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Abstract We investigate the problem of efficiently sup-
porting location-aware Publish/Subscribe (Pub/Sub for
short), which is essential in many applications such as
location-based recommendation and advertising, thanks to
the proliferation of geo-equipped devices and the ensuing
location-based social media applications. In a location-aware
Pub/Sub system (e.g., an e-coupon system), subscribers
can register their interest as spatial-keyword subscriptions
(e.g., interest in nearby iphone discount); each incoming geo-
textualmessage (e.g., geo-tagged e-coupon)will be delivered
to all the relevant subscribers immediately. While there
are several prior approaches aiming at providing efficient
processing techniques for this problem, their approaches
belong to spatial-prioritized indexing method which can-
not well exploit the keyword distribution. In addition, their
textual filtering techniques are built upon simple variants
of traditional inverted indexes, which do not perform well
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for the textual constraint imposed by the problem. In this
paper, we address the above limitations and provide a highly
efficient solution based on a novel adaptive index, namedAP-
Tree. AP-Tree adaptively groups registered subscriptions
using keyword and spatial partitions, guided by a cost model.
AP-Tree also naturally indexes ordered keyword combi-
nations. Furthermore, we show that our techniques can be
extended to process moving spatial-keyword subscriptions,
where subscribers can continuously update their locations.
We present efficient algorithms to process both stationary
and moving subscriptions, which can seamlessly and effec-
tively integrate keyword and spatial partitions. Our exten-
sive experiments demonstrate that AP-Tree and its variant
AP+-Tree can achieve up to an order of magnitude improve-
ment on efficiency compared with prior state-of-the-art
methods.

Keywords Publish/Subscribe system · Spatial-keyword
Queries · Stream · Continuous monitoring · Moving queries

1 Introduction

Content-based Publish/Subscribe (Pub/Sub for short) sys-
tem has attracted a lot of attention since the last decade
[1,17,37,48]. Subscribers can register their interest as sub-
scriptions, and publishers issue messages which need to be
delivered to all the relevant subscribers in a real-timemanner.
Recently, due to the proliferation of user-generated content
and geo-equipped devices, there is a vast amount of data with
both spatial and textual information, referred to as spatial-
textual data; they often come in a rapid streaming fashion in
many important applications such as social networks (e.g.,
Facebook, FourSquare and Twitter) and location-based ser-
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Fig. 1 Location-aware e-coupon system

vices (e.g., iAd1), thus leading to the location-awareness of
subscribers. For instance, a user may want to retrieve all the
tweets discussing the recent movie Birdman in her home city
Sydney.

To make sense of streaming spatial-textual data and sat-
isfy the increasing location-aware demand of subscribers,
it is critical to develop efficient location-aware Pub/Sub
system. In this paper, we investigate the problem of process-
ing spatial-keyword subscriptions in a location-aware Pub/
Sub system; that is, efficiently delivering a stream of incom-
ing spatial-textual messages issued by publishers to all the
relevant spatial-keyword subscriptions registered by a large
amount of subscribers. This problem plays a fundamental
role in a variety of applications such as information dis-
semination [45], location-based recommendation [33] and
sponsored search [25].

Example 1 Figure 1 demonstrates a location-aware Pub/
Sub system which delivers e-coupons to potential con-
sumers. A user may register her interest as a subscription
specified by a set of keywords and a spatial region. For
instance, user u1 wants to keep an eye on the discount ipad
from nearby shopping malls and hence issues a subscrip-
tion with keywords {ipad, discount} and a circular region
as shown in Fig. 1. Suppose two geo-tagged e-coupons e1
and e2 are released from two shops. Obviously, an e-coupon
matches a user if the e-coupon’s location is within the query
range of her subscription, and all the search keywords are
contained in the e-coupon. Therefore, in this example, e1
will be delivered to {u1, u3} and e2 will be sent to {u2}.
Challenges There are three key challenges in efficiently
processing spatial-keyword subscriptions. Firstly, a massive
number of subscriptions, typically in the order of mil-
lions, are registered in many applications, and hence even
a small increase in efficiency results in significant savings.
Secondly, the streaming spatial-textual messages (e.g., geo-
tagged tweets) may continuously arrive in a rapid rate which
also calls for high-throughput performance for better user
satisfaction. Thirdly, novel techniques need to be created to

1 http://advertising.apple.com.

(a) (b)

Fig. 2 Two motivating examples

develop spatial-textual indexing mechanism that adapts to
both the spatial and keyword distributions of the subscrip-
tion workload. To the best of our knowledge, [6] and [28]
are the only two existing work that systematically study the
sameproblemas ours. Two indexing techniques, IQ-Tree and
Rt -Tree, are proposed to match each incoming message to
relevant subscriptions following the filtering-and-refinement
paradigm. Although a large number of irrelevant subscrip-
tions can be pruned by IQ-Tree and Rt -Tree, they suffer
from two fundamental drawbacks.

Firstly, the spatial factor is always prioritized during the
index construction regardless of the keyword distribution of
the subscriptions. One of our key observations is that the
filtering powers based on the spatial and textual constraints
may differ substantially under different subscription work-
load. Hence, an indexing method must adapt to both spatial
and keyword distributions of the subscription set to achieve
high efficiency. For example, in Fig. 2a, textual filtering is
more effective because the query ranges of subscriptions are
heavily overlapped while they can be easily distinguished by
their keywords. On the contrary, we prefer spatial filtering in
Fig. 2b since their ranges are scattered evenly throughout the
space while their keywords are quite similar.

Secondly, the inverted indexing technique adopted in [6,
28] is not well suited to textual filtering given the nature of
the problem is a superset containment search [21] from tex-
tual perspective. Although inverted indexes have beenwidely
employed in conventional spatial-keyword queries, they are
essentially designed for subset containment search [21],
where a set of indexed objects containing all query keywords
are retrieved. We observe that index structures specifically
designed for superset containment search, such as theordered
keyword trie [22], shall offer better performance by exploit-
ing the order of keywords, and indexing multiple keyword
combinations.

Based on the above observations, we propose a novel
index technique, namely the Adaptive spatial-textual Par-
tition Tree (AP-Tree for short), to effectively organize
spatial-keyword subscriptions. Besides, in order to satisfy
the high-throughput and low-latency requirements of real-
time dissemination, we followmost of the existing Pub/Sub
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systems (e.g., [7,20,23,28,35,41,48]) to implement all our
indexes in memory. In a nutshell, AP-Tree is a f -ary in-
memory tree structure where subscriptions are recursively
divided by spatial or keyword partitions (nodes). A cost
model is devised to rigorously guide the selection of partition
methods such that the construction of the index is adaptive
to the subscription workload. Moreover, we seamlessly and
effectively integrate a variant of ordered keyword trie struc-
ture [22] to enhance the textual filtering performance.

On the other hand, depending on users’ demands, some
applications need to process moving subscriptions. For
example, in the iAd, a famous mobile advertising platform
developed by Apple Inc, recommendations (e.g., apps from
AppStore)may be pushed to user’s iPhonewhen shewalks in
the city. Thus, it is desirable to extend our system to support
moving spatial-keyword subscriptions.

There are three main challenges to support moving sub-
scriptions. Firstly, it is desirable to design indexing structure
which can support the continuous reorganization of mov-
ing subscriptions efficiently. The AP-Tree cannot work very
well for moving subscriptions because the continuous move-
ment of subscriptions will deteriorate the original structure
of AP-Tree and trigger indexing maintenance. Secondly, it
is crucial to design an index which can support incremental
re-evaluation of moving subscriptions, instead of simply re-
evaluating from scratch for each location update. Thirdly, the
efficient organization of all the activemessages using spatial-
keyword indexing structure should also be considered so as
to support efficient re-evaluation of moving subscriptions.2

To this end, we propose a new cost model to accommodate
the moving subscriptions, following the same framework as
AP-Tree. Besides, we integrate all the active messages into
AP-Tree seamlessly and naturally, to support efficient incre-
mental monitoring/re-evaluation when subscriber moves.

Our principal contributions are summarized as follows:
For stationary subscriptions

– We devise a novel adaptive spatial-textual partition tree
(i.e., AP-Tree) to tackle spatial-keyword subscriptions
over streaming spatial-textual messages. To the best of
our knowledge, this is the first spatial-textual indexing
mechanism which adaptively prioritizes spatial and key-
word partition methods.

– A cost model is proposed to evaluate the goodness of
keyword partition and spatial partition. For keyword par-
tition, an optimal algorithm and an efficient heuristic
algorithm are devised. As to spatial partition, we show
that finding optimal spatial partition is NP-hard and pro-
pose an efficient heuristic algorithm instead. With the
guide of cost model, AP-Tree is constructed in an adap-

2 Active messages refer to the messages which are currently alive and
not expired in the system.

tive way to minimize overall matching cost. Moreover,
we show that AP-Tree is self-adjustable to the change of
subscription workload.

– Comprehensive experiments show that our AP-Tree
achieves substantial improvements (up to an order of
magnitude speed up) over the state-of-the-art techniques.
For instance, with 20 million registered subscriptions,
our method can process around 2, 500 tweets per sec-
ond, compared with about 300 tweets by the previous
methods.

For moving subscriptions

– We propose a new indexing structure, namelyAP+-Tree,
which is a natural extension of AP-Tree, by introduc-
ing a new cost model to accommodate the movement of
subscriptions. AP+-Tree considers not only the spatial
and keyword distributions of subscriptions, but also the
movement of subscribers.

– We propose to combine both subscription index and
message index into a unified framework to support the
efficient re-evaluation of moving subscriptions.

– Comprehensive experiments indicate that our AP+-Tree
is up to an order of magnitude faster over the baseline
algorithms.

Roadmap This paper is an extension of our previous work
on stationary spatial-keyword subscriptions [40]. In this
extended paper, we extend techniques in [40] to support
moving spatial-keyword subscriptions and present compre-
hensive experimental results to evaluate the efficiency and
effectiveness of proposed techniques.

The rest of this paper is organized as follows. We intro-
duce related work in Sect. 2. Section 3 presents techniques to
process stationary spatial-keyword subscriptions, including
the related algorithms and a cost model to guide the adap-
tive indexing construction. Section 4 presents the extension
toward moving spatial-keyword subscriptions, including a
unified indexing structure and a cost model variant to support
the indexing ofmoving subscriptions. Extensive experiments
of both stationary and moving subscriptions are depicted in
Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related work

In this section, we briefly review the literatures which are
closely related to our problem.
Spatial-keyword Search In recent years, spatial-keyword
search has attracted great attention, which aims to retrieve the
relevant spatial-textual objects for a given spatial-keyword
query. Existing work usually combine keyword indexing and
spatial indexing techniques to organize objects such that non-
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promising objects can be quickly pruned from both spatial
and textual perspectives. In general, these techniques can be
classified into two categories: keyword-prioritized (e.g., [10,
34,47,50]) and spatial-prioritized (e.g., [11,13,50]). We say
an index is keyword-prioritized in the sense that it prefers key-
word feature during index construction; similarly, we say an
index is spatial-prioritized if it prefers spatial feature during
index construction. Note that a spatial-keyword search is an
ad hoc/snapshot query (i.e., user-initiated model), while our
problem focuses on continuous subscriptions (i.e., server-
initiated model). Please refer to [8] for a good review and
summary of ad hoc queries.
Publish/Subscribe system In a Pub/Sub system, there are
many long-running subscriptions registered by subscribers
on the server side. The messages are coming in a stream
fashion and need to be evaluated and reported to the rele-
vant subscriptions. Most of the existing Pub/Sub systems
investigate either content-based/predicate-based matching
(e.g., [16,35,41,48]) or similarity-based ranking (e.g., [30,
37]). Nevertheless, they do not consider the spatial informa-
tion. There are some existing work on the location-aware
Pub/Sub systems, but most of them either cannot properly
handle large-scale streaming data (e.g., [9]) or do not con-
sider the textual information (e.g., [2]).

