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Abstract Many studies have been conducted on seeking
an efficient solution for graph similarity search over cer-
tain (deterministic) graphs due to its wide application in
many fields, including bioinformatics, social network analy-
sis, and Resource Description Framework data management.
All prior work assumes that the underlying data is determin-
istic. However, in reality, graphs are often noisy and uncertain
due to various factors, such as errors in data extraction, incon-
sistencies in data integration, and for privacy-preserving pur-
poses. Therefore, in this paper, we study similarity graph con-
tainment search on large uncertain graph databases. Similar-
ity graph containment search consists of subgraph similar-
ity search and supergraph similarity search. Different from
previous works assuming that edges in an uncertain graph
are independent of each other, we study uncertain graphs
where edges’ occurrences are correlated. We formally prove
that subgraph or supergraph similarity search over uncertain
graphs is #P-hard; thus, we employ a filter-and-verify frame-
work to speed up these two queries. For the subgraph simi-
larity query, in the filtering phase, we develop tight lower and
upper bounds of subgraph similarity probability based on a
probabilistic matrix index (PMI). PMI is composed of dis-
criminative subgraph features associated with tight lower and
upper bounds of subgraph isomorphism probability. Based
on PMI, we can filter out a large number of uncertain graphs
and maximize the pruning capability. During the verifica-
tion phase, we develop an efficient sampling algorithm to
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validate the remaining candidates. For the supergraph simi-
larity query, in the filtering phase, we propose two pruning
algorithms, one lightweight and the other strong, based on
maximal common subgraphs of query graph and data graph.
We run the two pruning algorithms against a probabilistic
index that consists of powerful graph features. In the veri-
fication, we design an approximate algorithm based on the
Horvitz–Thompson estimator to fast validate the remaining
candidates. The efficiencies of our proposed solutions to the
subgraph and supergraph similarity search have been veri-
fied through extensive experiments on real uncertain graph
datasets.

Keywords Subgraph similarity query ·
Supergraph similarity query · Uncertain graph data

1 Introduction

Graphs have been used to model various data in a wide
range of applications, such as bioinformatics, social network
analysis, and Resource Description Framework (RDF) data
management. Furthermore, in these real applications, due to
noisy measurements, inference models, ambiguities of data
integration, and privacy-preserving mechanisms, uncertain-
ties are often introduced in the graph data. For example,
in a protein–protein interaction (PPI) network, the pairwise
interaction is derived from statistical models [5,6,23], and
the STRING database (http://string-db.org) is such a pub-
lic data source that contains PPIs with uncertain edges pro-
vided by statistical predictions. In a social network, prob-
abilities can be assigned to edges to model the degree of
influence or trust between two social entities [2,17,31]. In
a RDF graph, uncertainties/inconsistencies are introduced in
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Fig. 1 Motivation example of
querying uncertain PPI networks

data integration where various data sources are integrated
into RDF graphs [21,30].

To model the uncertain graph data, a probabilistic graph
model is introduced [21,24,30,35,58]. In this model, each
edge is associated with an edge existence probability to quan-
tify the likelihood that this edge exists in the graph, and edge
probabilities are independent of each other. However, the
proposed probabilistic graph model is invalid in many real
scenarios. For example, for uncertain PPI networks, authors
in [10,36] first establish elementary interactions with prob-
abilities between proteins, then use machine learning tools
to predict other possible interactions based on the elemen-
tary links. The predictive results show that interactions are
correlated, especially with high dependence of interactions
at the same proteins. Given another example, in communica-
tion networks or road networks, an edge probability is used to
quantify the reliability of a link [8] or the degree of traffic jam
[19]. Obviously, there are correlations for the routing paths
in these networks [19], i.e., a busy traffic path often blocking
traffic in nearby paths. Therefore, it is necessary for a proba-
bilistic graph model to consider correlations existing among
edges or nodes.

Clearly, it is unrealistic to model the joint distribution for
the entire set of nodes in a large graph, i.e., road and social
networks. Thus, in this paper, we introduce joint distribu-
tions for local nodes. For example, in graph 001 of Fig. 2,
we give a joint distribution to measure interactions (neigh-
bor edges1) of the three nodes in a local neighborhood.
The joint probability table (JPT) shows the joint distribu-
tion, and a probability in JPT (the second row) is given as
Pr(e1 = 1, e2 = 1, e3 = 0) = 0.2, where “1” denotes exis-
tence while “0” denotes nonexistence. For larger graphs, we
have multiple joint distributions of nodes in small neighbor-
hoods (in fact, these are marginal distributions). In real appli-
cations, these marginal distributions can be easily obtained.
For example, authors in [19] use sampling methods to esti-
mate a traffic joint probability of nearby roads, and point

1 Neighbor edges are the edges that are incident to the same vertex or
the edges of a triangle.

out that the traffic joint probability follows a multi-gaussian
distribution. For PPI networks, authors in [10,36] establish
marginal distributions using a Bayesian prediction.

In this paper, we study similarity graph containment
search (i.e., subgraph similarity search and supergraph sim-
ilarity search) over uncertain graphs due to the wide usage
of similarity graph containment search in many application
fields, such as answering SPARQL queries (graph) in RDF
graph data [1,21], predicting complex biological interactions
(graphs) [10,43], and identifying vehicle routings (graphs) in
road networks [8,19]. Below is a motivation example.

Motivation example In bioinformatics, interactions between
proteins are modeled as a graph, namely a PPI network, where
vertices represent proteins and edges represent interactions
between proteins. Figure 1 shows a real PPI network of yeast
in the STRING database [44]. A weight is assigned to each
edge to represent the reliability of high-throughput protein
interactions. In the STRING database, the reliability of PPIs
is identified through experimental annotations in the Open
Biological Ontology (OBO) [40]. Biologists use a subgraph
query to discover a diseased yeast. To achieve this, the com-
plex (subgraph) of a diseased yeast is used to match the PPI
network of an examined yeast. If the matching is successful,
the examined yeast very likely has such a disease. However, a
query hardly has an exact match in a PPI network, due to the
false positives generated in biological experiments [6,23].
In Fig. 1, the subgraph query cannot find any exact match
in the PPI network. Thus, a subgraph similarity search is
more desirable. If we relax the edge (a, c) of the subgraph
query, we can find an exact match (a, b, c) in the PPI network.
On the contrary, the supergraph query is used to identify
the properties that an unknown PPI network has. To achieve
this, biologists use the unknown PPI network (supergraph) to
match many small size of known PPI networks (a database).
As a result, biologists can predict that the unknown PPI net-
work has the properties of known PPI networks in the query
answers. The supergraph similarity search is also crucial in
querying PPI networks, e.g., the supergraph query contains
the PPI network exactly only after the PPI network relaxes
an edge (d, e).
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Fig. 2 Uncertain graph
database and query graph

In biology analysis, we should consider not only the struc-
tural containment, but also the probabilistic information (reli-
ability) provided by these real uncertain PPI networks. The
probabilities of different edges can be treated as independent
or correlated. Many approaches have shown that the protein
interactions behave strong local correlations [6,9]. For exam-
ple, the clique (b, d, e) in the PPI network shows the local
correlations. In the experiments, we show that more accurate
PPI predictions can be obtained in the correlated data model
than in the independent data model. Therefore, in this paper,
we study similarity graph containment search over uncertain
graphs with local correlations.

In the following, we provide the query semantics, our solu-
tions, and contributions for probabilistic subgraph similarity
search and probabilistic supergraph similarity search, respec-
tively.

1.1 Probabilistic subgraph similarity matching

1.1.1 Query semantics

In this paper, we focus on threshold-based probabilistic sub-
graph similarity matching (T-PS) over a large set of uncer-
tain graphs. Specifically, let D = {g1, g2, . . . , gn} be a set
of uncertain graphs where edges’ existences are not inde-
pendent, but are given explicitly by joint distributions, q be
a query graph, and ε be a probability threshold, and then, a
T-PS query retrieves all graphs g ∈ D such that the subgraph
similarity probability (SUBP) between q and g is at least ε.
We will formally define SUBP later (Definition 9).

We employ the possible world semantics [13,42], which
have been widely used for modeling probabilistic databases,
to explain the meaning of returned results for subgraph simi-
larity search. A possible world graph (PWG) of an uncertain
graph is a possible instance of the uncertain graph. It con-
tains all vertices and a subset of edges of the uncertain graph,
and it has a weight which is obtained by joining joint prob-
ability tables of all neighbor edges. Then, for a query graph

Fig. 3 Partial possible world graphs of uncertain graph 002

q and an uncertain graph g, the probability that q subgraph
similarly matches g is the summation of the weights of those
PWGs, of g, to which q is subgraph similar. If q is subgraph
similar to a PWG g′, g′ must contain a subgraph of q, say
q ′, such that the difference between q and q ′ is less than the
user-specified error tolerance threshold δ. In other words, q
is subgraph isomorphic to g′ after q is relaxed with δ edges.

Example 1 Consider graph 002 in Fig. 2, and edges are
attached with labels, i.e., a, b, c . . . J PT1 and J PT2 give
joint distributions of neighbor edges {e1, e2, e3} and {e3, e4,

e5}, respectively. Figure 3 lists partial PWGs of uncertain
graph 002 and their weights. The weight of PWG (1) is
obtained by joining t1 of J PT1 and t2 of J PT2, i.e., Pr(e1 =
1, e2 = 1, e3 = 1, e4 = 1, e5 = 0) = Pr(e1 = 1, e2 =
1, e3 = 1) × Pr(e3 = 1, e4 = 1, e5 = 0) = 0.3 × 0.25 =
0.075. Suppose the similarity threshold is 1. To decide if q1

subgraph similarly matches uncertain graph 002, we first find
all of 002’s PWGs that contain a subgraph whose difference
to q1 is less than 1. The results are PWGs (1), (2), (3), and
(4), as shown in Fig. 3, since we can delete edge a, b or
c of q1. Next, we add up the probabilities of these PWGs:
0.075 + 0.045 + 0.075 + 0.045 + · · · = 0.45. If the query
specifies a probability threshold of 0.4, then graph 002 is
returned since 0.45 > 0.4.
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The above example gives a naive solution, to T-PS query
processing, that needs to enumerate all PWGs of an uncertain
graph. This solution is very inefficient due to the exponential
number of PWGs. Therefore, in this paper, we propose a
filter-and-verify method to reduce the search space.

1.1.2 Challenges and contributions

Given a set of uncertain graphs D = {g1, . . . , gn} and a query
graph q, our solution performs T-PS query processing in three
steps, namely structural pruning, probabilistic pruning, and
verification. In the structural pruning step, we conduct q on
each deterministic graph gc

i , which removes uncertainty from
gi (gi ∈ D), and get a match candidate set SCq . In the
probabilistic pruning, we first obtain upper and lower bounds
of SUBP via a pre-computed index. Next, we refine the set
of candidates in SCq , by pruning those potential uncertain
graphs whose upper bound is smaller than ε or whose lower
bound is larger than ε. In the index, we compute frequent
subgraph features { f } and store the upper and lower bounds
of the subgraph isomorphism probability (SIP) of f to g.
We calculate bounds of SUBP through the bounds of SIP. In
the verification phase, we validate each candidate uncertain
graph remaining after the previous steps to determine the final
answer set. There exist several challenges in the above steps.
In the following, we give the challenges and our solutions.

Challenge 1: Determine best bounds of SUBP

As we will see, there are many features satisfying pruning
conditions; thus, we can obtain a large number of bounds of
SUBP based on the bounds of SIP. In this paper, we convert
the problem of computing the best upper bound into a set
cover problem. Our contribution is to develop an efficient
randomized algorithm to obtain the best lower bound using
integer quadratic programming.

Challenge 2: Compute an effective index

An effective index should consist of tight upper and lower
bounds whose values can be computed efficiently. As we will
show later, calculating an SIP is #P-hard, which increases
the difficulty of computing an effective index. To address
this challenge, we make a contribution to derive tight bounds
of SIP by converting the problem of computing bounds into
a maximum clique problem and propose an efficient solu-
tion by combining the properties of probability conditional
independence and graph theory.

Challenge 3: Find the features that maximize pruning

Frequent subgraphs (mined from Dc) are commonly used as
features in graph matching. However, it would be impracti-
cal to index all of them. Our goal is to maximize the pruning

capability with a small number of features. To achieve this
goal, we consider two criteria in selecting features, the size
of the feature and the number of disjoint embeddings that a
feature has. A feature of small size and many embeddings is
preferred.

Challenge 4: Compute SUBP efficiently

Though we are able to filter out a large number of uncertain
graphs, computing the exact SUBP in the verification phase
may still take quite some time and become the bottleneck in
query processing. To address this issue, we develop an effi-
cient sampling algorithm, based on the Monte Carlo theory,
to estimate SUBP with a high quality.

1.2 Probabilistic supergraph similarity matching

1.2.1 Query semantics

Similar to subgraph similarity matching, probabilistic super-
graph similarity matching retrieves uncertain graphs {g} from
D = {g1, g2, . . . , gn} such that the supergraph similarity
probability (SUPP) between q and g is at least ε. For a query
graph q and an uncertain graph g, the value of SUPP is the
summation of the weights of those possible worlds, of g, to
which q is supergraph similar. If q is supergraph similar to
a possible world g′, q must contain a subgraph of g, say q ′,
such that the difference between g and q ′ is less than the user-
specified distance threshold δ. In other words, g′ is subgraph
isomorphic to q after g′ is relaxed with δ edges.

