
The VLDB Journal (2015) 24:395–414
DOI 10.1007/s00778-015-0382-5

REGULAR PAPER

Conditional heavy hitters: detecting interesting correlations
in data streams

Katsiaryna Mirylenka · Graham Cormode ·
Themis Palpanas · Divesh Srivastava

Received: 24 March 2014 / Accepted: 14 February 2015 / Published online: 26 February 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract The notion of heavy hitters—items that make
up a large fraction of the population—has been successfully
used in a variety of applications across sensor andRFIDmon-
itoring, network data analysis, event mining, and more. Yet
this notion often fails to capture the semanticswe desirewhen
we observe data in the form of correlated pairs. Here, we are
interested in items that are conditionally frequent: when a
particular item is frequent within the context of its parent
item. In this work, we introduce and formalize the notion of
conditional heavy hitters to identify such items, with applica-
tions in networkmonitoring andMarkov chainmodeling.We
explore the relationship between conditional heavy hitters
and other related notions in the literature, and show analyti-
cally and experimentally the usefulness of our approach. We
introduce several algorithm variations that allow us to effi-
ciently find conditional heavy hitters for input data with very
different characteristics, and provide analytical results for
their performance. Finally, we perform experimental evalua-
tions with several synthetic and real datasets to demonstrate
the efficacy of our methods and to study the behavior of the
proposed algorithms for different types of data.

K. Mirylenka (B)
The University of Trento, Trento, Italy
e-mail: kmirylenka@disi.unitn.it

G. Cormode
The University of Warwick, Coventry, UK
e-mail: G.Cormode@warwick.ac.uk

T. Palpanas
Paris Descartes University, Paris, France
e-mail: themis@mi.parisdescartes.fr

D. Srivastava
AT&T Labs, Bedminster, NJ, USA
e-mail: divesh@research.att.com

Keywords Streaming data · Online algorithms ·
Heavy hitters

1 Introduction

Within applications that generate large quantities of data, it
is often important to identify particular entities that are asso-
ciated with a large fraction of the data items [10,25]. For
example, in a network setting, we often want to find which
users are responsible for sending or receiving a large fraction
of the traffic. In monitoring updates to a large database table,
it is important to know which attribute values predominate,
for query planning and approximate query answering pur-
poses. This notion has been abstracted as the idea of “heavy
hitters” or “frequent items.” There has beenmuch effort spent
in finding algorithms to track these under a variety of scenar-
ios and data arrival models [3,7,9,13,23,26,27,29].

However, the concept of heavy hitters can on occasion be
quite a blunt one. Consider again the network health moni-
toring scenario. Here, it is well known that in any measure-
ment, there will be some destinations that are globally pop-
ular (search engines, social networks, video providers), like-
wise, so will be certain users (large organizations behind a
single IP address, heavy downloaders, and file sharers). As
a result, tracking the heavy hitters within these data is not
always informative, as they reveal only knowledge which
is relatively slow changing, and not actionable. Rather, we
would like to find which are sources or destinations that are
significantly locally popular. That is, find those (source, des-
tination) pairs where the destination is a heavy hitter among
the connections of the same source.

Another application area is in security, in the intrusion
detection domain. Here, a large number of different actions
are observed, and the goal is to sift for unusual patterns

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-015-0382-5&domain=pdf

396 K. Mirylenka et al.

of activity. The canonical approach is based around asso-
ciation rule and frequent itemset mining. These methods
identify subsets of activities whose joint occurrence fre-
quency exceeds some given threshold. While popular, this
methodology has its limitations. The enormous search space
implied by all possible combinations of actions typically
requires a lengthy off-line search to identify the patterns of
interest. While there are some online algorithms, these still
require substantial resources to track sufficient statistics for
the potentially frequent subsets. As a result, this kind of min-
ing tends to be costly and to deliver results significantly after
the event.

Essentially, these two approaches (frequent items and fre-
quent itemsets) fall at two ends of the spectrum: The frequent
items approach is not rich enough to identify behavior of
interest, while the frequent itemsets are potentially too rich
and too costly to find. In this work, we propose an interme-
diate goal, which teases out more correlations between items
than that between simple heavy hitters, but is lightweight
enough to permit efficient streaming algorithms. We dub
this concept “conditional heavy hitters” and work to provide
meaningful definitions and a suite of algorithmic approaches
to find them.

Specifically, we model data that can be abstracted as
pairs of items, which we refer to as parent and child items.
The central concept of conditional heavy hitters is to find
those parent–child pairs that are most frequent, relative to
the frequency of the parent. The reason for referring to this
as “conditional” is by analogy to conditional probabilities:
Essentially, we seek children whose probability is high, con-
ditioned on the parent. These should be distinct from the
parent–child pairs which are overall most frequent, since
these can be found by using existing heavy hitter algorithms.
While this is a natural goal, it turns out that there are several
ways to formalize this, which we discuss in more detail in
subsequent sections.

Equipped with the concept of conditional heavy hitters,
we can now apply it to a variety of settings:

– In a network monitoring setting, we can look for the con-
ditional heavy hitters over packets within the network,
where for each packet the source address is considered
as the parent and the destination address is the child.
Then the conditional heavy hitters identify those destina-
tions which occur most frequently for their correspond-
ing sources. This can be useful in identifying local trends,
shifts in popularity, and traffic planning, especially when
several sources are seen to share the same child as a con-
ditional heavy hitter.

– When modeling many real systems and processes, it is
common to use a Markov chain to capture the transition
behavior between states. However, many of the systems
have large numbers of possible states (e.g.,modeling traf-

fic flow in a large city), and so it can be costly to maintain
complete statistics. Instead, it suffices if we can just mea-
sure the most important observed transition probabilities
from state to state from a stream of state occupancies.
That is, we identify the large probabilities of moving
from one state to another—these are exactly the con-
ditional heavy hitters, with the parent being the current
state and the child being the transition taken. Thus, track-
ing the conditional heavy hitters over a long sequence of
observations of state transitions can capture the essential
parameters of the Markov chain.

– Caching and pre-fetching are widely used in Web-based
systems. Their aim is to reduce the time latencies per-
ceived by users when navigating the Web. Advanced
caching and pre-fetching policies use probability graphs,
access trees, and Markov chain models [31], in order to
predict the least/most probable objects to be accessed
next or in the near future. In this case, conditional heavy
hitters can efficiently capture the main transitions from
previous sequence of objects to the next, thus providing
existing policies with the most relevant real-time proba-
bilities to enable them to make better predictions.

– Within a database management system or data ware-
house, there are a large number of transactions that affect
the overall data distribution. Such systems commonly
keep statistics on individual attributes, to capture the
number of distinct values, frequent items, and so on.
Given the large number of columns, it is infeasible to keep
detailed statistics on all combinations of columns. How-
ever, a suitable compromise is to keep some summary
statistics on pairs of columns which commonly co-occur
(in join paths, say). Finding the conditional heavy hitters
within such pairs captures information about the corre-
lations between them and can allow improved selectivity
estimation.

Contributions The main contributions of our work include:

– We define the concept of conditional heavy hitters, which
can be applied in a variety of settings;

– We compare conditional heavy hitters with other notions
of interesting elements studied in the data stream liter-
ature, such as frequent itemsets, association rules, and
correlated heavy hitters;

– We develop and describe several streaming algorithms
for retrieving conditional heavy hitters, and we analyze
their applicability for data with varying characteristics;

– The algorithms developed are evaluated on a mixture of
real and synthetic datasets. We observe that certain algo-
rithms can retrieve the conditional heavy hitterswith high
accuracy while retaining a compact amount of histor-
ical information. We observe that different algorithms
achieve the best results depending on simple characteris-

123

Conditional heavy hitters 397

tics of the data: essentially, whether the number of con-
ditional heavy hitters is comparable to the number of
parents or whether it is much lower.

The rest of the paper is organized as follows: Sect. 2
describes background and related work for heavy hitters and
frequent itemset mining, and Sect. 4 discusses the relation-
ship between conditional heavy hitters and other notions of
interesting elements in a data stream. In Sect. 3, we refine
the notion of conditional heavy hitters to obtain a workable
definition. In Sect. 5, we present and discuss a sequence of
algorithms to find conditional heavy hitters from a stream of
data. Our experimental results are shown in Sect. 6, and we
conclude our discussion in Sect. 7.

2 Related work

The notions of heavy hitters and frequent itemsets have
been heavily studied in the database and data mining lit-
erature. Interest in finding the heavy hitters in streams of
data goes back to the early eighties [5,29], where simple
algorithms based on tracking items and counts were devel-
oped. Thanks to the interest in algorithms for streams of data,
improved methods were developed over the course of the
last decade. These included variants of methods which track
items and corresponding estimated counts [16,26,27], and
randomized “sketch” methods, capable of handling negative
weights [9,13]. These methods can all provide the guarantee
that given a parameter ε, they can find all items in a stream
of length n which occur more than εn times, while maintain-
ing a summary of size O(1/ε). Equivalently, they estimate
the frequency of any given item with additive error εn. For
further details and empirical comparison of methods, see the
surveys [10,25].

The heavy hitters are a special case of frequent itemsets:
They are the frequent 1-itemsets. Further, all larger frequent
itemsets consist of subsets of the heavy hitters. There has
been much work to find frequent itemsets (and their varia-
tions) in the off-line setting, often starting from the A pri-
ori [1] and FP-Tree algorithms [21]. These concepts have
been adapted to work over streams of data, generating algo-
rithms such as FUP [8] and FP-stream [20]. A limitation
of finding frequent itemsets is that the number of possi-
bly frequent itemsets can become very large, meaning that
the algorithm has to either track information about many
candidates or else aggressively prune the retained data and
risk missing out on some frequent itemsets. In formaliz-
ing conditional heavy hitters, one aim is to form a com-
promise between heavy hitters (which are simple and for
which space/accuracy trade-offs can be provided) and fre-
quent itemsets (which are much more complex, for which
no tight space guarantees are provided). Additional back-

ground on itemset mining in streams is given by Yu and
Chi [38].

Several other variations in heavy hitters on streams have
been proposed in the literature. Where the stream is time
varying, it is sometimes of interest to monitor only the heavy
hitters within a recent time window or with some other time
decay [12,15,23,34]. The “distinct heavy hitters” are found
over pairs of items (a, b), as those items a associated with a
large number of distinct values b [35].

The notion of hierarchical heavy hitters says that when
items fall in a hierarchy (or combination of hierarchies), it
is interesting to find nodes in the hierarchy that are heavy
from aggregating their descendants [11]. Lastly, correlated
aggregates consider streams of tuples and ask for aggregates
on some attributes, for the subset of tuples that meet some
other conditions [19]. In this regard, our concept of condi-
tional heavy hitters can be seen as a generalized version of
a kind of correlated aggregate, albeit one that has not been
studied previously.