Recently, spatial-keyword Pub/Sub systems have been
proposed by a line of researches [6,7,23,28]. They all aim
to organize a large number of subscriptions to facilitate the
dissemination of streaming spatial-textual messages. Among
them, [6,28] focus on the exact same problem as ours (i.e.,
boolean range matching), while [7,23] tackle another line
of problem (i.e., similarity searching). Thus, in this paper,
we only consider the algorithms proposed in [6,28] as our
competitors. Specifically, two efficient indexing techniques,
namely IQ-Tree and Rt -Tree, are proposed to index a mas-
sive amount of subscriptions efficiently. Both of them belong
to spatial-prioritized indexing mechanismwhere spatial fea-
ture is preferred during index construction. For the coherence
of this paper, we delay the detailed discussions of IQ-Tree
and Rt -Tree to Sect. 3.1.
Moving spatial-keyword query There are several work
focusing on efficient processing of moving spatial-keyword
queries. Wu et al. [42] and Huang et al. [24] aim to contin-
uously monitor top-k results for a moving spatial-keyword
query by utilizing safe zone technique. Safe zone is a region
in which the query results keep constant. However, the naive
safe zone technique [5,24,27,32,42,49] cannot be trivially
adopted in our problem because the frequent incoming mes-
sages will destroy the pre-computed safe zone, thus forcing
the repeated re-computation of safe zone. Besides, they only
consider one query each time. Recently, Du et al. [14] and
Guo et al. [19] solve the moving spatial-keyword query on
road networks, by utilizing incremental evaluation strategy to
reduce repetitive traversing of network edges. However, they

only deal with static data. Another related work isMobiFeed
proposed by Xu et al. [44]. Their work focuses on efficient
n-look-ahead news feed schedule based on a location predi-
cator to maximize total relevance score for all n timestamps,
which is inherently different from our problem. Moreover,
they do not consider indexing queries to match incoming
messages.

To the best of our knowledge, a recent work by Guo et
al. [20] is the only one that considers multiple moving
spatial-keyword subscriptions against a stream of spatial-
textual messages. Particularly, they propose a framework,
called Elaps, which aims to reduce the communication cost
between user clients and server by utilizing safe region and
impact region techniques which are carefully designed for
streams. A BEQ-Tree structure is also proposed to index
messages. One main difference between their work and ours
is that, we follow a different line of work [29,43] where
the users need to report the location update periodically to
the central server, and the matching results are delivered to
the users in an incremental and periodical manner. Our main
concern is to reduce the computation cost on the server by uti-
lizing efficient indexing structures for both subscriptions and
messages. Even if Elaps can reduce communication cost, it
suffers from high memory cost and high server computation
overhead, which is mainly incurred by safe region construc-
tion and BEQ-Tree matching. Thus, Elaps cannot scale to
large number of subscriptions, while the scalability of sub-
scriptions is one of the key challenges in our problem.

3 Stationary Publish/Subscribe

In this section, we deal with matching stationary subscrip-
tions against a stream of incoming messages. We first give
some preliminaries in Sect. 3.1. Then we present a meticu-
lous introduction to the framework of AP-Tree in Sect. 3.2,
which includes the detailed structure of AP-Tree and mes-
sage matching algorithm. In Sect. 3.3, we propose a cost
model to guide the construction and maintenance of AP-
Tree. Finally, we end up with some discussions in Sect. 3.4.

3.1 Preliminaries

In this paper, M denotes a sequence of streaming spatial-
textual messages. A spatial-textual message is a textual
messagewith geo-location, such as check-ins and geo-tagged
tweets. Formally, a spatial-textual message m is modeled as
m = (ψ, loc), where m.ψ denotes a set of distinct terms
(keywords) from a vocabulary set V and m.loc represents a
geo-location.3

3 We assume the location of message is a point while our techniques
can be immediately extended to support a spatial region, e.g., circle,
rectangle.
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Table 1 Summary of notations

Notation Definition

m A spatial-textual message

s A spatial-keyword subscription

m.ψ (s.ψ) A set of keywords for m (s)

m.loc (s.r ) Message location (subscription range)

w, wi , w j Keyword/term

S (S) Subscription set (subset of S)
M (M) Message stream (subset of M)

V (V ) Vocabulary (subset of V)
N A node of AP-Tree

Nl Offset of node N

Nr Spatial region of node N

f Fanout of AP-Tree node

θp Partition termination threshold

θK L KL-Divergence threshold

A spatial-keyword subscription s is defined as s = (ψ, r),
where s.ψ is a set of distinct user-specified keywords and s.r
is a rectangle. Note that as we employ a recursive decompo-
sition policy for space, other spatial regions such as polygon
or circle can also be easily supported in our indexing struc-
ture [36]. A spatial-keyword subscription is a continuous
long-running query, and is valid until it is unregistered by
its subscriber.

We say an incoming spatial-textual message matches (or
satisfies) a spatial-keyword subscription if it satisfies both
spatial and keyword constraints of the subscription. Follow-
ing is a formal definition.

Definition 1 (Matching) A spatial-textual message matches
a spatial-keyword subscription if and only if the following
two conditions are satisfied: (1)m.ψ ⊇ s.ψ , and (2)m.loc ∈
s.r .

We also say a spatial-keyword subscriptionmatches a spatial-
textual message without ambiguity. Table 1 summarizes the
mathematical notations used throughout this paper.
Problem statement We tackle the problem of matching
stationary spatial-keyword subscriptions against streaming
spatial-textual messages. Specifically, given a set S of sub-
scriptions, for each incoming message m from streaming
spatial-textual data M, we aim to rapidly deliver m to all
the matching subscriptions.

Example 2 Figure 3depicts a running example used through-
out this paper. In this example, there are 9 registered
subscriptions {s1, . . . , s9} and two recent incoming mes-
sages {m1,m2}. Specifically, m1 falls in the search ranges
of {s1, s2, s4, s7}, and its keywords only fully contain all the
keywords of s7. Thus, m1 is delivered to {s7}. With similar
rationale, m2 matches subscriptions {s1, s4}.

Fig. 3 Running example

In the paper hereafter, we abbreviate the spatial-textual
message and the spatial-keyword subscription as message
and subscription, respectively, if there is no ambiguity.
We assume there is a total order for keywords in V , and
the keywords in each subscription and message are sorted
accordingly. For presentation simplicity,we assumewi < w j

if i < j .
In the following, we introduce the details of two state-

of-the-art methods, i.e., IQ-Tree and Rt -Tree, which can
support spatial-keyword subscriptions, and discuss some
related techniques for our indexing design.
Previous state-of-the-arts In IQ-Tree [6], subscriptions are
organized by aQuadtreewhere each subscription is attached
to one or multiple Quadtree cells according to a cost model
which aims to balance matching and update costs. For each
cell, the related subscriptions are organized by a ranked-key
Inverted List [46], and a subscription is assigned to the
posting list of its least frequent keyword. Figure 4a shows
an example of IQ-Tree where 9 subscriptions in Fig. 3 are
organized. In particular, subscription s7 in cell 9 is in the post-
ing list of w4 since w4 is the least frequent keyword among
s7.ψ = {w3, w4}. The matching algorithm of IQ-Tree fol-
lows the filtering-and-refinement paradigm. For instance,
regarding the incoming message m1 in Fig. 3, unpromising
subscriptions are first pruned based on their search ranges,
i.e., only subscriptions which reside on the cells penetrated
by m1 (gray cells) survive the spatial filtering. Then key-
word filtering is applied, and only the subscriptions on the
posting lists of the message keywords are retrieved, which
correspond to {s1, s2, s7}. Finally, candidate subscriptions are
verified based on their search ranges and keywords, andmes-
sage m1 is delivered to subscription {s7}. The total number
of subscriptions verified in this example is 3.

Regarding Rt -Tree [28], subscriptions are indexed by an
R-Tree based on their search ranges. Each R-Tree node
also records the keywords of its descendant subscriptions,
namely token filter, for textual filtering purpose. Two vari-
ants of Rt -Tree, namely Rt+-Tree and Rt++-Tree, further
improve the performance by carefully choosing one and
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(a) (b) (c)

Fig. 4 Example of IQ-Tree, Rt -Tree and ordered keyword trie. a IQ-Tree. b Rt -Tree. c ordered keyword trie

multiple representative tokens (keywords), respectively. Fig-
ure 4b demonstrates an example of Rt -Tree. At each node,
it employs both spatial and keyword filtering techniques
to prune unpromising subscriptions. For example, to match
messagem1 in Fig. 3,we need to access all the gray nodes and
verify {s1, s8, s6, s2, s7} in the leaf nodes according to spa-
tial and keyword constraints. Note that R6 is pruned because
its token set, i.e., {w1, w5, w6}, has no overlap with key-
words inm1, i.e., {w2, w3, w4}, while R4 is pruned by spatial
constraint. The total number of subscriptions verified in this
example is 5.
Superset containment search The problem of superset con-
tainment search has been extensively studied in literatures,
and many efficient techniques are proposed (e.g., [22,25,
39]). Specifically, given a set of subscriptions and a mes-
sage, each of which consisting of a set of keywords, we aim
to find all the subscriptions whose keywords are fully con-
tained by the message. Clearly, the nature of our problem is
a superset containment search if the spatial dimension is not
considered.

Toefficiently support superset containment search, Zeinab
et al. [22] recently propose an ordered keyword trie structure
where each node corresponds to a keyword assuming that
there is a global order for all keywords. Each subscription
is indexed based on its ordered keywords (i.e., “prefixes”).
Figure 4c depicts the ordered keyword trie structure for sub-
scriptions in Fig. 3 where each subscription can be accessed
through a unique path following its ordered keywords. For
instance, s1 with keywords {w1,w2} can be visited through
the path as indicated by the dotted polygon. Given message
m1 with m1.ψ = {w2, w3, w4}, we only need to visit gray
nodes in Fig. 4c and come upwith final matches {s3, s7}w.r.t.
keywords only.

In this paper, we integrate a variant of the ordered key-
word trie structure in AP-Tree to efficiently support textual
filtering.

3.2 AP-Tree framework

In this section, we present a novel adaptive spatial-textual
indexing mechanism to organize subscriptions, namely AP-
Tree (Adaptive Partition Tree). Section 3.2.1 introduces the
motivation of AP-Tree. Section 3.2.2 describes the AP-

Tree structure, followed by a detailed matching algorithm
in Sect. 3.2.3.

3.2.1 Motivation

Due to the massive number of subscriptions, it is imperative
to devise efficient indexing technique such that a large num-
ber of unpromising subscriptions can be filtered at a cheap
cost. We show that a good indexing mechanism over spatial-
keyword subscriptions should satisfy following three criteria.
(1) Adaptiveness Intuitively, with respect to different key-
word and location distributions of the subscription workload,
both spatial feature and textual feature may become the dom-
inant factor. This observation is illustrated in Fig. 2 and
substantiated by our empirical study. As shown in Sect. 3.1,
tree structure of IQ-Tree [6] and Rt -Tree [28] is only deter-
mined by the spatial feature. Although the keyword filtering
component (e.g., local Inverted List) is augmented to tree
nodes, their overall performance is unavoidably deteriorated.
On the other hand, our experiments show that keyword-
prioritized indexing approach (e.g., RQ-Tree 4) also suffers
from the same problem. For example, our index is up to
one order of magnitude faster than RQ-Tree in the experi-
ments. This motivates us to devise a novel textual and spatial
partition-based f -ary tree structure so that the subscriptions
are indexed in an adaptive way w.r.t. the subscription work-
load. Moreover, the index should be self-adjustable to the
change of subscription workload. In particular, two types
of partition strategies, namely keyword partition and spa-
tial partition, are proposed to recursively partition a set of
subscriptions by textual feature and spatial feature, respec-
tively. A node partitioned by keyword (resp. spatial) feature
is called k-node (resp. s-node) in our indexing structure. A
cost model (Sect. 3.3.1) is developed to decide which parti-
tion approach is employed at each node.
(2) Efficient keyword filtering From textual perspective,
our problem is essentially a superset containment search;
that is, finding subscriptions whose keywords are fully con-
tained by a given message. Among existing techniques
(e.g., [22,25,39]), ordered keyword trie [22] demonstrates

4 RQ-Tree is a keyword-prioritized indexing structure derived from
IQ-Tree and compared in our experiments.
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(a) (b) (c)

Fig. 5 Examples of keyword partition, spatial partition and AP-Tree. a Keyword partition, b spatial partition, c AP-Tree

its superior performance because it takes great advantage
of common prefixes of the ordered subscription keywords.
Moreover, it is a hierarchical tree structure. This motivates
us to integrate the ordered keyword trie for keyword filtering
purpose. To accommodate the f -ary tree structure of AP-
Tree, we partition related keywords on the tree node into f
parts based on our cost model, instead of keeping each indi-
vidual keyword.5 Optimal and heuristic keyword partition
methods are proposed in Sect. 3.3.2.
(3) Efficient spatial filtering Regarding the spatial filtering,
our problem corresponds to the point stabbing search [12]
in two-dimensional space; that is, identifying subscription
rectangles which are stabbed by the geo-location of the
incoming message. The best-known data structure for the
point stabbing problem is the segment tree [3] which can
retrieve all k related rectangles with search time O(log n+k)
where n is the number of subscriptions. However, segment
tree is not well suited to large-scale data because of the
space usage of O(n log n) on two-dimensional data. Space-
oriented (e.g.,Quadtree) and object-oriented (e.g.,R-Tree)
partition strategies are adopted in [6] and [28], respectively,
due to their good support of point stabbing search and scal-
ability. As stressed in [6], space-oriented partition strategy
is more suitable to spatial filtering because of its disjoint
space decomposition policy and good support of subscrip-
tion ranges with different sizes. Specifically, space-oriented
partition strategy can divide the subscription range into finer
granularities, while object-oriented partition strategy has to
maintain a single region for each subscription. Motivated
by this, we adopt space-oriented partition approach for spa-
tial partition. In particular, the region of each s-node in our
indexing structure is partitioned into f grid cells guided by
the cost model. As it is an NP-hard problem to find optimal
spatial partition, an efficient heuristic algorithm is designed
in Sect. 3.3.3.