Example 2 Consider uncertain graph 001 and query q2 in
Fig. 2 and 001’s possible worlds in Fig. 4. Assume the dis-
tance threshold is 1. To decide whether q2 supergraph simi-
larly matches uncertain graph 001, we first find all of 001’s
PWGs {g′} such that q2 contains a subgraph q ′2 whose dif-
ference between g′ is less than 1. The results are PWGs (1),
(2), (3), and (4), as shown in Fig. 4. Next, we add up the
probabilities of these PWGs: 0.1+ 0.2+ 0.1+ 0.1 = 0.5. If
the query specifies a probability threshold of 0.6, then graph
001 is a false answer since 0.5 < 0.6.

Fig. 4 Partial possible world graphs of uncertain graph 001
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1.2.2 Challenges and contributions

We can also employ the filter-and-verify framework to
answer the supergraph similarity query. However, compared
with the subgraph similarity query, each step in the query
processing of supergraph matching is more complex and
difficult. For example, we may attempt to obtain a struc-
tural pruning condition for supergraph similarity matching
by modifying the structural pruning condition for subgraph
similarity matching as follows:

If q is not supergraph similar to gc, then the SUPP of q to
g is 0.

However, this pruning condition does not work correctly
for the supergraph similarity matching. For example, in
Example 2, q2 is not supergraph similar to 001c, but the
SUPP is 0.5 which does not equal 0. The reason is as fol-
lows: Though q is not supergraph similar to gc, q may be
supergraph similar to a possible world g′ of g (g′ is a sub-
graph of g). In this case, the SUPP of q to g is not 0 and the
probabilities of such possible worlds should be summarized.

Also, the probabilistic pruning rules cannot be applied
to supergraph similarity matching. To address these prob-
lems, we propose novel pruning and verification algorithms
to answer the probabilistic supergraph similarity matching
efficiently. We summarize the following contributions.

1. We propose a lightweight probabilistic pruning condition
(graph feature based) that can quickly remove unqualified
uncertain graphs. We prove a formula that calculates the
exact value of SUPP. Based on the formula, we also give
a strong pruning condition (graph feature based) that can
filter out most unqualified uncertain graphs.

2. Frequent subgraphs are commonly used as features in
graph matching. However, it would be impractical to
index all of them. Our goal is to maximize the pruning
capability with a small number of features. To achieve this
goal, we start with frequent subgraphs as our features.
We denote them as F0. We devise a model to estimate
query costs. Then, we select the best feature set F ⊂ F0

that optimizes the cost model. We prove that solving the
exact optimization problem is hard, and we propose a c-
approximate approach. This enables us to derive an index
of small size and powerful pruning capability.

3. We design a basic sampling algorithm to verify the can-
didates, so that we avoid the hard problem of computing
SUPP. To speed up the basic algorithm, we propose an
advanced sampling algorithm, based on unequal proba-
bility sampling techniques, that samples many possible
worlds together during one sampling process.

4. We carry out extensive experiments on real uncertain
graph data to evaluate the overall performance and the
effectiveness of pruning and verification algorithms.

1.3 Paper organization

The remainder of this paper is organized as follows. We for-
mally define the subgraph similarity query and the super-
graph similarity query over uncertain graphs and give the
complexity of the problems in Sect. 2. In Sect. 3, we give
pruning and verifying algorithms for subgraph similarity
query. In Sect. 4, we focus on developing algorithms for
supergraph similarity query. We discuss the results of per-
formance tests in Sect. 5 and the related work in Sect. 6.
Finally, in Sect. 7, we draw our conclusions.

2 Problem definition and complexity

In this section, we define some necessary concepts and show
the complexity of our problem. Table 1 summarizes the nota-
tions used in this paper.

2.1 Problem definition

Definition 1 (Deterministic Graph) An undirected deter-
ministic graph2 gc is denoted as (V, E, �, L), where V is a
set of vertices, E is a set of edges, � is a set of labels, and
L : V ∪ E → � is a function that assigns labels to vertices
and edges. A set of edges are neighbor edges, denoted by ne,
if they are incident to the same vertex or the edges form a
triangle in gc.

For example, consider graph 001 in Fig. 2. Edges e1, e2,
and e3 are neighbor edges, since they form a triangle. Con-
sider graph 002 in Fig. 2. Edges e3, e4, and e5 are also neigh-
bor edges, since they are incident to the same vertex.

Definition 2 (Uncertain Graph) An uncertain graph is def-
ined as g = (gc, X E ), where gc is a deterministic graph and
X E is a binary random variable set indexed by E . An element
xe ∈ X E takes values 0 or 1, and it denotes the existence
possibility of edge e. A joint probability density function
Pr(xne) is assigned to each neighbor edge set, where xne

denotes the assignments restricted to the random variables
of a neighbor edge set, ne.

An uncertain graph has uncertain edges but deterministic
vertices. The probability function Pr(xne) is given as a joint
probability table of random variables of ne. For example, the
uncertain graph 002 in Fig. 2 has two joint probability tables
associated with two neighbor edge sets, respectively.

Definition 3 (Possible World Graph) A possible world graph
g′ = (V ′, E ′, �′, L ′) is an instantiation of an uncertain graph

2 In this paper, we consider undirected graphs, although it is straight-
forward to extend our methods to directed graphs.
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Table 1 Notations
Symbol Description

D, SCq , Cq , Aq The probabilistic database set

Dc, SCc
q The deterministic database

g The uncertain graph

ε The user-specified probability threshold

δ The subgraph distance threshold

f , q, g′ gc The deterministic graph

U = {rq1, . . . , rqa} The remaining graph set after q is relaxed with δ edges

Lower B( f ), U pper B( f ) The lower and upper bounds of SIP

Lsim(q), Usim(q) The lower and upper bounds of SUBP

Brqi , B fi , Bci The Boolean variables of query, embedding and cut

E f , Ec The set of embeddings and cuts

I N The set of disjoint embeddings

F The feature set

Pr(xne) The joint probability distribution of neighbor edges

Pr(q ⊆iso g) The isomorphism between q and g

Pr(q ⊆sim g) The subgraph similarity probability between q and g

Pr(q ⊇sim g) The supergraph similarity probability between q and g

g = ((V, E, �, L), X E ), where V ′ = V , E ′ ⊆ E , �′ ⊆ �.
We denote the instantiation from g to g′ as g ⇒ g′.

Both g′ and gc are deterministic graphs. But an uncertain
graph g corresponds to one gc and multiple PWGs. We use
PW G(g) to denote the set of all PWGs derived from g.

Definition 4 (Conditional Independence) Let X , Y , and Z
be sets of random variables. X is conditionally independent
of Y given Z (denoted by X ⊥ Y |Z ) in distribution Pr if:

Pr(X = x; Y = y|Z = z) = Pr(X = x |Z = z)

Pr(Y = y|Z = z)

for all values x ∈ dom(X), y ∈ dom(Y ) and z ∈ dom(Z).

Following real applications [10,19,21,36], we assume that
any two disjoint subsets of Boolean variables, X A and X B of
X E , are conditionally independent given a subset XC (X A ⊥
X B |XC ), if there is a path from a vertex in A to a vertex in B
passing through C . Then, the probability of a possible world
graph g′ is given by:

Pr(g ⇒ g′) =
∏

ne∈N S

Pr(xne) (1)

where N S is all the sets of neighbor edges of g.
For example, in uncertain graph 002 of Fig. 2, {e1, e2} ⊥

{e4, e5}|e3. Clearly, for any possible world graph g′, we have
Pr(g ⇒ g′) > 0 and

∑
g′∈PW G(g) Pr(g ⇒ g′) = 1, that

is, each PWG has an existence probability, and the sum of
these probabilities is 1.

Definition 5 (Subgraph Isomorphism) Given two determin-
istic graphs g1 = (V1, E1, �1, L1) and g2 = (V2, E2, �2,

L2), we say g1 is subgraph isomorphic to g2 (denoted by
g1 ⊆iso g2), if and only if there is an injective function
f : V1 → V2 such that:

– for any (u, v) ∈ E1, there is an edge ( f (u), f (v)) ∈ E2;
– for any u ∈ V1, L1(u) = L2( f (u));
– for any (u, v) ∈ E1, L1(u, v) = L2( f (u), f (v)).

The subgraph (V3, E3) of g2 with V3 = { f (v)|v ∈ V1} and
E3 = {( f (u), f (v))|(u, v) ∈ E1} is called the embedding
of g1 in g2.

When g1 is subgraph isomorphic to g2, we also say that
g1 is a subgraph of g2 and g2 is a super-graph of g1.

Definition 6 (Subgraph Isomorphism Probability) For a
deterministic graph f and an uncertain graph g, we define
their subgraph isomorphism probability (SIP) as

Pr( f ⊆iso g) =
∑

g′∈SU B( f,g)

Pr(g ⇒ g′) (2)

where SU B( f, g) is g’s possible worlds that are supergraphs
of f , that is, SU B( f, g) = {g′ ∈ PW G(g)| f ⊆iso g′}.
Definition 7 (Maximum Common Subgraph—MCS) Given
two deterministic graphs g1 and g2, the maximum common
subgraph of g1 and g2 is the largest subgraph of g2 that is
subgraph isomorphic to g1, denoted by mcs(g1, g2).
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Definition 8 (Subgraph Distance) Given two deterministic
graphs g1 and g2, the subgraph distance is dis(g1, g2) =
|g1| − |mcs(g1, g2)|. Here, |g1| and |mcs(g1, g2)| denote
the number of edges in g1 and mcs(g1, g2), respectively.
For a distance threshold δ, if dis(g1, g2) ≤ δ, we call g1 is
subgraph similar to g2 or g2 is supergraph similar to g1.

Note that, in this definition, subgraph distance only
depends on the edge set difference, which is consistent with
pervious works on similarity search over deterministic graphs
[18,39,49]. The operations on an edge consist of edge dele-
tion, relabeling, and insertion.

Definition 9 (Subgraph Similarity Probability) For a given
query graph q, an uncertain graph g3, and a subgraph distance
threshold δ, we define their subgraph similarity probability
as,

Pr(q ⊆sim g) =
∑

g′∈SU B(q,g)

Pr(g ⇒ g′) (3)

where SU B(q, g) is g’s possible world graphs and q has
subgraph distance to each g′ ∈ SU B(q, g) no larger than δ,
that is, SU B(q, g) = {g′ ∈ PW G(g )| dis(q, g′) ≤ δ}.

Probabilistic Subgraph Similarity Query Given a set of
uncertain graphs D = {g1, . . . , gn}, a query graph q, and
a probability threshold ε (0 < ε ≤ 1), a subgraph similarity
query returns a set of uncertain graphs {g|Pr(q ⊆sim g) ≥
ε, g ∈ D}.

Definition 10 (Supergraph Similarity Probability) For a
given query graph q, an uncertain graph g, and a subgraph
distance threshold δ, we define their supergraph similarity
probability as,

Pr(q ⊇sim g) =
∑

g′∈SU P(q,g)

Pr(g ⇒ g′) (4)

where SU P(q, g) is g’s possible world graphs that have sub-
graph distance to q no larger than δ, that is, SU P(q, g) =
{g′ ∈ PW G(g )| dis(g′, q) ≤ δ}.

Probabilistic Supergraph Similarity Query Given a set of
uncertain graphs D = {g1, . . . , gn}, a query graph q, and a
probability threshold ε (0 < ε ≤ 1), a supergraph similarity
query returns a set of uncertain graphs {g|Pr(q ⊇sim g) ≥
ε, g ∈ D}.

3 Without loss of the generality, in this paper, we assume a query graph
is a connected deterministic graph, and an uncertain graph is connected.

2.2 Problem complexity

From the problem statement, we know that in order to answer
a probabilistic subgraph or supergraph similarity query effi-
ciently, we need to calculate the subgraph similarity prob-
ability (SUBP) or supergraph similarity probability (SUPP)
efficiently. We now show the time complexities of calculating
SUBP and SUPP.

Theorem 1 It is #P-hard to calculate the subgraph similar-
ity probability.

Proof Sketch Here, we just highlight the major steps here.
We consider a probabilistic graph whose edge probabilities
are independent from each other. This probabilistic graph
model is a special case of the probabilistic graph defined in
Definition 2. We prove the theorem by reducing an arbitrary
instance of the #P-complete DNF counting problem [16] to
an instance of the problem of computing Pr(q ⊆sim g) in
polynomial time. Figure 5 illustrates an reduction for the
DNF formula F = (y1∧y2)∨(y1∧y2∧y3)∨(y2∧y3). In the
figure, the graph distance between q and each possible world
graph g′ is 1 (delete vertex w from q). Each truth assignment
to the variables in F corresponds to a possible world graph
g′ derived from g. The probability of each truth assignment
equals to the probability of g′ that the truth assignment cor-
responds to. A truth assignment satisfies F if and only if g′,
the truth assignment corresponds to, is subgraph similar to
q (suppose graph distance is 1). Thus, Pr(F) is equal to the
probability, Pr(q ⊆sim g). ��

Similarly, we obtain the time complexity of calculating
SUPP as follows.

Theorem 2 It is #P-hard to calculate the supergraph simi-
larity probability.

