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Abstract Keyword search is a popular technique for
searching tree-structured data on the Web because it frees
the user from knowing a complex query language and the
structure of the data sources. However, the imprecision of
the keyword queries usually results in a very large number of
results of which only a few are relevant to the query.Multiple
previous approaches have tried to address this problem. They
exploit the structural properties of the tree data in order to
filter out irrelevant results. This is not an easy task though,
and in the general case, these approaches show low preci-
sion and/or recall and low quality of result ranking. In this
paper, we argue that exploiting the structural relationships
of the query matches locally in the data tree is not suffi-
cient and a global analysis of the keyword matches in the
data tree is necessary in order to assign meaningful seman-
tics to keyword queries. We present an original approach for
answering keyword querieswhich extracts structural patterns
of the querymatches and reasons with them in order to return
meaningful results ranked with respect to their relevance to
the query. Comparisons between patterns are realized based
on different types of homomorphisms between patterns. As
the number of patterns is typically much smaller than that of
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the of query matches, this global reasoning is feasible. We
design an efficient stack-based algorithm for evaluating key-
word queries on tree-structured data, and we also devise a
heuristic extension which further improves its performance.
We run comprehensive experiments on different datasets to
evaluate the efficiency of the algorithms and the effective-
ness of our ranking and filtering semantics. The experimental
results show that our approach produces results of higher
quality compared to previous ones and our algorithms are
fast and scale well with respect to the input and output size.

Keywords XML keyword search · Keyword query
semantics · Patterns · Ranking

1 Introduction

Keyword search has been established in the recent years as
the most popular technique for searching the Web. Keyword
search became initially popular as a technique for searching
flat (unstructured) documents [2], but it soon expanded its
popularity to structured [13] and semi-structured data [27].
In this paper, we focus on keyword search on tree-structured
data which has become a standard format for exporting and
exchanging data on the Web. The reason of the popularity
of keyword search on tree-structured data is twofold: (a) the
users can retrieve information from the Web without master-
ing a complex query language (e.g., XQuery) and (b) they
can issue queries against the data without having full or even
partial knowledge of the structure (schema). Therefore, the
same query can be issued against multiple, differently struc-
tured data sources on the Web.

The advantages of keyword search comewith a drawback.
Keyword queries are inherently imprecise since they cannot
specify structural constraints. As a consequence, they usually
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Fig. 1 An XML tree T

return a very large number of results of which only a tiny
portion are relevant to the query.

The candidate results of a keyword query on an XML tree
can be defined as the minimum connecting trees (MCTs) in
the XML tree that contains an instance of all the keywords.
The roots of the MCTs are the lowest common ancestors
(LCA) of the included keyword instances and are often used
to identify the candidate results [11,12,34,40,41].

Many recent works focus on addressing the problem of
the multitude of candidate LCAs by appropriately assign-
ing semantics to keyword queries on tree data. A number
of these semantics, characterized as filtering, aim at filter-
ing out a subset of the candidate LCAs that are irrelevant.
Some filtering semantics prune LCAs based exclusively on
structural information (e.g., SLCA semantics [12,25,40] and
ELCAsemantics [11,41]),while others take also into account
semantic information, that is, the labels of the nodes in the
XML tree (e.g., the valuableLCAorVLCAsemantics [9,16],
and the meaningful LCA or MLCA semantics [20]). Other
recent works assign ranking semantics to keyword queries,
that is, they rank the results aiming at placing on top those
that are more relevant [3,7,9,11,30,38]. Ranking the results
improves the usability of the system. In order to perform the
ranking, these works exploit: (a) structural characteristics of
the results and/or (b) statistical information or information
theorymetrics adapted to the tree structure of the data. All the
ranking approaches rank the results based on some scoring
function which assigns scores to the results.

The problems Although filtering approaches are intuitively
reasonable for specific cases of data, they are ad hoc and
they are frequently violated in practice resulting in low pre-
cision and/or recall [38]. Further, most ranking approaches
are combined with filtering approaches, that is, they rank
only the LCAs accepted by the respective filtering semantics,
this way inheriting the low recall of the filtering semantics.
This weakness is due to the fact that most existing filtering
semantics do not examine and compare the way the keyword

instances are combined in theXML tree to form tree patterns.
Instead, most of them depend on the structural relationships
of the keyword instances and LCAs locally in the XML tree.
However, local relationships are not sufficient and a global
view of the results is necessary in order to decide effec-
tively on their relevance. Consider for instance the following
example.

Example 1 Figure 1 shows a sample XML tree. This tree
contains information about courses offered in a University.
Consider also the keyword query {Physics, James, Harri-
son} against this XML tree. These keywords have multiple
occurrences in the tree which are shown in bold. As one can
see, each keyword has multiple instances (nodes that con-
tain the keyword) in the tree. There are courses on Physics
offered by one or two instructors whose name contains James
and/or Harrison, and therefore, it is reasonable to assume
that the user is looking for such courses. Assuming that our
results are represented by LCA nodes, there are five candi-
date results whose node ids are shown in the figure encircled.
Among them, only node 3, 11 and 20 are relevant results
since node 30 represents the prerequisites of a course and
node 2 represents the set of all the courses offered by the
University. The ELCA semantics filters out candidate LCAs
whose keyword instances are descendants of other descen-
dant candidate LCAs, while SLCA prunes candidate LCAs
that are ancestors of other candidate LCAs. In the context of
our example, both ELCA and SLCA return the wrong result
30 and SLCA misses the correct result 11. One version of
the MLCA semantics excludes candidate LCAs if the LCA
of two of its keyword instances is not also an ELCA node of
the labels of these instances. Therefore, it fails to return the
correct result 3 because the LCA of the keyword fname (the
label of the instance 6 of keyword James) and lname (the
label of the instance 10 of keyword Harrison) is not also
an ELCA of fname and lname (the label lname of node
10 comes closer to the label fname of node 9). Further, it
incorrectly returns the node 30 (prerequisites).
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(a) (b) (c)

Fig. 2 Three patterns of the query Physics, James, Harrison on the
XML tree of Fig. 1

The reason of these failures is that all these approaches are
based on the relationship of the keyword instances locally
(e.g., whether two LCAs have an ancestor–descendant rela-
tionship) and they miss a global view of how the keyword
instances are combined in the data tree.

Our solution In this paper, we argue that a meaningful
semantics for keyword queries does not depend on the local
properties of the keyword instances in the XML tree but
on the patterns the keyword instances define on the XML
tree. Each pattern might and usually does represent many
results. For instance, Fig. 2 shows three patterns for the query
{Physics, James, Harrison} on the XML tree of Fig. 1. These
patterns which are minimal trees rooted at the root of the
XML tree and containing all the keywords indicate different
ways the keyword instances in the XML tree are combined
to form results. Pattern (a) represents the LCAs 3 and 11,
pattern (b) the LCA 20 and pattern (c) the LCA 30.

Further, we argue that assigning simply a score to the
results is not sufficient for producing a ranking of high qual-
ity. Rather, a ranking or a filtering of the results should be
obtained by directly comparing the different structural and
semantic properties of their patterns, that is, by reasoning
on the patterns. For instance, by comparing the patterns of
Fig. 2 one can easily see that pattern (c) is not relevant in the
presence of patterns (a) and (b) and if one wants to rank the
patterns in terms of relevance to the query, patterns (a) and
(b) should precede pattern (c). These considerations apply to
all the results these patterns represent. That is, the patterns
act as representatives of the respective results.

Different techniques could be devised to compare patterns.
In the present work, this comparison is realized based on
homomorphisms between patterns. As the number of patterns
is typically much smaller than the number of the results they
represent, we show that this comparison is computationally
feasible.

A number of approaches define filtering or ranking seman-
tics without relying on the structural relationships of the
keyword instances locally in the XML tree. As an exam-
ple, Cohen et al. [9] filter out a query match containing a
pair of keyword instances linked through a path in the XML

tree which has duplicate labels. Schema-level SLCA [15]
excludes LCAs whose label paths from the root of the XML
tree are a proper prefix of that of another LCA.More recently,
Liu et al. [22] cluster query results based on the patterns
they comply with and define filtering semantics based on the
conceptual relationships between entity nodes (in the sense
of the Entity-Relationship model) in the XML tree. Finally,
Coherency Ranking (CR) [38] ranks query results based on
an extension of the concepts of data dependencies andmutual
information. None of these approaches define ranking or fil-
tering semantics by globally comparing the structural and
semantic properties of the query result patterns as we do in
this paper.

Contribution The main contributions of this paper are the
following:

• We define the answer of a keyword query based on the
concept of instance tree (IT) which records not only how
keyword instances are combined to form an MCT but
also how the root of the MCT is linked to the root of the
XML document.We introduce the concept of pattern of a
keyword query on an XML tree which records the struc-
tural relationships between node labels and keywords in
an IT. Every pattern represents the set of ITs in the XML
tree that comply with it.

• In order to enable reasoning over patterns, we introduce
two types of homomorphisms between patterns and we
use them to define different kinds of homomorphism rela-
tions on patterns.

• Based on these relations, we organize the patterns of a
keyword query into a graph of patternswhichwe leverage
to determine a ranking for patterns and ranking semantics
for queries thereof. We also provide filtering semantics
for queries by selecting the top-k patterns in the ranking.
Our semantics is named XReason.

• In order to bring all the previous filtering approaches to a
common ground, we express their semantics in terms of
ITs. We provide a comprehensive comparison of them,
and we show how they differ from XReason.

• We design an efficient algorithm to implement XRea-
son which comprises two modules: (a) a stack-based
algorithm for computing the query patterns and the ITs
that comply with them and (b) an algorithm that builds
the pattern graph and generates a ranking for the pat-
terns. Contrary to the previous algorithms implementing
ranking semantics for keyword queries which rely on
auxiliary structures on the datasets [3,9,11,38], our algo-
rithm does not require a preprocessing of the datasets
and uses only the inverted lists of the keywords in
order to produce the query answers. We also design a
heuristic extension of our algorithm which substantially
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Fig. 3 An XML tree T

improves efficiency without compromising the quality of
the results.

• We run comprehensive experiments on multiple data-
sets having different characteristics and compared our
approach with previous ones in order to assess the effec-
tiveness of XReason and the efficiency of our algorithms.
Our results show that the XReason filtering and ranking
semantics outperform previous approaches with respect
to various metrics and our algorithms are fast and scale
well with respect to the input and output size.