5 Note that there are about 1.7 million distinct keywords in the tweet
dataset.

3.2.2 AP-Tree structure

Based on the above motivations, we devise an adaptive
spatial-textual partition tree (i.e., AP-Tree) which employs
keyword partition and spatial partition methods to recur-
sively divide subscriptions in a top-down manner. In this
paper, N denotes an AP-Tree node and there are three types
of nodes: keyword node (k-node), spatial node (s-node)
and leaf node (l-node). An intermediate node is a k-node
(resp. s-node) if keyword partition (resp. spatial partition)
is adopted. We use f to denote the fanout of the intermediate
node. Each subscription will be assigned to one or multi-
ple l-nodes according to its subscription range and ordered
keywords. The subscriptions in each l-node are organized as
a map structure, namely s-list, to support efficient insertion
and deletion.6 Below, we introduce k-node and s-node in
detail.
K-Node We assume there is a total order among keywords
in the vocabulary V , and keywords in each message and sub-
scription are sorted accordingly. Subscriptions assigned to
a node N are partitioned into f ordered cuts according to
their Nl th keywords, where Nl is called the partition offset
of the node N . We have Nl < N∗

l if N∗ is a descendant
k-node of N . An ordered cut is an interval of the ordered
keywords, denoted as c[wi , w j ], wherewi andw j (wi ≤ w j )
are boundary keywords. For presentation simplicity, we use
c[wi ] to denote c[wi , wi ] if there is only one keyword in the
cut.

Example 3 Figure 5a shows a special case of AP-Tree in
which only keyword partition is employed on the running
example. We use an oval to represent a k-node and the
number on its right side indicates the partition offset. Mean-
while, a l-node is denoted by a circle, in which a list of
subscriptions is stored (i.e., s-list). Assume there are at most
3 ordered cuts on each k-node. In k1-node with partition
offset 1, we collect the first keywords of 9 subscriptions

6 We should not be confused with the same “s” in s-list and s-node.
s-list refers to subscription list, while s-node refers to spatial node.
There is no relationship between them.
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which correspond to {w1, w2, w3, w4, w5}. These keywords
can be divided into 3 cuts: c[w1], c[w2, w3] and c[w4, w5].
Subscriptions {s1, s2, s4, s5} are assigned to c[w1]whose cor-
responding node is k2-node. Since the partition offset of
k2-node is 2, the second keywords of these subscriptions,
i.e., {w2, w3, w5}, are used to assign subscriptions into three
cuts: c[w2], c[w3] and c[w5], each of which is associated
with a l-node.

S-Node The space is recursively partitioned by s-nodes. Let
Nr denote the region of a s-node N , which will be divided
into f grid cells. A subscription on a s-node N is pushed to
a grid cell c if s.r overlaps or contains c. Note that, unlike
the k-node in which a subscription is assigned to a unique
cut, a s-node may assign a subscription to multiple cells.

Example 4 Figure 5b depicts another special case of AP-
Tree in which only spatial partition is employed on the
running example.7 Here, we use a rectangle to represent a s-
node. In each s-node, the spatial region is partitioned into
4 cells. To match a message, we simply navigate through
the s-nodes which contain the message location, until we
reach the l-node. We remark that the cells in a s-node may
not be of equal area (i.e., the s-node may not be uniformly
partitioned).

For each k-node N , a subscription s assigned to N cannot
find a cut if there is no enough subscription keywords, i.e.,
|s.ψ | < Nl . We use a dummy cut to keep these subscrip-
tions. Similarly, each s-node N has a dummy cell for the
subscriptions which contain the region of N (i.e., Nr ⊆ s.r )
and hence do not need to be further partitioned on node N .
Note that subscriptions on the dummy cut (resp. cell) may be
further partitioned by s-node (resp. k-node) only, or simply
maintained by a l-node. For instance, the node indicated by
dotted circle in Fig. 5b is actually a dummy node, because
the query range of s4 fully contains the region of s3-node.

Example 5 Figure 5c illustrates an example of AP-Tree con-
structed over the running example, where both keyword and
spatial partitions are employed. Subscriptions are recursively
partitioned by k-node or s-node and finally assigned to l-
node.

3.2.3 Incoming message matching

In this section, we present efficient algorithm for incoming
message matching. Following the filtering-and-verification
paradigm, we navigate through AP-Tree to prune non-
promising subscriptions by utilizing spatial or keyword
filtering techniques and then verify the candidate subscrip-
tions on l-nodes accessed.

7 For sake of clarity, we remind that the subscript in each s-node (e.g.,
s1-node) in the figure has nothing to do with subscription s (e.g., s1).

Algorithm 1 depicts the procedure to retrieve all the
matching subscriptions for a given message m. It is a recur-
sive procedure invoked by each accessed intermediate node
with a depth-first search strategy. In particular, we simply
verify the associated subscriptions if a l-node is accessed,
and matching subscriptions are kept in R (Line 2). Regard-
ing s-node (Lines 12–15), we only need to access the cell c
stabbed by m (i.e., m.loc ∈ cr ) as well as the dummy cell.
Recall that the dummy cell of a s-node keeps subscriptions
covering the region of the node, and may be further parti-
tioned by k-node only. As to the k-node (Lines 5–10), let
w1,w2, . . .,w|m.ψ | denote all the message keywords inm.ψ .
For each k-node N accessed, we use η to denote the start
matching position regarding the message keywords. Line 6
identifies the corresponding cut for each message keyword
w j (η ≤ j ≤ |m.ψ |). For each cut hit by at least one mes-
sage keyword, we further explore its corresponding node at
Line 8 where η is set to i + 1 and wi denotes the small-
est keyword which hits the cut. Similar to s-node, dummy
cut will be explored (Line 10) since all subscriptions on the
dummy cut survive the keyword filtering according to its
definition. For each incoming message m, we retrieve all
the matching subscriptions by calling the function Incom-
ingMessageMatching(m, 1, root), where root is the root
node of AP-Tree.

Example 6 Suppose 9 subscriptions in the running example
(Fig. 3) are organized byAP-Tree as shown in Fig. 5c. For the
incoming message m1, we first access k1-node with η = 1.
According to Lines 5–10, the cut c[w2, w3] on k1-node is
hit by both the first and second keyword w2 and w3 in m1.
Therefore, s1-node will be explored with η = 1 + 1 = 2.
Similarly, s2-node is accessed with η = 3+ 1 = 4. Regard-
ing s1-node, we identify the grid cell stabbed by m1.loc
(shaded cell on s1-node) and reach the corresponding l-
node, which contains {s7}. We verify s7 and put it into R
because it satisfies both keyword and spatial constraints. The
same procedure is applied to s2-node. Since there is no l-
node on the cell stabbed by m1 (shaded cell on s2-node),
none of the child l-nodes of s2-node will be accessed.
Finally, we haveR = {s7}. In this example, the total number
of subscriptions verified is only 1.

Time complexity The dominant cost of Algorithm 1 is the
AP-Tree traverse cost and verification cost. The traverse
costs are O(|m.ψ | × log( f )) and O(log( f )) for each k-
node and s-node, respectively. The verification cost of a
subscription s is O(|m.ψ | + |s.ψ |) in the worst case, while
the number of verifications heavily depends on the filtering
capability of AP-Tree.
Algorithm correctness Since each subscription will be val-
idated at Line 2, it is immediate that all subscriptions in R
are valid. As a subscription may be assigned to disjoint grid
cells at each s-node and the union of these cells contains the
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Algorithm 1: IncomingMessageMatching(m, η, N )
Input : m : incoming message

η : the start matching position w.r.t. m.ψ

N : node accessed currently
Output : R : set of all the matching subscriptions
if N is a l-node then1

Verify subscriptions stored in s-list and insert the matching2
ones to R;
return3

if N is a k-node then4
for η ≤ i ≤ |m.ψ | do5

Find the corresponding cut based on wi in m.ψ ;6
if cut has not been visited then7

IncomingMessageMatching(m, i + 1, cut);8

if dummy_cut exists then9
IncomingMessageMatching(m, η, dummy_cut);10

else11
Find the cell which covers m.loc using grid;12
IncomingMessageMatching(m, η, cell);13
if dummy_cell exists then14

IncomingMessageMatching(m, η, dummy_cell);15

subscription range, each matching subscription s must be
assigned to a l-node whose ancestor s-nodes are stabbed
by the message location. Let B1, B2, . . . , Bj denote the cuts
or cells along the path from root of AP-Tree to this l-node.
It is immediate that cell B1 will be visited if the root is a
s-node. Similarly, the cut B1 will be visited if the root is a
k-node since there must exist one message keyword which
is equal to the first subscription keyword of s. It is easy to
see that Bi will be visited sequentially for 1 < i ≤ j , and
the correctness of Algorithm 1 follows.

3.3 AP-Tree construction and maintenance

We first propose a cost model in Sect. 3.3.1 to quantitatively
analyze the goodness of keyword and spatial partitions. Then
efficient keyword and spatial partition approaches are devised
to minimize the matching cost in Sects. 3.3.2 and 3.3.3,
respectively. Section 3.3.4 presents the AP-Tree construc-
tion algorithm which adaptively selects keyword and spatial
partition methods to construct AP-Tree in a top-down man-
ner. Section 3.3.5 develops dynamic maintenance approach
which makes AP-Tree self-adjustable to the change of sub-
scription workload.

3.3.1 Cost model

Given a set S of subscriptions, AP-Tree is constructed in a
top-down manner. Thus, we need to evaluate the goodness
of a keyword or spatial partition such that the AP-Tree is
adaptive to subscription workload. In this section, we pro-
pose a cost model to quantitatively measure the matching

cost for two partition methods. Given a node N and a set S
of subscriptions assigned to N , without further partition the
matching cost contributed by N is |S|, assuming the average
subscription verification cost is a unit time. Clearly, we can
partition |S| subscriptions into a set P of f cuts or cells by
keyword partition or spatial partition to reduce the matching
cost.

Let B denote a cut or cell of the partition, we use w(B)

to record its weight which is the number of subscriptions
associated with B. By p(B), we mean the hit probability of
B, i.e., the probability that B is explored during the message
matching. The expected matching cost regarding partitionP ,
denoted by C(P), is:

C(P) =
f∑

i=1

w(Bi ) · p(Bi ) (1)

Given a partition P and a set of subscriptions S on the node,
the calculation of w(B) is immediate for each B. We may
derive the hit probability p(B) based on some distribution
assumptions or message workload. For analysis simplicity,
we assume that p(B) = ∑

w∈B p(w) for k-node, where
p(w) is the hit probability of the keyword w. In case a set M
of the messages is available, it is trivial to derive hit prob-
ability of each individual keyword. Otherwise, we assume
the subscription keyword with high frequency among S has
better chance to appear in message keywords; that is, we
use subscription workload to simulate message workload.
Specifically, we set p(w) = f req(w)∑

w∈P f req(w)
where f req(w)

is the frequency of keyword w among all subscriptions in
S. Regarding spatial partition, we may simply assume the
uniform distribution of the message location, and hence
p(B) = Area(B)

Area(N )
where Area(B) is the area of the cell B

and Area(N ) is the area of the node N . The hit probability
calculation of each cell is immediatewhenmessageworkload
is available.