Fig. 5 The uncertain graph g and query graph q constructed for (y1 ∧
y2) ∨ (y1 ∧ y2 ∧ y3) ∨ (y2 ∧ y3)
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3 Probabilistic subgraph similarity query processing

3.1 Framework of our approach

3.1.1 Structural pruning

The idea of structural pruning is straightforward. If we
remove all the uncertainty in an uncertain graph, and q is
still not subgraph similar to the resulting graph, then q can-
not subgraph similarly match the original uncertain graph.

Formally, for g ∈ D, let gc denote the corresponding
deterministic graph after we remove all the uncertain infor-
mation from g. We have

Theorem 3 If q �sim gc, Pr(q ⊆sim g) = 0.

Based on this observation, given D and q, we can prune
the database Dc = {gc

1, . . . , gc
n} using conventional deter-

ministic graph similar matching methods. In this paper, we
adopt the method in [49] to quickly compute results. [49]
uses a multi-filter composition strategy to prune large num-
ber of graphs directly without performing pairwise similarity
computation, which makes [49] more efficient compared to
other graph similarity search algorithms [18,54]. Assume the
result is SCc

q = {gc|q ⊆sim gc, gc ∈ Dc}. Then, its corre-
sponding uncertain graph set, SCq = {g|gc ∈ SCc

q}, is the
input for uncertain subgraph similarity matching in the next
step.

3.1.2 Probabilistic pruning

To further prune the results, we propose a probabilistic matrix
index (PMI) that will be introduced later, for probabilistic
pruning. For a given set of uncertain graphs D and its corre-
sponding set of deterministic graphs Dc, we create a feature
set F from Dc, where each feature is a deterministic graph,
i.e., F ⊂ Dc. In PMI, for each g ∈ SCq , we can locate a set
Dg = {〈Lower B( f j ), U pper B( f j )〉| f j ⊆iso gc, 1 ≤ j ≤
|F |} where Lower B( f ) and U pper B( f ) are the lower and
upper bounds of the subgraph isomorphism probability of f
to g (Definition 6). If f is not subgraph isomorphic to gc, we
have 〈0〉.

In the probabilistic filtering, we first determine the remain-
ing graphs after q is relaxed with δ edges, where δ is the
subgraph distance threshold. Suppose the remaining graphs
are {rq1, . . . , rqi , . . . , rqa}. For each rqi , we compute two
features f 1

i and f 2
i in Dg such that rqi ⊇iso f 1

i and
rqi ⊆iso f 2

i . Then, we can calculate upper and lower bounds
of Pr(q ⊆sim g) based on the values of U pper B( f 1

i ) and
Lower B( f 2

i ) for 1 ≤ i ≤ a, respectively. If the upper bound
of Pr(q ⊆sim g) is smaller than probability threshold ε, g is
pruned. If the lower bound of Pr(q ⊆sim g) is not smaller
than ε, g is in the final answers.

Fig. 6 Probabilistic matrix index (PMI) and features of uncertain graph
database in Fig. 2

3.1.3 Verification

In this step, we calculate Pr(q ⊆sim g) for query q and
candidate answer g, after probabilistic pruning, to make sure
g is really an answer, i.e., Pr(q ⊆sim g) ≥ ε.

3.2 Probabilistic pruning

As mentioned in the last subsection, we first conduct struc-
tural pruning to remove uncertain graphs that do not approx-
imately contain the query graph q, and then, we use prob-
abilistic pruning techniques to further filter the remaining
uncertain graph set, named SCq .

3.2.1 Pruning conditions

We first introduce an index structure, PMI, to facilitate
probabilistic filtering. Each column of the matrix corre-
sponds to an uncertain graph in the database D, and
each row corresponds to an indexed feature. Each entry
records {Lower B( f ), U pper B( f )}, where U pper B( f )

and Lower B( f ) are the upper and lower bounds of the sub-
graph isomorphism probability of f to g, respectively.

Example 3 Figure 6 shows the PMI of uncertain graphs in
Fig. 2. Note that the upper or lower bounds in PMI are derived
from the methods proposed in Sect. 3.3.

Given a query q, an uncertain graph g, and subgraph dis-
tance δ, we generate a graph set, U = {rq1, . . . , rqa}, by
relaxing q with δ edge deletions or relabelings.4 Here, we
use the solution proposed in [49] to generate {rq1, . . . , rqa}.
Suppose, we have built the PMI. For each g ∈ SCq , in PMI,
we locate

Dg = {〈Lower B( f j ), U pper B( f j )〉| f j ⊆iso gc, 1 ≤ j ≤ |F |}

4 According to the subgraph similarity search, insertion does not change
the query graph.
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For each rqi , we find two graph features in Dg , { f 1
i , f 2

i },
such that rqi ⊇iso f 1

i and rqi ⊆iso f 2
i , where 1 ≤ i ≤ a.

Then, we have probabilistic pruning conditions as follows.

Sub-Pruning 1 Given a probability threshold ε and Dg ,
if

∑a
i=1 U pper B( f 1

i ) < ε, then g can be safely pruned
from SCq .
Sub-Pruning 2 Given a probability threshold ε and Dg ,
if

∑a
i=1 Lower B( f 2

i )−∑
1≤i, j≤a U pper B( f 2

i )U pper

B( f 2
j ) ≥ ε, then g is in the final answers, i.e., g ∈ Aq ,

where Aq is the final answer set.

Before proving the correctness of the above two pruning
conditions, we first introduce a lemma about Pr(q ⊆sim g),
which will be used for the proof. Let Brqi be a Boolean
variable where 1 ≤ i ≤ a, Brqi is true when rqi is subgraph
isomorphic to gc, and Pr(Brqi ) is the probability that Brqi

is true. We have

Lemma 1

Pr(q ⊆sim g) = Pr(Brq1 ∨ · · · ∨ Brqa). (5)

Proof Sketch From Definition 9, we have

Pr(q ⊆sim g) =
∑

g′∈SI M(q,g)

Pr(g ⇒ g′) (6)

where SM I (q, g) is a set of PWGs that have subgraph dis-
tance to q no larger than δ. Let d be the subgraph distance
between q and gc. We divide SI M(q, g) into δ − d + 1
subsets,5 {SM0, . . . , SMδ−d}, such that a PWG in SMi has
subgraph distance d + i with q. Thus, from Eq. 6, we get

Pr(q ⊆iso g) =
∑

g′∈SM1∪···∪SMδ−d

Pr(g ⇒ g′)

=
∑

0≤ j1≤δ−d

∑

g′∈SM j1

Pr(g ⇒ g′)

−
∑

0≤ j1< j2≤δ−d

∑

g′∈SM j1∩SM j2

Pr(g ⇒ g′)+ · · ·

+(−1)i
∑

0≤ j1<···< ji≤δ−d

∑

g′∈SM j1∩···∩SM ji

Pr(g ⇒ g′)

+ · · · + (−1)δ−d
∑

g′∈SM j1∩···∩SM jδ−d

Pr(g ⇒ g′). (7)

Let Li , 0 ≤ i ≤ δ − d, be the graph set after q is relaxed
with d + i edges and BLi be a Boolean variable, when BLi

is true, it indicates at least one graph in Li is a subgraph
of gc. Consider the i th item on the RHS in Eq. 7, let A be

5 For g ∈ SCq , we have d ≤ δ, since the uncertain graphs with d > δ

have been filtered out in the structural pruning.

the set composed of all graphs in i graph sets, and B =
BL j1 ∧· · ·∧ BL ji be the corresponding Boolean variable of
A. The set g′ ∈ SM j1 ∩ · · · ∩ SM ji contains all PWGs that
have all graphs in A. Then, for the i th item, we get,

(−1)i
∑

0≤ j1<···< ji≤δ−d

∑

g′∈SM j1∩···∩SM ji

Pr(g ⇒ g′)

= (−1)i
∑

0≤ j1<···< ji≤δ−d

Pr(BL j1 ∧ · · · ∧ BL ji ).
(8)

Similarly, we can get the results for other items. By replac-
ing the corresponding items with these results in Eq. 7, we
get

Pr(q ⊆iso g) =
∑

0≤ j1≤δ−d

Pr(BL j )

−
∑

0≤ j1< j2≤δ−d

Pr(BL j1 ∧ BL j2)+ · · ·

+(−1)i
∑

0≤ j1<···< ji≤δ−d

Pr(BL j1 ∧ · · · ∧ BL ji )+ · · ·

+(−1)δ−d Pr(BL j1 ∧ · · · ∧ BL jδ−d ). (9)

Based on the inclusion–exclusion principle [33], the RHS
of Eq. 9 is Pr(BL0 ∨ · · · ∨ BLδ−d). Clearly, BL0 ⊆ · · · ⊆
BLδ−d , then

Pr(BL0 ∨ · · · ∨ BLδ−d) = Pr(BLδ−d)

= Pr(Brq1 ∨ · · · ∨ Brqa)

��
Lemma 1 gives a method to compute SUBP. Intuitively,

the probability of q being subgraph similar to g equals the
probability that at least one graph of the graph set U =
{rq1, . . . , rqa} is a subgraph of g, where U is the remain-
ing graph set after q is relaxed with δ edges. With Lemma 1,
we can formally prove the two pruning conditions.

Theorem 4 Given a probability threshold ε and Dg, if
∑a

i=1
U pper B( f 1

i ) < ε, then g can be safely pruned from SCq.

Proof Sketch Since rqi ⊇iso f 1
i , we have Brq1 ∨ · · · ∨

Brqa ⊆ B f 1
1 ∨ · · · ∨ B f 1

a , where B f 1
i is a Boolean vari-

able denoting the probability of f 1
i being a subgraph of g for

1 ≤ i ≤ a. Based on Lemma 1, we obtain

Pr(q ⊆sim g) = Pr(Brq1 ∨ · · · ∨ Brqa)

≤ Pr
(

B f 1
1 ∨ · · · ∨ B f 1

a

)

≤ Pr
(

B f 1
1

)
+ · · · + Pr

(
B f 1

a

)

≤ U pper B( f 1
1 )+ · · · +U pper B

(
f 1
a

)
<ε.

Then, g can be pruned. ��
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Theorem 5 Given a probability threshold ε and Dg, if∑a
i=1 L-ower B( f 2

i )−∑
1≤i, j≤a U pper B( f 2

i )U pper B( f 2
j )

≥ ε, then g ∈ Aq, where Aq is the final answer set.

Proof Sketch Since ∨a
i=1 Brqi ⊇ ∨a

i=1 B f 2
i , we can show

that

Pr(q ⊆sim g) = Pr(Brq1 ∨ · · · ∨ Brqa)

≥ Pr
(

B f 2
1 ∨ · · · ∨ B f 2

a

)

≥
a∑

i=1

Pr
(

B f 2
i

)
−

∑

1≤i, j≤a

Pr
(

B f 2
i

)

Pr
(

B f 2
j

)
≥

a∑

i=1

Lower B( f 2
i )

−
∑

1≤i, j≤a

U pper B( f 2
i )U pper B( f 2

j )

≥ ε.

Then, g ∈ Aq . ��
Note that the pruning process needs to address the tra-

ditional subgraph isomorphism problem (rq ⊆iso f or
rq ⊇iso f ). In our work, we implement the state-of-the-art
method VF2 [12].

3.2.2 Obtain tightest bounds of subgraph similarity
probability

In pruning conditions, for each rqi (1 ≤ i ≤ a), we find only
one pair of features { f 1

i , f 2
i }, among |F | features, such that

rqi ⊇iso f 1
i and rqi ⊆iso f 2

i . Then, we compute the upper
bound, Usim(q) =∑a

i=1 U pper B( f 1
i ) and the lower bound

Lsim(q) = ∑a
i=1 Lower B( f 2

i ) −∑
1≤i, j≤a U pper B( f 2

i )

U pper B( f 2
j ). However, there are many f 1

i s and f 2
i s satisfy-

ing conditions among F features, therefore, we can compute
a large number of Usim(q)s and Lsim(q)s. For each rqi , if
we find x features meeting the needs among |F | features, we
can derive xa Usim(q)s. Let x = 10 and a = 10, then there
are 1010 upper bounds. The same holds for Lsim(q). Clearly,
it is unrealistic to determine the best bounds by enumerating
all the possible ones; thus, in this section, we give efficient
algorithms to obtain the tightest Usim(q) and Lsim(q).

Obtain Tightest Usim(q)

For each f j (1 ≤ j ≤ |F |) in PMI, we determine a graph
set, s j , that is a subset of U = {rq1, . . . , rqa}, such that
rqi ∈ s j s.t. rqi ⊇iso f j . We also associate s j with a weight,
U pper B( f j ). Then, we obtain |F | sets {s1, . . . , s|F |} with
each set having a weight w(s j ) = U pper B( f j ) for 1 ≤
j ≤ |F |. With this mapping, we transform the problem of
computing the tightest Usim(q) into a weighted set cover
problem defined as follows.

Definition 11 (Tightest Usim(q)) Given a finite set U =
{rq1, . . . , rqa} and a collection S = {s1, . . . , s j , . . . , s|F |}
of subsets of U with each s j attached a weight ws j , we com-
pute a subset C ⊆ S to minimize

∑
s j∈C w(s j ) s.t.

⋃
s j∈C s j

= U .

It is well known that the set cover problem is NP-complete
[16]; hence, we use a greedy approach to approximate the
tightest Usim(q). Algorithm 1 gives detailed steps. Assume
the optimal value is OPT, the approximate value is within
O PT · ln|U | [14].

