
The VLDB Journal (2015) 24:415–439
DOI 10.1007/s00778-015-0383-4

REGULAR PAPER

Efficient k-closest pair queries in general metric spaces

Yunjun Gao1,2 · Lu Chen1 · Xinhan Li1 · Bin Yao3 · Gang Chen1

Received: 21 May 2014 / Revised: 10 February 2015 / Accepted: 13 March 2015 / Published online: 2 April 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Given two object sets P and Q, a k-closest pair
(kCP) query finds k closest object pairs from P × Q. This
operation is common in many real-life applications such as
GIS, data mining, and recommender systems. Although it
has received much attention in the Euclidean space, there
is little prior work on the metric space. In this paper, we
study the problem of kCP query processing in general met-
ric spaces, namely Metric kCP (MkCP) search, and propose
several efficient algorithms using dynamic disk-based met-
ric indexes (e.g., M-tree), which can be applied to arbitrary
type of data as long as a certain metric distance is defined
and satisfies the triangle inequality. Our approaches follow
depth-first and/or best-first traversal paradigm(s), employ
effective pruning rules based on metric space properties and
the counting information preserved in the metric index, take

Electronic supplementary material The online version of this
article (doi:10.1007/s00778-015-0383-4) contains supplementary
material, which is available to authorized users.

B Yunjun Gao
gaoyj@zju.edu.cn

Lu Chen
luchen@zju.edu.cn

Xinhan Li
lixh@zju.edu.cn

Bin Yao
yaobin@cs.sjtu.edu.cn

Gang Chen
cg@zju.edu.cn

1 College of Computer Science, Zhejiang University,
Hangzhou, China

2 Innovation Joint Research Center for Cyber-Physical-Society
System, Zhejiang University, Hangzhou, China

3 Department of Computer Science and Engineering, Shanghai
Jiao Tong University, Shanghai, China

advantage of aggressive pruning and compensation to fur-
ther boost query efficiency, and derive a node-based cost
model for MkCP retrieval. In addition, we extend our tech-
niques to tackle two interesting variants of MkCP queries.
Extensive experiments with both real and synthetic data sets
demonstrate the performance of our proposed algorithms, the
effectiveness of our developed pruning rules, and the accu-
racy of our presented cost model.

Keywords k-Closest pair query · Metric space ·
Query processing · Cost model · Algorithm

1 Introduction

Given two object sets P and Q, a k-closest pair (kCP)

query finds k closest object pairs from P × Q according
to a certain similarity metric (e.g., L1-norm, L2-norm, L∞-
norm, edit distance). Consider, for example, Fig. 1, in which
P = {p1, p2, p3} and Q = {q1, q2, q3, q4}. Assume that
the similarity metric between two objects is the Euclidean
distance (i.e., L2-norm), the final result of a 2CP (k = 2)

query is {〈p2, q2〉, 〈p2, q1〉}. The kCP query has received
considerable attention from the database community, due to
its importance in a wide spectrum of applications, such as
GIS [17,18,24,39,40], data mining [6,21,30], and so forth.
We give two representative examples here.

Application 1 (GI S) MkCP queries are helpful in many
decision support and demanding data-handling problems.
Considering efficient scheduling of tourist facilities, MkCP
retrieval can be employed to retrieve k closest pairs of cultural
landmarks and populated places. In this query, the travel-
ing distance should take into account the underlying road
network, i.e., it equals to the length of the shortest path con-
necting the cultural landmark and the populated place.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-015-0383-4&domain=pdf
http://dx.doi.org/10.1007/s00778-015-0383-4

416 Y. Gao et al.

Fig. 1 Example of a kCP query

Application 2 (Data Mining) MkCP search can be used
as a fundamental building block for a large number of data
mining tasks, such as clustering [21,30], outlier detection
[6], and so on. For instance, many clustering algorithms
(e.g., Chameleon, C2P) can be improved by including MkCP
retrieval as a primitive operation. It is worth mentioning that,
in some clustering applications [2,34], the similarity of clus-
ters may be edit (a.k.a. Leven-shtein) distance.

In view of flexible distance metrics in the above scenarios,
e.g., network distance, edit distance, it requires more generic
model than that specially used for a specific distance mea-
surement. Consequently, in this paper, we aim at efficient
methods for kCP retrieval in metric spaces, which requires
no detailed representations of objects and can support any
similarity metric satisfying the triangle inequality.

However, as to be discussed in Sect. 2, the existing solu-
tions for kCP queries are insufficient, due to three reasons
below. First, most approaches [17,18,25,35,40,45,52] are
applicable only to the Euclidean space, where kCP search
can be accelerated by exploiting various geometric proper-
ties (such as MBR [17,18,40] and plane-sweep [18,35,40])
to effectively prune the search space. Unfortunately, these
geometric characteristics employed in the Euclidean space
cannot be applied to the generic metric space, since complex
data (e.g., strings, documents) do not have obvious Euclidean
modeling. Second, existing similarity join algorithms in gen-
eral metric spaces [22,27,32,33,42], which find object pairs
with their distances within a distance threshold ε, cannot
handle kCP search efficiently. This is because, it is diffi-
cult to choose a proper value of ε. For a smaller ε value,
similarity joins cannot return k closet object pairs, result-
ing in false missing; for a larger ε value, similarity joins
return more than k closet object pairs, incurring the signifi-
cant query cost. Third, although there is little work [29,32]
on kCP queries in metric spaces, it is insufficient. Specif-
ically, [32] only supports the join for two fixed datasets
and achieves its efficiency for datasets with large overlap
percentage, which limits its applicability. [29] utilizes the
divide-and-conquer technique, which requires high computa-
tional cost for dividing, and its efficiency degrades rapidly as
the scale of input datasets increases. Moreover, both methods
only focus onmain-memory techniques, which cannot be effi-
ciently applied for the datasets not fitting in memory. Hence,
to achieve the scalability of database applications, we assume

that the datasets are built external-memory indexes (e.g.,
M-tree and PM-tree), as the indexes can further speed up
search.

Motivated by these, in this paper, we study the prob-
lem of efficient kCP query processing in general metric
spaces, namely Metric kCP (MkCP) search. Intuitively, a
straightforward solution is to compare every object pair from
two datasets. This approach, nevertheless, is very inefficient
because, for every object in an object set P , it needs to tra-
verse another object set Q once, incurring huge I/O and CPU
costs. In order to answer MkCP retrieval efficiently, two chal-
lenging issues have to be addressed.

Challenge I: How to minimize I/O overhead in terms of
the number of node/page accesses? The I/O cost is an impor-
tant metric in database search algorithms. We try to handle
this issue from two aspects: avoiding unnecessary node
accesses and reducing duplicated node accesses. We attempt
to develop several effective pruning rules to avoid unquali-
fied node accesses. In addition, we utilize LRU buffers and
combine the best-first and depth-first traversal paradigms, in
order to reduce duplicated node accesses.

Challenge II: How to minimize CPU cost in terms of the
number of distance computations? In most applications, the
distance is the dominant complexity measurement in metric
spaces, and it is customary to just count the number of com-
puted distances for comparing algorithms. Toward this, we
exploit the properties of the metric space (e.g., the triangle
inequality) and employ the aggressive pruning and compen-
sation technique, in order to eliminate unqualified distance
computations.

Based on these, we present, using the dynamic metric
index M-tree [14], three algorithms for MkCP search with
high-accuracy cost model. Note that, the proposed algorithms
can also be extended to any other tree structure metric index
(e.g., PM-tree [44]). Specifically, the first two algorithms
follow depth-first and best-first traversal paradigms, respec-
tively, and utilize pruning rules to efficiently handle MkCP
queries. To further improve query efficiency, the third algo-
rithm follows a hybrid traversal paradigm, which combines
depth-first and best-first strategies, and uses the aggressive
punning and compensation technique based on an estimated
kCP distance value. In addition, we extend our techniques
to tackle two natural variants of MkCP queries, i.e., (1) Self
MkCP (SMkCP) search, which performs MkCP retrieval on a
single dataset and (2) Approximate MkCP (AMkCP) search,
which trades the quality of the MkCP query result for the
search time.

In brief, the key contributions of this paper are summarized
as follows:
– We propose several pruning rules, use the aggressive

pruning and compensation technique, and combine best-
first and depth-first traversal paradigms, in order to reduce
I/O and CPU costs.

123

Efficient k-closest pair queries in general metric spaces 417

– We develop three efficient algorithms for processing the
MkCP query and then analyze their corresponding cor-
rectness and I/O overhead.

– We derive a node-based cost model for MkCP retrieval
using M-trees.

– We extend our techniques to handle two interesting vari-
ants of MkCP queries efficiently.

– Extensive experiments with both real and synthetic data
sets demonstrate the performance of our proposed algo-
rithms, the effectiveness of our presented pruning rules,
and the accuracy of our derived cost model.

The rest of this paper is organized as follows. Sect. 2
reviews related work. Section 3 formalizes the problem and
reveals its characteristics, presents the Count M-tree (COM-
tree) used to speed up MkCP search, and proposes a series
of pruning rules. Section 4 elaborates MkCP query process-
ing algorithms based on COM-trees and devises a cost model
for MkCP retrieval. Section 5 extends our techniques to solve
two interesting MkCP query variations. Considerable experi-
mental results and our findings are reported in Sect. 6. Finally,
Sect. 7 concludes the paper with some directions for future
work.

2 Related work

In this section, we overview the existing work related to
MkCP queries, including kCP queries in Euclidean spaces,
the M-tree, and querying metric spaces.

2.1 Euclidean kCP queries

The existing algorithms for kCP retrieval are mainly under
the Euclidean space, which can be classified into two
categories, namely the incremental algorithms and the non-
incremental algorithms.

The first one [25,39,40] is the incremental alternative,
which returns the result in ascending order of distances in
a pipeline fashion. Hjaltason and Samet [25] present the
incremental algorithms that can be used with a large class
of hierarchical spatial data structures. Shin et al. [39,40]
improves the incremental k-distance join algorithm, by utiliz-
ing bidirectional node expansion and plane-sweep techniques
for fast pruning of distant pairs, and the plane-sweep is further
optimized by novel strategies for selecting a good sweeping
axis and direction. In addition, an adaptive multistage algo-
rithm is developed for the incremental distance join when k
is not known in advance.

The second one [17,18,52] is the non-incremental alterna-
tive, which assumes that k is known in advance, and reports
the result all together at the end. Corral et al. [17,18] propose
one pruning heuristic and two updating strategies for mini-

mizing the pruning distance. Based on the pruning heuristic,
three non-incremental branch-and-bound external-memory
algorithms are developed, with two of them following the
depth-first search strategy and one obeying the best-first pol-
icy. The plane-sweep technique and access ordering are used
to further improve query efficiency. Yang and Lin [52] present
a new index structure called bichromatic-Rdnn (b-Rdnn) tree,
which utilizes the information about nearest neighbors to
process kCP queries efficiently. In particular, the b-Rdnn tree
built on an object set P preserves, for each object in P , its
nearest neighbor in an answer object set Q. However, to build
the b-Rdnn tree on P , we need to know Q in advance, which
limits its applicability.

Recently, Cheema et al. [9] propose a unified method for
top-k pairs, which allows the users to define a local scoring
function for each attribute, and a global scoring function that
computes the final score of each pair by combining its scores
on different attributes. Nonetheless, the framework relies on
the local scoring function defined on every attribute, which
does not exist in generic metric spaces. Roumelis et al. [35]
propose a new plane-sweep kCP search algorithm, termed
Reverse Run Plane-Sweep, which minimizes the Euclidean
and sweeping axis distance computations.

In addition, many variants of kCP queries have been
investigated in the literature. In order to further reduce kCP
query cost, some work [3,20,45] focuses on approximate
kCP search, which forsakes some precision of the query
result in exchange for improved efficiency. Angiulli and Piz-
zuti [3] study the approximate algorithm to calculate the
top-k closest pairs join query, which employs the space-
filling curve to establish an order between the points in
the space, and performs at most (d + 1) sorts and scans
of the two data sets, where d denotes the dimensionality.
Corral and Vassilakopulos [20] apply a combination of the
approximation techniques, e.g., α-approximate, N-consider
or Time-consider in the same query algorithm, i.e., hybrid
approximation scheme. Tao et al. [45] utilize LSB tech-
nique to solve closest pair search in high dimensional space,
which can be accomplished in (worst-case) time significantly
lower than the quadratic complexity, yet still ensuring very
good quality. Other interesting kCP query variants have also
been well studied, such as self kCP queries [18], constrained
kCP search [31,38], exclusive kCP retrieval [48], non-
index-based kCP search [24], top-k set similarity join [51],
kCP queries on moving objects [4,54] and spatial networks
[10], respectively, cost models for kCP queries [19], perfor-
mance comparisons of kCP queries [16,28], to name but a
few.

Nonetheless, all the above approaches are unsuitable for
MkCP search because, for boosting the query, they make
use of some geometric properties (e.g., MBR [17,18,39,40],
plane-sweep [18,35,39,40], and space-filling curve [3,45])
that are not available in generic metric spaces.

123

418 Y. Gao et al.

e4
e3

e1

e2

o2o1

o3

o4

o8

o9o6

o7

o5

r4

r6

e6

e5

r3

r1

r2

r5

(a) (b)

Fig. 2 Example of an M-tree. a The dataset placement. b The M-tree

2.2 The M-tee

Many indexing technologies in metric spaces have been pro-
posed [8,26,36,44]. However, following most approaches
in the relevant literature [11,46,49,53], we assume, in this
paper, M-tree [14], an external-memory metric index, is used
as an underlying index structure. The M-tree is a balanced
tree, and it can handle dynamic operations with reasonable
costs, without requiring periodical restructuring.

Figure 2 depicts an example of M-tree for an object set
O = {o1, o2, . . . , o9}. An intermediate (i.e., a non-leaf)
entry e in a root node (e.g., N0) or an intermediate node
(e.g., N1, N2) records: (1) A routing object e.RO , which
is a selected object in the subtree STe of e. (2) A cov-
ering radius e.r , which is the maximal distance between
e.RO and the objects in STe. (3) A parent distance e.PD,
which equals the distance from e.RO to the routing object
of the parent entry ep. Since a root entry e (e.g., e6) has
no any parent entry, e.PD = ∞. (4) An identifier e.ptr ,
which corresponds to the address of the root node of STe.
For example, in Fig. 2, a non-leaf entry e4 is associated
with the routing object o8 (= e4.RO), its covering radius
e4.r is r4, parent distance e4.PD corresponds to the distance
d(o8, o6) (= d(e4.RO, e6.RO)), and identifier e4.ptr =
N6. On the other hand, a leaf entry o in a leaf node (e.g.,
N3, N4, N5, N6) records: (1) An object o j , which stores the
detailed information of o. (2) An identifier oid, which repre-
sents o’s identifier. (3) A parent distance o.PD, which equals
the distance between o and the routing object in o’s parent
entry. For instance, as shown in Fig. 2, the parent distance
o9.PD of the object o9 is r4 (= d(o8, o9)), while o8.PD = 0
because o8 is the routing object of its parent entry e4.