Outline The rest of the paper is organized as follows: Sect. 2
defines concepts that will be used throughout the paper.
Section 3 introduces homomorphisms between patterns and
homomorphism relations on patterns and shows how these
are used to define the XReason ranking and filtering seman-
tics. In Sect. 4, the differences in XReason from the previous
filtering semantics are analyzed. The algorithm for imple-
menting the XReason semantics is presented in Sect. 5. The
details of our experimental evaluation and results are pro-
vided in Sect. 6. Finally, Sect. 7 presents the relatedwork, and
Sect. 8 contains concluding remarks and pointers to future
work.

2 Preliminaries

2.1 Data model

As is usual, we view XML documents as ordered node
labeled trees. Nodes represent and are labeled by elements
and attributes. The nodes may have a content which is text.
Edges represent element to element and element to attribute
relationships. For any two nodes n and n′ in an XML tree T ,
n < n′ (n > n′) denotes that n is an ancestor (descendant)
of n′ in T . Without loss of generality, we assume that the
label of the root of the XML tree is unique. A function label
on a node returns the label of that node. We want to allow

keywords to match not only the content of a node but also its
label. To this end, we define a function value on nodes which
returns the set of words in the content and the label of the
node. If value(n) of a node n includes a keyword k, we say
that n contains keyword k and that node n is an instance of
k. We assume that XML tree nodes are enumerated using the
Dewey encoding scheme [37]. The Dewey encoding scheme
allows easily determining the LCA of multiple nodes and
can be efficiently exploited by stack-based algorithms for
computing query matches.

Figure 3 shows an XML tree which is a variation of the
one shown in the introduction. Dewey codes are omitted
for clarity. Plain numbers are used instead to identify the
nodes.

2.2 Keyword queries

A (keyword) query Q is a set of keywords {k1, k2, . . . , kn}.
Keyword queries are embedded to XML trees.

Definition 1 Let Q be a query and T be an XML tree. An
instance of Q on T is an embedding of Q to T (i.e., a function
from Q to the nodes of T that maps every keyword k in Q
to an instance of k in T ).

We overload the term “query instance,” and we use it to
refer both to the function that maps the query keywords to
the tree nodes and to the images of the query keywords under
this function. Note that two query keywords can be mapped
to the same tree node.

Definition 2 Let Q be a query, T be an XML tree, and I
be an instance of Q on T . The instance tree (IT) of I is the
minimum subtree S of T such that: (a) S is rooted at the root
of T and comprises all the nodes of I , and (b) every node n
in S is annotated by the keywords which are mapped by I to
n. Theminimum connecting tree (MCT) of I is the minimum
subtree of S that comprises the nodes of I .

Clearly, the root of the MCT is the lowest common ances-
tor (LCA) of the nodes of I in T .
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(a) (b)

Fig. 4 a An IT and b its MCT

Consider the XML tree of Fig. 3 and the keyword query
Q = {Physics, James, Harrison, 2012}. Figure 4a,
b show the IT and the MCT, respectively, of the instance
{(Physics, 24), (James, 25), (Harrison, 25), (2012,
22)} of Q on T . Annotations are shown between square
brackets by the nodes in the figure. The MCT of this IT
is rooted at node 21 (the LCA of the keyword instances).
The IT also contains the path from the root of T to node
21. In the following, we identify an IT and an MCT by their
corresponding query instance.

Given a keyword query Q and an XML tree T , the set C of
the ITs of all the instances of Q on T is the set of the candidate
results of Q on T . The answer of a keyword query Q on an
XML tree T is a subset of C. Which specific subset forms the
answer of a query depends on the semantics adopted. In our
approach, the answer is determined by comparing the pat-
terns (to be defined below) of the ITs. For the needs of this
paper, this comparison is realized based on different types
of homomorphisms. Next, we define formally these homo-
morphisms, and then, we use them to provide ranking and
filtering semantics to the queries. Other semantics will be
presented in terms of IT and compared with our approach in
Sect. 4.

3 Query semantics

In order to define semantics for queries,we introduce patterns
of ITs and homomorphisms between patterns and study their
properties.

3.1 IT patterns

Definition 3 (IT pattern) A pattern P of a query Q on an
XML tree T is a tree which is isomorphic (including the
annotations) to an IT of Q on T . The MCT of a pattern
P refers to P without the path that links the LCA of the
annotated nodes to the root of P .

Multiple ITs of Q on T can share the same pattern. Fig-
ure 5 shows eight patterns (out of 15 in total) of the keyword

query Q = {Physics, James, Harrison} on the XML tree
T of Fig. 3. All patterns except pattern P8 have one IT. Pat-
tern P8 has two ITs which comply with it: the IT of the query
instance {(Physics, 5), (James, 25), (Harrison, 25)}
and the IT of the query instance {(Physics, 16), (James,
25), (Harrison, 25)}.

The function ann(n) on a node n of a pattern returns the
annotation of n if the node is annotated or, an empty set,
otherwise. We also define a function si ze(P) which returns
the number of edges of P . The size of pattern P3 is 8, and
that of its MCT is 7. The size of pattern P1 is 9, and that of
its MCT is 7.

3.2 Pattern homomorphism and homomorphism
relation

Definition 4 (Pattern homomorphism) Let S and S′ be two
subtrees of patterns of a query on an XML tree. A homomor-
phism from S to S′ is a function h from the nodes of S to the
nodes of S′ such that:

(a) for every node n in S, n and h(n) have the same labels.
(b) if n2 is a child of n1 in S, h(n2) is a child of h(n1) in S′

and
(c) for every node n in S, ann(n) ⊆ ann(h(n)).

Figure 6 shows theMCTs M,M ′andM ′′ of three patterns
of the query Q = {2012, James, Harrison} on an XML
tree. As we can see in this figure, there are homomorphisms
from M to M ′ and from M ′ to M ′′ but not from M ′ to M or
from M ′′ to M ′. Observe that M ′ can be obtained from M
(and M ′′ from M ′) by merging paths with the same sequence
of labels starting from the same node and by unioning their
annotations. For instance, M ′′ can be obtained from M ′ by
merging the paths seminars/seminar/speaker from
thenodespeaker andbyunioning the annotations [James]
and [Harrison]. One can see that, in general, this is also a
necessary condition for the existence of a homomorphism
between two patterns.

Clearly, if there is a homomorphism from the MCT of a
pattern P to the MCT of a pattern P ′, the keyword instances
aremore closely related in any instance of P ′ than in P . Thus,
we consider the ITs of P ′ to be more relevant to the query
than those of P .

Based on the existence of a homomorphism between two
patterns, we can define a relation ≺h (called homomorphism
relation) on patterns in order to compare their relevance to
the query.

Definition 5 (≺h relation) Let P and P ′ be two patterns
of a query Q on an XML tree T . P ≺h P ′ iff there is a
homomorphism from the MCT of P ′ to the MCT of P but
not vice versa.
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Fig. 5 Some patterns for Q =
{Physics, James, Harrison}
on the tree of Fig. 3 1 2 3 4

5 6 7 8

Fig. 6 Pattern MCTs M , M ′
and M ′′ and homomorphisms
between them

h
h

h
h

For instance, for the patterns P , P ′ and P ′′ whose MCTs
M , M ′ and M ′′, respectively, are shown in Fig. 6, P ′′ ≺h

P ′ ≺h P , but P ′ �≺h P ′′ and P �≺h P ′. That is, P ′ is more
relevant than P , and P ′′ is more relevant than P ′. Similarly,
for the patterns P5 and P6 of our running example shown in
Fig. 5, one can see that P5 ≺h P6.

The following property which will be used later can be
easily shown for the ≺h relation.

Proposition 1 The relation ≺h on the set of patterns of a
query on an XML tree is a strict partial order.

Even though≺h correctly characterizes relevance, it is not
sufficient. Consider for instance theMCTs M1 and M2 of the
patterns P1 and P2, respectively, shown in Fig. 7 (ignore the
dashed arrows for the moment). Even though P2 �≺h P1, P2
is more relevant than P1. Indeed, P2 relates two instructors
to a course they offer, while P1 relates two instructors to a
prerequisite of a course they offer. In the next section, we
further exploit different kinds of relations in order to better
capture this relevance relationship between patterns and their
ITs thereof.

3.3 Path homomorphism and path homomorphism
relations

In order to define additional relations on patterns, we intro-
duce below a new type of homomorphism.

Definition 6 (Path homomorphism) Let p and p′ be two
paths of two patterns, such that p ends at a node n annotated
by a keyword k. We say that there is a path homomorphism
from p to p′ if there is a function ph from the nodes of p to
the nodes of p′ such that:

(a) for every node n1 in p, n1 and ph(n1) have the same
labels.

(b) if n2 is a child of n1 in p, ph(n2) is a child of ph(n1) in
p′, and

(c) k ∈ ann(ph(n)) ∪ label(ph(n)).

Figure 7 shows the MCTs M2 and M1 of the corre-
sponding patterns P2 and P1 (shown in Fig. 5) for the
query {Physics, James, Harrison} on the XML tree of
Fig. 3. For every path from the root of M2 to a node anno-
tated by a keyword, there is a path homomorphism to a
path in M1 (the different types of dashed arrows indicate
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2 1

Fig. 7 PatternMCTsM2 andM1 and three path homomorphisms from
the paths of M2 to paths of M1

these path homomorphisms). However, the opposite is not
true, that is, there is at least one path of M1 (in fact, only
the path course/prerequisites/course/title
[Physics]) that does not have a path homomorphism to a
path in M2.

Our intuition is that if P and P ′ are two patterns of a query
on an XML tree, and every path from the root of the MCT of
P to a keyword annotated node has a path homomorphism
to a path in the MCT of P ′, then the keyword instances in
P are more meaningfully related than in P ′ because every
sequence of labels from the LCA to a keyword instance in P
also appears in P ′.

In order to compare the relevance of query patterns,we use
now path homomorphisms to define a relation ≺aph (called
all_path_homomorphism relation) on patterns.

Definition 7 (≺aph relation) Let P and P ′ be two patterns
of a query Q on an XML tree T . P ≺aph P ′ iff the following
two conditions hold:

(a) for every path p from the root of theMCTof P to a node
annotated by a keyword, there is a path homomorphism
from p to a path of the MCT of P ′.

(b) Property (a) does not hold in the opposite direction, that
is, from P ′ to P .

As an example, observe that for the pattern MCTs M2 and
M1 of Fig. 7, P2 ≺aph P1. That is, the≺aph relation correctly
characterizes P2 as more relevant than P1.