Algorithm 1 ObtainTightestUsim(q)(U , S)
1: A← φ, Usim(q) = 0;
2: while A is not a cover of U do

3: for each s ∈ S, compute γ (s) = w(s)

|s − A|;
4: choose an s with minimal γ (s);
5: A← A

⋃
s;

6: Usim(q)+ = w(s);
7: end while
8: return Usim(q);

Example 4 In Fig. 2, suppose we use q1 to query uncer-
tain graph 002, and the subgraph distance is 1. The relaxed
graph set of q is U = {rq1, rq2, rq3} as shown in Fig.
7. Given indexed features { f1, f2, f3}, we first determine
s1 = {rq1, rq2}, s2 = {rq2, rq3}, and s3 = {rq1, rq3}. We
use the U pper B( f j ), 1 ≤ j ≤ 3, as weight for three sets, and
thus, we have w(s1) = 0.4, w(s2) = 0.1 and w(s3) = 0.5.
Based on Definition 11, we obtain three Usim(q)s, which
are 0.4+0.1=0.5, 0.4+0.5=0.9, and 0.1+0.5=0.6. Finally, the
smallest (tightest) value, 0.5, is used as the upper bound, i.e.,
Usim(q) = 0.5.

Obtain Tightest Lsim(q)

For lower bound Lsim(q), the larger (tighter) Lsim(q) is, the
better the probabilistic pruning power is. Here, we formal-
ize the problem of computing the largest Lsim(q) as an inte-
ger quadratic programming problem and develop an efficient
randomized algorithm to solve it.

For each fi (1 ≤ i ≤ |F |) in PMI, we determine a graph
set, si , that is a subset of U = {rq1, . . . , rqa}, such that

b

a a c
b

crq1 rq2 rq3

f1
a S1: { rq 1, rq 2} W ( S 1)= 0 . 4 

f2
c S2: { rq 2, rq 3} W ( S 2)= 0 . 1 

f3
b S3: { rq 1, rq 3} W ( S 3)= 0 . 5 

Fig. 7 Obtain tightest Usim(q)
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rq j ∈ si s.t. rq j ⊆iso fi . We associate si with a pair weight
of {Lower B( fi ), U pper B( fi )}. Then, we obtain |F | sets
{s1, . . . , s|F |}with each set having a pair weight {wL(si ), wU

(si )} for 1 ≤ i ≤ |F |. Thus, the problem of computing
tightest Lsim(q) can be formalized as follows.

Definition 12 (Tightest Lsim(q)) Given a finite set U =
{rq1, . . . , rqa} and a collection S = {s1, . . . , s|F |} of subsets
of U with each si attached a pair weight {wL(si ), wU (si )},
we compute a subsect C ⊆ {s1, . . . , s|F |} to maximize

∑

si∈C

wL(si )−
∑

si ,s j∈C

wU (si )wU (s j )

s.t.
⋃

si∈C

si = U.

Associate an indicator variable, xsi , with each set si ∈ S,
which takes value 1 if set si is selected, and 0 otherwise.
Then, we want to:

Maximize
∑

si∈C

xsi wL(si )−
∑

si ,s j∈C

xsi xs j wU (si )wU (s j )

s.t.
∑

rq∈si

xsi ≥ 1 ∀rq ∈ U,

xs ∈ {0, 1}.
(10)

Equation 10 is an integer quadratic programming prob-
lem which is a hard problem [16]. We relax xsi to take values
within [0, 1], i.e., xsi ∈ [0, 1]. Then, the equation becomes
a standard quadratic programming (QP) problem. Clearly,
this QP is convex, and there is an efficient solution to solve
the programming [28]. Since all feasible solutions for Eq. 10
are also feasible solutions for the relaxed quadratic program-
ming, the maximum value Q P(I ) computed by the relaxed
QP provides an upper bound for the value computed in Eq.
10. Thus, the value of Q P(I ) can be used as the tightest lower
bound. However, the proposed relaxation technique cannot
give any theoretical guarantee on how tight Q P(I ) is to Eq.
10 [14].

Now following the relaxed QP, we propose a randomized
rounding algorithm that yields an approximation bound for
Eq. 10. Algorithm 2 shows the detailed steps. According to
Eq. 10, it is not difficult to see that the more elements in U are
covered, the tighter Lsim(q) is. The following theorem states
that the number of covered elements of U has a theoretical
guarantee.

Theorem 6 When Algorithm 2 terminates, the probability
that all elements are covered is at least 1− 1

|U | .

Proof Sketch For an element rq ∈ U , the probability of rq
is not covered in an iteration is

Algorithm 2 ObtainTightestLsim(q)(U , S)
1: C ← φ, Lsim(q) = 0;
2: Let x∗s be an optimal solution to the relaxed QP;
3: for k = 1 to 2ln|U | do
4: Pick each s ∈ S independently with probability x∗s ;
5: if s is picked then
6: C ← s;

7: Lsim(q) = Lsim(q)+ wL (s)− wU (s)
|C |∑
l=1

wU (sl );

8: end if
9: end for
10: return Lsim(q);

b

a a c
b

crq1 rq2 rq3

f1
a S1: { rq 1, rq 2} W ( S 1)= 0 . 4 

f2
c S2: { rq 2, rq 3} W ( S 2)= 0 . 1 

f3
b S3: { rq 1, rq 3} W ( S 3)= 0 . 5 

Fig. 8 Obtain tightest Lsim(q)

∏

rq∈s

(
1− x∗s

) ≤
∏

rq∈s

e−x∗s ≤ e−
∑

rq∈s x∗s ≤ 1

e
.

Then, the probability that rq is not covered at the end of the
algorithm is at most e−2log|U | ≤ 1

|U |2 . Thus, the probability
that there is some rq that is not covered is at most |U | ·
1/|U |2 = 1/|U |. ��

Example 5 In Fig. 2, suppose we use q1 to query uncertain
graph 002, and the subgraph distance is 1. The relaxed graph
set of q is U = {rq1, rq2, rq3} shown in Fig. 8. Given
indexed features { f1, f2}, we first determine s1 = {rq1}
and s2 = {rq1, rq2, rq3}. Then, we use {Lower B( fi ),

U pper B( fi )}, 1 ≤ i ≤ 2, as weights, and thus, we have
{wL(s1) = 0.28, wU (s1) = 0.36}, {wL(s2) = 0.08, wU (s2)

= 0.15}. Based on Definition 12, we assign Lsim(q) = 0.31.

3.3 Probabilistic matrix index

In this section, we discuss how to obtain tight {Lower B( f ),

U pper B( f )} and generate features used in the PMI.

3.3.1 Bounds of subgraph isomorphism probability

LowerB(f)

Let E f = { f1, . . . , f|E f |} be the set of all embeddings6 of
feature f in the deterministic graph gc, B fi be a Boolean
variable for 1 ≤ i ≤ |E f |, which indicates whether fi exists

6 In this paper, we use the algorithm in [47] to compute embeddings of
a feature in gc.
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in gc or not, and Pr(B fi ) be the probability that the embed-
ding fi exists in g. Similar to Lemma 1, we have

Pr( f ⊆iso g) = Pr(B f1 ∨ · · · ∨ B f|E f |). (11)

According to Theorem 1, it is not difficult to see that cal-
culating the exact Pr( f ⊆iso g) is NP-complete. Thus, we
rewrite Eq. 11 as follows

Pr( f ⊆iso g) = Pr(B f1 ∨ · · · ∨ B f|E f |)
= 1− Pr(B f1 ∧ · · · ∧ B f|E f |)
≥ 1− Pr(B f1 ∧ · · · ∧ B f|I N | |
B f|I N |+1 ∧ · · · ∧ B f|E f |).

(12)

where I N = {B f1, . . . , B f|I N |} ⊆ E f .
Let the corresponding embeddings of B fi , 1 ≤ i ≤ |I N |,

not have common parts (edges). Since gc is connected, these
|I N | Boolean variables are conditionally independent given
any random variable of g. Then, Eq. 12 is written as

Pr( f ⊆iso g) (13)

≥ 1− Pr
(
B f1 ∧ · · · ∧ B f|I N | | B f|I N |+1 ∧ · · · ∧ B f|E f |

)

= 1−
|I N |∏

i=1

[
1− Pr

(
B fi | B f|I N |+1 ∧ · · · ∧ B f|E f |

)]
.

For variables B fx , B fy ∈ {B f|I N |+1, . . . , B f|E f |}, we
have

Pr(B fi |B fx ∧ B fy) =
Pr(B fi ∧ B fx ∧ B fy)

Pr(B fx ∧ B fy)

= Pr(B fi ∧ B fx ∧ B fy)/Pr(B fy)

Pr(B fx ∧ B fy)/Pr(B fy)

= Pr(B fi ∧ B fx |B fy)

Pr(B fx |B fy)
. (14)

If B fi and B fx are conditionally independent given B fy ,
then

Pr(B fi ∧ B fx |B fy) = Pr(B fi |B fy)Pr(B fx |B fy). (15)

By combining Eqs. 14 and 15, we obtain

Pr(B fi |B fx ∧ B fy) = Pr(B fi |B fy). (16)

Based on this property, Eq. 14 is reduced to

Pr( f ⊆iso g) ≥ 1−
|I N |∏

i=1

[
1−Pr

(
B fi | B f|I N |+1 ∧ · · · ∧ B f|E f |

)]

= 1−
|I N |∏

i=1

[
1− Pr

(
B fi | B f1 ∧ · · · ∧ B f|C |

)]

= 1−
|I N |∏

i=1

[1− Pr(B fi |C O R)]

(17)

where C O R = B f1 ∧ · · · ∧ B f|C|, and the corresponding
embedding of B f j ∈ C = {B f1, . . . , B f|C|} overlaps with
the corresponding embedding of B fi .

For a given B fi , Pr(B fi |C O R) is a constant, since the
number of embeddings overlapping with fi in gc is constant.
Now, we obtain the lower bound of Pr( f ⊆iso g) as

Lower B( f ) = 1−
|I N |∏

i=1

[1− Pr(B fi |C O R)], (18)

which is only dependent on the selected |I N | embeddings
that do not have common parts with each other.

To compute Pr(B fi |C O R), a straightforward approach
is the following. We first join all the joint probability tables
(JPT) and, meanwhile, multiply joint probabilities of joining
tuples in JPTs. Then, in the join result, we project on edge
labels involved in B fi and C O R, and eliminate duplicates
by summing up their existence probabilities. The summa-
rization is the final result. However, this solution is clearly
time inefficient for the sake of join, duplicate elimination,
and probability multiplication.

In order to calculate Pr(B fi |C O R) efficiently, we use
a sampling algorithm to estimate its value. Algorithm 3
shows the detailed steps. The main idea of the algorithm
is as follows. We first sample a possible world g′. Then,
we check the condition, in Line 4, that is used to esti-
mate Pr(B fi ∧ C O R), and the condition, in Line 7, that
is used to estimate Pr(C O R). Finally, we return n1/n2

which is an estimation of Pr(B fi ∧ C O R)/Pr(C O R) =
Pr(B fi |C O R). The cycling number m is set to (4ln 2

ξ
)/τ 2

(0 < ξ < 1, τ > 0) used in Monte Carlo theory [33].

Algorithm 3 CalculatePr(B fi |C O R) (g, B fi , C O R)
1: n1 = 0, n2 = 0;
2: for i = 1 to m do
3: Sample each neighbor edge set ne of g according to Pr(xne), and

then obtain an instance g′;
4: if g′ has embedding fi & no embeddings involved in C O R then
5: n1+ = 1;
6: end if
7: if g′ has no embeddings involved in C O R then
8: n2+ = 1;
9: end if
10: end for
11: return n1/n2;

Example 6 In Fig. 6, consider f2, a feature of uncertain graph
002 shown in Fig. 2. f2 has three embeddings in 002, namely
E M1, E M2, and E M3 as shown in Fig. 9. In corresponding
B fi s, B f1, and B f3 are conditionally independent given B f2.
Then, based on Eq. 18, we have Lower B( f ) = 1 − [1 −
Pr(B f1|B f2)][1− Pr(B f3|B f2)] = 0.26.
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Fig. 9 Embeddings and f G of feature f2 in the uncertain graph 002

As stated early, Lower B( f ) depends on embeddings that
do not have common parts. However, among all |E f | embed-
dings, there are many groups which contain disjoint embed-
dings and lead to different lower bounds. We want to get a
tight lower bound in order to increase the pruning power.
Next, we introduce how to obtain the tightest Lower B( f ).

Obtain tightest lower bound We construct an undirected
graph, f G, with each node representing an embedding fi ,
1 ≤ i ≤ |E f |, and a link connecting two disjoint embeddings
(nodes). Note that, to avoid confusions, nodes and links are
used for f G, while vertices and edges are for graphs. We
also assign each node a weight, − ln[1 − Pr(B fi |C O R)].
In f G, a clique is a set of nodes such that any two nodes of
the set are adjacent. We define the weight of a clique as the
sum of node weights in the clique. Clearly, given a clique in
f G with weight v, Lower B( f ) is 1− e−v . Thus, the larger
the weight, the tighter (larger) the lower bound. To obtain a
tight lower bound, we should find a clique whose weight is
largest, which is exactly the maximum weight clique problem.
Here, we use the efficient solution in [7] to solve the max-
imum clique problem, and the algorithm returns the largest
weight z. Therefore, we use 1− e−z as the tightest value for
Lower B( f ).