2.3 Querying metric spaces

A metric space is a space with an associated distance metric,
which obeys certain simple properties. Several spatial queries
in metric spaces have been investigated.

Except for Euclidean kCP queries, two alternatives for
MkCP search are explored in [29,32]. Paredes and Reyes [32]
answer MkCP retrieval based on a new metric index, termed
coined List of Twin Clusters (LTC), which maintains two

Fig. 3 Illustration of Adaptive
Multi-Partitioning (AMP)

lists of overlapping clusters to index both object sets jointly.
Thus, it is limited for the case when two object sets come
from different datasets and have their own metric index inde-
pendently. In addition, it only achieves the efficiency for the
object sets with large overlap percentage, as to be verified in
Sect. 6.2. Kurasawa et al. [29] propose a divide-and-conquer-
based kCP query method in metric spaces, called Adaptive
Multi-Partitioning (AMP), which repeatedly divides and con-
quers the objects from the sparser distance distribution space,
and speeds up the convergence of the upper bound distance
before partitioning the denser space. Each time, AMP ran-
domly chooses a pivot o to divide the object set P into
n regions: P0 = {p ∈ P|0 ≤ d(o, p) < t0}, P1 =
{p ∈ P|t0 ≤ d(o, p) < t1}, . . . , Pi = {p ∈ P|ti−1 ≤
d(o, p) < ti }, . . . , Pn = {p ∈ P|tn−1 ≤ d(o, p) < tn}, as
|ti − ti−1| > u and u is the upper bound distance of kCP.
Similarly, Q can also be partitioned by the pivot o, as shown
in Fig. 3. Although AMP can avoid distance computations
searching in 〈Pi , Q j 〉 with | j−i | > 1, the CPU cost required
for dividing is still high, which increases rapidly with the
scale of input datasets, as to be verified in our experiments.
Moreover, the aforementioned two approaches only aim at
in-memory techniques and hence cannot be applied to sup-
port external-memory MkCP query processing efficiently.

Similarity search in metric spaces, including range and
nearest neighbor (NN) queries, has been well studied and
summarized in [8,26,36]. Ciaccia and Patella [13] propose
an approximation algorithm for kNN search, in which the
error bound ε can be exceeded within a certain probability
δ using the distance distribution of the query point. Zezula
et al. [53] introduce three different approximation methods
over M-trees, with the relative error is not bounded by any
function of the input parameters. In addition, cost models
[5,12,15,47] are also derived for metric similarity queries.
More recently, Vlachou et al. [49] present a framework for
distributed metric similarity search, where each participating
peer preserves its own data using an M-tree.

A similarity join retrieves the object pairs with their dis-
tances bounded by a distance threshold ε. This operation
has also been well studied in metric spaces, and there are
many efficient solutions, as overviewed in [27]. Recently,
Paredes and Reyes [32] handle similarity joins using LTC,
which indexes both sets jointly. Silva and Pearson [33,41,42]
develop a non-blocking similarity join database operator

123

Efficient k-closest pair queries in general metric spaces 419

DBSimJoin, and study index-based similarity joins. Fredriks-
son and Braithwaite [22] improve the Quicksort algorithm
[27] for similarity joins. In addition, similarity joins using
Map-Reduce have also been studied [37,50]. However, all
the above solutions cannot handle MkCP search efficiently.
This is because, it is difficult to choose a proper value of ε.
For a smaller ε value, similarity join cannot return k closet
object pairs, resulting in false missing. For a larger ε value,
similarity join returns more than k closet object pairs, incur-
ring the significant query cost. As an example, we have to
run the similarity join algorithm twice to obtain the accurate
result set [22], which is costly.

In addition, two other spatial queries, i.e., reverse kNN
and skyline queries, are also studied in metric spaces. In par-
ticular, metric reverse kNN search [1,46] finds the objects in
a given object set that have a specified query object q as one
of their k NNs, and metric skyline query [11,23,43] retrieves
the objects not dominated by any other object with respect
to all query objects in a generic metric space.

3 Preliminaries

In this section, we first formally define metric kCP (MkCP)

search, and then, we introduce the count M-tree (COM-tree),
and present several pruning rules and lemmas that can facil-
itate the development of efficient MkCP search algorithms.
Table 1 summarizes the notations used frequently throughout
this paper.

3.1 Problem formulation

A metric space is a tuple (D, d), where D is the domain of
feature values, and d is a distance function used to compare
objects in D. The distance function must satisfy the four

Table 1 Symbols and description

Notation Description

P or Q The object set P or Q

|P| or |Q| The cardinality of P or Q

MP or MQ The COM-tree/COMdnn-tree/GMdnn-tree on P or Q

|MP | or |MQ | The cardinality of MP or MQ

STe The subtree of an intermediate entry e

EP or EQ The leaf/non-leaf entry in MP or MQ

PEP of PEQ The parent entry of EP or EQ

d() The function of a certain metric distance

SR The result set of MkCP/SMkCP/AMkCP search

CPDk The kth closest pair distance in the result set

maxCPDk The upper bound of CPDk

eCPDk The estimation value of CPDk

properties below: (1) symmetry: d(p, q) = d(q, p); (2)
non-negativity: d(p, q) ≥ 0; (3) identity: d(p, q) = 0 iff
p = q; and (4) triangle inequality: d(p, q) ≤ d(p, o) +
d(o, q). Based on these properties, we formalize the MkCP
query.

Definition 1 (MkCP Search). Given two object sets P
and Q in a generic metric space, and an integer k (1 ≤
k ≤ |P| × |Q|), a metric k-closest pair (MkCP) query
finds k ordered different closest object pairs from P × Q,
i.e., MkCP(P, Q) = {〈p1, q1〉, 〈p2, q2〉, . . . , 〈pk, qk〉|p1,
p2, . . . , pk ∈ P, q1, q2, . . . , qk ∈ Q, 〈pi , qi 〉 �= 〈p j , q j 〉,
i �= j, 1 ≤ i, j ≤ k, and ∀(p′, q ′) ∈ P × Q −
{〈p1, q1〉, 〈p2, q2〉, . . . , 〈pk, qk〉} such that d(p′, q ′) ≥
d(pk, qk) ≥ · · · ≥ d(p1, q1)}.

Consider two English word sets P = {“till,” “thrill”} and
Q = {“ill,” “doll,” “nila”}, and suppose the edit distance is
used to measure the similarity between two words. If k =
2, M2CP(P, Q) = {〈 “till,” “ill” 〉, 〈“till,” “ doll” 〉}.

Based on Definition 1, MkCP(P, Q) may be not unique
due to the distance ties. However, the goal of our proposed
algorithms was to find one possible instance. Thus, we ran-
domly choose object pairs when the distance ties occur.

In this paper, we study the problem of MkCP retrieval.
For simplicity, in all the illustrative examples used in the rest
of this paper, we assume that the metric distance function is
L2-norm (i.e., Euclidean distance). In order to minimize the
query cost, we introduce the COM-tree, and based on which
we develop two pruning heuristics, as described in Sects. 3.2
and 3.3, respectively.

3.2 The count M-tree

To enable the search space pruning, we propose a variant of
M-tree, termed COUNT M-tree (COM-tree), which includes
e.num in each intermediate entry e to represent the number of
the objects contained in STe. For ease of understanding, the
COM-tree on the object set depicted in Fig. 2a is illustrated
in Fig. 4, where the number associated with every non-leaf
entry denotes e.num. For instance, e6.num = 4 as STe6 con-
tains four objects o6, o7, o8, o9, and e4.num = 2 since STe4

includes two objects o8 and o9. Note that, these digits are
computed and stored during the construction of COM-tree.

Fig. 4 Example of a COM-tree

123

420 Y. Gao et al.

EP
EQ

EP.RO

EP.r

EQ.RO

EQ.r

mindist
maxdist

pi

qj

Fig. 5 Example for mindist and maxdist

As MkCP search acts on the entry pairs from the COM-
trees over P and Q (i.e., MP and MQ), the minimal
distance and the maximal distance between entry pairs,
which can accelerate the search space pruning, are defined as
follows.

Definition 2 (Mindist). Given two intermediate entries EP

and EQ ,mindist (EP , EQ) = max{d(EP .RO, EQ .RO)−
EP .r − EQ .r, 0}.
Definition 3 (Maxdist). Given two intermediate entries EP

and EQ , maxdist (EP , EQ) = d(EP .RO, EQ .RO) +
EP .r + EQ .r .

Consider, for example, Fig. 5, in which the red solid
line represents mindist (EP , EQ), and the red dotted line
denotes maxdist (EP , EQ). Based on Definitions 2 and 3,
mindist (EP , EQ) and maxdist (EP , EQ) offer the lower
and upper bounds of the distances between object pairs (from
EP and EQ), respectively.

3.3 Pruning heuristics

Querying metric spaces is inherently more difficult than that
in Euclidean spaces, due to the lack of geometric properties.
In the sequel, we devise alternative pruning rules based on an
intuitive observation: an entry pair can be pruned if it cannot
contain any qualified object pair.

Rule 1 Given two leaf or non-leaf entries EP and EQ, if
mindist (EP , EQ) > maxCPDk, with maxCPDk denoting
the upper bound distance of the kth closest pair, 〈EP , EQ〉
can be discarded safely.

Proof The proof is straightforward according to the defini-
tions of mindist (EP , EQ) and maxCPDk . ��

Consider the example shown in Fig. 6. Assume that
current maxCPDk = 20, 〈EP3, EQ3〉 can be discarded
as mindist (EP3, EQ3) > maxCPDk . However, for every
Rule 1 application, it needs one distance computation
to calculate mindist . To this end, we give the defini-
tion of emindist in Definition 4, which can utilize the
triangle inequality to avoid unnecessary distance
computations.

PEQPEP

EP2

EP3

EQ1

EQ3

EQ2maxdist(EP2, EQ2)

mindist(EP2, EQ3)d(p1, q1)

p1 q1

mindist(EP3, EQ3)

p2
p3

p4

p5

p6

p7

p8

q2

q5

q3
q4

q6

mindist(EP2, EQ3) = 38.5

maxdist(EP2, EQ2) = 41.5

d(p1, q1) = 37.5

mindist(EP3, EQ3) = 42.5

EP1

d(p1, q3)
d(p1, q3) = 44.8

d(p1, p6) = 7.5

EP3.r = 4.5, EQ3.r = 3

Fig. 6 Example for Lemmas 1 and 2

Definition 4 (Emindist). Given two intermediate entries EP

and EQ , and suppose PEP (PEQ) is the parent entry of
EP (EQ), then emindist (EP , EQ) is defined as

⎧
⎨

⎩

dPEQ

dPEP

max{dPEQ , dPEP }

only d(EP .RO, PEQ .RO) is known
only d(EQ .RO, PEP .RO) is known
both are known

where dPEQ = |d(EP .RO, PEQ .RO)−EQ .PD|−EP .r−
EQ .r and dPEP = |d(EQ .RO, PEP .RO) − EP .PD| −
EP .r − EQ .r , respectively.

Due to the triangle inequality, |d(EP .RO, PEQ .RO) −
EQ .PD| and |d(EQ .RO, PEP .RO)−EP .PD| are no larger
than d(EP .RO, EQ .RO), and thus, emindist (EP , EQ) ≤
mindist (EP , EQ), i.e., emindist provides a lower bound of
mindist . Take Fig. 6 as an example. If onlyd(EQ .RO, PEP .

RO) (= d(q3, p1)) is known, emindist (EP3, EQ3) =
d(q3, p1) − d(p1, p6) − EP3.r − EQ3.r = 29.8, which is
smaller thanmindist (EP3, EQ3). Based on Definition 4, we
present a new pruning rule as follows.

Rule 2 Given two leaf or non-leaf entries EP and EQ, if
emindist (EP , EQ) > maxCPDk, then 〈EP , EQ〉 can be
pruned away safely.

Proof According to the definition of emindist , if emindist
(EP , EQ) > maxCPDk , mindist (EP , EQ) ≥ emindist
(EP , EQ) > maxCPDk holds. Therefore, 〈EP , EQ〉 can be
discarded safely due to Rule 1. ��

An example of Rule 2 is depicted in Fig. 6. Assume
that current maxCPDk = 20, 〈EP3, EQ3〉 can be pruned
as emindist (EP3, EQ3) > maxCPDk . Note that, although
Rule 2 has weaker pruning power than Rule 1, it does not
need any distance computation, as all the values required to
compute emindist for Rule 2 are directly available.

To deploy Rule 1 and Rule 2, we must derive values of
maxCPDk . Although their values are not unique, we know
that maxCPDk should be as small as possible to achieve
strong pruning power. A simple way to obtain maxCPDk is
to use the distance of the kth closest object pair retrieved so
far during MkCP query processing. However, we can get a
tight maxCPDk using intermediate entry pairs, in order to
efficiently shrink the search space as early as possible.

123

Efficient k-closest pair queries in general metric spaces 421

Lemma 1 Given two intermediate entries EP and EQ, if
k = 1, maxCPD1 can be set to d(EP .RO, EQ .RO); and if
k > 1, maxCPDk can be set to

min

⎧
⎨

⎩

d(EP .RO, EQ .RO)+EP .r
d(EP .RO, EQ .RO)+EQ .r
maxdist (EP , EQ)

EP .num≥k
EQ .num≥k
EP .num×EQ .num≥k

Proof To prove this lemma, maxCPDk can be updated with
r if there are k different object pairs having their distances
bounded by r .

For k = 1, since the routing object of an intermediate entry
is a real object, there exists an object pair 〈EP .RO, EQ .RO〉
with its distance bounded by d(EP .RO, EQ .RO). Thus,
maxCPD1 can be set to d(EP .RO, EQ .RO).

For k > 1, as shown in Fig. 5, there are (1) EP .num
object pairs 〈pi , EQ .RO〉 (pi ∈ EP) with their distances
d(pi , EQ .RO) ≤ d(EP .RO, EQ .RO)+d(pi , EP .RO) ≤
d(EP . RO, EQ .RO) + EP .r (according to the triangle
inequality), (2) EQ .num object pairs 〈q j , EP .RO〉 (q j ∈
EQ) with their distances bounded by d(EP .RO, EQ .RO)+
EQ .r , and (3) EP .num × EQ .num object pairs 〈pi , q j 〉
with their distances bounded by maxdist (EP , EQ). Conse-
quently,maxCPDk can be set as the corresponding minimum
value according to k, and the proof completes. ��

Consider the example illustrated in Fig. 6, where two
intermediate entries EP2 and EQ2 with EP2.num = 2
and EQ2.num = 2. We can set maxCPD4 (k = 4) to
maxdist(EP2, EQ2) based on Lemma 1. Hence, 〈EP3, EQ3〉
can be pruned by Rule 1, as mindist (EP3, EQ3) >

maxCPD4; whereas 〈EP2, EQ3〉 can not be discarded due
to mindist (EP2, EQ3) < maxCPD4. Note that, Lemma 1
considers only one intermediate entry pair. If we take into
account all subentry pairs in the same parent entry pair, the
value of maxCPDk can be tighter, as stated in Lemma 2.

