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Abstract Multiversion databases store both current and
historical data. Rows are typically annotated with timestamps
representing the period when the row is/was valid. We
develop novel techniques to reduce index maintenance in
multiversion databases, so that indexes can be used effec-
tively for analytical queries over current data without being a
heavy burden on transaction throughput. To achieve this end,
we re-design persistent index data structures in the storage
hierarchy to employ an extra level of indirection. The indirec-
tion level is stored on solid-state disks that can support very
fast random I/Os, so that traversing the extra level of indi-
rection incurs a relatively small overhead. The extra level of
indirection dramatically reduces the number of magnetic disk
I/Os that are needed for index updates and localizes main-
tenance to indexes on updated attributes. Additionally, we
batch insertions within the indirection layer in order to reduce
physical disk I/Os for indexing new records. In this work, we
further exploit SSDs by introducing novel DeltaBlock tech-
niques for storing the recent changes to data on SSDs. Using
our DeltaBlock, we propose an efficient method to periodically
flush the recently changed data from SSDs to HDDs such that,
on the one hand, we keep track of every change (or delta)
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for every record, and, on the other hand, we avoid redun-
dantly storing the unchanged portion of updated records. By
reducing the index maintenance overhead on transactions,
we enable operational data stores to create more indexes to
support queries. We have developed a prototype of our indi-
rection proposal by extending the widely used generalized
search tree open-source project, which is also employed in
PostgreSQL. Our working implementation demonstrates that
we can significantly reduce index maintenance and/or query
processing cost by a factor of 3. For the insertion of new
records, our novel batching technique can save up to 90 % of
the insertion time. For updates, our prototype demonstrates
that we can significantly reduce the database size by up to
80 % even with a modest space allocated for DeltaBlocks on
SSDs.

Keywords Multiversion databases - SSD - Flash storage -
Index maintenance

1 Introduction

In a multiversion database system, new records do not physi-
cally replace old ones. Instead, a new version of the record is
created, which becomes visible to other transactions at com-
mit time. Conceptually, there may be many rows for a record,
each corresponding to the state of the database at some point
in the past. Very old versions may be garbage-collected as
the need for old data diminishes, in order to reclaim space
for new data.

When indexing data, one typically indexes only the
most recent version of the data, since that version is most
commonly accessed. In such a setting, record insertions, dele-
tions, and updates trigger I/O to keep the indexes up to date.
With a traditional index structure, the deletion of a record
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Fig. 1 Effect of adding indexes in operational data stores

requires the traversal of each index and the removal of the
row-identifier (RID) from the leaf node. The update of a
record (changing one attribute value to another) creates a
new version, triggering a traversal of all indexes to change the
RIDs to the new version’s RID.! For a newly inserted record,
the new RID must be inserted into each index. Indexes may
be large, and in aggregate much too large to fit in the RAM
bufferpool. As a result, all of these index maintenance oper-
ations will incur the overhead of physical I/O on the storage
device.

These overheads have historically been problematic for
OLTP workloads that are update-intensive. As a result,
OLTP workloads are often tuned to minimize the number
of indexes available. This choice makes it more difficult
to efficiently process queries and to locate records based
on secondary attributes. These capabilities are often impor-
tant for operational data stores [35]. For example, it is not
uncommon to find tens of indexes to improve analytical and
decision-making queries even in TPC benchmarks [19,20]
or enterprise resource planning (ERP) scenarios [13,14].

Our goal is to reduce the overhead of index updates, so that
indexes can be used effectively for analytical query process-
ing without being a heavy burden on transaction throughput.
The query versus update dilemma is clearly captured in Fig. 1,
a preview of our experimental results. The execution time
for analytical queries is reduced as more indexes are added.
However, this reduction comes at the cost of increasing the
update time in the Base approach. In contrast, by employing
our technique (the Indirection approach) the incurred update
cost is significantly smaller.

To address this dilemma, we utilize a solid-state storage
layer. Based on current technologies, solid-state disks (SSDs)
are orders of magnitude faster than magnetic disks (HDDs)
for small random I/Os. Howeyver, per gigabyte, SSDs are more
expensive than magnetic disks. It therefore pays to store the
bulk of the data on magnetic disks, and to reserve the SSD
storage for portions of the data that can benefit the most, typ-
ically items that are accessed frequently and randomly. We

! In the case of the modified attribute, the position of the record in the
index may also change.
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describe a prototype of our Indirection approach based on the
widely used generalized search tree (GiST) package [29,31],
which is also employed in industrial-strength open-source
database management systems such as PostgreSQL [6], Post-
GIS [5], OpenFTS [4], and BioPostgres [1].

Unlike previous approaches [15,17,18,23,37], we do not
propose to simply store “hot” data on SSDs. Instead, we
change the data structures in the storage hierarchy to employ
an extra level of indirection (an earlier version of this paper
first introduced in [53]) through solid-state storage. Because
the solid-state storage is fast, the extra time incurred during
index traversal is small, as we demonstrate experimen-
tally. The extra level of indirection dramatically reduces the
amount of (magnetic disk) I/Os that are needed for index
updates; thus, making our Indirection technique algorithmi-
cally superior to the existing techniques irrespective of the
underlying storage technologies employed. Furthermore, our
Indirection technique can rely exclusively on fast SSD 1/Os
to support deletions and updates (even when both data and
indexes are disk-resident), with the exception of indexes on
changed attributes. We can also reduce the magnetic disk I/O
overhead for insertions using our proposed LIDBlock. In this
paper, we extend [53] by introducing our novel DeltaBlock
techniques. These techniques provide an efficient means to
access and reconstruct the latest version of records by con-
sulting recent updates (i.e., deltas batched on SSDs) while
naturally reducing and compressing data by periodically
flushing deltas from SSDs to HDDs. While we describe our
techniques in terms of SSDs, we are not limited to a disk-like
form factor. In fact, alternative form factors (e.g., FusionlO
auto-commit memory [27]) with smaller I/O granularities
would provide even better performance because our proposed
updates on solid-state storage are small.

Another potential advantage of our work—efficient index
maintenance of multiversion databases—is to support mul-
tiversion concurrency control (MVCC). The MVCC model
is being revived [6,32,38,39,52] mostly due to the increased
concurrency available in modern hardware with large main
memories and multicore processors. However, this increased
concurrency comes at the cost of increased locking con-
tention among concurrent read/update queries, which could
be alleviated using optimistic concurrency control over a
multiversion database [38,52].

1.1 Multiversion databases

By retaining old data versions, a system can enable queries
about the state of the database at points in the past. The
ability to query the past has a number of important appli-
cations [56], for example: (1) a financial firm is required
to retain any changes made to client information for up to
Syears in accordance with auditing regulations; (2) a retailer
ensures that only one discount for each product is offered
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at any given time; (3) a bank needs to retroactively cor-
rect an error for miscalculating the promised introductory
interest rate. In addition to these business-specific scenarios,
there is an inherent algorithmic benefit for retaining the old
versions of the record and avoiding in-place changes, that
is, to enable efficient optimistic locking and latch-free data
structures.

A simple implementation of a multiversion database wo-
uld store the row-identifier (RID) of the old version within
the row of the new version, defining a linked list of versions.
Such an implementation allows for the easy identification of
old versions of each row, but puts the burden of reconstruct-
ing consistent states at particular times on the application,
which would need to keep timing information within each
Tow.

To relieve applications of such burdens, a multiversion
database system can maintain explicit timing information for
each row. In a valid time temporal model [28] each row is
associated with an interval [begin-time, end-time) for which
it was/is current. Several implementation choices exist for
such a model. One could store the begin-time with each
new row and infer the end-time as the begin-time of the
next version. Compared with storing both the begin-time and
end-time explicitly for each row, this choice saves space and
also saves some write I/O to update the old version. On the
other hand, queries over historical versions are more com-
plex because they need to consult more rows to reconstruct
validity intervals.

A bitemporal database maintains two kinds of temporal
information, the system (i.e., transaction) time, as well as the
application time (sometimes called “business time”).

In this work, we do not commit to any one of these imple-
mentation options, each of which might be a valid choice
for some workloads. For any of these choices, our proposed
methods will reduce the I/O burden of index updates. Some
of our techniques, such as the LIDBlock and DeltaBlock, apply
to both versioned and non-versioned databases.

1.2 Physical organization

There are several options for the physical organization of
a temporal database. A complete discussion of the alterna-
tives is beyond the scope of this paper. We highlight two
options that have been used in commercial systems, namely,
the history-table versus the single-table approach.

One organization option appends old versions of records
to a history table and only keeps the most recent version
in the main table, updating it in-place. Commercial sys-
tems have implemented this technique: In IBM DB?2 it is
called “System-period data versioning” [34], and it is used
whenever a table employs transaction time as the temporal
attribute. The Oracle Flashback Archive [49] also uses a his-
tory table. Such an organization clusters the history table by

end-time and does not impose a clustering order on the main
table. Updates need to read and write the main table, and also
write to the end of the history table. Because updates to the
main table are in-place,” an index needs to be updated only
when the corresponding attribute value changes. For inser-
tions and deletions, all indexes need to be updated. In short,
using the history table approach (1) the temporal ordering
of the data is lost; (2) additional random I/Os are required
to perform in-place updates of records; (3) the number of
database objects (e.g., tables, indexes, and constraints) are
potentially doubled, which increases the overall management
and maintenance cost of the database and slows down the
query optimization runtime; and (4) a less effective query
plans are constructed for certain temporal range queries that
are forced to union the history and the main tables instead
of using range-partitioned tables for maintaining the single-
table approach.