Example 7 Following Example 6, as shown in Fig. 9, E M1
is disjoint with E M3. Based on the above discussion, we
construct f G, for the three embeddings, shown in Fig. 9.
There are two maximum cliques, namely {E M1, E M3} and
E M2. According to Eq. 18, the lower bounds derived from
the two maximum cliques are 0.26 and 0.11, respectively.
Therefore, we select the larger (tighter) value 0.26 to be the
lower bound of f2 in 002.

UpperB(f)

Firstly, we define Embedding Cut: For a feature f , an embed-
ding cut is a set of edges in gc whose removal will cause
the absence of all f ’s embeddings in gc. An embedding cut
is minimal if no proper subset of the embedding cut is an
embedding cut. In this paper, we use minimal embedding
cut.

Denote an embedding cut by c and its corresponding
Boolean variable (same as B f ) by Bc, where Bc is true indi-

cating that the embedding cut c exists in gc. Similar to Eq.
11, it is not difficult to obtain,

Pr( f ⊆iso g) = 1− Pr(Bc1 ∨ · · · ∨ Bc|Ec|)
= Pr(Bc1 ∧ · · · ∧ Bc|Ec|)

(19)

where Ec = {c1, . . . , c|Ec|} is the set of all embedding cuts
of f in gc. Equation 19 shows that the subgraph isomor-
phism probability of f to g equals the probability of all f ’s
embedding cuts disappearing in g.

Similar to the deduction from Eq. 11 to 18 for Lower
B( f ), we can rewrite Eq. 19 as follows

Pr( f ⊆iso g) = Pr
(
Bc1 ∧ · · · ∧ Bc|Ec|

)

≤ Pr
(
Bc1 ∧ · · · ∧ Bc|I N ′||Bc|I N ′|+1 ∧ · · · ∧ Bc|Ec|

)

=
|I N ′|∏

i=1

[
1− Pr

(
Bci |Bc|I N ′|+1 ∧ · · · ∧ Bc|Ec|

)]

=
|I N ′|∏

i=1

[
1− Pr

(
Bci |Bc1 ∧ · · · ∧ Bc|D|

)]

=
|I N ′|∏

i=1

[1− Pr(Bci |C O M)]

(20)

where I N ′ = {Bc1, . . . , Bc|I N ′|} is a set of Boolean vari-
ables whose corresponding cuts are disjoint, C O M = Bc1∧
· · · ∧ Bc|D|, and the corresponding cut of Bc j ∈ D =
{Bc1, . . . , Bc|D|} has common parts with the corresponding
cut of Bci .

Finally, we obtain the upper bound as

U pper B( f ) =
|I N ′|∏

i=1

[1− Pr(Bci |C O M)]. (21)

The upper bound only relies on the picked embedding cut
set in which any two cuts are disjoint.

The value of Pr(Bci |C O M) is estimated using Algorithm
3 by replacing embeddings with cuts. Similar to the lower
bound, computing the tightest U pper B( f ) can be converted
into a maximum weight clique problem. However, different
from the lower bound, each node of the constructed graph f G
represents a cut and has a weight of−ln[1−Pr(Bci |C O M)]
instead. Thus, for the maximum weight clique with weight
v, the tightest value of U pper B( f ) is e−v .

Now, we discuss how to determine embedding cuts in gc.

Calculation of embedding cuts We build a connection
between embedding cuts in gc and cuts for two vertices in a
deterministic graph.
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Suppose f has |E f | embeddings in gc, and each embed-
ding has k edges. Assign k labels, {e1, . . . , ek}, for edges of
each embedding (the order is random.). We create a corre-
sponding line graph for each embedding by (1) creating k+1
isolated nodes, and (2) connecting these k + 1 nodes to be a
line by associating k edges (with corresponding labels) of the
embedding. Based on these line graphs, we construct a paral-
lel graph, cG. The node set of cG consists of all nodes of the
|E f | line graphs and two new nodes, s and t . The edge set of
cG consists of all edges (with labels) of the |E f | line graphs.
In addition, one edge (without label) is placed between an
end node of each line graph and s. Similarly, there is an edge
between t and the other end node of each line graph. As a
result, |E f | embeddings are transformed into a deterministic
graph cG.

Based on this transformation, we have

Theorem 7 The embedding cut set of gc is also the cut set
(without edges incident to s and t) from s to t in cG.

In this work, we determine embedding cuts using the
method in [25].

Example 8 Figure 10 shows the transformation for feature
f2 in graph 002 in Fig. 2. In cG, we can find cuts {e2, e4},
{e1, e3, e4}, and {e2, e3} which are clearly the embedding
cuts of f2 in 002.

3.3.2 Feature generation

We would like to select frequent and discriminative features
to construct a PMI.

To achieve this, we consider U pper B( f ) given in Eq. 21,
since the upper bound plays a most important role in the prun-
ing capability. According to Eq. 21, to get a tight upper bound,
we need a large disjoint cut set and a large Pr(Bci |C O M).
Suppose the cut set is I N ′′. Note that |I N ′′| = |I N ′|, since a
cut in I N ′′ has a corresponding Boolean variable Bci in I N ′.
From the calculation of embedding cuts, it is not difficult to
see that a large number of disjoint embeddings leads to a large
|I N ′′|. Thus, we would like a feature that has a large number
of disjoint embeddings. Since |C O M | is small, a small size
feature results in a large Pr(Bci |C O M). In summary, we
should index a feature, which complies with following rules:

Fig. 10 Transformation from embeddings of f2 to parallel graph cG

Rule 1 Select features that have a large number of disjoint
embeddings.
Rule 2 Select small size features.

To achieve rule 1, we define the frequency of feature f as
f rq( f ) = |{g| f⊆isogc,|I N |/|E f |≥α,g∈D}|

|D| , where α is a thresh-
old of the ratio of disjoint embeddings among all embed-
dings. Given a frequency threshold β, a feature f is frequent
iff f rq( f ) ≥ β. Thus, we would like to index a frequent
feature. To achieve rule 2, we control a feature size used
in Algorithm 4. To control feature number [38,48], we also
define the discriminative measure as: dis( f ) = |⋂{D f ′ |
f ′ ⊆iso f }|/|D f |, where D f is the list of uncertain graphs g
s.t. f ⊆iso gc. Given a discriminative threshold γ , a feature
f is discriminative, iff dis( f ) > γ . Thus, we should also
select a discriminative feature.

Based on the above discussion, we select frequent and dis-
criminative features, which is implemented in Algorithm 4.
In this algorithm, we first initial a feature set F with single
edge or vertex (lines 1–4). Then, we increase feature size
(number of vertices) from 1, and pick out desirable features
(lines 6–9). max L is used to control the feature size, and
guarantees picking out a small size feature satisfying rule 2.
f rq( f ) and dis( f ) are used to measure the frequency and
discrimination of feature. The controlling parameters α, β,
and γ guarantee picking out a feature satisfying rule 1. The
default values of the parameters are usually set to 0.1 [48,49].

Algorithm 4 FeatureSelection(D, α, β, γ , max L)
1: F ← φ;
2: Initial a feature set F with single edge or vertex;
3: D f ← {g| f ⊆iso gc};
4: F ← F ∪ { f };
5: for i = 1 to max L do
6: for each feature f with i vertices do
7: if f rq( f ) ≥ β & dis( f ) > γ then
8: D f ← {g| f ⊆iso gc};
9: F ← F ∪ { f };
10: end if
11: end for
12: end for
13: return F ;

3.4 Verification

In this section, we present the algorithms to compute sub-
graph similarity probability (SUBP) of a candidate uncertain
graph g to q.

Equation 5 is the formula to compute SUBP. By simplify-
ing this equation, we have

Pr(q ⊆sim g)=
a∑

i=1

(−1)i
∑

J⊆{1,...,a},|J |=i

Pr
(
∧|J |j=1 Brq j

)
.

(22)
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Clearly, we need an exponential number of steps to per-
form the exact calculation. Therefore, we develop an efficient
sampling algorithm to estimate Pr(q ⊆sim g).

By Eq. 5, we know there are totally a Brqs that are used
to compute SUBP. By Eq. 11, we know Brq = B f1 ∨ · · · ∨
B f|E f |. Then, we have

Pr(q ⊆sim g) = Pr(B f1 ∨ · · · ∨ B fm) (23)

where m is the number of B f s contained in these a Brqs.
Assume m B f s have x1, . . . , xk Boolean variables for

uncertain edges. Algorithm 5 gives detailed steps of the sam-
pling algorithm. In this algorithm, we use a junction tree
algorithm to calculate Pr(B fi ) [20].

Algorithm 5 Calculate Pr(q ⊆sim g)

1: Cnt = 0, V =∑m
i=1 Pr(B fi );

2: N = (4ln2/ξ)/τ 2;
3: for 1 to N do
4: randomly choose i ∈ {1, . . . , m} with probability Pr(B fi )/V ;
5: randomly choose x1, . . . , xk (according to probability Pr(xne))

with {0, 1} s.t. B fi = 1;
6: if B f1 = 0 ∧ · · · ∧ B fi−1 = 0 then
7: Cnt = Cnt + 1;
8: end if
9: end for
10: return Cnt/N ;

4 Probabilistic supergraph similarity query processing

4.1 Compared to subgraph similarity search

In subgraph similarity search, we propose to effectively fil-
ter uncertain data graphs (i.e., prune false answers and val-
idate true answers) without computing subgraph similarity
probability. Specifically, we give structural and probabilistic
pruning rules to filter out uncertain graphs. However, these
pruning rules have no indication on Pr(q ⊇sim g).

We first examine the structural pruning rule: If q �sim

gc, Pr(q ⊇sim g) = 0. This rule does not work correctly
for probabilistic supergraph similarity search. Below is an
example.

Example 9 We examine the uncertain graph 001 and the
query graph q2 with δ = 1 shown in Fig. 2. q2 �sim 001c,
since any resulting graph (deleting one edge from 001c) is
not subgraph isomorphic to q2. But Pr(q ⊇sim g) �= 0. To
see this, Fig. 4 gives PWGs and q2 is supergraph similar to
these PWGs [i.e., (1), (2), (3), and (4)]. We summarize the
probabilities of these PWGs and get Pr(q ⊇sim g) = 0.5.

We next examine the probabilistic pruning rule. Given a
query q and a distance threshold δ, we generate a graph set,

Fig. 11 Invalid probabilistic pruning rules for supergraph similarity
query

U = {rq1, . . . , rqa}, by relaxing q with δ edges. For each
rqi , we find a graph feature fi such that rqi ⊇iso fi , where
1 ≤ i ≤ a. Then, we have: If

∑a
i=1 U pper B( f 1

i ) < ε,
Pr(q ⊇sim g) < ε.

This rule is not correct for the probabilistic supergraph
search either. Below is an example.

Example 10 Figure 11 shows a graph setU = {rq1, rq2, rq3}
with q2 (in Fig. 2) relaxed by one edge.7 Figure 11 also
gives graph features fi (mined from graph 001c) such that
rqi ⊇iso fi for 1 ≤ i ≤ 3. Suppose ε = 0.4, we compute∑3

i=1 U pper B( fi ) = 0.13 + 0.13 + 0.13 = 0.39 < ε.
However, against the pruning condition Pr(q ⊇sim g) < ε,
g is a true answer (Pr(q ⊇sim g) = 0.5 > ε). The same
conclusion can also be drawn for the validating rule, i.e.,
Pr(q ⊇sim g) ≥ Lower Bound > ε.

We conclude that probabilistic supergraph similarity
matching are inherently different from the subgraph simi-
larity matching. Novel filtering and verification techniques
are required for probabilistic supergraph similarity query
processing.

4.2 Lightweight filtering techniques

In this section, we propose a feature-based probabilistic prun-
ing condition that is easy to implement and can filter out false
uncertain graphs quickly. Next, we give a feature generation
algorithm that can pick out powerful graph features.

4.2.1 Pruning rules

Theorem 8 Given an uncertain graph g, a query q, and
a graph feature f of gc, suppose that f �sim q. Then,
Pr(q ⊇sim g) ≤ 1− Pr( f ⊆sim g).

Proof Sketch Let A denote the set of PWGs g′ of g such that
g′ ⊆sim q, and B denote the set of PWGs g′ of g such that
f ⊆sim g′. Since g′ ⊆sim q and f �sim q, f �sim g′ and
A = {g′|g′ ⊆sim q, f �sim g′}. Then A ⊆ PW G(g) − B,
and we have:

7 We only show the relaxed queries containing features in graph 001c.
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Pr(q ⊇sim g) =
∑

g′∈A

Pr(g′)

≤
∑

g′∈PW G(g′)
Pr(g′)−

∑

g′∈B

Pr(g′)

= 1− Pr( f ⊆sim g)

(24)

��
If we use the Inequality in 24 as a pruning rule, we should

calculate Pr(q ⊆sim g) efficiently. However, according to
Theorem 1, it is NP-hard to calculate Pr( f ⊆sim g). To solve
the problem, we incorporate the lower bound of Pr( f ⊆sim

g) given in Theorem 5 into Inequality 24. Then, we have the
following probabilistic pruning rule.

