sampling points exceeds 200. Based
on experiments with many different queries, we find that the
variance of qualification probabilities is smaller than 10−7
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Fig. 16 Variance versus # of samples
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Fig. 17 Response time versus # of samples

when the number of samples is 500, and we find that increas-
ing the sample size decreases the variance only little. Hence,
we regard the results obtained by using 500 samples as ’cor-
rect’. Moreover, according to the experience in previous
work [23,28], 200 samples are sufficient to obtain high-
quality results for probabilistic queries. Then, we count the
difference from the result with 500 sampling points and cal-
culate the variance over 200 queries. From Fig. 16, x = 200
is the inflection point. So, the setting of 200 sampling points
is used as the default.

We also report the response time w.r.t. the number of
sampling points in Fig. 17. The response time increases
moderately. This is because the elastic method uses more
computational units for higher workloads, i.e., those with
more samples.

Locking mechanism We study the locking mechanism by
generating a workload with mixed reading (STRQs with
default settings) and writing (data insertion) tasks. We con-
trol the amount of the writing tasks to examine how much
the simultaneous reading tasks are affected. The results are
shown in Fig. 18, where the x-axis is the throughput of data

Fig. 18 Effect of locking mechanism

insertions, and the y-axis is the response time of STRQ.
We have two observations. First, the query response time
increases proportionally with the data insertion rate. This
occurs because a larger insertion rate increases the chance of
“blocking” reading tasks. Second, the response increase is
modest. For example, when the insertion rate increases three
times (from 1000 to 3000 per second), the response time
increases less than 3%. This is consistent with the fact that
the dominant part of a query is the refinement instead of the
filtering that accesses the index. Also, the performance can
be further improved by using finer locking granularities. We
thus conclude that the locking mechanism performs stably
across diverse workloads and that conflicts constitute only a
minor issue in relation to the query performance.

Effect of torus node condensing Intuitively, a torus node’s
routing cost is proportional to its storage workload. If a torus
node underflows, its bandwidth is not fully utilized because
there is less chance that the node is accessed. Torus con-
densing aims to reduce the under-provisioning of storage and
communication resources. If we assume a torus node’s band-
width is not exhausted as long as it does not overflow then
a condensed node does not use all its bandwidth. A con-
densed torus node has a higher communication cost, which
can potentially affect the routing efficiency. Even so, the rout-
ing overhead affects the filtering phase on slightly. As shown
in Figs. 22 and 25, the cost in the filtering phase is dominated
by the refinement cost. In summary, the effect of condensing
on the query performance is small or non-existing.

ScalabilityWestudy the scalabilitywhenvarying the num-
ber of trajectories stored in each node. To expel other factors,
we use the default query setting, which fixes the query diam-
eter to be 3% of the domain size for STRQ and the query
time span to be 150 for STNNQ. As shown in Fig. 19, the
response time increases moderately. For example, when the
number of trajectories is doubled (e.g., from 1M to 2M),
the response time increases only 30%. This is because our
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Fig. 19 Response time versus # of trajectories

Fig. 20 Response time of STRQ

elastic approach can utilize more computational resources
for queries with higher costs. We proceed to investigate the
computation elasticity for STRQ and STNNQ.

Query time versus query range The refinement phase of
probabilistic queries usually dominates the query evaluation
time because the computation of probabilities is expensive.
In our framework, a torus node can share the refinement task
with other nodes, if a query is too expensive to be handled
by the local node. Our elastic strategy estimates the refine-
ment cost and allocates an appropriate number of nodes.With
this fine-grained parallelism, the query response time can be
controlled to perform stably, e.g., below a tolerable limit.
In contrast, an inelastic strategy ignores the query cost and
always requires fixed number of nodes.

Figure 20 shows the response time of our approach and
four inelastic approaches with fixed numbers of nodes, spe-
cially, 1, 2, 5, and 10 nodes, for performing refinement tasks.
We denote them as fixed-1, fixed-2, fixed-5, and fixed-10.
The query diameter varies from 1 to 5% of the domain size.