In this paper, we assume an organization in which there is a
single table containing both current and historical data. Com-
mercial systems that implement this technique include Oracle
11g where the concept is called “version-enabled tables”
[48]. IBM’s DB2 also uses this approach for tables whose
only temporal attribute is the application time. The single-
table approach is central to IBM DB2 with BLU Acceleration
as well [3]. New rows are appended to the table, so the entire
table is clustered by begin-time. Updates need to read the
table once and write a new version of the record to the end
of the table.

We focus on applications that primarily use current data,
but occasionally need to access older versions of the data.
To support queries over current data, the most recent data
may be extensively indexed. Older data may be less heavily
indexed because it is queried less frequently and is often
more voluminous. Even within a single table, the system can
offer an implementation option in which only the most recent
version of a record appears in an index.

2 Basic indirection structure

Traditional index structures directly reference a record via a
pointer known as a physical row-identifier (RID). The RID
usually encodes a combination of the database partition iden-
tifier, the page number within the partition, and the row
number within the page. A RID index over current HDD-
resident data is shown in Fig. 2.

The choice of a physical identifier hinders the update per-
formance of a multiversion database in which updates result

2 If one wanted to cluster the main table by a temporal attribute to
improve temporal locality, then updates would not be in-place and addi-
tional indexes would need to be updated. Our proposed solution would
reduce the burden of such index updates.
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Fig. 2 Traditional RID index structure

in a new physical location for the updated record. Changes
to the record induce I/O for every index, even indexes on
“unaffected” attributes, i.e., attributes that have not changed.
Random I/Os are required to modify HDD-resident leaf
pages.

To avoid HDD I/0O for indexes on unaffected attributes, we
decouple the physical and logical representations of records
spanning many versions. We distinguish between a physical
row-identifier (RID) and a logical record identifier (LID). For
any given record, there may be many RIDs for that record
corresponding to the physical placement of all of the versions
of that record. In contrast, the LID is a reference to the RID
representing the most recent version of the record. For now,
one can think of a table LtoR(LID,RID) that has LID as the
primary key. Indexes now contain LIDs rather than RIDs in
their leaves.

Under our proposed Indirection technique, an index tra-
versal must convert a LID to a RID using the LfoR table. A
missing LID, or a LID with a NULL RID in the LfoR table are
treated as deleted rows, and are ignored during the search. By
placing the LtoR table on an SSD, we ensure that the I/O over-
head for the extra indirection is relatively small.’ Because the
SSD is persistent, index structures can be recovered after a
crash. Because we only need a few SSD bytes per record, it
is possible to handle a large magnetic disk footprint with a
much smaller solid-state footprint. The new index design is
demonstrated in Fig. 3.

When an existing record is modified, a new version of
that record is created. The LfoR table is updated to associate
the new row’s RID to the existing LID. That way, indexes
on unchanged attributes remain valid. Only for the changed
attribute value will index I/O be required for the indirection
layer.

When a record is deleted, the (LID,RID) pair for this
record in the LfoR table is deleted. Index traversals ignore
missing LIDs. Indexes can lazily update their leaves during
traversal, when a read I/O is performed anyway. At that time,

3 Frequently accessed LIDs would naturally be cached in RAM by the
database bufferpool manager, further reducing the overhead.
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any missing LIDs encountered lead to the removal of those
LIDs from the index leaf page. After a long period of activ-
ity, indexes should be validated off-line against the LfoR table
to remove deleted LIDs that have subsequently never been
searched for.

When a new record is added, the new record is appended
to the tail of the relation and its RID is fetched and associated
with a new LID. The (LID, RID) pair for the new record is
added to the LtoR table. All indexes are also updated with
the new record LID accordingly. In Sect. 3, we discuss how
to further improve record insertion and deletion.

3 Enhancing insertions

We now develop techniques for improving the index perfor-
mance of insertion. We define a batching structure called a
LIDBIlock, and employ yet another level of indirection.

3.1 LIDBIlocks

To reduce the index overhead for insertions, we propose an
SSD-resident auxiliary LIDBlock structure containing a fixed
number of LIDs. The LIDs in a LIDBlock may be NULL, or
may be valid LIDs from the LtoR table. References to a LID-
Block are mapped to multiple LIDs through this extra level
of indirection. Figure 4 shows the extended structure with
LIDBlocks.

The arrow from index leaf pages to LIDBlocks in Fig. 4
could be implemented by keeping a block identifier (BID)
within the leaf page. The disadvantage of such a choice is that
the leaf node of the index needs to be read from magnetic disk
to locate the BID, which requires extra HDD 1/O. Instead, we
propose to store LIDBlocks within hash tables on the SSD. In
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the following sections, we describe more precisely how index
pages refer to and traverse LIDBlocks.

3.2 The dense index case

Consider first the case of a dense index, i.e., a secondary
index where there are many records (more than a leaf node’s
worth) for each attribute value. For such indexes, we keep a
list of LIDs for each value as before. In addition, we store a
collection of LIDBlocks on the SSD in a hash table, hashed by
the attribute value. Initially, each indexed value has a LIDBlock
whose LIDs are all NULL.

When a new record is inserted, we need to modify the
indexes to reflect the insertion. Suppose that the value of an
indexed attribute is v, and that the index is dense. A LID
is created for the record, and a suitable (LID,RID) pair is
added to the LroR table. The LIDBlock B for v is identified
by accessing the hash table of LIDBlocks on the SSD. If there
are unused (NULL) slots in B, one of the slots is overwritten
with the LID of the new record. If there are no unused slots,
then all LIDs in B and the LID of the new record are moved
in bulk into the LID list in the index, amortizing the I/O cost.*

In this model, index traversal is slightly more complex: all
the non-NULL LIDs in the LIDBlock for a value also need to
be treated as matches. Deletions and attribute value updates
may also need to traverse and modify a LIDBlock. There is
some additional I/O, but only on solid-state storage.

4 One can shift the burden of LIDBlock flushing outside of running trans-
actions by triggering an asychronous flush once a LIDBlock becomes full
(or nearly full), rather than waiting until it overflows.

3.3 The sparse index case

When there are a few matches per index value, the organiza-
tion above would need a very large number of LIDBlocks, most
of which would be underutilized. Instead, for sparse indexes
we maintain a single LIDBlock for an entire leaf node of the
index. Rather than using a hash table hashed by attribute
value, we use a hash table hashed by the address of the index
leaf page. This address can be obtained using a partial traver-
sal of the index, without accessing the leaf node itself. Since
the internal nodes of a tree index occupy much less space
than the leaf nodes, they are much more likely to be resident
in the main memory bufferpool.

Searches have some additional overhead because the
shared LIDBlock would need to be consulted even for records
that may not match the search condition. There would also
be overhead during node splits and merges to maintain the
LIDBlock structure.

The overhead of LIDBlocks on searches may be high for
sparse indexes. For example, a unique index search would
previously only have to look up one main file record. With a
LIDBIock for a given key range, a search may need to read b of
them, where b is the LIDBlock capacity. This example suggests
an optimization: store both the LID and the key in the LIDBlock
for sparse indexes. This optimization reduces the capacity of
LIDBlocks, but significantly improves the magnetic disk I/O
for narrow searches.

3.4 The hybrid index case

For certain workloads, it is not always possible to determine
the density and sparsity of an index in advance; furthermore,
indexes may be neither strictly dense or sparse. Therefore,
it is important to support dynamic adaptation of our pro-
posed LIDBlock structure to index a key space that is partially
dense and partially sparse, in which the key distribution also
changes over time.

To unify the LIDBlock design for the dense and sparse
indexes, we propose to distinguish between key sparsity and
density at the granularity of leaf pages as opposed to the gran-
ularity of the index structure as a whole. For example, any leaf
page can either be assigned as dense or sparse. If a leaf page
is marked as dense, then for each key within the leaf page,
the key’s LIDBlock is retrieved by hashing the key value (i.e.,
the indexed attribute value), whereas if a leaf page is marked
as sparse, then all the keys within the leaf page are associated
to a LIDBlock that is retrieved by hashing the address of the
leaf page instead.

The ability to make a sparsity versus density decisions
at the leaf level enables us to dynamically adapt the LID-
Block organization to accommodate ongoing index changes
through gradual local restructuring. Essentially, we will have
ahybrid LIDBlock structure such that a different LIDBlock allo-

@ Springer
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cation method is used depending on whether a given key
range is dense or sparse.

3.5 Revisiting deletions and updates

With LIDBIocks, it is now possible that an update or deletion
occurs to a record whose LID is in a LIDBlock rather than
the LID list. For deletions, one can simply set the LID to
NULL in the LIDBlock. For updates that change the position
of the record in the index, one needs to nullify the LID in
the previous LIDBlock or LID list, and insert it into the new
LIDBlock.

In this way, LIDBlocks also improve the I/O behavior of
updates to indexes on changed attributes. In the original
scheme, HDD-resident index leaf pages appropriate to the
new attribute value needed to be updated with the LID of the
updated record. In the enhanced scheme, writes are needed
only on SSD-resident LIDBlocks most of the time. Magnetic
disk writes are amortized over the number of records per
LIDBlock.