Our notion of conditional heavy hitters is related to mod-
els of (temporal) correlation in data, as captured by Markov
chains. That is, given a sequence of items, the kth-order
transition probabilities are defined as the (marginal) prob-
ability of seeing each character, given the history of the
k prior characters. In our terminology, setting the child as
the new character and the parent as the concatenation of
the k previous characters means that finding the conditional
heavy hitters maps on to finding the high transition proba-
bilities in this Markov chain. The importance of consider-
ing correlations has been recently motivated within several
domains [14,24]. There has been much prior work on cap-
turing correlations in data via different Markov-style mod-
els, such as homogeneous Markov chains of high order,
hidden Markov models [4], Bayesian networks [30], and
others [24,36]. However, fitting these increasingly complex
models requires a lot of CPU and I/O time and multiple
passes over the data, and hence it is infeasible to estimate
them in a streaming setting. For example, the simple mix-
ture transition distribution [32] aims to approximate the tran-
sition probabilities with a smaller number of parameters,
but requires multiple iterations over the data to do so. By
focusing on the conditional heavy hitters, we also identify
a small number of parameters to describe the distribution,
but can recover these efficiently in a single pass over the
data.

Most related to this paper is the work of Lahiri and Tirtha-
pura [22] which considers the problem of “correlated heavy
hitters” over a stream of tuples (a, b). Here, (a, b) is a cor-
related heavy hitter if a is a simple heavy hitter (frequency
exceeds ψ) in a sequence of single-dimensional records, and
b is a heavy hitter in the subset of tuples where a appears.
We discuss the similarity and differences of this definition to
conditional heavy hitters in Sects. 3 and 4.

123

398 K. Mirylenka et al.

3 Preliminaries

To allow our definition of conditional heavy hitters to be gen-
erally applicable, we assume that the input can be modeled
as a stream of pairs of adjacent (parent, child) values (p, c).
A parent p can be a single symbol, or a sequence of adjacent
symbols in the stream, while a child is a single symbol.

Definition 1 (Frequencies) Given a stream of (parent, child)
pairs whose i th element is (pi , ci), the frequency of a parent
p, fp, is defined as

fp = |{i : pi = p}|.
The frequency of a (parent, child) pair, fp,c, is defined as

fp,c = |{i : pi = p ∧ ci = c}|.
From these frequencies, we can define (empirical) proba-

bilities associated with items and pairs.

Definition 2 (Probabilities) Given a stream of n (parent,
child) pairs, the empirical probability of a parent p, Pr[p], is
defined as Pr[p] = fp/n. The joint probability of a parent–
child pair, Pr[p, c], is defined as Pr[p, c] = fp,c/n. The
conditional probability of a child given a parent, Pr[c|p], is
defined as

Pr[c|p] = Pr[p, c]
Pr[p] = fp,c

fp
.

We can now define a first notion of conditional heavy
hitters.

Definition 3 (Conditional heavy hitter) We say that a pair
(p, c) is a conditional heavy hitter with respect to a threshold
0 < φ < 1 if Pr[c|p] ≥ φ.

This definition has the advantage of clarity and simplic-
ity. However, on further consideration, there are some draw-
backs associated with this formulation. Firstly, observe that
when a parent is rare, it is more likely to generate condi-
tional heavy hitters. As a clear example, consider the case of
a parent p that occurs only once in the stream. Then we have
fp,c = fp = 1 for the associated child c, and so Pr[c|p] = 1,
making it automatically a conditional heavy hitter.While this
is a valid application of the definition—the (empirical) con-
ditional probability of this child truly is 1—we might still
object that this is not a particularly significant association,
due to the limited support of this item. Second, for related
reasons, the total number of conditional heavyhittersmeeting
this definition can be large. Specifically, in an extreme case
a given parent p can have Θ(1/φ) distinct children which
are all conditional heavy hitters. So if there are |P| distinct
parents, there can be a total of Θ(|P|/φ) distinct conditional
heavy hitters—a very large amount—many of which may be
infrequent and uninformative.

A natural way to avoid these issues is to place an addi-
tional constraint on the frequency of the parent, thus limiting
the number of parents which can contribute to conditional
heavy hitters. One solution would be to additionally require
that Pr[p] > ψ for (p, c) to form a conditional heavy hit-
ter (similar to [22]). Certainly, this has the desired effect:
The number of conditional heavy hitters can now be at most
Ω(1/φψ), and parents with very small count can no longer
contribute conditional heavy hitters. However, we argue that
this definition is overly restrictive: It restricts attention to
only those parents who are ψ-heavy hitters and so misses
those pairs which may have a significant correlation despite
a lower total frequency. Other formulations, such as requir-
ing Pr[(p, c)] > φψ , have similar drawbacks. Consequently,
we set up a different requirement as our goal.

Definition 4 (Popular conditional heavy hitter) A pair (p, c)
is a popular conditional heavy hitter if it is a conditional
heavy hitter with respect to φ, and it ranks among the top-τ
of the conditional heavy hitters, ordered by fp,c.

This says that we seek parent–child pairs that are con-
ditional heavy hitters, with a preference to those that have
a higher occurrence within the observed data. In realistic
datasets, we may expect that there will be many conditional
heavy hitterswith large fp,c values, whichwill ensure thatwe
avoid the trivial case of fp,c = fp = 1. Consequently, this
represents a workable definition that avoids this unwanted
case, while also avoiding ruling out interesting cases.

Given this definition, it is not possible to provide algo-
rithms that guarantee to always find exactly those items
counted as popular conditional heavy hitters while also using
small space, as shown by the following lemma:

Lemma 1 Any (randomized) one-pass algorithm which
promises to find all popular conditional heavy hitters must
useΩ(min(n, |P|)) space, where n is the length of the stream
and |P| is the number of distinct parents.
Proof Consider a stream of items, x1, x2, . . . xn , and sup-
pose we have an algorithm that finds popular conditional
heavy hitters. From this stream, we generate a new stream
of parent–child pairs, (x1, 0), (x2, 0), . . . (xn, 0). Then each
distinct pair is a conditional heavy hitter: P[0|p] = 1. Thus,
the algorithm must find the top-τ most frequently occurring
parents. But observe that these correspond exactly to the top-
τ most frequently occurring items in the original stream. It
has previously been shown that accurately solving this prob-
lem requires space Ω(min(n,U)) over a set of U possible
items, even just to find the most frequent item [2], which
gives the claimed lower bound.

In some cases, |P| is not so large, and so we can look for
algorithms which use this much space. In other cases, |P|
may be very large, and this amount of space is impractical.

123

Conditional heavy hitters 399

However, this bound should not cause us to abandon hope of
finding methods that are effective in practice. The kinds of
sequences which are used to construct the worst-case exam-
ples in the lower bounds are very artificial, where all items
occur only once or twice within the data, forcing any correct
algorithm to keep enough information to distinguish which
items occur more than once. Realistic data are more varied,
and so there is more evidence spread throughout the stream
to help identify the conditional heavy hitters.

Our goal will be to design algorithms that allow us to esti-
mate the conditional probability of parent–child pairs accu-
rately. That is, the goal is to find an estimate ̂Pr[c|p] that
accurately estimates Pr[c|p]. From this, we will be able to
find candidate conditional heavy hitters. Having the candi-
date conditional heavy hitters, we can also extract the popular
conditional heavy hitters. Our experimental study evaluates
the ability of these algorithms to find such conditional heavy
hitters.

4 Notions of elements of interest in a data stream

The problem of detecting “interesting” elements in data
streams has attracted a lot of attention in the recent years.
There can be many different interpretations of what makes
an element of interest, varying across different applications.
Consequently, several different notions have been proposed
that are relevant to our study. In each case, there has been at
least one paper describing algorithms for each of the follow-
ing notions

(a) frequent items or heavy hitters [10,25];
(b) frequent itemsets [21], which are the foundation of
(c) association rules [1];
(d) correlated heavy hitters [22];
(e) elements with the highest pointwise mutual information

(PMI) [18], and
(f) conditional heavy hitters [28].

In this section, we formally consider each notion or prob-
lem definition and study the relationships among them. For
consistency with the rest of the paper, we consider streams
of pairs p and c.

Notion 1. The Frequent Itemsets (of size two) are the
(p, c)-pairs that occur in the data stream more often than
a given support threshold: fp,c > φ0, φ0 > 0.

Note that Heavy Hitters (HHs) of the stream can be con-
sidered as frequent itemsets of size one. Conceptually, the
frequent itemsets are equivalent to the heavy hitters if every
(p, c)-pair is modeled as a single element.

Notion 2. A (p, c)-pair, or implication p ⇒ c, is an
Association Rule [1] if fp,c > φ1 (support), φ1 > 0, and
Pr[c|p] > φ2 (confidence), 0 < φ2 < 1.

Notion 3. Correlated Heavy Hitters [22] are the pairs
(p, c), where fp > φ3, φ3 > 0 and Pr[c|p] > φ2, 0 <

φ2 < 1.
Notion 4. A pair (p, c) is considered to have the highest

Pointwise Mutual Information [18] if it is among the top-σ
(σ ∈ Z>0) pairs ranked using PMI (p, c) = log Pr[p,c]

Pr[p]Pr[c] .
Notion 5.1Apair (p, c) is aConditionalHeavyHitter [28]

if Pr[c|p] > φ2, 0 < φ2 < 1.
Notion 5.2 The pair (p, c) is considered to be a Popular

Conditional Heavy Hitter [28] if it is a conditional heavy
hitter and it ranks among the top-τ (τ ∈ Z>0) of the highest
conditional heavy hitters sorted by fp,c.

All the thresholds, φi , i = 0, 1, 2, 3, σ , and τ , are user
defined.

Wenote thatwe consider frequent itemsets and association
rules only for the case of pairs of items. The general prob-
lem of frequent itemsets is not considered here as it involves
additional challenges, mainly that of pruning non-promising
itemsets of varying length, creating an exponentially large
search space. Moreover, we point out that Notion 1 (frequent
itemsets or heavy hitters) and Notion 4 (pointwise mutual
information) are very different from the others, because both
these notions treat the two elements of the pair equally, thus,
not taking into account the sequential nature of their relation-
ship within the data stream. Notion 1 suffers this limitation
due to its simplicity, while Notion 4 treats p and c sym-
metrically and finds those pairs where both elements occur
together more often than if their occurrences were indepen-
dent. Therefore, in the following we elaborate on the other
three notions, which consider the sequential nature of the
pair. Fig. 1 sketches these notions and the relations between
them.

Fig. 1 Comparison of various notions of interesting data stream ele-
ments

123

400 K. Mirylenka et al.

Association rules (Notion 2) and correlated heavy hitters
(Notion 3) are very similar as they both consider the condi-
tional probability of the child given the parent. Notion 2 has
an additional constraint on the frequency of the parent–child
pair, while Notion 3 has a constraint on the frequency of the
parent. Note that given the output of any algorithm for asso-
ciation rules, where φ1 > ε with ε sufficiently close to zero,
we can filter out those items where fp > φ3 and obtain the
same results as correlated heavy hitters.

Lemma 2 The output of the correlated heavy hitters algo-
rithm produces the output of the association rule algorithm
if φ3 = φ2/φ1.

Proof If the pair (p, c) is a correlated heavy hitter, it satisfies
the condition Pr[c|p] > φ2. To qualify as an association rule,
the pair (p, c) should also satisfy the condition:

fp,c > φ1 (1)

Consider the definition of the conditional probability Pr[c|p]
= Pr[p, c]/Pr[p] = fp,c/ fp. We then have fp,c = Pr[c|p] ·
fp. Since (p, c) is a correlated heavy hitter, fp > φ3 and
fp,c = Pr[c|p] · fp > φ3 · φ2. If φ3 = φ2/φ1, then condi-
tion (1) is satisfied.