Lemma 2 Given two sets of intermediate entries EPi
(1 ≤ i ≤ m) and EQ j (1 ≤ j ≤ n), which are suben-
tries of the parent entries PEP and PEQ, respectively,
and we sort d(EPi .RO, EQ j .RO) and maxdist (EPi , EQ j)
in ascending order, and then get two ordered sequences
d(EPt .RO, EQt .RO) and maxdist (EPt , EQt) (1 ≤ t ≤
mn). If k > 1, maxCPDk can be set to

min

{
d(EPk .RO, EQk .RO) mn ≥ k
maxdist (EPx , EQx)

∑

1≤t≤x≤mn
EPt .num × EQt .num ≥ k

Proof Let r be the minimum betweend(EPk .RO, EQk .RO)

andmaxdist (EPx , EQx). Similar as Lemma 1, to prove this
lemma, we need to find k different object pairs with their
distances bounded by r .

Since the routing object of an intermediate entry is a
real object and d(EPt .RO, EQt .RO) (1 ≤ t ≤ mn)

is sorted in ascending order, there are k object pairs

〈EPt .RO, EQt .RO〉 (1 ≤ t ≤ k) with their distances
bounded by d(EPk .RO, EQk .RO) if mn ≥ k; and if the
x th (x ≤ mn)maxdist (EPx , EQx) satisfies the fact that
the total number of object pairs contained in 〈EPt , EQt 〉
(1 ≤ t ≤ x) is larger than k, there exist at least k object
pairs with their distances bounded by maxdist (EPx , EQx).
Therefore, maxCPDk can be set as the corresponding mini-
mum value according to k, and the proof completes. ��

Back to the example shown in Fig. 6, where EPi

(1 ≤ i ≤ 3) and EQ j (1 ≤ j ≤ 3) are suben-
tries of PEP and PEQ , respectively. To utilize Lemma 2,
we sort d(EPi .RO, EQ j .RO) and maxdist (EPi , EQ j) in
ascending order, and then obtain two ordered sequences
d(p4, q5), d(p1, q5), d(p4, q1), d(p1, q1), . . . , d(p6, q3);
maxdist(EP2, EQ2), maxdist(EP2, EQ1), maxdist (EP1,

EQ2), . . . ,maxdist (EP3, EQ3). Then, maxCPD4 can be
set to the fourth distance d(p1, q1) that is smaller than
maxdist (EP2, EQ2). Thus, 〈EP2, EQ3〉 can be pruned by
Rule 1, as mindist (EP2, EQ3) > d(p1, q1) holds, but it
cannot be discarded if we only employ Lemma 1 to update
maxCPD4.

When expanding 〈PEP , PEQ〉, its subentry pairs 〈EPi ,
EQ j 〉 are processed one by one. In order to utilize Lemma 2
incurring no additional distance computations, instead of
calculating maxCPDk using subentry pairs all at once, we
update maxCPDk gradually with processed subentry pairs
whose mindist are already computed. This is because both
d(EPi .RO, EQ j .RO) andmaxdist (EPi , EQ j) can be eas-
ily obtained when computing mindist (EPi , EQ j).

4 MkCP query processing

In this section, we elaborate three efficient algorithms for
MkCP search, assuming that P and Q are indexed by COM-
trees, and then present a cost model for MkCP retrieval. In
the sequel, a running example (shown in Fig. 7) is employed
to facilitate the understanding of different MkCP search

(a)

EP1

5 4
EP2

2 2
EP6 EP7

MP

EP3

p6 p7 p8 p9

3 2
EP4 EP5

p3 p5 p4

3 2

EQ1

5 4
EQ2

EQ3 EQ4

q2 q3 q1 q4 q5

2 2
EQ5 EQ6

MQ

q6 q7 q8 q9

contents
omittedp1 p2

(b)

Fig. 7 A running example for an M2CP (k = 2) query. a The place-
ment of P and Q. b The COM-trees

123

422 Y. Gao et al.

algorithms. Specifically, Fig. 7 shows the COM-trees MP

and MQ for the object sets P = {p1, p2, . . . , p9} and
Q = {q1, q2, . . . , q9}, respectively, and the final result set
SR = {〈p5, q9〉, 〈p4, q9〉} for an M2CP (k = 2) query.

4.1 Recursive MkCP algorithm

Based on the pruning rules and lemmas presented in Sect. 3,
we propose, as depicted in Algorithm 1, Recursive MkCP
Algorithm (RMA) for MkCP retrieval, which follows adepth-
first paradigm. First of all, maxCPDk is set as infinity (line
1). Then, RMA updates maxCPDk using Lemmas 1–2, and
prunes the root entry pairs (line 2). Next, it calls the func-
tion RMA-PEP for the root entry pair 〈EP , EQ〉 not pruned
in ascending order of its mindist until mindist (EP , EQ) >

maxCPDk (line 3). Note that, if there is a tie of mindist, the
intersection area between two entries serves as a tie-breaker,
and the larger is better. However, it is also easy for RMA to
use other tie-breakers (e.g., maxdist). Finally, the algorithm
returns the result set SR (line 4). Note that, SR is maintained
by using a max-heap, which keeps the k closest pairs found
so far in descending order of their distances during MkCP
search.

For each currently visited intermediate entry pair
〈EP , EQ〉 pointing to non-leaf nodes, RMA-PEP uses bidi-
rectional node expansion technique to expand 〈EP , EQ〉
(lines 6–11). Initially, it initializes a local min-heap H stor-
ing the subentry pairs of 〈EP , EQ〉 based on ascending order
of their mindist. In order to minimize the effects quadratic
cost of checking the Cartesian product of 〈ePi , eQ j 〉 (ePi ∈

EP , eQ j ∈ EQ), it invokes a function PRUNE, which
removes from consideration (1) all ePi ∈ EP , for which
emindist (ePi , EQ) or mindist (ePi , EQ) is larger than
maxCPDk (lines 15–16), (2) all eQ j ∈ EQ , for which
emindist (eQ j , EP) or mindist (eQ j , EP) is larger than
maxCPDk (lines 18–19). Note that, emindist (ePi , EQ) =
|d(EP .RO, EQ .RO) − ePi .PD| − ePi .r − EQ .r and
emindist (EP , eQ j) = |d(EP .RO, EQ .RO) − eQ j .PD| −
EP .r − eQ j .r , as d(EP .RO, EQ .RO) is already known.
For each remaining subentry pair 〈ePi , eQ j 〉, PRUNE adds
it to H , and updates maxCPDk using Lemmas 1–2, if
〈ePi , eQ j 〉 can not be pruned by Rules 1–2 (lines 20–23),
where emindist (ePi , eQ j) = max{|d(ePi .RO, EQ .RO)−
eQ j .PD|, |d(eQ j .RO, EP .RO)−ePi .PD|}−ePi .r−eQ j .r .
Next, RMA-PEP is called recursively for every entry pair
〈ePi , eQ j 〉 in H until mindist (ePi , eQ j) > maxCPDk or
H = ∅ (lines 8–11). At each newly visited intermediate
entry pair 〈EP , EQ〉 pointing to leaf nodes, it calls PRUNE
to update the result set SR andmaxCPDk , respectively, using
each qualified object pair (line 13).

We illustrate RMA using the running example depicted in
Fig. 7, and please refer to Appendix A for details.

Lemma 3 The proposed algorithm RMA can return exactly
the actual MkCP query result, i.e., the algorithm has no false
negatives, no false positives, and the returned result set con-
tains no duplicate objects.

Proof First, no real answer object pairs are missed (i.e., no
false negatives), as only unqualified (leaf and non-leaf) entry
pairs are pruned by Rules 1–2. Second, assume, to the con-
trary, that a false answer object pair 〈p′

i , q
′
j 〉 is returned, then

the returned CPD′
k must be larger than the actual CPDk .

For any real answer object pair 〈pi , q j 〉, it cannot be pruned
by Rules 1–2 due to d(pi , q j) < CPDk < CPD′

k ≤
maxCPDk , which can be used to update the result set. Hence,
all the actual answer object pairs are returned, which con-
tradicts with our assumption, and thus, no false positives
is ensured. Third, no duplicate object pairs are guaranteed
because, all the qualified (leaf and non-leaf) entry pairs are
pushed into each local min-heap in ascending order of their
mindists, and every entry pair is evaluated at most once and
is popped right after evaluation. ��
Treatment for different tree heights If the COM-trees MP

and MQ have different heights, RMA needs to process entry
pairs at different levels. In general, there are two approaches
for treating different heights, i.e., “fix-at-root” and “fix-at-
leaf.” Following [18], in this paper, we take the“ fix-at-leaf ”
strategy, which processes intermediate entry pairs as usual.
However, for leaf and intermediate entry pairs, it stops
propagating downwards the leaf entry, while propagates
downwards the other intermediate entry.

123

Efficient k-closest pair queries in general metric spaces 423

4.2 Iterative MkCP algorithm

In order to avoid recursion and visiting unnecessary entry
pairs (e.g., 〈EP6, EQ3〉 in Example 1 as depicted in Appen-
dix A), we develop Iterative MkCP Algorithm (IMA), as
presented in Algorithm 2, which follows the best-first para-
digm. In the first place, IMA initializesmaxCPDk to infinity,
and a global min-heap H to empty which stores the entry
pairs in ascending order of mindist (line 1). Then, it updates
maxCPDk using Lemmas 1–2, and meanwhile inserts qual-
ified root entry pairs that cannot be pruned by Rule 1 into
H (line 2). Thereafter, IMA evaluates iteratively every head
entry pair 〈EP , EQ〉 of H having the smallest mindist until
mindist (EP , EQ) > maxCPDk or H = ∅ (lines 3–7).
Specifically, for each top entry pair 〈EP , EQ〉 of H , it deter-
mines whether mindist (EP , EQ) is larger than maxCPDk .
If yes, the algorithm stops, and returns the result set SR . Oth-
erwise, IMA invokes the function IMA-PEP (line 7) to insert
qualified subentry pairs into H (lines 9–10) or update the
result set SR (lines 10–11). Finally, IMA returns the result
set SR (line 8).

We illustrate IMA using the running example depicted in
Fig. 7, and please refer to Appendix B for details.

The correctness proof for IMA is similar as that for RMA
and thus omitted for space saving. Next, we analyze its I/O
efficiency as follows.

Lemma 4 IMA only visit the intermediate entry pairs
〈EP , EQ〉 with mindist (EP , EQ) ≤ CPDk at most once.

Proof Assume, to the contrary, that IMA visit an inter-
mediate entry pair 〈EP , EQ〉 with mindist (EP , EQ) >

CPDk . Consider all the intermediate entry pairs 〈E ′
P , E ′

Q〉
that contain all answer object pairs 〈p, q〉. We can get
mindist (E ′

P , E ′
Q) ≤ d(p, q) ≤ CPDk . Since IMA visits

entry pairs in ascending order of mindists, all 〈E ′
P , E ′

Q〉 are
visited before 〈EP , EQ〉, and hence, maxCPDk is updated
to CPDk before accessing 〈EP , EQ〉. Therefore, 〈EP , EQ〉
can be pruned by Rule 1, which contradicts our assump-
tion. In order to complete the proof, we need to show that

(a) (b) (c)

Fig. 8 Example of the I/O cost under LRU buffers. a EP and EQ . b
Depth-first. c Best-first

an entry pair is not visited multiple times. This is straightfor-
ward because each entry pair is evaluated a single once and
popped right after evaluation. ��

4.3 Estimation-based hybrid MkCP algorithm

As pointed out in [18], recursion favors LRU buffer(s) in the
backtracking phase. Thus, although RMA could visit unnec-
essary entry pairs, it might achieve better I/O performance
than IMA in the presence of LRU. To further reduce I/O cost
under LRU, we present a hybrid traversal paradigm, which
combines the best-first (BF) and depth-first (DF) strategies.
In particular, it utilizes a stack S to access the intermediate
entry pairs 〈EP , EQ〉 with mindist (EP , EQ) = 0 in the
DF fashion, and maintains min-heaps to visit other interme-
diate entry pairs in the BF manner. Take Fig. 8 as an example.
Figure 8b, c depict the contents of LRU buffers, for visiting
the entry pairs (shown in Fig. 8a) with mindist = 0 in DF and
BF paradigms, respectively. In this case, we use two LRU
buffers for MP and MQ , respectively, and red stars in each
LRU buffer represent page faults. We can observe that it only
needs 6 page faults for the DF paradigm, which is smaller
than 9 for the BF paradigm. Note that, in real-life applica-
tions, it is likely that object sets P and Q overlap, resulting
in lots of entry pairs having mindist = 0. Hence, the hybrid
traversal paradigm might achieve the best I/O performance
in most cases, which is also confirmed by our experiments
(see Sect. 6.2).

In addition, in RMA and IMA, maxCPDk is initially set
to infinity, and becomes smaller as the algorithms proceed.
Nonetheless, the adaptation of maxCPDk value has a cru-
cial impact on the performance of MkCP retrieval, since
maxCPDk is employed by Rules 1–2 to prune the search

123

424 Y. Gao et al.

space. If maxCPDk approaches to the real CPDk slowly,
which is true especially for larger k, the early stage of
the algorithms cannot efficiently shrink the search space.
To address this, our third algorithm, namely Estimation-
based Hybrid MkCP Algorithm (EHM), whose pseudo-code
is shown in Algorithm 3. EHM introduces a new pruning
metric eCPDk , an estimation value of CPDk , for aggressive
pruning, and we defer the detailed discussion of eCPDk com-
putation later. Specifically, in the aggressive pruning step, (1)
maxCPDk , like RMA and IMA, is utilized to prune away
unqualified entry pairs, and (2) eCPDk is used to further
prune the search space. However, it will become too aggres-
sive by choosing an underestimated value, i.e., eCPDk is
smaller than CPDk . To avoid any false dismissal, two min-
heaps EH and CH are employed to store the entry pairs
pruned by eCPDk . After the aggressive pruning stage, EHM
needs to search the final result set SR in EH and CH for
compensation.