Consider also another example which involves mapping
a keyword to a label or a value of a node: Fig. 8 shows the
MCTs Ma and Mb of two query patterns Pa and Pb, respec-
tively. As it can be seen from the annotations, the keyword
query is {Seminar, Abstract, Mathematics}. Pa ≺aph

Pb since the three paths seminar[seminar ], seminar/
abstract[abstract] andseminar/abstract [math−
ematics] in Pa have a path homomorphism to a path in Pb,
but the path seminar/ title[abstract] of Pb does not
have a path homomorphism to path in Pa . Here, again ≺aph

correctly favors Pa over Pb. We now show a property of
relation ≺aph .

a b

Fig. 8 Pattern MCTs Ma and Mb and three path homomorphism from
the paths of Ma to paths of Mb

Proposition 2 The relation ≺aph on the set of patterns of a
query on an XML tree is a strict partial order.

We next examine how ≺h and ≺aph are related. In Fig. 6,
one can see that besides homomorphisms from M to M ′, and
M ′ to M ′′, for every path p from the root to an annotated
node of an MCT, there is a path homomorphism to a path
in any one of the other MCTs. This is expected due to the
following proposition.

Proposition 3 Let M and M ′ be twopatternMCTsof a query
on an XML tree. If there is a homomorphism from M to M ′,
then: (a) for every path p from the root of M to a node
annotated by a keyword, there is a path homomorphism from
p to a path of M ′ and (b) for every path p′ from the root
of M ′ to a node annotated by a keyword, there is a path
homomorphism from p′ to a path of M.

Nevertheless, if for every path p from the root of M to
a node annotated by a keyword, there is a path homomor-
phism from p to a path of M ′, then there is not necessarily a
homomorphism from M to M ′ or from M ′ to M.

As a consequence of Proposition 3 and Definition 6, if
P ≺h P ′, then P �≺aph P ′ and P ′ �≺aph P .

Often, it is the case that an XML tree integrates data for
entity types which are unrelated. For instance, the University
XML tree of Fig. 3 involves courses and seminars. Instances
of these entity types are not related except that they share
the root of the XML tree as the only common ancestor. In
such a context, the ≺aph relation does not help us compare
effectively the relevance of patterns that involve labels from
different entity types with patterns that involve labels from
the same entity type.

Consider, for instance, the patterns P4 and P5 of Fig. 9 for
the query {Physics, James, Harrison} on Fig. 3. These
patterns are not related with respect to ≺aph . However, P4 is
more relevant than P5 since it meaningfully brings together a
speaker of a seminarwith the topic of the seminar. In contrast,
P5 involves both a course and a seminar and brings together
the speaker of a seminar with the instructor and title of a
course.
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4 5

Fig. 9 A path homomorphism from a path of pattern P4 to a path of
P5

Our intuition is that if two patterns share the same root-to-
leaf path (including the annotations), the pattern P1 whose
MCT root R1 is a descendant of the MCT root R2 of the
other pattern P2 in this path (that is, R1 is deeper than R2

in the common path) more meaningfully relates the keyword
instances than P2.

In order to enable relevance comparisons between patterns
that involve unrelated parts of anXML tree,wedefinebelowa
relation ≺pph (called partial_path_homomorphism relation)
on query patterns.

Definition 8 (≺pph relation) Let P and P ′ be two patterns
of a query Q on an XML tree T and p be a path from the
root of P to an annotated node of P . P ≺pph P ′ iff there is
a path homomorphism ph of p to a path in P ′ such that:

(a) the root of P is mapped by ph to the root of P ′.
(b) the root of the MCT of P is mapped by ph to a node

which is a descendant (not self) of the root of the MCT
of P ′, and

(c) P ′ �≺h P and P ′ �≺aph P .

Condition (c) is included for the purpose of guaranteeing
the acyclicity of the relations ≺aph and ≺pph between two
patterns.

Consider again the patterns P4 and P5 of Fig. 9. As
shown in the figure, there is a path homomorphism from the
path university/events/seminars/seminar/
speaker[Harrison] of P4 to the same path of P5 and the
image of the root of the MCT of P4 (seminar) under this
homomorphism is a descendant of the root of the MCT of P5
(university). Therefore, P4 ≺pph P5. That is, the ≺pph

relation correctly finds P4 to be more relevant than P5.
Because the roots of the MCTs of two patterns related

through a ≺pph relation are required to have a descendant
relationship, it is easy to see that ≺pph relation has the fol-
lowing property.

Proposition 4 The relation ≺pph is acyclic.

3.4 XReason semantics

We use homomorphism relations to define filtering and rank-
ing semantics to keyword queries called XReason semantics.
We first define a precedence relation, ≺, on patterns which
combines the three homomorphism relations1.

Definition 9 Let P and P ′ be two patterns of a query Q in
an XML tree T . P ≺ P ′ iff P ≺h P ′ or P ≺aph P ′ or
P ≺pph P ′.

Based on the previous discussion, one can see that the
following property holds for the precedence relation on pat-
terns.

Proposition 5 The relation ≺ on the set of patterns of a
query on an XML tree is acyclic.

Given the relation≺ on the set of patterns of a query Q on
an XML tree T , consider a directed graph G≺ such that: (a)
the nodes of G≺ are the patterns of Q on T , and (b) there is
an edge in G≺ from node P to node P ′ iff P ≺ P ′. Clearly,
because of Proposition 5,G≺ is acyclic. Figure 10a shows the
graph G≺ for the relation ≺ on the set of patterns of query
Q = {Physics, James, Harrison} on the XML tree of
Fig. 3. There are 15 such patterns, and eight of them (patterns
P1 - P8) are shown in detail in Fig. 5. The edges are labeled
by letters h, a and/or p to indicate which of the relations,
respectively, ≺h , ≺aph and ≺pph relate its nodes. Transitive
a-edges which are not p-edges are omitted to reduce the
clutter. Since G≺ is acyclic, it has at least one source node
(i.e., a node without incoming edges). The one of Fig. 10 has
two source nodes (pattern P2 and P4).

In the graph of Fig. 10a, observe that all the nodes (pat-
terns) can be partitioned in levels based on their maximum
distance (GLevel) from a source node. For instance, in level
3 there are patterns P3 and P7. The patterns in one level
can also be further distinguished based on the depth of their
MCT root in the pattern (MCT Depth) and the size of their
MCT (MCT Size). We create an order O for the patterns
in G≺ which ranks them in: (a) ascending order of GLevel,
(b) descending order ofMCT Depth and (c) ascending order
of MCT Size. Note that two patterns might be placed at the
same rank in O. The order O does not distinguish between
these patterns. In our running example, one can see that the
15 patterns of Fig. 10a are orderedwith respect toO as shown
in Fig. 10b.

Definition 10 (Ranking XReason semantics) According to
the ranking XReason semantics, an answer of a query Q on
an XML tree T is a list of the ITs of Q on T ranked in an
order which complies with the order O of their patterns.

1 The homomorphism relations can also be related to the concept of
preference relation in measurement theory.
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In our running example, we have 15 patterns and 16 ITs.
An ordering of these ITs which complies with the order O
of patterns shown in Fig. 10b is an answer of the query
Q = {Physics, James, Harrison} on the XML tree of
Fig. 3.

We use the patterns at the top-k levels of G≺ to define
filtering semantics.

Definition 11 (Filtering XReason semantics) According to
the filtering XReason semantics, the answer of Q on T is
the set of ITs of the patterns of Q on T with the smallest k
GLevel values.

Parameter k is user defined. Usually, k is chosen to be
equal to one (i.e., we choose the top-level patterns) in which
case the answer of Q on T is the set of ITs whose patterns
are source nodes in the G≺ graph.

Based on the previous definition and for k=1, the answer
of query Q = {Physics, James, Harrison} on the XML
tree of Fig. 3 is the set of ITs which comply with patterns
P2 or P4 (the two source nodes in graph G≺ of Fig. 10a).
There are only two ITs which comply with these patterns—
one for each pattern: the IT of P2 with leaf nodes 5, 7
and 11 whose MCT is rooted at course and the IT of
P4 with leaf nodes 24 and 25 whose MCT is rooted at
seminar.

It is interesting to note that according to XReason seman-
tics, an IT might more meaningfully relate its keyword
instances than another IT even though these ITs do not have
any location proximity, that is, they do not share any node and
their LCAs are not in descendant-or-self relationship. This
feature departs from previous traditional filtering semantics
(e.g., ELC A [11,41], SLC A [7,12,40],MLCA [20]) where
the location proximity is required in order to privilege one
IT over another. In the next section, we analyze the filtering
XReason semantics in relation to previous semantics.

4 Analysis of XReason

In this section, we compare the XReason filtering semantics
with different previous filtering semantics from the litera-
ture. For determining the query answer with XReason, only
ITs of the top level patterns in G≺ are retained. We show
cases where the other approaches miss meaningful answers
or return meaningless answers while XReason does not. This
demonstration proves also that XReason is different than all
the previous approaches.

Many approaches to keyword search in the literature return
LCA nodes as answers to keyword queries. In this paper,
the answer of a keyword query is a set of ITs (see Def-
inition 2). The ITs more precisely capture the subtleties
of the different semantics than the LCAs since the same
LCA can be the root of multiple MCTs of different ITs
for a query. In order to set up a common ground for com-
parison, we define the previous approaches in terms of
ITs. We go through these approaches with an example,
but we provide before a summary of their formal defini-
tions. Let Q = {k1, k2, . . . , kn} denote a keyword query
and T denote an XML tree. Let also LC Aset (Q, T ) be
the set of LCAs of Q on T and I T set (Q, T ) be the
set of ITs of the instances of Q on T . Table 1 provides
formal definitions of the previous semantics in terms of
ITs.