The transformations needed to derive association rules
from correlated heavy hitters and vice versa are depicted by
the solid (orange) arrows in Fig. 1.

Association rules (Notion 2), correlated heavy hitters
(Notion 3), and conditional heavy hitters (Notions 5.1 and
5.2) all use a threshold for the conditional probability (note
that it is possible to use the same algorithms for conditional
heavy hitters and popular conditional heavy hitters; in the lat-
ter case, additional ordering and pruning by the frequencies
of parent–child pairs are applied). Conditional heavy hitters
do not have any additional conditions on the frequencies of
the elements; hence, by filtering the results based on the fre-
quencies of parents or the frequencies of parent–child pairs,
the results of conditional heavy hitters may be transformed
to correlated heavy hitters or association rules, respectively.
Likewise, if the thresholds on frequencies φ1 and φ3 are set
to a sufficiently small value ε > 0, the results of association
rules and correlated heavy hitters algorithms can be used to
find the conditional heavy hitters. These relationships are
shown using the dashed (black) and dotted (green) arrows in
Fig. 1.

These connections show that a solution set for certain of
the notions identified above can be manipulated to provide
solutions for others also. However, there are overheads in
simply trying to apply an algorithm for one notion to solve
another: There are additional time and space costs, and it may
be necessary to modify the parameters used substantially to

obtain the desired output. Furthermore, the quality guaran-
tees offered by a particular algorithmare specific to the notion
and thresholds that it targets. In most cases, these guarantees
do not translate into guarantees for different notions. For
example, if we use the algorithm of correlated heavy hitters
for conditional heavy hitters by setting φ3 = 0, the space
guarantees of the algorithm (which depend on φ3) no longer
hold. In Sect. 6.2, we further study the relationships between
heavy hitters, conditional heavy hitters, correlated heavy hit-
ters, and association rules by experimentally evaluating their
behavior in different settings.

5 Algorithms for conditional heavy hitters

In this section, we describe a variety of algorithms to help us
identify the conditional heavy hitters within a stream of data.
These are summarized in Table 1. We begin with algorithms
for the traditional heavy hitters problem and adapt these to
identify those which are conditional heavy hitters.

5.1 GlobalHH algorithm

Our first algorithm aims to identify all parent–child pairs
that occur frequently so that we can extract the subset that
are conditional heavy hitters. For this task, we make use of
existing algorithms to find the heavy hitters from a stream
of items. The SpaceSaving algorithm by Metwally et al. [27]
has been widely used for this problem. Given an amount of
space s, it guarantees to find all items in a stream of length n
which occur more than n/s times (and, moreover, to provide
an estimate of their frequency which is accurate up to an n/s
additive error). For streams that obey a frequency distribution
that follows a long-tail distribution, formalized as a Zipfian
distribution, it further guarantees to provide accurate recov-
ery of the head of the distribution. The algorithm behaves
very well in practice, finding accurate estimates of frequen-
cies of items across a variety of data sets [10,25]: It exhibits
the most stable behavior among all heavy hitter algorithms.

The algorithm works as follows: It maintains a collec-
tion SS of k items and associated counts. For simplicity,
assume that the structure is initialized with k arbitrary items

Table 1 Main characteristics of the proposed algorithms

Algorithm Parents Summary structure Eviction order

GlobalHH All Global Parent–child frequency

ParentHH All Local Parent–child frequency

CondHH All Global Conditional probability

FamilyHH Partial Global Parent–child frequency

SparseHH Partial Global Conditional probability

123

Conditional heavy hitters 401

Algorithm 1 GlobalHH for Conditional Heavy Hitters
Input: Data stream D = {(pi , ci), i = 1, 2, ...}.
Output: SS - SpaceSaving structure of length s for parent–child pairs
1: fpi = 0, i = 1, 2, ..., |P| - keeps the frequency of each parent
2: m = 0 - highest frequency of a pair removed from SS
3: for each element (pi , ci) of D do
4: fpi = fpi + 1
5: if (pi , ci) ∈ SS then
6: SS[(pi , ci)] = SS[(pi , ci)] + 1
7: else
8: if |SS| ≥ s then
9: m = SS.deleteMin()

10: end if
11: SS.insert ((pi , ci),m + 1)
12: end if
13: end for

with count 0. For each item x seen in the stream, if it is
currently stored in the collection, the associated count f̂x is
incremented. Otherwise, we find the item with the current
smallest count in the collection, replace it with the new item,
and then increment its count. At any time, we can estimate
the frequency of any item x with the associated count in the
collection f̂x if the item is stored, and 0 otherwise.

We formalize the GlobalHHalgorithm in pseudocode in
Algorithm 1. Given each (p, c) pair in the stream, we insert
it into the SS structure (lines 3–13).We also separatelymain-
tain information on the frequency of each parent (lines 1, 4).
In this first algorithm, we assume that there is sufficient space
to store information on all parents, which means we have the
exact fp values. If the SS structure is full (line 8), we elim-
inate the element with the lowest count from the structure
and store its frequency in variable m (line 9). Then, a new
element is inserted in SS with frequency m + 1 (line 11).

To identify the conditional heavy hitters and the popular
conditional heavy hitters, we iterate over all items in the SS
structure in decreasing order of their counts. For each stored
(p, c) pair, we compute its estimated f̂ p,c value, which is
contained in the SS structure and denoted as SS[(pi , ci)]
in Algorithm 1. Then, we calculate the corresponding con-
ditional probability T [(pi , ci)] = SS[(pi , ci)]/ fpi and test
whether T [(pi , ci)] > φ. If this condition is true, we output
this pair as a conditional heavy hitter. The top-τ such pairs
are the popular conditional heavy hitters. We refer to this
algorithm as the GlobalHH algorithm, since it is based on
finding the parent–child pairs which are global heavy hitters.

The SS structure is implemented as a min heap. Since its
operations, namely Insert and Delete Minimal element, can
be implemented with O(log s) time complexity, the running
time of the GlobalHH algorithm for processing each new
element of the stream is O(log s).

Lemma 3 Given space O(s+|P|), theGlobalHHalgorithm
guarantees that each candidate (p, c) pair output will have
Pr[c|p] ≤ ̂Pr[c|p] ≤ Pr[c|p] + 1

s Pr[p] . When the distribution

of (p, c) pairs follows a Zipfian distribution with parameter
z > 1, the error bound is improved to 1

sz Pr[p] .

Proof Since the fp values are found exactly, the uncertainty
in the estimated conditional probability, ̂Pr[c|p], is due to
the error from the SS algorithm. This guarantees that our
estimate of fp,c is an overestimate by atmost n/s for arbitrary
streams. We output f̂ p,c/ fp, which overestimates by at most
n
s fp

= 1
s Pr[p] . Therefore, we have the bound stated. This

guarantees to overestimate the conditional probability and
so will ensure good recall. Alternately, we could provide
an underestimate of the conditional probability by using a
lower bound on the estimate of fp,c. In this case, we ensure
good precision, but do not guarantee recall. For streams with
Zipfian frequency distribution, the error bound is tightened
to ns−z [27], improving the error bound to 1

sz Pr[p] as claimed.

5.2 ParentHH algorithm

Our second algorithm takes a parent-centric view of the prob-
lem. Again, making the assumption that it is feasible to retain
information about each distinct parent observed, we consider
the case of keeping information about the set of children asso-
ciated with each parent. That is, we keep a separate instance
of the SS structure for each distinct parent. Clearly, this can
use a lot of space, but will allow very accurate recovery of
conditional heavy hitters. We call this the ParentHH algo-
rithm, since it retains heavy hitter information for each par-
ent.

Algorithm 2 describes ParentHH. For each parent p
observed in the stream, we maintain an instance of the SSp
structure of size s/|P|, dedicated to the children c that arrive
as part of a pair for this p (line 2). For each pair (p, c) that
arrives, we insert c in the corresponding SSp (line 7).

The output of the ParentHH algorithm, T , which is the set
of the s highest conditional heavy hitters, is calculated using
the SSP structure in the following way: For each parent pi ,
the corresponding SSpi is retrieved. All the pairs (pi , ci),
where ci ∈ SSpi are placed in the answer set T with the
corresponding conditional probabilities T [(pi , ci)], are set
equal to SSpi (ci)/ fpi . In order to recover the conditional
heavy hitters given a threshold φ, we consider the set T in
decreasing order of the conditional probabilities, and output
(p, c) as an estimated conditional heavy hitter if f̂ p,c/ fp ≥ φ.
The first τ such pairs are popular conditional heavy hitters.

The reintroduction strategy in this algorithm is similar to
the GlobalHH algorithm considered above, but in this case,
the SSp structure and reintroduction frequenciesmp are spe-
cific for each distinct parent. In our implementation, SSp is
realized using a heap, and all heaps are kept in a hash table
with a parent ID as a key. Since in this case we consider
a fixed amount of parents, the operations on the hash table
take constant time and the time required by the ParentHH

123

402 K. Mirylenka et al.

Algorithm 2 ParentHH for Conditional Heavy Hitters
Input: Data stream D = {(pi , ci), i = 1, 2, ...}.
Output: SSpi - SpaceSaving structure of length s/|P| for parent–child

pairs assigned to each parent pi , i = 1, 2, ..., |P|.
1: fpi = 0, i = 1, 2, ..., |P| - keeps the frequency of each parent
2: mp - highest frequency of a pair removed from SSp
3: mpi = 0, i = 1, 2, ..., |P|
4: for each element (pi , ci) of D do
5: fpi = fpi + 1
6: if ci ∈ SSpi then
7: SSpi (ci) = SSpi (ci) + 1
8: else
9: if |SSpi | ≥ s/|P| then
10: mpi = SSpi .deleteMin()

11: end if
12: SSpi .insert (ci ,mpi + 1)
13: end if
14: end for

algorithm for processing a new element from the stream is
O(log s).

Lemma 4 Given space O(min(s, n)) (for s > |P|), the Par-
entHH algorithm guarantees that each candidate (p, c) pair
output will have

Pr[c|p] ≤ ̂Pr[c|p] ≤ Pr[c|p] + |P|
s

.

Proof From the SSp structure, we obtain an estimate of
fp,c which has error proportional to the number of items
passed to the structure, which is fp, the number of occur-
rences of p. So the amount by which f̂ p,c overestimates
is at most fp|P|/s. When we estimate ̂Pr[c|p], the error
is (fp|P|/s)/ fp = |P|/s. The space bound follows imme-
diately: It is bounded by n, since each item in the stream
can increase the number of tuples stored by at most a con-
stant amount. Using this overestimate favors recall, at the
cost of precision. It is possible to instead use an underesti-
mate of fp,c, by subtracting an appropriate amount. In this
case, we obtain good precision, but without guarantees on
recall.

Clearly, this algorithm provides accurate estimated con-
ditional probabilities, but at a cost: We devote up to s/|P|
space for each parent, which seems excessive for parents that
turn out to be relatively infrequent (and hence their children
are unlikely to appear as true conditional heavy hitters).