Algorithm 4 depicts the pseudo-code of EHM-AP. Ini-
tially, EHM-AP updates maxCPDk using Lemmas 1–2,
and adds the qualified root entry pairs 〈EP , EQ〉 that are
not discarded by Rule 1 to S or H or CH according to
mindist (EP , EQ) (line 1). Then, it performs a while-loop
(lines 2–4) to visit entry pairs in S until S is empty. Each
time, the algorithm pops the head entry pair 〈EP , EQ〉 of
S, and calls the function EHM-PEP to expand 〈EP , EQ〉.
Next, EHM-AP runs another while-loop (lines 5–9) to visit
entry pairs in H until H is empty. Specifically, it deheaps
the top entry from H , and determines whether the early ter-
mination condition is satisfied. If yes, the algorithm stops,
otherwise, it invokes EHM-PEP to expand 〈EP , EQ〉. In
EHM-PEP, no matter whether the currently visited entry
pair 〈EP , EQ〉 pointing to non-leaf nodes or leaf nodes, it
first prunes ePi ∈ EP and eQ j ∈ EQ , respectively, simi-
lar as the function PRUNE (depicted in Algorithm 1), and
then, for all the remaining entries ePi and eQ j not pruned,
it inserts all the entry pairs 〈ePi , eQ j 〉 with eCPDk <

emindist (ePi , eQ j) ≤ maxCPDk into EH (lines 11–21
and 31–42). Thereafter, if mindist (ePi , eQ j) ≤ maxCPDk ,
(1) for non-leaf entry pairs 〈ePi , eQ j 〉, EHM-PEP updates
maxCPDk using Lemmas 1–2, and adds 〈ePi , eQ j 〉 to S or
CH or H based on mindist (ePi , eQ j) (lines 22–29), and
(2) for leaf entry pairs, it updates SR and maxCPDk (line
43).

The pseudo-code of EHM-C is presented in Algorithm
5. It performs a while-loop until both EH and CH are
empty. In every loop, EHM-C gets the top entry pairs
〈EP , EQ〉 and 〈E ′

P , E ′
Q〉 from EH and CH, respectively.

If the minimal value between emindist (EP , EQ) and
mindist (E ′

P , E ′
Q) is larger than maxCPDk , the algo-

rithm terminates, since EH and CH can not contain any
actual answer object pair (lines 3–4). Otherwise, EHM-C
compares emindist (EP , EQ) with mindist (E ′

P , E ′
Q). If

emindist (EP , EQ) < mindist (E ′
P , E ′

Q), EHA-C pops
the head entry pair 〈EP , EQ〉 from EH, and then checks
whether 〈EP , EQ〉 can be pruned by Rule 1 (line 7). If
not, (1) for the leaf entry pair, EHM-C updates SR and
maxCPDk (lines 8–9); and (2) for the non-leaf entry pair, it
inserts 〈EP , EQ〉 into CH for evaluation later (lines 10–11).
If emindist (EP , EQ) ≥ mindist (E ′

P , E ′
Q), EHM-C pops

the top entry pair 〈E ′
P , E ′

Q〉 from CH, and calls IMA-PEP
(depicted in Algorithm 2) to expand 〈E ′

P , E ′
Q〉.

We illustrate EHM using the running example shown in
Fig. 7, and please refer to Appendix C for details.

Lemma 5 EHM can return exactly the actual MkCP query
result, i.e., the algorithm has no false negatives, no false
positives, and the result set contains no duplicate objects.

Proof First, no real answer object pairs are missed (i.e., no
false negatives), as only unqualified (leaf and non-leaf) entry
pairs are discarded by Rules 1–2. In particular, for EHM, the

123

Efficient k-closest pair queries in general metric spaces 425

entry pairs pruned using the aggressive pruning technique are
preserved (not discarded), to be verified in the compensation
phase. Second, all object entry pairs that cannot be discarded
by Rules 1–2 are verified against other qualified entry pairs to
ensure no false positives. Third, no duplicate object pairs are
guaranteed because every qualified entry pair is pushed into
only one corresponding min-heap according to its mindist
and is popped right after evaluation. ��

Lemma 6 EHM only visit the intermediate entry pairs
〈EP , EQ〉 with mindist (EP , EQ) ≤ CPDk at most once.

Proof Assume, to the contrary, that EHM visits an intermedi-
ate entry pair 〈EP , EQ〉 with mindist (EP , EQ) > CPDk .
For all the intermediate entry pairs 〈E ′

P , E ′
Q〉 that contain the

answer object pairs 〈p, q〉,mindist (E ′
P , E ′

Q) ≤ d(p, q) ≤
CPDk . EHM accesses the intermediate entry pairs whose
mindist equals to 0 in DF paradigm, and other intermedi-
ate entry pairs not pruned in BF paradigm; thus, in general,
EHM visits entry pairs in ascending order ofmindists. Hence,
all 〈E ′

P , E ′
Q〉 are visited before 〈EP , EQ〉, and maxCPDk

is updated to CPDk before accessing 〈EP , EQ〉. Thus,
〈EP , EQ〉 can be pruned by Rule 1, which contradicts with
our assumption. In order to complete the proof, we need to
show that an entry pair is not visited multiple times. This is
straightforward as each entry pair is evaluated a single once
and is popped right after evaluation.

eCPDk computationA challenging issue for EHM is to obtain
an appropriate value of eCPDk . If the value of eCPDk is too
big, it can not solve the slow start. Otherwise, if a small
eCPDk is used, it needs additional cost to perform com-
pensation. To estimate CPDk accurately, we can utilize the
distance distribution to obtain the eCPDk value. The overall
distribution of distances over two metric datasets P and Q is
defined as:

F(r) = Pr{d(p, q) ≤ r} (1)

where p is a random object in P , and q is a random object in
Q. The distance distribution is the correct counterpart of data
distribution used for Euclidean spaces, since it is the natural
way to characterize metric datasets.

Based on the above definition of distance distribution F ,
CPDk can be estimated as the minimal r that has at least k
object pairs with their distances bounded by r :

eCPDk = min{r ||P| × |Q| × F(r) ≥ k} (2)

As an example, assume that F(r) follows Uniform dis-
tribution in the range [0, 1] (i.e., 0 ≤ r ≤ 1), then eCPDk

can be set to k/(|P| × |Q|). Note that, eCPDk calculated by
formula (2) can also be used in our cost model (see Sect. 4.4)
to estimate CPDk .

4.4 Cost model

Next, we drive a node-based cost model for MkCP retrieval
because, (1) it can be utilized by databases to choose promis-
ing execution plans, and (2) it can find out the factors that
may affect the cost of an MkCP query and thus facilitate
better algorithm development.

In order to take a more general view and be able to deal
with generic metric spaces, our cost model relies on distance
(rather than data) distribution F , as F is the only information
derivable from the analysis of metric datasets.

For an I/O optimal MkCP search algorithm, an entry
pair 〈EP , EQ〉 has to be accessed iff mindist (EP , EQ) ≤
CPDk holds. Then, the probability of visiting 〈EP , EQ〉 can
be denoted as:

Pr(〈EP , EQ〉 is accessed)

= Pr(mindist (EP , EQ) ≤ CPDk)

= Pr(d(EP .RO, EQ .RO) ≤ EP .r + EQ .r + CPDk)

= F(EP .r + EQ .r + CPDk) (3)

To determine the expected I/O cost (EIC) in terms of node
(i.e., intermediate entry) accesses, it is sufficient to sum the
above probabilities over all intermediate entry pairs between
MP and MQ :

E IC = 2 ×
|MP |×|MQ |∑

i=1

F(EP .r + EQ .r + CPDk) (4)

where CPDk is set to the value calculated by Eq. (2).
Next, we estimate the CPU cost for MkCP retrieval, in

terms of selectivity [14] which is the ratio of distance com-
putations to the total number of object pairs, i.e., # of distance
computations /(|P| × |Q|). As |P| × |Q| can be easily
computed, we only need to obtain the number of distance
computations during MkCP search.

When expanding an intermediate entry pair 〈EP , EQ〉,
our proposed algorithms first prune away ePi ∈ EP and
eQ j ∈ EQ , respectively, for minimizing the cost of checking
the Cartesian product of 〈ePi , eQ j 〉, and then evaluate every
qualified entry pair 〈ePi , eQ j 〉. Therefore, the number of dis-
tance computations (NDC) for processing every 〈EP , EQ〉
can be calculated as:

NDC(EP , EQ) = EP .num × Pr(mindist (ePi , EQ) is computed)

+EQ .num × Pr(mindist (EP , eQ j) is computed) + EP .num

×EQ .num × Pr(mindist (ePi , eQ j) is computed) (5)

For ease of analysis, we approximate maxCPDk with
CPDk . Hence, a distance (i.e., mindist) is needed to cal-
culate for the leaf or non-leaf entry pair 〈EP , EQ〉 iff
emindist (EP , EQ) ≤ CPDk . As emindist (ePi , EQ) =

123

426 Y. Gao et al.

|d(EP .RO, EQ .RO)− ePi .PD|− ePi .r − EQ .r , the prob-
ability that mindist (ePi , EQ) needs to be computed can be
denoted as:

Pr(mindist (ePi , EQ) is computed)

= Pr(emindist (ePi , EQ) ≤ CPDk)

= Pr(|d(EP .RO, EQ .RO) − ePi .PD|
≤ ePi .r + EQ .r + CPDk)

= F(ePi .PD + ePi .r + EQ .r + CPDk)

−F(ePi .PD − ePi .r − EQ .r − CPDk − δ) (6)

In Eq. (6), δ = 0 when F is continuous (e.g., LP-norm), and
δ = 1 when F is discrete (e.g., edit distance). Similarly, since
emindist (EP , eQ j) = |d(EP .RO, EQ .RO)−eQ j .PD|−
EP .r − eQ j .r , the probability that mindist (EP , eQ j) needs
to be calculated can be denoted as:

Pr(mindist (EP , eQ j) is computed)

= F(eQ j .PD + EP .r + eQ j .r + CPDk)

−F(eQ j .PD − EP .r − eQ j .r − CPDk − δ) (7)

For every entry pair 〈ePi , eQ j 〉, emindist (ePi , eQ j) =
max{|d(ePi .RO, EQ .RO) − eQ j .PD|, |d(EP .RO, eQ j .

RO)− ePi .PD|}− ePi .r − eQ j .r . Let λ be ePi .r + eQ j .r +
CPDk . Since 〈ePi .RO, EQ .RO〉 and 〈EP .RO, eQ j .RO〉
are two independent object pairs, the probability of comput-
ing mindist (ePi , eQ j) is expressed as:

Pr(mindist (ePi , eQ j) is computed)

= Pr(|d(ePi .RO, EQ .RO) − eQ j .PD| ≤ λ)

×Pr(|d(EP .RO, eQ j .RO) − ePi .PD| ≤ λ)

= (F(eQ j .PD + λ) − F(eQ j .PD − λ − δ))

×(F(ePi .PD + λ) − F(ePi .PD − λ − δ)) (8)

To determine the expected selectivity cost (ESC), it is suf-
ficient to sum the above NDC over all intermediate entry
pairs between MP and MQ with respect to |P| × |Q|:

ESC =
∑|MP |×|MQ |

i=1 NDC(EP , EQ)

|P| × |Q| (9)

In summary, Eqs. (4) and (9) indicate that the query cost of
MkCP search depends on several factors: (1) the cardinalities
of object sets, (2) the M-tree/COM-tree structure, (3) the
value of k, and (4) the distance distribution F(r), which are
verified one by one in Sect. 6.2. Note that, although the data
distribution is an important factor that might affect query
cost in the Euclidean space, the distance distribution is an
counterpart used for the metric space, which can be obtained
by the sampled dataset.

(a) (b)

Fig. 9 Example of SMkCP search. a Illustration of a SM2CP query. b
Illustration of Lemma 7

5 Extensions

In this section, we study two interesting variants of MkCP
queries, i.e., Self Metric kCP (SMkCP) search and Approx-
imate Metric kCP (AMkCP) retrieval, and present how
our proposed algorithms and pruning rules can be adapted
accordingly to solve these variations.

5.1 Self MkCP search

The MkCP query focuses on two different object sets, i.e.,
P �= Q. However, in some real-life applications [6,18,30],
two object sets may be identical (i.e., P = Q). As an exam-
ple, clustering [30] and outlier detecting [6] algorithms aim at
the same object set. Motivated by this, we introduce a natural
variant of MkCP queries, namely Self Metric kCP (SMkCP)

retrieval.

Definition 5 (SMkCP Search). Given an object set P in a
metric space and an integer k (1 ≤ k ≤ (|P|2 − |P|)/2),
a Self Metric kCP (SMkCP) query finds k ordered different
closest object pairs 〈pi , p j 〉 with pi , p j ∈ P and pi �= p j .

An example of SMkCP search is depicted in Fig. 9, where
P = {p1, p2, p3, p4} and k = 2. The result set of the
SM2CP query is {〈p1, p2〉, 〈p2, p3〉}.

5.1.1 Estimation-based hybrid SMkCP algorithm

Our algorithms designed for MkCP queries (discussed in
Sect. 4) can be flexible to support SMkCP retrieval. Since
〈pi , p j 〉 and 〈p j , pi 〉 are treated as the same object pair,
and 〈pi , pi 〉 cannot be contained in the final result set of
SMkCP search, we need to perform the M(|P| + 2k)CP
query and filter out unqualified and duplicated object pairs.
Nevertheless, it is very inefficient as |P| + 2k is much
bigger than k, especially for larger object set P . In order
to further improve the SMkCP query performance, we
develop Estimation-based Hybrid SMkCP Algorithm (EHS),
which takes advantage of EHM algorithm (i.e., it per-
forms the best as verified by our experiments in Sect. 6.2),
and meanwhile integrates the characteristics of SMkCP
retrieval.

123

Efficient k-closest pair queries in general metric spaces 427

Since SMkCP search performs on the same object set, i.e.,
P = Q, the intermediate entries of the entry pair 〈EP , EQ〉
to be processed can be identical. However, Lemmas 1–2, used
to derivemaxCPDk values, are only suitable when given two
intermediate entries are different. Thus, we present a new
lemma, to cover the situation when EP and EQ point to the
same entry.

Lemma 7 Given an intermediate entry EP , maxCPDk =

{
EP .r
2 × EP .r

EP .num > k
EP .num ≤ k ≤ (EP .num2 − EP .num)/2

Proof In order to prove this lemma, maxCPDk can be
updated to r if having k different object pairs with their dis-
tances bounded by r .

If EP .num > k, there exists k different object pairs
〈pi , EP .RO〉 (pi �= EP .RO, pi ∈ EP) with their dis-
tances d(pi , EP .RO) bounded by EP .r , as EP .RO is a
real object. Hence, maxCPDk can be set to EP .r when
EP .num > k.