As shown in the figure, our elastic approach performs the
best. When the query diameter equals 5% of the domain

Fig. 21 # of Refinement computers of STRQ

size, the response time of the elastic approach is about
600 milliseconds, while the inelastic approaches need 1–
3s. This is because the elastic approach can automatically
tune more nodes to accomplish the refinement task. The
fixed-10 approach always requires ten nodes, which is more
than enough for small queries, thus generally wasting system
resources. For example, when the query diameter is 0.01, the
performance fixed-10 is very close to that of elastic. However,
to achieve this performance, fixed-10mobilized five times as
many nodes as elastic.

In Fig. 21, we illustrate the average number of nodes uti-
lized for each refinement task. Here, elastic* is the number
of nodes requested by the elastic approach. The number of
nodes actually obtained is smaller than the requested num-
ber when the query diameter is large because not enough idle
nodes exist when the workload is high.

As illustrated by the figure, the elastic approachwill apply
for computing resources according to the workload. Hence,
it can make good use of the computing resources for query
processing. The inelastic approaches, however, utilize exces-
sive computing resources when the query diameter is small
and ask for insufficient resources for large queries. Note that
a query may overlap with multiple torus nodes and may then
be split into several sub-queries. Each sub-query will require
refinement nodes independently. For example, that is why
the fixed-10 approach utilizes more than ten nodes.

In summary, inelastic methods are not favorable in a
cluster environment, in the sense that they either waste
computational resources or exhibit deteriorating throughput,
because they request too many or too few resources.

Breakdown for query time Figure 22 shows the time cost
in filtering and refinement phrases, when the query diame-
ter is 5% of the domain size. The elastic approach requires
more time for performing filtering than the inelastic ones do.
During the filtering phase, a query may be split into several
sub-queries, and each sub-query is sent to an idle node to per-
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Fig. 22 Breakdown analysis of STRQ
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Fig. 23 Response time of STNNQ

form refinement. The more sub-queries, the larger the time
needed to prune unrelated candidate trajectories. The effort
is rewarding in the refinement phase. As shown in Fig. 21,
the elastic approach requires a suitable number of refine-
ment nodes for these sets of queries. Similarly, fixed-10 also
takes more time than the other three inelastic approaches in
filtering, but achieves better performance in refinement and
overall query evaluation.

5.3.2 STNNQ

Query time versus query length Figures 23 and24 show the
response time and number of refinement nodes for STNNQ.
The x-axis of these two figures shows the time interval of
STNNQs.

Similar to STRQ, the elastic approach again surpasses
the inelastic approaches. Note that the refinement phase of
STNNQ is usually much more costly than that of STRQ.
Hence, more nodes are needed for performing refinement
tasks.

Fig. 24 # of Refinement computers of STNNQ

Fig. 25 Breakdown analysis of STNNQ

Query time breakdown Figure 25 shows the breakdown
analysis of STNNQ. Similar to STRQ, the elastic approach
needs more time in the filtering phase to generate more
sub-queries, and this results in less time extended in the
refinement phase.

5.4 Results on real datasets

Figures 26 and 27 show the results over the real dataset, Geo-
life. Considering the relatively small data volume, we choose
to deploy the whole dataset on an eight-nodes torus.We com-
pare our elastic approach with fixed-2 since there are only
eight nodes. Different from the synthetic dataset, the data
points in Geolife are quite sparse. The query results become
quite small, and the average response time of elastic fluc-
tuates around 20 milliseconds. However, our approach still
outperforms the inelastic one. The fixed-2 approach always
partitions the queries into two parts, which is not necessary
because the queries can be evaluated very fast on the local
node. The unnecessary partitioning leads to extra filtering
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Fig. 26 Response time of STNNQ

Fig. 27 # of Refinement computers

and network transmission costs, thus increasing the response
time.