Super-Pruning 1 Given an uncertain graph g, a query
q, a threshold ε, and a graph feature f such that
f �sim q, if Pr(q ⊇sim g) ≤ 1 − Pr( f ⊆sim

g) ≤ 1−∑a
i=1 Lower B( f 2

i )+∑
1≤i, j≤a U pper B( f 2

i )

U pper B( f 2
j ) < ε, then g can be safely pruned from the

database D.

To strength the pruning condition, we can use Algorithm
2 to obtain the tightest upper bound for Pr( f ⊆sim g).

Regarding Super-Pruning 1, we obtain the correspond-
ing deterministic graph database Dc from uncertain graph
database D, and then, we mine a set of discriminative fre-
quent subgraphs F from Dc using the technique in [48]. The
feature-based index I = {( f, D f )| f ∈ F} consists of the
features in F and their corresponding invited list D f , where
D f is represented as follows.

D f = {〈g, U pper B(Pr(q ⊆sim g))〉|g ∈ D, f ⊆ gc)}
(25)

where U pper B(Pr(q ⊆sim g)) = 1−∑a
i=1 Lower B( f 2

i )

+∑
1≤i, j≤a U pper B( f 2

i )U pper B( f 2
j )

4.2.2 Feature generation

The feature-based index I consists of frequent subgraphs F
from Dc. However, there might exist thousands or millions
of features, and it would be unrealistic to index all of them.
Thus, our goal is to maximize the pruning capability of I with
a small number of indexed features. Motivated by machine
learning methods for query processing [37,41], in this sec-
tion, we employ a model, which uses a query log as the train-
ing data, to select features offline. Based on the model, we
develop an optimal selection mechanism to remove useless
features so that I can have a great pruning capability.

Let Cq be the candidate set after probabilistic pruning.

The naive solution SC AN , to the supergraph similarity
search problem examines the database D sequentially and
computes SUPP for each uncertain graph to decide whether
its SUPP is not smaller than ε. For a query q, we define the
gain, J , of indexing a graph feature set F as the number of
SUPP computations that can be saved from SC AN :

J = |D| − |Cq |
= | ∪q

.=C N D {g|g ∈ D}| (26)

where C N D � U pper B < ε.
To obtain more effective features, we use a set of queries

{q1, q2, . . . , qa} instead of a single query. In this case, an
optimal index should maximize the total gain

Jtotal =
a∑

l=1

| ∪ql
.=C N D {g|g ∈ D}| (27)

which is the summation of the gain in Eq. 26 over all queries.
We map the problem of maximizing Eq. 27 to the maxi-

mum coverage as follows.

Definition 13 (Feature Generation) Given a set of super-
graph queries Q = {q1, . . . , qa} and its corresponding set of
uncertain graph databases {D1, . . . , Da}, we relate a feature
f in the frequent subgraph set F0 = { f1, . . . , fb} to a set of
uncertain graphs G f = {g| f ⊆iso g, g ∈ Di f or1 ≤ i ≤
a}, if the uncertain graph g (indexed by f ) is pruned in the
probabilistic pruning (i.e., C N D). We want to select F ⊂ F0

such that | ∪ f ∈F G f | is maximized.

The transformation shows that maximizing | ∪ f ∈F G f |
means maximizing Jtotal . Usually, there is a memory con-
straint that avoids a very large index. To implement this, we
set a fixed K and choose the best K features. In practice, we
can set K according to the space capacity of the system. To
solve the maximum coverage problem, we set integer vari-
ables xi = 1 iff fi is selected in F0 and y j = 1 iff g j in G f

is covered. Then, the optimal feature selection is an integer
program:

Maximize
a∑

j=1

y j (28)

s.t.
b∑

i=1

xi ≤ K , y j ≤
∑

{i |g j∈G fi }
xi , xi , y j ∈ {0, 1}

Although the integer program gives an optimal solution to
the problem, it is impractical to compute the exact solution as
it is NP-complete [16]. We transform the integer program to
linear program by relaxing the constraints to be 0 < xi , y j ≤
1. We can efficiently solve the linear program [11] and get
a solution (x∗, y∗), where 0 < x∗, y∗ ≤ 1. Next, we select
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each fi ∈ F0 independently with probability x∗i . Let O PT
be the maximum value returned by the integer program, then
the relaxed technique will return the approximation given by
(1− 1/e) O PT [14].

4.3 Strong filtering techniques

The filtering technique given in Super-Pruning 1 can remove
false uncertain graphs efficiently. But we do not know how
close the upper bound in Pruning 1 comes to the true value.
In other words, we do not know how effective the pruning
power is. Thus, in this section, we prove a formula that can
calculate the true value of SUPP. Next, we give a strong
pruning condition derived from the formula.

We first define maximal common subgraph. When two
graphs have subgraphs that are isomorphic, then these sub-
graphs are called common subgraphs. A maximal common
subgraph (MCS) is a common subgraph which has the max-
imal number of edges, in other words, if s is a common sub-
graph of graphs h1 and h2, and there is no other common
subgraph which has more edges than s, then s is a maximal
common subgraph of h1 and h2. Note that two graphs may
have many MCSs. For example, Fig. 12 shows two graphs g
and q, and Fig. 13 gives four MCSs between g and q.

Next, for a MCS MG between q and gc, we define a
Boolean variable Bmg. Bmg is true if MG appears in the
graph gc, and Pr(Bmg) is the probability that Bmg is true.
Let w be the number of all MCSs between q and gc. For
SUPP, we have

Lemma 2

Pr(q ⊇sim g) = Pr(Bmg1 ∨ Bmg2 ∨ · · · ∨ Bmgw) (29)

Fig. 12 Uncertain graph and supergraph query

Fig. 13 Maximal common subgraphs between g and q in Fig. 12

Proof Sketch From Definition 10, we have

Pr(q ⊇sim g) =
∑

g′∈SU P(q,g)

Pr(g ⇒ g′) (30)

where SU P(q, g) is a set of PWGs that are subgraph sim-
ilar to q. We divide SU P(q, g) into |E(g)| + 1 subsets,
{SM0, . . . , SM|E(g)|}.

Thus, from Eq. 30, we get

Pr(q ⊇sim g) =
∑

g′∈SM0∪···∪SM|E(g)|

Pr(g ⇒ g′)

=
∑

0≤ j1≤|E(g)|

∑

g′∈SM j0

Pr(g ⇒ g′)

−
∑

0≤ j1< j2≤|E(g)|

∑

g′∈SM j1∩SM j2

Pr(g ⇒ g′)+ · · ·

+ (−1)i
∑

0≤ j1<···< ji≤|E(g)|
∑

g′∈SM j1∩···∩SM ji

Pr(g ⇒ g′)+ · · ·

+ (−1)|E(g)| ∑

g′∈SM j1∩···∩SM j|E(g)|

Pr(g ⇒ g′).

(31)

We denote A be a subgraph of gc, composed of i MCS,
and B = Bmg j1∧· · ·∧Bmg ji be the corresponding Boolean
variable of A. Note that a PWG g′ in SM0 is subgraph similar
to q. Thus, A is a MCS of q and g′. Then, the set g′ ∈
SM j0 ∩ · · · ∩ SM ji contains all PWGs that have all graphs
in A. In other words, these PWGs are subgraph similar to q.
Then, for the i th item, we get,

(−1)i
∑

0≤ j1<···< ji≤|E(g)|

∑

g′∈SM j1∩···∩SM ji

Pr(g ⇒ g′)

= (−1)i
∑

0≤ j1<···< ji≤|E(g)|
Pr(Bmg j1 ∧ · · · ∧ Bmg ji ).

(32)

Similarly, we can get the results for other items. By replac-
ing the corresponding items with these results in Eq. 31, we
get

Pr(q ⊇sim g) =
∑

0≤ j1≤|E(g)|
Pr(Bmg j )

−
∑

0≤ j1< j2≤|E(g)|
Pr(Bmg j1 ∧ Bmg j2)+ · · ·

+(−1)i
∑

0≤ j1<···< ji≤|E(g)|
Pr(Bmg j1 ∧ · · · ∧ Bmg ji )

+ · · · + (−1)|E(g)|Pr(Bmg j1 ∧ · · · ∧ Bmg j|E(g)|). (33)

Based on the inclusion–exclusion Principle [33], the RHS
of Eq. 33 is Pr(Bmg0 ∨ · · · ∨ Bmg|E(g)|).
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The PWGs of g that have fewer edges may be subgraph
similar to q, though gc is not subgraph similar to q. Thus, the
MCS MGi may not appear in gc, in other words, Bmgi may
be false. Recall that w is the total number of MCSs. Then,
we have Bmg0 ∨ · · · ∨ Bmg|E(g)| = Bmg1 ∨ · · · ∨ Bmg|w|.
From the above equation, we can obtain the conclusion. ��

Lemma 2 gives a method to compute SUPP. The intuition
is as follows: For the uncertain supergraph matching, each
possible graph g′ of g relaxes a distance threshold into a
set of graphs g′′, and then, g′′ subgraph matches query q.
Note that both g′′ and g′ are subgraphs of g. A result of g′′
subgraph matches q, say r , is a subgraph of q. Thus, r is a
MCS of q and g′. If all possible graphs of g conduct the above
process, we obtain all MCSs between q and g. Therefore,
the probability of q being supergraph similar to g equals the
probability that at least one MCS between q and gc appears
in g. Figure 12 shows an uncertain graph g and a query q.
The four MCSs shown in Fig. 13 contribute to SUPP, i.e.,
Pr(q ⊇sim g) = Pr(MC S1 ∨ MC S2 ∨ MC S3 ∨ MC S4).

Lemma 2 indicates a major difference between calculating
SUBP and SUPP. We give an example to illustrate this. For
SUBP, if q is not subgraph similar to gc, the value of SUBP
is 0 (in this case, q is not subgraph similar to any PWG of
g). In contrast to SUPP, if q is not supergraph similar to gc,
the value of SUPP may be larger than 0 (In this case, many
PWGs of g may be subgraph similar to q). In fact, the MCSs
between q and g contribute to SUPP in the case of q �sim gc.
The example also shows that the value of SUPP is usually
large. In conclusion, MCS leads to difficulties of computing
SUPP.

Based on Lemma 2, we obtain the following pruning rules
in analogy to subgraph similarity search.

Given a query q, an uncertain graph g and a distance
threshold δ, we generate the MCS set,U = {MG1, . . . , MGa}
between q and gc. Here, we use the solution proposed in [26]
to generate {MG1 , . . . , MGa}. We also use the index, PMI,
for subgraph similarity search (Sect. 3.3). Then for each g ∈
D, in PMI, we locate Dg = {〈Lower B( f j ), U pper B( f j )〉
| f j ⊆iso gc, 1 ≤ j ≤ |F |}. For each MGi , we find two
graph features in Dg , { f 1

i , f 2
i }, such that MGi ⊇iso f 1

i and
MGi ⊆iso f 2

i , where 1 ≤ i ≤ a. Then, we have novel
pruning conditions as follows.

Super-Pruning 2 Given a probability threshold ε and Dg ,
if

∑a
i=1 U pper B( f 1

i ) < ε, then g can be pruned from
D.
Super-Pruning 3 Given a probability threshold ε and
Dg , if

∑a
i=1 Lower B( f 2

i ) − ∑
1≤i, j≤a U pper B( f 2

i )

U pper B( f 2
j ) ≥ ε, then g is in the final answers, i.e.,

g ∈ Aq , where Aq is the final answer set.

To strengthen the two pruning rules, we use the techniques
in Sect. 3.3 to obtain tight U pper B( f ) and Lower -B( f ).

To obtain effective features for Super-Pruning 2 and 3, we
extend the feature generation algorithm for Super-Pruning
1. In Super-Pruning 1, one graph feature is used to prune
an uncertain graph, but in Super-Pruning 2 and 3, a set
of graph features is used to filter out an uncertain graph.
Therefore, in Definition 13, we can use a set of features
instead of one feature to obtain the new feature generation
algorithm.

Definition 14 (Sets of Features Generation) Given a set of
supergraph queries Q = {q1, . . . , qa} and its corresponding
set of uncertain graph databases {D1, . . . , Da}, we relate a
set of features F ′ = { f1, . . . , fa} ⊂ F0 = { f1, . . . , fb} to a
set of uncertain graphs G F ′ , if the uncertain graph g ∈ G ′F
is pruned in the probabilistic pruning (i.e., Super-Pruning 2
and 3). We want to select a collection C of subsets of F0 such
that | ∪F ′∈C G F ′ | is maximized.

We use the solution to Eq. 29 to compute C . Finally, we
obtain graph features:

⋃
F ′∈C F ′.

4.4 Verification

In this section, we present the algorithms to compute
Pr(q ⊇sim g) for each g ∈ Cq . Then, we can obtain the
query answers, i.e., Aq = {g|Pr(q ⊇sim g) ≥ ε}. As shown
in Theorem 2, calculating SUPP is a #P-hard problem, so we
use sampling methods to get an approximate result.

4.4.1 Basic sampling

In this subsection, we give a basic sampling algorithm based
on Monte Carlo theory.