5.3 CondHH algorithm

Our third algorithm also keeps a summary structure similar
to the previous algorithms, but with a different goal. Instead
of using the absolute frequency to determine which items to
retain detailed information for, we use their (estimated) con-
ditional probability. Since this aligns with the overall goal, it
may lead to more accurate behavior. We call this algorithm

CondHH since it treats the conditional probability as a first
class citizen.

In the CondHH algorithm (which is written out in
pseudocode in Algorithm 3), we keep a collection of (p, c)
pairs in the CSS (line 3) structure, along with a count for
each pair. The algorithm proceeds similarly to GlobalHH:
for each (p, c) pair that arrives, it checks whether it is stored
in CSS, and if so, it increases its associated count. If it is
not stored, then it evicts some (p, c) pair from CSS and
replaces it with the new pair. Under the GlobalHH seman-
tics, we would apply the SS algorithm and evict the pair with
the least frequency. But in the CondHH algorithm, we find
the pair with the lowest conditional probability, i.e., with the
smallest value of ̂Pr[c|p] = f̂ p,c/ fp, and evict it (line 9). The
algorithm also keeps track of the maximum value of f̂ p,c for
all children of parent p that have been deleted so far; this
value is stored in mp (line 2). When we need to remove an
old pair (p′, c′) from the data structure in order to insert a
new pair, we update mp′ if needed and insert the new pair
(p, c) with an estimated count f̂ p,c = mp + 1 (line 12).

The set of conditional heavy hitters and their probabili-
ties can then be calculated on demand as follows: For each
(pi , ci) ∈ CSS, its conditional probability is T [(pi , ci)] =
CSS[(pi , ci)]/ fpi . The conditional heavy hitters and the pop-
ular conditional heavy hitters are then computed in the same
way as in the algorithms described earlier.

Directly implementing this algorithm could be slow, due
to the need to find the item with the lowest ̂Pr[c|p] on each
eviction. However, this can be made fast by keeping the data
in an appropriate data structure. Specifically, we can index
the stored parent–child pairs in a two-level data structure. For
each parent, we keep its children stored in sorted ascending
order of f̂ p,c. This can be maintained efficiently using data
structures based on doubly linked lists as described in [27].
Then the parents are stored in sorted order of minc(f̂ p,c)/ fp,

Algorithm 3 CondHH for Conditional Heavy Hitters
Input: Data stream D = {(pi , ci), i = 1, 2, ...}.
Output: CSS - Conditional SpaceSaving structure of length s for

parent–child pairs
1: fpi = 0, i = 1, 2, ..., |P| - keeps the frequency of each parent
2: mpi = 0 - highest frequency of a pair removed from CSS per parent

pi , i = 1, 2, ..., |P|
3: for each element (pi , ci) of D do
4: fpi = fpi + 1
5: if (pi , ci) ∈ CSS then
6: CSS[(pi , ci)] = CSS[(pi , ci)] + 1
7: else
8: if |CSS| ≥ s then
9: mcandidate

p j
= CSS.deleteMinCondProb()

10: mpj = max(mpj ,m
candidate
p j

)

11: end if
12: CSS.insert ((pi , ci),mpi + 1)
13: end if
14: end for

123

Conditional heavy hitters 403

i.e., the estimated conditional probability of their least fre-
quent child, via a standard data structure such as a heap or
search tree if we need also fast search. This structure means
that we can quickly find the parent–child pair with the small-
est overall estimated conditional probability, based on the
observation that for each parent we only need to consider the
probability of its least frequent child.

Whenever a child frequency is increased, we can quickly
update the estimated f̂ p,c and ensure that the sortedness con-
dition on the children is maintained. This update also affects
fp and so may also require us to move the parent around to
restore the heap property onminc(f̂ p,c)/ fp. Likewise, when-
ever a child of p is removed from this structure (because it
is chosen for eviction), its successor in the sorted order of
f̂ p,c becomes the new least frequent child of p, which may
also require restoring the heap property. At the same time, we
can update mp. Thus, implementing this algorithm requires
a constant number of pointer operations (O(1)) and a con-
stant number of heap or tree operations per update (each
taking time O(log s)), leading to an overall time complexity
of O(log s) per element.

Lemma 5 The CondHH algorithm guarantees that each
candidate (p, c) pair output will have

Pr[c|p] ≤ ̂Pr[c|p] ≤ Pr[c|p] + mp + 1

fp
.

Proof For each parent p, mp is an upper bound on the max-
imum value of f̂ p,c of a (p, c) pair that has been deleted.
Inductively, this is also an upper bound on any fp,c deleted
(p, c) pair: This is true initially when mp = fp,c = 0
for all (p, c) pairs and is maintained by every operation.
Therefore, we have that whenever any new pair is inserted
with f̂ p,c = mp + 1, we have that 0 ≤ fp,c ≤ f̂ p,c =
mp + 1, and hence (while it remains in the data struc-
ture) 0 ≤ f̂ p,c − fp,c ≤ mp + 1. Consequently, we have
0 ≤ ̂Pr[c|p] − Pr[c|p] ≤ (mp + 1)/ fp. As with the previous
algorithms, this tends to overestimate the true conditional
probability, leading to higher recall, but weaker precision.
This can be reversed by manipulating the estimate of f̂ p,c,
by subtracting mp + 1, to obtain a lower bound on fp,c and
hence Pr[c|p].

Note that in general this bound might not be very strong:
We may see cases where mp + 1 = fp, and so we do not
obtain a useful guarantee. However, in practice we expect to
obtain useful guarantees for the popular conditional heavy
hitters.

5.4 FamilyHH algorithm

All the algorithms proposed above make the assumption that
we can track detailed information for each parent (such as fp,

heavy hitter children for each p, etc.). However, this assump-
tion is not always reasonable. For example, in the network
traffic example in Sect. 1, the number of parents is equal to
the number of possible children (both are equal to the num-
ber of IP addresses, which is 232 under IPv4). In some cases,
the number of parents actually observed in the data will be
small enough to track exactly. But in general, we should also
provide algorithms for when this is not so.

Our next algorithm generalizes GlobalHHand so keeps
sparse information about both parents and children by main-
taining just the heavy hitter parents and the heavy hitter
parent–child pairs. So instead of tracking fp, we will instead
use f̂p, an approximate version of the frequency.

The resulting algorithm is called FamilyHH as it keeps
track of reintroduction frequencies, one for the parent ele-
ments, mp, and one for the parent–child pairs, mc. Fami-
lyHH, shown in Algorithm 4, uses two separate instances of
the SS data structure, namely SSp for the parents with space
t and SSc for the parent–child pairs with space s (lines 4–
1). The insertion and eviction mechanisms are similar to the
ones presented in the previous algorithms. When a parent or
a child is evicted from the corresponding structure, reintro-
duction frequencies are updated by its current frequency plus
one (lines 9, 11 and 17, 19 correspondingly for a parent and
a child).

In order to identify the candidate conditional heavy hit-
ters on demand, we iterate over the heavy hitter parent–child
pairs in decreasing order of frequency, and from each find
̂Pr[c|p] = f̂ p,c/ f̂p, or fill in the set T with the corresponding
probabilities T [(pi , ci)] set equal to SSc[(pi , ci)]/SSp[pi].

Algorithm 4 FamilyHH for Conditional Heavy Hitters
Input: Data stream D = {(pi , ci), i = 1, 2, ...}.
Output: SSc - SpaceSaving structure of length s for parent–child pairs

1: SSp - SpaceSaving structure of length t for parents
2: mc = 0 - highest frequency of a pair removed from SSc
3: mp = 0 - highest frequency of a parent removed from SSp
4: for each element (pi , ci) of D do
5: if pi ∈ SSp then
6: SSp[pi] = SSp[pi] + 1
7: else
8: if |SSp| ≥ t then
9: mp = SSp.deleteMin()

10: end if
11: SSp.insert (pi ,+ + mp)

12: end if
13: if (pi , ci) ∈ SSc then
14: SSc[(pi , ci)] = SSc[(pi , ci)] + 1
15: else
16: if |SSc| ≥ s then
17: mc = SSc.deleteMin()

18: end if
19: SSc.insert ((pi , ci),+ + mc)

20: end if
21: end for

123

404 K. Mirylenka et al.

Both SSp and SSc are implemented as heaps, which leads
to O(log(t + s)) running time complexity for processing
every element in the data stream.

Lemma 6 The FamilyHH algorithm guarantees that each
candidate (p, c) pair output will have

̂Pr[c|p] = Pr[c|p] ± 1/(min(s, t)Pr[p]).
Proof From the properties of the heavy hitters algorithm, we
have that fp ≤ f̂p ≤ fp+n/t and fp,c ≤ f̂ p,c ≤ fp,c+n/s.
Consequently, we have

̂Pr[c|p] = f̂ p,c

f̂p
≤ fp,c + n/s

fp
= Pr[c|p] + 1

s Pr[p]

̂Pr[c|p] = f̂ p,c

f̂p
≥ fp,c

fp + n/t
= Pr[c|p]

1 + n/(fpt)

≥Pr[c|p](1 − n

fpt
) = Pr[c|p] − Pr[c|p]

t Pr[p]
≥Pr[c|p] − 1

t Pr[p]
Based on this analysis, we choose to set t = s so that the
error bound is Pr[c|p] ± 1/(s Pr[p]).

This estimatemay sometimes overestimate and sometimes
underestimate, depending on the errors of the component
estimates. We can make it always overestimate or always
underestimate by scaling these values appropriately.

5.5 SparseHH algorithm

Our final, most involved, algorithm also keeps only approx-
imate information on the set of parents. We call this the
SparseHH algorithm, as it keeps only sparse information on
the parents. For the parent–child pairs, we make use of the
CSS structure from the CondHH algorithm, which attempts
to retain those pairs with the highest conditional probabil-
ity. However, now that we are retaining only a subset of the
parents, we need tomodify this slightly.Wewill aim tomain-
tain frequency information on only those parents that have
an active child in the data structure. Now, when we come to
insert a new parent–child pair p, c intoCSS, we must decide
what bound on the frequency to use. We suggest some pos-
sibilities for this “reintroduction strategy”:

• Global.Maintain a global valuem on themax (estimated)
frequency of any (p, c) pair that has been deleted so far.

• Ancestor. If there is some reason to believe that parents
with similar labels (e.g., in a hierarchy) have similar fre-
quency, then we can maintain a small number g of differ-
ent groups of parents and retain for each the maximum
frequency of any (p, c) deleted that came from that group.
For example, if the p values are drawn from a hierarchy,

we can choose a high level in the hierarchy and create
groups based on this.

• Hash Partition. For other cases, we can create a random
partitioning of parents into g groups based on a hash
function and maintain the maximum frequency of any
(p, c) pair belonging to that group. In the case of a single
group, this becomes equivalent to the global strategy.