6 Related work

6.1 Querying uncertain trajectories

Figure 28 shows representative models for uncertain trajec-
tories. If the motion of a moving object can be bounded at
each time instance [8,30], the position can be bounded using
the cylinder model in Fig. 28a. If an object updates its pre-
cise location periodically, the position between two updates
is bounded by a cone, as shown in Fig. 28b. Given the maxi-
mum speed, the location between two successive updates can
be bounded by an ellipse [21] as shown in Fig. 28c.

We adopt the cylinder model because of its simplicity in
capturing trajectory uncertainty. Our framework and algo-
rithms can be adapted to using other representations as well,

Fig. 28 Example of uncertain trajectory models: a Cylinder model [8,
30], b Cone model [7], c Ellipse model [21]

by using cylinders to minimally bound cones or ellipses.
Then, the uncertainty can be recovered during querying by
sampling points.

Recently, a number of interesting results have appeared
on how to evaluate queries over trajectory data while consid-
ering uncertainty. Zheng et al. [31] study range queries over
trajectory data. Trajcevski et al. [8] investigate the problem
of efficiently executing continuous NN queries for uncer-
tain moving objects trajectories. Zheng et al. [32] study two
variants of the k-NN query for fuzzy objects. They return
the qualifying objects that satisfy a probabilistic distance
threshold or a range of probability thresholds, respectively.
Xie et al. [33] study how to evaluate trajectory nearest neigh-
bor queries over imprecise location data.

However, all the above studies perform query evaluation
on a centralized server. This approach falls short when the
workloads considered cannot be accommodated by a single
machine.

6.2 Indexing spatiotemporal data

Indexing trajectory data have been studied extensively for
more than a decade, resulting in proposals such as the MV3-
RTree [34], TB-tree [35], and SETI [36]. It is not clear how
thoseworks can be extended to distributed settings. Recently,
substantial efforts have also been devoted to the organization
of data in a distributed setting. Two types of approaches may
be distinguished depending on how the indexes are deployed.

Centralized index distributed storage The infrastructure
consists of a master node and many data nodes [11–14].
The entire index or its upper layers are deployed at the mas-
ter node as a global index. Such a structure falls short in
three respects: (1) inefficiency in handling large current data
requests due to the throughput bottleneck; (2) limited scal-
ability to the index size which is proportional to the data
volume; (3) vulnerability to infrastructure maintenance.

Distributed index distributed storage The infrastructure
is based on a peer-to-peer network. The query goes through
several hops to retrieve the data required [15,16,37,38]. Such
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a strategy alleviates the single-node problem of a centralized
index. However, existing proposal falls short in address-
ing the specific requirements of large spatiotemporal data.
The hashing techniques that constitute the basis of Appache
Cassandra [38] do not guarantee the correctness of the prox-
imity search considered in this work. RT-CAN [15] and
MIDAS [37] construct indexes on a predefined domain space,
whereas the domain space of spatiotemporal data evolves
over time. Notably, the temporal dimension expands over
time. These existing proposals focus mainly on how to best
distribute the storage load across nodes. They put less empha-
sis on how to distribute the computational workload among
nodes, which is critical in spatiotemporal applications. Fur-
ther, the existing proposals are designed primarily with point
data in mind rather than complex uncertain spatiotemporal
trajectory data.

7 Conclusion and future work

In this paper, we continue and study an elastic infrastructure
for managing big spatiotemporal trajectories. The infrastruc-
ture achieves both storage and computational elasticity by
employing a fully distributed peer-to-peer storage scheme
and a parallel computingmechanism.We investigate how the
infrastructure can support the twomost fundamental queries,
namely range and nearest neighbor queries. Extensive exper-
iments offer insight into the elasticity and efficiency of the
proposed infrastructure.

While the paper provides the core system for trajectory
data management, future research should study how the sys-
tem can be used for supporting other queries than range and
nearest neighbor queries. One such query is the spatiotem-
poral kNN query (STkNNQ) that extends the STNNQ to
retrieve k nearest neighbors. This query can be defined by
using expected distances9 for the ranking of trajectories. The
expected distance between an object Oi at time point t and
a query point q, denoted by E(|q, Oi (t)|), is given by the
following equation.