If the answer of a query according to semantics A is
a subset of the answer of this query according to seman-
tics B for any query and on any XML tree, we say that
B contains A and we write A ⊆ B. Containment rela-
tionships between the different approaches based on the
definitions of Table 1 are shown in Fig. 11. Containment
relationships between some filtering approaches are also
provided in [27]. However, the semantics defined in [27]
are based on LCAs, while the semantics we defined in this
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Table 1 Formal definitions of different previous filtering semantics in terms of ITs

Semantics Definition of the answer of Q on XML tree T

SLC A [7,12,40] {t | t ∈ I T set (Q, T ), n = root (MCT (t)), and � ∃ t ′, n′ (t ′ ∈ I T set (Q, T ), n′ = root (MCT (t ′))
and n′ > n)}

ELCA [11,41] {t | t ∈ I T set (Q, T ), n = root (MCT (t)), and � ∃ n′(n′ is a node in MCT (t), n �= n′ and
n′ ∈ LC Aset (Q, T )}

V LCA [9,16] (all pairs related) {t | t ∈ I T set (Q, T ) and ∀ pair of annotated nodes ni , n j in t, � ∃ distinct nodes nk , nl in the path
between ni and n j s.t. label(nk) = label(nl ) unless nk = ni and nl = n j }

CV LCA [16] V LCAset (Q, T ) ∩ ELCAset (Q, T ) where V LCAset (Q, T ) (resp. ELCAset (Q, T )) is the
answer of Q on T according to V LCA (resp. ELCA) semantics

MLCAlabel [20,38] {t | t ∈ I T set (Q, T ) and ∀ pair of annotated nodes ni , n j in MCT (t) of two distinct keywords, � ∃
node n in T s.t. label(n) = label(n j ) and LC A(ni , n) > LC A(ni , n j ) in T }

MLCAvalue[20]=pairwiseELC A {t | t ∈ I T set (Q, T ) and ∀ pair of nodes ni and n j in MCT (t) annotated by the keywords ki and
k j , respectively, � ∃ instance n′

j of k j in T s.t. LC A(ni , n′
j ) > LC A(ni , n j ) in T }

MLCAlabel+value [20] {t | t ∈ I T set (Q, T ) and ∀ pair of nodes ni and n j in MCT (t) annotated by the keywords ki and
k j , respectively, � ∃ instance n′

j of k j in T s.t. label(n′
j ) = label(n j ) and

LC A(ni , n′
j ) > LC A(ni , n j ) in T }

MaxMatch [25] {t | t ∈ SLC Aset (Q, T ) and ∀ node n in MCT (t), � ∃ sibling node n′ of n in T s.t. the set of
keywords occurring in the subtree rooted at n in T is a proper subset of the set of keywords
occurring in the subtree rooted at n′ in T }

pairwiseSLC A {t | t ∈ I T set (Q, T ) and ∀ pair of nodes ni and n j annotated by keywords ki and k j , respectively,
in MCT (t), � ∃ instances n′

i and n′
j of the same keywords in T s.t. LC A(n′

i , n
′
j ) > LC A(ni , n j )

in T }

Schema-level SLC A [15] {t | t ∈ I T set (Q, T ) and � ∃ t ′ ∈ I T set (Q, T ) s.t. the root-to-LCA label path of t is a proper
prefix of the root-to-LCA label path of t ′}

Fig. 11 Containment
relationships between different
filtering semantics

paper are based on ITs. Consider the query, Q = {Physics,
James, Harrison} on the XML tree of Fig. 12. With this
query, the user requests information about a course or semi-
nar on physics which is offered by James Harrison or by
James and Harrison. The relevant ITs to Q are, I T1 =
{(Physics, 4), (James, 6), (Harrison, 10)}, I T2 =
{(Physics, 13), (James, 16), (Harrison, 15)} and
I T3 = {(Physics, 40), (James, 41), (Harrison, 41)}.

The LCAs of their keyword instances are (3, course), (12,
course) and (39, seminar) and are labeled l1, l2 and l3,
respectively, in Fig. 12.

SLC A [7,12,40] eliminates an ITwhose LCA is an ances-
tor of another IT’s LCA. Therefore, it fails to return I T1
because there is another IT, I T2, whose LCA (node 12) is a
descendant of I T1’s LCA (node 3). Missing correct results
reduces the recall of the approach. Moreover, SLC A returns
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Fig. 12 An XML tree

I T4 = {(Physics, 24), (James, 31), (Harrison, 27)}
with LCA (22, prerequisites) which is an irrelevant
result since it involves twodifferent courses. Irrelevant results
affect the precision of SLC A.

ELC A [11,41] returns ITswhoseMCTdoes not comprise
an LCA of the query keywords other than the MCT root. For
this reason, I T2 is a result for ELC A. I T1 is also a result
of ELC A even though it is not a result of SLC A since its
MCT does not comprise any LCA of the query keywords
other than (3, course). This is an improvement in ELC A
over SLC A. However, it fails to eliminate wrong results. For
instance, ELC A returns I T4 as there does not exist another
ITwith a descendant LCA. In some cases, ELC A has noway
of eliminating an irrelevant answer. This weakness affects its
precision.

The V LC A semantics [9,16] takes into account also the
labels of the nodes in the XML tree. It eliminates an IT if
for some pair of annotated nodes, the path between them
comprises two distinct nodes with the same label and at least
one of them is an internal node in the path. V LC A fails
to return I T1 because nodes 9 and 10 have the same label,
instructor. Even though V LC A is intuitive in specific
cases, it is prone to missing relevant results in the general
case. In addition, it is not able to eliminate irrelevant results
when they do not contain duplicate labels. For instance, it
fails to eliminate I T5 = {(Physics, 34), (James, 41),
(Harrison, 41)} (whoseLCA(1,university) is labeled
as l5 in Fig. 12)which is irrelevant as it links information from
a course and a seminar through the root of the XML tree.

CV LCA [16] returns an answer which is a subset of
V LC Aset by enforcing a stricter rule. If an IT is in the
CV LCAset : (a) the IT is in V LC ASet , and (b) its MCT
does not comprise an LCA of the query keyword instances
other than the MCT root. Condition (b) amounts to forc-
ing the IT to be part of the ELC Aset . Therefore, an IT
is returned by CV LCA if and only if it is in the intersec-

tion of V LC Aset and ELC Aset . SinceCV LCA is a subset
of V LC Aset and ELC Aset , it inherits the recall problems
from both approaches. For instance, it fails to return I T1
which as mentioned above does not belong to V LC Aset .

TheMLCA semantics [20] requires all keyword instances
in a result IT to be pairwise meaningfully related. However,
the original definition of the meaningfulness relationship in
[20] does not distinguish between a keyword matching the
content of a node and the label of a node. Therefore, there are
three ways to interpret this relationship in the XML keyword
search context, which lead to three alternative definitions for
MLCA semantics, named here MLCAlabel , MLCAvalue

and MLCAlabel+value. MLCAlabel and MLCAlabel+value

take the labels of the nodes in the XML tree into account.
According to MLCAlabel , two keyword instances ni and
n j are meaningfully related if there exists no other node nk
in T , with the same label as ni , such that LC A(n j , nk) >

LC A(ni , n j ) in T . In the example of Fig. 12, MLCAlabel

misses I T1 as it does not meaningfully relate nodes (6,
fname) and (10, lname). Also, it fails to eliminate I T5
as all pairs of keyword instances in I T5 are meaningfully
related. MLCAvalue is purely structural, that is, it is inde-
pendent of the node labels in the XML tree. According to
MLCAvalue, two instances ni and n j of the keywords ki
and k j , respectively, are meaningfully related if there exists
no other instance nk of ki in T such that LC A(n j , nk) >

LC A(ni , n j ) in T . One can see that MLCAvalue is equiv-
alent to pairwiseELC A. The pairwiseELC A semantics
returns an IT if theLCAof any two annotated instances of two
distinct keywords in it is also anELCAof these two keywords
in T . MLCAvalue fails to eliminate the irrelevant result I T4.
Finally, according toMLCAlabel+value, two instances ni and
n j of the keywords ki and k j , respectively, are meaningfully
related if there exists no other instance nk of ki in T such that
label(nk) = label(ni ) and LC A(n j , nk) > LC A(ni , n j )

in T . In other words, MLCAlabel+value defines the mean-
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ingfulness relationship by imposing the conditions of both
MLCAlabel and MLCAvalue. Since MLCAlabel+value =
MLCAlabel ∪ MLCAvalue, it inherits the precision prob-
lems of MLCAlabel and MLCAvalue.

MaxMatch [25] refines SLC A byexcluding ITs accepted
by SLC Awhen they involve “disqualified”keyword instances
in theXML tree.MaxMatch is a purely structural semantics
since it uses structural criteria to identify disqualified nodes.
The formal definition is shown in Table 3. The query answer
of MaxMatch is a subset of that of SLCA. One can see that
MaxMatch is less restrictive than pairwiseSLC A which
accepts an IT if the LCA of any two annotated instances of
two distinct keywords in it is also an SLCA of these two key-
words in the XML tree. Since, MaxMatch is contained in
SLC A, it inherits the bad recall of SLC A. For instance, in
our running example, it misses the relevant I T1. Moreover, it
fails to eliminate I T4 which is irrelevant since, as mentioned
earlier, it groups together two distinct courses.

Schema-level SLC A [15] also refines SLC A by excluding
ITs accepted by SLC A leveraging both structural and seman-
tic information. It excludes an IT accepted by SLC A if its
root-to-LCA label path is a proper prefix of that of another
IT. By definition, Schema-level SLC A is contained in SLC A
and as such it demonstrates the poor recall performance of
SLC A, but it can even worsen it by excluding relevant ITs
retained by SLC A. Figure 1 (and not Fig. 12) shows such an
example for query {Physics, James, Harrison}where the
relevant IT whose LCA is node 3 is rejected even though it
is accepted by SLC A.

Our approach, XReason, successfully returns all relevant
ITs and eliminates the irrelevant ones. Results I T1, I T2 and
I T3 conform to top-level patterns in the G≺ graph, and they
are retained. The irrelevant I T4 is eliminated because the
pattern P1 of I T1 precedes the pattern P4 of I T4 with respect
to the ≺aph relation (P1 ≺aph P4). The pattern P5 of I T5 is
preceded by the pattern P3 of I T3 with respect to the ≺pph

relation (P3 ≺pph P5). Thus, the I T5 is eliminated. All other
irrelevant ITs are eliminated using ≺pph .

Note that, as shown in Fig. 11, ELC A contains XReason.
To see this, let us assume that an IT I of Q on T is not in
ELC Aset (Q, T ). Then, there is an IT J in T whose LCA
occurs in theMCTof I without coincidingwith theLCAof I .
Therefore, I and J share a common root-to-annotated-node
path and root (MCT (J )) > root (MCT (I )). As a conse-
quence, the pattern PJ of J precedes the pattern PI of I with
respect to≺pph (PJ ≺pph PI ), and thus, IT I (and all the ITs
of PI ) is eliminated from the answer of Q on T according to
XReason. This proves that XReason ⊆ ELC A.

The ≺pph relation is particularly useful for eliminat-
ing irrelevant ITs that link keyword instances through the
root of the XML tree and are almost in all cases meaning-
less. In Sect. 5.3, we present a heuristic extension of our
algorithms which eliminates patterns connecting keyword

instances through the root of theXMLtree in order to improve
performance.

5 Algorithms

Our implementation ofXReason comprises two components.
The first one uses a stack-based algorithm to generate the
query patterns and their associated ITs. The second one con-
structs the precedence graph G≺ based on the ≺h , ≺aph and
≺pph relations and ranks the patterns and their respective ITs.
We have maintained these processes separate in our system
in order to be able to modify the semantics of query answers
(pattern graph construction and pattern ranking) but also to
include additional metrics in producing a ranking for the pat-
terns, if desired. We also present in this section an improve-
ment of the pattern generation algorithm which avoids gen-
erating patterns that are not meaningful and would be placed
in low ranks based on the homomorphism relations, thereby
substantially improving the performance of the system.