3.3.2 Keyword partition

Without loss of generality, we assume the lth keywords of the
subscriptions in S correspond to a set of ordered keywords
V = {w1, w2, . . . , w|V |}. On each k-node, subscriptions are
partitioned into f ordered cuts based on their lth keywords,
and we aim to find an optimal keyword partition, denoted by
P∗
k , such that thematching cost isminimized.Wefirst present

a dynamic programming approach to achieve the optimal
partition, followed by a simple optimal solution for a special
case. Then we develop an efficient heuristic approach.
(1) Optimal partition
Dynamic programming algorithmByPk(i, j, c), wemean
a keyword partition regarding keywords between wi and w j

(both inclusive) with c cuts. The optimal partition is denoted
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by P∗
k (i, j, c). Since keywords are ordered, we can come up

with P∗
k (i, j, c) by exhausting all possible locations of the

first cut as follows.

C(P∗
k (i, j, c)) = min

i≤n≤ j−c+1
(C(P∗

k (i, n, 1))

+C(P∗
k (n + 1, j, c − 1))) (2)

LetP∗
k (i, n, 1) represent the optimal partition which consists

of one cut c[wi , wn], we have

C
(P∗

k (i, n, 1)
) =

⎛

⎝
n∑

j=i

w(w j )

⎞

⎠ ·
⎛

⎝
n∑

j=i

p(w j )

⎞

⎠ (3)

wherew(w j ) denotes the number of subscriptions whose lth
keyword equals w j .

Algorithm 2 illustrates our dynamic programmingmethod
for optimal keyword partition. In particular, Lines 1–2 com-
pute the cost for eachpartitionwith single cut. ThenLines 3–5
iteratively compute the optimal partitions with c cuts (2 ≤
c ≤ f −1). Finally, the optimal keyword partition P∗

k corre-
sponds toP∗

k (1, |V |, f ). The time complexity ofAlgorithm2
is O( f · |V |2).

Algorithm 2: OptimalKeywordPartition(V , f )
Input : V : keyword set to be partitioned

f : number of cuts
Output : P∗

k : optimal keyword partition
for 1 ≤ i ≤ j ≤ |V | do1

Compute C
(P∗

k (i, j, 1)
)
based on Equation 3 ;2

for 2 ≤ c ≤ f − 1 do3
for 1 ≤ i ≤ |V | + 1 − c do4

Compute C
(P∗

k (i, |V |, c)) based on Equation 2 ;5

Compute C
(P∗

k (1, |V |, f )
)
based on Equation 2 ;6

return P∗
k (1, |V |, f )7

Optimal solution for special case We say the subscription
workload and message workload have similar distribution if
and only if p(wi )

w(wi )
= λ for any 1 ≤ i ≤ |V |. In this special

case, we come up with a simple optimal solution with time
O(|V |) if each cut has the sameweight. In particular, the cost
model in Eq. 1 now turns to

C(P) = λ

f∑

i=1

w(Bi )
2 (4)

According to Cauchy–Schwarz inequality, we have (
∑ f

i=1

w(Bi )2)(
∑ f

i=1 1
2) ≥ (

∑ f
i=1 w(Bi ) · 1)2. Therefore, C(P)

can achieve the optimal solution if w(Bi ) = w(Bj ) for
1 ≤ i, j ≤ f . Note that as discussed in Sect. 3.3.1, we use
subscription workload to simulate message workload when

messageworkload is unavailable, andhence twodistributions
are similar.

Algorithm 3: HeuristicKeywordPartition(V , f )
Input : V : keyword set to be partitioned

f : number of cuts
Output : Pk : keyword partition
Find a partition Pk which evenly partitions V by weight;1
for 2 ≤ i ≤ f do2

for each keyword w between l(ci−1) and r(ci ) do3
Compute C(Pk) suppose ci−1 and ci are separated by w;4
Update ci−1 and ci in Pk using w if a lower C(Pk) is5
achieved;

return Pk6

(2) Heuristic partition
Following the local improvement heuristic [38], we develop
an efficient greedypartition algorithm,where details are illus-
trated inAlgorithm3. Line 1first partitionsV into f cutswith
similar weights. Then Lines 2–5 iteratively improve keyword
partition method by exhaustive search in a local area. In par-
ticular, let ci denote the i th ordered cut, while l(ci ) and r(ci )
represent its left and right boundary keywords, respectively.
For each cut ci (1 < i ≤ f ), we attempt to reduce the local
cost (i.e., the cost of ci−1 and ci ) by exhausting all possible
boundary (separate) keywords regarding two adjacent cuts
ci−1 and ci . The time cost of Algorithm 3 is O( f · |V |) in
the worst case.

3.3.3 Spatial partition

Without loss of generality, we assume f = x × y and Ps

represents a spatial partition of the node N which divides
the region into x × y grid cells. We first show that it is an
NP-hard problem to find optimal spatial partition. Then we
resort to local improvement heuristic algorithm.

Theorem 1 The problem of finding optimal spatial partition
is NP-hard.

Proof Our proof relies on the problem of generalized block
distribution (GBD) [18] with K = 1, which is NP-complete.
GBD Instance Given a g × g matrix A, and each element is
an integer; A partition which dividesA into x× y contiguous
blockswhereBi, j denotes the i j th block;A functionφ, where
φ(Bi, j ) reports the number of nonzero elements in blockBi, j .
Question Is there a partition on A such that

max
1≤i≤x,1≤ j≤y

φ(Bi, j ) ≤ 1 (5)

Figure 6a shows an example of GBD problem where each
block contains at most one nonzero element under the given
partition (g = 4, x = y = 3). Given an instance of GBD, we
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(a) (b)

Fig. 6 Example of NP-complete. a Example of GBD problem. b
Example of our problem

reduce it to a special case of decision version of our spatial
partition problem as follows. Suppose there are g × g unit
cells in the region of node N , as shown in Fig. 6b, we put a
subscriptionwith extremely small range (thus being regarded
as a point) at the center of an unit cell if the corresponding
element inA is nonzero. A spatial partition of node N divides
the space into x × y grid cells. w(Bi, j ) (1 ≤ i ≤ x , 1 ≤
j ≤ y) is the number of subscriptions in the cell Bi, j and

p(Bi, j ) = w(Bi, j )
|S| where |S| is the number of subscriptions

generated. A special case of decision version of our problem
is that whether there is a spatial partition Ps on the node N
such that

C(Ps) =
x∑

i=1

y∑

j=1

w(Bi, j ) · p(Bi, j ) ≤ 1 (6)

Since p(Bi, j ) = w(Bi, j )
|S| , we have C(Ps) = 1

|S|
∑x

i=1∑y
j=1w(Bi, j )2. Given the fact that

∑x
i=1

∑y
j=1w(Bi, j ) =

|S|, a partition Ps with C(Ps) ≤ 1 implies that w(Bi, j ) ≤ 1
for any cell Bi, j , i.e., there is at most one subscription in each
cell. Note that if there exists one delimiter line of the spatial
partition which lies across unit cells, we can simply shift it
to its nearest boundary line without changing the partition
cost. Thus, as illustrated in Fig. 6, Ps immediately leads to a
solution of GBD problemwhere there is at most one nonzero
element in each block, and vice versa. Thus, our problem is
NP-hard.

Due to the NP-hardness of the problem, we resort to a
local improvement heuristic algorithm in which the space
is partitioned along each dimension independently. We first
partition the space into x cells along the first dimension such
that the centers of the subscriptions are evenly distributed.
With similar rationale to Algorithm 3, we iteratively improve
the partition cost. Since the possible number of boundary
points along each dimension is bounded by 2 · |S|, the time
complexity is O(x · |S|) in the worst case. Similarly, the
space is partitioned into y cells along another dimension. In

this way, we divide the region of N into f grid cells with
time complexity O(

√
f · |S|).

3.3.4 Index construction

Algorithm4presents the procedure of AP-Tree construction,
which recursively divides subscriptions throughkeyword and
spatial partitions. Given a set S of subscriptions passed from
parent node, the current node N maybe set to l-node, k-node
or s-node. Specifically, two flags, kP and sP , are used to
indicate if subscriptions in S can be further partitioned by
keyword and space, respectively. Line 2 keeps all subscrip-
tions in the s-list of a l-node if the number of subscriptions
does not exceed a given threshold θp (i.e., |S| < θp) or
subscriptions cannot be split further by keyword or spatial
partitions (i.e., kP is f alse and sP is f alse). If keyword par-
tition is allowed (i.e., kP is true), Line 6 explores keyword
partition with offset l, and the cost is recorded by Ck . Recall
that offset l indicates that the lth keywords from subscriptions
in S are employed for keyword partition.ByCs , we record the
cost of spatial partition at Line 8 if sP is true. Then we can
decide the current node N to be constructed from keyword
partition (Line 10) or spatial partition (Line 18) based on Ck

and Cs . The subscriptions in S are pushed to related child
nodes (i.e., cuts and cells) for further processing (Line 16
and Line 24), in which the partition offset is increased by
one if keyword partition is adopted.

In addition to regular cuts (cells),we alsomaintain dummy
cut (cell) for k-node (s-node). In particular, we maintain a
dummy cut for a k-node such that subscriptions whose key-
words have been exhausted (i.e., |s.ψ | < l) are pushed to the
dummy cut with kP set to f alse (Lines 11–13). Similarly,
Lines 19–21 push all subscriptions with ranges containing
the node N to the dummy cell for further potential key-
word partition, where the flag sP is set to f alse. Finally,
the AP-Tree can be constructed by the function IndexCon-
struction(root,S, 1, true, true).

3.3.5 Index maintenance

In practice, we may need to dynamically maintain AP-Tree
due to registration of new subscriptions and unregistration
of existing subscriptions. A simple strategy is that we put
a new subscription into its corresponding l-node based on
its ordered keywords and search range, and a l-node is
partitioned when its number of subscriptions exceeds the
threshold θp. Similarly, we remove a subscription from its
corresponding l-node if it is unregistered and a k-node or
s-node degrades to a l-node if the number of its descendant
subscriptions is less than θp. This approach is efficient and
works well if the underlying subscription workload remains
stable. On the downside, the partitions of the existing nodes
cannot be adjusted to the change of subscription workload,
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Algorithm 4: IndexConstruction(N , S, l, kP , sP)
Input : N : current node, S : a set of subscriptions

l : keyword partition offset to be used in N
kP and sP : flags for keyword and spatial partitions

Output : AP-Tree
if (kP is f alse and sP is f alse) or |S| < θp then1

Construct N as a l-node, and add S to the s-list ;2
return3

Ck := +∞; Cs := +∞;4
if kP is true then /* Try keyword partition */5

Ck ← keyword partition on S with offset l;6

if sP is true then /* Try spatial partition */7
Cs ← spatial partition on S;8

if keyword partition is chosen (i.e., Ck < Cs ) then9
Construct N as a k-node with node offset Nl := l;10
S′ ← subscriptions {s} in S with |s.ψ | < l;11
B ′ ← dummy cut of N ;12
IndexConstruction( B ′, S′, l + 1, kP := f alse, sP);13
for each child node (i.e., cut) B of node N do14

SB ← subscriptions in S − S′ which hit the cut B;15
IndexConstruction(B, SB , l + 1, kP , sP);16

else17
Construct N as a s-node ;18
S′ ← subscriptions in S which contain Nr ;19
B ′ ← dummy cell of N ;20
IndexConstruction(B ′, S′, l, kP , sP := f alse);21
for each child node (i.e., cell) B of node N do22

SB ← subscriptions in S − S′ which overlap or contain B;23
IndexConstruction( B, SB , l, kP , sP);24

and hence the performance may be deteriorated. To alleviate
this issue, we adopt the well-known KL-Divergence [26] to
detect the changes of underlying subscription workload for
nodes with a particular amount of subscriptions. Specifically,
let wold(Bi ) denote the weight of the cut/cell Bi when the
node is constructed, while w(Bi ) is calculated for all cur-
rent subscriptions. Let DKL(wold |w) denote KL-Divergence
of the subscription workload, and an AP-Tree node will
be reconstructed if DKL(wold |w) exceeds a given threshold
θK L . We remark that calculation of KL-Divergence value is
almost cost free because they can be easily updated when the
node is visited during the subscription updates. Moreover,
only descendant subscriptions of the node are involved in the
reconstruction. In this way, our empirical study shows that
AP-Tree is self-adjustable to the workload changes with a
decent maintenance overhead.