During the sampling process, we sample N possible world
graphs, g1, g2, . . . , gN , according to Pr(xne) of each neigh-
bor edge set. Then, on each sampled possible world graph
gi , we check whether q is supergraph similar to gi . We set a
flag yi for each gi , so that

yi =
{

1 if q is supergraph similar to gi

0 otherwise

Thus, the estimator θ̂ equals to,

θ̂ = ̂Pr (q ⊇sim g) =
∑N

i=1 yi

N
(34)

For any sampling method, the Mean Square Error (MSE)
incorporates both bias and precision of an estimator θ̂ into a
measure of overall accuracy. It is calculated as,

M SE(θ̂) = E[(θ̂ − θ)2] = V ar(θ̂)+ Bias(θ̂ , θ)

The bias of an estimator is given by,

Bias(θ̂) = E(θ̂)− θ.
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An estimator of θ is unbiased if its bias is 0 for all values
of θ , that is, E(θ̂) = θ . As the estimator of Monte Carlo
method is unbiased [15], thus,

M SE(θ̂) = V ar(θ̂) = 1

N
θ(1− θ) ≈ 1

N
θ̂ (1− θ̂ ) (35)

where θ = Pr(q ⊇sim g).

4.4.2 Advanced sampling

In the basic sampling, we should increase the value of N if we
want to guarantee an accurate answer. But as a consequence,
the calculation will take a long time. To solve the problem, in
this subsection, we propose an advanced sampling algorithm
that can obtain an accurate answer efficiently.

The main idea of the advanced sampling is to sample a lot
of PWGs together in one sampling. Thus we can reduce N
compared with the basic sampling. Below, we use an example
to show the idea.

Example 11 Figure 12 shows an uncertain graph g and a
query q with distance threshold δ = 1. Figure 14 shows five
PWG that are subgraph similar to q. These PWGs contain
the graph e1e2 or its subgraphs e1 and e2. The graph e1e2

is a MCS between q and gc. According to Lemma 2, the
MCS e1e2 contributes to the SUPP of q to g. In the advanced
sampling, we apply the MCS detection algorithm to sample
edges e1e2, and the 5 PWGs are totally the PWGs that contain
e1e2 or its subgraphs e1 and e2. Thus, our advanced sampling
algorithm only needs one sampling process that samples all
these 5 PWGs together. But in the basic sampling algorithm,
it takes 5 times to sample them. In other words, sampling once
in the advanced algorithm has the same effect with sampling
5 times in the basic algorithm. Thus, by together sampling
the PWGs containing the same MCS, the advanced sampling
algorithm can effectively reduce the sample size N .

As indicated in the above example, the main idea of our
advanced sampling algorithm is to sample the edges at the
same time with the process of the MCS detection algorithm.

Fig. 14 Advantage of advanced sampling method

The pseudocode is shown in Algorithm 6. In the algorithm,
we first sample the current neighbor edges and then run the
MCS detection algorithm McsAlgo [26] along with the exis-
tent edges after the sampling. We finish one sampling process
when McsAlgo detects one MCS.

Algorithm 6 AdvancedSampling(q, g)
Input: q: the query graph;

g: the uncertain graph
Output: θ̂ : the estimation of Pr(q ⊇sim g)

1: Initiate a flag y = 0;
2: for i from 1 to N do
3: Run the MCS detection algorithm McsAlgo;
4: Obtain the current visited vertex v in McsAlgo;
5: Sample the edges incident to v according to Pr(xne);
6: Continue the McsAlgo algorithm with the existent edges after the

sampling;
7: Until McsAlgo detects one MCS;
8: y++;
9: end for
10: θ̂ =Caculate(y);

After describing the algorithm, let us see how to esti-
mate SUPP (Line 10). Here, we cannot use the estimator∑N

i=1 yi/N in the basic sampling. The reason is as follows:∑N
i=1 yi/N requires that two different sampling results are

independent [15], but there are dependencies between differ-
ent sampling results in Algorithm 6.

Taking this into consideration, we resort to Unequal Prob-
ability Sampling, since it allows for any dependence between
different samples [29]. Unequal probability sampling is that
some units in the population have probabilities of being
selected from others. Suppose a sample of size N is selected
randomly from a population S but that on each draw, unit i is
sampled according to any probability qi , where

∑S
i=1 qi =

1 [29].
We apply the Horvitz–Thompson (H–T ) estimator in

unequal probability sampling method, since the H–T estima-
tor is a general estimator, which can be used for any probabil-
ity sampling plan, including both sampling with and without
replacement [29]. Then, the H–T estimator of Pr(q ⊇sim g)

can be calculated as

θ̂ = ̂Pr(q ⊇sim g) = 1

N

N∑

i=1

Prmcs · yi

πi
(36)

where Prmcs is the probability of the sampled PWGs con-
taining a MCS between q and gc, which can be calculated as

Prmcs =
∏

1≤i≤msamp

Pr(ei ) (37)

where msamp is the number of sampled edges in one sampling
process.

123



290 Y. Yuan et al.

In Eq. 36, πi = 1− (1− qi )
N is the probability that each

of different sampling results is sampled. We set qi = Prmcs

which is given by Eq. 37.
The H–T estimator is unbiased, i.e., E(θ̂) = θ [29]. In

the following, we analyze the variance of the estimator, i.e.,
V ar(θ̂). Let πi j = 1−(1−qi )

N−(1−q j )
N−(1−qi−q j )

N ,
which is the probability that πi and π j are in the result set at
the same time, then the variance of this estimator is

V ar(θ̂) =
∑

i∈v

(
1− πi

πi

) (
Pri

mcs

)2

+
∑

i, j∈v,i �= j

(
πi j − πiπ j

πiπ j

)
Pri

mcs Pr j
mcs

(38)

where v is a sampling result.
Since we set qi = Prmcs , V ar(θ̂) gets its minimum value.

Moreover, at this time, it can be shown that V ar(θ̂H–T )

≤ V ar(θ̂B). In other words, the H–T estimator obtains a
more accurate answer than the basic one. In conclusion, the
advanced sampling algorithm is more efficient and obtains a
more accurate estimator than the basic sampling algorithm.

5 Performance evaluation

In this section, we report the effectiveness and efficiency
test results of our new proposed techniques for probabilistic
subgraph and supergraph similarity search. Our methods are
implemented on a Windows XP machine with a Core 2 Duo
CPU (2.8 and 2.8 GHz) and 4 GB main memory. Programs
are compiled by Microsoft Visual C++ 2005.

5.1 Probabilistic subgraph similarity search

5.1.1 Experimental setting

In the experiments, we use a real uncertain graph dataset.

(1) Real uncertain graph dataset The real uncertain graph
dataset is obtained from the STRING database8 that contains
the PPI networks of organisms in the BioGRID database.9 A
PPI network is an uncertain graph where vertices represent
proteins, edges represent interactions between proteins, the
labels of vertices are the COG functional annotations of pro-
teins10 provided by the STRING database, and the existence
probabilities of edges are provided by the STRING database.
We extract 5K uncertain graphs from the database. The uncer-
tain graphs have an average number of 385 vertices and 612

8 http://string-db.org.
9 http://thebiogrid.org.
10 http://www.ncbi.nih.gov/COG.

edges. Each edge has an average value of 0.383 existence
probability. According to [10], the neighbor PPIs (edges) are
dominated by the strongest interactions of the neighbor PPIs.
Thus, for each neighbor edge set ne, we set its probabilities
as: Pr(xne) = max1≤i≤|ne| Pr(xi ), where xi is a binary
assignment to each edge in ne. Then, for each ne, we obtain
2|ne| probabilities. We normalize those probabilities to con-
struct the probability distribution, of ne, that is the input into
our algorithms. Each query set qi has 100 connected query
graphs and query graphs in qi are size-i graphs (the edge
number in each query is i), which are extracted from corre-
sponding deterministic graphs of uncertain graphs randomly,
such as q50, q100, q150, q200 and q250. In scalability test,
we randomly generate 2K, 4K, 6K, 8K, and 10K data graphs.

(2) Parameter setting The setting of experimental parameters
is set as follows: the probability threshold is 0.3–0.7, and the
default value is 0.5; the subgraph distance is 2–6, and the
default value is 4; the query size is 50–250, and the default
value is 150. In feature generation, the value of max L is 50–
250, and the default value is 150; the values of {α, β, γ } are
0.05–0.25, and the default value is 0.15.

(3) Algorithms As introduced in Sect. 3.1, we implement
the method in [49] to do structural pruning. This method is
called Structure in the experiments. In probabilistic pruning,
the method using bounds of subgraph similarity probability is
called SUBPBound, and the approach using the best bounds
is called OPT-SUBPBound. To implement SUBPBound, for
each rqi , we randomly find two features satisfying condi-
tions in the PMI. The method using bounds of subgraph iso-
morphism probability is called SIPBound, and the method
using the tightest bound approach is called OPT-SIPBound.
In verification, the sampling algorithm is called SMP, and
the method given by Eq. 22 is called Exact. Since there are
no pervious works on the topic studied in this paper, we also
compare the proposed algorithms with Exact that scans the
uncertain graph databases one by one. The complete pro-
posed algorithm of this paper is called PMI. We report aver-
age results in following experiments.

5.1.2 Experimental results

Exp-1 In the first experiment, we demonstrate the efficiency
of SMP against Exact in the verification step. We first run
structural and probabilistic filtering algorithms against the
default dataset to create candidate sets. The candidate sets
are then verified for calculating SSP using the proposed algo-
rithms. Figure 15a reports the result, from which we know
SMP is efficient with an average time less than 3 s, while
the curve of Exact decreases exponentially. The approxima-
tion quality of SMP is measured by the precision and recall
metrics with respect to the query size shown in Fig. 15b. Pre-
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cision is the percentage of true uncertain graphs in the output
uncertain graphs. Recall is the percentage of returned uncer-
tain graphs in all true uncertain graphs. The experimental
results verify that SMP has a very high approximation qual-
ity with precision and recall both larger than 90 %. We use
SMP for verification in following experiments.
Exp-2 Figure 16 reports candidate sizes and pruning time of
SUBPBound, OPT-SUBPBound, and Structure with respect
to probability thresholds. Recall that SUBPBound and OPT-
SUBPBound are derived from upper and lower bounds of SIP.
Here, we feed them with OPT-SIPBound. From the results,
we know that the bars of SUBPBound and OPT-SUBPBound
decrease with the increase of the probability threshold, since
larger thresholds can remove more false graphs with low con-
fidences. As shown in Fig. 16a, the candidate size of OPT-
SUBPBound is very small (i.e., 15 on average) and is smaller
than that of SUBPBound, which indicates that our derived
best bounds are tight enough to have a great pruning power.
As shown in Fig. 16b, OPT-SUBPBound has a short pruning
time (i.e., less than 1s on average) but takes more time than
SUBPBound due to more subgraph isomorphic tests during
the calculation of OPT-SUBPBound. Obviously, probabili-
ties do not have impacts on Structure, and thus both bars of
Structure hold constant.
Exp-3 Figure 17 shows candidate sizes and pruning time
of SIPBound, OPT-SIPBound, and Structure with respect to
subgraph distance thresholds. To examine the two metrics,
we feed SIPBound and OPT-SIPBound to OPT-SUBPBound.
From the results, we know that all bars increase with the
increase of the subgraph distance threshold, since larger
thresholds lead to a large remaining graph set which is input

(a) (b)

Fig. 15 Scalability to query size. a Runtime, b query quality

(a) (b)

Fig. 16 Scalability to probability threshold. a Candidate size, b run-
time

into the proposed algorithms. Both OPT-SIPBound and SIP-
Bound have a small number of candidate graphs, but OPT-
SIPBound takes more time due to additional time for com-
puting tightest bounds. From Figs. 16a and 17a, we believe
that though Structure remains a large number of candidates,
the probabilistic pruning algorithms can further remove most
falsely identified graphs with efficient runtime. This obser-
vation verifies our algorithmic framework (i.e., structure
pruning–probabilistic pruning–verification) is effective to
process queries on a large uncertain graph database.
Exp-4 Figure 18 examines the impact of parameters {max L ,

α, β, γ } for feature generation. Structure holds constant in
the 4 results, since the feature generation algorithm is used
for probabilistic pruning. From Fig. 18a, we know that the
larger max L is, the more candidates SUBPBound and OPT-
SUBPBound have. The reason is that the large max L gener-
ates large sized features, which leads to loose probabilistic
bounds. From Fig. 18b, we see that all bars of probabilistic
pruning first decrease and then increase, and reach lowest at
the values 0.1 and 0.15 of α. As shown in Fig. 18c, d, both
bars of OPT-SIPBound decrease as the values of the parame-
ters increase, since either large β or large γ results in fewer
features.
Exp-5 Figure 19 reports the total query processing time
with respect to different graph database sizes. PMI denotes
the complete algorithm, that is, a combination of Structure,
OPT-SUBPBound (feed OPT-SIPBound) and SMP. From the
result, we know PMI has quite an efficient runtime and avoids
the huge cost of computing SSP (#P-hard). PMI can process
queries within 10 s on average. But the runtime of Exact
grows exponentially and has gone beyond 1,000 s at the data-
base size of 6k. The result of this experiment validates the
designs introduced in this paper.
Exp-6 Figure 20 examines the quality of query answers based
on probability correlated and independent models. The query
returns uncertain graphs if the uncertain graphs and the query
(subgraph) belong to the same organism of PPI networks.
We say the query and uncertain graph belong to the same
organism if the subgraph similarity probability is not less
than the threshold. In fact the STRING database has given
real organisms of the uncertain graphs. Thus we can use the
precision and recall to measure the query quality. Precision

(a) (b)

Fig. 17 Scalability to subgraph distance threshold. a Candidate size,
b runtime
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(a) (b) (c) (d)

Fig. 18 Impact of parameters for feature generation. a max L , b α, c β, d γ

Fig. 19 Total query processing time

Fig. 20 Query quality comparison (COR vs. IND)

is the percentage of real uncertain graphs in the returned
uncertain graphs. Recall is the percentage of returned real
uncertain graphs in all real uncertain graphs. To determine
query answers for the probability independent model, we
multiply probabilities of edges in each neighbor edge set to
obtain joint probability tables (JPT). Based on the JPTs, we
use P M I to determine query answers for the probability
independent model. Each time, we randomly generate 100
queries and report average results. In the examination, C O R
and I N D denote the probability correlated and probability
independent models, respectively. In the figure, precision and
recall decrease as probability threshold is larger, since large
thresholds make query and graphs more difficult to be cate-
gorized into the same organism. We also know that the prob-
ability correlated model has much higher precision and recall
than the probability independent model. The probability cor-
related model has average precision and recall both larger
than 85 %, while the probability independent model has val-
ues smaller than 60 % at threshold larger than 0.6. The result
indicates that our proposed model behaves more accurate bio-
logical properties than the probability independent model.