5.1 Pattern generation

The algorithm that extracts the query patterns is named Pat-
ternStack and is outlined in Algorithm 1. PatternStack takes
as input the keyword query and the inverted lists of the key-
word instances (XML tree nodes) for the query keywords.
It returns the patterns of the query answers associated with
their ITs.

PatternStack does not wait to extract patterns until after all
the result ITs of the query are computed. Instead, it follows
a dynamic approach: it incrementally computes the patterns
on the fly while computing the result ITs and links the ITs to
their respective patterns. A notable feature of PatternStack
is that it does not require auxiliary structures for computing
patterns and ITs.

Every entry in an input inverted list consists of the Dewey
code of a keyword instance and the label path from the root of
the XML tree to this instance. In order to reduce space con-
sumption, the labels are numerically encoded. The inverted
lists are produced with a single pass of the XML document.
Patterns in PatternStack are tree structures. Every node in a
pattern is associated with the set of keywords which annotate
this node and its descendants in the pattern. This keyword set
is encoded as a bitmap over the list of all keywords. During
the pattern construction phase, PatternStack constructs pat-
terns which do not involve all the keywords and are called
partial patterns. These patterns are represented similarly to
complete patterns. Partial patterns are progressively aug-
mented into complete patterns. Partial and complete patterns
are identified by ids (pids). Figure 13 shows (among other
concepts which will be explained later) how patterns are rep-
resented by PatternStack.
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Algorithm 1: PatternStack algorithm.
1 PatternStack(k1, . . . , kn : keyword query, invL: inverted lists)
2 pattern[] patterns /* Array of patterns. The array

indexes are pattern ids */
3 int[] completePatterns /* Array of complete patterns’ ids

*/
4 int[][][] jointPatterns /* Mappings from pairs of patterns

to their joint patterns */
5 int[][] parentPatterns /* Mappings from patterns to their

parent patterns */
6 s = new Stack()
7 while currentNode = getNextNodeFromInvertedLists() do
8 while s.topNode is not ancestor of currentNode do
9 pop(s)

10 while s.topNode is not parent of currentNode do
11 push(s, ancestor of currentNode at
12 s.topNode.depth+1, “”)

13 push(s, currentNode, keyword)

14 while s is not empty do
15 pop(s)

16 pop(Stack s)
17 for tempId = s.top.patterns.next() do
18 if temp is complete then
19 s.top.removePatternId(tempId)
20 completePatterns.add(tempId)
21 patterns[tempId].addLCA(s.top.dewey())

22 else
23 childPatterns.add(extendToParent(tempId))

24 s.pop()
25 newPatternIds = constructNewPatterns(s.top.patterns,
26 childPatterns)
27 s.top.addPatternIds(newPatternIds)

28 push(Stack s, Node n, String keyword)
29 newP = new Pattern(n.labelId, flags.set(id(keyword)))
30 newPid = addToPatternsIfNotExists(newP)
31 newPatternIds = constructNewPatterns(s.top.patterns,
32 array(newPatternId))
33 s.top.unionPatternIds(newPatternIds)

34 int[] constructNewPatterns(int[] currentPatternIdsA, int[] currentPatternIdsB)
35 foreach currentPatternIdsA as idA do
36 foreach currentPatternIdsB as idB do
37 if patterns[idA].keywordFlags AND patterns[idB].keywordFlags

== 0 then
38 if jointPatterns[min(idA, idB), max(idA, idB)] is set then
39 newPatterns.add(jointPatterns[min(idA,
40 idB), max(idA, idB)])

41 else
42 newP = new Pattern(joinRoots(
43 patterns[idA], patterns[idB]))
44 newP.keywordFlags =
45 patterns[idA].kwFlags OR
46 patterns[idB].kwFlags
47 newPid =
48 addToPatternsIfNotExists(newP)
49 newPatterns.add(newPid)
50 jointPatterns[min(idA, idB), max(idA,
51 idB)] = newPid

52 return newPatterns

53 int extendToParent(int childPid)
54 if parentPatterns[childPid] is set then
55 return parentPatterns[childPid]

56 else
57 childP = copyOf(patterns[childPid])
58 parentP = new Pattern(parentLabel(childP.label),
59 childP.kwFlags)
60 childP.label = tail(childP.label)
61 parentP.addChild(childP)
62 parentPid = patterns.add(parentP)
63 parentPatterns[childPid] = parentPid

PatternStack processes nodes from the keyword inverted
lists in document order. The algorithm uses a stack to pro-
gressively construct the patterns of a query on an XML tree
in a bottom-up way. Each stack entry corresponds to a node
of the XML tree and is associated with the set of all the
MCTs that involve its descendant keyword instances. These
MCTs can be complete (i.e., they involve instances of all the
query keywords) or partial (i.e., they involve instances of a
proper subset of the query keywords). They are represented
in the stack entry by their corresponding partial or complete
patterns. For each pattern, only an id (pid) is stored.

In order for a node n to be pushed into a stack, the top
stack node should be the parent of n. This is guaranteed by
appropriate pops of non-ancestor nodes and pushes of all
the ancestors of n (lines 8–12). For each new node, a partial
pattern MCT is constructed (line 29). If this pattern has been
constructed before, it appears in the list patterns and its
pid is known. Otherwise, it is added to patterns and gets a
new pid (line 30). Then, it is combined with all the existing
patterns of the top stack node to build new patterns. The
resulting new pattern set is unioned with the old pattern set
of the top stack node (lines 31–33).

During a pop action, all complete patterns are removed
from the top stack entry (lines 18–20). The Dewey code of
the top stack node is associated with all complete patterns,
since it is the root of the MCTs of the ITs corresponding
to these complete patterns (line 21). The remaining (par-
tial) patterns are extended to the parent of the top node
(line 23, 53–63). Note that only the root node of a pat-
tern MCT is associated with a path of label ids, while the
rest of the nodes are associated only with their own label
id (Fig. 13b). This scheme is implemented in lines 58–60.
The annotation of the former root is also propagated to the
new one (line 58). The top entry is popped (line 24), and its
extended patterns are combined with the patterns of the par-
ent stack entry to produce new ones (line 25). The patterns
are combined through an operation called joinRoots (line
42) which simply merges their roots. The resulting pattern is
called jointPattern. Figure 13 shows examples of joinRoots
operations on partial patterns. Finally, the extended patterns
together with newly combined ones are added to the parent
stack entry.

Algorithm PatternStack considers any alternative way of
combining partial patterns into a complete pattern only once.
It stores the patterns in the patterns array and keeps only
their pids in the stack entries. Every time two patterns are
combined to produce a new one, the pids of the combined
patterns and that of the jointPattern are kept in the table
joint Patterns (line 4). Another table (parent Patterns in
line 5) associates each pattern MCT child P with the pat-
tern parent P produced when child P is augmented with
an edge to the parent node of its root (lines 53–63). These
two tables are consulted before any pattern is constructed
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(a)

(b)

Fig. 13 PatternStack pattern encoding and combination for Q = {Physics, James, Harrison} on the data tree of Fig. 12. a Partial patterns, b
encoded partial patterns

(lines 38, 54) in order to avoid extending a pattern which
has already been extended or combining two patterns that
have already been combined. Function addToPatternsIfNo-
tExists() (lines 30, 48) checks if a newly constructed pattern
has been constructed before. This function compares the new
pattern only with stored patterns having: (a) the same root
label path and (b) the same root annotation. The compari-
son is performed exploiting a unique string representation
of each pattern, which uses the label encodings and the
annotation bitmaps of the pattern nodes. Function check-
IfExistsOrAddToPatterns() returns the existing pid or the
new pid assigned to the new pattern added to the array
patterns.

The example of Fig. 13 shows howPatternStack combines
and extends patterns. Patterns P1 and P2 are combined to
construct P3. Pattern P3 is extended to produce P4. Pattern
P4 combined with P5 produces P6. The figure shows also the
encoded labels and label paths as well as the bitmap keyword
annotations.

The previous discussion in this section justifies the fol-
lowing proposition.

Proposition 6 The PatternStack algorithm correctly com-
putes all the patterns of a keyword query on the set of inverted
lists of an XML tree.

Let d be the depth of the data tree and |S| be the total
number of nodes in the inverted lists. Each insertion of a
node from the inverted lists may require at most d pops from
and d pushes onto the stack. Let p be the number of partial
patterns a stack entry can contain. When a node is pushed
onto the stack, it may be combined with at most p patterns
of the parent stack entry. This takes O(p) time. When a node
is popped from the stack, all its partial patterns are extended
with an edge to their parent node (the new top entry in the
stack). Assuming all the patterns of the popped node are
partial, this takes O(p). They are also combined with the
partial patterns of the parent node to produce new patterns
which takes O(p2). The whole process takes O(|S|dp2).

5.2 Graph construction and ranking

The second component of our system constructs the prece-
dence graph G≺ and ranks the patterns. This is implemented
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by algorithm PatternGraph. Algorithm PatternGraph takes
as input the patterns produced by PatternStack and incre-
mentally constructs G≺ by checking for the existence of the
homomorphism relations ≺h,≺aph and ≺pph between each
new pattern and the patterns in G≺. Then, it uses the graph
to rank the patterns as described in Sect. 3.4. There are two
sources of complexity in this process: (a) checking for the
existence of the ≺h,≺aph and ≺pph relations between two
patterns (which involves checking for the existence of the
different types of homomorphisms) and (b) applying these
checks to a large number of pairs of patterns.

In order to deal with (a), PatternGraph exploits the prop-
erties of the ≺h , ≺aph and ≺pph relations as this is shown by
the next four propositions.

Property 1 Let P and P ′ be two patterns of a query on an
XML tree. If the number of root-to-leaf paths of P is greater
than the number of root-to-leaf paths of P ′, then P �≺h P ′.

The proof of Property 1 is derived from the fact that the
annotation (subset of the keywords) of an annotated node n′
in P ′ which is mapped by a homomorphism to a node n in P
should be a subset of the annotation of n. Since the numbers
of annotating keywords in two patterns are equal, the number
of root-to- leaf paths in P cannot exceed that of P ′.

Property 2 Let P and P ′ be two patterns of a query on an
XML tree. If the height of the MCT of P is greater than that
of the MCT of P ′, then P �≺aph P ′.

Clearly, if the height of the MCT of P is greater than that
of the MCT of P ′, the longest path in the MCT of P cannot
be mapped by a path homomorphism to any path in the MCT
of P ′, and therefore, P �≺aph P ′.