3.4 Discussions

General boolean subscriptions In the above discussion, we
only consider ALL matching semantic, where all the key-
words of a subscription must be contained by a message. It
is desirable to support more general boolean expressions,
such as w1 ∧ (w2 ∨ w3) ∧ w4, which has more power-

ful expressiveness and is well studied in traditional Pub/
Sub systems (e.g., [35,41,48]). Our indexing structure can
be easily extended to support general boolean expressions.
Specifically, it is known that any boolean expression can be
rewritten into Disjunctive Normal Form (DNF) [15], which
is a disjunction of conjunctive clauses. Thus, we only con-
sider the processing of DNF in the following. For DNF
subscription, we can regard each conjunctive clause as a
sub-subscription and decompose the DNF subscription into
multiple sub-subscriptions, each with the same search range
as the original one. A message will be delivered to the orig-
inal subscription as long as any of its sub-subscriptions has
been matched.

4 Moving Publish/Subscribe

In this section, we extend our AP-Tree framework to sup-
port moving subscriptions efficiently. Section 4.1 proposes
preliminaries and the formal problem definition. The new
indexing structure is investigated in detail in Sect. 4.2. A
modified cost model and the issues related to index construc-
tion and maintenance are discussed in Sect. 4.3.

4.1 Preliminaries

In the section, we give some preliminaries and the formal
definition of moving subscription problem.

Following the previous work on moving query processing
[29,31,43], we employ a centralized framework, where the
entire processing cycle takes place on the server side, while
the client side can only send location update and receive
results due to the limitation of local computational capability.

In a moving Pub/Sub system, a subscriber can register
her interest as a moving spatial-keyword subscription, which
is defined as s = (ψ, r). The subscriber can report her loca-
tion update at each timestamp. A spatial-textual message
is defined as m = (ψ, loc, tc, te), where tc and te are the
creation and expiration time of m. Note that, for stationary
subscriptions, each message is executed as a one-time snap-
shotmatching,while formoving subscriptions, eachmessage
needs to be indexed for continuous re-evaluation.
Problem statement We consider a large number of moving
spatial-keyword subscriptions S registered by subscribers
and a stream of incoming messages M, each having a life
cycle. The subscribers can move randomly at any time, while
the messages are coming in a stream fashion and will be
expired after their life cycles. The moving Pub/Sub sup-
ports the following two operations.

– Incoming message matching For each new incoming
message, it is delivered to all the relevant subscribers
registered in the system instantly. This function is essen-
tially the same as the problem defined in Sect. 3.1.
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– Moving subscription processing For each moving sub-
scriber, all the relevant active messages are reported
to her continuously; that is, when subscriber issues a
location update to the server, the server re-evaluates the
relevant messages for the subscriber in real time.

To support the above two operations, we extend the
original AP-Tree structure into a new structure, namely
AP+-Tree, by making some modifications to the original
cost model. Also, to support moving subscription process-
ing, we attach the active messages into AP+-Tree directly,
without the burden to build a new indexing structure. Other
operations such as subscription insertion and deletion, mes-
sage insertion and deletion can also be supported efficiently.

For the ease of explanation, we call the indexes for
subscriptions and messages as SubIndex and MsgIndex,
respectively, in the following of the paper.

4.2 AP+-Tree framework

In this section, we first introduce the motivations behind our
new indexing structure AP+-Tree (Sect. 4.2.1), followed
by an overview of the indexing structure (Sect. 4.2.2) and
the moving Pub/Sub (Sect. 4.2.3). The details of Incoming
Message Matching (Sect. 4.2.4) and Moving Subscription
Processing (Sect. 4.2.5) are investigated, respectively at last.

4.2.1 Motivation

Motivation 1 We need to modify the previous cost model to
accommodate the movement of subscriptions. The main dif-
ference of moving subscriptions compared to stationary ones
is that a moving subscriber has to update her location contin-
uously, and thus the reconstruction of the indexing structure
may be triggered due to the adjustment of underlying spa-
tial distribution. Therefore, it is very intuitive to modify the
previous cost model such that the differences incurred by the
movement of subscriptions can be considered. To achieve
this, we add some extra costs to s-node as a penalty; we
do not touch k-node because only s-node may be influ-
enced by moving subscribers. This penalty should reflect the
motion patterns of subscriptions. For example, if there are
too many moving subscribers or the subscribers in a region
issue location update very frequently, the penalty should be
large. In this way, our indexing structure can automatically
adjust itself to give less priority to the s-node which may
trigger large moving penalty, thus being adaptive to not only
the keyword and spatial distributions of subscriptions but also
the movement of subscriptions.
Motivation 2 Both subscriptions and messages should be
indexed efficiently for real-time response. Given the massive
volume of subscriptions and messages, it is critical to design
efficient indexing approaches to support real-time process-

ing. An immediate solution is to organize subscriptions and
messages separately. For example, we can organize sub-
scriptions using AP-Tree structure and organize messages
using either keyword-prioritized or spatial-prioritized index-
ing structure. The main drawback of the naive solution is that
the organization of messages cannot take advantages of the
organization of subscriptions, i.e., our AP-Tree structure,
which has better filtering capability. On the other hand, we
observe that, when we match incoming messages, each mes-
sage has been distributed to its relevant subscriptions only,
thus leading to a partition for messages implicitly. Based
on this observation, we partition the messages following
the same structure as subscriptions, and store each message
only to the nodes where there exist relevant subscriptions.
In this way, we group relevant subscriptions and messages
together using a unified framework, avoiding the burden to
build another index formessages. Experimental results verify
the great efficiency and effectiveness of this strategy.

4.2.2 Index overview

Our AP+-Tree is essentially a natural extension of AP-Tree
structure. Specifically, there are twomain differences. Firstly,
wemodify the original costmodel to accommodate themove-
ment of subscribers, considering the penalty introduced by
moving subscriptions (Sect. 4.3.1). Secondly, as each mes-
sage has a life window, we introduce a new list type, namely
m-list, for each l-node to store the active messages which
have visited this l-node duringmessagematching procedure.
A m-list is essentially a list of messages which are relevant
to the subscriptions stored in the l-node. Figure 7 shows a
framework of AP+-Tree. As can be shown clearly, a l-node
stores both s-list and m-list for subscriptions and messages,
respectively.

4.2.3 System overview

In this section, we introduce the procedures to process mov-
ing spatial-keyword subscriptions. All the relevant messages
are delivered to corresponding subscribers in an incremen-
tal manner to avoid continuous re-evaluation. Following the

Fig. 7 Framework of AP+-Tree
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Algorithm 5: MovingPub/Sub
for each event tuple event coming within timestamp t do1

if event is from an incoming message m then2
R = IncomingMessageMatching(m, 1, root);3
for each subscription s in R do4

Deliver update (s,+m) to corresponding subscriber;5

InsertMessage(m);6

if event is from a moving subscriber s with new range7
rn then

MovingSubscriptionProcessing(s, s.r , rn);8

LazyMessagesDeletion;9

efficient incremental technique proposed in [29], we distin-
guish two types of updates: positive and negative. A positive
update in the form of (s,+m) indicates that the message m
should be added to the result list of subscription s, while
a negative update in the form of (s,−m) suggests that m
should be removed from the result list of s. Note that a posi-
tive update can cancel out previous negative update and vice
versa. We define an event as either the arrival of a new mes-
sage or the location update from a moving subscriber. The
details of the system procedures are shown in Algorithm 5.
For each event tuple arriving within current timestamp, if
it is from an incoming message, we simply call function
IncomingMessageMatching to retrieve all the subscrip-
tions matching this message, and deliver the result updates to
corresponding subscribers (Lines 3–5).We also need to insert
this message into AP+-Tree by calling function InsertMes-
sage. If the event tuple is from a moving subscriber, we
need to update the result list of this subscriber by calling
function MovingSubscriptionProcessing (Line 8). This
function works using incremental evaluation strategy, thus
only retrieving the new results (i.e., positive updates) and
deleting expired results (i.e., negative updates). Finally, we
employ a lazy deletion strategy for the expired messages.
Function LazyMessagesDeletion (Line 9), which will be
triggered onlywhen thememory is exhausted, or a predefined
time interval for scheduled deletion has reached, deletes all
the expired messages from AP+-Tree. Note that we do not
include the insertion of new subscriptions or expiration of
old subscriptions in Algorithm 5 for simplicity, because they
can be easilymodeled asmoving subscriptions. For example,
the insertion of a new subscription can be regarded as mov-
ing this subscription from a far-away position to a nearby
location. In the following sections, we introduce the above
functions in detail.

4.2.4 Incoming message matching

As our new indexAP+-Tree is a natural extension of original
AP-Tree structure withmodified cost model and supplemen-

tarym-list in each l-node, we can reuse the previousmessage
matching algorithm described in Algorithm 1 immediately.
As to the insertionofmessage (Line6 inAlgorithm5), instead
of inserting a new message into AP+-Tree after matching
procedure separately, we insert it as a by-product ofmatching
procedure, with little extra overhead. Specifically, for each
l-node encountered (Lines 1–3 in Algorithm 1), we add a
statement to insert the message into the corresponding m-
list in l-node (Between Line 2 and Line 3 in Algorithm 1).
This statement guarantees that a message will be stored in
all the l-nodes where there exist relevant subscriptions. The
correctness of this strategy will be proved in Sect. 4.2.5. We
remark that, in order to avoid assigning too many duplicates
ofmessages,we set a limit for themaximumnumber of dupli-
cates. A message will not be further pushed to lower levels
if this limit has been reached. The corresponding modifica-
tion for moving subscription processing is to check not only
the messages in l-nodes, but also the messages stored in the
ancestor nodes.

4.2.5 Moving subscription processing

In a moving Pub/Sub system, each moving subscriber may
report a location update to the centralized server in each
timestamp. The system should be able to handle the update
efficiently and re-evaluate the matching results in real time.
In this section, we focus on efficiently re-evaluating relevant
results in an incremental manner; that is, we only report pos-
itive/negative updates of previous results.

Algorithm 6 describes the details of moving subscription
processing. In order to facilitate the moving subscription
processing, for each subscription s, we keep track of a list,
nodelist (s), of l-nodes where the subscription is stored.
When a subscriber s issues a location update, MovingSub-
scriptionProcessing(s, s.r , rn) will be triggered, where s.r
is the old subscription range and rn is the new subscription
range. An example is shown in Fig. 8. In this example, we
assume a subscription s moves from top-left to bottom-right.
Each cell in this figure corresponds the region of a l-node,
and s is indexed in all the cells which have overlaps with it.
When a location update occurs, we process the l-node stored
in nodelist (s) one by one.8 For each l-node N (Line 4), we
distinguish four cases to avoid repeated computations.

– Case 1 The region of N is fully covered by both r and
rn (Lines 5–6). In this case, we do nothing to node N
because the results remain the same for both old r and
new rn . This corresponds to the two darkest cells in Fig. 8.

8 The l-nodes in current nodelist (s) are those covered by s.r , i.e., case
1, case 2 and case 3 in Fig. 8, while case 4 indicates the new l-nodes
which are only covered by rn .
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Algorithm 6: MovingSubscriptionProcessing
Input : s : the moving subscription

r : the old range of s
rn : the new range of s

Output : updlist (s) : a list of result updates for s
Initialize updlist (s) := ∅;1
Initialize r ′ := ∅;2
Initialize tmplist (s) := nodelist (s);3
for each l-node N in tmplist (s) do4

if (r ∩ Nr ) = (rn ∩ Nr ) then /* Case 1 */5
Continue;6

if (r ∩ Nr ) ∩ (rn ∩ Nr ) = ∅ then /* Case 2 */7
DeleteSubscription(s, r ∩ Nr , N );8
Continue;9

if (r ∩ Nr ) ∩ (rn ∩ Nr ) �= ∅ then /* Case 3 */10
DeleteSubscription(s, (r ∩ Nr ) − (rn ∩ Nr ), N );11
InsertSubscription(s, (rn ∩ Nr ) − (r ∩ Nr ), N );12
r ′ := r ′ ∪ ((rn ∩ Nr ) − (r ∩ Nr ));13
Continue;14

InsertSubscription(s, rn − r − r ′, root) /* Case 4 */;15
return updlist (s)16

– Case 2 The region of N is only covered (fully or par-
tially) by r while has no overlap with rn (Lines 7–9). In
this case, we simply call function DeleteSubscription
to delete s from N as well as issue negative updates for
the corresponding results. This corresponds to the cells
which are filled with horizontal lines in Fig. 8.

– Case 3 The region of N is covered (fully or partially) by
both r and nr , while fully covered by at most one region
(r or nr ) (Lines 10–14). In this case, we need to first
delete expired results and then insert new results. This
corresponds to the cells which are filled with slashes in
Fig. 8. Note that we can avoid the re-evaluation of the
intersection region of r and rn (e.g., the small rectangle
covered by the dotted circle).