4 Delta compression

Our proposed Indirection technique limits the impacts of
updates to only indexes defined on columns changed by
update transactions. However, the Indirection alone does not
address the problem of how to efficiently store the different
versions of each record due to frequent updates. As a result,
the database size may grow at a much faster rate. To improve
the space utilization, we introduce a family of DeltaBlock tech-
niques that exploit the overlap among different versions of the
same record. The key observation in managing and storing
immutable versions of a record is that there tends to be a large
overlap between consecutive versions of every record. Typi-
cally only a small set of attributes is changed in transaction
processing workloads (e.g., on average only a few columns
are changed in the standard TPC benchmarks).

The existing multiversion databases fail to exploit this
overlap and redundantly store the unchanged portion of a
record or rely on expensive offline compression of the data
(not adequate in an online setting) [3,48]. The lack of proac-
tive compression results in the growth of database size at a
much faster rate compared to the traditional single-version
databases that update in-place and discard the older versions.
In the worst case scenario, the database size may grow lin-
early with the average number of versions for each record.

The general principle of our DeltaBlock techniques is to
first accumulate recent updates on the fast SSD-resident
structure and to periodically flush these deltas together with
the latest version of the record to HDDs. Our DeltaBlock tech-
niques enable an effective compression of records across
many versions by reducing the need to redundantly store
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the unchanged portion of the record for every single update.
More importantly, the compression is achieved without sac-
rificing the query performance.

In what follows, we present four variations of our Delta-
Block technique to achieve fast retrieval and effective com-
pression by trading off flexibility (i.e., update patterns and
space allocation) versus performance (i.e., the number of ran-
dom I/Os). We analyze each DeltaBlock variation with respect
to the flexibility and performance dimensions.

4.1 Direct DeltaBlock technique

In our Direct DeltaBlock approach, we introduce a natural and
fast data compression and decompression that exploits the
overlap among consecutive versions of a record and utilizes
non-volatile memory with the fast random access property.
The key design feature of Direct DeltaBlock is to avoid chang-
ing the magnetic disk I/O pattern for both query and update
processing. We facilitate this I/O property by ensuring that
the latest version of any record is retrievable with at most
one HDD disk I/O and one (or a constant number of) SSD
1/0s.> In fact, we show that one can do even better and query
the latest k versions of a record with at most one disk 1I/0,
a query that otherwise could have required up to k I/Os in
traditional multiversion databases.

For each record identified by a LID, we batch on the
SSD-resident DeltaBlock structure, a set of deltas between
consecutive versions of a record in a given pre-determined
DeltaBlock size.? Periodically, we flush a set of deltas for
each record to disk once its corresponding DeltaBlock over-
flows, as shown in Fig. 5. More importantly, whenever deltas
are flushed to disk, we also reconstruct the latest version
of the records given the recent set of deltas, and we simul-
taneously flush both the deltas and the latest reconstructed
version of the record to disk. The flushing of a periodically
reconstructed version of the record fulfills our key design
principle of retrieving any record with one HDD I/O at most.
Also, storing the deltas together with the latest version of the
record satisfies the second property of retrieving the latest k
versions of the record (or up to 2k versions assuming that
k deltas could also be accumulated in the DeltaBlock region)
with at most one disk I/O. After reconstructing and flushing
the latest version of a record, the LfoR table is also updated
to point to the RID of the most recent version of the record.
Notably, the LtoR table is now updated much less frequently,
only once for every k updates (assuming a DeltaBlock can
hold up to k deltas).

> Notably, the cost of additional SSD I/Os is negligible with respect to
the cost of HDD 1/0.

6 A single DeltaBlock may hold several small updates (e.g., updating

only one column at a time) or may hold a single large update (e.g.,
updating many columns in one transaction).
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One way to store these DeltaBlocks is to extend LtoR
(LID,RID) to LtoR(LID, RID, DeltaBlock). Alternatively,
DeltaBlock can be implemented as a separate table or a hash
table structure. The integration of DeltaBlock by extending the
Indirection technique is pictorially presented in Fig. 5, includ-
ing the batching and flushing of deltas and reconstructing the
latest version of a record.

Direct DeltaBlock performs well because the reading/
writing of the latest delta requires at most one random I/O
on SSDs. However, without prior knowledge of the work-
load, it is non-trivial to decide about the initial size of each
DeltaBlock; therefore, initially the DeltaBlock size may be
over-provisioned. It is important to note that when data are
first loaded (or inserted), it is not necessary to allocate any
DeltaBlocks for the new records if DeltaBlocks are stored in a
secondary structure (such as a hash table) not included in the
LtoR mapping. DeltaBlocks can be allocated on-demand, and
subsequently the size of DeltaBlocks can be tuned to adapt to
workload characteristics.

4.2 Indirect DeltaBlock technique

Our second DeltaBlock technique, which we refer to as Indirect
DeltaBlock, changes how deltas are stored. Instead of extend-
ing the LtoR table with sufficient space to hold up to k deltas,
we allocate sufficient space in DeltaBlocks to hold only point-
ers to the actual deltas on the SSD (as shown in Fig. 6).
The actual deltas for all records are simply maintained in an
append-only fashion; thus, promoting fast sequential writes
on SSDs and simplifying the task of determining the Delta-
Block size. In Indirect DeltaBlock, flushing of data from SSDs
to HDDs is identical to our Direct DeltaBlock approach.
Under this new scheme, the DeltaBlock size (which could
be tuned independently for each record) is proportional to
the expected number of deltas, a fixed pointer size for each
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Fig. 6 Indirect DeltaBlock technique

delta. Although in Indirect DeltaBlock we are required to know
the expected number of updates per record (to avoid over-
provisioning), we are not required to know the size of each
update. Thus, Indirect DeltaBlock is more flexible compared to
Direct DeltaBlock. However, with respect to the performance,
in Indirect DeltaBlock, the reads are still limited to one random
I/0 at most on HDDs (to read the last version of the record
on disk), and reads are limited to & 4+ 1 random I/Os at most
on SSDs: one I/0 to read the pointers stored in the DeltaBlock
and k 1/Os to follow the k pointers in the DeltaBlock in order
to fetch the values of the k deltas.

Fetching the last k deltas (k random I/Os on SSDs) can
further be improved if the deltas are stored cumulatively, in
the sense that each delta carries changes from the previous
deltas. The accumulation is reset every time DeltaBlock is
flushed to hard disk. Thus, in the worst case scenario, k deltas
are accumulated, but all £ deltas can be fetched by a single
random I/O on SSDs.

4.3 Indirect Chained DeltaBlock technique

Our next DeltaBlock technique (called Indirect Chained Delta-
Block) further improves the flexibility dimension by elimi-
nating the need to predict the average number of updates per
record. To achieve this end, we propose to allocate at most
one pointer in each DeltaBlock to point to the last delta (if
any) on SSDs (as shown in Fig. 7).

Similar to the Indirect DeltaBlock technique, deltas are
inserted in an append-only fashion on SSDs. However, in
Indirect Chained DeltaBlock, we allocate only one pointer in
each DeltaBlock. Furthermore, each appended delta also holds
a pointer to its previous delta (if any). In this way, the deltas
for a single record are chained together, and one is able to
follow the pointer in a DeltaBlock to fetch the last delta (the
last update) and from the last delta keep following the next

@ Springer



658

M. Sadoghi et al.

DeltaBlock
-------- (pointer to the
last update)

_ pointers to
deltas on SSD

... append-only
delta area on SSD

Batched deltas
for record R2 and
record R3

Fig. 7 Indirect Chained DeltaBlock technique

pointer to retrieve all deltas for the corresponding record one-
by-one (as shown in Fig. 7). Indirect Chained DeltaBlock is our
most flexible technique because it automatically adapts to
the workload characteristics; it accommodates both the fre-
quently updated and rarely updated records without the need
to predict the average number of updates per record or the
size of each update.

In the Indirect DeltaBlock technique, deltas were forced to
be flushed as soon as the allocated DeltaBlock for a record was
full. However, in Indirect Chained DeltaBlock, the flushing of
deltas can be delayed until the entire dedicated append-only
delta area is full. We perform a backward pass of the last
deltas on SSDs and follow their pointers to retrieve all the
deltas for their corresponding records. Once all deltas have
been gathered (these fetched deltas are considered as visited),
we reach the record’s DeltaBlock from which we access the
latest version of the record on disk by following the record’s
RID. Now we are in a position to reconstruct the latest version
of the record, and we flush the latest version and all its deltas
from the SSD to the HDD. We continue the backward pass
and choose the second last unprocessed delta on the SSD
until all the deltas are processed.

The latest versions of the record are also flushed to disk
in an append-only fashion in the reverse order; hence, after
flushing all deltas, the last record on disk is the record that
received its first update (first delta) after all other records had
been updated at least once.

Similar to the basic Indirect DeltaBlock technique, our pro-
posed Indirect Chained DeltaBlock requires a fixed DeltaBlock
size, which is sufficient to store one pointer at most. This
choice minimizes the need to over-provision the space. Using
the Indirect Chained DeltaBlock, the reads are still limited to
at most one random I/O on HDDs and limited to at most a
constant number of SSD I/Os (maximum of k I/Os, in which
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k is the number of deltas that must be chased). The delta
accumulation optimization discussed earlier also applies to
Indirect Chained DeltaBlock.