Property 3 Let P and P ′ be two patterns of a query on an
XML tree. If the labels of nodes annotated by the same
keyword in P and P ′ are not the same, then P �≺h P ′,
P �≺aph P ′, P ′ �≺h P and P ′ �≺aph P .

Indeed, it is easy to see that there is no homomorphism
from the MCT of P to that of P ′ and path homomorphisms
from the paths of the MCT of P to those of the MCT of P ′
if the labels of their nodes annotated by the same keywords
are not the same.

Property 4 Let P and P ′ be two patterns of a query on an
XML tree. P �≺pph P ′, if one of the following conditions
does not hold: (a) the LCA depth of P ′ is smaller than the
LCA depth of P , (b) the root-to-LCA path of P ′ is a prefix
of the root-to-LCA path of P and (c) the maximum length
MCT path in P ′ is longer than the minimum length MCT
path in P .

The proof of Property 4 can be directly derived from the
definition of path homomorphism and the ≺pph relation.

Based on these properties, PatternGraph avoids initiating
in most cases the checking for the existence of homomor-
phisms or path homomorphisms between patterns by storing
numeric information (e.g., the number of root-to-leaf paths,
the height of the MCT, the LCA depth) with every pattern at
construction time.

To support checking for path homomorphisms when this
is needed, the MCT root-to-annotated-node paths, including
the annotations, are represented as strings. Then, checking
for the existence of path homomorphisms reduces to string
matching starting with the annotations.

In order to address the complexity related to the large
number of checks between patterns (which are needed in
order to determine the existence of edges between nodes),
PatternGraph avoids constructing some paths in the graph
G≺ which do not affect the final ordering of the patterns.
This is based on the following proposition.

Proposition 7 Let P and P ′ be two nodes in the graph G≺.
If there is an edge from P to P ′ in G≺ (that is P ≺ P ′),
any edge from the ancestors of P to P ′ does not alter the
ordering of the patterns produced by G≺.

The reasoning of the previous proposition is that in order
to determine the ordering O of the patterns, their level in
the graph G≺ (GLevel) needs to be computed. The GLevel
value of a pattern is the maximum distance of the pattern
from a source node in the graph. Therefore, transitive edges
do not increase this distance and need not be added to the
graph or if present, they can be removed.

Graph G≺ is stored in the form of an adjacency list. For
each pattern (node) P , a list of pointers to the parent nodes
and a list of pointers to the child nodes are maintained. We
also maintain the list of source nodes and the list of sink
nodes in G≺. When a new pattern is considered, Pattern-
Graph checks the existence of homomorphisms starting with
a sink node ofG≺ and proceeds in a bottom-upway. The sink
node list supports the bottom-up computation, and the source
node list is used for easily detecting the minimal patterns at
the end of the process.

The outline of algorithm PatternGraph is shown in Algo-
rithm 2. Algorithm PatternGraph compares every pattern
Pnew in the input list PList of patterns with the patterns Pold
in the Lsink list by calling procedure Compare (lines 2–8).
If Pold ≺ Pnew, an edge from Pold to Pnew is added to G≺
and Lsink is updated if needed (lines 17–20). If Pnew ≺ Pold
or Pnew and Pold are incomparable w.r.t.≺, procedureCom-
pare is recursively called for all parents P0 of Pold (lines
22–25). If P0 ≺ Pnew and Pnew ≺ Pold , the transitive edge
from P0 to Pold is removed (lines 24–25). If Pnew ≺ Pold
an edge from Pnew to Pold is added to G≺ and Lsource is
updated if needed (lines 26–29). Further optimizations based
on Proposition 7 (not shown in the outline of Algorithm 2)
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are implemented in PatternGraph to avoid adding transitive
edges.

Algorithm 2: PatternGraph algorithm.
1 PatternGraph(PList : list of patterns)
2 foreach P in PList do
3 if G≺ is empty then
4 Lsink .add(P)
5 Lsource .add(P)

6 else
7 foreach P ′ in Lsink do
8 Compare(P , P ′)

9 if P.parents is empty then
10 Lsource .add(P)

11 if P.children is empty then
12 Lsink .add(P)

13 Reset all visited flags

14 Compare(Pnew , Pold )
15 if Pold .visited=false then
16 Pold .visited=true
17 if Pold ≺ Pnew then
18 Add edge(Pold , Pnew) to G≺
19 if Pold in Lsink then
20 Lsink .remove(Pold )

21 else
22 foreach P0 in Pold .parents do
23 Compare(Pnew , P0)
24 if P0 ≺ Pnew and Pnew ≺ Pold then
25 remove edge(P0, Pold ) from G≺

26 if Pnew ≺ Pold then
27 add edge(Pnew, Pold ) to G≺
28 if Pold in Lsource then
29 Lsource .remove(Pold )

The previous discussion in this section justifies the next
proposition.

Proposition 8 AlgorithmPatternGraph correctly constructs
the graph G≺ given a set of patterns as input.

Let m be the number of patterns. Procedure Compare
compares each pattern to at most m other patterns. That is,
it performs O(m2) comparisons. Comparing one pattern to
another for the ≺h relation can be done in linear time on
the size of the pattern assuming every node is annotated by
the keywords of its descendant nodes and sibling nodes are
ordered based on the annotating keywords. Thus, this takes
O(dk), where d is the depth of the XML tree and k is the
number of keywords. Comparing two patterns for the ≺pph

relation takes O(dk2) since a node annotated by keyword ki
is allowed to map to a node which is not annotated by ki but
labeled by ki . Finally, comparing two patterns for the ≺aph

relation takes O(d2k2) since, in this case, a path can even
map different subpaths of another path. Therefore, the Pat-
ternGraph algorithm constructs the graph G≺ in O(m2d2k2)
time. In practice, by exploiting the properties of the homo-

morphism relations mentioned earlier, the algorithm very
efficiently avoids most of these comparisons and checks.

After the graphG≺ is constructed, the orderO is extracted
by using the GLevel,MCT Depth and MCT Size values
of each pattern. MCT Depth and MCT Size are calculated
and stored during the generation of the patterns. In order to
calculate the GLevel values, the graph G≺ is traversed and
the GLevel value for each pattern is set to the maximum
GLevel value of its parents incremented by one.

The filtering semantics for XReason depends on the num-
ber k of top levels in the graph G≺. The patterns (nodes) that
satisfy this condition (and their ITs thereon) are obtained
through a depth first traversal of G≺ up to level k.

5.3 An extension of PatternStack

In this section, we present an extension of PatternStack.
This extension is based on the observation that the patterns
in which the MCT root coincides with the pattern root are
usually meaningless. Indeed, these are patterns that link the
keyword instances through the root of the XML tree which
suggests that these keyword instances are not meaningfully
related. We name these patterns root patterns. Root patterns
usually represent a large percentage of all the patterns. Sim-
ilar remarks about the meaninglessness of root patterns have
been made in the context of different semantics [38] in order
to avoid their processing.

The semantics of XReason is expected to capture the
meaninglessness of such patterns and eventually rank them in
low ranks (in the case of ranking semantics) or exclude them
from the query answer (in the case of filtering semantics).
Both ≺aph and ≺pph relations (but in particular the ≺pph

relation) are effective in pushing down in the G≺ graph the
root patterns. Further, MCT Depth and MCT Size rank low
the rootpatterns amongpatternswith the sameGLevel value.

Nevertheless, even though we do not expect to have an
improvement in the effectiveness of XReason from the prun-
ing of root patterns, terminating their construction before
they are even generated substantially improves the perfor-
mance of PatternStack. Further, invoking PatternGraph on a
much smaller number of patterns greatly reduces the num-
ber of pattern comparisons and the execution time of that
algorithm too.

It is important to note that the extended ordering O′ of
the non-root patterns produced by the extended PatternStack
complies with the original orderingO of all the patterns pro-
duced by PatternStack. That is, the extended PatternStack
does not alter the order of the remaining patterns. In order to
support this claim, we first show the following proposition.

Proposition 9 Let P1 and P2 be two patterns. If P1 ≺ P2
and P1 is a root pattern then P2 is also a root pattern.
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The previous proposition can be derived from the proper-
ties of the homomorphism relations. Indeed, if P1 is a root
pattern and P2 is a non-root pattern, then P1 �≺pph P2, while
if P1 ≺h P2 or P1 ≺aph P2 the MCT roots of P1 and P2
should share the same label (the unique label of the root of
the XML tree), a contradiction.

Proposition 9 states that if a pattern in the G≺ graph is
a root pattern, all its descendant patterns are also root pat-
terns. Consider the orderingO of the patterns induced by the
G≺. If we eliminate all root patterns and their incident edges
from G≺, the order between the remaining non-root patterns
will be preserved in the ordering O′ of the patterns induced
by the resulting graph G ′≺ (which is the graph produced by
the extended PatternStack). This is formalized by the next
proposition.

Proposition 10 Let P1 and P2 be twonon-rootpatterns. If P1
precedes P2 in the original orderingO then P1 also precedes
P2 in the extended ordering O′.

Therefore, the extended PatternStack algorithm can be
safely used to improve the performance of PatternStack.

The modification of PatternStack for the implementation
of the extension under discussion is confined to the pop()
procedure of Algorithm 1. The extended PatternStack treats
in a different way the nodes that are children of the document
root. The patterns that are rooted on them are not extended
to their parent (i.e., the document root) in order to construct
new patterns. Thus, if the stack contains exactly two entries
(i.e., the document root and one of its children), lines 23,
25 and 27 are not executed. This way, the children of the
root node may contribute only complete patterns, while their
partial ones are not further processed.

6 Experimental evaluation

We performed experiments to measure the efficiency and
effectiveness of XReason as a filtering and ranking system.
We compare the quality of our results to that of previous
approaches.

In contrast to the IR domain [8], there is no standard
benchmark to evaluate the effectiveness of keyword search
on data-oriented XML [38].

We use Mondial, SIGMOD, NASA and DBLP datasets
for the experiments which are obtained from the UW XML
Data Repository2. Statistics for these datasets are depicted
in Table 2. We do not distinguish between elements and
attributes, and we represent attributes in these datasets as
elements. For the effectiveness experiments, we use Mon-
dial and SIGMOD datasets which are often used for this

2 http://www.cs.washington.edu/research/xmldatasets/.