• Bloom Filter. We can keep a compact summary of items
deleted with high values of f̂ p,c, say, in the form of a
Bloom Filter [6]. That is, when we delete a pair with
frequency f̂ p,c, we compute an index from this as i =
�logb f̂ p,c	 for a parameter b (for concreteness, consider
b = 2). Then we insert (p, c) into a Bloom Filter indexed
by i .When a newpair (p, c) is inserted into the data struc-
ture, we scan through the Bloom Filters, testing whether
(p, c) is present in each. If the test indicates it is in the
i th Bloom Filter, then we instantiate f̂ p,c = bi . Note that
Bloom Filters may lead to false positives: In this case, we
will result in an overestimate of the frequency. This may
lead to false positives in the estimated conditional heavy
hitters, but will ensure that we do not underestimate the
conditional probability of any pair.

Depending on the circumstances, any of these reintroduc-
tion strategies may be better, and indeed, we can runmultiple
of these in parallel and choose the one that gives the smallest
estimated value of f̂ p,c each time. SparseHH is described
in Algorithm 5. The reintroduction data structures for par-
ents (line 2) and parent–child pairs (line 3) follow one of
the strategies listed above and get updated according to this
strategy every time there is an eviction (lines 10–11) or an
insertion (lines 16–17). As in the previous algorithms, the set
of potential heavy hitters is computed on demand and con-
sists of all the pairs (pi , ci) ∈ CSS with their conditional
probabilities T [(pi , ci)] = CSS(pi , ci)]/ fap(pi).

The Rc and Rp structures can be implemented with data
structures that support the search, insert, and delete opera-
tions have (average) complexity of O(1), such as those based
on hash tables. The CSS structure, similar to the CondHH
algorithm, can be implemented using a double linked list
and a heap or a balanced search tree structure. Therefore, the
overall running time of SparseHH is O(log s) per element.

There are several other implementation choices for
SparseHH:

• Different reintroduction strategies may offer either upper
or lower bounds on estimated counts; upper bounds favor
recall, while lower bounds favor precision.

• Wedivide thememory available to the algorithm into two
pieces: the memory used for the main tracking of counts
(which in turn is split into information kept for parents
and for approximate (p, c) frequencies) and the memory

123

Conditional heavy hitters 405

Algorithm 5 SparseHH for Conditional Heavy Hitters
Input: Data stream D = {(pi , ci), i = 1, 2, ...}.
Output: CSS - SpaceSaving structure of length s for parent–child pairs
1: fap - frequencies of parents which are active in CSS structure
2: Rp - reintroduction frequency for a parent
3: Rc - reintroduction frequency for a pair CSS
4: for each element (pi , ci) of D do
5: if (pi , ci) ∈ CSS then
6: fap(pi) = fap(pi) + 1
7: CSS[(pi , ci)] = CSS[(pi , ci)] + 1
8: else
9: if |CSS| ≥ s then
10: CSS.deleteMinCondProb()
11: Update fap , Rc and Rp
12: end if
13: if pi /∈ fap then
14: fap(pi) = Rp(pi)
15: end if
16: CSS.insert ((pi , ci), Rc[(pi , ci)] + 1)
17: fap(pi) = fap(pi) + 1
18: end if
19: end for

used for estimating counts when an item is introduced
into the structure. We use a parameter ρ to describe this
split: A ρ fraction of the available memory is given to the
main structure and 1 − ρ to the reintroduction structure.

We compare these choices empirically in Sect. 6.

5.6 Discussion

We have proposed a variety of algorithms. They fall into
two main classes: those that keep some information about
each parent (GlobalHH, ParentHH, and CondHH) and those
that do not (FamilyHH and SparseHH). Each algorithm
aims to accurately approximate the conditional probability
of pairs, based on different priorities for what information
to retain given limited space. Among these, we are most
interested in the behavior of CondHH and SparseHH, since
these most directly capture the nature of conditional heavy
hitters by focusing on the (estimated) conditional probabil-
ity of items. Meanwhile, GlobalHH, ParentHH and Fam-
ilyHH are based on the raw frequencies of items. A pri-
ori, it is unclear which algorithm will perform best for the
task of retrieving conditional heavy hitters from a stream, so
we will compare them empirically to determine the relative
performance.

6 Experimental results

All our experiments were conducted on a single 2.67GHz
core of a Linux server with a large total amount of avail-
able memory. In evaluating the quality of our algorithms for
recovering conditional heavy hitters, we make use of several
measures of accuracy:

• The precision and recall of the recovered conditional
heavy hitter pairs relative to the “true” set that are greater
than a threshold Pr[c|p] ≥ φ (Definition 3);

• The precision of the top-τ popular conditional probabil-
ities (Definition 4)1;

• The average precision for the popular conditional prob-
abilities, where the average is taken over all top-r sets of
popular conditional heavy hitters, for r = 1, 2, ..., τ .

6.1 Data analysis and experimental setup

We applied the above algorithms for several real and artificial
datasets, namely (1) simulated Markov chains, to estimate
the largest elements of the matrix of transition probabilities;
(2) requests made to the World Cup 1998 Web site to detect
conditional heavy hitters between clientID and objectID of
the requests; (3) GPS trajectories of taxis in San Francisco to
detect the most probable position of the vehicle taking into
account two previous positions. We describe the datasets in
more detail in the following sections. φ was chosen in each
case according to the characteristics of the data in order to
have reasonable number of conditional heavy hitters.We dis-
tinguish between cases where the data is sparse—few parents
have conditional heavy hitter children—and dense—most
parents have conditional heavy hitter children.

Markov chain artificial data As discussed in the Introduc-
tion, one application of finding the conditional heavy hitters
is tomodel the transition probabilities of aMarkov chain. The
goal is then to estimate the entries in this transition proba-
bility matrix, by finding the large values (and assuming the
rest to be uniform). To model a Markov chain of order k, we
concatenate the k most recent observations together to form
a parent and take the next observation as the correspond-
ing child. In general, given an alphabet A, it is not feasible
to track all the |A|k+1 transition probabilities exactly, due
to the high resource costs to do so. Hence, we instead use
our algorithms to find and estimate the highest and the most
important elements of transition probability matrix. In our
experiments, we use an alphabet size |A| = 103 and model
a Markov chain of order k = 2. This means there are one
million parents and one billion possible parent–child pairs.

We use two types of generation process for the data. The
first case generates “dense” sequences so that each parent (P)
has exactly one “heavy” child (Ch) with conditional prob-
ability chosen (randomly) to be greater than 0.6. The rest
of the probability mass is uniformly distributed among the
other possible edges. More formally, ∀P ∈ A× A, ∃ch ∈ A,
such that Pr[ch |p] ≥ 0.6 while Pr[ci |p] = 1−Pr[ch |p]

|A|−1 , where

1 Note that when restricting output to have size exactly τ , precision and
recall are identical, so we do not duplicate this measurement.

123

406 K. Mirylenka et al.

0 1000 2000 3000 4000

0
50

00
15

00
0

(a)

0 5 10 15 20

0e
+0

0
2e

+0
5

4e
+0

5

(b)

0.0 0.2 0.4 0.6 0.8

0
50

00
10

00
0

(c)

Fig. 2 Descriptive statistics forWorld Cup 1998 data. a Parent frequencies, b parent–child pair frequencies, c conditional heavy hitter probabilities

ci ∈ A, ci �= ch . In this setting, there are 1million conditional
heavy hitters out of 1 billion possibilities.

The second generation process produces a “sparse”
sequence with a predefined number of conditional heavy hit-
ters that is smaller than the number of parents. We identify
a subset of parents to have one or more heavy children. We
determine the number of heavy children nc for a “heavy”
parent by picking nc from a truncated normal distribution
with mean 3 and standard deviation 2. In our experiments,
we created a total of 200K conditional heavy hitters, so on
average, only 1 in 15 parents has conditional heavy hitter chil-
dren. Each “heavy” parent shares a total transition probability
equal to 0.8 among its conditional heavy hitter children. The
rest of the probability mass 0.2 is divided uniformly among
the other edges. More formally, if a parent p is chosen to be
heavy, then we pick nc children C at random and set their
transition probabilities Pr[c ∈ C |p] = 0.8/nc, while for the
others Pr[c �∈ C |p] = 0.2/(|A| − nc). We set the number
of conditional heavy hitters to recover as the true number of
conditional heavy hitters, i.e., 200K.

TaxicabGPS data The Taxicab data consist of about 20mil-
lion GPS points for a fleet of taxis, collected over the course
of a month, obtained from cabspotting.org. To go from the
fine-grain GPS locations to streams of values, we performed
preprocessing to clip the data to a bounded region and coarsen
to a grid. The region of the measurements is restricted to a
rectangle in the area of San Francisco, with latitude in the
range [37.6 . . . 37.835], which covers 26 km and longitude
in the range [−122.52 . . . − 122.35], which covers 15 km.
This clipping was performed to remove a few incorrect read-
ings which were far outside this region.

This space was partitioned into 10,000 rectangles using
a 100 × 100 grid. Given the readings within this grid, we
proceeded to define trajectories from the data as a sequence
of grid cells occupied by the same cab. We considered a new
trajectory to begin if there was a gap of more than 30minutes
between successive observations. Following this definition,
we extracted 54,308 trajectories. We model the trajectory
data as a second-order Markov chain, on the grounds that

knowing the previous two steps are likely to be indicative of
where the next step will take us. A first-order model would
only have the previous location and so would not capture in
what direction the vehicle was traveling. This model gener-
ates around 160,000 distinct parents and a million distinct
parent–child pairs; our experiments with finer grids (omitted
for brevity) had even higher dimensionality. With a default
φ value of 0.8, we observed 63,721 conditional heavy hit-
ters. This means that about 2 out of every 5 parents have
conditional heavy hitter children, so we consider this a dense
dataset.

World Cup 1998 data The World Cup data2 contain infor-
mation about the requests made to the World Cup Web site
during the 1998 tournament. Each request contains a Cli-
entID (a unique integer identifier for the client that issued
the request) and an ObjectID (a unique integer identifier for
the requested URL). We are interested in finding conditional
heavy hitters between ClientID and ObjectID pairs, where
ClientID is treated as the parent and ObjectID as the child.
That is, we are interested in detecting (ClientID, ObjectID)
pairs where the requested child is particularly popular for
that user.

Weuseddata fromday41 today46of the competition.The
total number of records in this period is around 105 million;
the number of distinct parent–child pairs is around59million;
and the number of distinct parents is 540K. In these data, we
look for the conditional heavy hitters that have a probability
of occurrence greater then φ = 0.25. The total number of
such conditional heavy hitters is in excess of fifty thousand.
About 1 in 10 parents has a conditional heavy hitter child,
making these data relatively sparse.

The frequency distributions are skewed: There are many
parents and parent–child pairs that are found only once or a
small number of times in the dataset (Fig. 2a, b). Although
most of the parent–child pairs occur once—52 million out
of the 59 million distinct pairs—still, there are many pairs
that occur a greater number of times. The distribution of

2 http://ita.ee.lbl.gov/html/contrib/WorldCup.html

123

http://www.cabspotting.org/
http://ita.ee.lbl.gov/html/contrib/WorldCup.html

Conditional heavy hitters 407

probabilities of conditional heavy hitters is shown in Fig. 2c
and shows that there is sufficient probability mass associated
with higher conditional probabilities.