4.4 Indirect Chained DeltaBlock technique with
deferred compression

In our final DeltaBlock technique, we introduce a deferred
compression mechanism in order to eliminate the need to
chase deltas during read operations. We call this approach
Indirect Chained DeltaBlock with Deferred Compression. We
require that the latest constructed version of the record is
always available on HDD pointed to by indirection layer (as
shown in Fig. 8), which enables a single HDD I/O and zero
SSD I/O to reconstruct the latest version of the record. Indi-
rect Chained DeltaBlock enables a fast scan without consulting
SSDs for DeltaBlocks.

We divide the tail of the table on HDD into two parts:
the compressed and uncompressed portions. In the uncom-
pressed part, we temporarily store the latest version of the
recently updated records. The individual deltas for recently
updated records (those records that are placed in the uncom-
pressed tail of the table) are stored in an append-only delta
area on the SSD. The deltas on the SSD are maintained sim-
ilarly to the Indirect Chained DeltaBlock technique, but the
flushing and subsequently the compression mechanism are
different.

Once the append-only delta area on the SSD is full, then
the uncompressed tail of the table on the SSD is compressed,
and the latest versions of the record together with their deltas
are flushed to the hard disk in an append-only fashion (but
in the reverse order). However, unlike in Indirect Chained
DeltaBlock, the latest versions are already available on the
uncompressed tail and no reconstruction is necessary. Thus,
by concurrently performing a backward pass on both the

DeltaBlock
---- (pointer to the
last update)

... Dbointers to

deltas on SSD

append-only
delta area on SSD

Batched deltas
<" for record Rz and record R3

latest
- reconstructed
/ record

{ Tail of H

. _(uncompresse

Fig. 8 Indirect Chained DeltaBlock technique with deferred compres-
sion
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HDD and SSD, we can further speed up the deferred com-
pression of the tail on the HDD. It is important to note that
the order of deltas on the SSD is identical to the order of
records in the uncompressed tail of the table on the HDD,
which allows a simple re-use of the already constructed lat-
est versions of records on the HDD.

Indirect Chained DeltaBlock with Deferred Compression per-
forms similarly to the Direct DeltaBlock with respect to the
reads, but without the lack of flexibility of Direct DeltaBlock
that requires provisioning the size and the number of updates.
However, with respect to the writes, Indirect Chained Delta-
Block with Deferred Compression requires one additional write
on the HDD. Since all writes are append-only to the tail of
the table, the tail is always expected to be cached in mem-
ory, and the cost for flushing the tail is amortized over many
writes to a page. Hence each individual write to the tail does
not necessarily result in a physical write.

S Extended example

In this section, we provide a detailed example to further illus-
trate the core of our Indirection proposal and to motivate the
analysis in Sect. 6.

Consider atable R(A, B, C, D) with B-tree indexes on all
four attributes. A is the primary key and is therefore sparse.
B is also sparse, while C and D are dense. R is stored on disk
in a versioned fashion. For each row we show the RID of the
previous version (if any) of the row; the previous-RID may or
may not be explicitly stored. Suppose that at a certain point
in time the extension of R includes the rows given below.
A flag indicating whether the row has been deleted is also
included.

RID A B C D Prev-RID Deleted
345 100 3732 3 5 123 0

367 120 4728 3 6 NULL 0

369 130 2351 2 5 NULL 0

501 100 3732 2 5 345 0

Suppose the LtoR table for R is given by

LID RID
10 367
11 369
13 501

Indexesuse LIDs (e.g., 10, 11, 13) rather than RIDs to refer
to rows, and only the most recent version is indexed. Given
the above database, the immediate and deferred changes

Index on Attribute D

SSD

(Vo LIDs RIDs

@ L13
k|

7 [
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Fig. 9 Example of indirection technique with LIDBlock

to the database in response to various update requests are
described below. The I/O needed is summarized in square
brackets (log I/O and I/O for index node splits/merges are
ignored). Our I/O estimates assume that all internal index
nodes are resident in the RAM bufferpool and that all leaf
nodes require I/O. These estimates also assume that all
accesses to SSD-resident structures require 1/0.” The esti-
mates also assume direct access to a page given the LID, as
might be supported by a hash table. We assume that LIDBlocks
contain b LIDs, and that for sparse indexes we are storing both
the key and the LID in the LIDBlock. Similarly, we assume that
a DeltaBlock holds at most k deltas. We now describe precisely
each key operation, breaking down its steps into immediate
and deferred actions. Immediate actions must be completed
within the operation itself. Deferred actions are those that
can happen later, such as when an operation causes a page
to become dirty in the bufferpool, but the actual I/O write
comes later.

Update We update the row with key 100 such that attribute D
is changed from 5 to 6. The immediate actions are as follows
(also demonstrated in Fig. 9).

The LID of the row in question (i.e., 13) is identified
using the index on A [1 HDD read].

— The entry (13, 501) in the LtoR mapping is read [1 SSD
read].

The row with RID 501 is read [1 HDD read].

— A new version of the record is created at the tail of R
with a new value for D and a new RID (suppose 601) (if

7 This might be too pessimistic, particularly for LIDBlocks and
DeltaBlocks that could be small enough to be cached in RAM.
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DeltaBlock techniques without deferred compression are
employed this step can be skipped).

— If the DeltaBlock is employed, then the DeltaBlock entry
for the LID 13 is read [1 SSD read].

— An index traversal for key 5 is initiated on attribute D. If
LID 13 is present in the corresponding leaf, it is deleted;
otherwise, LID 13 is located in the LIDBlock for key 5 and
is removed from the LIDBlock [1 HDD read, possibly 1
SSD read].

— A partial index traversal for key 6 is initiated on attribute
D, and LID 13 is inserted into the corresponding LIDBlock
[1 SSD read].

The required deferred actions are summarized as follows.

— The data page containing the row with RID 601 is dirty
and will need to be flushed to the HDD [1 HDD write
amortized over all modifications to the page].”

— The entry (13, 501) in the LfoR mapping is changed to
(13, 601) [1 SSD write].

— If the DeltaBlock is employed, then the DeltaBlock entry
is changed to hold the updated values directly [1 SSD
write]. Alternatively, the updated values are appended to
the batched delta area on the SSD, and the pointer in the
DeltaBlock is updated to point to the updated values [2
SSD writes].

— The index page containing the key 5 will be dirty if LID
13 was in the leaf. The dirty page will need to be flushed to
the HDD [1 HDD write, amortized over all modifications
to the page]. If LID 13 was in the LIDBlock for key 5, then
the dirty LIDBlock will need to be flushed to the SSD [1
SSD write].

— The LIDBIock for key 6 is dirty and will need to be flushed
to the SSD [1 SSD write].

Insertion Consider the insertion of a new record (140, 9278,
2, 6). The resulting immediate actions are as follows.

— The absence of a previous version of the row is verified
using the index on A, including the LIDBlock [1 HDD
read, 1 SSD read].

— A new row is created at the tail of R, with a new RID
(suppose 654). The previous-RID field is NULL.

— A new LID (suppose 15) is allocated.

— For the two dense indexes on C and D, the LIDBlocks for
keys 2 and 6 (respectively) are identified, and LID 15 is
inserted into each [2 SSD reads].

8 For DeltaBlock techniques with the indirect chaining method, only
one pointer is needed to point to the last delta, and this pointer can be
included as part of the indirection mapping; thus, no additional read is
required.

9 Amortization is expected to be high on the tail of a table.
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For the two sparse indexes on A and B, the LIDBlocks
for keys 140 and 9278 (respectively) are identified using
partial index traversals, and LID 15 is inserted (paired
with the key) into each [2 SSD reads].

The deferred actions are as follows:

The data page containing the row with RID 654 is dirty
and will need to be flushed to the HDD [1 HDD write,
amortized over all modifications to the page].

The entry (15, 654) is inserted into the LfoR mapping [1
SSD read, 1 SSD write].

The LIDBIlocks for each of the four indexes are dirty and
need to be flushed [4 SSD writes].

In the event that a LIDBlock fills (one time in b insertions),
we need to convert all LIDs in the LIDBlock into regular
index LIDs and reset the LIDBlock to an empty state [4/b
SSD writes, 3/b HDD reads (the leaf in the index on A
has already been read), 4/b HDD writes].

Deletion Now suppose the row with key 100 is deleted, this
results in the following immediate actions.

The LID of the row in question (i.e., 13) is identified
using the index on A [1 HD read, possibly 1 SSD read].
The pair (13, 501) in the LtoR table is located [1 SSD
read].

The row with RID 501 is read and the deleted flag is set
to 1 [1 HDD read].

LID 13 is removed from the leaf node of the index on A.

The deferred actions for deleting the row with key 100 are

as follows:

The data page containing the row with RID 501 is dirty
and will need to be flushed to the disk [1 HDD write,
amortized over all modifications to the page].

The pair (13, 501) in the LtoR table is dropped [1 SSD
write].

The index leaf page for A containing the key 100 is dirty
and will need to be flushed to the HDD [1 HDD write
amortized over all modifications to the page].
Whenever one of the other indexes is traversed and LID
13 is reached, LID 13 will be removed from the corre-
sponding LID list [1 extra HDD write to modify the leaf,
amortized over all modifications to the page].

Search Suppose that the search returns m matches that all fit

in

one index leaf page of a sparse index. Since no write is

involved, the search only consists of immediate actions.