Table 2 Mondial, SIGMOD, DBLP and NASA dataset statistics

Mondial SIGMOD DBLP NASA

Size 1 MB 467kB 127MB 23MB

No. of nodes 69,846 15,263 3,736,406 523,963

No. of
distinct tags

50 12 50 70

No. of
distinct
label paths

119 12 145 111

Average
depth

3.00 4.60 1.93 4.56

Maximum
depth

5 6 5 7

purpose in XML keyword search research [3,22]. We used
NASA and DBLP datasets which are larger for the scalabil-
ity experiments. NASA and DBLP datasets show different
characteristics: DBLP is a large but shallow dataset, whereas
NASA is a relatively smaller but deep dataset. Because of
these different characteristics, we can measure the efficiency
of our algorithms in a representative environment. The exper-
iments were conducted on a 2.9GHz Intel Core i7 machine
with 3 GB memory running Ubuntu.

We first introduce the metrics we use for the experimental
evaluation; then, we present our results on effectiveness for
both filtering and ranking semantics, and finally we present
our efficiency experiments.

6.1 Metrics

Since the ranking approaches we consider may view a num-
ber of results as equivalent (i.e., having the same rank), we
extend below the metrics that are usually used to measure the
quality of ranking. In order to determine the ground truth for
the effectiveness experiments, we employed five expert users
who are not involved in this project which characterized the
query patterns as relevant or irrelevant to the query. The rele-
vancy of each pattern (relevant or irrelevant) was determined
by the majority of the characterizations of the expert users.

Filtering experiments SinceXReasonworks with patterns, if
a pattern is among those with the smallest k GLevel values,
all candidate results that conform to it are regarded as relevant
and are returned to the user. We use precision and recall to
measure the effectiveness of filtering semantics. Precision is
the ratio of the number of relevant results in the result set
of the system to the total number of results returned by the
system. Recall is the ratio of the number of relevant results
in the result set of the system to the total number of relevant
results.
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Ranking experiments For the ranking experiments, we
employ two metrics: Mean Average Precision (MAP) and
precision@N.

MAP is the mean average precision of a set of queries with
average precision of a query being the average of precision
scores after each relevant result of the query is retrieved. As
a ranking effectiveness metric, MAP takes the order of the
results into account.

We extend MAP so that it takes into account equivalence
classes of results. An equivalence class in a ranked list is
a set of all the results which have the same rank. Differ-
ent orderings of these results in the ranked list would affect
the value of MAP [32]. For this reason, we define and com-
pute worst and best versions for MAP. In the worst (resp.
best) version, the ranked list is assumed to have the correct
results ranked at the end (resp. beginning) of each equiv-
alence class. This extension allows us to compute upper
and lower bounds for the ranking metrics between which
the scores of all the possible rankings lie. We denote these
metrics as MAPworst and MAPbest . We also computed
the expected MAP value by averaging over all the queries,
the average AP of the possible rankings of the results of
every query. This latter metric is denoted MAPexp. Clearly,
MAPworst ≤ MAPexp ≤ MAPbest . When the possible
rankings were too numerous to be computed exhaustively,
we used sampling to compute MAPexp.

In order to assess the effect of answer set size on preci-
sion in ranking experiments, we also measure precision with
a cutoff point for the number N of results which is called
precision@N (P@N). Similar to MAP, we consider two ver-
sions of P@N: P@Nworst and P@Nbest and also compute
the expected P@N value.

6.2 Effectiveness of filtering semantics

For the filtering experiments, we compare XReason with
k = 1 (that is, we consider only the patterns with the smallest
GLevel value) with three well-known baseline approaches:
SLCA [7,12,40], ELCA [11,41] and VLCA [9,16]. We also
compare with two more recent approaches, XReal [3,4] and
the CR approach [38].

In order to allow the comparison of XReason, which
returns ITs and not simply LCAs with the other approaches,
we use the definitions of SLCA, ELCA andVLCA semantics
in terms of ITs provided in Table 1. XReal infers promising
result node types (label paths from the root) and ranks and
returns the nodes that match these node types. In order to
compare XReal with XReason, we adjusted XReal in Table 3
so that it returns ITs andwe named this new approach ITReal.
For a query Q on an XML tree T , I T set (Q, T ) denotes the
set of ITs of the instances of Q on T . XRealNodes denotes
the set of nodes in T that match the node type inferred by
XReal.

Table 3 Definitions of XReal semantics in terms of ITs

Approach Definition of answer of Q on T

I T Real {t | t ∈ I T set (Q, T ), n = root (MCT (t)), and
∃ n′ (n′ ∈ XRealNodes and n′ < n)}

CR does not need an adjustment as it returns subtrees
similar to the ITs ofXReason. CR can be directly compared to
XReason because, like XReason, it partitions the results into
patterns. It also characterizes the relevance of the patterns,
not of individual results. Since CR excludes root patterns, we
consider in the effectiveness experiments non-root patterns.
As in [38], the factor f (n) of NTC is set to n2/(n − 1)2 and
the threshold of NTC is set to zero.

We run 20 queries on each of the datasets shown in Table 4
(Mondial andSIGMOD).Most of the queries are chosen from
previous papers:M1–M7andS1–S8 from [26],M8–M12and
S9–S11 from [22],M13 from [23],M14–M16 from [25], and
S12–S15 from [19]. Table 4 also shows the total number of
patterns (results) and the number of relevant patterns (results)
for each query. Precision scores of the different approaches
for all the queries on the Mondial and SIGMOD datasets are
shown in Figs. 14 and 15, respectively. Recall scores are only
shown for the queries on Mondial in Figure 16. The recall
scores for the queries on SIGMOD are all equal to 1.0 for
all approaches with the exception of XReason on query S2
which is 0.95. Table 5 provides average precision and recall
scores for all approaches on both datasets.

All approaches show good recall with CR and ITReal top-
ping the list and XReason and ELCA doing almost equally
well. However, in terms of precision ITReal and CR display
the worst scores closely followed by ELCA and SLCA. Both
ITReal and CR, as XReason, are also ranking systems and
they can use their ranking capacity to reduce the negative
effect of a large size answer set on precision. For this reason,
in the next section we also measure P@N. As we can see,
XReason significantly outperforms all the other approaches
(p < 0.05) with the exception only of the VLCA approach
on SIGMOD dataset (p < 0.12) in terms of precision and
shows almost perfect recall on both datasets.

6.3 Effectiveness of ranking semantics

In order to evaluate the effectiveness of the ranking seman-
tics of XReason, we computed the queries of Table 4 under
XReason, ITReal and CR semantics on the datasets and we
measured best and worst bounds and expected values for
MAP and P@N.

Table 6 shows the MAP scores. XReason outperforms CR
and largerly outperforms ITReal. Since XReason ranks the
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Table 4 Queries used in the experiments

Dataset Query ID Keywords No. of relevant
patterns

No. of
patterns

No. of relevant
results

No. of
results

Mondial M1 torneaelv, country, province 1 1 1 1

M2 roman, catholic, percentage, united, states 1 8 2 36

M3 population, 87, albania, city 1 7 12 504

M4 organization, name, members 2 2 10,111 10,111

M5 country, government, republic 2 17 115 3579

M6 country, ethnicgroups, german 2 14 19 3066

M7 city, washington, province 3 37 6 149,352

M8 france, territory 1 1 3 3

M9 lake, located 2 3 97 124

M10 singapore, country 3 4 4 6

M11 religions, christian, muslim 2 6 86 111

M12 province, houston, dallas 1 6 1 294

M13 belarus, population 2 2 4 4

M14 united, states, birmingham, population 2 12 6 3198

M15 ethnicgroups, chinese, indian, capital 2 6 16 183

M16 country, muslim 2 8 101 2209

M17 international, monetary, fund, established 1 1 1 1

M18 government, democracy, muslim 2 2 17 17

M19 jewish, percentage 2 9 17 109

M20 japan, tokyo, population 2 10 4 244

SIGMOD S1 author, position, 01, harry, article 1 217 2 74,392,500

S2 jim, gray, title, initpage, endpage 2 67 19 8,976,784

S3 initpage, 3, endpage, 7 1 65 4 56,210

S4 author, nicolas 1 3 2 197

S5 article, title, author 2 10 3738 11,309,368

S6 initpage, 7, article, endpage 2 55 20 1,940,838

S7 volume, 11, article 1 9 12 934

S8 asuman, pinar, article 1 5 4 135

S9 directions, database, research 1 5 1 366

S10 jennifer, widom, jeffrey, d, ullman 1 47 2 294

S11 relational, model, author, date 1 10 1 238

S12 karen, title 1 2 2 51

S13 anthony, data 1 2 2 55

S14 article, data, john 1 5 3 7801

S15 database, volume, number 1 3 347 374

S16 divesh, srivastava, database 1 5 2 174

S17 michael, stonebraker, postgres 1 6 3 23

S18 database, systems, security 1 5 1 417

S19 christos, faloutsos, signature, files 1 2 1 2

S20 efficient, maintenance, materialized,
views, subrahmanian

1 24 1 36

correct results almost always higher than the incorrect ones,
it has almost perfect MAP scores.

Best and worst P@N scores are shown in Figs. 17 and 18.
For a given query and a given approach, best andworst scores

are shown on the same column with worst scores superim-
posing best scores, i.e., if the scores are the same, only worst
scores are visible. N = 10 for all datasets because most of
the queries have few correct results. The average P@10exp
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Fig. 14 Precision scores for the queries of Table 4 on the Mondial dataset

Fig. 15 Precision scores for the queries of Table 4 on the SIGMOD dataset

Fig. 16 Recall scores for the queries of Table 4 on the Mondial dataset

Table 5 Average precision and
recall scores for the queries of
Table 4

Dataset Metric XReason ITReal SLCA ELCA VLCA CR

Mondial Avg. Prec. 0.84 0.45 0.46 0.50 0.66 0.47

Avg. Rec. 0.96 1.00 0.94 0.96 0.95 1.00

SIGMOD Avg. Prec. 0.96 0.25 0.50 0.52 0.88 0.10

Avg. Rec. 1.00 1.00 1.00 1.00 1.00 1.00

Table 6 Best and worst MAP
scores for the queries of Table 4

Dataset Semantics MAP MAP MAP
worst best exp

Mondial XReason 0.97 0.97 0.97

ITReal 0.48 0.76 0.51

CR 0.71 0.71 0.71

SIGMOD XReason 1.00 1.00 1.00

ITReal 0.34 0.63 0.37

CR 0.90 0.90 0.90
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Fig. 17 Best and worst P@10 scores for the queries of Table 4 on Mondial dataset

Fig. 18 Best and worst P@10 scores for the queries of Table 4 on SIGMOD dataset

Table 7 Average P@10exp scores for the queries of Table 4

Dataset XReason ITReal CR

Mondial 0.97 0.44 0.60

SIGMOD 1.00 0.27 0.28

scores are displayed in Table 7. For ITReal, limiting the result
set size did not have a significant effect on the precision for
most of the queries, which means that some incorrect results
are ranked high in the result list. XReason has perfect P@10
scores in almost all cases and obtains statistically significant
differences with respect to the ranking comparison systems
(p < 0.01).