Otherwise, i.e., EP .num ≤ k, as depicted in Fig. 9b,
there exists (EP .num2 − EP .num)/2 different object pairs
〈pi , p j 〉 in STEP with their distances d(pi , p j) ≤ pi .PD+
p j .PD ≤ 2 × EP .r , due to the triangle inequality. Conse-
quently, maxCPDk can be set as 2×EP .r if EP .num ≤ k ≤
(EP .num2 − EP .num)/2. ��

The framework of EHS is similar as EHM, the only dif-
ference is that, EHM calls EHM-AP for aggressive pruning,
whereas EHS invokes EHS-AP, which is presented in Algo-
rithm 6. Initially, it updates maxCPDk using Lemmas 1,
2, and 7, and inserts root entry pairs 〈EP , EQ〉 (EP ∈
MP , EQ ∈ MP) not pruned by Rule 1 into S (for the
DF traversal) or H (for the BF traversal) or CH (for
compensation), according to mindist (EP , EQ) (line 1).
Then, EHS-AP visits each entry pair 〈EP , EQ〉 of S until
S is empty, and calls the EHS-PEP function to expand
〈EP , EQ〉 (lines 2–4). Next, EHS-AP visits every entry pair
〈EP , EQ〉 of H until H is empty or mindist (EP , EQ) >

maxCPDk , and invokes EHS-PEP to expand 〈EP , EQ〉
(lines 5–9).

In EHS-PEP, if EP �= EQ , it calls EHM-PEP directly
(line 33). Otherwise, i.e., EP = EQ , if EP points to non-leaf
nodes, for each sub entry ePi of EP , it pushes 〈ePi , ePi 〉
into S and updates maxCPDk using Lemma 7 (line 13). In
order to avoid duplicated entry pair accesses, for every sub
entry eP j of EP stored after ePi , it inserts 〈ePi , eP j 〉 into EH
if eCPDk < emindist (ePi , eP j) ≤ maxCPDk , or inserts
〈ePi , eP j 〉 into S, or H , or CH based on mindist (ePi , eP j).
If EP points to leaf nodes, in order to avoid duplicated
object pair accesses, for each sub entry ePi of EP and eP j

of EP stored after ePi , it adds 〈ePi , eP j 〉 to EH if eCPDk <

emindist (ePi , eP j) ≤ maxCPDk (line 29), or updates

SR and maxCPDk if mindist (ePi , eP j) ≤ maxCPDk

(line 31).

We illustrate EHS using the SM2CP (k = 2) query on the
object set O shown in Fig. 2a, and please refer to Appendix
D for details.

5.1.2 COMdnn-tree-based SMkCP algorithm

Although EHS utilizes the characteristics of SMkCP search
to boost query efficiency, it takes the framework of EHM,
in which the performance degenerates as the overlap-
ping between two object sets increases, as confirmed in
Sect. 6.2. This is because, for two object sets with greater
percentage of overlapping, EHM has to visit a lot of
entry pairs with smaller mindist. However, SMkCP retrieval
performs on one object set, i.e., the overlapping percent-
age is 100 %, resulting in poor query performance. To
this end, we introduce a variant of COM-trees, namely
COMdnn-tree, which integrates the nearest neighbor (NN)
information into a COM-tree to improve the efficiency
of SMkCP query processing. Note that, the COMdnn-tree
can support efficient MkCP and SMkCP queries simultane-
ously.

123

428 Y. Gao et al.

Fig. 10 Example of a COMdnn-tree

Figure 10 shows an example of COMdnn-tree on the
object set depicted in Fig. 2a, which includes e.dnn in each
leaf or non-leaf entry e to represent the NN distance of the
object or the minimum NN distance for all the objects con-
tained in STe. For instance, o9.dnn = r4, since the distance
from o9 to its NN (i.e., o10) equals to r4, and e6.dnn = r4, as
r4 is the minimum dnn for all objects o6, o7, o8, and o9 con-
tained in STe6 . Note that, the number associated with every
entry denotes e.dnn, which is obtained and stored during the
construction of COMdnn-tree. In particular, when an object
o is to be inserted into the COMdnn-tree, a NN query is
performed to get its dnn value, and a reverse NN query is
also conducted to find the objects whose dnn values could be
affected by o.

Lemma 8 Given an object set P in generic metric spaces,
if 〈pi , p j 〉 is contained in the SMkCP query result, then
pi .dnn and p j .dnn are not larger than p2k .dnn, where
pi .dnn denotes pi ’s NN distance in P, and p2k .dnn rep-
resents the 2kth NN distance among all sorted objects in
P.

Proof To prove this lemma, we first prove that maxCPDk

can be set to p2k .dnn. Since the objects in P are sorted
according to their dnn values, there exists 2k object pairs
〈pi , NN (pi)〉 (1 ≤ i ≤ 2k) with their distances bounded
by p2k .dnn. Since pi and NN (pi) might be mutual NN,
i.e., 〈pi , NN (pi)〉 and 〈NN (pi), pi 〉 representing the same
object pair, there exists at least k different object pairs with
their distances bounded by p2k .dnn. Thus,maxCPDk can be
set to p2k .dnn. If 〈pi , p j 〉 is contained in the SMkCP query
result, then d(pi , p j) ≤ CPDk ≤ maxCPDk = p2k .dnn.
Due to the definition of NN, pi .dnn ≤ d(pi , p j) and
p j .dnn ≤ d(pi , p j), and both pi .dnn and p j .dnn are not
larger than p2k .dnn, which completes the proof. ��

According to Lemma 8, we present COMdnn-tree-based
SMkCP Algorithm (MSA). In the first phase, by travers-
ing COMdnn-Tree, MSA obtains the candidate object set
CH, as the dnn of each object in CH is not larger than
p2k .dnn. In the second phase, the algorithm verifies the
object pairs in the candidate object set in order, to get the final
result set.

Algorithm 7 depicts the pseudo-code of MSA. It takes the
COMdnn-tree MP as an input, and outputs the result set SR of
a SMkCP query. First, it initializes maxCPDk to infinity, and
two min-heaps H and CH (line 1). Then, MSA inserts root
entries EP of MP into H with EP .dnn ≤ maxCPDk , and
performs a while-loop until H is empty (lines 3–9). Each
time, it pops the top entry EP of H , and verifies whether
the early termination is satisfied. If EP points to the non-leaf
node, MSA inserts all the qualified sub-entries of EP into H .
Otherwise, i.e., EP points to the leaf node, MSA inserts all the
qualified sub-entries of EP into CH and updates maxCPDk

using the 2kth dnn in CH. Thereafter, for each object pi in
CH, if pi .dnn > maxCPDk , the algorithm terminates and
returns SR (line 11); otherwise, in order to avoid duplicated
distance computations, for each object p j already visited
(i.e., stored before pi in CH), if d(pi , p j) ≤ maxCPDk , it
updates SR and maxCPDk (lines 13–14). Finally, the result
set SR is returned (line 15).

We illustrate MSA using the SM2CP (k = 2) query on the
object set O shown in Fig. 2a, and please refer to Appendix
E for details.

5.1.3 Discussion

In this section, we first present our method to compute the
estimation value eCPDk , which is needed for EHS, and then
analyze the I/O complexities of two algorithms. Finally, we
discuss how to further improve the efficiency of MSA.

For EHS developed for SMkCP search, a challenge issue is
to estimate CPDk accurately, because it might affect the effi-
ciency of the algorithm. Similar as EHM, to obtain eCPDk ,
we can utilize the distance distribution over the metric dataset
P , which is defined as:

F(r) = Pr{d(pi , p j) ≤ r} (10)

where pi and p j are two random objects in P . Based on
the distance distribution F , CPDk can be estimated as the

123

Efficient k-closest pair queries in general metric spaces 429

o2

o1

o3

o4

r1
G1

o2

o1

o3

o4

r1

r1

G2

G1

(a) (b)

Fig. 11 Example of groups for MSA. a After processing o3 and o4. b
After processing o3, o4, and o1

minimal r that has at least k object pairs with their distances
bounded by r , i.e.,

eCPDk = min{r |(|P|2 − |P|)/2 × F(r) ≥ k} (11)

Next, we analyze the I/O costs of the algorithms designed
for SMkCP retrieval. Let |MP | be the total number of nodes
in MP , |MP |i be the number of nodes in the level i of MP ,
and L be the height of MP .

Lemma 9 The I/O costs of EHS and MSA algorithms are
O(

∑L−1
i=0 |MP |2i) and O(|MP |), respectively.

Proof Since EHS follows the framework of EHM, which
needs to visit intermediate entry pairs 〈EP , EQ〉 withmindist
(EP , EQ) ≤ CPDk according to Lemma 6, it has to access all
intermediate entry pairs at the same level of MP in the worst
case. Hence, the I/O cost of EHS is O(

∑L−1
i=0 |MP |2i). How-

ever, according to Lemma 8, MSA only needs to traverse MP

once in worst case, to obtain all candidates with their dnns
within p2k .dnn. Thus, the I/O cost of MSA is O(|MP |). ��

According to Lemma 9, the I/O cost of MSA is much
smaller than that of EHS, which is also verified in Sect. 6.5.
In addition, it can also be demonstrated using Examples 4
and 5 (see Appendixes D and E), in which MSA only needs
4 node accesses, whereas EHS needs 13 node accesses.

For MSA, in the first phase, it traverses MP to get (2k+n)

candidate objects, whose dnn are not larger than p2k .dnn.
Note that, n is needed when the distance ties occur, i.e., there
exists more than one object whose dnn equals to p2k .dnn.
Then, in the second phase, MSA needs to verify all the
object pairs among the candidate objects in order. Hence,
the CPU cost (in terms of the number of distance computa-
tions) for MSA is O(k2). Thus, for larger k, especially when
k approaches the object set size |P|, MSA degenerates to the
naive solution for SMkCP retrieval, which compares every
object pairs to obtain the final result set.

In order to minimize the effect of quadratic cost of ver-
ification, we can partition the verified objects into disjoint
groups. Similar as the intermediate entry defined in the M-
tree, each group G is represented by a routing object G. RO
with a fixed radius G.r . Every visited object o is inserted into
a group if d(o, G.RO) ≤ G.r . Note that, for an object o, it
may exist more than one group Gi satisfying the condition
that d(o, Gi .RO) ≤ Gi .r . Here, in order to obtain disjoint

groups, i.e., Gi ∩ G j = ∅(i �= j), we choose the first group
that satisfies the condition. If o cannot be inserted into any
group, i.e., no group satisfying the condition, we create a new
group G, with G.RO = o and a fixed radius G.r . Consider
the SMk2CP query shown in Fig. 2a, assuming that r1 is cho-
sen as the fixed radius. During the first phase, MSA obtains
the candidate object set {o3, o4, o1, o2}. Figure 11a depicts
the group G1 after objects o3 and o4 are visited. Next, when
processing object o1, as d(o1, G1) > r1, we create a new
group G2 with G2.RO = o1 and G2.r = r1, as illustrated in
Fig. 11b.

By utilizing the grouping technique with a fix group radius
r , MSA can be adapted to r -MSA, to reduce considerable
distance computations during the verification. In particu-
lar, for an object to be verified, r -MSA first compares it
with all the groups, instead of every object contained in
each group. According to Rule 1 presented in Sect. 3.3, if
mindist (o, G) > maxCPDk , then 〈o, G〉 can be pruned. In
other words, we can avoid evaluating all the objects contained
in G for o. Consider the example shown in Fig. 11 again. For
the object o2 to be verified, 〈o2, G1〉 can be pruned away due
to mindist (o2, G1) > maxCPDk(= r1).

5.2 Approximate MkCP search

For MkCP retrieval, although we can utilize pruning heuris-
tics and the aggressive pruning and compensation technique
to accelerate query processing, efficiency still remains a prob-
lem since the query cost remains quadratic in worst case,
especially for the high degree of overlapping between two
object sets. Hence, it makes sense to study the Approximate
Metric kCP (AMkCP) query, which trades the quality of the
result for search time.

Definition 6 (AMkCP Search). Given two object sets P and
Q in a generic metric space, and an integer k(1 ≤ k ≤ |P|×
|Q|), anApproximateMkCP (AMkCP) query finds k ordered
different object pairs from P × Q, i.e., AMkCP(P, Q) =
{〈p1, q1〉, 〈p2, q2〉, . . . , 〈pk, qk〉|p1, p2, . . . , pk ∈ P,

q1, q2, . . . , qk ∈ Q, 〈pi , qi 〉 �= 〈p j , q j 〉, i �= j, 1 ≤
i, j ≤ k, and ∀〈p′

i , q
′
i 〉 ∈ MkCP(P, Q) s.t. d(pi , qi) ≥

d(p′
i , q

′
i)}.

Consider the example depicted in Fig. 1 again. An AM2CP
(k = 2) query may return the result set {〈p2, q1〉, 〈p2, q3〉},
which is different from the result set {〈p2, q1〉, 〈p2, q2〉}
returned by the M2CP query.

5.2.1 Estimation-based hybrid AMAkCP algorithm

In order to forsake some precision in exchange for improved
efficiency, we can utilize the framework of EHM (which per-
forms the best for MkCP search as verified in Sect. 6.2),

123

430 Y. Gao et al.

by integrating a popular approximate technique, i.e., ε-
approximate technique [13,20,53]. Given a positive real
ε (≥ 0) as the maximum distance relative error to be tol-
erated, for the i th answer object pair 〈pi , qi 〉 contained
in AMkCP(P, Q) and the i th answer object pair 〈p′

i , q
′
i 〉

included in MkCP(P, Q), ε-approximate technique makes
that (d(pi , qi) − d(p′

i , q
′
i))/d(p′

i , q
′
i) ≤ ε holds.

However, since ε(≥ 0) is unlimited, it is not easy for
users to adjust the quality of the query result. Toward this, in
this paper, we choose the α-allowance technique [20] with
a bounded parameter (0 < α ≤ 1), which can be trans-
ferred to the ε-approximate technique with α = 1/(1 + ε).
Below, we propose an approximate pruning rule based on the
α-allowance technique.

Rule 3 Given two leaf or non-leaf entries EP and EQ, and a
positive real α(0 < α ≤ 1), if emindist(EP , EQ) or mindist
(EP , EQ) is larger than maxCPDk ×α, then 〈EP , EQ〉 can
be pruned away safely.

Proof Given a relative distance error ε to be tolerated, if
eimindist (EP , EQ) or mindist (EP , EQ) is larger than
maxCPDk × α, then, for any 〈p, q〉 (p ∈ EP , q ∈ EQ),
d(p, q) × (1 + ε) ≥ mindist (EP , EQ) (or emindist (EP ,

EQ)) ×(1 + ε) > maxCPDk × α × (1 + ε) > CPD′
k since

α = 1/(1 + ε) and CPD′
k denotes the accurate kth closest

pair distance. Therefore, 〈p, q〉 cannot be an actual answer
object pair due to d(p, q)× (1 + ε) > CPD′

k , and 〈EP , EQ〉
can be discarded safely accordingly. ��

As depicted in Fig. 6, assume that maxCPDk = 40 and
α = 0.5, then 〈EP2, EQ3〉 that cannot be pruned by Rules 1–
2 can be discarded by Rule 3.