Traverse the index [1 HDD read].
Read the LIDBIock for the leaf node [1 SSD read].
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Table 1 Base versus Indirection technique analysis
Technique Type Immediate SSD Deferred SSD Immediate HDD Deferred HDD
Base Single-attr. update 0 0 3+1¢ <2+t
Insertion 0 0 1+t <l+t
Deletion 0 0 241t <l+t
Search Uniq. 0 0 2 0
Search Mult. 0 0 [m/I1+m 0
Indirection Single-attr. update 2 2 3 <2
Insertion I+¢ 24+t+1t/b 1 <14+ Q@t—-1)/b
Deletion 1 1 2 <1+t
Search Uniq. 2 0 2 0
Search Mult. [m/IT+m 0 [m/I17+m 0

For single-attribute updates and deletions, we show the case where the LID was initially in the leaf rather than the LIDBlock. n is the number of
attributes, ¢ is the number of B-tree indexes, m is the number of results returned by a search, [ is the number of keys in an index leaf node, and b is

the maximum number of LIDs in a LIDBlock

— Map LIDs to RIDs [m SSD reads].

— Read all matching records [m HDD reads (assuming an
unclustered table)].

— If the DeltaBlock techniques without deferred compres-
sion are employed, then for each matching record either
read the DeltaBlock that directly holds the updated val-
ues [1 SSD read] or read the pointer(s) in the DeltaBlock
followed by fetching each corresponding delta from the
batched delta area [<1 + k SSD reads].

6 Analysis

We analyze the performance of the Indirection and DeltaBlock
methods according to three criteria: (a) time for core opera-
tions; (b) SSD space requirements; (c) SSD endurance and
recovery.

6.1 Time complexity

Table 1 summarizes the I/O complexity of the Base and Ind-
irection methods, and Table 2 summarizes the I/O complexity
of DeltaBlock without the cost of Indirection. Most I/Os are
random, meaning that the SSD I/Os will be much faster
than HDD I/Os by about two orders of magnitude on cur-
rent devices. It is therefore worth investing a few extra SSD
I/Os to save even one HDD I/O. Note that these estimates
are pessimistic in that they assume that none of the SSD-
resident data is cached in RAM. If commonly and/or recently
accessed data was cached in RAM, many SSD read 1/Os could
be avoided, and many SSD writes could be combined into
fewer I/Os; thus, reducing I/O complexity and improving the
device endurance.

The most striking observation is that with a small increase
in SSD I/Os, the update, insertion, and deletion costs are

substantially reduced, while the cost of searches increases
slightly. With the Indirection technique, the immediate HDD
cost is independent of the number of indexes. Furthermore,
we observe that with a constant increase in the number of SSD
1/Os for query, we can substantially reduce the amount of data
written to disk using the DeltaBlock techniques, essentially
eliminating the need to redundantly write the unchanged por-
tion of the record upon every update.

6.2 SSD space complexity

We now estimate the space needed on the SSD for the LtoR
table, the LIDBlocks, and the DeltaBlocks. If N is the number of
latest version records in a table, then we need N (LID,RID)
pairs in the LfoR table. In a typical scenario, table records
may be 150 bytes wide,!? with 8-byte LIDs and 8-byte RIDs.
Assuming a fudge-factor of 1.2 for representing a hash table,
the LtoR table would roughly constitute 13 % of the size of
the current data in the main table.

We now consider the space consumption of LIDBlocks for
sparse indexes; dense indexes would take less space. The
number of LIDBIlocks for a single sparse index is equal to the
number of leaves in the index. With an 8-byte key, an 8-byte
LID, an 8 KB HDD page size and a 2/3 occupancy factor,
a leaf can represent about 340 records. A LIDBlock contains
b (LID,key) pairs, leading to a total space consumption of
16bN x 1.2/340 bytes per index. Even a small value of b,
say 16, is sufficiently large to effectively amortize insertions.
At this value of b, the LIDBlocks for a single index consti-
tute less than 1 % of the size of the current data in the main
table.

10 For example, the average record size in the L,TNETTEM table in TPC-
H is around 150 bytes when start/end timestamps for tracking versions
are also accounted for [60].

@ Springer



662

M. Sadoghi et al.

Table 2 DeltaBlock techniques analysis not including the I/O cost incurred by the indirection and LIDBlock techniques as captured in Table 1

Technique Type Immediate SSD Deferred SSD Deferred HDD
Direct DeltaBlock Single-attr. update 1 1 0
Search Unigq. 1 0 0
Flushing deltas 1 1 1
Indirect DeltaBlock Single-attr. update 1 2 0
Search Uniq. <l+k 0 0
Flushing deltas 1+k 1+k 1
Indirect Chained DeltaBlock Single-attr. update 0 2 0
Search Uniq. <k 0 0
Flushing deltas 1+k 1+k 1
Indirect Chained DeltaBlock Single-attr. update 0 2 1
with Deferred Compression
Search Unigq. 0 0
Flushing deltas 14+k 1+k

For single-attribute updates, we assume that each DeltaBlock (with or without chaining) holds at most k deltas for each record and that the
DeltaBlock’s content is flushed on a per record basis after the accumulation of k deltas, and the flushed deltas are (pseudo) deleted

Thus, even with 7 indexes per table, the SSD space
required in a typical scenario is only about 20 % of the HDD
space required for the current data. Taking the historical data
into account, the relative usage of SSD space would be even
lower. Given that SSDs are more expensive per byte than
HDDs, it is reassuring that a well-provisioned system would
need much less SSD capacity than HDD capacity.

Lastly, we focus on non-direct DeltaBlock techniques, wh-
ich do not require explicit knowledge about the workload
characteristics such as the expected update size per record.
For Indirect DeltaBlock, if we assume at most 3 updates per
record, then we can extend the Indirection to include three
pointers to the batched delta area on the SSD. If we assume 8
bytes per pointer (in most cases, a 4-byte pointer size should
be sufficient because the batched delta area is sized to hold
only recent updates), then each Indirection entry extended with
DeltaBlock will be 40 bytes in the worst case, the case that
every record is provisioned to hold 3 pointers. Assuming
a fudge-factor of 1.2 for representing a hash table, the LfoR
table extended with DeltaBlock would constitute roughly 32 %
of the size of the current data in the main table (or 23 % if
4-byte pointers are used). Now after applying the chaining
idea to DeltaBlock, at most one additional pointer is required
per (LID, RID) pair. Therefore, the LtoR table extended with
DeltaBlock would only constitute 19 % of the size of the cur-
rent data in the main table (or 16 % if 4-byte pointers are
used).

6.3 SSD life-expectancy and recovery
SSDs based on enterprise-grade SLC flash memory are rated

for about 10° erase cycles before a page wears out [40,62].
SSDs internally implement wear-leveling algorithms that sp-
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read the load among all physical pages, so that no individual
page wears out early. SSDs based on phase-change memory
(PCM) can sustain a higher erase-cycle rate. For example,
current PCM prototypes offer 10° to 108 erase cycles, while
future PCM is expected to have an endurance-level of up to
10'? [62]. Furthermore, future spin-transfer torque memory
has an expected endurance of up to 10'3 erase cycles [62].

Focusing on today’s SSD technologies, the endurance of
these devices is also quantified by a simpler Drive Writes
Per Day (DWPD) metric for a certain period of time. For
instance, a device with a DWPD rating of 10 with a 5-year
guarantee translates to writing the entire device capacity 10
times a day for 5 years. The recent enterprise SSDs marketed
for OLTP workloads have a DWPD rating of around 30, e.g.,
Toshiba PX02SSF010 eMLC 100GB.!!

In flash-based SSDs, there is a write-amplification phe-
nomenon, in which the internal movement of data to generate
new erase units adds to the application write workload.
This amplification factor has been estimated at about 2 for
common scenarios [25]. This amplification factor is essen-
tial when relying on a raw erase-cycle count of the device,
but when using the DWPD metric, the write-amplification
phenomenon is already accounted for by the device man-
ufacturer. In general, today’s SSDs with a high DWPD
rating rely heavily on over-provisioning of space as opposed
to developing flash technologies that offer higher erase
cycles.

To estimate the wear-out threshold, suppose that the Ind-
irection (or the DeltaBlock) method uses an SSD page size of

I Toshiba Enterprise SSD (eSSD): http://toshiba.semicon- storage.com
/us/product/storage-products/enterprise-ssd/px02ssb-px02ssfxxx.html


http://toshiba.semicon-storage.com/us/product/storage-products/enterprise-ssd/px02ssb-px02ssfxxx.html
http://toshiba.semicon-storage.com/us/product/storage-products/enterprise-ssd/px02ssb-px02ssfxxx.html
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512 bytes. Then a device!? with a capacity of 8 x 10’KB
can tolerate 8 x 10'? writes before wear-out, assuming a
write-amplification of 2 and 10° erases per page.

Our most write-intensive operation is insertion, with about
1 + k SSD writes per insertion when there are k indexes.!?
Assuming nine indexes and ten insertions per transaction,
we would need 100 SSD writes per transaction. Even running
continuously at the high rate of 800 transactions/s, the device
would last more than 3 years.

Now we consider the same write-intensive workload with
an SSD rated for DWPD at 30 for 5years.!* Again suppose
that the Indirection method uses an SSD page size of 512
bytes. Then a device with a capacity of 8 x 10’KB can be
written 30 times daily for 5 years, which translates to 24 x
108 KB total writes per day. Thus, the device can sustain 542
transactions/second for 5 years.