6.4 Efficiency

In order to evaluate the efficiency of the algorithms: (a) we
compared the computation time of our original algorithm to
a naïve algorithm (b) we run scalability experiments for the
original and the extended algorithms and (c) we compared
the original versus the extended algorithm.

The naïve algorithm for implementing the XReason
semantics generates all the ITs of the query using the inverted
lists of the keywords and iterates over them to extract the pat-
terns. Then, it checks for the existence of homomorphisms
between the pairs of patterns in a straightforward way and
computes the query results. Figure 19 shows the computa-
tion times of the odd numbered queries of Table 4 for our

original algorithm and the naïve algorithm on the Mondial
and SIGMOD datasets. We only report on half of the queries
to save space. Note that the y-axis is in logarithmic scale.
Times exceeding 10,000s for the naïve algorithm are shown
with arrows.Our algorithm is at least twoorders ofmagnitude
faster than the naïve algorithm inmost of the cases. The aver-
age computation times for our algorithm over 20 queries on
Mondial and SIGMOD datasets are 0.50 and 0.51 s, respec-
tively. This performance is acceptable for real-time search
systems even without additional optimizations.

For our scalability experiments,weusedDBLPandNASA
datasets. For the original algorithm, we measured the com-
putation time in relation with the output size (the number of
ITs). The original algorithm depends heavily on the output
size. For the experiments, we use the most frequent four, five
and six keywords to form three different queries from the
randomly chosen keywords shown in Table 8. Table 8 lists
the keywords in descending order of their frequencies. For
each query, we truncated the keyword inverted lists at 20,
40, 60 and 80% of their length. The computation times are
presented in Fig. 20. Obviously, the higher the number of
keywords, the higher the number of ITs returned. As we can
see in Fig. 20, the original algorithm scales well even though
the number of ITs increases very fast with the percentage of
the inverted lists being used.

For the scalability experiments on the extended algorithm,
we measured the computation time in relation to the input
size (the total number of keyword instances in the XML tree
of all the query keywords). The extended algorithm depends
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Fig. 19 XReason execution times (in s) for the queries of Table 4. a Mondial, b SIGMOD

Table 8 Queries used in
scalability experiments

Algorithm Dataset Keywords

Original algorithm DBLP osawa, sculptured, cricket, marriages, erhebung, ilpo

NASA iccd, brightnesses, colloquium, hendry, perugia, attribute

Extended algorithm DBLP srinivas, elias, masao, divyakant, sums, lectures

NASA medium, dr, seen, heii, oxygen, comparing

(a) (b)

Fig. 20 Computation time versus output size for the original algorithm using queries with 4, 5 and 6 keywords. a NASA dataset, b DBLP dataset

(a) (b)

Fig. 21 Computation time versus input size for the extended algorithm using queries with 4, 5 and 6 keywords. a NASA dataset, b DBLP dataset

mainly on the input size since it eliminates non-root patterns
and returns a restricted number of ITs. We selected queries
from Table 8 and truncated keyword inverted lists as we did
in the previous scalability experiment. We show the mea-
sured computation times in Fig. 21. As shown in the figure,
the extended algorithm scales smoothly (it is almost linear).

This is due to the fact that the extended algorithm prunes par-
tial patterns early on in the computation before they become
complete patterns as long as they are rooted at the root of the
XML tree.

For our experiments on comparing the original and the
extended algorithm, we run five queries on the DBLP
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Table 9 Queries on the DBLP dataset used compare the performance
of the original versus the extended algorithm

Query ID Keywords

Q1 xml, keyword, search

Q2 query, analysis

Q3 sequence, alignment

Q4 collaborative, filtering, recommendation

Q5 dynamic, incremental, clustering

dataset to measure the number of ITs, the number of
generated patterns and the computation time of the two
algorithms. The queries are shown in Table 9. We selected
real-world queries in order to guarantee that they return a
reasonable number of non-root patterns and therefore to
highlight the differences in the performance of two algo-
rithms. The results are shown in Fig. 22. In Fig. 22a, b,
we show the number of ITs and the number of gener-
ated patterns for each query, respectively. The y-axes are
in logarithmic scale. The number of root patterns is sig-
nificantly greater than the number of non-root patterns for
all queries. The same remark applies to the number of root
and non-root ITs. In Fig. 22c, we show the computation
time of both algorithms. As we can see in this figure, the
extended algorithm significantly outperforms the original
algorithm. These results show that the extended algorithm
is a good substitute of the original one in real-world applica-
tions.

7 Related work

Keyword search on semi-structured databases is a compli-
cated task. Semi-structured databases such as XML usually
do not follow a strict schema, so combining data from
different parts of the database is more challenging than
in fully structured databases [15]. Several papers elabo-
rate on filtering and ranking semantics for keyword search
on XML data. The results are usually modeled as LCAs
of the keyword matches or subtrees of the XML tree

which contains a query match. Most of the filtering seman-
tics are based exclusively on the structural properties of
the results and only few of them take into account the
semantic information (that is the labels of the nodes). The
SLCA [36,40], ELCA [11], XSearch [9], VLCA [16] and
MLCA [20] and their properties are extensively reviewed
in Sect. 4. In [39], tree pattern queries are extracted from
the structural summary and those which present a mean-
ingful result are used. MaxMatch [25] groups SLCA nodes
and eliminate some irrelevant keyword matches under these
subtrees by considering additional rules. Consistency and
monotonicity concepts are also introduced in MaxMatch
as an axiomatic framework for evaluation of keyword
search semantics. Kong et al. [14] improve over Max-
Match by working over all LCAs instead of only SLCAs
and address MaxMatch’s false positive and redundancy
issues.

Ranking semantics for answering XML keyword queries
return a ranked list of results with respect to their rele-
vance to the user query. XRank [11] uses a variation of
PageRank algorithm to rank the results. XSearch [9] ranks
the results using a tf-idf function [33] adapted to the tree
structure of XML documents. XReal [3] introduces a simi-
larity function to rank nodes with respect to their similarity
to the query. Termehchy and Winslett [38] exploit mutual
information to calculate coherency ranking measures for
ranking the query answer. Nguyen and Cao [30] use mutual
information to compare results and to define a dominance
relationship between results for ranking. SAIL [17] intro-
duces the concept of minimal-cost trees and identifies the
top-k answers by using link analysis and keyword-pair rele-
vancy.

Some works focus on developing efficient algorithms for
XML keyword search semantics. Algorithms for finding
SLCAs and ELCAs for a keyword query are presented in
[40–43]. Hristidis et al. [12] develop efficient algorithms for
finding a compact representation of the result subtrees. In
[10], a multi-stack algorithm to return a size-ranked result
list to a keyword query is presented. Chen and Papakon-

(a) (b) (c)

Fig. 22 a Number of ITs, b number of generated patterns and c the computation time of the original and the extended algorithm on the DBLP
dataset using the queries of Table 9
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stantinou [7] introduce algorithms to support top-k SLCA
and ELCA calculation.

Additionally, different problems within the context of
XML keyword search have been addressed in some stud-
ies. XReal [3,4] and XBridge [18] propose approaches
to find the user intented result type. XReal [3,4] uses
a variation of tf-idf for finding the candidate result type
of a query. XBridge [18] uses a scoring measure for the
types as well, but it also takes into account the structure
of the results while scoring the type. XSeek [23] utilizes
entity, attribute or connection nodes to decide upon the
nodes to be returned in the results. XMean [22] and Liu
and Chen [26] address the problem of clustering XML
keyword search results. XMean [22] uses patterns of the
results for defining clusters for the results. In order to
facilitate browsing the results, a relaxation graph for the pat-
terns are created. Liu and Chen [26] built on XSeek [23]
to detect the nodes to be included in the results and
the results are clustered by using the types of keyword
instance nodes (i.e., entity or attribute). Context-sensitive
keyword search on XML is addressed in [6]. The context
is defined in the form of a path in the XML tree, and
the results are ranked by taking into account the specified
context. Materialized views for supporting the evaluation
of XML keyword queries have been proposed in [24,35].
Keyword query refinement and/or keyword suggestion tech-
niques in the XML keyword search context are studied in
[28,31]. Most of these problems have been summarized
in [27].

Keyword search has also been addressed in structured
databases [5,21,29]. As in the semi-structured databases,
keyword search techniques applied on the Web cannot be
applied directly on relational databases. This is due to the
fact that the information in relational databases are spread
over multiple tables and the structure of the data should
also be utilized during the keyword search [29]. Relational
databases and the query answers are usually modeled as
graphs [5,13], and some information retrieval techniques
have been adapted for assigning semantics to keyword
queries [29].

A preliminary version of part of the work presented in
this paper was presented in [1]. With respect to [1], the
present work introduces a new homomorphism relation to
define the XReason semantics, presents new propositions
about homomorphisms, relations and algorithm correctness,
and compares XReason to all previous filtering seman-
tics. Further, it introduces a new algorithm to generate
the pattern graph, a new heuristic extension of Pattern-
Stack that prunes the pattern generation while improving
performance and new experimental results to support the
effectiveness of XReason and the efficiency of our algo-
rithms.

8 Conclusion

We have proposed XReason, a novel approach for providing
ranking and filtering semantics to keyword queries on XML
data which is based on reasoning with patterns. The patterns
record the structural and semantic characteristics of the query
matches. In order to reason with patterns, we introduced
homomorphisms between patterns which are leveraged to
define homomorphism relations on patterns. Our approach
benefits from a global view of the query matches and avoids
the pitfalls of previous semantics which rely on compar-
ing query matches locally in the XML tree or rank them
based simply on a scoring function. By reasoning with pat-
terns whose number is typically very small compared to
the number of query matches, we make this global and
multi-feature comparison feasible. We designed an efficient
stack-based algorithm to implement XReason, and we also
devised a heuristic extension to improve its performance.
Contrary to most previous algorithms, ours works with the
keyword inverted lists and does not require any auxiliary data
structures and preprocessing of the data. Our experimental
studies over several real datasets show that XReason outper-
forms previous approaches in precision, precision@N, recall
and mean average precision. Further, they showed that our
algorithms are fast and scale smoothly, and therefore, our
approach is computationally feasible and can be applied in
practice.

In the present work, we did not exploit techniques based
on statistical information like tf-idf and PageRank which are
extensively used in information retrieval. This is an orthogo-
nal issue. As a future work, we are planning to study how our
approach can be combined with these techniques in applica-
tion areas where this combination can be beneficial.
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