6.2 Comparison with association rules, simple, and
correlated heavy hitters

In the first set of experiments, we compare conditional heavy
hitters to simple heavy hitters, correlated heavy hitters, and
association rules, and demonstrate that conditional heavy hit-
ters constitute a distinct set of elements that cannot be identi-
fied by existing methods. In these experiments, we computed
the top-τ heavy hitters, correlated heavy hitters, and condi-
tional heavy hitters, and then computed the Jaccard distances
between the conditional heavy hitters and the other three
approaches. We recall that the Jaccard distance between two
sets X and Y is defined as 1 − |X∩Y |

|X∪Y | . The distance is 0 if
X = Y , and the closer the distance gets to 1, the more the
two sets are different (distance 1 means that the sets are dis-
joint).

Since the set of conditional heavy hitters and the set of
association rules cannot be directly compared, we performed
the experiment as follows. We first identified the top-τ fre-
quent itemsets of sizes two and three combined, as both are
needed in order to compute conditional heavy hitters that
model a Markov chain of order 2 (i.e., the parent consists
of two elements of the data stream). From these τ itemsets,
we were able to compute r conditional heavy hitters, and we
compared those to the set of top-r conditional heavy hitters,
which were extracted from the τ results computed by our
approach. The results of this comparison on the World Cup
1998 dataset are shown in Fig. 3 (the plot is broken in two
pieces to aid readability: Fig. 3a shows the results for small
values of τ , while Fig. 3b plots the trends as τ increases to
large values). The numbers (in red) marked on the “CondHH
vs. Association Rules” curve denote the value of r for the
different experiments.

These graphs show that the set of conditional heavy hit-
ters is very different from the sets produced by the other

approaches. This is especially true when we compare tradi-
tional heavy hitters to conditional heavy hitters, indicating
that the two definitions are truly describing distinct phenom-
ena. Likewise, there is little similarity between the results
found for correlated heavy hitters and conditional heavy hit-
ters. We also observe that the number r of parent–child pairs
discovered by association rules is very low compared with τ

in all cases. Although the most frequent parent–child pairs
are similar to the most popular conditional heavy hitters for
some of the small values of r , in general, the set of associ-
ation rules is very different from that of conditional heavy
hitters. Thus, current approaches for finding association rules
cannot help in retrieving conditional heavy hitters, for which
we need new algorithms in order to efficiently identify.

Utility of Conditional HH We now study the elements that
are found as conditional heavy hitters and interpret them in a
domain where the semantics are known. We compare to the
elements found as correlated heavyhitters and show that there
is value in both sets discovered, but conditional heavy hitters
can provide more useful insights than correlated heavy hit-
ters. For this experiment, we use the Taxicab GPS data and
compare the top-25 popular conditional heavy hitters with
the top-25 correlated heavy hitters. Following Notion 3, cor-
related heavy hitters are sorted in descending order of the
parent frequency. There is some overlap between these two
sets, indicating items that are reported as significant under
both definitions. However, there are 14 elements found out-
side the overlap: 7 specific to each definition. We plot each
of these sets of 7 elements overlaid on the San Francisco area
maps from which they are drawn, in Fig. 4.

The plots represent the San Francisco region, where the
taxicab data was collected from, discretized into a 100×100
grid. Here, a parent is defined as two successive positions
(this helps to establish direction of travel, for example), and
the child is the subsequent location. In some cases, two out
of the three cells intersect. We plot first parent cells (the first
in a sequence) using a black border, second parent cells (the
second in a sequence) using a blue border, and child cells

Fig. 3 Jaccard distance
between top-τ conditional
(CondHH) and simple (HH)
heavy hitters, between CondHH
and correlated (CorrHH) heavy
hitters, and between CondHH
and association rules, for which
the red numbers marked on the
curve correspond to r (the
number of retrieved frequent
item sets that are triples). a τ

from 1 to 400, b τ from 100 to
9100 (color figure online)

0

1

2

6 5
4
3

(a)

5

7
14 15

28

103 103 103 103 103
(b)

123

408 K. Mirylenka et al.

Fig. 4 Unique correlated and conditional heavy hitters not detected by
the other technique. a Correlated HH, b Conditional HH

(the third in a sequence) using a red border. There is a line
between the first parent cell and the second parent cell, and an
arrow between a second parent cell and a child, if they do not
overlap. Figure 4a shows the correlatedHH that are not found
with the conditional HH definition, while Fig. 4b shows the
conditional HH that are not detected as correlated HH.

We interpret these results based on our study of features
on the map such as highways and tourist attractions—note
that the algorithms do not possess any such knowledge. We
observe that the unique correlated HH are primarily short
trajectories concentrated around the city center, indicating
slow moving traffic around popular points of interest. Mean-
while, the conditional HH are found around the city cen-
ter but also on the highways further outside the city. Of
particular interest are trajectories around the airport (SFO),
which show journeys that turn off the highway to go to the
airport.

Although similar, the two definitions emphasize different
aspects. Correlated heavy hitters are ones which have high

support for the parent. In this instance, they have shown that
it is common to make slow progress in the heart of the city
(parent), in which case it is quite common to continue mak-
ing slow progress in the same direction (child).While helpful
in identifying “pinch points” in the traffic, this does not pro-
videmuchunexpected information.Conditional heavyhitters
placemore emphasis on having a high conditional probability
of the child, given the parents. In this instance, they highlight
that traffic traveling south on highway 101 is likely to stay on
(rather than take an exit) and also that traffic on the highway
close to the airport is very likely to go to the airport. This
highlights the importance of the airport as a destination from
the highway. Such insights can be of greater use to traffic
planners and city architects in understanding typical journey
and behavior around intersections. We obtain similar results
when we look at different sized sets, such as the top-20 and
top-30 sets. These results demonstrate that the conditional
HH concept can reveal interesting and meaningful patterns,
distinct from those found by correlated HH.

6.3 Parameter setting for SparseHH

The SparseHH algorithm has several parameters and choices
that affect its performance. Here, we investigate how to set
these parameters before comparing with other algorithms.

Choice of reintroduction strategyWecompare the different
choices of reintroduction strategy: hash partitioning, ances-
tor, and Bloom Filter. Figure 5 shows the accuracy over the
World Cup data, where we set τ = 100 and φ = 0.25 to
define the (popular) conditional heavy hitters.

Here, the ratio of memory allocated to the main structure,
ρ, was set to 0.9, with the remainder used to help reintroduce
items to the data structure. We observe that the hash parti-
tioning strategy performs the best across all metrics (Fig. 5a).
The ancestor strategy can obtain good results, but only when
a larger total amount of memory is made available (Fig. 5b).
TheBloomfilter strategy, while achieving high recall, always
has very poor precision (Fig. 5c). Based on this and other

(a) (b) (c)

Fig. 5 SparseHH accuracy for conditional heavy hitter recovery on World Cup data under different reintroduction strategies. a Hash partition
strategy, b ancestor strategy, c Bloom Filter strategy

123

Conditional heavy hitters 409

(a) (b) (c) (d)

Fig. 6 Accuracy on sparse synthetic data using SparseHH. a Favor precision, ρ = 0.9, b favor precision, ρ = 0.95, c favor recall, ρ = 0.5, d
favor recall, ρ = 0.9

results, we adopt theHash partitioning strategy as themethod
of choice for SparseHH:While theAncestormethod is some-
times competitive, this can be seen as a special case of the
Hash partition method with a structured choice of hash func-
tion, so we do not further distinguish these methods.

Choice ofmemory ratioAs noted in Sect. 5.5, we can adjust
the estimated counts in the algorithm to give either upper or
lower bounds, and hence to favor precision or to favor recall.
We compared the impacts of this choice in our experiments,
shown inFig. 6 for the sparse synthetic data.We setφ = 0.05,
sufficient to distinguish the conditional heavy hitters from the
other pairs. In the plots, we pick a representative selection
of parameter settings, as we vary the ratio ρ that governs
the division of memory between the main and reintroduc-
tion structures, and whether the algorithm favors precision
or recall. Across these, we first observe that this choice does
indeed behave as advertised: Favoring precision obtains near-
perfect precision, while favoring recall allows recall to grow
as total memory increases. However, when we favor preci-
sion, recall tends to improve as we allocate more memory
(Fig. 6a, b), while favoring recall tends to cause precision to
drop off as more memory is used (Fig. 6c, d).

To investigate this further, we fix the available memory
and vary the ratio ρ. The results on the same data are shown
in Fig. 7. We observe that when we favor precision, the pre-
cision is always near perfect (Fig. 7a). The benefit of giving

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Favor precision
0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Favor recall

Fig. 7 Precision (blue diamonds) and recall (red squares) of SparseHH
variations on sparse synthetic data as ρ varies. a Favor precision, b favor
recall (color figure online)

more memory to the main structure outweighs the loss from
reducing space for the reintroduction strategy, so a large ρ

value gives the best recall. Contrarily, favoring recall has gen-
erally good recall, but gets the best precision when almost all
of the memory is turned over to the reintroduction strategy
(Fig. 7b). Still, it is hard to obtain both good recall and good
precision from this strategy: Although we see some good
behavior for very small values of ρ here, this was not stable
across other datasets. Consequently, we conclude that it is
preferable to favor precision and adopt this with ρ = 0.9 as
the default in all other experiments.

6.4 Performance on sparse data

We now compare all the proposed algorithms, initially on
sparse data and subsequently on more dense data.

World Cup Data We present results for recovering (Cli-
entID, ObjectID) conditional heavy hitters from the (rela-
tively sparse) World Cup data. In other experiments, we also
looked for correlations on other attribute combinations, such
as ServerID and ObjectID. The results there were broadly
similar and so are omitted for brevity.

Figure 8 shows results on precision and recall for recov-
ering the conditional heavy hitters for these data. Here, the
CondHH and SparseHH (using Hash partition reintroduc-
tion) methods perform the best for both precision and recall.
These two algorithms both make use of an eviction strategy
that picks the parent–child pair with the lowest (estimated)
conditional probability to be deleted from the main structure.

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50

Pr
ec

is
io

n

Total memory (Mbytes)

GlobalHH
FamilyHH
CondHH
SparseHH

(a)

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50

Re
ca

ll

Total memory (Mbytes)

(b)

Fig. 8 Precision and recall on theWorld Cup data. a Precision, b recall

123

410 K. Mirylenka et al.

This observation suggests that such a pruning strategy can be
effective at retaining themost promising pairs inmemory. For
these data, the number of parents is not so large, and so it is
feasible to retain information on all parents. Thus, CondHH
is not penalized for this choice here, although we see exam-
ples later where there are too many parent items to track
effectively. These methods also achieved high top-τ preci-
sion, over 0.8, indicating over 80% agreement between the
top 100 reported conditional heavy hitters and the true most
popular heavy hitters. On these data, we observe that other
approaches suggested—GlobalHH FamilyHH and Paren-
tHH (omitted from the plots)—are unable to provide use-
ful results: Although they provide accuracy guarantees as a
function of the space available, it turns out that these guar-
antees do not become useful until much more memory is
available. In this case, the successful algorithms (CondHH
and SparseHH) are able to achieve near-perfect precision and
recall using less than 10% of the memory required to repre-
sent the data exactly.