The pages in the LfoR mapping can be aligned to the
database pages and be cached in RAM (i.e., the database
bufferpool). Typically OLTP page sizes are 4—8 KB (a smaller
page size improves both the bufferpool hit ratio and reduces
the page-latch contention) [45,55]. For example, suppose
4KB page are used, then we can sustain up to 68 transac-
tions/second for 5 years given our write-intensive workloads.
But, more importantly, once SSD pages are included in
the database bufferpool, then the commonly and/or recently
accessed pages will be RAM-resident. As aresult, many SSD
writes could be combined into fewer physical I/Os, and dirty
pages are flushed only periodically depending on the data-
base checkpointing and bufferpool policies; hence, reducing
the I/O complexity and improving the device endurance sig-
nificantly. Therefore, we can revisit our above analysis as
follows: if a physical I/O write is performed for each n logical
writes due to locality in the bufferpool, then in our write-
intensive workload with a 4 KB page size, we would sustain
up to 68n transactions/second for 5years.

To protect the LtoR mapping!’ against media failure and
to leverage caching of SSD pages in RAM (which further
requires protection against power failure), the LfoR pages
must be logged similarly to pages for any other database
objects. In the absence of a log, there will be no data loss;
however, all indexes must be rebuilt at start time because
all indexes contain LIDs (not RIDs) and rely on the LfoR

mapping.

12 Device characteristics are based on an 80 GB SLC FusionIO device.
13 Again, this estimate is pessimistic because it assumes no RAM
caching of SSD pages.

14 We based our calculation on Toshiba PX02SSF010 eMLC 100GB,
but we limit ourselves to only 80 GB for comparable analysis with our
FusionlO device.

15 The recovery of LIDBlocks and DeltaBlocks follows the same prin-
ciple.

7 Experimental evaluation

We present a comprehensive evaluation of our Indirection pro-
totype based on the generalized search tree (GiST) index
package [29,31]. Additionally, we provide complementary
kinds of evidence using DB2 [2] in two ways to further sup-
port the results demonstrated using our prototype. Since we
are targeting operational data stores with both transactions
and analytic queries, we base our evaluation on the TPC-H
benchmark [60].

First, in Sect. 7.2 we try to answer the question “How
would the performance of a state-of-the-art database change
if it were to use our methods?” We employ the commer-
cial database system DB2, but other database systems would
have been equally good choices. Given a workload W, we
construct a rewritten workload W’ for the DB2 engine that
simulates the I/O behavior of our technique for W. While the
workload W’ is not identical to W, we argue that the perfor-
mance of DB2 on W’ provides a conservative estimate of the
performance of W on a (hypothetical) version of DB2 that
implements the Indirection technique.

Second, in Sect. 7.3, we evaluate our Indirection technique
by implementing it within the popular GiST index package
[29,31]. The GiST package has successfully been deployed
into a number of well-known open-source projects including
PostgreSQL [6], PostGIS [5], OpenFTS [4], BioPostgres [1],
and YAGO?2 [7]. All aspects of the method (insertions, dele-
tions, modifications) have been implemented; we refer to the
resulting prototype as LIBGiST™". We profile the I/0 behav-
ior of LIBGiST"and create a detailed I/0 and execution cost
model for the Indirection technique.

Finally, in Sect. 7.4, we shift our focus to TPC-H style
analytical query processing that is geared toward an opera-
tional data store. We provide evidence for the key tenet of
this work, namely, reducing the burden of index maintenance
means that the system can afford more indexes, which in turn
improves the performance of analytical query processing.

7.1 Platform

The experiments were ran on the machine equipped with a
6-core Intel Xeon X5650 CPU running at 2.67 GHz, hav-
ing 32 GB of RAM, two magnetic disks (7200 RPM SATA),
and one 80 GB Single-Level Cell (SLC) FusionlO solid-state
drive.'0

In our experiments, we used IBM DB2 version 9.7 [2]. We
configured DB2 with adequate bufferpool size (warmed up

16 Our SLC FusionlIO can support up to 88,000 I/O operations per sec-
ond at 50us latency. While the FusionlO devices are high-end devices
that are relatively expensive, we remark that recent SSDs such as the
Intel 520 series can store about 500 GB, cost about $500, and can support
50,000 I/0 operations per second at 85us latency, more than sufficient
for the workloads described here.
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Table 3 Query rewriting to

capture indirection mechanism Base Indirection
Query SELECT * SELECT *
FROM LINEITEM L FROM LINEITEM L, LtoR M
WHERE ? WHERE ? AND
L.LID = M.LID
Update SELECT * SELECT *
FROM LINEITEM L FROM LINEITEM L, LtoR M
WHERE *? WHERE 7? AND
L.LID = M.LID
INSERT INSERT

INTO LINEITEM
VALUES (?,---,?)

INTO LINEITEM
VALUES (?,---,?)
UPDATE LtoR
SET RID = ?
WHERE LID

I
~J

prior to starting the experiments) to achieve an average 90 %
hit ratio on both data and index pages. For the DB2 experi-
ments, we generate a TPC-H database [60] with scale factor
20. File system caching was disabled in all experiments.
For LIBGiST™?, we extended LIBGIiST v.1.0 to a multi-
version generalized search tree C++ library that supports our
Indirection techniques including LIDBlocks and DeltaBlocks.

7.2 DB2 query rewriting experiments

The goal of the query rewriting experiment is to study the I/O
pattern for both the unmodified DB2 system (“Base”) and
the Indirection approach. To evaluate Base for a query Q we
simply run Q in the original schema S. To evaluate Indirection,
we rewrite Q into another query Q’. Q is run in a schema S’
containing an explicit LtoR table representing the LID-to-
RID mapping. Ideally, the Lt oR table is physically located
on the SSD device; we empirically examine the impact of
the location below. In §’, base tables are augmented with an
additional LID column, where the value of LID is generated
randomly. In S, we build as many indexes as desired on the
base tables. In ', we build a single index on the attribute
selected in the query, typically the primary key of the base
table.

7.2.1 Rewriting queries

For queries, the rewriting simply adds the Lt oR table to the
FROM clause, with a LID equijoin condition in the WHERE
clause. An example template of our query rewriting that sim-
ulates the indirection mechanism is shown in Table 3. The
queries are written over TPC-H LINEITEM table and the
indirection table, denoted by LtoR.

@ Springer

To see why the performance of Q' is a conservative esti-
mate of the cost of the Indirection technique, consider two
cases for the query in Table 3. In the first case, some selec-
tion condition on an indexed attribute (or combination of
conditions) is sufficiently selective that an access plan based
on an index lookup is used. This case includes a point query
specified as an equality condition on a key attribute. The Base
plan for Q would include an index traversal and a RID-based
lookup in the LINETITEM table. For Q’, we will also have
an index traversal and a RID-based lookup of LINEITE,
together with a LID-based lookup of the LtoR table. This is
precisely the I/O pattern of the Indirection technique.

In the second case, the selection conditions are not very
selective. In such a case, the system is likely to scan the base
table in answering Q.!” To answer Q’ in such a case requires
ajoin of LINEITEM and LtoR in order to make sure that we
only process the most recent versions of each record. This
may actually be an overestimate of the cost needed by the Ind-
irection technique because the Indirection technique can also
employ a scan without consulting the LtoR table.

7.2.2 Rewriting updates

For updates, an extra UPDATE statement is added to keep the
LtoR table current, as illustrated in Table 3. Since we are
simulating a multiversion database, the Base method inserts
a new row rather than updating an existing row. While the
Base method pays the cost of inserting the new row into each
index, we are slightly favoring the Base method by ignoring
the cost of deleting the old row from the indexes. Depending

17 We do not include old versions of records for these experiments; in
a true multiversion database the base tables would contain some old
record versions that would need to be filtered out during the scan, using
the valid time attributes.
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on the implementation technique used for temporal attributes
(Sect. 1.1), there may be additional I/O required to update
the temporal attributes of the old row, but we ignore such I/O
here.

For updates in which a single-attribute value is modified,
the Indirection method incurs just one index update and one
update to the LtoR table. At first, it may seem like there
is more work done by the Indirection method simulation for
the updates of Table 3 since the INSERT statements are the
same, and the Indirection method has an extra UPDATE state-
ment. This impression is true only for the case in which there
is one base table index in the base schema S. As soon as
there are multiple indexes on base tables in S, the cost of
the INSERT statement for the Base method exceeds that of
the corresponding INSERT in the Indirection method because
more indexes need to be updated.

Our profiling of update statements can easily be extended
to delete statements, but we omit such profiling because the
performance profile would be similar to that for updates. On
the other hand, our rewriting does not model the LIDBlock
and DeltaBlock techniques, and, thus, cannot fully capture
its performance advantages for insertions. The benefits of
the LIDBlock and DeltaBlock techniques will be evaluated in
Sect. 7.3.

7.2.3 Results

All DB2 measurements are averages over 5 million randomly
chosen queries/updates with the exception of our selectivity
experiments and analytical queries, in which fewer oper-
ations were performed to complete the experiments in a
reasonable time. Furthermore, the necessary query rewrit-
ings (as described in Sect. 7.2) were performed outside the
DB2, and the average cost of query rewriting was less than
1 % of the overall query execution time (rewriting cost was
in the sub-millisecond range), which is negligible.

Effect of indexes on execution time Our first result confirms
that adding the extra indirection layer has negligible overhead
for query processing as shown in Fig. 10. For this experiment,
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queries are point queries that are accessed by specifying the
value of the primary key attribute. The query overhead is neg-
ligible because the indirection mapping from LID-to-RID
requires only a single additional random SSD I/O, a delay
that is orders of magnitude faster than the necessary random
magnetic disk I/O for retrieving data pages holding entire
records. Figure 10 also shows that the update execution time
for the Base technique increases dramatically as the number
of indexes is increased. With 16 indexes, Indirection outper-
forms Base by a factor of 3.6.