5.2 Probabilistic supergraph similarity search

5.2.1 Experimental setting

In experiments, we use a real uncertain graph dataset.
(1) Real uncertain graph dataset In this subsection, we also
use the real uncertain graph dataset: the STRING database.
We extract 5K uncertain graphs from the database. The uncer-
tain graphs have an average number of 105 vertices and
183 edges. Each edge has an average value of 0.412 exis-
tence probability. For each neighbor edge set ne, similar
to the subgraph matching, we also set its probabilities as:
Pr(xne) = max1≤i≤|ne| Pr(xi ), where xi is a binary assign-
ment to each edge in ne. Finally, we normalize these proba-
bilities to construct the joint probability distribution. In scal-
ability test, we randomly generate 2K, 4K, 6K, 8K, and 10K
uncertain data graphs. We vary the vertex number of uncer-
tain graphs as 50, 100, 150, 200, or 250.
(2) Parameter Settings Each query set qi has 100 query
graphs and qi is q100, q150, q200, q250, or q300 (the default
is q200). The probability threshold is 0.3–0.7, and the default
value is 0.5. The graph distance threshold is 2–6, and the
default value is 4.
(3) Algorithms For sampling algorithms, the basic one is
called BS and the advanced one is AS. For pruning algo-
rithms, the lightweight one is called LW and the strong one
is ST.

5.2.2 Experimental results

Exp-1 First, we demonstrate the efficiency of BS and AS in the
verification step. We first run the filtering algorithms against
the default dataset to create candidate sets. The candidate
sets are then verified for calculating SUPP using the pro-
posed algorithms. Figure 21a reports the efficiency results,
in which all curves grow with the increase of the query size.
The reason is that, the larger the size of a query is, the more
MCSs are detected. On average, AS runs 9.3 more efficient
than BS, which validates our design that sampling once in AS
has the same effect as sampling many times in BS. In Fig.
21b, we use the precision and recall metrics to measure the
approximation quality of the sampling algorithms, i.e., AS-
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(a) (b)

Fig. 21 Scalability to query size. a Running time, b query quality

(a) (b)

Fig. 22 Scalability to probability threshold. a Candidate size, b run-
ning time

Pre, AS-Rec, BS-Pre, and BS-Rec. The experimental result
verifies that both AS and BS have very high approximation
qualities with precision and recall larger than 90 %. To com-
pare with the method of sampling equation 29 (IE), we first
compute all MCSs of q and g, then use the same randomized
algorithm as Algorithm 5 to estimate SUPP. From the figure,
we observe that IE has takes much more time than AS but
less time than BS. The estimation quality of IE is between
AS and BS. The result shows that AS is also a very effective
algorithm compared to IE. We use AS for verification in the
following experiments.
Exp-2 Second, we examine the pruning power and pruning
efficiency in Fig. 22 with respect to probability thresholds.
The pruning power is examined using the candidate size after
pruning, and the pruning efficiency is examined using the
running time of the pruning algorithms. From the results, we
know that all curves decrease with the increase of the prob-
ability threshold, since larger thresholds can remove more
false graphs with low confidences. As shown in Fig. 22a, the
candidate size of ST-Prune is very small (i.e., 15 on average)
and is much smaller than that of LW-Prune, which indicates
that our derived bounds of ST-Prune are tight enough to have
a great pruning power. But as shown in Fig. 22b, ST-Prune
takes more time than LW-Prune due to much time being taken
to detect MCSs.
Exp-3 Third, we show the candidate sizes and pruning time of
LW-Prune and ST-Prune in Fig. 23 with respect to subgraph
distance thresholds. In the figure, all values increase as the
subgraph distance threshold increases, since a larger thresh-
old leads to a large remaining graph set which is input into

(a) (b)

Fig. 23 Scalability to subgraph distance threshold. a Candidate size,
b running time

(a) (b)

Fig. 24 Scalability to database size. a Candidate size, b running time

the proposed algorithms. ST-Prune has a smaller number of
candidate graphs compared to LW-Prune, but ST-Prune has
higher costs than LW-Prune due to additional time for com-
puting MCSs. This result shows that, though ST-Prune takes
a bit more time, ST-Prune can remove most false graphs.
Thus, the overall running time for ST-Prune is efficient.
Exp-4 Fourth, we report the pruning power and pruning effi-
ciency of LW-Prune and ST-Prune in Fig. 24 with respect to
database sizes. As shown in Fig. 24a, both LW-Prune and
ST-Prune have short running time, i.e., the average results
of LW-Prune and ST-Prune are 0.83 and 4.1 s, respectively.
In Fig. 24b, we observe that the candidate size of ST-Prune
is small (i.e., less than 100 on average) and LW-Prune also
remains a few uncertain graphs. We also observe that both
running time and candidate size increase little as the database
size increases, which indicates that our proposed techniques
are scalable.
Exp-5 Fifth, we examine the performance of index for LW
and ST in Fig. 25 with respect to vertex number of uncertain
graph. We feed optimal features to the index through a query
log as follows: In each experiment, we divide a database D
to a query log set γ ( 4

5 |D|) and a testing query set q ( 1
5 |D|).

Figure 25a gives the index size of ST-Index and LW-Index,
from which we observe that they both take little space costs.
This is because ST-Index and LW-Index mine most effective
features for the index and the size of these features is small.
The small size of the index comes at the cost of somewhat
higher index building cost as shown in Fig. 25b. The reason
is that we should train a query log in constructing index.
ST-Index takes more building time and space costs than LW-
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(a) (b)

Fig. 25 Performance of index. a Index size, b building time

(a) (b)

Fig. 26 Total query processing time. a Regarding to database size, b
regarding to vertex number

Index, since ST-Index first selects best feature sets and then
unions the sets to obtain the features.
Exp-6 Sixth, we present the total query processing time in Fig.
26 with respect to different graph database sizes and vertex
numbers. In this examination, we equip LW and ST with AS,
i.e., LW+AS and ST+AS. In the result, LW+AS outperforms
ST+AS by several orders of magnitude due to the great prun-
ing power of ST. ST+AS can process queries within 10 s on
average. The result shows that by combining our pruning and
sampling techniques, the query processing can be conducted
very efficiently.
Exp-7 Finally, Fig. 27 examines the qualities of probabil-
ity correlated model and independent model on supergraph
similarity search. Similar to the subgraph similarity search,
we test whether a query graph and a data graph belong to
the same organism by verifying SUPP≥ ε. We also use
the precision and recall to measure the query quality based
on the given ground truths in the STRING database. In the
examination, COR and IND denote the probability correlated
model and probability independent model, respectively. In
the figure, precision and recall decrease as the probability
threshold is larger, since large thresholds make query and
graphs more difficult to be categorized into the same organ-
ism. We also observe that the probability correlated model
has higher precision and recall than the those of the proba-
bility independent model. On average, the precision or recall
of COR is 20 % greater than that of IND. The experimental
results again verify that the local correlated model behaves
more accurate biological properties than the independent
model.

Fig. 27 Query quality comparison (COR vs. IND)

5.3 Case study

This paper studies the subgraph similarity and supergraph
similarity search on uncertain graphs with edge corre-
lations (denoted by SUBS-COR and SUPS-COR), which
includes many subproblems, i.e., subgraph similarity match-
ing with edge independence (denoted by SUBS-IND), sub-
graph matching with edge correlations (denoted by SUBE-
COR), subgraph matching with edge independence (denoted
by SUBE-IND), supergraph similarity matching with edge
independence (denoted by SUPS-IND), supergraph matching
with edge correlations (denoted by SUPE-COR) and super-
graph matching with edge independence (denoted by SUPE-
IND). In this testing, we examine each subproblem in the
same platform and report the total query processing time of
these subproblems on the real uncertain PPI networks. It is
easy to implement these subproblems by extending our pro-
posed algorithm, i.e., setting the distance threshold with 0 for
the exact matching and calculating the independence proba-
bility for the edge independence model.

Figure 28 shows the results on the subgraph (similarity)
and supergraph (similarity) matching. From the results, we
observe that the similarity matching takes more running time
than the exact matching, since the similarity matching con-
sists of many exact matching. We also observe that the inde-
pendent model needs less query costs than the correlated
model because of efficient calculations on the independent
probabilities. All algorithms are efficient, i.e., on average,
the exact matching takes less than 5 s on either subgraph or
supergraph search, and the similarity matching takes less than
10 s on average. The subgraph matching, however, incurs
less costs than the supergraph matching due to the absence
of structural pruning in supergraph matching. This experi-
mental result shows that our defined query is a very general
problem and our solution to the general problem is also rather
effective at each subproblem.

6 Related work

In this paper, we study similarity search over uncertain
graphs, which is related to uncertain and graph data manage-
ment. Readers who are interested in general uncertain and
graph data management please refer to [3,4], respectively.

123



Graph Similarity search on large uncertain graph databases 295

(a) (b)

Fig. 28 Total query processing time. a Subproblems of the subgraph
similarity matching, b subproblems of the supergraph similarity match-
ing

The topic most related to our work is similarity search
in deterministic graphs. Yan et al. [49] proposed to process
subgraph similarity queries based on frequent graph fea-
tures. They used a filtering-verification paradigm to process
queries. He et al. [18] employed an R-tree like index struc-
ture, organizing graphs hierarchically in a tree, to support
k-NN search to the query graph. Jiang et al. [22] encoded
graphs into strings and converted graph similarity search into
string matching. Williams et al. [46] aimed to find graphs with
the minimum number of miss-matchings of vertex and edge
labels bounded by a given threshold. Zeng et al. [54] proposed
tight bounds of graph edit distance to filter out false graphs in
similarity search, based on which, Wang et al. [45] developed
an indexing strategy to speed up query. Shang et al. [39] stud-
ied super-graph similarity search, and proposes top-down and
bottom-up index construction strategy to optimize the perfor-
mance of query processing. SAPPER [55] and Tspan [56] are
the only two works with the aim to efficiently generate all
similarity matches of a query in a large data graph.

Another related topic is querying uncertain graphs.
Potamias et al. [35] studied k-nearest neighbor queries (k-
NN) over uncertain graphs, i.e., computing the k closest
nodes to a query node. Zou et al. [57,58] studied frequent
subgraph mining on uncertain graph data under the proba-
bility and expectation semantics, respectively. Moustafa et
al. [34] incorporated node uncertainty and edge uncertainty
into identity uncertainty, and studied subgraph pattern match-
ing over uncertain graphs with identity uncertainty. Yuan et
al. [51,53] study the exact and similarity subgraph matching
on probabilistic graphs. Yuan et al. [52] also develop efficient
algorithms to process keyword queries over a large uncertain
graph data. In another work, Yuan et al. [50] and Jin et al. [24]
studied shortest path query and distance-constraint reachabil-
ity query in a single uncertain graph. Hua et al. [19] studied
several path queries in an uncertain road network. Kollios
et al. [27] studied clustering uncertain graphs based on the
expected graph distance, while Liu et al. [32] studied the
problem of reliable clustering on uncertain graphs based on
the graph entropy. The above works define uncertain graph
models with independent edge distributions and do not con-
sider edge correlations. Moreover, their proposed queries are

completely different the query studied in this paper. There-
fore, the techniques in these works cannot be used to process
graph similarity queries on uncertain graph data.

7 Conclusion

This is the first work to answer the similarity graph contain-
ment queries (subgraph and supergraph similarity queries) on
large uncertain graphs with correlation on edge probability
distributions. Though it is an NP-hard problem to answer the
subgraph or supergraph similarity query, we employ a filter-
and-verify methodology to answer the two queries efficiently.
During the filtering phase, for the subgraph similarity query,
we first propose a PMI with tight upper and lower bounds
of subgraph isomorphism probability. Then, based on PMI,
we derive upper and lower bounds of the subgraph similarity
probability, while for supergraph similarity query, we com-
pute effective bounds of supergraph similarity probability
based on maximal common subgraphs of query and uncertain
graph. Therefore, we are able to filter out a large number of
uncertain graphs without calculating the subgraph and super-
graph similarity probabilities. During verification to fast val-
idate final answers, we use the inclusion–exclusion princi-
ple to develop sampling algorithms for the subgraph simi-
larity query, while we develop sampling algorithms based
on the Horvitz–Thompson estimator for supergraph queries.
Finally, we confirm our designs for the two queries through
an extensive experimental study.
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