Figure 9 shows the accuracy of CondHH and SparseHH
as we vary φ, the threshold for defining a conditional heavy
hitter. We see that for large φ values and moderate memory
(30MB), CondHH is preferable and achieves near-perfect
precision and recall. As φ is decreased, there are more con-
ditional heavy hitters to recover, and when memory is con-
strained to only 5MB (the dashed lines), recall necessarily
falls: The algorithms are unable to retain information about
all conditional heavy hitters. However, in the low φ, low
memory setting, SparseHH is able to maintain higher preci-
sion, while the precision of CondHH falls off.

Pruning Strategy With Combined Eviction Criteria We
now evaluate the effect of using a combined eviction criteria,
based on both the conditional probability and the frequency
of the parent–child pairs, for both of which we fix thresholds.
When the memory budget is reached, the eviction strategy
works as follows:

1. evict the pair for which both thresholds do not hold;
2. otherwise, evict the pair for which the threshold on the

conditional probability does not hold;
3. otherwise, evict the pair for which the threshold on the

parent–child frequency does not hold;

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6

Pr
ec

is
io

n

CondHH, 30MB
SparseHH, 30MB
CondHH, 5MB
SparseHH, 5MB

(a)

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6

Re
ca

ll

(b)

Fig. 9 Accuracy as φ varies on World Cup data. a Precision, b recall

4. otherwise, evict the pair with the lowest conditional prob-
ability.

This eviction strategy was implemented for both IP
(intermediate parent) and Hash reintroduction strategies of
SparseHH, and was tested on theWorld Cup data. The exper-
iments were done using the same settings as for the prior
reintroduction strategies and for different frequency thresh-
olds to check their influence on the results. The new strat-
egy does not lead to significant differences: Precision and
recall are the same (and up to 10% smaller for small mem-
ory budgets), while top-τ and average τ precision are 10%
higher (and up to 18% for small memory budgets) for the
modified versions. We tried with values 10, 100, and 1000
as the frequency thresholds used for eviction and observed
little sensitivity of the results; the reason is that low condi-
tional probability is still an important criterion of eviction.
The changes in the Hash version of SparseHH algorithm are
even less pronounced, though the general trend is the same:
Precision and recall results are a bit lower, while top-τ and
average top-τ precisions are higher for the modified algo-
rithm.

Sparse Synthetic Data We now compare all the algorithms
on the truly sparse synthetic data, for a stream of length 108.
These data have amuch smaller number of conditional heavy
hitters compared with the number of parent items. Conse-
quently, we expect the algorithms which try to keep infor-
mation on all parents to perform poorly here, since this will
occupy most of their available resources.

This conjecture is confirmed in Fig. 10: Only SparseHH
is able to obtain both good precision and good recall for
the range of memory provided. It also has accuracy as mea-
sured by top-τ precision and average precision up to τ : both
around 0.9 (plots omitted for space reasons). Among the
other algorithms, CondHH shows the best improvement in
recall asmorememory ismade available, withGlobalHHand
FamilyHH improvingmore slowly (Fig. 10b). The ParentHH
algorithm can only produce results when enough memory is
available to keep a (very small) summary structure for each
parent—in this case, above 72MB. Interestingly, the preci-

(a) (b)

Fig. 10 Accuracy on sparse synthetic data as memory varies. a Preci-
sion, b recall

123

Conditional heavy hitters 411

sion performance of all algorithms apart from SparseHH is
very poor: Much more memory is needed before these can
achieve goodprecision (Fig. 10a). This is in part because even
the highest amount of memory shown in Fig. 10 represents
less than 5% of the space to record the exact statistics for the
given data. In terms of the original application, of approx-
imating the Markov chain transition matrix, the results are
also strong: The L1 difference between the distributions is
about 0.01, where 0 would be perfect recovery and 1 rep-
resents the worst case. We conclude that over sparse data,
the SparseHH algorithm has the best performance and is the
method of choice.

In terms of the time cost of the algorithms, Fig. 11 shows
that there is little systematic variation as a function of the
size of the summary structure. The simpler GlobalHH and
ParentHH algorithms are the faster ones, but all algorithms
have performance measured in the hundreds of thousands of
updates per second to process 108 items.

6.5 Performance on dense data

Dense synthetic data. In the dense synthetic data, each par-
ent has at least one child that is a conditional heavy hitter.
We generate a stream of data from the second-order Markov
chain of different lengths, between 107 and 1010 observa-
tions. We allocate an amount of space equivalent to twice
the number of possible parent items and evaluate their accu-

Fig. 11 Time cost of algorithms on sparse synthetic data as memory
varies

racy in terms of precision and recall on streams of vary-
ing lengths. With the threshold φ = 0.5, Fig. 12 shows the
average time and accuracy achieved over 10 independently
chosen streams. The observed standard deviation over these
repetitions was very low, around 10−3 for all precision and
recall computations.

The results show that the GlobalHH algorithm performs
poorly, with only moderate precision and recall on this rela-
tively “easy” dataset (Fig. 12a, b). The ParentHH algorithm
has near-perfect recall, and precision improves as the stream
gets longer (and so the signal becomes easier to detect).
However, again, the CondHH algorithm has the best accu-
racy, getting near-perfect precision and recall throughout.
The SparseHH algorithm had identical results to CondHH
on these data. On closer inspection of the data structures,
we observed that this was because SparseHH has sufficient
memory to keep frequency information on all parents. Con-
sequently, it can store the same information as CondHH and
so finds the same estimated frequencies. For similar reasons
FamilyHH kept the same information as GlobalHH and so
is omitted from the plots. In terms of scalability, all algo-
rithms are similar. Fig. 12c shows that theCondHHalgorithm
is slightly slower in our implementation, due to the more
involved data structure maintenance process. However, the
difference is not substantial and could be improved by amore
engineered solution. Even here, the throughput is nearly half
a million updates per second on a single core.

Taxicab data. The Taxicab data are quite dense: Many par-
ents have a conditional heavy hitter child. Figure 13 pro-
vides precision and recall results on these data for φ = 0.8.
As in other experiments, GlobalHH does not provide useful
recovery of conditional heavy hitters with such low memory.
SparseHH achieves good precision, but CondHH has enough
memory to obtain perfect precision (Fig. 13a). The story is
similar for recall: SparseHH improves as more memory is
available, but is consistently dominated by CondHH, until
SparseHH is given enoughmemory to store all parents.More-
over, for the top-τ precision the results for CondHH were
much stronger, approaching 1, while SparseHH achieved
only 0.25.

0.6

0.7

0.8

0.9

1.0

10⁷ 10⁸ 10⁹ 10¹⁰

Pr
ec

is
io

n

Length of data stream

GlobalHH
ParentHH
CondHH
SparseHH

(a)

0.6

0.7

0.8

0.9

1.0

10⁷ 10⁸ 10⁹ 10¹⁰

Re
ca

ll

Length of data stream

(b)

10¹

10²

10³

10⁴

10⁵

10⁷ 10⁸ 10⁹ 10¹⁰

Ti
m

e
/

s

Length of data stream

GlobalHH
ParentHH
CondHH

(c)

Fig. 12 Accuracy and timing results for algorithms on dense synthetic data. a Precision, b recall, c time

123

412 K. Mirylenka et al.

0

0.2

0.4

0.6

0.8

1

1 2 3 4

Pr
ec

is
io

n

Total memory (Mbytes)

GlobalHH
CondHH
SparseHH

(a)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

Re
ca

ll

Total memory (Mbytes)

(b)

Fig. 13 Accuracy on Taxicab data as memory varies. a Precision, b
recall

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

CondHH
SparseHH, ρ=0.9
SparseHH, ρ=0.5

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.6 0.7 0.8 0.9 1

Re
ca

ll

Fig. 14 Accuracy as φ varies on Taxicab data

To better understand the relative behavior of these two
competitive algorithms, Fig. 14 shows the case as we vary
φ, the threshold for conditional heavy hitters, while holding
the total memory constant at 4MB. As φ decreases, there
are more pairs passing the threshold, and so the problem
becomes harder. The precision of SparseHH tends to remain
constant, while there is a more notable dip in the precision of
CondHH. Interestingly, adjusting the memory available for
the reintroduction strategy of SparseHH by adjusting ρ has
a marked effect: Putting more memory to this end improves
precision, but reduces recall.We conclude that for dense data,
CondHH is the method of choice, provided we can afford to
store all parents.

6.6 Markov model estimation

In this section, we experimentally evaluate how well condi-
tional heavy hitters can approximate a Markov chain model.
The premise is that the conditional probabilities we derive
from the conditional heavy hitters can be used to estimate
the largest elements of the transition probability matrix. We
computed the conditional heavy hitters in the Taxicab dataset
using the CondHH algorithm, using 3MB of total memory
and φ = 0.8 (the corresponding precision and recall values
are shown in Fig. 13).

First, we check whether conditional heavy hitters can ade-
quately describe the generation process of the real trajectories
in the Taxicab data. To study this, we compare the heatmaps
of the trajectories generated by the exact Markov model and
by the recoveredMarkovmodel, i.e., themodel approximated
by the conditional heavy hitters results, depicted in Fig. 15.
The heatmap indicates the number of times different trajec-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Latitude

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Lo
ng

itu
de

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Latitude

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Lo
ng

itu
de

(b)

Fig. 15 Heatmaps of trajectories modeled using exact transition prob-
abilitymatrix and recoveredmatrix based on conditional heavy hitters. a
Exact Markov model, b recovered Markov model based on conditional
heavy hitters (color figure online)

Table 2 Earth Mover’s Distance between the heatmaps of trajectories

Heatmaps Exact Markov model

Conditional HH 1.98

Supervised random 4.13

Random 7.40

tories have passed through a spatial cell. The “hottest” cells
are colored in red, while the “coolest” in blue. The resulting
heatmaps show that the trajectories built using conditional
heavy hitters accurately reflect the hot regions of the tra-
jectories built using the exact transition probability matrix,
which indicates that conditional heavy hitters indeed capture
the highest transition probabilities.

Earth Mover’s Distance comparison In order to quantify
the distance between the two heatmaps, we employ the Earth
Mover’s Distance (EMD)[33]. EMDmeasures the difference
of probability masses, multiplied by the distance that the
probability mass has to be moved in order to derive one
probability density function from the other. In our setting,
we compute EMD over the probability density functions (or
the corresponding histograms) that are represented by the
heatmaps. We calculated the EMD between the heatmaps of
trajectories generated by the exact Markov model and condi-
tional heavy hitters, as well as two baseline models, random
and supervised random. The Random model corresponds to
a random assignment for the next state of a trajectory at each
step. The Supervised Random assigns the next state in the
same way as our approach does when a particular prefix (i.e.,
parent) is missing. That is, it distributes the probability mass
among the neighborhood of this prefix, assigning slightly
more mass in the direction of movement (according to the
previous state). The results, reported in Table 2, show that
conditional heavy hitters are more than two times closer to
the exact Markov model than the supervised random assign-
ment, and more than 3.5 times closer than Random.

123

Conditional heavy hitters 413

Kernel density comparison We also conducted a Kernel
density-based two-sample comparison (KDE) test [17] to
compare the position distributions of the trajectories gen-
erated by the exact and recovered Markov models. The null
hypothesis of this test was that the distributions were equal.
We set the significance level α = 0.05 and obtained a p-
value for the test equal to 0.51, which means that there is
not enough evidence to reject the hypothesis that these two
distributions are equal.