– Case 4 The region of N is only covered (fully or par-
tially) by rn while has no overlap with r (Line 15). In
this case, we simply call function InsertSubscription
to insert s into N as well as issue positive updates for
the corresponding results. This corresponds to the cells
which are filled with cross lines in Fig. 8.

The function InsertSubscription is shown in Algo-
rithm 7. This algorithm is straightforward, and we omit the
detailed explanation.Thegeneral idea is to follow the existing
k-node or s-node until finally reaching l-node, where the
subscription s will be stored. In each encountered l-node,
we need to verify the subscription s against the messages
stored in m-list to issue positive updates for the matching
messages. We remark that the second parameter r ′ is only a
subset of s.r , indicating that we only want to insert “partial”
of s into the index. Thus, the verification step in Line 4 should
be based on r ′, rather than s.r . In order to insert the entire

Fig. 8 Example of moving subscription processing

Algorithm 7: InsertSubscription(s, r ′, N )
Input : s : the moving subscription

r ′ : the partial search range of s (r ′ ⊆ s.r )
N : current node in AP+-Tree

if N is a l-node && r ′ ∩ Nr �= ∅ then1
Insert s to the s-list of N ;2
for each message m in m-list of N do3

if m matches s then /* Matching here is4
conditioned on r ′ */

Add result update (s,+m) to updlist (s);5

Add N to nodelist (s);6
return7

if N is a k-node then /* k-node */8
Find the child node B which contains s;9
InsertSubscription(s, r ′, B) ;10

else /* s-node */11
for each child B which has overlap with r ′ do12

InsertSubscription(s, r ′, B);13

14

s into our index, we can simply call InsertSubscription(s,
s.r , root). We omit the dummy cuts or cells for simplicity.
As the algorithm of subscription deletion is very similar to
insertion, we also omit it.

The main advantages of our algorithm lie in two aspects.
Firstly, incremental update strategy is applied to ensure we
can avoid re-computing the regions where the results are
still valid. Secondly, as we store messages using AP-Tree
directly, the partition of messages can inherit the advantage
of the partition of subscriptions, thus reducing the verifica-
tion cost of relevant messages (Lines 3–5 of Algorithm 7).
Algorithm correctnessWeproveAlgorithm 6 is correct.We
first prove the incremental strategy is correct. This is obvious
as our four cases cover all the possible situations (which is
well illustrated in Fig. 8). We then prove that the results in
updlist (s) is correct. Since all the messages will be checked
at Line 4 in Algorithm 7, it is immediate that all the mes-
sages in updlist (s) are valid. According to the correctness
of Algorithm 1 and the message insertion strategy proposed
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in Sect. 4.2.4, it follows that all the l-nodes containing sub-
scriptions which are relevant to a message m will store m
in its m-list. Thus, for each subscription s, all the relevant
messages can be found from the m-list of l-nodes where s
are stored. Thus, the correctness of the algorithm follows.

4.3 AP+-Tree construction

In this section, we first propose the modified cost model to
build AP+-Tree (Sect. 4.3.1), and then discuss the index
construction and maintenance (Sect. 4.3.2).

4.3.1 Cost model for moving subscriptions

In this section, we discuss the adaptation of previous cost
model in Sect. 3.3.1 to support moving subscriptions.

The previous cost model only considers incoming mes-
sage matching cost (Cimm). As to the moving case, one
significant cost is location update cost of moving subscribers
(Cslu). Location update cost can be regarded as a deletion
followed by an insertion with new query range. Another
important cost is index reconstruction cost (Circ). When the
subscribersmove in space, the underlying spatial distribution
of subscriptions may change continuously, which might vio-
late the threshold θK L defined in Sect. 3.3.5 at some future
timestamp. Thus, the reconstruction mechanismmay be trig-
gered, which leads to large system overhead. In the following
sections, we will discuss the above three costs separately
and quantitatively. To achieve this, we estimate the total cost
occurred in one timestamp. We assume the moving pattern
(e.g., velocity, direction, location update frequency) of all
subscriptions remain unchanged during this timestamp. We
denote the set of subscriptions assigned to node N as S.
Incoming message matching cost The cost of incoming
message matching is almost the same as the cost defined
in Eq. 1, except that we are now considering a timestamp.
Thus, we need to estimate the number of incoming messages
during one timestamp. Assume the incoming ratio of mes-
sages in each timestamp is rm , and the verification cost of
matching one subscription against one message is unit cost,
the incoming message matching cost should be modified as:

Cimm(P) =
f∑

i=1

(w(Bi ) · p(Bi ) · rm) (7)

wherep(Bi )·rm is the number of incomingmessages probing
Bi within one timestamp. The value of rm can be easily esti-
mated from historical data. The time complexity to compute
Cimm is O(|S|).
Subscriber location update cost Subscriber location update
cost refers to the cost incurred by the movement of sub-
scribers. When a subscriber is moving, we need to continu-

Fig. 9 Example of subscriptions with different velocities. We move s1
to s2 and s3 with different velocities, respectively

ously update her new location. It is intuitive that the location
update cost incurred by a moving subscription s is the sum-
mation of the costs incurred on all the nodes which s resides
in. Thus, for node N , we only consider the cost incurred on
the intersection region between N and s, i.e., the region of
s1 in Fig. 9. We then regard each location update as a dele-
tion followed by an insertion, and assume the insertion cost
is the same as deletion cost. Thus, we can estimate the loca-
tion update cost for a subscription which moves totally out
of original node N (e.g., s3 in Fig. 9) as:

Cins = 2 · l path · log f (8)

where l path is the path length from root to N . log f is the
cost to locate the corresponding cut/cell in each node on the
path. Constant factor 2 indicates one deletion followed by
one insertion operation.

However, the cost will be much smaller if a subscription
simply moves inside the node (e.g., s2 in Fig. 9). In order to
reflect such difference, we add a weight ζs to each subscrip-
tion s to model the effect of velocity. Intuitively, the faster
s moves, the larger ζs will be. To compute ζs , we assume
a future time interval T ′ from now on.9 The moving veloc-
ity and direction of each subscription hold stable during T ′.
Our target is to estimate the number of Nr , denoted as ng′ ,
a subscription has passed during time interval T ′. Then ζs
is computed as the average number of Nr a subscription has
passed in one timestamp, i.e., ng′/T ′. To better understand
this idea, we duplicate the region of N in Fig. 9 to the infi-
nite space using dotted lines. By moving s from s1 to s3, two
Nr have been passed. Note that the selection of T ′ should
guarantee that each subscription in S can pass at least one
Nr during T ′; otherwise, its factor ζs would be 0. Typically,
the scale of T ′ does not affect ζs as long as T ′ is sufficiently
large, because ζs is averaged upon T ′. Finally, the cost of
subscriber location update can be estimated as:

9 T ′ here is essentially an amortized factor, such that the value of ζs
will not depend on the length of one timestamp.
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Cslu(P) = 1

Tupd
·
∑

s∈S

(
2 · min(1, ζs) · (

l path · log f
))

(9)

where min(1, ζs) is to guarantee ζs is not larger than 1,
because at most one deletion and insertion can occur in each
timestamp. Tupd is the average time interval for a subscrip-
tion to issue location update. It is intuitive from the formula
that subscribers with fast moving velocity (large ζs) and fre-
quent location update (small Tupd ) will trigger large update
cost. The time complexity of computing ζs for all subscrip-
tions is O(|S|). Thus, the total time complexity to compute
Cslu is still O(|S|).
Index reconstruction cost As the subscribers are moving in
node N continuously, the underlying spatial distribution of
node N maybevaried,whichmight trigger the reconstruction
operation defined in Sect. 3.3.5. The index reconstruction
cost can be modeled as follows:

Circ(P) = Circ(Tree(N ))

TΔ

(10)

where TΔ is the number of timestamps when the next recon-
struction might be triggered from now. Tree(N ) is the
sub-tree of node N and Circ(Tree(N )) is the cost of recon-
structing sub-tree of node N . In the following, we will
estimate these two values, respectively. We first estimate
Circ(Tree(N )). Given the following facts, i.e., the number
of subscriptions |S| in node N , the fanout f of AP-Tree, and
the partition termination threshold θp, it is easy to estimate
the height of Tree(N ) as:

h = log f

( |S|
θp

)
(11)

We ignore the effect of dummy node for simplicity.
For each s-node, the cost of reconstruction is

√
f · |S| +

|S| · log f , where
√

f · |S| is the cost to find best spatial parti-
tion P∗

s and |S| · log f is the cost to assign each subscription
to the corresponding cell. For each k-node, the cost of re-
construction is f · |V | + |S| · log f , where f · |V | is the cost
to find best keyword partition P∗

k and |S| · log f is the cost
to assign each subscription to the corresponding cut. Thus,
the cost of reconstructing Tree(N ) is

(
√

f · |S| + |S| · log f ) + f ·
(√

f · |S|
f

+ |S|
f

· log f

)
+

· · · + f h ·
(√

f · |S|
f h

+ |S|
f h

· log f

)

= |S| ·
(√

f + log f
)

· (h + 1)

if we only use s-node.
Similarly, the cost of reconstructing Tree(N ) is ( f · |V |+

|S| · log f ) · (h + 1) if we only use k-node.

Finally, the cost of reconstructing Tree(N ), if we use
both s-node and k-node, is the summation of the above two
costs10:

Circ(Tree(N ))=
(
|S| · log f +|S| · √

f + f · |V |
)

· (h+1)

(12)

Next, we estimate the value of TΔ. Based on the current
velocity and direction for each subscription, as well as the
assumption of uniform grid partition for s-node due to sim-
plicity, it is easy to estimate the accurate location of each sub-
scription at each timestamp ti ifwe assume current timestamp
is t0. Algorithm 8 gives an algorithm to estimate TΔ.

Algorithm 8: EstimateTimeIntervalForNextRe-
construction
Input : S : set of subscriptions in node N
Output : TΔ : number of timestamps for next reconstruction
TΔ := 0;1
Initialize the spatial distribution wold based on locations of2
subscriptions in S at timestamp t0;
for each next timestamp ti do3

TΔ := TΔ + 1;4
Update the spatial distribution w based on current5
subscription locations;
if DKL (wold |w) > θK L then6

return TΔ7

if TΔ > Tmax then8
return Tmax9

Algorithm 8works as follows. It first initializes the spatial
distribution wold of all the subscriptions in node N based on
the initial locations (Line 2). Then, for each next timestamp
ti (i ∈ {1, 2, 3, . . .}), we increment TΔ by one (Line 4)
and update w based on current new locations (Line 5). If
the KL-Divergence between the old and new distributions is
larger than a threshold θK L (Line 6), we return current TΔ as
answer because a reconstruction will be triggered according
to the condition defined in Sect. 3.3.5. The time complex-
ity of Algorithm 8 is O(|S| + |S| · TΔ

Tupd
), where |S| is the

cost for initialization (Line 2) and |S| · TΔ

Tupd
is the number

of subscription updates within TΔ. Note that Tmax in Line 9
is a upper bound for TΔ and can be estimated according to
reconstruction frequency of historical data.

Finally, we have:

Circ(P) =
(
|S| · log f + |S| · √ f + f · |V |

)
·

(
log f

( |S|
θp

)
+ 1

)
· 1

TΔ

(13)

10 Note that the subscriptions are assigned to cut or cell only once. Thus
the coefficient of |S| · log f is 1.
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In Eq. 13, there are two important parameters which affect
the index reconstruction cost: number of subscriptions |S|
and number of timestamps for next reconstruction TΔ. Large
|S| and small TΔ will incur high reconstruction cost. Thus,
duringAP-Tree construction, a nodewith large |S| and small
TΔ may be preferred by k-node instead of s-node. This is
also consistent with our intuition to penalize s-node. The
time complexity to computeCirc is the same as Algorithm 8.
Discussion Based on above three costs, now we can reach
the costs for k-node and s-node, respectively:

C(Pk) = Cimm(Pk) (14)

C(Ps) = Cimm(Ps) + Cslu(Ps) + Circ(Ps) (15)

As Cslu and Circ are incurred by movement of subscrip-
tions, which does not influence the cost of k-node, the cost
of k-node consists of only the first cost Cimm , while the cost
of s-node includes all the three costs. By means of adding
two extra penalties to s-node, we can ensure that a s-node
will not be preferred by our cost model if the subscribers
in it are moving fast and frequently. From the perspective
of indexing structure, our new cost model can actually push
some undesirable s-nodes to the lower levels, such that it
can be more adaptive to the moving subscriptions. Finally,
we remark that all the three costs can be computed efficiently,
with the complexity linear to |S|.