Furthermore, we study the cost of update by breaking it
down into (1) reading indexes and the old version of the
record (2) writing the new version of the updated record and
updating the indexes, and (3) updating the indirection map-
ping (required for Indirection technique only). As mentioned
earlier, the cost of updating the indirection is insignificant
with respect to the overall update cost, and, as expected,
the cost of Indirection and Base are comparable as far as the
affected indexes are concerned. The gap between Indirect-
ion and Base increases noticeably as soon as the number of
unaffected indexes increases; the update breakdown cost is
captured in Fig. 11.

The role of the bufferpool Diving deeper into the bufferpool
behavior of DB2 reveals that with a modest number of SSD
page writes, the number of magnetic disk index writes is
substantially reduced, as shown in Fig. 12. This result demon-
strates the effectiveness of Indirection in reducing the index
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Fig. 13 Bufferpool access breakdown and hit ratio

maintenance cost for multiversion databases. Additionally,
in all of our DB2 experiments, we ensured that we achieve
an average bufferpool hit ratio of around 90 % to resemble
real DB2 customer settings [45,55].

We have also carefully studied the different types of
accesses served by the bufferpool. In particular, we dis-
tinguish among data and index accesses on HDDs versus
data access on SSDs (for the indirection mapping). These
accesses are furthered classified as logical accesses, i.e.,
when the accessed page is found and served directly from
the bufferpool, and physical accesses, i.e., when the requested
page is not found in the bufferpool and a physical access is
required to bring the page into memory. As demonstrated
in Fig. 13, logical access dominates the total number of
accesses, implying a high hit ratio as expected. Furthermore,
the majority of accesses to index pages are logical accesses,
again as expected, because the index hit ratio are typically
even larger for index pages compared to data pages [45,55].
Lastly, we observe the effectiveness of bufferpool for the
LtoR table, in which about half of the accesses were
served through the bufferpool. We chose a rather conserva-
tive/pessimistic hit ratio to ensure fairness. A higher hit ratio
not only further improves the Indirection technique execution
time, but it further extends the life-expectancy of the SSD
device.

Effect of query selectivity and index clustering Consider a
range query over a single indexed attribute in the LINEITEM
table. By varying the width of the range, we can vary the
query selectivity.'® Figure 14 shows the results for various
selectivities, where the indexed attribute is the key of the
LINEITEM table by which the table is clustered. On average,
the query overhead (for consulting the Lt oR table) remains
under 20 % as query selectivity varied. There is a sudden jump
at around 0.22 % selectivity, but a closer examination of the
DB2 query plans reveals that the sudden increase in execution

18 The starting value of the range in our range queries is chosen ran-
domly.
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time is attributable to the optimizer incorrectly switching
from a nested-loops to a sort-merge join plan.!”

The 20 % overhead, while still small, is higher than the
negligible overhead seen for point queries in Fig. 10. We
also observed that as the index clustering ratio decreases, the
query processing gap between Indirection and Base decreases.
For example, for the lowest clustering ratio index of the
LINEITEM table (on the SUPPKEY attribute), the overhead
drops to only 4 % on average. These differences can be under-
stood as a consequence of caching. With a high clustering
ratio, one base table disk page I/0 will be able to satisfy many
access requests, meaning that each magnetic disk I/O is amor-
tized over many records. On the other hand, every record will
contribute an SSD I/O for the Lt oR table since that table is
not suitably clustered. For point queries and queries over an
unclustered index, the ratio of SSD I/O operations to mag-
netic disk I/Os will be close to 1.

Indirection mapping implementation Finally, we illustrate
that the indirection random read/write access pattern is ideal
for SSDs and not for magnetic disks.

We tried two different implementations of the LID-to-RID
mapping using either a DB2 range-clustered table (RCT) or
a traditional B-Tree index hosted on either SSDs or HDDs.
As shown in Fig. 15, when an SSD is used, the overall query
and update cost is 1.9x and 2.7x lower, respectively, than
on an HDD.

19 This behavior can be avoided if optimizer hints are provided.
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7.3 GiST implementation

Our LIBGiST™? codebase directly implements all aspects of
our proposed approach, including the LIDBlock and DeltaBlock
techniques. We employ LIBGiST™? as the basis for a system-
atic performance study in a controlled environment. All HDD
and SSD reads and writes used Direct I/0 to avoid extra copy-
ing of operating-system buffers. No bufferpool space was
allocated for the indirection table, so requests to the indirec-
tion table always incur SSD 1/Os.

In our prototype, we also extended the LIBGiST buffer-
pool in order to test a variety of memory configurations. We
further enhanced the LIBGiST library to collect statistics
on index operations, file operations, and a detailed buffer-
pool snapshots. All prototype experiments used the TPC-H
schema with scale factor 1, and the workload consisted of
random point queries and random insert and update queries
(conceptually similar to the workload presented in Sect. 7.2).

We focus on the I/O profile of index traversals and updates
as encountered by queries, updates, and insertions. All results
are averaged over 10° random queries/updates/insertions.

Comparison of average execution time We first isolate the
query, update, and insert execution times for a single index
with a small bufferpool size, enough pages to pin the root of
the index and all pages in one path from the root to a leaf.
Figure 16 shows that the insert and query times are virtually
the same due to the negligible overhead introduced by the
additional SSD read and write I/O operations. The “Update”
column for the Indirection method in Fig. 16 reflects a traversal
of the index to locate the prior version of the record, plus
an update of the SSD-resident LID-to-RID mapping. The
Base method is more expensive because it has to perform
additional writes to the magnetic disk.

Multiple indexes The update time shown in Fig. 16 does not
capture the true benefit of the Indirection method when there
are multiple indexes. In such a case, the Indirection method
needs to traverse only one index, and update one LID-to-RID
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mapping.?® In contrast, the Base method needs to traverse
and update HDD-resident pages for every index. Figure 17
shows that the performance improvement approaches 20 x
as the number of indexes increases from 1 to 16.

Varying the bufferpool size We consider five categories of
bufferpool sizes large enough to hold: (1) only few pages
(small), (2) all index non-leaf pages, (3) the entire index, (4)
the entire index and all data pages, or (5) everything including
the index, data, and LtoR table. These sizes reflect possible
use cases where the system has memory ranging from very
small to very large. We explored an update workload under
these five settings when having one (Fig. 18a) or sixteen
(Fig. 18b) indexes on unaffected attributes. Note the loga-
rithmic vertical scale.

20 1f an indexed attribute is updated, then extra I/O is needed for that
index to relocate the index entry. Indexes that are neither traversed nor
updated in the Indirection method are said to be “unaffected.”
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In Fig. 18a, when only both the index and data pages
are memory-resident, but the LtoR table is not, does the
Indirection method perform poorly compared to the Base
approach. This is not surprising, because even a fast SSD
1/0 is slower than access to RAM. When an update opera-
tion results in some HDD I/O (either due to updating leaf
pages or data pages), then Indirection is superior by up to 2x.
When everything including the LID-to-RID mapping table
is memory-resident, then Indirection continues to be superior
because it does not touch most of the indexes.

Again, the true benefit of the Indirection technique sur-
faces as we increase the number of indexes. For example,
when scaling the number of indexes to sixteen in Fig. 18b,
Indirection typically wins by an order of magnitude. These
experiments demonstrate that the Indirection technique pro-
vides significant benefits even if large portions of the database
are memory-resident.

Varying the LIDBlock size So far our focus has been on
improving index maintenance involving updates. We now
demonstrate the power of our LIDBlock approach for inser-
tions. In Fig. 19, we vary the capacity of LIDBlock from
no LIDs to 256 LIDs for the non-unique index defined on
the suppkey attribute of the lineitem table. When increasing
the LIDBIlock size to around 32 LIDs, we observed that the
insertion cost is significantly reduced by up to 15.2x. This
improvement is due to the amortization of a random leaf page
update over many insertions, e.g., a LIDBlock size of 32 results
in batching and flushing to the disk once every 32 insertions
on average.

We can demonstrate a similar benefit with a non-unique
index having many more duplicate entries, such as an index
on the quantity attribute of the lineitem table, having 50 dis-
tinct values and 0.2M records per value. It is beneficial to
allow larger LIDBlock sizes as shown in Fig. 20, in which the
insertion execution time is reduced by up to 4.9 x. Unlike the
previous case, the main reason for the speedup is not simple
amortization of insertions; since there are so few key values
the tree structure of the index is shallow and its traversal is
already cheap due to caching. Instead, the speedup is due to
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Fig. 19 Varying the LIDBlock size versus insertion time
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having batches large enough to be resolved with one or two
1/Os to update the LID lists for a key.

Effect of varying DeltaBlock size Our final prototype experi-
ment demonstrates the role of our Indirect Chained DeltaBlock
technique.?! In this experiment, we begin with one index
defined over lineitem table (with scale factor 1) followed by
randomly updating 100k randomly selected records up to 12
times. As we scale the number of deltas within a DeltaBlock
from 0 to 9, we compute the HDD usage (raw data size),
SSD usage (DeltaBlock size), and relative query and update
execution time.