Prediction accuracy Besides the heatmaps, we also assess
the prediction errors of the exact and recoveredMarkovmod-
els. Our goal is to check whether the recovered model can
be used to predict the next state of a Taxicab given its two
previous states. We also compare the results with the error
of random and supervised random models described above.
Each model defines a probability distribution for the next
state given two previous states. The prediction is performed
using this probability distribution.

Two kinds of errors are considered:

1. The mean Euclidean distance (MED) between the esti-
mated cell ĉi and true cell ci , i = 1, 2, ..., T , where T is
the number of predictions over Taxicab trajectories, T is
larger than:

MED = 1

T

T
∑

i=1

dist(ĉi , ci)

= 1

T

T
∑

i=1

√

(ĉxi − cxi)
2 + (ĉyi − cyi)

2,

where cx and cy are spatial coordinated of the cells in the
100 × 100 grid that correspond to initial longitude and
latitude of trajectory points;

2. The misclassification error (ME) or ratio of cells which
were incorrectly estimated:

ME = 1

T

T
∑

i=1

1{ĉi �= ci }.

Table 3 summarizes the results, which are averaged over
10 runs. The differences between all pairs of errors are statis-
tically significant according to Welch two-sample t test [37],
for which significance level α was set to 0.01. The results
show that the accuracy of the exact model compared to the
accuracy of the recoveredmodel is 1 and 5.6%higher accord-
ing to MED and ME correspondingly. This was expected as
the recovered model is just an approximation of the exact
model. At the same time, the performance of the recovered
model is 23 and 6.2% better than the performance of random
and supervised random models according to ME (2521 and

Table 3 Mean Euclidean Distance (MED) and Misclassification Error
(ME) of different prediction models for Taxicab dataset

Prediction Model MED ME

Exact model 1.77 0.80

Recovered model 1.87 0.81

Recovered model only with known prefix 1.59 0.74

Random 47.15 1.00

Supervised random 2.23 0.86

19% better according to MED). The prediction made with
the recovered model for the states with known prefix behaves
even better.

We note that both the heatmaps and the prediction errors
can be improved if we better model the cases where the pre-
fix is not among the conditional heavy hitters. This can be
achieved using domain knowledge, such as the road maps in
the region of the Taxicab dataset. Nevertheless, even with-
out domain knowledge, we have shown that the trajectories
built using the conditional heavy hitters are a fairly accurate
representation of the original data.

7 Concluding remarks

In this paper, we have introduced the notion of conditional
heavy hitters as a useful concept that is distinct from prior
notions of heavy hitters, correlated heavy hitters, and fre-
quent itemsets. We introduced a sequence of algorithms that
build on existing techniques, but target the new definition.
Our empirical study demonstrated that among these, it is
those that most directly target the new definition, by pref-
erentially retaining items with high (estimated) conditional
probability and pruning those with low conditional probabil-
ity that perform the best. Specifically, the SparseHH algo-
rithm, which keeps an approximate summary of both the
parent–child pairs as well as the parent items, generally per-
forms the best across a range of sparse datasets and parameter
settings. In particular, it achieves high precision and recall on
the set of conditional heavy hitters while retaining only 5–
10% of the space of storing exact statistics. When the data
are more dense and there is sufficient memory, CondHH is
the preferred method. If we do not know the nature of the
data in the advance, we can simply run SparseHH, since it
will keep information on parents exactly while there is room
and so behave more like CondHH. Future work will identify
further applications for conditional heavy hitters and evalu-
ate their efficacy in those settings. Our algorithms are defined
in the streaming model, which captures the challenging case
of high-speed arrival of data. As the scale of data increases, it
will become necessary to adapt these algorithms to a distrib-

123

414 K. Mirylenka et al.

uted setting, where multiple streams are observed, and the
collected summaries can be combined to give a summary of
the union of all the input data.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules
between sets of items in large databases. In: ACM SIGMOD Inter-
national Conference on Management of Data, pp. 207–216 (1993)

2. Alon,N.,Matias, Y., Szegedy,M.: The space complexity of approx-
imating the frequency moments. In: ACM Symposium on Theory
of Computing, pp. 20–29 (1996)

3. Arasu, A., Manku, G.S.: Approximate counts and quantiles over
sliding windows. In: Proceedings of the Twenty-Third ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Data-
base Systems, pp. 286–296. ACM (2004)

4. Baum, L.E., Petrie, T.: Statistical inference for probabilistic func-
tions of finite state Markov chains. Ann. Math. Stat. 37(6), 1554–
1563 (1966)

5. Boyer, B., Moore, J.: A fast majority vote algorithm. Tech. Rep.
ICSCA-CMP-32. Institute for Computer Science, University of
Texas (1981)

6. Broder, A., Mitzenmacher, M.: Network applications of bloom fil-
ters: a survey. Internet Math. 1(4), 485–509 (2005)

7. Budak, C., Georgiou, T., Agrawal, D., El Abbadi, A.: Geoscope:
online detection of geo-correlated information trends in social net-
works. PVLDB 7(4), 229–240 (2013)

8. Chang, J.H., Lee,W.S.: Finding recent frequent itemsets adaptively
over online data streams. In: KDD, pp. 487–492 (2003)

9. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items
in data streams. In: Proceedings of the International Colloquium
on Automata, Languages and Programming (ICALP) (2002)

10. Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data
streams. In: International Conference on Very Large Data Bases
(2008)

11. Cormode, G., Korn, F., Muthukrishnan, S., Srivastava, D.: Finding
hierarchical heavy hitters in data streams. In: International Confer-
ence on Very Large Data Bases, pp. 464–475 (2003)

12. Cormode, G., Korn, F., Tirthapura, S.: Time decaying aggregates
in out-of-order streams. In: Proceedings of the Twenty-Seventh
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pp. 89–98. ACM (2008)

13. Cormode, G., Muthukrishnan, S.: An improved data stream sum-
mary: the count-min sketch and its applications. J. Algorithm.
55(1), 58–75 (2005)

14. Dallachiesa, M., Nushi, B., Mirylenka, K., Palpanas, T.: Uncertain
time-series similarity: return to the basics. PVLDB 5(11), 1662–
1673 (2012)

15. Dallachiesa,M., Palpanas, T.: Identifying streaming frequent items
in ad hoc time windows. Data Knowl. Eng. 87, 66–90 (2013)

16. Demaine, E., López-Ortiz, A., Munro, J.I.: Frequency estimation
of internet packet streams with limited space. In: European Sym-
posium on Algorithms (ESA) (2002)

17. Duong, T., Goud, B., Schauer, K.: Closed-form density-based
framework for automatic detection of cellular morphology
changes. Proc. Natl. Acad. Sci. 109(22), 8382–8387 (2012)

18. Durme, B.V., Lall, A.: Streaming pointwise mutual information.
In: Advances inNeural Information Processing Systems, pp. 1892–
1900 (2009)

19. Gehrke, J., Korn, F., Srivastava,D.:On computing correlated aggre-
gates over continual data streams. In: ACMSIGMOD International
Conference on Management of Data, pp. 13–24 (2001)

20. Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.S.: Mining frequent
patterns in data streams atmultiple time granularities. In: Kargupta,
H., Joshi, A., Sivakumar, K., Yesha, Y. (eds.) Next Generation Data
Mining, pp. 191–212 (2003)

21. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate
generation. In: SIGMOD Conference, pp. 1–12 (2000)

22. Lahiri, B., Tirthapura, S.: Finding correlated heavy-hitters over
data streams. In: IEEE 28th International Conference on Perfor-
mance Computing and Communications (IPCCC), pp. 307–314.
IEEE (2009)

23. Lee, L-K., Ting, H.F.: A simpler and more efficient deterministic
scheme for finding frequent items over sliding windows. In: Pro-
ceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART
SymposiumonPrinciples ofDatabase Systems, pp. 290–297.ACM
(2006)

24. Letchner, J., Ré, C., Balazinska, M., Philipose, M.: Approximation
trade-offs in Markovian stream processing: an empirical study. In:
IEEE 26th International Conference on Data Engineering (ICDE),
pp. 936–939. IEEE (2010)

25. Manerikar, N., Palpanas, T.: Frequent items in streaming data: an
experimental evaluation of the state-of-the-art. Data Knowl. Eng.
68(4), 415–430 (2009)

26. Manku, G., Motwani, R.: Approximate frequency counts over data
streams. In: International Conference on Very Large Data Bases,
pp. 346–357 (2002)

27. Metwally, A., Agrawal, D., Abbadi, A.E.: Efficient computation
of frequent and top-k elements in data streams. In: International
Conference on Database Theory (2005)

28. Mirylenka, K., Cormode, G., Palpanas, T., Srivastava, D.: Finding
interesting correlations with conditional heavy hitters. In: Interna-
tional Conference on Data Engineering (ICDE) (2013)

29. Misra, J., Gries, D.: Finding repeated elements. Sci. Comput. Pro-
gram. 2, 143–152 (1982)

30. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann Publishers Inc., Los
Altos (1988)

31. Rabinovich, M., Spatschek, O.: Web Caching and Replication.
Addison-Wesley Longman Publishing Co., Inc, Boston (2002)

32. Raftery, A.E.: A model of high-order Markov chains. J. R. Stat.
Soc. Series B Methodol. 47(3), 528–539 (1985)

33. Rubner, Y., Tomasi, C., Guibas, L.: The earth mover’s distance as
a metric for image retrieval. Int. J. Comput. Vision 40(2), 99–121
(2000)

34. Tantono, F.I., Manerikar, N., Palpanas, T.: Efficiently discovering
recent frequent items in data streams. In: Scientific and Statistical
Database Management, pp. 222–239. Springer, Berlin, Heidelberg
(2008)

35. Venkataraman, S., Song, D.X., Gibbons, P.B., Blum, A.: New
streaming algorithms for fast detection of superspreaders. In: Net-
work and Distributed System Security Symposium NDSS (2005)

36. Wang, P., Wang, H., Wang, W.: Finding semantics in time series.
In: ACM SIGMOD International Conference on Management of
Data, pp. 385–396 (2011)

37. Welch, B.L.: The generalization of ‘student’s’ problem when
several different population variances are involved. Biometrika
34(1/2), 28–35 (1947)

38. Yu, P.S., Chi, Y.: Association rule mining on streams. In: Encyclo-
pedia of Database Systems, pp. 136–139. Springer-Verlag (2009)

123

	Conditional heavy hitters: detecting interesting correlations in data streams
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Notions of elements of interest in a data stream
	5 Algorithms for conditional heavy hitters
	5.1 GlobalHH algorithm
	5.2 ParentHH algorithm
	5.3 CondHH algorithm
	5.4 FamilyHH algorithm
	5.5 SparseHH algorithm
	5.6 Discussion

	6 Experimental results
	6.1 Data analysis and experimental setup
	6.2 Comparison with association rules, simple, and correlated heavy hitters
	6.3 Parameter setting for SparseHH
	6.4 Performance on sparse data
	6.5 Performance on dense data
	6.6 Markov model estimation

	7 Concluding remarks
	References