4.3.2 Index construction and maintenance

As we only extend the cost model of AP-Tree, it follows
the same index construction algorithm (Algorithm 4) to con-
struct AP+-Tree. The algorithm to find optimal keyword
partition is also the same as previousmethod. In terms of spa-
tial partition, the computation of Cimm(Ps) can still follow
the previous algorithm to minimize the matching cost. As we
assume uniform grid partition for the estimation of Cslu(Ps)

and Circ(Ps), we can compute them directly and add them
as a constant to the overall cost. As to the maintenance issue,
we follow the same solution proposed in Sect. 3.3.5. The
only difference is that, we also need to update the spatial
distribution when a subscription reports a location update.

5 Experiments

In this section, we present results of a comprehensive perfor-
mance study to evaluate the effectiveness and efficiency of
our techniques proposed in this paper. All experiments are
implemented in C++ and conducted on a PC with 3.4GHz
Intel Xeon 2 cores CPU and 32 GBmemory running Red Hat
Enterprise Linux. Following the typical setting of Pub/Sub
systems (e.g., [28,48]), we assume indexes are fit in the main
memory to support real-time response.

5.1 Experiments for stationary subscriptions

In this section, we evaluate the efficiency and effectiveness
of AP-Tree for stationary subscriptions.

5.1.1 Experimental setup

To the best of our knowledge, IQ-Tree [6] and Rt -Tree [28]
are only two existing work investigating the same problem
as ours. Both work fall in the category of spatial-prioritized
indexing structure. For comprehensive performance eval-
uation, we also investigate a keyword-prioritized indexing
structure, namely RQ-Tree. In a nutshell, we implement and
evaluate following algorithms.

– Rt -Tree Message matching algorithm based on Rt++-
Tree proposed in [28], which achieves the best per-
formance compared with Rt -Tree and Rt+-Tree. The
source code is provided by the authors in [28].

– IQ-TreeMessage matching algorithm based on IQ-Tree
proposed in [6]. The costmodel of subscription decompo-
sition proposed in [6] is adopted to allocate subscriptions
toQuadtree cells according to subscription andmessage
workloads.11

– RQ-Tree The representative of keyword-prioritized
indexing method which can be regarded as a variant of
IQ-Tree. Particularly,RQ-Treefirst employs ranked-key
Inverted List [6,46] to partition subscriptions into the
posting lists according to their least frequent keywords.
Then for subscriptions on each posting list, we build a
Quadtree for spatial filtering purpose where the cost
model in [6] is also adopted.

– AP-Tree AP-Tree based message matching algorithm
proposed in this paper. By default, the heuristic algo-
rithms are employed for keyword and spatial partitions.

Datasets Four datasets are collected for experimental eval-
uations. TWEETS is a real-life dataset collected from
Twitter [28], containing 12million tweets with geo-locations
from May 2012 to August 2012. TWEETS is the default
dataset in the experiments.GN is obtained from theUSBoard
onGeographic Names12 in which eachmessage is associated
with a geo-location and a short text description. CARS and
AIS obtain the geo-locations from Chorochronos Archive13

and we randomly tag the locations with user-generated key-

11 Aswe assume indexes are fit in themainmemory, we use the number
of verifications to evaluate the goodness of the subscription decompo-
sition, instead of the number of I/Os.
12 http://geonames.usgs.gov.
13 http://www.chorochronos.org.
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Table 2 Datasets statistics

Datasets TWEETS GN CARS AIS

Number of messages 12.7M 2.2M 2.2M 5.7M

Vocabulary size 1.7M 208K 81K 81K

Avg. number of
keywords in
messages

9 7 30 50

words from 20 Newsgroups.14 The statistics of four datasets
are summarized in Table 2.
Subscription workload We generate four subscription
workloads based on the above four datasets. In each subscrip-
tion workload, 5M spatial-textual messages are randomly
chosen from corresponding dataset. For each sampled mes-
sage,we randomly pick j terms as subscription keywords and
j is a random number between 1 and 5. The search range is
set to a rectangle centered at the geo-location of the message,
and the range size is uniformly chosen between 0.01 and 1%
of data space. Besides, we generate subscriptions with gen-
eral boolean expressions as follows. For a set of keywords,
we partition it into two subsets by randomly assigning a
disjunction or conjunction between any two consecutive key-
words. For each subset, a disjunctive or conjunctive clause
is then generated randomly. For example, for the given key-
words {w1, w2, w3, w4}, we may first partition it into two
subsets, i.e., {w1, w2} and {w3, w4}, by assigning a conjunc-
tion between w2 and w3. Then we assign a disjunction to
form a clause w1 ∨ w2 for left subset, while a conjunction
to form a clause w3 ∧ w4 for right subset. Finally, we get a
boolean expression of (w1 ∨ w2) ∧ w3 ∧ w4.
Message workload We use first 5% of the spatial-textual
messages as the historical message workload when IQ-Tree,
RQ-Tree and AP-Tree are constructed. The remaining mes-
sages are fed to the continuous subscriptions as streaming
spatial-textual data.

The average message matching time is reported to eval-
uate the performance of the algorithms. We also evaluate
the index construction and maintenance time as well as
the index size. By default, keywords in vocabulary are
sorted in decreasing order of their term frequencies over
the subscription keywords. Important parameters of AP-
Tree and alternative implementations are investigated in
Sect. 5.1.2. Throughout the experiments, we set fanout
f , partition threshold θp and KL-Divergence threshold
θK L to 200, 40 and 0.001, respectively, unless otherwise
specified.

14 http://people.csail.mit.edu/jrennie/20Newsgroups.

5.1.2 Experimental tuning

Effect of f and θp. In the first set of experiments, we eval-
uate the impact of the fanout f and partition threshold θp
in four datasets under default settings. Intuitively, a small f
cannot fully utilize the keyword partition due to the small
number of cuts on each k-node. On the other hand, a large
f may result in poor adaptiveness of the AP-Tree. This is
confirmed in Fig. 10a, where the average matching time is
reported with f varying from 50 to 800. We set f to 200 for
all datasets in the hereafter experiments. Figure 10b reports
the average matching time as a function of θp which grows
from 5 to 400. It is observed that θp does not noticeably affect
performance when θp is smaller than 40. By default, θp is set
to 40 for a better trade-off between index size and matching
performance.
Comparison of AP-Tree variants. We compare the per-
formance of several variants of AP-Tree as follows. DP
employs dynamic programming approach to find optimal
keyword partition, and HR uses the heuristic keyword par-
tition. KPriority puts high priority to keyword partition
on each node when AP-Tree is constructed, while spa-
tial partition is prioritized in SPriority. Finally, Trie-Qd
adopts the ordered keyword trie structure in [22] to organize
subscriptions and then uses Quadtree to further partition
subscriptions with the same keywords. Figure 11a, b report
the average message matching cost and the index construc-
tion time of the algorithms, respectively, over four datasets
where the default average subscription range size is set to
0.001%. Following are two important observations.
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– Among all algorithms, DP achieves the best matching
performance. HR has similar matching time with DP but
beatsDP by a hugemargin w.r.t. index construction time.

– The poor matching performance of KPriority and SPri-
ority implies that AP-Tree should be constructed in
an adaptive way. Similarly, due to the lack of the
adaptiveness and a large number of tree nodes, a straight-
forward combination of the ordered keyword trie [22]
and Quadtree (Trie-Qd) cannot well support spatial-
keyword subscriptions.

In hereafter experiments, HR is employed for performance
evaluation of AP-Tree.

5.1.3 Performance evaluation

Evaluation on different datasets We evaluate the average
message matching time, index construction time and index
size of the algorithms against four datasets TWEETS, GN ,
CARS and AIS. As shown in Fig. 12a, AP-Tree significantly
beats other algorithms in terms of message matching time.
Particularly, AP-Tree is 30 times faster than the second best
algorithm in GN because it is observed that the keyword
and spatial distributions vary significantly among different
regions in GN , and AP-Tree can take great advantage of its
adaptiveness. It is worth noting that the keyword-prioritized
method RQ-Tree has better performance than two spatial-
prioritizedmethods (i.e., IQ-Tree andRt -Tree) onTWEETS,
GN and AIS datasets, but is defeated on CARS dataset by
IQ-Tree. This implies that the effectiveness of the keyword
and spatial filtering depends on the underlying subscription
workload. Please note that IQ-Tree runsmuch faster thanRt -
Tree, because IQ-Tree can benefit from its space-oriented
partition strategy (i.e.,Quadtree) rather thanobject-oriented
partitionmethod (i.e.,R-Tree). As expected, Fig. 12b reports
that Rt -Tree has the fastest index construction time because
there is no cost model in [28] and the ranges of subscription
are not decomposed. Figure 12c shows that the memory con-
sumption of AP-Tree is comparable with other algorithms.
In the following experiments, we exclude Rt -Tree from the
performance evaluation because it is dominated by IQ-Tree.

Moreover, both algorithms belong to spatial-prioritized and
hence exhibit similar trend in the experiments.
Effect of number of subscription keywords Figure 13 eval-
uates the performance of three algorithms against TWEETS
andGN datasets where the number of subscription keywords
varies from 1 to 5. Not surprisingly, the performance of
three algorithms improves with the growth of the number of
subscription keywords because the number of matching sub-
scriptions is significantly reduced. When there is only one
subscription keyword, AP-Tree only slightly outperforms
RQ-Tree and IQ-Tree because it is difficult to distinguish
subscriptions from keyword perspective. Nevertheless, the
margin becomes significant when there are more than one
subscription keyword.
Effect of subscription range size We evaluate the effect of
subscription range size in Fig. 14 where the average match-
ing time is reported as a function of the range size varying
from 0.000001 to 10% of the data space. As expected, the
performance of three algorithms is sensitive to the range size
because larger range size increases the number of match-
ing subscriptions and hence leads to higher matching costs.
It is noticed that RQ-Tree is ranked after IQ-Tree when
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the range size is very small, while RQ-Tree has better per-
formance when the range size becomes large. This is quite
intuitive because spatial-prioritized index is more attractive
when the range size is very small.AP-Tree is the most stable
algorithm and consistently beats RQ-Tree and IQ-Tree by
a large margin. It is observed that more k-nodes appear on
high levels of AP-Tree when the subscription range is large,
which verifies the adaptiveness of AP-Tree structure.
Effect of number of subscriptions We turn to evaluate the
effect of number of subscriptions in Fig. 15. We increase the
number of subscriptions from1 to 20M.The result shows that
AP-Tree is much more scalable to the number of subscrip-
tions. For instance, it only takes 0.4 and 0.04ms on average
to match incoming messages on TWEETS and GN datasets
when the number of subscriptions reaches 20M.
Evaluate indexmaintenanceWe evaluate the costs of incre-
mental maintenance of AP-Tree, IQ-Tree and RQ-Tree as
well as their message matching performance. In particu-
lar, TWEETS dataset is deployed because the arrival order
of the subscriptions can naturally follow the correspond-
ing timestamps of the tweets. The first δ percentage of the
subscriptions are used to construct the indexes, and then
remaining subscriptions are incrementally inserted, where δ

is set to 20 by default. Finally, we report the average message
matching cost after all subscriptions arrive. We also record
the average updating time for all subscriptions inserted.

In the experiments, a k-node or s-node of AP-Tree
is reconstructed if it covers at least 0.1% of the subscrip-
tion population and its KL-divergence value exceeds θK L .
It is quite intuitive that a small θK L value results in a bet-
ter message matching time but higher AP-Tree maintenance
overhead. Figure 16 evaluates the impact of threshold θK L

which increases from 0.0001 to 0.5. In the following experi-
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ments, we set θK L to 0.001 since it achieves a good trade-off
between matching cost and maintenance cost.