The pseudo-code of Estimation-based Hybrid AMkCP
algorithm (EHA) is similar as EHM and thus omitted. It takes
as inputs two COM-trees MP and MQ , an estimated value
eCPDk , and a real α (0 < α ≤ 1), and outputs the result set
SR of an AMkCP query. The only difference is that, EHA
utilizes Rule 3 to prune leaf or non-leaf entry pairs, while
EHM uses Rules 1 and 2.

5.2.2 GMdnn-tree-based AMkCP algorithm

As pointed out by [20,53], although the α-approximate
(ε-approximate) technique utilized by EHA can achieve the
high quality result set, the query efficiency does not improve
much, which is also verified in Sect. 6.6. Motivated by this,
we present GMdnn-tree-based AMkCP Algorithm (GMA),
which employs the grouping and N -consider techniques to
control the trade-off between query cost and accuracy of the
query result.

GMdnn-tree is a variant of COMdnn-trees, which par-
titions the objects in each leaf node into disjoint groups.
In particular, if two objects p and q are similar, i.e., the

EP1

5 4
EP2

2 2
EP6 EP7

MP

EP3

3 2
EP4 EP5

contents
omittedp1 p2 p3 p5 p4 p6 p7 p8 p9

gP2 gP3 gP4 gP5gP1

(a)

3 2

EQ1

5 4
EQ2

EQ3 EQ4

2 2
EQ5 EQ6

MQ

q4 q5q2 q3 q1 q6 q7 q8 q9

gQ1 gQ2 gQ4 gQ5gQ3

(b)

Fig. 12 Example of GMdnn-trees. aGMdnn-tree MP on P .bGMdnn-
tree MQ on Q

distance d(p, q) between p and q is small, they can form
a group. This is because, due to the triangle inequality,
the difference between the distances from p and q to any
other object o , i.e., |d(p, o) − d(q, o)| is small if p
and q are similar, as |d(o, p) − d(o, q)| ≤ d(p, q).
Figure 12 shows two GMdnn-trees MP and MQ on the
object sets P and Q (depicted in Fig. 7a), respectively. For
instance, objects p3, p4, and p5 contained in the leaf node
pointed by EP5 are partitioned into two disjoint groups, i.e.,
gP2 = {p3, p5}, gP3 = {p4}. Note that, gP3 only contains
one object, since it does not exist any other object in this leaf
node. As two objects in the same group are similar, one of
them can be used to represent the whole group. For simplify,
the first object in each group is chosen as the representative
object. Also note that, the GMdnn-tree can support efficient
MkCP, SMkCP, and AMkCP, queries simultaneously.

With the help of GMdnn-tree, we can improve query effi-
ciency significantly, as only the representative object of each
group instead of the whole group is verified. Consider the
example illustrated in Fig. 12 again, assume that p1 and q2

are representative objects of gP1 and gQ1, respectively. All
the object pairs between gP1 = {p1, p2} and gQ1 = {q2, q3}
can be estimated using 〈p1, q2〉, i.e., mindist (gP1, gQ1) =
d(p1, q2). In other words, if 〈p1, q2〉 is pruned by Rule 1 or 2,
other object pairs including 〈p1, q3〉, 〈p2, q2〉, and 〈p2, q3〉
can also be pruned; otherwise, if 〈p1, q2〉 cannot be discarded
by Rules 1 and 2, other object pairs between two groups can-
not be pruned as well.

A challenge issue for building the GMdnn-tree is how to
group objects efficiently. A simple but efficient method is to
choose a far away object o, and then partition the objects
into disjoint groups in order of their distances to the chosen
object o. Note that, a far away object o is needed, because
the similarity of two objects pi and p j can be estimated
well using the distance difference between d(o, pi) and
d(o, p j) [7]. In this paper, we choose the far away object
among all the routing objects stored in the GMdnn-tree.
Take the example shown in Fig. 7 again. When grouping
the objects in a leaf node EP5, we can choose the routing
object p8 of EP7, and sort the objects in EP5 in ascending
order of their distances to p8, i.e., p3, p5, and p4. Hence,

123

Efficient k-closest pair queries in general metric spaces 431

EP5 can be partitioned into two groups gP2 = {p3, p5} and
gP3 = {p4}.

Since GMdnn-trees are used to only achieve the approxi-
mation at the leaf node level, the N -consider technique [20]
can be utilized in the intermediate node level, in order to fur-
ther boost query efficiency. In particular, when visiting the
entry pair 〈EP , EQ〉 which points to the intermediate nodes,
we only consider the percentage N of all the sub entry pairs
〈ePi , eQ j 〉 (ePi ∈ EP , eQ j ∈ EQ).

Since the framework of GMA is similar as that of
EHM, its pseudo-code is omitted here. The only difference
between GMA and EHM is the processing for the interme-
diate entry pair 〈EP , EQ〉. If EP and EQ are intermediate
entries pointing to non-leaf nodes, GMA uniformly chooses√
N × EP .num sub-entries of EP and

√
N × EQ .num sub-

entries of EQ for processing, in order to apply the N -consider
technique. If EP and EQ are intermediate entries pointing to
leaf nodes, it verifies and prunes groups instead of every
object contained in groups.

5.2.3 Discussion

To quantify an approximate algorithm, it should consider not
only improvement in performance efficiency, but also the
quality of approximation. The quality of approximation can
be measured by using the precision, i.e., the percentage of
the k items of the approximate result that also contained in
the exact result set.

Definition 7 (Precision). Given two object sets P and Q in
a generic metric space, and an integer k(1 ≤ k ≤ |P|× |Q|),
assume that 〈pi , qi 〉 and 〈p′

i , q
′
i 〉 is the i th item contained in

AMkCP(P, Q) and MkCP(P, Q), respectively.

precision = 1

k

k∑

i=1

{
1
0

d(pi , qi) ≤ d(p
′
k, q

′
k)

otherwise

Note that, we use the distance to determine whether
〈pi , qi 〉 is contained in the exact result set MkCP(P, Q),
because, as analyzed in Sect. 3.1, MkCP(P, Q) may be
not unique due to the distance tie, and we randomly choose
object pairs when the distance tie occurs. When precision
= 1, the approximate result equals to the exact one. On the
other hand, precision tends to 0 in worst case.

First, we derive the precision for the approximate algo-
rithm EHA, which only utilizes theα-approximate technique.
In order to obtain precision(EHA), we need to determine
under what conditions an object pair (∈ MkCP(P, Q)) is
certainly contained in AMkCP(P, Q) returned by EHA, as
stated as follows.

Lemma 10 Given twoobject setsPandQ inagenericmetric
space, and a real value α(0 < α ≤ 1), assume that 〈p′

i , q
′
i 〉

is the i th item contained in MkCP(P, Q). If d(p′
i , q

′
i) ≤

α × d(p′
k, q

′
k), then 〈p′

i , q
′
i 〉 should be also contained in

AMkCP(P, Q) returned by EHA.

Proof Assume, to the contrary, that 〈p′
i , q

′
i 〉 is not included

in AMkCP(P, Q), i.e., 〈p′
i , q

′
i 〉 is pruned by Rule 3.

For a leaf or non-leaf entry pair 〈EP , EQ〉 is or con-
tain 〈p′

i , q
′
i 〉, emindist (EP , EQ) ≤ mindist (EP , EQ) ≤

d(p′
i , q

′
i) ≤ α × d(p′

k, q
′
k) ≤ α × maxCPDk , which

contradicts with the condition of Rule 3. Thus, the proof
completes. ��

According to Lemma 10, we can get precision(EH A)
bounded by:

precison(EH A) ≥ 1

k

k∑

i=1

{
1
0

d(p
′
i , q

′
i) ≤ α × d(p

′
k, q

′
k)

otherwise

≥ F(α × d(p
′
k, q

′
k))

F(d(p
′
k, q

′
k))

where F() denotes the distance distribution between two
object sets P and Q. If F() follows the uniform distribution,
then precision(EH A) is bounded by α.

Next, we derive the lower bound of precision for GMA.
For the grouping technique used in the leaf node level, since
only one object pair is verified to represent four object pairs,
and thus, the precision for the algorithm using grouping
technique is bounded by 0.25. For each application of the
N -consider technique in an intermediate node level, the prob-
ability that does not discard a real answer object pair is N .
Hence, the precision for the algorithm using the N -consider
technique equals to NL−2, where L denotes the height of the
tree index. As the two techniques are applied independently
in GMA, precision(GMA) ≥ 0.25 × NL−2.

6 Performance study

In this section, we experimentally evaluate the effectiveness
of our developed pruning rules, the accuracy of cost models,
and the performance of the algorithms for MkCP retrieval
and its variants, using both real and synthetic data sets. The
detailed experimental settings are described in Sect. 6.1. Five
sets of experiments are conducted. The first set verifies the
efficiency of our algorithms compared with the existing state-
of-the-art (in-memory) MkCP search algorithms and kCP
queries in Euclidean spaces, as presented in Sect. 6.2. The
second set evaluates the effectiveness of pruning rules, as
reported in Sect. 6.3. The third set demonstrates the accuracy
of cost models developed for MkCP retrieval, as described
in Sect. 6.4. Sections 6.5 and 6.6 present the last two sets of
experiments, which evaluate the performance for two MkCP
query variants, i.e., SMkCP search and AMkCP retrieval,
respectively.

123

432 Y. Gao et al.

Table 2 Statistics of the datasets used

Dataset Size Dimensionality Measurement

CA 62,173 2 L1-norm

SF 87,328 2 L1-norm

Color 112,544 4 L2-norm

NASA 40,150 20 L2-norm

Signature 50,000 64 Edit distance

Uniform [0.1M, 10M] 2,16 L2-norm

Gaussian [0.1M, 10M] 2,16 L2-norm

6.1 Experimental setup

We deploy four real datasets CA, SF, Color, and NASA.
CA and SF1 represent the locations in California and San
Francisco, respectively. Color2 contains the first four dimen-
sions of color histograms extracted from an image database.
NASA3 is a set of feature vectors made by NASA. Following
the experimental settings in [46], we generate a Signature
dataset, in which each object is a string with 64 English
letters. Since MkCP retrieval involves two object sets, we
combine two GIS datasets CA and SF, and employ L1-norm
to simulate the shortest road network distance. However,
for datasets Color, NASA and Signature, we divide them
into two datasets with the same cardinality [18] , where
L2-norm and edit distance are utilized to measure the dis-
tances. Synthetic datasets following Uniform and Gaussian
distributions, respectively, are also created, and L2-norm is
employed. Table 2 lists the statistics of the datasets used in our
experiments. Uniform and Gaussian datasets with 16 dimen-
sionality, and NASA are indexed using a page size of 10KB,
whereas the other datasets are indexed using a page size of
4KB. The distance distribution F for every real or synthetic
dataset is obtained by sampling, and is approximated by an
equi-width histogram with 20,000 bins, separately storing
values of F(1), F(2), and so on.

We investigate the performance of the proposed algo-
rithms under various parameters, which are summarized in
Table 3, where the bold denotes the defaults. Note that, in
each experiment, only one factor varies, whereas the others
are fixed to their default values. The main performance met-
rics include the total query cost (i.e., the sum of the I/O time
and CPU time, where the I/O time is computed by charg-
ing 10ms for each page faults, as with [11]), the selectivity
(defined in Sect. 4.4), and the number of node accesses (NA).
All algorithms were implemented in C++, and all experi-
ments were conducted on an Intel Core 2 Duo 2.93 GHz PC
with 3 GB RAM.

1 Available at http://www.census.gov/geo/www/tiger/.
2 Available at http://www.dbs.informatik.uni-muenchen.de/~seidl.
3 Available at http://www.sisap.org/metric_space_library.html.

Table 3 Parameter ranges and default values

Parameter Setting

k 1, 10, 100, 1000, 10,000, 100,000

Overlap (%) 0, 25, 50, 75, 100

Cardinality 0.1M, 1M, 10M

Ratio of eCPDk/CPDk 0.2, 0.4, 0.6, 0.8, 1, 3, 5, 7, 9

Buffer size (pages) 0, 32, 64, 128, 256

r (% of maximum distance) 2, 4, 6, 8, 10

α and N 0.9, 0.8, 0.7, 0.6, 0.5

6.2 Results on MkCP queries

The first set of experiments evaluates the performance of
our presented algorithms (namely RMA, IMA, and EHM)
in answering MkCP search, compared with existing state-of-
the-art MkCP and Euclidean kCP algorithms. We study the
influence of several parameters, including (1) the value of k,
i.e., the number of closest pairs required, (2) the cardinalities
of datasets, (3) the overlap between two datasets, (4) the ratio
of eCPDk/CPDk , and (5) the buffer size.

Effect of k. First, we investigate the impact of k on the
efficiency of the algorithms, using real and synthetic datasets.
The results are depicted in Fig. 13, where abbreviations of
algorithms (R for RMA, I for IMA, and E for EHM) are
shown on the top of each column. The first observation is
that the performance of the algorithms increases with the

(a) (b)

(c) (d)

(e) (f)

Fig. 13 MkCP search performance versus k. a CA, SF. b CA, SF.
c Color, Color. d Color, Color. e Signature, Signature. f Signature,
Signature

123

http://www.census.gov/geo/www/tiger/
http://www.dbs.informatik.uni-muenchen.de/~seidl
http://www.sisap.org/metric_space_library.html

Efficient k-closest pair queries in general metric spaces 433

Table 4 Comparisons among
EHM, PSI, and EPM on Color

k Selectivity (×10−3) NA (×103) CPU time (sec)

EHM PSI EPM EHM PSI EPM EHM PSI EPM

100 1.136 0.882 0.427 28.87 13.67 33.65 10.92 1.06 5.594

101 1.142 0.956 0.764 29.25 13.69 63.75 11.67 1.10 10.17

102 1.170 1.137 0.828 29.65 13.73 65.73 14.11 1.17 11.35

103 1.257 1.732 0.906 32.40 13.90 70.75 25.24 1.45 14.08

104 1.672 3.692 1.066 47.88 14.45 93.57 45.38 2.33 25.82

105 2.764 12.04 1.368 91.03 16.34 157.4 278.4 6.79 271.6

Table 5 Comparisons among
EHM, AMP and LTC

Selectivity NA (×104) CPU time (sec)

AMP LTC EHM AMP LTC EHM AMP LTC EHM

NASA 0.032 0.99 0.026 \ \ 3.15 15.1 88 14.74

Signature 0.026 0.049 0.014 \ \ 5.02 20.4 14 6.94

Uniform 0.52 0.99 0.23 \ \ 26.3 3266 2140 1999

Gaussian 0.52 0.91 0.3 \ \ 25.1 3559 2601 2142

growth of k. This is because, the more closest object pairs
we need, the more entry pairs we need to evaluate. The second
observation is that EHM performs the best, as it combines
the depth-first and best-first traversal paradigms to reduce I/O
cost, and utilizes the aggressive pruning and compensation
technique to reduce computational cost. Note that, the CPU
cost of RMA increases dramatically when k reaches 105. The
reason is that, for larger k, it is more likely for RMA to access
unnecessary branches.