As shown in Fig. 21, when increasing the DeltaBlock size,
we obtained a compression reduction ratio of 80 % with as
few as 9 deltas per DeltaBlock. This reduction is made pos-
sible by allocating to DeltaBlock only 6 % of the size of the
uncompressed raw data, exhibiting an SSD usage that is only
6 % of HDD usage. Therefore, by maintaining (and chain-
ing) only the values of changed columns (as opposed to
redundantly storing all the unchanged columns), we can sub-
stantially reduce the size of the database while retaining all
past versions.

Since the recent updates are written only to the fast stor-
age (i.e., SSDs) and only the changed columns (deltas) are
written, the latest values of frequently updated columns can

2l Among our DeltaBlock techniques, Indirect Chained DeltaBlock provides
the best balance between performance and flexibility. Thus, we consider
it as our DeltaBlock representative approach for our empirical studies.
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be found on SSDs (i.e., the fetching of the latest values
is improved); thereby, the overall update execution time is
improved. Moreover, the query time is almost unaffected
because the latest updated values can quickly be fetched
from SSDs (or the latest version is fetched without the need
of reconstruction if the deferred compression technique is
employed). In addition, using the DeltaBlock, one can retrieve
the latest k versions of record with a single HDD 1/O as
oppose to the k random I/Os required by the Base technique.

7.4 DB2 operational data store experiments

In this section, we study the effects of adding indexes in the
context of an operational data store, in which small-scale
analytical query processing is competing with transactional
throughput. Our query workload is based on prior work [17]
that modifies TPC-H queries so that they each touch less data.
For our index workload, we rely on the DB2 Index Advisor
recommendation given our query workloads defined over the
entire TPC-H schema.

We first consider only the primary key indexes of the
TPC-H tables. Subsequently, we add the remaining indexes
recommended by DB2 Advisor one at a time, starting from
the most to least beneficial index. After each round of
index addition, we re-run our query workload. Likewise,
after adding each index, we compute the update cost for a
uniformly generated update workload, in which each non-
primary-key attribute has an equal chance of being updated.
The update cost is a normalized average execution time of
updating indexes on DB2. The results are summarized in
Figs. 22 and 23.

Our first observation is that analytical query time is
substantially reduced (by a factor of 3) as we add more
indexes recommended by DB2 Advisor. More importantly,
we observe that the additional indexes are more “afford-
able” for updates because our Indirection technique reduces
the index maintenance overhead. In the base configuration,
the index maintenance overhead increases linearly as more
indexes are added, reducing transaction throughput. Our Ind-
irection technique reduces the update cost by more than 40 %.
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Figure 23 shows a two-dimensional plot of relative query
time g versus relative update time u. On both axes, smaller
is better. Each index configuration determines a point (u, )
on this graph, and one can choose a suitable configuration
to achieve a desired query/update trade-off. In Fig. 23, the
Indirection technique dominates®> the Base method. This is
a key result: The Indirection technique makes indexes more
affordable, leading to lower query and update times.

To understand the importance of Fig. 23 consider the fol-
lowing scenarios.

1. A DBA has an update time budget of 0.6 units and within
that budget wants to optimize query processing time.
According to Fig. 23, the Indirection technique can achieve
query performance of about 0.32 units under such condi-
tions, while the Base method can achieve only 1.0 units,
three times worse.

2. A DBA has a query time budget of 0.5 units and within
that budget wants to optimize update time. The Indirection
technique can achieve update performance of about 0.5
units under such conditions, while the Base method can
achieve only 0.7 units, 40 % worse.

3. A DBA wants to minimize the sum of update time and
query time. The Indirection method can achieve a sum of
about 0.87 at (0.55, 0.32), whereas the best configuration
in the Base method is 1.15 at (0.75, 0.4), 32 % worse.

8 Related work

There has been extensive work on storing high-value data on
SSDs. Some of these studies target the problem of data place-
ment in relational databases to take better advantage of the
SSD characteristics. In [17] database objects are either placed
on HDDs or SSDs based on workload characteristics.”> As

22 Except when a very small weight is assigned to update time.

23 In fact, our indirection mapping can be seen as yet another unique
index that is accessed by every query. Thus, the objects placement opti-
mization in [17] can be utilized to determine the globally optimized
placement of our indirection object.
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opposed to using SSDs and HDDs at the same level in the
storage hierarchy, SSDs are also used as a second layer cache
between main memory and HDDs [15,18,23,37,44].

The use of an SSD cache with a write-back policy would
not solve our problem as effectively as the Indirection tech-
nique. One would need space to hold entire indexes if one
wants to avoid HDD index I/O for random updates and inser-
tions. In contrast, our method avoids HDD I/O with a much
smaller SSD footprint. The Indirection technique and SSD
caching of HDD pages are complementary and can be used in
tandem. In fact, using Indirection improves the cache behavior
by avoiding reading/writing unnecessary pages (i.e., it avoids
polluting the cache).

Adding alevel of indirection is acommonly used program-
ming technique relevant to a variety of systems problems
[10]. The kind of indirection we propose in this paper is used
in log-structured file systems [33,51] and database index-
ing [39], but only at page granularity. We use indirection at
record granularity. Furthermore, in [39], a latch-free B-Tree
structure, called Bw-Tree, is proposed that virtualizes the
concept of the page through page-level indirection (unlike our
record-level indirection). But, more importantly, our Indirect-
ion technique is index-agnostic (not tuned for any particular
index such as B-Tree) and addresses the general problem
of index maintenance in multiversion databases, that is, to
avoid updating indexes on unaffected attributes. Therefore,
our approach could reduce the index maintenance of Bw-
Tree as well. Another fundamental difference between our
philosophy and Bw-Tree is that we consider de-coupling of
the data from the index (in order to simplify the support of
secondary indexes on the data), while Bw-Tree assumes a
tight coupling of the index and data (i.e., storing the data as
part of the index). Bw-Tree is intended as an atomic record
store similar to key value stores [39].

The log-structured storage is also exploited in database
management systems [41,47,50,57,61], but no indirection
layer is used; thus, the common merging and compaction
operations in log-structured storage result in expensive
rebuilding of all indexes. By employing our Indirection tech-
nique this index rebuilding can be avoided.

Page-level indirection tables are also used to improve the
lifespan of SSDs. In [21], a system called CAFTL is pro-
posed to eliminate duplicate writes on SSDs. By keeping a
mapping table of blocks, the redundant block writes on SSDs
are eliminated.

In [63], Wu et al. proposes a software layer called BFTL
to store B-tree indexes on flash devices efficiently. IUD
operations cause significant byte-wise operations for B-tree
reorganization. The proposed layer reduces the performance
overhead of these updates on the flash device by aggregating
the updates on a particular page.

In [24], Dou et al. propose specialized index structures
and algorithms that support querying of historical data in
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flash-equipped sensor devices. Since the sensor devices have
limited memory capacity (SRAM) and the underlying flash
devices have certain limitations, there are challenges in main-
taining and querying indexes.

The deferral of index I/Os is used in several recent papers
on improving index performance [8, 14,46]. In those papers,
changes are accumulated at intermediate nodes, and propa-
gated to children in batches. Searches need to examine buffers
for keys that match. This line of work is complementary but
similar to our LIDBlock method in that both techniques buffer
insertions to amortize physical I/O.

SSDs are used to support online updates in data ware-
houses [11]. Incoming updates are first cached in SSDs and
later merged with the older records on HDDs to answer quer-
ies. In [11], data records are accessed primarily through table
scans rather than indexes.

Many specialized indexes for versioned and temporal data
have been proposed. A comprehensive survey of temporal
indexing methods is provided in [54]. Tree-based indexes on
temporal data include the multiversion B-tree [12], Interval
B-tree [9], Interval B+-tree [16], TP-Index [58], Append-
only Tree [30] and Monotonic B+tree [26]. Efficiently
indexing data with branched evolution is discussed by Jouni
et al. [36], who build efficient structures to run queries on
both current and historical data.

Specialized transaction time database systems, such as
Immortal DB [42,43], provide high performance for tem-
poral applications. Lomet et al. [43] describe how a temporal
indexing technique, the TSB-tree, is integrated into SQL
Server. The paper also describes an efficient page layout for
multiversion databases.

Lastly, we have extensively studied the concurrency aspect
of our Indirection technique in [52]. By leveraging our Indirect-
ion technique, we observed a significant improvement in the
execution time of workloads with concurrent read-only and
update transactions. Therefore, in the current paper, we have
focused exclusively on the benefits of indirection technique
as far as the index maintenance and version compression are
concerned, while in [52], we have focused exclusively on the
role of Indirection technique in concurrency control.

9 Conclusions

The multiversion temporal database market is growing [22].
A temporal database simplifies application development and
deployment by pushing the management of temporal logic
into database engines. By adopting temporal technologies,
the development cost can be reduced by a factor of 10 [22].
This success has led major database vendors (including Ora-
cle [48], IBM [34], and TeraData [59]) to provide support for
multiversion temporal data.
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We tackle a key challenge of multiversion databases:
providing good update performance and good query perfor-
mance in a single system. Transaction throughput and ana-
lytical query processing often have conflicting requirements
due to the high index maintenance cost for transactions. Our
efficient index maintenance using Indirection makes indexes
more “affordable,” substantially improving the available con-
figuration choices. Our evaluation demonstrates a query cost
reduction by a factor of 3 without an increase in update
cost. The batching of insertions using our LIDBlock tech-
nique can save up to 90 % of the insertion time. Finally, we
demonstrated that our proposed DeltaBlock techniques could
substantially reduce the database size by up to 80 % even
with a modest space allocation on SSDs.
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