In this set of experiments, we also consider a variant of
AP-Tree algorithm, namely AP-Tree-NR, which does not
reconstruct the existing AP-Tree node. Figure 17 reports
the average message matching time as well as the average
delay of subscription insertions for four algorithms where
the percentage of subscriptions used for initial AP-Tree con-
struction (δ%) increases from 10 to 90%. Figure 17a shows
that the performance of AP-Tree-NR is not satisfactorywhen
δ is small. This is because AP-Tree structure built on a small
proportion of the subscription set does not well suit to the
change of subscription workload. On the contrary, the per-
formance of AP-Tree is rather stable and consistently beats
IQ-Tree and RQ-Tree by a large margin since AP-Tree
can adjust the tree structure to the change of subscription
workload by node reconstructions. The average maintenance
cost of four algorithms is reported in Fig. 17b. As expected,
AP-Tree-NR has the best performance since there is no
node reconstructions, while AP-Tree has the largest index
maintenance overhead. Nevertheless, AP-Tree can process
a subscription in around 0.12ms on average which is still
quite efficient in practice.
Evaluate general boolean subscriptions In this set of
experiments, we evaluate the performance of processing
general boolean subscriptions against TWEETS dataset in
Fig. 18. We extend IQ-Tree and RQ-Tree to support gen-
eral boolean subscriptions following the similar strategy as
our AP-Tree. In Fig. 18a, we vary the number of sub-
scription keywords from 3 to 7. It is noticed that all the
algorithms exhibit relatively stable fluctuation, which is due
to the competitive results of increasing number of decom-
posed subscriptions and decreasing selectivity, as the number
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of keywords increases. On the other hand, we notice that our
index can better utilize the keyword filtering capability than
the other competitors when the number of keywords is large
(e.g., 6 or 7). Note that we omit the cases when the num-
ber of keywords is less than 3, because it is not meaningful
to combine less than 3 keywords to generate subscriptions
with general boolean expressions. In Fig. 18b, we change
the number of subscriptions from 1 to 20M with the number
of keywords being 5, and our AP-Tree structure can scale
well with large datasets.

5.2 Experiments for moving subscriptions

In this section, we evaluate the efficiency and effectiveness
of AP+-Tree for moving subscriptions.

5.2.1 Experimental setup

For the baseline algorithms, we extend IQ-Tree and RQ-
Tree to support moving subscriptions. Specifically, for each
location update issued by subscription s, we need to re-
evaluate the best cells which can cover s, and re-assign s
to these new cells. As to the MsgIndex, we follow the same
structure as IQ-Tree and RQ-Tree; that is, for each alive
message m, we index m into all the cells which can be pen-
etrated by m. We call these two index variants as IQ+-Tree
and RQ+-Tree, respectively. There is no naive way to extend
Rt -Tree to support moving subscriptions.

Besides the above two baselines, we also propose two
algorithms which index moving subscriptions using grid file,
following the common practice in previous work [29,31,43].

– SS-Index. SS-Index employs spatial-prioritized strat-
egy to build both SubIndex and MsgIndex. For
SubIndex, a grid file is first constructed to partition
the subscriptions; then in each grid cell, a ranked-key
Inverted List is built to further index the subscriptions.
MsgIndex follows the similar structure. Note that each
message needs to be indexed in all the posting lists which
are contained by its keywords.

– KK-Index. KK-Index employs keyword-prioritized
strategy to build both SubIndex and MsgIndex. For
SubIndex, a ranked-key Inverted List is built to index
subscriptions; then for each posting list, a grid file is built
to further partition the subscriptions. MsgIndex follows
the similar structure.

We remark that all the four competitors and baselines are
implemented using the same incremental evaluation strategy
as AP+-Tree, which is illustrated in Algorithm 6. We omit
the details due to space limitation.
DatasetsWeuse TWEETS andGN to verify the performance
of our algorithm. The keywords of subscriptions are ran-

Table 3 System parameters for evaluation of moving subscriptions

Parameter Range

Number of initial subscriptions
(M)

0.5, 1, 1.5, 2.0, 2.5

Number of initial messages (M) 0.5, 1, 1.5, 2.0, 2.5

Avg. velocity of subscriptions (×
medium)

0.5, 1, 2, 3, 4

Subscription mobility (%) 10, 20, 40, 60, 80

Arrival rate of new messages in
each timestamp (K)

50, 100, 150, 200, 250

Area of subscription range (%) 0.000001, 0.0001, 0.01, 1, 10

domly sampled from TWEETS and GN following the same
strategy in Sect. 5.1.1. In order to generate moving sub-
scriptions, we use the Network-based Generator of Moving
Objects [4] to generate a set of moving subscriptions. We
use the road maps of Oldenburg (ODB for short, a city in
Germany) and San Joaquin (SAN for short, a county in Cal-
ifornia) as the input to the generator.15 The output of the
generator is a set of moving points which move on the given
road network. We choose these points as the range centers
of subscriptions. We set one timestamp as 30 seconds and
continuously monitor for 100 timestamps. The parameters
are described in Table 3, where the default ones are shown in
bold. At each timestamp, there are some subscriptions issu-
ing location update and some new incoming messages. The
percentage of moving subscriptions is called Mobility. The
average velocity of moving subscriptions is set tomedium by
default.16 The average life cycle of each message is set to 10
timestamps.

We use average Incoming Message Matching (IMM for
short) time and average Moving Subscription Processing
(MSP for short) time to evaluate the performance of AP+-
Tree. Note that the cost of message insertion is included
in IMM, unless otherwise specified. The parameters used
in the construction of AP+-Tree follow the same setting as
Sect. 5.1.1. Besides, we tune the number of grid cells per
dimension for both SS-Index and KK-Index, and set it to 40
to balance the performance and memory consumption. We
omit the detailed tuning results due to space limitation.

5.2.2 Experimental tuning

Detailed comparison of competitors In this experiment,
we compare all the competitive algorithms w.r.t. message
insertion time (MI for short) and subscriber location update

15 Thus, we could have four dataset combinations for following exper-
iments: TWEETS-ODB, TWEETS-SAN, GN-ODB and GN-SAN.
16 This is also the default velocity in Network-based Generator for
Moving Objects [4].
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Fig. 19 Detailed comparison
between baseline algorithms. a
Avg. MI time. b Avg. SLU time
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Fig. 21 Evaluation on different datasets. a Avg. IMM time. b Avg. MSP time. c Index size

time (SLU for short). It is noticed that IQ+-Tree,RQ+-Tree
and AP+-Tree have higher message insertion cost than SS-
Index and KK-Index, as shown in Fig. 19a. This is mainly
due to the large number of message duplicates in the former
three algorithms, thus incurring some additional overhead.
However, the message insertion time of our algorithm is still
reasonable compared to others. As to the subscriber loca-
tion update time in Fig. 19b, both IQ+-Tree and RQ+-Tree
have undesirable large cost because they have to re-evaluate
the optimal cells for each moving subscription. Our index
has small update time due to the modified cost model which
can penalize s-node with high subscriber location update
overhead. Note that in practice, message insertion can be
implemented as a by-product of message matching proce-
dure to reduce insertion cost.
Comparison of AP+-Tree variants In this experiment, we
verify the effectiveness and efficiency of different AP+-
Tree variants. Our variants are designed to separate the
SubIndex and MsgIndex; that is, we index subscrip-
tions using AP+-Tree while indexing messages with either
keyword-prioritized or spatial-prioritized indexing structure.
We call these two variants as AP+k-Tree and AP+s-Tree,
respectively. From Fig. 20a, we notice that AP+-Tree per-
forms a little worse than the other two indexes in terms
of incoming message matching, because we build unified
index for both subscriptions and messages, thus also consid-

ering message insertion time during matching. The benefit of
AP+-Tree is shown in Fig. 20b, where AP+-Tree is nearly
one order of magnitude faster than the other two indexes
w.r.t. moving subscription processing time, thus verifying the
effectiveness and efficiency of our proposed unified indexing
structure.

5.2.3 Performance evaluation

Evaluation on different datasets We evaluate average
incomingmessagematching time, averagemoving subscrip-
tion processing time and index size against all four datasets in
Fig. 21. As shown in both Fig. 21a, b, our algorithm is always
the best one in terms of both incoming message matching
time and moving subscription processing time. These speed-
ups are gainedmainly because of the adaptive organization of
moving subscriptions and unified organization of messages.
Particularly, for GN-ODB and GN-SAN datasets, AP+-Tree
can achieve up to 30 times improvement for moving sub-
scription processing. Figure 21c indicates that our indexing
structure is the most memory efficient, because we organize
both subscriptions andmessages into a unified structure, thus
avoiding the burden to build a separate index for messages.
Effect of mobility In this series of experiments, we evalu-
ate the effect of mobility, i.e., the number of subscriptions
moving in each timestamp. Figure 22 reports total moving
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Fig. 23 Effect of velocity. a TWEETS-ODB. b GN-ODB

subscription processing time as we increase mobility from
10 to 80%. We do not report incoming message matching
time as it is not sensitive to the change of mobility. All the
results demonstrate that, as mobility increases, our index can
always beat the baselines with a large margin. This is mainly
due to the benefit of our modified cost model, which can be
adaptive to the movement of subscriptions.
Effect of moving velocity We evaluate the influence of
velocity w.r.t. the moving subscription processing time
in this experiment. Figure 23 shows the results against
TWEETS-ODB and GN-ODB datasets, where we increase
the speed from 0.5 to 4 times of the default medium veloc-
ity. We observe that subscriptions are more selective and
can match more messages when velocity is slow, leading
to large processing time at initial. However, as velocity
increases, the selectivity decreases due to the change of
underlying spatial distribution, resulting in the decrease in
processing time. Finally, when we increase velocity fur-
ther, the effectiveness of incremental evaluation technique
degenerates, thus leading to the increase in processing
time. In all the cases, AP+-Tree can always achieve best
performance.
Effect of subscription range size In this set of experiments,
we evaluate the performance of our techniques when chang-
ing the subscription range size from 0.000001 to 10% of
the data space against TWEETS-ODB andGN-ODB datasets
in Fig. 24. As shown in the figure, the moving subscription
processing time increases for all algorithms when increasing
subscription range, because more messages will be covered
by large range. However, the processing time of our algo-
rithm is much smaller than competitors and increases much
slower as well.
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ODB

Effect of number of subscriptions In this series of experi-
ments, we evaluate the scalability of the proposed techniques
in Fig. 25.We increase the number of initial subscriptions and
messages from 0.5 to 2.5M. The message arrival rate also
increases accordingly. Figure 25a, b show moving subscrip-
tion processing time. All the results indicate our algorithm
can scale well with increasing dataset size, thus making it
practical to implement our algorithm into a large-scale real
system.
Comparison with Elaps In this set of experiments, we
compare our methods with Elaps, which is recently pro-
posed in [20] on TWEETS-ODB dataset. For fair comparison,
we follow the similar setting in [20]. The initial number of
subscriptions and messages are set to 10 and 1M, respec-
tively. The velocity,mobility and arrival rate of newmessages
are set to 1 × medium, 100% and 10K, respectively. The
source code of Elaps is kindly provided by authors in [20].
Please note that in this set of experiments, the spatial regions
of subscriptions are represented by circles to be consistent
with Elaps. For completeness, we also propose a new index,
called AP+-Tree-Safe, which integrates into AP+-Tree a
light-weighted version of the safe region technique proposed
in Elaps.17 We compare the total processing time and com-
munication cost of the above three algorithms. In Fig. 26,
we vary the number of subscriptions from 10 to 1M. It is
observed that AP+-Tree is orders of magnitude faster than
Elaps w.r.t. total processing time (Fig. 26a), while Elaps
wins w.r.t. communication cost (Fig. 26b). It is also notice-

17 The light-weighted version regards the distance from the subscrip-
tion to its nearest matching message minus the search radius of the
subscription as the safe region radius. The impact region is derived by
extending the safe region with the search radius of subscription.
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able that when the number of subscriptions is larger than
0.1M, Elaps returns run out of memory error, while our
index can scale to 1Msubscriptions easily.On the other hand,
our new index AP+-Tree-Safe can achieve a good trade-off
between computation cost and communication cost, which
is desirable for real-life applications. In Fig. 27, we vary the
arrival rate of messages from 10 to 50K, and the similar
trends can be observed.

6 Conclusion

The phenomenon of streaming spatial-textual data raises
interesting challenges for indexing continuous spatial-
keyword subscriptions. In this paper, we propose a novel
adaptive spatial-textual partition indexing structure, namely
AP-Tree, to efficiently organize amassive number of spatial-
keyword subscriptions such that each incoming message
from spatial-textual data stream can be rapidly delivered to
relevant subscriptions. Unlike the previous spatial-textual
indexes which prefer either textual feature or spatial fea-
ture, AP-Tree can be constructed in an adaptive way by
carefully choosing keyword or spatial partitions guided by
a cost model. Furthermore, we extend our indexing structure
to support moving spatial-keyword subscriptions, following
the same framework as AP-Tree while with a modified cost
model and a unified organization for both subscriptions and
messages. Extensive experiments demonstrate that our tech-
niques for both stationary and moving subscriptions achieve
a high-throughput performance over spatial-textual stream.
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