Since EHM performs the best in most cases, it is utilized
to compare against Euclidean kCP query algorithm PSI [18]
and EHM based on PM-tree (EPM) [44], with the results
depicted in Table 4 using Color dataset. It is observed that,
PSI performs better than EHM and EPM, whereas it needs
more distance computations especially for larger k values.
This is because, PSI is designed particularly for the Euclid-
ean space, where geometric properties can be employed to
accelerate search; while EHM and EPM are applicable for
any specific metric space, which aims to reduce the number
of distance computations, since distance computation in the
generic metric space is usually costly. The second observa-
tion is that, EPM outperforms EHM in terms of the CPU
cost and selectivity, but it needs larger I/O cost. The reason
is that, EPM utilizes the pivots with pre-computed distances
to improve query efficiency, resulting in larger index storage
and larger I/O overhead accordingly.

In addition, we compare our EHM algorithm with state-
of-the-art MkCP query algorithms AMP [29] and LTC [32],
using high dimensional real and synthetic datasets. The
results are depicted in Table 5, where “\” denotes the NA
of the corresponding algorithms is missing, because AMP
and LTC are in-memory methods. The first observation

is that EHM performs the best. The reason is that, our
approach utilizes several punning rules based on COM-trees,
and takes advantage of aggressive pruning and compensa-
tion, to improve query efficiency. Note that, the selectivity
approaches to 1 on Uniform and Gaussian datasets in a 16
dimensional space. In other words, MkCP query algorithms
degenerate to a brute-force algorithm, which needs to com-
pare all the object pairs from two datasets. Hence, in the rest
experiments of this paper, we employ 2 dimensional synthetic
datasets.

Effect of cardinality Next, we show the scalability of our
algorithms by comparing against existing MkCP search algo-
rithms AMP [29] and LTC [32], using synthetic datasets.
Tables 6 and 7 show the results as a function of |P|(= |Q|),
under Uniform and Gaussian datasets, respectively. Note
that, in Tables 6 and 7, “\” represents the NA of the cor-
responding algorithms is missing, and “−” indicates that the
corresponding algorithms cannot run due to memory over-
flow. This is because, both AMP and LTC are in-memory
methods, whereas our algorithms are developed based on the
disk-based COM-tree, and only load the data needed during
MkCP query processing. As expected, our algorithms per-
forms much better than AMP and LTC. In particular, LTC is
several order magnitude worse than other algorithms. This is
because, the efficiency of LTC degrades as the overlap per-
centage of datasets decreases. Here, the overlap percentage
is set to 50 % as the default for synthetic datasets. In addi-
tion, although EHM is the best in terms of selectivity, it has
larger CPU cost than RMA and IMA. The reason is that, the
additional CPU cost is needed for EHM in order to use the
progressive pruning and compensation technique to further
reduce the number of distance computations. Specifically,

123

434 Y. Gao et al.

Table 6 MkCP performance
versus cardinality on Uniform

|P| Selectivity (×10−6) NA (×104) CPU time (sec)

0.1 M 1 M 10 M 0.1 M 1 M 10 M 0.1 M 1 M 10 M

AMP 85.4 8.1 – \ \ – 49.8 3453 –

LTC 8.6E+5 8.2E+5 – \ \ – 1736 1.8E+5 –

RMA 90.7 6 0.663 0.75 7.23 69.3 1.93 14.59 412.2

IMA 90.3 6 0.663 0.778 6.49 62.4 1.49 12.69 142.3

EHM 74.7 5.6 0.66 0.604 6.08 59.6 2.69 16.54 158.5

Table 7 MkCP performance
versus cardinality on Gaussian

|P| Selectivity (×10−6) NA (×104) CPU time (sec)

0.1 M 1 M 10 M 0.1 M 1 M 10 M 0.1 M 1 M 10 M

AMP 92 8.44 – \ \ – 26.9 1927 –

LTC 9E+5 9.9E+5 – \ \ – 2601 1.6E+5 –

RMA 111 7.64 0.07 0.937 7.64 88.6 2.62 7.64 320.9

IMA 103 7.56 0.07 0.977 7.56 79.9 2.1 7.56 178.8

EHM 90 7.22 0.068 0.762 7.22 75.9 3.39 7.21 211.5

(a) (b)

(c) (d)

Fig. 14 MkCP search performance versus overlap. a Uniform, Uni-
form. b Uniform, Uniform. c Gaussian, Gaussian. d Gaussian,
Gaussian

EHM needs to insert object pairs into the min-heap for further
verification even if they are pruned by using the aggressive
pruning technique (line 41 of Algorithm 4), i.e., the insertion
operation leads to additional CPU cost; while IMA and RMA
compute immediately the distances and update the result set.

Effect of overlap Then, in order to explore the influence of
overlap on the algorithms, we employUniform andGaussian
datasets. Figure 14 depicts the results under various overlap
percentages. Notice that, in Fig. 14b, d, the total query cost for
overlap = 0 is illustrated in the small sub figure. As expected,
the selectivity and the total query cost of all the algorithms
ascend with the growth of overlap percentage, because the
MkCP query space grows as overlap increases. Consistent
with the observation from previous experiments, EHM also
performs the best.

(a) (b)

(c) (d)

(e) (f)

Fig. 15 MkCP search performance versus ratio of eCPDk/CPDk . a
CA, SF. b CA, SF. c Color, Color. d Color, Color. e Signature, Signa-
ture. f Signature, Signature

Effect of ratio Next, we inspect the impact of the ratio
of eCPDk/CPDk on the efficiency of the algorithms. Fig-
ure 15 illustrates the results on real and synthetic datasets.
The first observation is that, as eCPDk approaches to the real
CPDk value, the selectivity of EHM drops consistently. When
eCPDk grows far beyond the real CPDk value, the selectiv-
ity of EHM converges to that of IMA. Note that, for CA and
SF datasets, the selectivity of EHM skips from the case when
eCPDk/CPDk = 1 to the case when eCPDk/CPDk = 3, due
to the distance distributions of the datasets. Specifically, there

123

Efficient k-closest pair queries in general metric spaces 435

exit almost 9000 object pairs with their distances in the range
[CPDk , 3CPDk], which is far more than those in other dis-
tance intervals (e.g., [3CPDk , 5CPDk]), resulting in a clear
increase in terms of the number of distance computations.
For Signature, the selectivity of EHM is almost the same as
that of IMA, except for ratio = 1, because the distance func-
tion for Signature has small domain of discrete values. The
second observation is that, the CPU cost of EHM decreases
as the ratio grows, and stays stable eventually. This is because
additional CPU cost is needed for compensation, if eCPDk

is too small. Nonetheless, EHM always outperforms RMA
and IMA, with eCPDk in a wide range of estimated values.
However, in Fig. 15b, f, IMA performs worse than RMA in
terms of total query cost. The reason is that, the recursion
used by RMA favors LRU buffers than the iteration used by
IMA [18]. Therefore, the I/O cost of IMA is worse than that
of RMA, incurring larger total query cost of IMA.

Effect of buffer size Finally, we explore the influence of
buffer size with respect to the efficiency of the algorithms,
using real and synthetic datasets. Figure 16 only shows the
total query cost of the algorithms under various buffer sizes,
since the selectivity of the algorithms stays unchanged under
different buffer sizes. Note that, the I/O costs of IMA and
EHM are larger than RMA when the buffer size equals to 256
pages under Signature dataset. The reason is that, recursion
in depth-first traversal favors LRU buffers [18]. Although
EHM visits entry pairs with mindist = 0 in the depth-first
order, it iteratively accesses entry pairs with mindist > 0.
Therefore, the I/O cost of EHM could be larger than that of
RMA. More important, nevertheless, in most cases, the I/O
cost of EHM is the lowest.

6.3 Effectiveness of rules

The second set of experiments aims to evaluate the effec-
tiveness of our developed pruning rules. We measure the
effectiveness of a rule by how often it is successfully applied
in every algorithm. For Rules 1–2, a successful application is
counted when they prune an intermediate entry or an object.
Table 8 depicts the number of times that each rule is suc-
cessfully applied as a function of k. Obviously, all pruning
rules are applied multiple times during MkCP search, con-

Table 8 Prunning rule effectiveness versus k

k 100 101 102 103 104 105

Number of times applied (×103) on (CA, SF)

RMA-R1 117 133 185 332 741 1814

RMA-R2 12,863 12,865 12,870 12,893 13,008 13,531

IMA-R1 117 131 184 343 728 1532

IMA-R2 12,868 12,874 12,878 12,909 12,933 12,983

EHM-R1 116 123 145 194 388 931

EHM-R2 12,869 12,873 12,869 12,850 12,782 12,489

Number of times applied (×103) on (Color, Color)

RMA-R1 2543 2873 3630.5 5140 8377 15,857

RMA-R2 32,984 33,316 34,172 36,033 40,340 50,421

IMA-R1 2494 2631 3036 3905 7125 13,666

IMA-R2 32,905 33,093 33,515 34,425 37,971 45,906

EHM-R1 2369 2403 2418 2509 3407 6428

EHM-R2 33,574 33,349 34,225 34,628 34,784 37,430

Number of times applied (×103) on (Signature, Signature)

RMA-R1 22,581 23,661 24,822 26,929 31,186 57,191

RMA-R2 33,679 32,830 31,848 30,191 28,149 30,497

IMA-R1 7137 7163 7245 8218.2 11,255 14,985

IMA-R2 25,649 25,661 25,615 25,063 23,952 23,006

EHM-R1 7113 7113 7110 7067 10,682 10,036

EHM-R2 25,753 25,736 25,656 24,778 23,199 22,270

firming their usefulness. Note that, the number of pruning
rules applied increases with k in most cases. This is because,
as k grows, CPDk used for pruning ascends. Hence, it is
more difficult to prune high level entries, resulting in a lot of
pruning rule applications for the entries in the low level.

6.4 Accuracy of cost models

The third set of experiments verifies the accuracy of the cost
models for MkCP retrieval. Figure 17 plots the I/O cost (in
terms of NA) and the CPU cost (in terms of selectivity) with
respect to k. In particular, each diagram contains: (1) the
actual cost of EHM, (2) the estimated cost computed by our
derived cost models, and (3) the relative error between actual
and estimated values (i.e., |actual − estimated|/actual).
Note that, for clarity, we only include the cost of EHM here

(a) (b) (c)

Fig. 16 MkCP search performance versus buffer size. a CA, SF. b Color, Color. c Signature, Signature

123

436 Y. Gao et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 17 Cost model versus k. a CA, SF. b CA, SF. c Color, Color. d
Color, Color. e Signature, Signature. f Signature, Signature

because it performs the best, and its cost is the closest to
the value derived by the cost model. It is observed that the
cost model for I/O cost is very accurate, with the maximum
relative error 6.2 %. However, the cost model derived for CPU
cost is not accurate yet still good, with the maximal relative
error 22.5 %.

(a) (b)

(c) (d)

(e) (f)

Fig. 18 SMkCP search performance versus r . a SF. b SF. c Color. d
Color. e Signature. f Signature

(a) (b)

(c) (d)

(e) (f)

Fig. 19 SMkCP search performance versus k. a SF. b SF. c Color. d
Color. e Signature. f Signature

6.5 Results on SMkCP queries

The fourth set of experiments evaluates the performance
of our proposed algorithms (namely EHS and MSA) in
answering SMkCP queries. We study the influence of var-
ious parameters, including (1) the grouping radius r , (i.e.,
the percentage with respect to the maximal distance in the
metric space), and (2) the value of k, i.e., the number of clos-
est pairs required.

Effect of r Figure 18 plots the performance of SMkCP
search as a function of r , using real and synthetic datasets,
where abbreviations of algorithms (M for MSA and r for
r -MSA) are shown on the top of each column. The first
observation is that, r -MSA performs much better than MSA.
This is because r -MSA utilizes the grouping technique to
minimize computational cost significantly, as discussed in
Sect. 5.1.3. The second observation is that, r -MSA achieves
the best performance when r approaches 6 %. The reason
is that, for larger radius, the groups are not well clustered;
in worst case, all the objects are partitioned into one group,
resulting in poor query efficiency. Nevertheless, for smaller
radius, it will result in too many groups and thus needs more
additional cost to process these groups.

Effect of k Next, we inspect the impact of k on the effi-
ciency of SMkCP search algorithms. Figure 19 illustrates the
experimental results, based on real and synthetic datasets,
where abbreviations of algorithms (S for EHS and r for
r -MSA) are shown on the top of each column. The first
observation is that, in most cases, r -MSA performs better

123

Efficient k-closest pair queries in general metric spaces 437

Fig. 20 AMkCP search
performance versus α and N . a
CA, SF. b CA, SF. c CA, SF. d
Color, Color. e Color, Color. f
Color, Color. g Signature,
Signature. h Signature,
Signature. i Signature, Signature (a) (b) (c)

(d) (e) (f)

(g) (h) (i)

than EHS. This is because r -MSA utilizes the NN informa-
tion to boost query performance. Note that, the efficiency of
r -MSA degrades dramatically when k reaches 105, especially
on SF and Color datasets. The reason is that, as discussed in
Sect. 5.1.3, the time complexity of r -MSA is O(k2), and thus,
the efficiency of r -MSA degrades as k increases, especially
for larger k. Although r -MSA utilizes the grouping technique
to minimize quadratic cost, the improvement degrades when
k reaches 105, as the upper bound maxCPDk used to avoid
unnecessary distance computations converges slowly. How-
ever, the efficiency degradation is not obvious on Signature,
due to its polarized distance distribution.

6.6 Results on AMkCP queries

The last set of experiments verifies the performance of our
proposed algorithms (namely EHA and GMA) in answering
AMkCP queries. We study the influence of various parame-
ters, including (1) the approximate parameters α and N , and
(2) the value of k, i.e., the number of closest pairs required.

Effect of α and N First, we investigate the impact of
approximate parameters α and N on the efficiency of the
algorithms and the accuracy of the final result, compared with
Euclidean AkCP algorithm KCPRH [20], using real and syn-
thetic datasets. In particular, α is utilized for EHA, while N is
used for GMA, to control the tradeoff between the quality of
the query result and the query efficiency. The accuracy, the
improvement of selectivity (IS for short), and the improve-
ment of total query cost (ITQC for short) are depicted in
Fig. 20, where abbreviations of algorithms (K for KCPRH,
A for EHA, and G for GMA) are shown on the top of each
column, and Lower_bound denotes the lower bound of preci-
sion for GMA algorithm as derived in Sect. 5.2.3. Note that,
IS is measured as the ratio of the selectivity of AMkCP query
algorithm and that of MkCP search algorithm, and IQTC is

defined similarly. The first observation is that, the precision
of the approximate algorithms drops with α and N , which
is consistently with the precision derived in Sect. 5.2.3. The
second observation is that, GMA can achieve better accuracy
than KCPRH with similar query efficiency improvement.
Moreover, the ITQC of KCPRH is more sensitive to approxi-
mate parameters. This is because, KCPRH utilizes the hybrid
approximate technique; thus, its total query cost decreases
with both parameters N and α; while GMA is only affected
by N . In addition, although EHA can achieve the high accu-
racy of the final result, query performance does not improve
much. Nevertheless, GMA provides much larger query per-
formance improvement, which is sensitive to the approximate
parameter, and meanwhile can get the tolerated precision.