E(|q, Oi (t)| =
∑

j

|q, Oi (t)
( j)| · Pr

(
Oi (t)

( j)
)

Then, a query Q = (q,Δt, k) consisting of a spatial point
location q, a time interval Δt , and an integer k retrieves a
set of uncertain trajectories {UTi } such that E(|q, Oi (t)|) is
among the k smallest expected distances at any time point
in Q · Δt . To compute the query, we can reuse the STNNQ
algorithm with two modifications:

9 There exist different semantics for top-k queries over uncertain data,
such as U-TopK, U-kRanks, Expected scores, and Expected ranks.
Among them, the Expected score and Expected rank might be best ones
in terms of properties such as Containment and Unique-Rank [39].

– To obtain dmax it is necessary to find at least k objects at
each time point in Q ·Δt . This can be achieved by setting
m to k in Eq. 8;

– The cost involves: (1) generating sampling points; (2) cal-
culating expected distances; (3) retrieving top-k results;
(4) merging the result. The cost function is thus a linear
function w.r.t. the number of candidates.

As another example of a relevant query type, the spa-
tiotemporal NN query over trajectories (STNNTQ) extends
the STNNQ by replacing the spatial point and a time interval
(q,Δt) parameters with an uncertain trajectory UQ . Given
an uncertain trajectory UQ , an STNNTQ retrieves a set of
uncertain trajectories {UTi } that can be UQ’s nearest neigh-
bors during UQ · Δt with nonzero probability.

– We obtain a new qualification probability function by
replacingq withUQ in Eq. 2. So, F(q,UTi , t) is replaced
with F(UQ,UTi , t), where:

F(UQ,UTi , t) = 1 −
∑

{ j |O( j)
i (t)}

Pr(O( j)
i (t))

∏

g 
=i∧Og∈D
Pr{|OQ(t),

O( j)
i (t)| < |OQ(t), Og(t)|}

– The filtering bound is set to the minimum cylinder con-
taining UQ ⊕ dmax ⊕ Umax . The derivation of dmax
follows that of the STNNQ.A series of consecutive cylin-
ders containing UQ can be used to achieve additional
filtering.

– We can also set a threshold for pruning candidate trajec-
tories with low qualification probabilities.

In addition to the above example queries, it is relevant to
study how the infrastructure can support analytical queries,
e.g., spatial joins, with the proposed fundamental queries as
building blocks.
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Appendix 1: Algorithms

Algorithm 3 Intersect
1: function Intersect(region a, region b)
2: for each dimension i = 1 to d do
3: if a.low[i] > b.high[i] or a.high[i] < b.low[i] then
4: return false

return true

Algorithm 4 Range Query (torus level)
1: function Range Query(range query q, torus node T )
2: if Intersect(T .R, q.R) is true then
3: for each dimension i = 1 to d do
4: ForwardRequest(q,T ,i)
5: Performs local search on T
6: else
7: for each dimension i = 1 to d do
8: if q.R.low[i] > T .R.high[i] or q.R.high[i] <

T .R.low[i] then
9: � the condition tests if q and T overlap on dimension i
10: � the condition cannot be false d times; otherwise, q and T

intersect and were handled by steps 1–4
11: ForwardRequest(q,T ,i)
12: break

Algorithm 5 ForwardRequest
1: function ForwardRequest(query range q, torus node T , dimen-

sion i)
2: nlow[d] ← the lower neighbor node of T on dimension d
3: nhigh[d] ← the upper neighbor node of T on dimension d
4: if q.R.low[i] < t.R.low[i] then
5: SendQueryRequest(q,nlow[i],i)
6: if q.R.high[i] > t.R.high[i] then
7: SendQueryRequest(q,nhigh [i],i)

Appendix 2: Routing cost estimation

Lemma 1 Themaximum routing cost of a three-dimensional

torus of N nodes is approximately equal to 0.91N
1
3 .

Proof For any torus node n, it takes one hop to reach its six
neighbors (first-order neighbors) and two hops to reach its 18
second order neighbors. The number of i-th order neighbors
ai can be represented by [40]:

ai = 2 + 4i2

Suppose the furthest node on the torus takes m hops from
node n. The total number of nodes N visited equals the sum-
mation of the number of 1-th to m-th order neighbors. We
have:

m∑

i=1

ai = N ⇒
m∑

i=1

2 + 4i2 = N ⇒ m ≈
(
3

4
N

) 1
3

Thus, the maximum routing cost equals to the distance to

n’s m-th order neighbor, 0.91N
1
3 . ��

Lemma 2 The average routing cost of a three-dimensional

torus of N nodes is approximately equal to 0.69N
1
3 hops.

Proof Based on Lemma 1, the furthest node from n requires
m hops. Then, the average number of hops is:

avg_number_of _hops = 1

N

m∑

i=1

ai · i = 1

N

m∑

i=1

2i + 4i3

= 1

N

(
m4 + 8

3
m3 + 2m2 + 1

3
m

)

≈ 0.69N
1
3 (6)

��

Appendix 3: Estimation of h

Let us consider the cost estimation on torus node Ti . After the
range search Qi⊕dmax⊕Umax (Step 6 inAlgorithm2), we
get a set Ci of candidate trajectories with the average length
Tc · Δt = 1

|Ci |
∑

T ∈Ci
T ·Δt . According to Definition 5, the

cost of STNNQdepends on the number of trajectories at each
snapshot. To estimate that, we first assume the trajectories
are uniformly distributed in the spatiotemporal region Qi ⊕
dmax ⊕Umax .

# of objects per snapshot = Tc · Δt · |Ci |
|Qi · Δt | (7)

We define the density ρ, as the number of objects per
snapshot divided by the area of the filtering bound π(dmax +
Umax)

2.

Lemma 3 Assume a two-dimensional region S in the spatial
domain S, where the points are uniformly distributed, and
let N (S) = m represent the fact that there arem points inside
region S. The probability of N (S) = m is given by:

P(N (S) = m) = ρ|S|e−ρ|S|m

m! (8)

Proof The probability that m points out of n objects are in S
is:

P(N (S) = m) =
(
n

m

)( |S|
|S|

)m (
1 − |S|

|S|
)n−m

The extreme form of the binomial distribution is a Poisson
distribution. Let ρ = n

|S| . The above equation becomes:

P(N (S) = m) = (ρ|S|)me−ρ|S|

m!
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Then, the probability that there is at least one point in S is:

P(N ≥ 1) =
∞∑

i=1

P(N = i) =
∞∑

i=1

(ρ|S|)i e−ρ|S|

i !
= 1 − e−ρ|S|

��
Then, we can infer that there is a nearest neighbor within

the circular region S to the query point with a probability
higher than P∗. In our implementation, we set P∗ to 0.9,
which is reasonably large for S to contain the nearest neigh-
bor.

|S| = − ln (1 − P∗)
ρ

(9)

The number of candidate objects per snapshot is estimated
as:

h = ρ(|S ⊕Umax|). (10)

Appendix 4: Obtaining dmax

In our system, we try a series of range queries Qi ⊕d⊕Umax

to incrementally obtain dmax , where d = 5, 10, 20%, · · · of
torus node Ti ’s spatial domain size. Upon collecting the can-
didate trajectory set Ci by the range search parameterized
with d, we test whether the union of these trajectories’ time
spans can cover Qi ’sΔt , i.e., to decide whether ∪UT∈CUT ·
Δt ⊇ Qi ·Δt is true. If true, it means that there always exists
at least an object for each timestamp in Qi · Δt . Therefore,
current d is taken as dmax , which is sufficiently large for not
missing any possible candidate trajectories. Otherwise, we
need to increase d incrementally and repeat the aforemen-
tioned process.
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