Effect of k Figure 21 plots the precision and AMkCP
search performance as a function of k, using both real and
synthetic datasets. It is worth noting that, EHM is a MkCP
search algorithm, which is used to compare against our
proposed AMkCP search algorithms, to show the query per-
formance improvement. As expected, GMA is better than
EHA, since it can find a well-controlled trade-off between
the query cost and the accuracy of the result. Note that, the
peak of the accuracy (i.e., precision defined in Definition 7)
for EHA occurs in Fig. 21a when k = 10 due to its random-
ness for smaller k values. In addition, the precision of GMA
is zero when k = 1 in Fig. 21a, since its value can be either
1 or 0 according to Definition 7, and the precision is smaller
than its lower bound when k = 1.

6.7 Conclusions from the experiments

From the previous exhaustive performance comparisons on
both real and synthetic datasets, the most important conclu-
sions are the following:

123

438 Y. Gao et al.

Fig. 21 AMkCP search
performance versus k. a CA, SF.
b CA, SF. c CA, SF. d Color,
Color. e Color, Color. f Color,
Color. g Signature, Signature. h
Signature, Signature. i
Signature, Signature

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

– For MkCP search, among the algorithms RMA, IMA, and
EHM based on M-tree, EHM performs the best in most
cases. In addition, our algorithms are flexible, i.e., they
can be easily extended to other metric indexes (e.g., PM-
tree [44]), in order to achieve better query performance
in terms of selectivity and CPU time.

– Compared with the existing state-of-the-art MkCP search
algorithms AMP [29] and LTC [32], our algorithms are
more efficient and better scalable. In particular, the per-
formance of LTC is poor for the case when the datasets
with low overlap percentage. However, for the kCP query
in the Euclidean space, the algorithms using R-trees
[18] outperforms those using M-trees and PM-trees with
respect to I/O cost and CPU time.

– For SMkCP retrieval, MSA based on the COMdnn-tree is
several orders of magnitude better than EHS based on the
COM-tree when k is much smaller than the cardinality
of the dataset.

– For AMkCP search, the GMdnn-tree with the N -consider
technique is more suitable for finding a good balance
between query performance and query result accuracy,
while the α-allowance technique is a good alternative
when the user demands high quality of the result set
regardless of necessary processing time.

7 Conclusions

In this paper, we explore the problem of MkCP search, which
aims at efficient kCP query processing in general metric
spaces. MkCP retrieval is not only interesting from a research
point of view, but also useful in many real-life applications
(e.g., GIS, data mining, recommender systems). We propose
three algorithms (i.e., RMA, IMA, and EHM) that do not
require the detailed representations of the objects and are
applicable as long as the similarity between two objects can

be evaluated and satisfies the triangle inequality. Our methods
utilize dynamic metric indexes (i.e., COM-trees), employ a
series of pruning rules, follow depth-first or/and best-first
traversal paradigms, and make use of the aggressive pruning
and compensation technique. In addition, we develop a cost
model for MkCP search and study two interesting MkCP
query variants. Extensive experiments using both real and
synthetic data sets demonstrate the performance of the pro-
posed algorithms, the effectiveness of the presented pruning
rules, and the accuracy of the derived cost model.

In the future, we intend to further improve the performance
of our presented algorithms, by developing more effective
pruning rule(s) and more efficient approach of CPDk esti-
mation. Another promising direction for future work is to
consider other interesting kCP query variants (e.g., exclu-
sive kCP queries [48] and k farthest pair queries) in general
metric spaces. Finally, it would be particularly interesting to
investigate MkCP retrieval in the distribution environment.

Acknowledgments Yunjun Gao was supported in part by the National
Key Basic Research and Development Program (i.e., 973 Program) No.
2015CB352502, NSFC Grant No. 61379033, the Cyber Innovation Joint
Research Center of Zhejiang University, and the Key Project of Zhejiang
University Excellent Young Teacher Fund (Zijin Plan). We would like
to thank Prof. A. Corral and Prof. T. Skopal for their useful feedback
on the source codes of their proposed algorithms in [18,44]. We also
would like to express our gratitude to some anonymous reviewers for
their giving valuable and helpful comments to improve the technical
quality and presentation of this paper.

References

1. Achtert, E., Kriegel, H.P., Kroger, P., Renz, M., Zufle, A.: Reverse
k-nearest neighbor search in dynamic and general metric databases.
In: EDBT, pp. 886–897 (2009)

2. Alvarez, M., Pan, A., Raposo, J., Bellas, F., Cacheda, F.: Using
clustering and edit distance techniques for automatic web data
extraction. In: WISE, pp. 212–224 (2007)

123

Efficient k-closest pair queries in general metric spaces 439

3. Angiulli, F., Pizzuti, C.: An approximate algorithm for top-k closest
pairs join query in large high dimensional data. Data Knowl. Eng.
53(3), 263–281 (2005)

4. Arumugam, S., Jermaine, C.: Closest-point-of-approach join for
moving object histories. In: ICDE, pp. 86–95 (2006)

5. Bohm, C.: A cost model for query processing in high dimen-
sional data spaces. ACM Trans. Database Syst. 25(2), 129–178
(2000)

6. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: iden-
tifying density-based local outliers. In: SIGMOD, pp. 93–104
(2000)

7. Bustos, B., Navarro, G., Chavez, E.: Pivot selection techniques
for proximity searching in metric spaces. Pattern Recognit. Lett.
24(14), 2357–2366 (2003)

8. Chavez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L.: Search-
ing in metric spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

9. Cheema, M.A., Lin, X., Wang, H., Wang, J., Zhang, W.: A unified
approach for computing top-k pairs in multi-dimensional space. In:
ICDE, pp. 1031–1042 (2011)

10. Chen, C., Sun, W., Zheng, B., Mao, D., Liu, W.: An incremental
approach to closest pair queries in spatial networks using best-first
search. In: DEXA, pp. 136–143 (2011)

11. Chen, L., Lian, X.: Efficient processing of metric skyline queries.
IEEE Trans. Knowl. Data Eng. 21(3), 351–365 (2009)

12. Ciaccia, P., Nanni, A., Patella, M.: A query-sensitive cost model
for similarity queries with M-tree. In: ADC, pp. 65–76 (1999)

13. Ciaccia, P., Patella, M.: PAC nearest neighbor queries: approximate
and controlled search in high dimensional and metric spaces. In:
ICDE, pp. 244–255 (2000)

14. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access
method for similarity search in metric spaces. In: VLDB, pp. 426–
435 (1997)

15. Ciaccia, P., Patella, M., Zezula, P.: A cost model for similarity
queries in metric spaces. In: PODS, pp. 59–68 (1998)

16. Corral, A., Almendros-Jimnez, J.: A performance comparison of
distance-based query algorithms using R-trees in spatial databases.
Inf. Sci. 177(11), 2207–2237 (2007)

17. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos,
M.: Closest pair queries in spatial databases. In: SIGMOD, pp.
189–200 (2000)

18. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos,
M.: Algorithms for processing k-closest-pair queries in spatial data-
bases. Data Knowl. Eng. 49(1), 67–104 (2004)

19. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos,
M.: Cost models for distance joins queries using R-trees. Data
Knowl. Eng. 57(1), 1–36 (2006)

20. Corral, A., Vassilakopoulos, M.: On approximate algorithms for
distance-based queries using R-trees. Comput. J. 48(2), 220–238
(2005)

21. Eppstein, D.: Fast hierarchical clustering and other applications of
dynamic closest pairs. J. Exp. Algorithm. 5, article 1 (2000)

22. Fredriksson, K., Braithwaite, B.: Quicker similarity joins in metric
spaces. In: SISAP, pp. 127–140 (2013)

23. Fuhry, D., Jin, R., D.Zhang: Efficient skyline computation in metric
space. In: EDBT, pp. 1042–1051 (2009)

24. Gutierrez, G., Saez, P.: The k closest pairs in spatial databases.
GeoInformatica 17(4), 543–565 (2013)

25. Hjaltason, G.R., Samet, H.: Incremental distance join algorithms
for spatial databases. In: SIGMOD, pp. 237–248 (1998)

26. Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric
spaces. ACM Trans. Database Syst. 28(4), 517–580 (2003)

27. Jacox, E.H., Samet, H.: Metric space similarity joins. ACM Trans.
Database Syst. 33(2), article 7 (2008)

28. Kim, Y.J., Patel, J.M.: Performance comparison of the R*-tree and
the quadtree for knn and distance join queries. IEEE Trans. Knowl.
Data Eng. 22(7), 1014–1027 (2010)

29. Kurasawa, H., Takasu, A., Adachi, J.: Finding the k-closest pairs
in metric spaces. In: NTSS, pp. 8–13 (2011)

30. Nanopoulos, A., Theodoridis, Y., Manolopoulos, Y.: C2P: Cluster-
ing based on closest pairs. In: VLDB, pp. 331–340 (2001)

31. Papadopoulos, A.N., Nanopoulos, A., Manolopoulos, Y.: Process-
ing distance join queries with constraints. Comput. J. 49(3),
281–296 (2006)

32. Paredes, R., Reyes, N.: Solving similarity joins and range queries in
metric spaces with the list of twin clusters. J. Discrete Algorithms
7(1), 18–35 (2009)

33. Pearson, S.S., Silva, Y.N.: Index-based R-S similarity joins. In:
SISAP, pp. 106–112 (2014)

34. Ristad, E.S., Yianilos, P.N.: Learning string-edit distance. IEEE
Trans. Pattern Anal. Mach. Intell. 20(5), 522–532 (1998)

35. Roumelis, G., Vassilakopoulos, M., Corral, A., Manolopoulos, Y.:
A new plane-sweep algorithm for the k-closest-pairs query. In:
SOFSEM, pp. 478–490 (2014)

36. Samet, H.: Foundations of Multidimensional and Metric Data
Structures. Morgan Kaufmann, San Francisco (2006)

37. Sarma, A.D., He, Y., Chaudhuri, S.: Clusterjoin: a similarity joins
framework using map-reduce. PVLDB 7(12), 1059–1070 (2014)

38. Shan, J., Zhang, D., Salzberg, B.: On spatial-range closest-pair
query. In: SSTD, pp. 252–269 (2003)

39. Shin, H., Moon, B., Lee, S.: Adaptive multi-stage distance join
processing. In: SIGMOD, pp. 343–354 (2000)

40. Shin, H., Moon, B., Lee, S.: Adaptive and incremental processing
for distance join queries. IEEE Trans. Knowl. Data Eng. 15(6),
1561–1578 (2003)

41. Silva, Y.N., Pearson, S.: Exploiting database similarity joins for
metric spaces. In: VLDB, pp. 1922–1925 (2012)

42. Silva, Y.N., Pearson, S., Cheney, J.A.: Database similarity join for
metric spaces. In: SISAP, pp. 266–279 (2013)

43. Skopal, T., Lokoc, J.: Answering metric skyline queries by PM-
tree. In: DATESO, pp. 22–37 (2010)

44. Skopal, T., Pokorny, J., Snasel, V.: PM-tree: pivoting metric tree for
similarity search in multimedia databases. In: ADBIS, pp. 803–815
(2004)

45. Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Efficient and accurate nearest
neighbor and closest pair search in high-dimensional space. ACM
Trans. Database Syst. 35(3), article 20 (2010)

46. Tao, Y., Yiu, M.L., Mamoulis, N.: Reverse nearest neighbor search
in metric spaces. IEEE Trans. Knowl. Data Eng. 18(9), 1239–1252
(2006)

47. Tao, Y., Zhang, J., Papadias, D., Mamoulis, N.: An efficient cost
model for optimization of nearest neighbor search in low and
medium dimensional spaces. TKDE 16(10), 1169–1184 (2004)

48. U, L.H., Mamoulis, N., Yiu, M.L.: Computation and monitoring
of exclusive closest pairs. IEEE Trans. Knowl. Data Eng. 20(12),
1641–1654 (2008)

49. Vlachou, A., Doulkeridis, C., Kotidis, Y.: Metric-based similarity
search in unstructured peer-to-peer systems. Trans. Large Scale
Data Knowl. Cent. Syst. 7100, 28–48 (2012)

50. Wang, Y., Metwally, A., Parthasarathy, S.: Scalable all-pairs simi-
larity search in metric spaces. In: KDD, pp. 829–837 (2013)

51. Xiao, C., Wang, W., Lin, X., Shang, H.: Top-k set similarity joins.
In: ICDE, pp. 916–927 (2009)

52. Yang, C., Lin, K.I.: An index structure for improving closest pairs
and related join queries in spatial databases. In: IDEAS, pp. 140–
149 (2002)

53. Zezula, P., Savino, P., Amato, G., Rabitti, F.: Approximate similar-
ity retrieval with M-trees. VLDB J. 7(4), 275–293 (1998)

54. Zhou, P., Zhang, D., Salzberg, B., Cooperman, G., Kollios, G.:
Close pair queries in moving object databases. In: GIS, pp. 2–11
(2005)

123

	Efficient k-closest pair queries in general metric spaces
	Abstract
	1 Introduction
	2 Related work
	2.1 Euclidean kCP queries
	2.2 The M-tee
	2.3 Querying metric spaces

	3 Preliminaries
	3.1 Problem formulation
	3.2 The count M-tree
	3.3 Pruning heuristics

	4 MkCP query processing
	4.1 Recursive MkCP algorithm
	4.2 Iterative MkCP algorithm
	4.3 Estimation-based hybrid MkCP algorithm
	4.4 Cost model

	5 Extensions
	5.1 Self MkCP search
	5.1.1 Estimation-based hybrid SMkCP algorithm
	5.1.2 COMdnn-tree-based SMkCP algorithm
	5.1.3 Discussion

	5.2 Approximate MkCP search
	5.2.1 Estimation-based hybrid AMAkCP algorithm
	5.2.2 GMdnn-tree-based AMkCP algorithm
	5.2.3 Discussion

	6 Performance study
	6.1 Experimental setup
	6.2 Results on MkCP queries
	6.3 Effectiveness of rules
	6.4 Accuracy of cost models
	6.5 Results on SMkCP queries
	6.6 Results on AMkCP queries
	6.7 Conclusions from the experiments

	7 Conclusions
	Acknowledgments
	References

